| 1 | //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the SplitAnalysis class as well as mutator functions for |
| 10 | // live range splitting. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "SplitKit.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/CodeGen/LiveRangeEdit.h" |
| 18 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 19 | #include "llvm/CodeGen/MachineDominators.h" |
| 20 | #include "llvm/CodeGen/MachineInstr.h" |
| 21 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 22 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 23 | #include "llvm/CodeGen/MachineOperand.h" |
| 24 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 25 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 26 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 27 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 28 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 29 | #include "llvm/CodeGen/VirtRegMap.h" |
| 30 | #include "llvm/Config/llvm-config.h" |
| 31 | #include "llvm/IR/DebugLoc.h" |
| 32 | #include "llvm/Support/Allocator.h" |
| 33 | #include "llvm/Support/BlockFrequency.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | #include <algorithm> |
| 38 | #include <cassert> |
| 39 | #include <iterator> |
| 40 | #include <limits> |
| 41 | #include <tuple> |
| 42 | |
| 43 | using namespace llvm; |
| 44 | |
| 45 | #define DEBUG_TYPE "regalloc" |
| 46 | |
| 47 | static cl::opt<bool> |
| 48 | EnableLoopIVHeuristic("enable-split-loopiv-heuristic" , |
| 49 | cl::desc("Enable loop iv regalloc heuristic" ), |
| 50 | cl::init(Val: true)); |
| 51 | |
| 52 | STATISTIC(NumFinished, "Number of splits finished" ); |
| 53 | STATISTIC(NumSimple, "Number of splits that were simple" ); |
| 54 | STATISTIC(NumCopies, "Number of copies inserted for splitting" ); |
| 55 | STATISTIC(NumRemats, "Number of rematerialized defs for splitting" ); |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // Last Insert Point Analysis |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, |
| 62 | unsigned BBNum) |
| 63 | : LIS(lis), LastInsertPoint(BBNum) {} |
| 64 | |
| 65 | SlotIndex |
| 66 | InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, |
| 67 | const MachineBasicBlock &MBB) { |
| 68 | unsigned Num = MBB.getNumber(); |
| 69 | std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; |
| 70 | SlotIndex MBBEnd = LIS.getMBBEndIdx(mbb: &MBB); |
| 71 | |
| 72 | SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; |
| 73 | bool EHPadSuccessor = false; |
| 74 | for (const MachineBasicBlock *SMBB : MBB.successors()) { |
| 75 | if (SMBB->isEHPad()) { |
| 76 | ExceptionalSuccessors.push_back(Elt: SMBB); |
| 77 | EHPadSuccessor = true; |
| 78 | } else if (SMBB->isInlineAsmBrIndirectTarget()) |
| 79 | ExceptionalSuccessors.push_back(Elt: SMBB); |
| 80 | } |
| 81 | |
| 82 | // Compute insert points on the first call. The pair is independent of the |
| 83 | // current live interval. |
| 84 | if (!LIP.first.isValid()) { |
| 85 | MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); |
| 86 | if (FirstTerm == MBB.end()) |
| 87 | LIP.first = MBBEnd; |
| 88 | else |
| 89 | LIP.first = LIS.getInstructionIndex(Instr: *FirstTerm); |
| 90 | |
| 91 | // If there is a landing pad or inlineasm_br successor, also find the |
| 92 | // instruction. If there is no such instruction, we don't need to do |
| 93 | // anything special. We assume there cannot be multiple instructions that |
| 94 | // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we |
| 95 | // assume that if there are any, they will be after any other call |
| 96 | // instructions in the block. |
| 97 | if (ExceptionalSuccessors.empty()) |
| 98 | return LIP.first; |
| 99 | for (const MachineInstr &MI : llvm::reverse(C: MBB)) { |
| 100 | if ((EHPadSuccessor && MI.isCall()) || |
| 101 | MI.getOpcode() == TargetOpcode::INLINEASM_BR) { |
| 102 | LIP.second = LIS.getInstructionIndex(Instr: MI); |
| 103 | break; |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // If CurLI is live into a landing pad successor, move the last insert point |
| 109 | // back to the call that may throw. |
| 110 | if (!LIP.second) |
| 111 | return LIP.first; |
| 112 | |
| 113 | if (none_of(Range&: ExceptionalSuccessors, P: [&](const MachineBasicBlock *EHPad) { |
| 114 | return LIS.isLiveInToMBB(LR: CurLI, mbb: EHPad); |
| 115 | })) |
| 116 | return LIP.first; |
| 117 | |
| 118 | // Find the value leaving MBB. |
| 119 | const VNInfo *VNI = CurLI.getVNInfoBefore(Idx: MBBEnd); |
| 120 | if (!VNI) |
| 121 | return LIP.first; |
| 122 | |
| 123 | // The def of statepoint instruction is a gc relocation and it should be alive |
| 124 | // in landing pad. So we cannot split interval after statepoint instruction. |
| 125 | if (SlotIndex::isSameInstr(A: VNI->def, B: LIP.second)) |
| 126 | if (auto *I = LIS.getInstructionFromIndex(index: LIP.second)) |
| 127 | if (I->getOpcode() == TargetOpcode::STATEPOINT) |
| 128 | return LIP.second; |
| 129 | |
| 130 | // If the value leaving MBB was defined after the call in MBB, it can't |
| 131 | // really be live-in to the landing pad. This can happen if the landing pad |
| 132 | // has a PHI, and this register is undef on the exceptional edge. |
| 133 | if (!SlotIndex::isEarlierInstr(A: VNI->def, B: LIP.second) && VNI->def < MBBEnd) |
| 134 | return LIP.first; |
| 135 | |
| 136 | // Value is properly live-in to the landing pad. |
| 137 | // Only allow inserts before the call. |
| 138 | return LIP.second; |
| 139 | } |
| 140 | |
| 141 | MachineBasicBlock::iterator |
| 142 | InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, |
| 143 | MachineBasicBlock &MBB) { |
| 144 | SlotIndex LIP = getLastInsertPoint(CurLI, MBB); |
| 145 | if (LIP == LIS.getMBBEndIdx(mbb: &MBB)) |
| 146 | return MBB.end(); |
| 147 | return LIS.getInstructionFromIndex(index: LIP); |
| 148 | } |
| 149 | |
| 150 | //===----------------------------------------------------------------------===// |
| 151 | // Split Analysis |
| 152 | //===----------------------------------------------------------------------===// |
| 153 | |
| 154 | SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, |
| 155 | const MachineLoopInfo &mli) |
| 156 | : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), |
| 157 | TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} |
| 158 | |
| 159 | void SplitAnalysis::clear() { |
| 160 | UseSlots.clear(); |
| 161 | UseBlocks.clear(); |
| 162 | ThroughBlocks.clear(); |
| 163 | CurLI = nullptr; |
| 164 | } |
| 165 | |
| 166 | /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. |
| 167 | void SplitAnalysis::analyzeUses() { |
| 168 | assert(UseSlots.empty() && "Call clear first" ); |
| 169 | |
| 170 | // First get all the defs from the interval values. This provides the correct |
| 171 | // slots for early clobbers. |
| 172 | for (const VNInfo *VNI : CurLI->valnos) |
| 173 | if (!VNI->isPHIDef() && !VNI->isUnused()) |
| 174 | UseSlots.push_back(Elt: VNI->def); |
| 175 | |
| 176 | // Get use slots form the use-def chain. |
| 177 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 178 | for (MachineOperand &MO : MRI.use_nodbg_operands(Reg: CurLI->reg())) |
| 179 | if (!MO.isUndef()) |
| 180 | UseSlots.push_back(Elt: LIS.getInstructionIndex(Instr: *MO.getParent()).getRegSlot()); |
| 181 | |
| 182 | array_pod_sort(Start: UseSlots.begin(), End: UseSlots.end()); |
| 183 | |
| 184 | // Remove duplicates, keeping the smaller slot for each instruction. |
| 185 | // That is what we want for early clobbers. |
| 186 | UseSlots.erase(CS: llvm::unique(R&: UseSlots, P: SlotIndex::isSameInstr), |
| 187 | CE: UseSlots.end()); |
| 188 | |
| 189 | // Compute per-live block info. |
| 190 | calcLiveBlockInfo(); |
| 191 | |
| 192 | LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " |
| 193 | << UseBlocks.size() << " blocks, through " |
| 194 | << NumThroughBlocks << " blocks.\n" ); |
| 195 | } |
| 196 | |
| 197 | /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks |
| 198 | /// where CurLI is live. |
| 199 | void SplitAnalysis::calcLiveBlockInfo() { |
| 200 | ThroughBlocks.resize(N: MF.getNumBlockIDs()); |
| 201 | NumThroughBlocks = NumGapBlocks = 0; |
| 202 | if (CurLI->empty()) |
| 203 | return; |
| 204 | |
| 205 | LiveInterval::const_iterator LVI = CurLI->begin(); |
| 206 | LiveInterval::const_iterator LVE = CurLI->end(); |
| 207 | |
| 208 | SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; |
| 209 | UseI = UseSlots.begin(); |
| 210 | UseE = UseSlots.end(); |
| 211 | |
| 212 | // Loop over basic blocks where CurLI is live. |
| 213 | MachineFunction::iterator MFI = |
| 214 | LIS.getMBBFromIndex(index: LVI->start)->getIterator(); |
| 215 | while (true) { |
| 216 | BlockInfo BI; |
| 217 | BI.MBB = &*MFI; |
| 218 | SlotIndex Start, Stop; |
| 219 | std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(MBB: BI.MBB); |
| 220 | |
| 221 | // If the block contains no uses, the range must be live through. At one |
| 222 | // point, RegisterCoalescer could create dangling ranges that ended |
| 223 | // mid-block. |
| 224 | if (UseI == UseE || *UseI >= Stop) { |
| 225 | ++NumThroughBlocks; |
| 226 | ThroughBlocks.set(BI.MBB->getNumber()); |
| 227 | // The range shouldn't end mid-block if there are no uses. This shouldn't |
| 228 | // happen. |
| 229 | assert(LVI->end >= Stop && "range ends mid block with no uses" ); |
| 230 | } else { |
| 231 | // This block has uses. Find the first and last uses in the block. |
