| 1 | //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements the ScheduleDAG class, which is a base class used by |
| 10 | // scheduling implementation classes. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "ScheduleDAGSDNodes.h" |
| 15 | #include "InstrEmitter.h" |
| 16 | #include "SDNodeDbgValue.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/SmallPtrSet.h" |
| 19 | #include "llvm/ADT/SmallSet.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/ADT/Statistic.h" |
| 22 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 23 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 24 | #include "llvm/CodeGen/SelectionDAG.h" |
| 25 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 26 | #include "llvm/CodeGen/TargetLowering.h" |
| 27 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 28 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 29 | #include "llvm/Config/llvm-config.h" |
| 30 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
| 31 | #include "llvm/MC/MCInstrItineraries.h" |
| 32 | #include "llvm/Support/CommandLine.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include "llvm/Support/raw_ostream.h" |
| 35 | #include "llvm/Target/TargetMachine.h" |
| 36 | using namespace llvm; |
| 37 | |
| 38 | #define DEBUG_TYPE "pre-RA-sched" |
| 39 | |
| 40 | STATISTIC(LoadsClustered, "Number of loads clustered together" ); |
| 41 | |
| 42 | // This allows the latency-based scheduler to notice high latency instructions |
| 43 | // without a target itinerary. The choice of number here has more to do with |
| 44 | // balancing scheduler heuristics than with the actual machine latency. |
| 45 | static cl::opt<int> HighLatencyCycles( |
| 46 | "sched-high-latency-cycles" , cl::Hidden, cl::init(Val: 10), |
| 47 | cl::desc("Roughly estimate the number of cycles that 'long latency' " |
| 48 | "instructions take for targets with no itinerary" )); |
| 49 | |
| 50 | ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) |
| 51 | : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {} |
| 52 | |
| 53 | /// Run - perform scheduling. |
| 54 | /// |
| 55 | void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { |
| 56 | BB = bb; |
| 57 | DAG = dag; |
| 58 | |
| 59 | // Clear the scheduler's SUnit DAG. |
| 60 | ScheduleDAG::clearDAG(); |
| 61 | Sequence.clear(); |
| 62 | |
| 63 | // Invoke the target's selection of scheduler. |
| 64 | Schedule(); |
| 65 | } |
| 66 | |
| 67 | /// NewSUnit - Creates a new SUnit and return a ptr to it. |
| 68 | /// |
| 69 | SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { |
| 70 | #ifndef NDEBUG |
| 71 | const SUnit *Addr = nullptr; |
| 72 | if (!SUnits.empty()) |
| 73 | Addr = &SUnits[0]; |
| 74 | #endif |
| 75 | SUnits.emplace_back(args&: N, args: (unsigned)SUnits.size()); |
| 76 | assert((Addr == nullptr || Addr == &SUnits[0]) && |
| 77 | "SUnits std::vector reallocated on the fly!" ); |
| 78 | SUnits.back().OrigNode = &SUnits.back(); |
| 79 | SUnit *SU = &SUnits.back(); |
| 80 | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| 81 | if (!N || |
| 82 | (N->isMachineOpcode() && |
| 83 | N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) |
| 84 | SU->SchedulingPref = Sched::None; |
| 85 | else |
| 86 | SU->SchedulingPref = TLI.getSchedulingPreference(N); |
| 87 | return SU; |
| 88 | } |
| 89 | |
| 90 | SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { |
| 91 | SUnit *SU = newSUnit(N: Old->getNode()); |
| 92 | SU->OrigNode = Old->OrigNode; |
| 93 | SU->Latency = Old->Latency; |
| 94 | SU->isVRegCycle = Old->isVRegCycle; |
| 95 | SU->isCall = Old->isCall; |
| 96 | SU->isCallOp = Old->isCallOp; |
| 97 | SU->isTwoAddress = Old->isTwoAddress; |
| 98 | SU->isCommutable = Old->isCommutable; |
| 99 | SU->hasPhysRegDefs = Old->hasPhysRegDefs; |
| 100 | SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; |
| 101 | SU->isScheduleHigh = Old->isScheduleHigh; |
| 102 | SU->isScheduleLow = Old->isScheduleLow; |
| 103 | SU->SchedulingPref = Old->SchedulingPref; |
| 104 | Old->isCloned = true; |
| 105 | return SU; |
| 106 | } |
| 107 | |
| 108 | /// CheckForPhysRegDependency - Check if the dependency between def and use of |
| 109 | /// a specified operand is a physical register dependency. If so, returns the |
| 110 | /// register and the cost of copying the register. |
| 111 | static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, |
| 112 | const TargetRegisterInfo *TRI, |
| 113 | const TargetInstrInfo *TII, |
| 114 | const TargetLowering &TLI, |
| 115 | MCRegister &PhysReg, int &Cost) { |
| 116 | if (Op != 2 || User->getOpcode() != ISD::CopyToReg) |
| 117 | return; |
| 118 | |
| 119 | Register Reg = cast<RegisterSDNode>(Val: User->getOperand(Num: 1))->getReg(); |
| 120 | if (TLI.checkForPhysRegDependency(Def, User, Op, TRI, TII, PhysReg, Cost)) |
| 121 | return; |
| 122 | |
| 123 | if (Reg.isVirtual()) |
| 124 | return; |
| 125 | |
| 126 | unsigned ResNo = User->getOperand(Num: 2).getResNo(); |
| 127 | if (Def->getOpcode() == ISD::CopyFromReg && |
| 128 | cast<RegisterSDNode>(Val: Def->getOperand(Num: 1))->getReg() == Reg) { |
| 129 | PhysReg = Reg; |
| 130 | } else if (Def->isMachineOpcode()) { |
| 131 | const MCInstrDesc &II = TII->get(Opcode: Def->getMachineOpcode()); |
| 132 | if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg)) |
| 133 | PhysReg = Reg; |
| 134 | } |
| 135 | |
| 136 | if (PhysReg) { |
| 137 | const TargetRegisterClass *RC = |
| 138 | TRI->getMinimalPhysRegClass(Reg, VT: Def->getSimpleValueType(ResNo)); |
| 139 | Cost = RC->getCopyCost(); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | // Helper for AddGlue to clone node operands. |
| 144 | static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, |
| 145 | SDValue = SDValue()) { |