| 232 | BI.FirstInstr = *UseI; |
| 233 | assert(BI.FirstInstr >= Start); |
| 234 | do ++UseI; |
| 235 | while (UseI != UseE && *UseI < Stop); |
| 236 | BI.LastInstr = UseI[-1]; |
| 237 | assert(BI.LastInstr < Stop); |
| 238 | |
| 239 | // LVI is the first live segment overlapping MBB. |
| 240 | BI.LiveIn = LVI->start <= Start; |
| 241 | |
| 242 | // When not live in, the first use should be a def. |
| 243 | if (!BI.LiveIn) { |
| 244 | assert(LVI->start == LVI->valno->def && "Dangling Segment start" ); |
| 245 | assert(LVI->start == BI.FirstInstr && "First instr should be a def" ); |
| 246 | BI.FirstDef = BI.FirstInstr; |
| 247 | } |
| 248 | |
| 249 | // Look for gaps in the live range. |
| 250 | BI.LiveOut = true; |
| 251 | while (LVI->end < Stop) { |
| 252 | SlotIndex LastStop = LVI->end; |
| 253 | if (++LVI == LVE || LVI->start >= Stop) { |
| 254 | BI.LiveOut = false; |
| 255 | BI.LastInstr = LastStop; |
| 256 | break; |
| 257 | } |
| 258 | |
| 259 | if (LastStop < LVI->start) { |
| 260 | // There is a gap in the live range. Create duplicate entries for the |
| 261 | // live-in snippet and the live-out snippet. |
| 262 | ++NumGapBlocks; |
| 263 | |
| 264 | // Push the Live-in part. |
| 265 | BI.LiveOut = false; |
| 266 | UseBlocks.push_back(Elt: BI); |
| 267 | UseBlocks.back().LastInstr = LastStop; |
| 268 | |
| 269 | // Set up BI for the live-out part. |
| 270 | BI.LiveIn = false; |
| 271 | BI.LiveOut = true; |
| 272 | BI.FirstInstr = BI.FirstDef = LVI->start; |
| 273 | } |
| 274 | |
| 275 | // A Segment that starts in the middle of the block must be a def. |
| 276 | assert(LVI->start == LVI->valno->def && "Dangling Segment start" ); |
| 277 | if (!BI.FirstDef) |
| 278 | BI.FirstDef = LVI->start; |
| 279 | } |
| 280 | |
| 281 | UseBlocks.push_back(Elt: BI); |
| 282 | |
| 283 | // LVI is now at LVE or LVI->end >= Stop. |
| 284 | if (LVI == LVE) |
| 285 | break; |
| 286 | } |
| 287 | |
| 288 | // Live segment ends exactly at Stop. Move to the next segment. |
| 289 | if (LVI->end == Stop && ++LVI == LVE) |
| 290 | break; |
| 291 | |
| 292 | // Pick the next basic block. |
| 293 | if (LVI->start < Stop) |
| 294 | ++MFI; |
| 295 | else |
| 296 | MFI = LIS.getMBBFromIndex(index: LVI->start)->getIterator(); |
| 297 | } |
| 298 | |
| 299 | LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 && |
| 300 | any_of(Range&: UseBlocks, P: [this](BlockInfo &BI) { |
| 301 | MachineLoop *L = Loops.getLoopFor(BB: BI.MBB); |
| 302 | return BI.LiveIn && BI.LiveOut && BI.FirstDef && L && |
| 303 | L->isLoopLatch(BB: BI.MBB); |
| 304 | }); |
| 305 | |
| 306 | assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count" ); |
| 307 | } |
| 308 | |
| 309 | unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { |
| 310 | if (cli->empty()) |
| 311 | return 0; |
| 312 | LiveInterval *li = const_cast<LiveInterval*>(cli); |
| 313 | LiveInterval::iterator LVI = li->begin(); |
| 314 | LiveInterval::iterator LVE = li->end(); |
| 315 | unsigned Count = 0; |
| 316 | |
| 317 | // Loop over basic blocks where li is live. |
| 318 | MachineFunction::const_iterator MFI = |
| 319 | LIS.getMBBFromIndex(index: LVI->start)->getIterator(); |
| 320 | SlotIndex Stop = LIS.getMBBEndIdx(mbb: &*MFI); |
| 321 | while (true) { |
| 322 | ++Count; |
| 323 | LVI = li->advanceTo(I: LVI, Pos: Stop); |
| 324 | if (LVI == LVE) |
| 325 | return Count; |
| 326 | do { |
| 327 | ++MFI; |
| 328 | Stop = LIS.getMBBEndIdx(mbb: &*MFI); |
| 329 | } while (Stop <= LVI->start); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { |
| 334 | Register OrigReg = VRM.getOriginal(VirtReg: CurLI->reg()); |
| 335 | const LiveInterval &Orig = LIS.getInterval(Reg: OrigReg); |
| 336 | assert(!Orig.empty() && "Splitting empty interval?" ); |
| 337 | LiveInterval::const_iterator I = Orig.find(Pos: Idx); |
| 338 | |
| 339 | // Range containing Idx should begin at Idx. |
| 340 | if (I != Orig.end() && I->start <= Idx) |
| 341 | return I->start == Idx; |
| 342 | |
| 343 | // Range does not contain Idx, previous must end at Idx. |
| 344 | return I != Orig.begin() && (--I)->end == Idx; |
| 345 | } |
| 346 | |
| 347 | void SplitAnalysis::analyze(const LiveInterval *li) { |
| 348 | clear(); |
| 349 | CurLI = li; |
| 350 | analyzeUses(); |
| 351 | } |
| 352 | |
| 353 | //===----------------------------------------------------------------------===// |
| 354 | // Split Editor |
| 355 | //===----------------------------------------------------------------------===// |
| 356 | |
| 357 | /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. |
| 358 | SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, |
| 359 | MachineDominatorTree &MDT, |
| 360 | MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) |
| 361 | : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()), |
| 362 | MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), |
| 363 | TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), |
| 364 | MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} |
| 365 | |
| 366 | void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { |
| 367 | Edit = &LRE; |
| 368 | SpillMode = SM; |
| 369 | OpenIdx = 0; |
| 370 | RegAssign.clear(); |
| 371 | Values.clear(); |
| 372 | |
| 373 | // Reset the LiveIntervalCalc instances needed for this spill mode. |
| 374 | LICalc[0].reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT, |
| 375 | VNIA: &LIS.getVNInfoAllocator()); |
| 376 | if (SpillMode) |
| 377 | LICalc[1].reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT, |
| 378 | VNIA: &LIS.getVNInfoAllocator()); |
| 379 | |
| 380 | Edit->anyRematerializable(); |
| 381 | } |
| 382 | |
| 383 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 384 | LLVM_DUMP_METHOD void SplitEditor::dump() const { |
| 385 | if (RegAssign.empty()) { |
| 386 | dbgs() << " empty\n" ; |
| 387 | return; |
| 388 | } |
| 389 | |
| 390 | for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) |
| 391 | dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); |
| 392 | dbgs() << '\n'; |
| 393 | } |
| 394 | #endif |
| 395 | |
| 396 | /// Find a subrange corresponding to the exact lane mask @p LM in the live |
| 397 | /// interval @p LI. The interval @p LI is assumed to contain such a subrange. |
| 398 | /// This function is used to find corresponding subranges between the |
| 399 | /// original interval and the new intervals. |
| 400 | template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) { |
| 401 | for (auto &S : LI.subranges()) |
| 402 | if (S.LaneMask == LM) |
| 403 | return S; |
| 404 | llvm_unreachable("SubRange for this mask not found" ); |
| 405 | } |
| 406 | |
| 407 | LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, |
| 408 | LiveInterval &LI) { |
| 409 | return getSubrangeImpl(LM, LI); |
| 410 | } |
| 411 | |
| 412 | const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, |
| 413 | const LiveInterval &LI) { |
| 414 | return getSubrangeImpl(LM, LI); |
| 415 | } |
| 416 | |
| 417 | /// Find a subrange corresponding to the lane mask @p LM, or a superset of it, |
| 418 | /// in the live interval @p LI. The interval @p LI is assumed to contain such |
| 419 | /// a subrange. This function is used to find corresponding subranges between |
| 420 | /// the original interval and the new intervals. |
| 421 | const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, |
| 422 | const LiveInterval &LI) { |
| 423 | for (const LiveInterval::SubRange &S : LI.subranges()) |
| 424 | if ((S.LaneMask & LM) == LM) |
| 425 | return S; |
| 426 | llvm_unreachable("SubRange for this mask not found" ); |
| 427 | } |
| 428 | |
| 429 | void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { |
| 430 | if (!LI.hasSubRanges()) { |
| 431 | LI.createDeadDef(VNI); |
| 432 | return; |
| 433 | } |
| 434 | |
| 435 | SlotIndex Def = VNI->def; |
| 436 | if (Original) { |
| 437 | // If we are transferring a def from the original interval, make sure |
| 438 | // to only update the subranges for which the original subranges had |
| 439 | // a def at this location. |
| 440 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 441 | auto &PS = getSubRangeForMask(LM: S.LaneMask, LI: Edit->getParent()); |
| 442 | VNInfo *PV = PS.getVNInfoAt(Idx: Def); |
| 443 | if (PV != nullptr && PV->def == Def) |
| 444 | S.createDeadDef(Def, VNIAlloc&: LIS.getVNInfoAllocator()); |
| 445 | } |
| 446 | } else { |
| 447 | // This is a new def: either from rematerialization, or from an inserted |
| 448 | // copy. Since rematerialization can regenerate a definition of a sub- |
| 449 | // register, we need to check which subranges need to be updated. |
| 450 | const MachineInstr *DefMI = LIS.getInstructionFromIndex(index: Def); |
| 451 | assert(DefMI != nullptr); |
| 452 | LaneBitmask LM; |
| 453 | for (const MachineOperand &DefOp : DefMI->defs()) { |
| 454 | Register R = DefOp.getReg(); |
| 455 | if (R != LI.reg()) |
| 456 | continue; |
| 457 | if (unsigned SR = DefOp.getSubReg()) |
| 458 | LM |= TRI.getSubRegIndexLaneMask(SubIdx: SR); |
| 459 | else { |
| 460 | LM = MRI.getMaxLaneMaskForVReg(Reg: R); |
| 461 | break; |
| 462 | } |
| 463 | } |
| 464 | for (LiveInterval::SubRange &S : LI.subranges()) |
| 465 | if ((S.LaneMask & LM).any()) |
| 466 | S.createDeadDef(Def, VNIAlloc&: LIS.getVNInfoAllocator()); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | VNInfo *SplitEditor::defValue(unsigned RegIdx, |
| 471 | const VNInfo *ParentVNI, |
| 472 | SlotIndex Idx, |
| 473 | bool Original) { |