| 146 | SmallVector<SDValue, 8> Ops(N->ops()); |
| 147 | if (ExtraOper.getNode()) |
| 148 | Ops.push_back(Elt: ExtraOper); |
| 149 | |
| 150 | SDVTList VTList = DAG->getVTList(VTs); |
| 151 | MachineSDNode *MN = dyn_cast<MachineSDNode>(Val: N); |
| 152 | |
| 153 | // Store memory references. |
| 154 | SmallVector<MachineMemOperand *, 2> MMOs; |
| 155 | if (MN) |
| 156 | MMOs.assign(in_start: MN->memoperands_begin(), in_end: MN->memoperands_end()); |
| 157 | |
| 158 | DAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: VTList, Ops); |
| 159 | |
| 160 | // Reset the memory references |
| 161 | if (MN) |
| 162 | DAG->setNodeMemRefs(N: MN, NewMemRefs: MMOs); |
| 163 | } |
| 164 | |
| 165 | static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { |
| 166 | SDNode *GlueDestNode = Glue.getNode(); |
| 167 | |
| 168 | // Don't add glue from a node to itself. |
| 169 | if (GlueDestNode == N) return false; |
| 170 | |
| 171 | // Don't add a glue operand to something that already uses glue. |
| 172 | if (GlueDestNode && |
| 173 | N->getOperand(Num: N->getNumOperands()-1).getValueType() == MVT::Glue) { |
| 174 | return false; |
| 175 | } |
| 176 | // Don't add glue to something that already has a glue value. |
| 177 | if (N->getValueType(ResNo: N->getNumValues() - 1) == MVT::Glue) return false; |
| 178 | |
| 179 | SmallVector<EVT, 4> VTs(N->values()); |
| 180 | if (AddGlue) |
| 181 | VTs.push_back(Elt: MVT::Glue); |
| 182 | |
| 183 | CloneNodeWithValues(N, DAG, VTs, ExtraOper: Glue); |
| 184 | |
| 185 | return true; |
| 186 | } |
| 187 | |
| 188 | // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the |
| 189 | // node even though simply shrinking the value list is sufficient. |
| 190 | static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { |
| 191 | assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && |
| 192 | !N->hasAnyUseOfValue(N->getNumValues() - 1)) && |
| 193 | "expected an unused glue value" ); |
| 194 | |
| 195 | CloneNodeWithValues(N, DAG, |
| 196 | VTs: ArrayRef(N->value_begin(), N->getNumValues() - 1)); |
| 197 | } |
| 198 | |
| 199 | /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. |
| 200 | /// This function finds loads of the same base and different offsets. If the |
| 201 | /// offsets are not far apart (target specific), it add MVT::Glue inputs and |
| 202 | /// outputs to ensure they are scheduled together and in order. This |
| 203 | /// optimization may benefit some targets by improving cache locality. |
| 204 | void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { |
| 205 | SDValue Chain; |
| 206 | unsigned NumOps = Node->getNumOperands(); |
| 207 | if (Node->getOperand(Num: NumOps-1).getValueType() == MVT::Other) |
| 208 | Chain = Node->getOperand(Num: NumOps-1); |
| 209 | if (!Chain) |
| 210 | return; |
| 211 | |
| 212 | // Skip any load instruction that has a tied input. There may be an additional |
| 213 | // dependency requiring a different order than by increasing offsets, and the |
| 214 | // added glue may introduce a cycle. |
| 215 | auto hasTiedInput = [this](const SDNode *N) { |
| 216 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 217 | for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { |
| 218 | if (MCID.getOperandConstraint(OpNum: I, Constraint: MCOI::TIED_TO) != -1) |
| 219 | return true; |
| 220 | } |
| 221 | |
| 222 | return false; |
| 223 | }; |
| 224 | |
| 225 | // Look for other loads of the same chain. Find loads that are loading from |
| 226 | // the same base pointer and different offsets. |
| 227 | SmallPtrSet<SDNode*, 16> Visited; |
| 228 | SmallVector<int64_t, 4> Offsets; |
| 229 | DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. |
| 230 | bool Cluster = false; |
| 231 | SDNode *Base = Node; |
| 232 | |
| 233 | if (hasTiedInput(Base)) |
| 234 | return; |
| 235 | |
| 236 | // This algorithm requires a reasonably low use count before finding a match |
| 237 | // to avoid uselessly blowing up compile time in large blocks. |
| 238 | unsigned UseCount = 0; |
| 239 | for (SDNode::user_iterator I = Chain->user_begin(), E = Chain->user_end(); |
| 240 | I != E && UseCount < 100; ++I, ++UseCount) { |
| 241 | if (I.getUse().getResNo() != Chain.getResNo()) |
| 242 | continue; |
| 243 | |
| 244 | SDNode *User = *I; |
| 245 | if (User == Node || !Visited.insert(Ptr: User).second) |
| 246 | continue; |
| 247 | int64_t Offset1, Offset2; |
| 248 | if (!TII->areLoadsFromSameBasePtr(Load1: Base, Load2: User, Offset1, Offset2) || |
| 249 | Offset1 == Offset2 || |
| 250 | hasTiedInput(User)) { |
| 251 | // FIXME: Should be ok if they addresses are identical. But earlier |
| 252 | // optimizations really should have eliminated one of the loads. |
| 253 | continue; |
| 254 | } |
| 255 | if (O2SMap.insert(KV: std::make_pair(x&: Offset1, y&: Base)).second) |
| 256 | Offsets.push_back(Elt: Offset1); |
| 257 | O2SMap.insert(KV: std::make_pair(x&: Offset2, y&: User)); |
| 258 | Offsets.push_back(Elt: Offset2); |
| 259 | if (Offset2 < Offset1) |
| 260 | Base = User; |
| 261 | Cluster = true; |
| 262 | // Reset UseCount to allow more matches. |
| 263 | UseCount = 0; |
| 264 | } |
| 265 | |
| 266 | if (!Cluster) |
| 267 | return; |
| 268 | |
| 269 | // Sort them in increasing order. |
| 270 | llvm::sort(C&: Offsets); |
| 271 | |
| 272 | // Check if the loads are close enough. |
| 273 | SmallVector<SDNode*, 4> Loads; |
| 274 | unsigned NumLoads = 0; |
| 275 | int64_t BaseOff = Offsets[0]; |
| 276 | SDNode *BaseLoad = O2SMap[BaseOff]; |
| 277 | Loads.push_back(Elt: BaseLoad); |
| 278 | for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { |
| 279 | int64_t Offset = Offsets[i]; |
| 280 | SDNode *Load = O2SMap[Offset]; |
| 281 | if (!TII->shouldScheduleLoadsNear(Load1: BaseLoad, Load2: Load, Offset1: BaseOff, Offset2: Offset,NumLoads)) |