| 474 | assert(ParentVNI && "Mapping NULL value" ); |
| 475 | assert(Idx.isValid() && "Invalid SlotIndex" ); |
| 476 | assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI" ); |
| 477 | LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 478 | |
| 479 | // Create a new value. |
| 480 | VNInfo *VNI = LI->getNextValue(Def: Idx, VNInfoAllocator&: LIS.getVNInfoAllocator()); |
| 481 | |
| 482 | bool Force = LI->hasSubRanges(); |
| 483 | ValueForcePair FP(Force ? nullptr : VNI, Force); |
| 484 | // Use insert for lookup, so we can add missing values with a second lookup. |
| 485 | std::pair<ValueMap::iterator, bool> InsP = |
| 486 | Values.insert(KV: std::make_pair(x: std::make_pair(x&: RegIdx, y: ParentVNI->id), y&: FP)); |
| 487 | |
| 488 | // This was the first time (RegIdx, ParentVNI) was mapped, and it is not |
| 489 | // forced. Keep it as a simple def without any liveness. |
| 490 | if (!Force && InsP.second) |
| 491 | return VNI; |
| 492 | |
| 493 | // If the previous value was a simple mapping, add liveness for it now. |
| 494 | if (VNInfo *OldVNI = InsP.first->second.getPointer()) { |
| 495 | addDeadDef(LI&: *LI, VNI: OldVNI, Original); |
| 496 | |
| 497 | // No longer a simple mapping. Switch to a complex mapping. If the |
| 498 | // interval has subranges, make it a forced mapping. |
| 499 | InsP.first->second = ValueForcePair(nullptr, Force); |
| 500 | } |
| 501 | |
| 502 | // This is a complex mapping, add liveness for VNI |
| 503 | addDeadDef(LI&: *LI, VNI, Original); |
| 504 | return VNI; |
| 505 | } |
| 506 | |
| 507 | void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { |
| 508 | ValueForcePair &VFP = Values[std::make_pair(x&: RegIdx, y: ParentVNI.id)]; |
| 509 | VNInfo *VNI = VFP.getPointer(); |
| 510 | |
| 511 | // ParentVNI was either unmapped or already complex mapped. Either way, just |
| 512 | // set the force bit. |
| 513 | if (!VNI) { |
| 514 | VFP.setInt(true); |
| 515 | return; |
| 516 | } |
| 517 | |
| 518 | // This was previously a single mapping. Make sure the old def is represented |
| 519 | // by a trivial live range. |
| 520 | addDeadDef(LI&: LIS.getInterval(Reg: Edit->get(idx: RegIdx)), VNI, Original: false); |
| 521 | |
| 522 | // Mark as complex mapped, forced. |
| 523 | VFP = ValueForcePair(nullptr, true); |
| 524 | } |
| 525 | |
| 526 | SlotIndex SplitEditor::buildSingleSubRegCopy( |
| 527 | Register FromReg, Register ToReg, MachineBasicBlock &MBB, |
| 528 | MachineBasicBlock::iterator InsertBefore, unsigned SubIdx, |
| 529 | LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) { |
| 530 | bool FirstCopy = !Def.isValid(); |
| 531 | MachineInstr *CopyMI = BuildMI(BB&: MBB, I: InsertBefore, MIMD: DebugLoc(), MCID: Desc) |
| 532 | .addReg(RegNo: ToReg, flags: RegState::Define | getUndefRegState(B: FirstCopy) |
| 533 | | getInternalReadRegState(B: !FirstCopy), SubReg: SubIdx) |
| 534 | .addReg(RegNo: FromReg, flags: 0, SubReg: SubIdx); |
| 535 | |
| 536 | SlotIndexes &Indexes = *LIS.getSlotIndexes(); |
| 537 | if (FirstCopy) { |
| 538 | Def = Indexes.insertMachineInstrInMaps(MI&: *CopyMI, Late).getRegSlot(); |
| 539 | } else { |
| 540 | CopyMI->bundleWithPred(); |
| 541 | } |
| 542 | return Def; |
| 543 | } |
| 544 | |
| 545 | SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, |
| 546 | LaneBitmask LaneMask, MachineBasicBlock &MBB, |
| 547 | MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { |
| 548 | const MCInstrDesc &Desc = |
| 549 | TII.get(Opcode: TII.getLiveRangeSplitOpcode(Reg: FromReg, MF: *MBB.getParent())); |
| 550 | SlotIndexes &Indexes = *LIS.getSlotIndexes(); |
| 551 | if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(Reg: FromReg)) { |
| 552 | // The full vreg is copied. |
| 553 | MachineInstr *CopyMI = |
| 554 | BuildMI(BB&: MBB, I: InsertBefore, MIMD: DebugLoc(), MCID: Desc, DestReg: ToReg).addReg(RegNo: FromReg); |
| 555 | return Indexes.insertMachineInstrInMaps(MI&: *CopyMI, Late).getRegSlot(); |
| 556 | } |
| 557 | |
| 558 | // Only a subset of lanes needs to be copied. The following is a simple |
| 559 | // heuristic to construct a sequence of COPYs. We could add a target |
| 560 | // specific callback if this turns out to be suboptimal. |
| 561 | LiveInterval &DestLI = LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 562 | |
| 563 | // First pass: Try to find a perfectly matching subregister index. If none |
| 564 | // exists find the one covering the most lanemask bits. |
| 565 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: FromReg); |
| 566 | assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class" ); |
| 567 | |
| 568 | SmallVector<unsigned, 8> SubIndexes; |
| 569 | |
| 570 | // Abort if we cannot possibly implement the COPY with the given indexes. |
| 571 | if (!TRI.getCoveringSubRegIndexes(RC, LaneMask, Indexes&: SubIndexes)) |
| 572 | report_fatal_error(reason: "Impossible to implement partial COPY" ); |
| 573 | |
| 574 | SlotIndex Def; |
| 575 | for (unsigned BestIdx : SubIndexes) { |
| 576 | Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, SubIdx: BestIdx, |
| 577 | DestLI, Late, Def, Desc); |
| 578 | } |
| 579 | |
| 580 | BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); |
| 581 | DestLI.refineSubRanges( |
| 582 | Allocator, LaneMask, |
| 583 | Apply: [Def, &Allocator](LiveInterval::SubRange &SR) { |
| 584 | SR.createDeadDef(Def, VNIAlloc&: Allocator); |
| 585 | }, |
| 586 | Indexes, TRI); |
| 587 | |
| 588 | return Def; |
| 589 | } |
| 590 | |
| 591 | bool SplitEditor::rematWillIncreaseRestriction(const MachineInstr *DefMI, |
| 592 | MachineBasicBlock &MBB, |
| 593 | SlotIndex UseIdx) const { |
| 594 | const MachineInstr *UseMI = LIS.getInstructionFromIndex(index: UseIdx); |
| 595 | if (!UseMI) |
| 596 | return false; |
| 597 | |
| 598 | // Currently code assumes rematerialization only happens for a def at 0. |
| 599 | const unsigned DefOperandIdx = 0; |
| 600 | // We want to compute the static register class constraint for the instruction |
| 601 | // def. If it is a smaller subclass than getLargestLegalSuperClass at the use |
| 602 | // site, then rematerializing it will increase the constraints. |
| 603 | const TargetRegisterClass *DefConstrainRC = |
| 604 | DefMI->getRegClassConstraint(OpIdx: DefOperandIdx, TII: &TII, TRI: &TRI); |
| 605 | if (!DefConstrainRC) |
| 606 | return false; |
| 607 | |
| 608 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: Edit->getReg()); |
| 609 | |
| 610 | // We want to find the register class that can be inflated to after the split |
| 611 | // occurs in recomputeRegClass |
| 612 | const TargetRegisterClass *SuperRC = |
| 613 | TRI.getLargestLegalSuperClass(RC, *MBB.getParent()); |
| 614 | |
| 615 | Register DefReg = DefMI->getOperand(i: DefOperandIdx).getReg(); |
| 616 | const TargetRegisterClass *UseConstrainRC = |
| 617 | UseMI->getRegClassConstraintEffectForVReg(Reg: DefReg, CurRC: SuperRC, TII: &TII, TRI: &TRI, |
| 618 | /*ExploreBundle=*/true); |
| 619 | return UseConstrainRC->hasSubClass(RC: DefConstrainRC); |
| 620 | } |
| 621 | |
| 622 | VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI, |
| 623 | SlotIndex UseIdx, MachineBasicBlock &MBB, |
| 624 | MachineBasicBlock::iterator I) { |
| 625 | LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 626 | |
| 627 | // We may be trying to avoid interference that ends at a deleted instruction, |
| 628 | // so always begin RegIdx 0 early and all others late. |
| 629 | bool Late = RegIdx != 0; |
| 630 | |
| 631 | // Attempt cheap-as-a-copy rematerialization. |
| 632 | Register Original = VRM.getOriginal(VirtReg: Edit->get(idx: RegIdx)); |
| 633 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 634 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx: UseIdx); |
| 635 | |
| 636 | Register Reg = LI->reg(); |
| 637 | if (OrigVNI) { |
| 638 | LiveRangeEdit::Remat RM(ParentVNI); |
| 639 | RM.OrigMI = LIS.getInstructionFromIndex(index: OrigVNI->def); |
| 640 | if (RM.OrigMI && TII.isAsCheapAsAMove(MI: *RM.OrigMI) && |
| 641 | Edit->canRematerializeAt(RM, OrigVNI, UseIdx)) { |
| 642 | if (!rematWillIncreaseRestriction(DefMI: RM.OrigMI, MBB, UseIdx)) { |
| 643 | SlotIndex Def = Edit->rematerializeAt(MBB, MI: I, DestReg: Reg, RM, TRI, Late); |
| 644 | ++NumRemats; |
| 645 | // Define the value in Reg. |
| 646 | return defValue(RegIdx, ParentVNI, Idx: Def, Original: false); |
| 647 | } |
| 648 | LLVM_DEBUG( |
| 649 | dbgs() << "skipping rematerialize of " << printReg(Reg) << " at " |
| 650 | << UseIdx |
| 651 | << " since it will increase register class restrictions\n" ); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | LaneBitmask LaneMask; |
| 656 | if (OrigLI.hasSubRanges()) { |
| 657 | LaneMask = LaneBitmask::getNone(); |
| 658 | for (LiveInterval::SubRange &S : OrigLI.subranges()) { |
| 659 | if (S.liveAt(index: UseIdx)) |
| 660 | LaneMask |= S.LaneMask; |
| 661 | } |
| 662 | } else { |
| 663 | LaneMask = LaneBitmask::getAll(); |
| 664 | } |
| 665 | |
| 666 | SlotIndex Def; |
| 667 | if (LaneMask.none()) { |
| 668 | const MCInstrDesc &Desc = TII.get(Opcode: TargetOpcode::IMPLICIT_DEF); |
| 669 | MachineInstr *ImplicitDef = BuildMI(BB&: MBB, I, MIMD: DebugLoc(), MCID: Desc, DestReg: Reg); |
| 670 | SlotIndexes &Indexes = *LIS.getSlotIndexes(); |
| 671 | Def = Indexes.insertMachineInstrInMaps(MI&: *ImplicitDef, Late).getRegSlot(); |
| 672 | } else { |
| 673 | ++NumCopies; |
| 674 | Def = buildCopy(FromReg: Edit->getReg(), ToReg: Reg, LaneMask, MBB, InsertBefore: I, Late, RegIdx); |
| 675 | } |
| 676 | |
| 677 | // Define the value in Reg. |
| 678 | return defValue(RegIdx, ParentVNI, Idx: Def, Original: false); |
| 679 | } |
| 680 | |
| 681 | /// Create a new virtual register and live interval. |
| 682 | unsigned SplitEditor::openIntv() { |
| 683 | // Create the complement as index 0. |
| 684 | if (Edit->empty()) |
| 685 | Edit->createEmptyInterval(); |
| 686 | |
| 687 | // Create the open interval. |
| 688 | OpenIdx = Edit->size(); |
| 689 | Edit->createEmptyInterval(); |
| 690 | return OpenIdx; |
| 691 | } |
| 692 | |
| 693 | void SplitEditor::selectIntv(unsigned Idx) { |
| 694 | assert(Idx != 0 && "Cannot select the complement interval" ); |
| 695 | assert(Idx < Edit->size() && "Can only select previously opened interval" ); |
| 696 | LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); |
| 697 | OpenIdx = Idx; |
| 698 | } |
| 699 | |
| 700 | SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { |
| 701 | assert(OpenIdx && "openIntv not called before enterIntvBefore" ); |
| 702 | LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); |
| 703 | Idx = Idx.getBaseIndex(); |
| 704 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); |
| 705 | if (!ParentVNI) { |
| 706 | LLVM_DEBUG(dbgs() << ": not live\n" ); |
| 707 | return Idx; |
| 708 | } |
| 709 | LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| 710 | MachineInstr *MI = LIS.getInstructionFromIndex(index: Idx); |
| 711 | assert(MI && "enterIntvBefore called with invalid index" ); |
| 712 | |
| 713 | VNInfo *VNI = defFromParent(RegIdx: OpenIdx, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), I: MI); |
| 714 | return VNI->def; |
| 715 | } |
| 716 | |
| 717 | SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { |
| 718 | assert(OpenIdx && "openIntv not called before enterIntvAfter" ); |
| 719 | LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); |
| 720 | Idx = Idx.getBoundaryIndex(); |
| 721 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); |
| 722 | if (!ParentVNI) { |
| 723 | LLVM_DEBUG(dbgs() << ": not live\n" ); |
| 724 | return Idx; |
| 725 | } |
| 726 | LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| 727 | MachineInstr *MI = LIS.getInstructionFromIndex(index: Idx); |
| 728 | assert(MI && "enterIntvAfter called with invalid index" ); |
| 729 | |
| 730 | VNInfo *VNI = defFromParent(RegIdx: OpenIdx, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), |
| 731 | I: std::next(x: MachineBasicBlock::iterator(MI))); |
| 732 | return VNI->def; |
| 733 | } |
| 734 | |
| 735 | SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { |
| 736 | assert(OpenIdx && "openIntv not called before enterIntvAtEnd" ); |
| 737 | SlotIndex End = LIS.getMBBEndIdx(mbb: &MBB); |
| 738 | SlotIndex Last = End.getPrevSlot(); |
| 739 | LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " |
| 740 | << Last); |
| 741 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Last); |
| 742 | if (!ParentVNI) { |
| 743 | LLVM_DEBUG(dbgs() << ": not live\n" ); |
| 744 | return End; |
| 745 | } |
| 746 | SlotIndex LSP = SA.getLastSplitPoint(BB: &MBB); |
| 747 | if (LSP < Last) { |
| 748 | // It could be that the use after LSP is a def, and thus the ParentVNI |
| 749 | // just selected starts at that def. For this case to exist, the def |
| 750 | // must be part of a tied def/use pair (as otherwise we'd have split |
| 751 | // distinct live ranges into individual live intervals), and thus we |
| 752 | // can insert the def into the VNI of the use and the tied def/use |
| 753 | // pair can live in the resulting interval. |
| 754 | Last = LSP; |
| 755 | ParentVNI = Edit->getParent().getVNInfoAt(Idx: Last); |
| 756 | if (!ParentVNI) { |
| 757 | // undef use --> undef tied def |
| 758 | LLVM_DEBUG(dbgs() << ": tied use not live\n" ); |
| 759 | return End; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); |
| 764 | VNInfo *VNI = defFromParent(RegIdx: OpenIdx, ParentVNI, UseIdx: Last, MBB, |
| 765 | I: SA.getLastSplitPointIter(BB: &MBB)); |
| 766 | RegAssign.insert(a: VNI->def, b: End, y: OpenIdx); |
| 767 | LLVM_DEBUG(dump()); |
| 768 | return VNI->def; |
| 769 | } |
| 770 | |
| 771 | /// useIntv - indicate that all instructions in MBB should use OpenLI. |
| 772 | void SplitEditor::useIntv(const MachineBasicBlock &MBB) { |
| 773 | useIntv(Start: LIS.getMBBStartIdx(mbb: &MBB), End: LIS.getMBBEndIdx(mbb: &MBB)); |
| 774 | } |
| 775 | |
| 776 | void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { |
| 777 | assert(OpenIdx && "openIntv not called before useIntv" ); |
| 778 | LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):" ); |
| 779 | RegAssign.insert(a: Start, b: End, y: OpenIdx); |
| 780 | LLVM_DEBUG(dump()); |
| 781 | } |
| 782 | |
| 783 | SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { |
| 784 | assert(OpenIdx && "openIntv not called before leaveIntvAfter" ); |
| 785 | LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); |
| 786 | |
| 787 | // The interval must be live beyond the instruction at Idx. |
| 788 | SlotIndex Boundary = Idx.getBoundaryIndex(); |
| 789 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Boundary); |
| 790 | if (!ParentVNI) { |
| 791 | LLVM_DEBUG(dbgs() << ": not live\n" ); |
| 792 | return Boundary.getNextSlot(); |
| 793 | } |
| 794 | LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| 795 | MachineInstr *MI = LIS.getInstructionFromIndex(index: Boundary); |
| 796 | assert(MI && "No instruction at index" ); |
| 797 | |
| 798 | // In spill mode, make live ranges as short as possible by inserting the copy |
| 799 | // before MI. This is only possible if that instruction doesn't redefine the |
| 800 | // value. The inserted COPY is not a kill, and we don't need to recompute |
| 801 | // the source live range. The spiller also won't try to hoist this copy. |
| 802 | if (SpillMode && !SlotIndex::isSameInstr(A: ParentVNI->def, B: Idx) && |
| 803 | MI->readsVirtualRegister(Reg: Edit->getReg())) { |
| 804 | forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI); |
| 805 | defFromParent(RegIdx: 0, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), I: MI); |
| 806 | return Idx; |
| 807 | } |
| 808 | |
| 809 | VNInfo *VNI = defFromParent(RegIdx: 0, ParentVNI, UseIdx: Boundary, MBB&: *MI->getParent(), |
| 810 | I: std::next(x: MachineBasicBlock::iterator(MI))); |
| 811 | return VNI->def; |
| 812 | } |
| 813 | |
| 814 | SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { |
| 815 | assert(OpenIdx && "openIntv not called before leaveIntvBefore" ); |
| 816 | LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); |
| 817 | |
| 818 | // The interval must be live into the instruction at Idx. |
| 819 | Idx = Idx.getBaseIndex(); |
| 820 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); |
| 821 | if (!ParentVNI) { |
| 822 | LLVM_DEBUG(dbgs() << ": not live\n" ); |
| 823 | return Idx.getNextSlot(); |
| 824 | } |
| 825 | LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| 826 | |
| 827 | MachineInstr *MI = LIS.getInstructionFromIndex(index: Idx); |
| 828 | assert(MI && "No instruction at index" ); |
| 829 | VNInfo *VNI = defFromParent(RegIdx: 0, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), I: MI); |
| 830 | return VNI->def; |
| 831 | } |
| 832 | |
| 833 | SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { |
| 834 | assert(OpenIdx && "openIntv not called before leaveIntvAtTop" ); |
| 835 | SlotIndex Start = LIS.getMBBStartIdx(mbb: &MBB); |
| 836 | LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " |
| 837 | << Start); |
| 838 | |
| 839 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Start); |
| 840 | if (!ParentVNI) { |
| 841 | LLVM_DEBUG(dbgs() << ": not live\n" ); |
| 842 | return Start; |
| 843 | } |
| 844 | |
| 845 | unsigned RegIdx = 0; |
| 846 | Register Reg = LIS.getInterval(Reg: Edit->get(idx: RegIdx)).reg(); |
| 847 | VNInfo *VNI = defFromParent(RegIdx, ParentVNI, UseIdx: Start, MBB, |
| 848 | I: MBB.SkipPHIsLabelsAndDebug(I: MBB.begin(), Reg)); |
| 849 | RegAssign.insert(a: Start, b: VNI->def, y: OpenIdx); |
| 850 | LLVM_DEBUG(dump()); |
| 851 | return VNI->def; |
| 852 | } |
| 853 | |
| 854 | static bool hasTiedUseOf(MachineInstr &MI, Register Reg) { |
| 855 | return any_of(Range: MI.defs(), P: [Reg](const MachineOperand &MO) { |
| 856 | return MO.isReg() && MO.isTied() && MO.getReg() == Reg; |
| 857 | }); |
| 858 | } |
| 859 | |
| 860 | void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { |
| 861 | assert(OpenIdx && "openIntv not called before overlapIntv" ); |
| 862 | const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Start); |
| 863 | assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && |
| 864 | "Parent changes value in extended range" ); |
| 865 | assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && |
| 866 | "Range cannot span basic blocks" ); |
| 867 | |
| 868 | // The complement interval will be extended as needed by LICalc.extend(). |
| 869 | if (ParentVNI) |
| 870 | forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI); |
| 871 | |
| 872 | // If the last use is tied to a def, we can't mark it as live for the |
| 873 | // interval which includes only the use. That would cause the tied pair |
| 874 | // to end up in two different intervals. |
| 875 | if (auto *MI = LIS.getInstructionFromIndex(index: End)) |
| 876 | if (hasTiedUseOf(MI&: *MI, Reg: Edit->getReg())) { |
| 877 | LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n" ); |
| 878 | return; |