| 282 | break; // Stop right here. Ignore loads that are further away. |
| 283 | Loads.push_back(Elt: Load); |
| 284 | ++NumLoads; |
| 285 | } |
| 286 | |
| 287 | if (NumLoads == 0) |
| 288 | return; |
| 289 | |
| 290 | // Cluster loads by adding MVT::Glue outputs and inputs. This also |
| 291 | // ensure they are scheduled in order of increasing addresses. |
| 292 | SDNode *Lead = Loads[0]; |
| 293 | SDValue InGlue; |
| 294 | if (AddGlue(N: Lead, Glue: InGlue, AddGlue: true, DAG)) |
| 295 | InGlue = SDValue(Lead, Lead->getNumValues() - 1); |
| 296 | for (unsigned I = 1, E = Loads.size(); I != E; ++I) { |
| 297 | bool OutGlue = I < E - 1; |
| 298 | SDNode *Load = Loads[I]; |
| 299 | |
| 300 | // If AddGlue fails, we could leave an unsused glue value. This should not |
| 301 | // cause any |
| 302 | if (AddGlue(N: Load, Glue: InGlue, AddGlue: OutGlue, DAG)) { |
| 303 | if (OutGlue) |
| 304 | InGlue = SDValue(Load, Load->getNumValues() - 1); |
| 305 | |
| 306 | ++LoadsClustered; |
| 307 | } |
| 308 | else if (!OutGlue && InGlue.getNode()) |
| 309 | RemoveUnusedGlue(N: InGlue.getNode(), DAG); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | /// ClusterNodes - Cluster certain nodes which should be scheduled together. |
| 314 | /// |
| 315 | void ScheduleDAGSDNodes::ClusterNodes() { |
| 316 | for (SDNode &NI : DAG->allnodes()) { |
| 317 | SDNode *Node = &NI; |
| 318 | if (!Node || !Node->isMachineOpcode()) |
| 319 | continue; |
| 320 | |
| 321 | unsigned Opc = Node->getMachineOpcode(); |
| 322 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
| 323 | if (MCID.mayLoad()) |
| 324 | // Cluster loads from "near" addresses into combined SUnits. |
| 325 | ClusterNeighboringLoads(Node); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | void ScheduleDAGSDNodes::BuildSchedUnits() { |
| 330 | // During scheduling, the NodeId field of SDNode is used to map SDNodes |
| 331 | // to their associated SUnits by holding SUnits table indices. A value |
| 332 | // of -1 means the SDNode does not yet have an associated SUnit. |
| 333 | unsigned NumNodes = 0; |
| 334 | for (SDNode &NI : DAG->allnodes()) { |
| 335 | NI.setNodeId(-1); |
| 336 | ++NumNodes; |
| 337 | } |
| 338 | |
| 339 | // Reserve entries in the vector for each of the SUnits we are creating. This |
| 340 | // ensure that reallocation of the vector won't happen, so SUnit*'s won't get |
| 341 | // invalidated. |
| 342 | // FIXME: Multiply by 2 because we may clone nodes during scheduling. |
| 343 | // This is a temporary workaround. |
| 344 | SUnits.reserve(n: NumNodes * 2); |
| 345 | |
| 346 | // Add all nodes in depth first order. |
| 347 | SmallVector<SDNode*, 64> Worklist; |
| 348 | SmallPtrSet<SDNode*, 32> Visited; |
| 349 | Worklist.push_back(Elt: DAG->getRoot().getNode()); |
| 350 | Visited.insert(Ptr: DAG->getRoot().getNode()); |
| 351 | |
| 352 | SmallVector<SUnit*, 8> CallSUnits; |
| 353 | while (!Worklist.empty()) { |
| 354 | SDNode *NI = Worklist.pop_back_val(); |
| 355 | |
| 356 | // Add all operands to the worklist unless they've already been added. |
| 357 | for (const SDValue &Op : NI->op_values()) |
| 358 | if (Visited.insert(Ptr: Op.getNode()).second) |
| 359 | Worklist.push_back(Elt: Op.getNode()); |
| 360 | |
| 361 | if (isPassiveNode(Node: NI)) // Leaf node, e.g. a TargetImmediate. |
| 362 | continue; |
| 363 | |
| 364 | // If this node has already been processed, stop now. |
| 365 | if (NI->getNodeId() != -1) continue; |
| 366 | |
| 367 | SUnit *NodeSUnit = newSUnit(N: NI); |
| 368 | |
| 369 | // See if anything is glued to this node, if so, add them to glued |
| 370 | // nodes. Nodes can have at most one glue input and one glue output. Glue |
| 371 | // is required to be the last operand and result of a node. |
| 372 | |
| 373 | // Scan up to find glued preds. |
| 374 | SDNode *N = NI; |
| 375 | while (N->getNumOperands() && |
| 376 | N->getOperand(Num: N->getNumOperands()-1).getValueType() == MVT::Glue) { |
| 377 | N = N->getOperand(Num: N->getNumOperands()-1).getNode(); |
| 378 | assert(N->getNodeId() == -1 && "Node already inserted!" ); |
| 379 | N->setNodeId(NodeSUnit->NodeNum); |
| 380 | if (N->isMachineOpcode() && TII->get(Opcode: N->getMachineOpcode()).isCall()) |
| 381 | NodeSUnit->isCall = true; |
| 382 | } |
| 383 | |
| 384 | // Scan down to find any glued succs. |
| 385 | N = NI; |
| 386 | while (N->getValueType(ResNo: N->getNumValues()-1) == MVT::Glue) { |
| 387 | SDValue GlueVal(N, N->getNumValues()-1); |
| 388 | |
| 389 | // There are either zero or one users of the Glue result. |
| 390 | bool HasGlueUse = false; |
| 391 | for (SDNode *U : N->users()) |
| 392 | if (GlueVal.isOperandOf(N: U)) { |
| 393 | HasGlueUse = true; |
| 394 | assert(N->getNodeId() == -1 && "Node already inserted!" ); |
| 395 | N->setNodeId(NodeSUnit->NodeNum); |
| 396 | N = U; |
| 397 | if (N->isMachineOpcode() && TII->get(Opcode: N->getMachineOpcode()).isCall()) |
| 398 | NodeSUnit->isCall = true; |
| 399 | break; |
| 400 | } |
| 401 | if (!HasGlueUse) break; |
| 402 | } |
| 403 | |
| 404 | if (NodeSUnit->isCall) |
| 405 | CallSUnits.push_back(Elt: NodeSUnit); |
| 406 | |
| 407 | // Schedule zero-latency TokenFactor below any nodes that may increase the |
| 408 | // schedule height. Otherwise, ancestors of the TokenFactor may appear to |
| 409 | // have false stalls. |
| 410 | if (NI->getOpcode() == ISD::TokenFactor) |
| 411 | NodeSUnit->isScheduleLow = true; |
| 412 | |
| 413 | // If there are glue operands involved, N is now the bottom-most node |
| 414 | // of the sequence of nodes that are glued together. |
| 415 | // Update the SUnit. |
| 416 | NodeSUnit->setNode(N); |
| 417 | assert(N->getNodeId() == -1 && "Node already inserted!" ); |