| 879 | } |
| 880 | |
| 881 | LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):" ); |
| 882 | RegAssign.insert(a: Start, b: End, y: OpenIdx); |
| 883 | LLVM_DEBUG(dump()); |
| 884 | } |
| 885 | |
| 886 | //===----------------------------------------------------------------------===// |
| 887 | // Spill modes |
| 888 | //===----------------------------------------------------------------------===// |
| 889 | |
| 890 | void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { |
| 891 | LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: 0)); |
| 892 | LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n" ); |
| 893 | RegAssignMap::iterator AssignI; |
| 894 | AssignI.setMap(RegAssign); |
| 895 | |
| 896 | for (const VNInfo *C : Copies) { |
| 897 | SlotIndex Def = C->def; |
| 898 | MachineInstr *MI = LIS.getInstructionFromIndex(index: Def); |
| 899 | assert(MI && "No instruction for back-copy" ); |
| 900 | |
| 901 | MachineBasicBlock *MBB = MI->getParent(); |
| 902 | MachineBasicBlock::iterator MBBI(MI); |
| 903 | bool AtBegin; |
| 904 | do AtBegin = MBBI == MBB->begin(); |
| 905 | while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); |
| 906 | |
| 907 | LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); |
| 908 | LIS.removeVRegDefAt(LI&: *LI, Pos: Def); |
| 909 | LIS.RemoveMachineInstrFromMaps(MI&: *MI); |
| 910 | MI->eraseFromParent(); |
| 911 | |
| 912 | // Adjust RegAssign if a register assignment is killed at Def. We want to |
| 913 | // avoid calculating the live range of the source register if possible. |
| 914 | AssignI.find(x: Def.getPrevSlot()); |
| 915 | if (!AssignI.valid() || AssignI.start() >= Def) |
| 916 | continue; |
| 917 | // If MI doesn't kill the assigned register, just leave it. |
| 918 | if (AssignI.stop() != Def) |
| 919 | continue; |
| 920 | unsigned RegIdx = AssignI.value(); |
| 921 | // We could hoist back-copy right after another back-copy. As a result |
| 922 | // MMBI points to copy instruction which is actually dead now. |
| 923 | // We cannot set its stop to MBBI which will be the same as start and |
| 924 | // interval does not support that. |
| 925 | SlotIndex Kill = |
| 926 | AtBegin ? SlotIndex() : LIS.getInstructionIndex(Instr: *MBBI).getRegSlot(); |
| 927 | if (AtBegin || !MBBI->readsVirtualRegister(Reg: Edit->getReg()) || |
| 928 | Kill <= AssignI.start()) { |
| 929 | LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx |
| 930 | << '\n'); |
| 931 | forceRecompute(RegIdx, ParentVNI: *Edit->getParent().getVNInfoAt(Idx: Def)); |
| 932 | } else { |
| 933 | LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); |
| 934 | AssignI.setStop(Kill); |
| 935 | } |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | MachineBasicBlock* |
| 940 | SplitEditor::findShallowDominator(MachineBasicBlock *MBB, |
| 941 | MachineBasicBlock *DefMBB) { |
| 942 | if (MBB == DefMBB) |
| 943 | return MBB; |
| 944 | assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def." ); |
| 945 | |
| 946 | const MachineLoopInfo &Loops = SA.Loops; |
| 947 | const MachineLoop *DefLoop = Loops.getLoopFor(BB: DefMBB); |
| 948 | MachineDomTreeNode *DefDomNode = MDT[DefMBB]; |
| 949 | |
| 950 | // Best candidate so far. |
| 951 | MachineBasicBlock *BestMBB = MBB; |
| 952 | unsigned BestDepth = std::numeric_limits<unsigned>::max(); |
| 953 | |
| 954 | while (true) { |
| 955 | const MachineLoop *Loop = Loops.getLoopFor(BB: MBB); |
| 956 | |
| 957 | // MBB isn't in a loop, it doesn't get any better. All dominators have a |
| 958 | // higher frequency by definition. |
| 959 | if (!Loop) { |
| 960 | LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) |
| 961 | << " dominates " << printMBBReference(*MBB) |
| 962 | << " at depth 0\n" ); |
| 963 | return MBB; |
| 964 | } |
| 965 | |
| 966 | // We'll never be able to exit the DefLoop. |
| 967 | if (Loop == DefLoop) { |
| 968 | LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) |
| 969 | << " dominates " << printMBBReference(*MBB) |
| 970 | << " in the same loop\n" ); |
| 971 | return MBB; |
| 972 | } |
| 973 | |
| 974 | // Least busy dominator seen so far. |
| 975 | unsigned Depth = Loop->getLoopDepth(); |
| 976 | if (Depth < BestDepth) { |
| 977 | BestMBB = MBB; |
| 978 | BestDepth = Depth; |
| 979 | LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) |
| 980 | << " dominates " << printMBBReference(*MBB) |
| 981 | << " at depth " << Depth << '\n'); |
| 982 | } |
| 983 | |
| 984 | // Leave loop by going to the immediate dominator of the loop header. |
| 985 | // This is a bigger stride than simply walking up the dominator tree. |
| 986 | MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); |
| 987 | |
| 988 | // Too far up the dominator tree? |
| 989 | if (!IDom || !MDT.dominates(A: DefDomNode, B: IDom)) |
| 990 | return BestMBB; |
| 991 | |
| 992 | MBB = IDom->getBlock(); |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | void SplitEditor::computeRedundantBackCopies( |
| 997 | DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { |
| 998 | LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: 0)); |
| 999 | const LiveInterval *Parent = &Edit->getParent(); |
| 1000 | SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); |
| 1001 | SmallPtrSet<VNInfo *, 8> DominatedVNIs; |
| 1002 | |
| 1003 | // Aggregate VNIs having the same value as ParentVNI. |
| 1004 | for (VNInfo *VNI : LI->valnos) { |
| 1005 | if (VNI->isUnused()) |
| 1006 | continue; |
| 1007 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: VNI->def); |
| 1008 | EqualVNs[ParentVNI->id].insert(Ptr: VNI); |
| 1009 | } |
| 1010 | |
| 1011 | // For VNI aggregation of each ParentVNI, collect dominated, i.e., |
| 1012 | // redundant VNIs to BackCopies. |
| 1013 | for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { |
| 1014 | const VNInfo *ParentVNI = Parent->getValNumInfo(ValNo: i); |
| 1015 | if (!NotToHoistSet.count(V: ParentVNI->id)) |
| 1016 | continue; |
| 1017 | SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); |
| 1018 | SmallPtrSetIterator<VNInfo *> It2 = It1; |
| 1019 | for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { |
| 1020 | It2 = It1; |
| 1021 | for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { |
| 1022 | if (DominatedVNIs.count(Ptr: *It1) || DominatedVNIs.count(Ptr: *It2)) |
| 1023 | continue; |
| 1024 | |
| 1025 | MachineBasicBlock *MBB1 = LIS.getMBBFromIndex(index: (*It1)->def); |
| 1026 | MachineBasicBlock *MBB2 = LIS.getMBBFromIndex(index: (*It2)->def); |
| 1027 | if (MBB1 == MBB2) { |
| 1028 | DominatedVNIs.insert(Ptr: (*It1)->def < (*It2)->def ? (*It2) : (*It1)); |
| 1029 | } else if (MDT.dominates(A: MBB1, B: MBB2)) { |
| 1030 | DominatedVNIs.insert(Ptr: *It2); |
| 1031 | } else if (MDT.dominates(A: MBB2, B: MBB1)) { |
| 1032 | DominatedVNIs.insert(Ptr: *It1); |
| 1033 | } |
| 1034 | } |
| 1035 | } |
| 1036 | if (!DominatedVNIs.empty()) { |
| 1037 | forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI); |
| 1038 | append_range(C&: BackCopies, R&: DominatedVNIs); |
| 1039 | DominatedVNIs.clear(); |
| 1040 | } |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | /// For SM_Size mode, find a common dominator for all the back-copies for |
| 1045 | /// the same ParentVNI and hoist the backcopies to the dominator BB. |
| 1046 | /// For SM_Speed mode, if the common dominator is hot and it is not beneficial |
| 1047 | /// to do the hoisting, simply remove the dominated backcopies for the same |
| 1048 | /// ParentVNI. |
| 1049 | void SplitEditor::hoistCopies() { |
| 1050 | // Get the complement interval, always RegIdx 0. |
| 1051 | LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: 0)); |
| 1052 | const LiveInterval *Parent = &Edit->getParent(); |
| 1053 | |
| 1054 | // Track the nearest common dominator for all back-copies for each ParentVNI, |
| 1055 | // indexed by ParentVNI->id. |
| 1056 | using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; |
| 1057 | SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); |
| 1058 | // The total cost of all the back-copies for each ParentVNI. |
| 1059 | SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); |
| 1060 | // The ParentVNI->id set for which hoisting back-copies are not beneficial |
| 1061 | // for Speed. |
| 1062 | DenseSet<unsigned> NotToHoistSet; |
| 1063 | |
| 1064 | // Find the nearest common dominator for parent values with multiple |
| 1065 | // back-copies. If a single back-copy dominates, put it in DomPair.second. |
| 1066 | for (VNInfo *VNI : LI->valnos) { |
| 1067 | if (VNI->isUnused()) |
| 1068 | continue; |
| 1069 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: VNI->def); |
| 1070 | assert(ParentVNI && "Parent not live at complement def" ); |
| 1071 | |
| 1072 | // Don't hoist remats. The complement is probably going to disappear |
| 1073 | // completely anyway. |
| 1074 | if (Edit->didRematerialize(ParentVNI)) |
| 1075 | continue; |
| 1076 | |
| 1077 | MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(index: VNI->def); |
| 1078 | |
| 1079 | DomPair &Dom = NearestDom[ParentVNI->id]; |
| 1080 | |
| 1081 | // Keep directly defined parent values. This is either a PHI or an |
| 1082 | // instruction in the complement range. All other copies of ParentVNI |
| 1083 | // should be eliminated. |
| 1084 | if (VNI->def == ParentVNI->def) { |
| 1085 | LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); |
| 1086 | Dom = DomPair(ValMBB, VNI->def); |
| 1087 | continue; |
| 1088 | } |