| 418 | N->setNodeId(NodeSUnit->NodeNum); |
| 419 | |
| 420 | // Compute NumRegDefsLeft. This must be done before AddSchedEdges. |
| 421 | InitNumRegDefsLeft(SU: NodeSUnit); |
| 422 | |
| 423 | // Assign the Latency field of NodeSUnit using target-provided information. |
| 424 | computeLatency(SU: NodeSUnit); |
| 425 | } |
| 426 | |
| 427 | // Find all call operands. |
| 428 | while (!CallSUnits.empty()) { |
| 429 | SUnit *SU = CallSUnits.pop_back_val(); |
| 430 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
| 431 | SUNode = SUNode->getGluedNode()) { |
| 432 | if (SUNode->getOpcode() != ISD::CopyToReg) |
| 433 | continue; |
| 434 | SDNode *SrcN = SUNode->getOperand(Num: 2).getNode(); |
| 435 | if (isPassiveNode(Node: SrcN)) continue; // Not scheduled. |
| 436 | SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; |
| 437 | SrcSU->isCallOp = true; |
| 438 | } |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | void ScheduleDAGSDNodes::AddSchedEdges() { |
| 443 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| 444 | |
| 445 | // Check to see if the scheduler cares about latencies. |
| 446 | bool UnitLatencies = forceUnitLatencies(); |
| 447 | |
| 448 | // Pass 2: add the preds, succs, etc. |
| 449 | for (SUnit &SU : SUnits) { |
| 450 | SDNode *MainNode = SU.getNode(); |
| 451 | |
| 452 | if (MainNode->isMachineOpcode()) { |
| 453 | unsigned Opc = MainNode->getMachineOpcode(); |
| 454 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
| 455 | for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { |
| 456 | if (MCID.getOperandConstraint(OpNum: i, Constraint: MCOI::TIED_TO) != -1) { |
| 457 | SU.isTwoAddress = true; |
| 458 | break; |
| 459 | } |
| 460 | } |
| 461 | if (MCID.isCommutable()) |
| 462 | SU.isCommutable = true; |
| 463 | } |
| 464 | |
| 465 | // Find all predecessors and successors of the group. |
| 466 | for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) { |
| 467 | if (N->isMachineOpcode() && |
| 468 | !TII->get(Opcode: N->getMachineOpcode()).implicit_defs().empty()) { |
| 469 | SU.hasPhysRegClobbers = true; |
| 470 | unsigned NumUsed = InstrEmitter::CountResults(Node: N); |
| 471 | while (NumUsed != 0 && !N->hasAnyUseOfValue(Value: NumUsed - 1)) |
| 472 | --NumUsed; // Skip over unused values at the end. |
| 473 | if (NumUsed > TII->get(Opcode: N->getMachineOpcode()).getNumDefs()) |
| 474 | SU.hasPhysRegDefs = true; |
| 475 | } |
| 476 | |
| 477 | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| 478 | SDNode *OpN = N->getOperand(Num: i).getNode(); |
| 479 | unsigned DefIdx = N->getOperand(Num: i).getResNo(); |
| 480 | if (isPassiveNode(Node: OpN)) continue; // Not scheduled. |
| 481 | SUnit *OpSU = &SUnits[OpN->getNodeId()]; |
| 482 | assert(OpSU && "Node has no SUnit!" ); |
| 483 | if (OpSU == &SU) |
| 484 | continue; // In the same group. |
| 485 | |
| 486 | EVT OpVT = N->getOperand(Num: i).getValueType(); |
| 487 | assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!" ); |
| 488 | bool isChain = OpVT == MVT::Other; |
| 489 | |
| 490 | MCRegister PhysReg; |
| 491 | int Cost = 1; |
| 492 | // Determine if this is a physical register dependency. |
| 493 | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| 494 | CheckForPhysRegDependency(Def: OpN, User: N, Op: i, TRI, TII, TLI, PhysReg, Cost); |
| 495 | assert((!PhysReg || !isChain) && "Chain dependence via physreg data?" ); |
| 496 | // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler |
| 497 | // emits a copy from the physical register to a virtual register unless |
| 498 | // it requires a cross class copy (cost < 0). That means we are only |
| 499 | // treating "expensive to copy" register dependency as physical register |
| 500 | // dependency. This may change in the future though. |
| 501 | if (Cost >= 0 && !StressSched) |
| 502 | PhysReg = MCRegister(); |
| 503 | |
| 504 | // If this is a ctrl dep, latency is 1. |
| 505 | unsigned OpLatency = isChain ? 1 : OpSU->Latency; |
| 506 | // Special-case TokenFactor chains as zero-latency. |
| 507 | if(isChain && OpN->getOpcode() == ISD::TokenFactor) |
| 508 | OpLatency = 0; |
| 509 | |
| 510 | SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) |
| 511 | : SDep(OpSU, SDep::Data, PhysReg); |
| 512 | Dep.setLatency(OpLatency); |
| 513 | if (!isChain && !UnitLatencies) { |
| 514 | computeOperandLatency(Def: OpN, Use: N, OpIdx: i, dep&: Dep); |
| 515 | ST.adjustSchedDependency(Def: OpSU, DefOpIdx: DefIdx, Use: &SU, UseOpIdx: i, Dep, SchedModel: nullptr); |
| 516 | } |
| 517 | |
| 518 | if (!SU.addPred(D: Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { |
| 519 | // Multiple register uses are combined in the same SUnit. For example, |
| 520 | // we could have a set of glued nodes with all their defs consumed by |
| 521 | // another set of glued nodes. Register pressure tracking sees this as |
| 522 | // a single use, so to keep pressure balanced we reduce the defs. |
| 523 | // |
| 524 | // We can't tell (without more book-keeping) if this results from |
| 525 | // glued nodes or duplicate operands. As long as we don't reduce |
| 526 | // NumRegDefsLeft to zero, we handle the common cases well. |
| 527 | --OpSU->NumRegDefsLeft; |
| 528 | } |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | /// BuildSchedGraph - Build the SUnit graph from the selection dag that we |
| 535 | /// are input. This SUnit graph is similar to the SelectionDAG, but |
| 536 | /// excludes nodes that aren't interesting to scheduling, and represents |
| 537 | /// glued together nodes with a single SUnit. |
| 538 | void ScheduleDAGSDNodes::BuildSchedGraph() { |
| 539 | // Cluster certain nodes which should be scheduled together. |
| 540 | ClusterNodes(); |
| 541 | // Populate the SUnits array. |
| 542 | BuildSchedUnits(); |
| 543 | // Compute all the scheduling dependencies between nodes. |
| 544 | AddSchedEdges(); |
| 545 | } |
| 546 | |
| 547 | // Initialize NumNodeDefs for the current Node's opcode. |
| 548 | void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { |
| 549 | // Check for phys reg copy. |
| 550 | if (!Node) |
| 551 | return; |
| 552 | |
| 553 | if (!Node->isMachineOpcode()) { |
| 554 | if (Node->getOpcode() == ISD::CopyFromReg) |
| 555 | NodeNumDefs = 1; |
| 556 | else |
| 557 | NodeNumDefs = 0; |
| 558 | return; |
| 559 | } |
| 560 | unsigned POpc = Node->getMachineOpcode(); |
| 561 | if (POpc == TargetOpcode::IMPLICIT_DEF) { |
| 562 | // No register need be allocated for this. |
| 563 | NodeNumDefs = 0; |
| 564 | return; |
| 565 | } |
| 566 | if (POpc == TargetOpcode::PATCHPOINT && |
| 567 | Node->getValueType(ResNo: 0) == MVT::Other) { |
| 568 | // PATCHPOINT is defined to have one result, but it might really have none |
| 569 | // if we're not using CallingConv::AnyReg. Don't mistake the chain for a |
| 570 | // real definition. |
| 571 | NodeNumDefs = 0; |
| 572 | return; |
| 573 | } |
| 574 | unsigned NRegDefs = SchedDAG->TII->get(Opcode: Node->getMachineOpcode()).getNumDefs(); |
| 575 | // Some instructions define regs that are not represented in the selection DAG |
| 576 | // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. |
| 577 | NodeNumDefs = std::min(a: Node->getNumValues(), b: NRegDefs); |
| 578 | DefIdx = 0; |
| 579 | } |
| 580 | |
| 581 | // Construct a RegDefIter for this SUnit and find the first valid value. |
| 582 | ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, |
| 583 | const ScheduleDAGSDNodes *SD) |
| 584 | : SchedDAG(SD), Node(SU->getNode()) { |
| 585 | InitNodeNumDefs(); |
| 586 | Advance(); |
| 587 | } |
| 588 | |
| 589 | // Advance to the next valid value defined by the SUnit. |
| 590 | void ScheduleDAGSDNodes::RegDefIter::Advance() { |
| 591 | for (;Node;) { // Visit all glued nodes. |
| 592 | for (;DefIdx < NodeNumDefs; ++DefIdx) { |
| 593 | if (!Node->hasAnyUseOfValue(Value: DefIdx)) |
| 594 | continue; |
| 595 | ValueType = Node->getSimpleValueType(ResNo: DefIdx); |
| 596 | ++DefIdx; |
| 597 | return; // Found a normal regdef. |
| 598 | } |
| 599 | Node = Node->getGluedNode(); |
| 600 | if (!Node) { |
| 601 | return; // No values left to visit. |
| 602 | } |
| 603 | InitNodeNumDefs(); |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { |
| 608 | assert(SU->NumRegDefsLeft == 0 && "expect a new node" ); |
| 609 | for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { |
| 610 | assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected" ); |
| 611 | ++SU->NumRegDefsLeft; |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { |
| 616 | SDNode *N = SU->getNode(); |
| 617 | |
| 618 | // TokenFactor operands are considered zero latency, and some schedulers |
| 619 | // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero |
| 620 | // whenever node latency is nonzero. |
| 621 | if (N && N->getOpcode() == ISD::TokenFactor) { |
| 622 | SU->Latency = 0; |
| 623 | return; |
| 624 | } |
| 625 | |
| 626 | // Check to see if the scheduler cares about latencies. |
| 627 | if (forceUnitLatencies()) { |
| 628 | SU->Latency = 1; |
| 629 | return; |
| 630 | } |
| 631 | |
| 632 | if (!InstrItins || InstrItins->isEmpty()) { |
| 633 | if (N && N->isMachineOpcode() && |
| 634 | TII->isHighLatencyDef(opc: N->getMachineOpcode())) |
| 635 | SU->Latency = HighLatencyCycles; |
| 636 | else |
| 637 | SU->Latency = 1; |
| 638 | return; |
| 639 | } |
| 640 | |
| 641 | // Compute the latency for the node. We use the sum of the latencies for |
| 642 | // all nodes glued together into this SUnit. |
| 643 | SU->Latency = 0; |
| 644 | for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) |
| 645 | if (N->isMachineOpcode()) |
| 646 | SU->Latency += TII->getInstrLatency(ItinData: InstrItins, Node: N); |
| 647 | } |
| 648 | |
| 649 | void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, |
| 650 | unsigned OpIdx, SDep& dep) const{ |
| 651 | // Check to see if the scheduler cares about latencies. |
| 652 | if (forceUnitLatencies()) |
| 653 | return; |
| 654 | |
| 655 | if (dep.getKind() != SDep::Data) |
| 656 | return; |
| 657 | |
| 658 | unsigned DefIdx = Use->getOperand(Num: OpIdx).getResNo(); |
| 659 | if (Use->isMachineOpcode()) |
| 660 | // Adjust the use operand index by num of defs. |
| 661 | OpIdx += TII->get(Opcode: Use->getMachineOpcode()).getNumDefs(); |
| 662 | std::optional<unsigned> Latency = |
| 663 | TII->getOperandLatency(ItinData: InstrItins, DefNode: Def, DefIdx, UseNode: Use, UseIdx: OpIdx); |
| 664 | if (Latency > 1U && Use->getOpcode() == ISD::CopyToReg && |
| 665 | !BB->succ_empty()) { |
| 666 | Register Reg = cast<RegisterSDNode>(Val: Use->getOperand(Num: 1))->getReg(); |
| 667 | if (Reg.isVirtual()) |
| 668 | // This copy is a liveout value. It is likely coalesced, so reduce the |
| 669 | // latency so not to penalize the def. |
| 670 | // FIXME: need target specific adjustment here? |
| 671 | Latency = *Latency - 1; |
| 672 | } |
| 673 | if (Latency) |
| 674 | dep.setLatency(*Latency); |
| 675 | } |
| 676 | |
| 677 | void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { |
| 678 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 679 | dumpNodeName(SU); |
| 680 | dbgs() << ": " ; |
| 681 | |
| 682 | if (!SU.getNode()) { |
| 683 | dbgs() << "PHYS REG COPY\n" ; |
| 684 | return; |
| 685 | } |
| 686 | |
| 687 | SU.getNode()->dump(DAG); |
| 688 | dbgs() << "\n" ; |
| 689 | SmallVector<SDNode *, 4> GluedNodes; |
| 690 | for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) |
| 691 | GluedNodes.push_back(N); |
| 692 | while (!GluedNodes.empty()) { |
| 693 | dbgs() << " " ; |