| 1089 | // Skip the singly mapped values. There is nothing to gain from hoisting a |
| 1090 | // single back-copy. |
| 1091 | if (Values.lookup(Val: std::make_pair(x: 0, y&: ParentVNI->id)).getPointer()) { |
| 1092 | LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); |
| 1093 | continue; |
| 1094 | } |
| 1095 | |
| 1096 | if (!Dom.first) { |
| 1097 | // First time we see ParentVNI. VNI dominates itself. |
| 1098 | Dom = DomPair(ValMBB, VNI->def); |
| 1099 | } else if (Dom.first == ValMBB) { |
| 1100 | // Two defs in the same block. Pick the earlier def. |
| 1101 | if (!Dom.second.isValid() || VNI->def < Dom.second) |
| 1102 | Dom.second = VNI->def; |
| 1103 | } else { |
| 1104 | // Different basic blocks. Check if one dominates. |
| 1105 | MachineBasicBlock *Near = |
| 1106 | MDT.findNearestCommonDominator(A: Dom.first, B: ValMBB); |
| 1107 | if (Near == ValMBB) |
| 1108 | // Def ValMBB dominates. |
| 1109 | Dom = DomPair(ValMBB, VNI->def); |
| 1110 | else if (Near != Dom.first) |
| 1111 | // None dominate. Hoist to common dominator, need new def. |
| 1112 | Dom = DomPair(Near, SlotIndex()); |
| 1113 | Costs[ParentVNI->id] += MBFI.getBlockFreq(MBB: ValMBB); |
| 1114 | } |
| 1115 | |
| 1116 | LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' |
| 1117 | << VNI->def << " for parent " << ParentVNI->id << '@' |
| 1118 | << ParentVNI->def << " hoist to " |
| 1119 | << printMBBReference(*Dom.first) << ' ' << Dom.second |
| 1120 | << '\n'); |
| 1121 | } |
| 1122 | |
| 1123 | // Insert the hoisted copies. |
| 1124 | for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { |
| 1125 | DomPair &Dom = NearestDom[i]; |
| 1126 | if (!Dom.first || Dom.second.isValid()) |
| 1127 | continue; |
| 1128 | // This value needs a hoisted copy inserted at the end of Dom.first. |
| 1129 | const VNInfo *ParentVNI = Parent->getValNumInfo(ValNo: i); |
| 1130 | MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(index: ParentVNI->def); |
| 1131 | // Get a less loopy dominator than Dom.first. |
| 1132 | Dom.first = findShallowDominator(MBB: Dom.first, DefMBB); |
| 1133 | if (SpillMode == SM_Speed && |
| 1134 | MBFI.getBlockFreq(MBB: Dom.first) > Costs[ParentVNI->id]) { |
| 1135 | NotToHoistSet.insert(V: ParentVNI->id); |
| 1136 | continue; |
| 1137 | } |
| 1138 | SlotIndex LSP = SA.getLastSplitPoint(BB: Dom.first); |
| 1139 | if (LSP <= ParentVNI->def) { |
| 1140 | NotToHoistSet.insert(V: ParentVNI->id); |
| 1141 | continue; |
| 1142 | } |
| 1143 | Dom.second = defFromParent(RegIdx: 0, ParentVNI, UseIdx: LSP, MBB&: *Dom.first, |
| 1144 | I: SA.getLastSplitPointIter(BB: Dom.first))->def; |
| 1145 | } |
| 1146 | |
| 1147 | // Remove redundant back-copies that are now known to be dominated by another |
| 1148 | // def with the same value. |
| 1149 | SmallVector<VNInfo*, 8> BackCopies; |
| 1150 | for (VNInfo *VNI : LI->valnos) { |
| 1151 | if (VNI->isUnused()) |
| 1152 | continue; |
| 1153 | VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: VNI->def); |
| 1154 | const DomPair &Dom = NearestDom[ParentVNI->id]; |
| 1155 | if (!Dom.first || Dom.second == VNI->def || |
| 1156 | NotToHoistSet.count(V: ParentVNI->id)) |
| 1157 | continue; |
| 1158 | BackCopies.push_back(Elt: VNI); |
| 1159 | forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI); |
| 1160 | } |
| 1161 | |
| 1162 | // If it is not beneficial to hoist all the BackCopies, simply remove |
| 1163 | // redundant BackCopies in speed mode. |
| 1164 | if (SpillMode == SM_Speed && !NotToHoistSet.empty()) |
| 1165 | computeRedundantBackCopies(NotToHoistSet, BackCopies); |
| 1166 | |
| 1167 | removeBackCopies(Copies&: BackCopies); |
| 1168 | } |
| 1169 | |
| 1170 | /// transferValues - Transfer all possible values to the new live ranges. |
| 1171 | /// Values that were rematerialized are left alone, they need LICalc.extend(). |
| 1172 | bool SplitEditor::transferValues() { |
| 1173 | bool Skipped = false; |
| 1174 | RegAssignMap::const_iterator AssignI = RegAssign.begin(); |
| 1175 | for (const LiveRange::Segment &S : Edit->getParent()) { |
| 1176 | LLVM_DEBUG(dbgs() << " blit " << S << ':'); |
| 1177 | VNInfo *ParentVNI = S.valno; |
| 1178 | // RegAssign has holes where RegIdx 0 should be used. |
| 1179 | SlotIndex Start = S.start; |
| 1180 | AssignI.advanceTo(x: Start); |
| 1181 | do { |
| 1182 | unsigned RegIdx; |
| 1183 | SlotIndex End = S.end; |
| 1184 | if (!AssignI.valid()) { |
| 1185 | RegIdx = 0; |
| 1186 | } else if (AssignI.start() <= Start) { |
| 1187 | RegIdx = AssignI.value(); |
| 1188 | if (AssignI.stop() < End) { |
| 1189 | End = AssignI.stop(); |
| 1190 | ++AssignI; |
| 1191 | } |
| 1192 | } else { |
| 1193 | RegIdx = 0; |
| 1194 | End = std::min(a: End, b: AssignI.start()); |
| 1195 | } |
| 1196 | |
| 1197 | // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. |
| 1198 | LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' |
| 1199 | << printReg(Edit->get(RegIdx)) << ')'); |
| 1200 | LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 1201 | |
| 1202 | // Check for a simply defined value that can be blitted directly. |
| 1203 | ValueForcePair VFP = Values.lookup(Val: std::make_pair(x&: RegIdx, y&: ParentVNI->id)); |
| 1204 | if (VNInfo *VNI = VFP.getPointer()) { |
| 1205 | LLVM_DEBUG(dbgs() << ':' << VNI->id); |
| 1206 | LI.addSegment(S: LiveInterval::Segment(Start, End, VNI)); |
| 1207 | Start = End; |
| 1208 | continue; |
| 1209 | } |
| 1210 | |
| 1211 | // Skip values with forced recomputation. |
| 1212 | if (VFP.getInt()) { |
| 1213 | LLVM_DEBUG(dbgs() << "(recalc)" ); |
| 1214 | Skipped = true; |
| 1215 | Start = End; |
| 1216 | continue; |
| 1217 | } |
| 1218 | |
| 1219 | LiveIntervalCalc &LIC = getLICalc(RegIdx); |
| 1220 | |
| 1221 | // This value has multiple defs in RegIdx, but it wasn't rematerialized, |
| 1222 | // so the live range is accurate. Add live-in blocks in [Start;End) to the |
| 1223 | // LiveInBlocks. |
| 1224 | MachineFunction::iterator MBB = LIS.getMBBFromIndex(index: Start)->getIterator(); |
| 1225 | SlotIndex BlockStart, BlockEnd; |
| 1226 | std::tie(args&: BlockStart, args&: BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB: &*MBB); |
| 1227 | |
| 1228 | // The first block may be live-in, or it may have its own def. |
| 1229 | if (Start != BlockStart) { |
| 1230 | VNInfo *VNI = LI.extendInBlock(StartIdx: BlockStart, Kill: std::min(a: BlockEnd, b: End)); |
| 1231 | assert(VNI && "Missing def for complex mapped value" ); |
| 1232 | LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); |
| 1233 | // MBB has its own def. Is it also live-out? |
| 1234 | if (BlockEnd <= End) |
| 1235 | LIC.setLiveOutValue(MBB: &*MBB, VNI); |
| 1236 | |
| 1237 | // Skip to the next block for live-in. |
| 1238 | ++MBB; |
| 1239 | BlockStart = BlockEnd; |
| 1240 | } |
| 1241 | |
| 1242 | // Handle the live-in blocks covered by [Start;End). |
| 1243 | assert(Start <= BlockStart && "Expected live-in block" ); |
| 1244 | while (BlockStart < End) { |
| 1245 | LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); |
| 1246 | BlockEnd = LIS.getMBBEndIdx(mbb: &*MBB); |
| 1247 | if (BlockStart == ParentVNI->def) { |
| 1248 | // This block has the def of a parent PHI, so it isn't live-in. |
| 1249 | assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?" ); |
| 1250 | VNInfo *VNI = LI.extendInBlock(StartIdx: BlockStart, Kill: std::min(a: BlockEnd, b: End)); |
| 1251 | assert(VNI && "Missing def for complex mapped parent PHI" ); |
| 1252 | if (End >= BlockEnd) |
| 1253 | LIC.setLiveOutValue(MBB: &*MBB, VNI); // Live-out as well. |
| 1254 | } else { |
| 1255 | // This block needs a live-in value. The last block covered may not |
| 1256 | // be live-out. |
| 1257 | if (End < BlockEnd) |
| 1258 | LIC.addLiveInBlock(LR&: LI, DomNode: MDT[&*MBB], Kill: End); |
| 1259 | else { |
| 1260 | // Live-through, and we don't know the value. |
| 1261 | LIC.addLiveInBlock(LR&: LI, DomNode: MDT[&*MBB]); |
| 1262 | LIC.setLiveOutValue(MBB: &*MBB, VNI: nullptr); |
| 1263 | } |
| 1264 | } |
| 1265 | BlockStart = BlockEnd; |
| 1266 | ++MBB; |
| 1267 | } |
| 1268 | Start = End; |
| 1269 | } while (Start != S.end); |
| 1270 | LLVM_DEBUG(dbgs() << '\n'); |
| 1271 | } |
| 1272 | |
| 1273 | LICalc[0].calculateValues(); |
| 1274 | if (SpillMode) |
| 1275 | LICalc[1].calculateValues(); |
| 1276 | |
| 1277 | return Skipped; |
| 1278 | } |
| 1279 | |
| 1280 | static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { |
| 1281 | const LiveRange::Segment *Seg = LR.getSegmentContaining(Idx: Def); |
| 1282 | if (Seg == nullptr) |
| 1283 | return true; |
| 1284 | if (Seg->end != Def.getDeadSlot()) |
| 1285 | return false; |
| 1286 | // This is a dead PHI. Remove it. |
| 1287 | LR.removeSegment(S: *Seg, RemoveDeadValNo: true); |
| 1288 | return true; |
| 1289 | } |
| 1290 | |
| 1291 | void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, |
| 1292 | LiveRange &LR, LaneBitmask LM, |
| 1293 | ArrayRef<SlotIndex> Undefs) { |
| 1294 | for (MachineBasicBlock *P : B.predecessors()) { |
| 1295 | SlotIndex End = LIS.getMBBEndIdx(mbb: P); |
| 1296 | SlotIndex LastUse = End.getPrevSlot(); |
| 1297 | // The predecessor may not have a live-out value. That is OK, like an |
| 1298 | // undef PHI operand. |
| 1299 | const LiveInterval &PLI = Edit->getParent(); |
| 1300 | // Need the cast because the inputs to ?: would otherwise be deemed |
| 1301 | // "incompatible": SubRange vs LiveInterval. |
| 1302 | const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, LI: PLI) |