| 694 | GluedNodes.back()->dump(DAG); |
| 695 | dbgs() << "\n" ; |
| 696 | GluedNodes.pop_back(); |
| 697 | } |
| 698 | #endif |
| 699 | } |
| 700 | |
| 701 | void ScheduleDAGSDNodes::dump() const { |
| 702 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 703 | if (EntrySU.getNode() != nullptr) |
| 704 | dumpNodeAll(EntrySU); |
| 705 | for (const SUnit &SU : SUnits) |
| 706 | dumpNodeAll(SU); |
| 707 | if (ExitSU.getNode() != nullptr) |
| 708 | dumpNodeAll(ExitSU); |
| 709 | #endif |
| 710 | } |
| 711 | |
| 712 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 713 | void ScheduleDAGSDNodes::dumpSchedule() const { |
| 714 | for (const SUnit *SU : Sequence) { |
| 715 | if (SU) |
| 716 | dumpNode(*SU); |
| 717 | else |
| 718 | dbgs() << "**** NOOP ****\n" ; |
| 719 | } |
| 720 | } |
| 721 | #endif |
| 722 | |
| 723 | #ifndef NDEBUG |
| 724 | /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that |
| 725 | /// their state is consistent with the nodes listed in Sequence. |
| 726 | /// |
| 727 | void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { |
| 728 | unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); |
| 729 | unsigned Noops = llvm::count(Sequence, nullptr); |
| 730 | assert(Sequence.size() - Noops == ScheduledNodes && |
| 731 | "The number of nodes scheduled doesn't match the expected number!" ); |
| 732 | } |
| 733 | #endif // NDEBUG |
| 734 | |
| 735 | /// ProcessSDDbgValues - Process SDDbgValues associated with this node. |
| 736 | static void |
| 737 | ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, |
| 738 | SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, |
| 739 | InstrEmitter::VRBaseMapType &VRBaseMap, unsigned Order) { |
| 740 | if (!N->getHasDebugValue()) |
| 741 | return; |
| 742 | |
| 743 | /// Returns true if \p DV has any VReg operand locations which don't exist in |
| 744 | /// VRBaseMap. |
| 745 | auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) { |
| 746 | for (const SDDbgOperand &L : DV->getLocationOps()) { |
| 747 | if (L.getKind() == SDDbgOperand::SDNODE && |
| 748 | VRBaseMap.count(Val: {L.getSDNode(), L.getResNo()}) == 0) |
| 749 | return true; |
| 750 | } |
| 751 | return false; |
| 752 | }; |
| 753 | |
| 754 | // Opportunistically insert immediate dbg_value uses, i.e. those with the same |
| 755 | // source order number as N. |
| 756 | MachineBasicBlock *BB = Emitter.getBlock(); |
| 757 | MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); |
| 758 | for (auto *DV : DAG->GetDbgValues(SD: N)) { |
| 759 | if (DV->isEmitted()) |
| 760 | continue; |
| 761 | unsigned DVOrder = DV->getOrder(); |
| 762 | if (Order != 0 && DVOrder != Order) |
| 763 | continue; |
| 764 | // If DV has any VReg location operands which haven't been mapped then |
| 765 | // either that node is no longer available or we just haven't visited the |
| 766 | // node yet. In the former case we should emit an undef dbg_value, but we |
| 767 | // can do it later. And for the latter we'll want to wait until all |
| 768 | // dependent nodes have been visited. |
| 769 | if (!DV->isInvalidated() && HasUnknownVReg(DV)) |
| 770 | continue; |
| 771 | MachineInstr *DbgMI = Emitter.EmitDbgValue(SD: DV, VRBaseMap); |
| 772 | if (!DbgMI) |
| 773 | continue; |
| 774 | Orders.push_back(Elt: {DVOrder, DbgMI}); |
| 775 | BB->insert(I: InsertPos, MI: DbgMI); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | // ProcessSourceNode - Process nodes with source order numbers. These are added |
| 780 | // to a vector which EmitSchedule uses to determine how to insert dbg_value |
| 781 | // instructions in the right order. |
| 782 | static void |
| 783 | ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, |
| 784 | InstrEmitter::VRBaseMapType &VRBaseMap, |
| 785 | SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, |
| 786 | SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) { |
| 787 | unsigned Order = N->getIROrder(); |
| 788 | if (!Order || Seen.count(V: Order)) { |
| 789 | // Process any valid SDDbgValues even if node does not have any order |
| 790 | // assigned. |
| 791 | ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order: 0); |
| 792 | return; |
| 793 | } |
| 794 | |
| 795 | // If a new instruction was generated for this Order number, record it. |
| 796 | // Otherwise, leave this order number unseen: we will either find later |
| 797 | // instructions for it, or leave it unseen if there were no instructions at |
| 798 | // all. |
| 799 | if (NewInsn) { |
| 800 | Seen.insert(V: Order); |
| 801 | Orders.push_back(Elt: {Order, NewInsn}); |
| 802 | } |
| 803 | |
| 804 | // Even if no instruction was generated, a Value may have become defined via |
| 805 | // earlier nodes. Try to process them now. |
| 806 | ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); |
| 807 | } |
| 808 | |
| 809 | void ScheduleDAGSDNodes:: |
| 810 | EmitPhysRegCopy(SUnit *SU, SmallDenseMap<SUnit *, Register, 16> &VRBaseMap, |
| 811 | MachineBasicBlock::iterator InsertPos) { |
| 812 | for (const SDep &Pred : SU->Preds) { |
| 813 | if (Pred.isCtrl()) |
| 814 | continue; // ignore chain preds |
| 815 | if (Pred.getSUnit()->CopyDstRC) { |
| 816 | // Copy to physical register. |
| 817 | DenseMap<SUnit *, Register>::iterator VRI = |
| 818 | VRBaseMap.find(Val: Pred.getSUnit()); |
| 819 | assert(VRI != VRBaseMap.end() && "Node emitted out of order - late" ); |
| 820 | // Find the destination physical register. |
| 821 | Register Reg; |
| 822 | for (const SDep &Succ : SU->Succs) { |
| 823 | if (Succ.isCtrl()) |
| 824 | continue; // ignore chain preds |
| 825 | if (Succ.getReg()) { |
| 826 | Reg = Succ.getReg(); |
| 827 | break; |
| 828 | } |
| 829 | } |
| 830 | BuildMI(BB&: *BB, I: InsertPos, MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: Reg) |