| 1303 | : static_cast<const LiveRange &>(PLI); |
| 1304 | if (PSR.liveAt(index: LastUse)) |
| 1305 | LIC.extend(LR, Use: End, /*PhysReg=*/0, Undefs); |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | void SplitEditor::extendPHIKillRanges() { |
| 1310 | // Extend live ranges to be live-out for successor PHI values. |
| 1311 | |
| 1312 | // Visit each PHI def slot in the parent live interval. If the def is dead, |
| 1313 | // remove it. Otherwise, extend the live interval to reach the end indexes |
| 1314 | // of all predecessor blocks. |
| 1315 | |
| 1316 | const LiveInterval &ParentLI = Edit->getParent(); |
| 1317 | for (const VNInfo *V : ParentLI.valnos) { |
| 1318 | if (V->isUnused() || !V->isPHIDef()) |
| 1319 | continue; |
| 1320 | |
| 1321 | unsigned RegIdx = RegAssign.lookup(x: V->def); |
| 1322 | LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 1323 | LiveIntervalCalc &LIC = getLICalc(RegIdx); |
| 1324 | MachineBasicBlock &B = *LIS.getMBBFromIndex(index: V->def); |
| 1325 | if (!removeDeadSegment(Def: V->def, LR&: LI)) |
| 1326 | extendPHIRange(B, LIC, LR&: LI, LM: LaneBitmask::getAll(), /*Undefs=*/{}); |
| 1327 | } |
| 1328 | |
| 1329 | SmallVector<SlotIndex, 4> Undefs; |
| 1330 | LiveIntervalCalc SubLIC; |
| 1331 | |
| 1332 | for (const LiveInterval::SubRange &PS : ParentLI.subranges()) { |
| 1333 | for (const VNInfo *V : PS.valnos) { |
| 1334 | if (V->isUnused() || !V->isPHIDef()) |
| 1335 | continue; |
| 1336 | unsigned RegIdx = RegAssign.lookup(x: V->def); |
| 1337 | LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 1338 | LiveInterval::SubRange &S = getSubRangeForMaskExact(LM: PS.LaneMask, LI); |
| 1339 | if (removeDeadSegment(Def: V->def, LR&: S)) |
| 1340 | continue; |
| 1341 | |
| 1342 | MachineBasicBlock &B = *LIS.getMBBFromIndex(index: V->def); |
| 1343 | SubLIC.reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT, |
| 1344 | VNIA: &LIS.getVNInfoAllocator()); |
| 1345 | Undefs.clear(); |
| 1346 | LI.computeSubRangeUndefs(Undefs, LaneMask: PS.LaneMask, MRI, Indexes: *LIS.getSlotIndexes()); |
| 1347 | extendPHIRange(B, LIC&: SubLIC, LR&: S, LM: PS.LaneMask, Undefs); |
| 1348 | } |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | /// rewriteAssigned - Rewrite all uses of Edit->getReg(). |
| 1353 | void SplitEditor::rewriteAssigned(bool ExtendRanges) { |
| 1354 | struct ExtPoint { |
| 1355 | ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) |
| 1356 | : MO(O), RegIdx(R), Next(N) {} |
| 1357 | |
| 1358 | MachineOperand MO; |
| 1359 | unsigned RegIdx; |
| 1360 | SlotIndex Next; |
| 1361 | }; |
| 1362 | |
| 1363 | SmallVector<ExtPoint,4> ExtPoints; |
| 1364 | |
| 1365 | for (MachineOperand &MO : |
| 1366 | llvm::make_early_inc_range(Range: MRI.reg_operands(Reg: Edit->getReg()))) { |
| 1367 | MachineInstr *MI = MO.getParent(); |
| 1368 | // LiveDebugVariables should have handled all DBG_VALUE instructions. |
| 1369 | if (MI->isDebugValue()) { |
| 1370 | LLVM_DEBUG(dbgs() << "Zapping " << *MI); |
| 1371 | MO.setReg(0); |
| 1372 | continue; |
| 1373 | } |
| 1374 | |
| 1375 | // <undef> operands don't really read the register, so it doesn't matter |
| 1376 | // which register we choose. When the use operand is tied to a def, we must |
| 1377 | // use the same register as the def, so just do that always. |
| 1378 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI); |
| 1379 | if (MO.isDef() || MO.isUndef()) |
| 1380 | Idx = Idx.getRegSlot(EC: MO.isEarlyClobber()); |
| 1381 | |
| 1382 | // Rewrite to the mapped register at Idx. |
| 1383 | unsigned RegIdx = RegAssign.lookup(x: Idx); |
| 1384 | LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx)); |
| 1385 | MO.setReg(LI.reg()); |
| 1386 | LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) |
| 1387 | << '\t' << Idx << ':' << RegIdx << '\t' << *MI); |
| 1388 | |
| 1389 | // Extend liveness to Idx if the instruction reads reg. |
| 1390 | if (!ExtendRanges || MO.isUndef()) |
| 1391 | continue; |
| 1392 | |
| 1393 | // Skip instructions that don't read Reg. |
| 1394 | if (MO.isDef()) { |
| 1395 | if (!MO.getSubReg() && !MO.isEarlyClobber()) |
| 1396 | continue; |
| 1397 | // We may want to extend a live range for a partial redef, or for a use |
| 1398 | // tied to an early clobber. |
| 1399 | if (!Edit->getParent().liveAt(index: Idx.getPrevSlot())) |
| 1400 | continue; |
| 1401 | } else { |
| 1402 | assert(MO.isUse()); |
| 1403 | bool IsEarlyClobber = false; |
| 1404 | if (MO.isTied()) { |
| 1405 | // We want to extend a live range into `e` slot rather than `r` slot if |
| 1406 | // tied-def is early clobber, because the `e` slot already contained |
| 1407 | // in the live range of early-clobber tied-def operand, give an example |
| 1408 | // here: |
| 1409 | // 0 %0 = ... |
| 1410 | // 16 early-clobber %0 = Op %0 (tied-def 0), ... |
| 1411 | // 32 ... = Op %0 |
| 1412 | // Before extend: |
| 1413 | // %0 = [0r, 0d) [16e, 32d) |
| 1414 | // The point we want to extend is 0d to 16e not 16r in this case, but if |
| 1415 | // we use 16r here we will extend nothing because that already contained |
| 1416 | // in [16e, 32d). |
| 1417 | unsigned OpIdx = MO.getOperandNo(); |
| 1418 | unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx); |
| 1419 | const MachineOperand &DefOp = MI->getOperand(i: DefOpIdx); |
| 1420 | IsEarlyClobber = DefOp.isEarlyClobber(); |
| 1421 | } |
| 1422 | |
| 1423 | Idx = Idx.getRegSlot(EC: IsEarlyClobber); |
| 1424 | } |
| 1425 | |
| 1426 | SlotIndex Next = Idx; |
| 1427 | if (LI.hasSubRanges()) { |
| 1428 | // We have to delay extending subranges until we have seen all operands |
| 1429 | // defining the register. This is because a <def,read-undef> operand |
| 1430 | // will create an "undef" point, and we cannot extend any subranges |
| 1431 | // until all of them have been accounted for. |
| 1432 | if (MO.isUse()) |
| 1433 | ExtPoints.push_back(Elt: ExtPoint(MO, RegIdx, Next)); |
| 1434 | } else { |
| 1435 | LiveIntervalCalc &LIC = getLICalc(RegIdx); |
| 1436 | LIC.extend(LR&: LI, Use: Next, PhysReg: 0, Undefs: ArrayRef<SlotIndex>()); |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | for (ExtPoint &EP : ExtPoints) { |
| 1441 | LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: EP.RegIdx)); |
| 1442 | assert(LI.hasSubRanges()); |
| 1443 | |
| 1444 | LiveIntervalCalc SubLIC; |
| 1445 | Register Reg = EP.MO.getReg(); |
| 1446 | unsigned Sub = EP.MO.getSubReg(); |
| 1447 | LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(SubIdx: Sub) |
| 1448 | : MRI.getMaxLaneMaskForVReg(Reg); |
| 1449 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 1450 | if ((S.LaneMask & LM).none()) |
| 1451 | continue; |
| 1452 | // The problem here can be that the new register may have been created |
| 1453 | // for a partially defined original register. For example: |
| 1454 | // %0:subreg_hireg<def,read-undef> = ... |
| 1455 | // ... |
| 1456 | // %1 = COPY %0 |
| 1457 | if (S.empty()) |
| 1458 | continue; |
| 1459 | SubLIC.reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT, |
| 1460 | VNIA: &LIS.getVNInfoAllocator()); |
| 1461 | SmallVector<SlotIndex, 4> Undefs; |
| 1462 | LI.computeSubRangeUndefs(Undefs, LaneMask: S.LaneMask, MRI, Indexes: *LIS.getSlotIndexes()); |
| 1463 | SubLIC.extend(LR&: S, Use: EP.Next, PhysReg: 0, Undefs); |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | for (Register R : *Edit) { |
| 1468 | LiveInterval &LI = LIS.getInterval(Reg: R); |
| 1469 | if (!LI.hasSubRanges()) |
| 1470 | continue; |
| 1471 | LI.clear(); |
| 1472 | LI.removeEmptySubRanges(); |
| 1473 | LIS.constructMainRangeFromSubranges(LI); |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | void SplitEditor::deleteRematVictims() { |
| 1478 | SmallVector<MachineInstr*, 8> Dead; |
| 1479 | for (const Register &R : *Edit) { |
| 1480 | LiveInterval *LI = &LIS.getInterval(Reg: R); |
| 1481 | for (const LiveRange::Segment &S : LI->segments) { |
| 1482 | // Dead defs end at the dead slot. |
| 1483 | if (S.end != S.valno->def.getDeadSlot()) |
| 1484 | continue; |
| 1485 | if (S.valno->isPHIDef()) |
| 1486 | continue; |
| 1487 | MachineInstr *MI = LIS.getInstructionFromIndex(index: S.valno->def); |
| 1488 | assert(MI && "Missing instruction for dead def" ); |
| 1489 | MI->addRegisterDead(Reg: LI->reg(), RegInfo: &TRI); |
| 1490 | |
| 1491 | if (!MI->allDefsAreDead()) |
| 1492 | continue; |
| 1493 | |
| 1494 | LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); |
| 1495 | Dead.push_back(Elt: MI); |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | if (Dead.empty()) |
| 1500 | return; |
| 1501 | |
| 1502 | Edit->eliminateDeadDefs(Dead, RegsBeingSpilled: {}); |
| 1503 | } |
| 1504 | |
| 1505 | void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { |
| 1506 | // Fast-path for common case. |
| 1507 | if (!ParentVNI.isPHIDef()) { |
| 1508 | for (unsigned I = 0, E = Edit->size(); I != E; ++I) |
| 1509 | forceRecompute(RegIdx: I, ParentVNI); |
| 1510 | return; |
| 1511 | } |
| 1512 | |
| 1513 | // Trace value through phis. |
| 1514 | SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. |
| 1515 | SmallVector<const VNInfo *, 4> WorkList; |
| 1516 | Visited.insert(Ptr: &ParentVNI); |
| 1517 | WorkList.push_back(Elt: &ParentVNI); |
| 1518 | |
| 1519 | const LiveInterval &ParentLI = Edit->getParent(); |
| 1520 | const SlotIndexes &Indexes = *LIS.getSlotIndexes(); |
| 1521 | do { |
| 1522 | const VNInfo &VNI = *WorkList.pop_back_val(); |