| 831 | .addReg(RegNo: VRI->second); |
| 832 | } else { |
| 833 | // Copy from physical register. |
| 834 | assert(Pred.getReg() && "Unknown physical register!" ); |
| 835 | Register VRBase = MRI.createVirtualRegister(RegClass: SU->CopyDstRC); |
| 836 | bool isNew = VRBaseMap.insert(KV: std::make_pair(x&: SU, y&: VRBase)).second; |
| 837 | (void)isNew; // Silence compiler warning. |
| 838 | assert(isNew && "Node emitted out of order - early" ); |
| 839 | BuildMI(BB&: *BB, I: InsertPos, MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: VRBase) |
| 840 | .addReg(RegNo: Pred.getReg()); |
| 841 | } |
| 842 | break; |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | /// EmitSchedule - Emit the machine code in scheduled order. Return the new |
| 847 | /// InsertPos and MachineBasicBlock that contains this insertion |
| 848 | /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does |
| 849 | /// not necessarily refer to returned BB. The emitter may split blocks. |
| 850 | MachineBasicBlock *ScheduleDAGSDNodes:: |
| 851 | EmitSchedule(MachineBasicBlock::iterator &InsertPos) { |
| 852 | InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos); |
| 853 | InstrEmitter::VRBaseMapType VRBaseMap; |
| 854 | SmallDenseMap<SUnit *, Register, 16> CopyVRBaseMap; |
| 855 | SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; |
| 856 | SmallSet<Register, 8> Seen; |
| 857 | bool HasDbg = DAG->hasDebugValues(); |
| 858 | |
| 859 | // Emit a node, and determine where its first instruction is for debuginfo. |
| 860 | // Zero, one, or multiple instructions can be created when emitting a node. |
| 861 | auto EmitNode = |
| 862 | [&](SDNode *Node, bool IsClone, bool IsCloned, |
| 863 | InstrEmitter::VRBaseMapType &VRBaseMap) -> MachineInstr * { |
| 864 | // Fetch instruction prior to this, or end() if nonexistant. |
| 865 | auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { |
| 866 | if (I == BB->begin()) |
| 867 | return BB->end(); |
| 868 | else |
| 869 | return std::prev(x: Emitter.getInsertPos()); |
| 870 | }; |
| 871 | |
| 872 | MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); |
| 873 | Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); |
| 874 | MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); |
| 875 | |
| 876 | // If the iterator did not change, no instructions were inserted. |
| 877 | if (Before == After) |
| 878 | return nullptr; |
| 879 | |
| 880 | MachineInstr *MI; |
| 881 | if (Before == BB->end()) { |
| 882 | // There were no prior instructions; the new ones must start at the |
| 883 | // beginning of the block. |
| 884 | MI = &Emitter.getBlock()->instr_front(); |
| 885 | } else { |
| 886 | // Return first instruction after the pre-existing instructions. |
| 887 | MI = &*std::next(x: Before); |
| 888 | } |
| 889 | |
| 890 | if (MI->isCandidateForAdditionalCallInfo()) { |
| 891 | if (DAG->getTarget().Options.EmitCallSiteInfo) |
| 892 | MF.addCallSiteInfo(CallI: MI, CallInfo: DAG->getCallSiteInfo(Node)); |
| 893 | |
| 894 | if (auto CalledGlobal = DAG->getCalledGlobal(Node)) |
| 895 | if (CalledGlobal->Callee) |
| 896 | MF.addCalledGlobal(MI, Details: *CalledGlobal); |
| 897 | } |
| 898 | |
| 899 | if (DAG->getNoMergeSiteInfo(Node)) { |
| 900 | MI->setFlag(MachineInstr::MIFlag::NoMerge); |
| 901 | } |
| 902 | |
| 903 | if (MDNode *MD = DAG->getPCSections(Node)) |
| 904 | MI->setPCSections(MF, MD); |
| 905 | |
| 906 | // Set MMRAs on _all_ added instructions. |
| 907 | if (MDNode *MMRA = DAG->getMMRAMetadata(Node)) { |
| 908 | for (MachineBasicBlock::iterator It = MI->getIterator(), |
| 909 | End = std::next(x: After); |
| 910 | It != End; ++It) |
| 911 | It->setMMRAMetadata(MF, MMRAs: MMRA); |
| 912 | } |
| 913 | |
| 914 | return MI; |
| 915 | }; |
| 916 | |
| 917 | // If this is the first BB, emit byval parameter dbg_value's. |
| 918 | if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { |
| 919 | SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); |
| 920 | SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); |
| 921 | for (; PDI != PDE; ++PDI) { |
| 922 | MachineInstr *DbgMI= Emitter.EmitDbgValue(SD: *PDI, VRBaseMap); |
| 923 | if (DbgMI) { |
| 924 | BB->insert(I: InsertPos, MI: DbgMI); |
| 925 | // We re-emit the dbg_value closer to its use, too, after instructions |
| 926 | // are emitted to the BB. |
| 927 | (*PDI)->clearIsEmitted(); |
| 928 | } |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | for (SUnit *SU : Sequence) { |
| 933 | if (!SU) { |
| 934 | // Null SUnit* is a noop. |
| 935 | TII->insertNoop(MBB&: *Emitter.getBlock(), MI: InsertPos); |
| 936 | continue; |
| 937 | } |
| 938 | |
| 939 | // For pre-regalloc scheduling, create instructions corresponding to the |
| 940 | // SDNode and any glued SDNodes and append them to the block. |
| 941 | if (!SU->getNode()) { |
| 942 | // Emit a copy. |
| 943 | EmitPhysRegCopy(SU, VRBaseMap&: CopyVRBaseMap, InsertPos); |
| 944 | continue; |
| 945 | } |
| 946 | |
| 947 | SmallVector<SDNode *, 4> GluedNodes; |
| 948 | for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) |
| 949 | GluedNodes.push_back(Elt: N); |
| 950 | while (!GluedNodes.empty()) { |
| 951 | SDNode *N = GluedNodes.back(); |
| 952 | auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); |
| 953 | // Remember the source order of the inserted instruction. |
| 954 | if (HasDbg) |
| 955 | ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); |
| 956 | |
| 957 | if (MDNode *MD = DAG->getHeapAllocSite(Node: N)) |
| 958 | if (NewInsn && NewInsn->isCall()) |
| 959 | NewInsn->setHeapAllocMarker(MF, MD); |
| 960 | |
| 961 | GluedNodes.pop_back(); |
| 962 | } |
| 963 | auto NewInsn = |
| 964 | EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); |
| 965 | // Remember the source order of the inserted instruction. |
| 966 | if (HasDbg) |
| 967 | ProcessSourceNode(N: SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, |
| 968 | NewInsn); |
| 969 | |
| 970 | if (MDNode *MD = DAG->getHeapAllocSite(Node: SU->getNode())) { |
| 971 | if (NewInsn && NewInsn->isCall()) |
| 972 | NewInsn->setHeapAllocMarker(MF, MD); |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | // Insert all the dbg_values which have not already been inserted in source |
| 977 | // order sequence. |
| 978 | if (HasDbg) { |
| 979 | MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); |
| 980 | |
| 981 | // Sort the source order instructions and use the order to insert debug |
| 982 | // values. Use stable_sort so that DBG_VALUEs are inserted in the same order |
| 983 | // regardless of the host's implementation fo std::sort. |
| 984 | llvm::stable_sort(Range&: Orders, C: less_first()); |
| 985 | std::stable_sort(first: DAG->DbgBegin(), last: DAG->DbgEnd(), |
| 986 | comp: [](const SDDbgValue *LHS, const SDDbgValue *RHS) { |
| 987 | return LHS->getOrder() < RHS->getOrder(); |
| 988 | }); |
| 989 | |
| 990 | SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); |
| 991 | SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); |
| 992 | // Now emit the rest according to source order. |
| 993 | unsigned LastOrder = 0; |
| 994 | for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { |
| 995 | unsigned Order = Orders[i].first; |
| 996 | MachineInstr *MI = Orders[i].second; |
| 997 | // Insert all SDDbgValue's whose order(s) are before "Order". |
| 998 | assert(MI); |
| 999 | for (; DI != DE; ++DI) { |
| 1000 | if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) |
| 1001 | break; |
| 1002 | if ((*DI)->isEmitted()) |
| 1003 | continue; |
| 1004 | |
| 1005 | MachineInstr *DbgMI = Emitter.EmitDbgValue(SD: *DI, VRBaseMap); |
| 1006 | if (DbgMI) { |
| 1007 | if (!LastOrder) |
| 1008 | // Insert to start of the BB (after PHIs). |
| 1009 | BB->insert(I: BBBegin, MI: DbgMI); |
| 1010 | else { |
| 1011 | // Insert at the instruction, which may be in a different |
| 1012 | // block, if the block was split by a custom inserter. |
| 1013 | MachineBasicBlock::iterator Pos = MI; |
| 1014 | MI->getParent()->insert(I: Pos, MI: DbgMI); |
| 1015 | } |
| 1016 | } |
| 1017 | } |
| 1018 | LastOrder = Order; |
| 1019 | } |
| 1020 | // Add trailing DbgValue's before the terminator. FIXME: May want to add |
| 1021 | // some of them before one or more conditional branches? |
| 1022 | SmallVector<MachineInstr*, 8> DbgMIs; |
| 1023 | for (; DI != DE; ++DI) { |
| 1024 | if ((*DI)->isEmitted()) |
| 1025 | continue; |
| 1026 | assert((*DI)->getOrder() >= LastOrder && |
| 1027 | "emitting DBG_VALUE out of order" ); |
| 1028 | if (MachineInstr *DbgMI = Emitter.EmitDbgValue(SD: *DI, VRBaseMap)) |
| 1029 | DbgMIs.push_back(Elt: DbgMI); |
| 1030 | } |
| 1031 | |
| 1032 | MachineBasicBlock *InsertBB = Emitter.getBlock(); |
| 1033 | MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); |
| 1034 | InsertBB->insert(I: Pos, S: DbgMIs.begin(), E: DbgMIs.end()); |
| 1035 | |
| 1036 | SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); |
| 1037 | SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); |
| 1038 | // Now emit the rest according to source order. |
| 1039 | LastOrder = 0; |
| 1040 | for (const auto &InstrOrder : Orders) { |
| 1041 | unsigned Order = InstrOrder.first; |
| 1042 | MachineInstr *MI = InstrOrder.second; |
| 1043 | if (!MI) |
| 1044 | continue; |
| 1045 | |
| 1046 | // Insert all SDDbgLabel's whose order(s) are before "Order". |
| 1047 | for (; DLI != DLE && |
| 1048 | (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; |
| 1049 | ++DLI) { |
| 1050 | MachineInstr *DbgMI = Emitter.EmitDbgLabel(SD: *DLI); |
| 1051 | if (DbgMI) { |
| 1052 | if (!LastOrder) |
| 1053 | // Insert to start of the BB (after PHIs). |
| 1054 | BB->insert(I: BBBegin, MI: DbgMI); |
| 1055 | else { |
| 1056 | // Insert at the instruction, which may be in a different |
| 1057 | // block, if the block was split by a custom inserter. |
| 1058 | MachineBasicBlock::iterator Pos = MI; |
| 1059 | MI->getParent()->insert(I: Pos, MI: DbgMI); |
| 1060 | } |
| 1061 | } |
| 1062 | } |
| 1063 | if (DLI == DLE) |
| 1064 | break; |
| 1065 | |
| 1066 | LastOrder = Order; |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | InsertPos = Emitter.getInsertPos(); |
| 1071 | // In some cases, DBG_VALUEs might be inserted after the first terminator, |
| 1072 | // which results in an invalid MBB. If that happens, move the DBG_VALUEs |
| 1073 | // before the first terminator. |
| 1074 | MachineBasicBlock *InsertBB = Emitter.getBlock(); |
| 1075 | auto FirstTerm = InsertBB->getFirstTerminator(); |
| 1076 | if (FirstTerm != InsertBB->end()) { |
| 1077 | assert(!FirstTerm->isDebugValue() && |
| 1078 | "first terminator cannot be a debug value" ); |
| 1079 | for (MachineInstr &MI : make_early_inc_range( |
| 1080 | Range: make_range(x: std::next(x: FirstTerm), y: InsertBB->end()))) { |
| 1081 | // Only scan up to insertion point. |
| 1082 | if (&MI == InsertPos) |
| 1083 | break; |
| 1084 | |
| 1085 | if (!MI.isDebugValue()) |
| 1086 | continue; |
| 1087 | |
| 1088 | // The DBG_VALUE was referencing a value produced by a terminator. By |
| 1089 | // moving the DBG_VALUE, the referenced value also needs invalidating. |
| 1090 | MI.getOperand(i: 0).ChangeToRegister(Reg: 0, isDef: false); |
| 1091 | MI.moveBefore(MovePos: &*FirstTerm); |
| 1092 | } |
| 1093 | } |
| 1094 | return InsertBB; |
| 1095 | } |
| 1096 | |
| 1097 | /// Return the basic block label. |
| 1098 | std::string ScheduleDAGSDNodes::getDAGName() const { |
| 1099 | return "sunit-dag." + BB->getFullName(); |
| 1100 | } |
| 1101 | |