| 1523 | for (unsigned I = 0, E = Edit->size(); I != E; ++I) |
| 1524 | forceRecompute(RegIdx: I, ParentVNI: VNI); |
| 1525 | if (!VNI.isPHIDef()) |
| 1526 | continue; |
| 1527 | |
| 1528 | MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(index: VNI.def); |
| 1529 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
| 1530 | SlotIndex PredEnd = Indexes.getMBBEndIdx(mbb: Pred); |
| 1531 | VNInfo *PredVNI = ParentLI.getVNInfoBefore(Idx: PredEnd); |
| 1532 | assert(PredVNI && "Value available in PhiVNI predecessor" ); |
| 1533 | if (Visited.insert(Ptr: PredVNI).second) |
| 1534 | WorkList.push_back(Elt: PredVNI); |
| 1535 | } |
| 1536 | } while(!WorkList.empty()); |
| 1537 | } |
| 1538 | |
| 1539 | void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { |
| 1540 | ++NumFinished; |
| 1541 | |
| 1542 | // At this point, the live intervals in Edit contain VNInfos corresponding to |
| 1543 | // the inserted copies. |
| 1544 | |
| 1545 | // Add the original defs from the parent interval. |
| 1546 | for (const VNInfo *ParentVNI : Edit->getParent().valnos) { |
| 1547 | if (ParentVNI->isUnused()) |
| 1548 | continue; |
| 1549 | unsigned RegIdx = RegAssign.lookup(x: ParentVNI->def); |
| 1550 | defValue(RegIdx, ParentVNI, Idx: ParentVNI->def, Original: true); |
| 1551 | |
| 1552 | // Force rematted values to be recomputed everywhere. |
| 1553 | // The new live ranges may be truncated. |
| 1554 | if (Edit->didRematerialize(ParentVNI)) |
| 1555 | forceRecomputeVNI(ParentVNI: *ParentVNI); |
| 1556 | } |
| 1557 | |
| 1558 | // Hoist back-copies to the complement interval when in spill mode. |
| 1559 | switch (SpillMode) { |
| 1560 | case SM_Partition: |
| 1561 | // Leave all back-copies as is. |
| 1562 | break; |
| 1563 | case SM_Size: |
| 1564 | case SM_Speed: |
| 1565 | // hoistCopies will behave differently between size and speed. |
| 1566 | hoistCopies(); |
| 1567 | } |
| 1568 | |
| 1569 | // Transfer the simply mapped values, check if any are skipped. |
| 1570 | bool Skipped = transferValues(); |
| 1571 | |
| 1572 | // Rewrite virtual registers, possibly extending ranges. |
| 1573 | rewriteAssigned(ExtendRanges: Skipped); |
| 1574 | |
| 1575 | if (Skipped) |
| 1576 | extendPHIKillRanges(); |
| 1577 | else |
| 1578 | ++NumSimple; |
| 1579 | |
| 1580 | // Delete defs that were rematted everywhere. |
| 1581 | if (Skipped) |
| 1582 | deleteRematVictims(); |
| 1583 | |
| 1584 | // Get rid of unused values and set phi-kill flags. |
| 1585 | for (Register Reg : *Edit) { |
| 1586 | LiveInterval &LI = LIS.getInterval(Reg); |
| 1587 | LI.removeEmptySubRanges(); |
| 1588 | LI.RenumberValues(); |
| 1589 | } |
| 1590 | |
| 1591 | // Provide a reverse mapping from original indices to Edit ranges. |
| 1592 | if (LRMap) { |
| 1593 | auto Seq = llvm::seq<unsigned>(Begin: 0, End: Edit->size()); |
| 1594 | LRMap->assign(in_start: Seq.begin(), in_end: Seq.end()); |
| 1595 | } |
| 1596 | |
| 1597 | // Now check if any registers were separated into multiple components. |
| 1598 | ConnectedVNInfoEqClasses ConEQ(LIS); |
| 1599 | for (unsigned i = 0, e = Edit->size(); i != e; ++i) { |
| 1600 | // Don't use iterators, they are invalidated by create() below. |
| 1601 | Register VReg = Edit->get(idx: i); |
| 1602 | LiveInterval &LI = LIS.getInterval(Reg: VReg); |
| 1603 | SmallVector<LiveInterval*, 8> SplitLIs; |
| 1604 | LIS.splitSeparateComponents(LI, SplitLIs); |
| 1605 | Register Original = VRM.getOriginal(VirtReg: VReg); |
| 1606 | for (LiveInterval *SplitLI : SplitLIs) |
| 1607 | VRM.setIsSplitFromReg(virtReg: SplitLI->reg(), SReg: Original); |
| 1608 | |
| 1609 | // The new intervals all map back to i. |
| 1610 | if (LRMap) |
| 1611 | LRMap->resize(N: Edit->size(), NV: i); |
| 1612 | } |
| 1613 | |
| 1614 | // Calculate spill weight and allocation hints for new intervals. |
| 1615 | Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); |
| 1616 | |
| 1617 | assert(!LRMap || LRMap->size() == Edit->size()); |
| 1618 | } |
| 1619 | |
| 1620 | //===----------------------------------------------------------------------===// |
| 1621 | // Single Block Splitting |
| 1622 | //===----------------------------------------------------------------------===// |
| 1623 | |
| 1624 | bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, |
| 1625 | bool SingleInstrs) const { |
| 1626 | // Always split for multiple instructions. |
| 1627 | if (!BI.isOneInstr()) |
| 1628 | return true; |
| 1629 | // Don't split for single instructions unless explicitly requested. |
| 1630 | if (!SingleInstrs) |
| 1631 | return false; |
| 1632 | // Splitting a live-through range always makes progress. |
| 1633 | if (BI.LiveIn && BI.LiveOut) |
| 1634 | return true; |
| 1635 | // No point in isolating a copy. It has no register class constraints. |
| 1636 | MachineInstr *MI = LIS.getInstructionFromIndex(index: BI.FirstInstr); |
| 1637 | bool copyLike = TII.isCopyInstr(MI: *MI) || MI->isSubregToReg(); |
| 1638 | if (copyLike) |
| 1639 | return false; |
| 1640 | // Finally, don't isolate an end point that was created by earlier splits. |
| 1641 | return isOriginalEndpoint(Idx: BI.FirstInstr); |
| 1642 | } |
| 1643 | |
| 1644 | void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { |
| 1645 | openIntv(); |
| 1646 | SlotIndex LastSplitPoint = SA.getLastSplitPoint(BB: BI.MBB); |
| 1647 | SlotIndex SegStart = enterIntvBefore(Idx: std::min(a: BI.FirstInstr, |
| 1648 | b: LastSplitPoint)); |
| 1649 | if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { |
| 1650 | useIntv(Start: SegStart, End: leaveIntvAfter(Idx: BI.LastInstr)); |
| 1651 | } else { |
| 1652 | // The last use is after the last valid split point. |
| 1653 | SlotIndex SegStop = leaveIntvBefore(Idx: LastSplitPoint); |
| 1654 | useIntv(Start: SegStart, End: SegStop); |
| 1655 | overlapIntv(Start: SegStop, End: BI.LastInstr); |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | //===----------------------------------------------------------------------===// |
| 1660 | // Global Live Range Splitting Support |
| 1661 | //===----------------------------------------------------------------------===// |
| 1662 | |
| 1663 | // These methods support a method of global live range splitting that uses a |
| 1664 | // global algorithm to decide intervals for CFG edges. They will insert split |
| 1665 | // points and color intervals in basic blocks while avoiding interference. |
| 1666 | // |
| 1667 | // Note that splitSingleBlock is also useful for blocks where both CFG edges |
| 1668 | // are on the stack. |
| 1669 | |
| 1670 | void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, |
| 1671 | unsigned IntvIn, SlotIndex LeaveBefore, |
| 1672 | unsigned IntvOut, SlotIndex EnterAfter){ |
| 1673 | SlotIndex Start, Stop; |
| 1674 | std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(Num: MBBNum); |
| 1675 | |
| 1676 | LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop |
| 1677 | << ") intf " << LeaveBefore << '-' << EnterAfter |
| 1678 | << ", live-through " << IntvIn << " -> " << IntvOut); |
| 1679 | |
| 1680 | assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks" ); |
| 1681 | |
| 1682 | assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block" ); |
| 1683 | assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf" ); |
| 1684 | assert((!EnterAfter || EnterAfter >= Start) && "Interference before block" ); |
| 1685 | |
| 1686 | MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(N: MBBNum); |
| 1687 | |
| 1688 | if (!IntvOut) { |
| 1689 | LLVM_DEBUG(dbgs() << ", spill on entry.\n" ); |
| 1690 | // |
| 1691 | // <<<<<<<<< Possible LeaveBefore interference. |
| 1692 | // |-----------| Live through. |
| 1693 | // -____________ Spill on entry. |
| 1694 | // |
| 1695 | selectIntv(Idx: IntvIn); |
| 1696 | SlotIndex Idx = leaveIntvAtTop(MBB&: *MBB); |
| 1697 | assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference" ); |
| 1698 | (void)Idx; |
| 1699 | return; |
| 1700 | } |
| 1701 | |
| 1702 | if (!IntvIn) { |
| 1703 | LLVM_DEBUG(dbgs() << ", reload on exit.\n" ); |
| 1704 | // |
| 1705 | // >>>>>>> Possible EnterAfter interference. |
| 1706 | // |-----------| Live through. |
| 1707 | // ___________-- Reload on exit. |
| 1708 | // |
| 1709 | selectIntv(Idx: IntvOut); |
| 1710 | SlotIndex Idx = enterIntvAtEnd(MBB&: *MBB); |
| 1711 | assert((!EnterAfter || Idx >= EnterAfter) && "Interference" ); |
| 1712 | (void)Idx; |
| 1713 | return; |
| 1714 | } |
| 1715 | |
| 1716 | if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { |
| 1717 | LLVM_DEBUG(dbgs() << ", straight through.\n" ); |
| 1718 | // |
| 1719 | // |-----------| Live through. |
| 1720 | // ------------- Straight through, same intv, no interference. |
| 1721 | // |
| 1722 | selectIntv(Idx: IntvOut); |
| 1723 | useIntv(Start, End: Stop); |
| 1724 | return; |
| 1725 | } |
| 1726 | |
| 1727 | // We cannot legally insert splits after LSP. |
| 1728 | SlotIndex LSP = SA.getLastSplitPoint(Num: MBBNum); |
| 1729 | assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf" ); |
| 1730 | |
| 1731 | if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || |
| 1732 | LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { |
| 1733 | LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n" ); |
| 1734 | // |
| 1735 | // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. |
| 1736 | // |-----------| Live through. |
| 1737 | // ------======= Switch intervals between interference. |
| 1738 | // |
| 1739 | selectIntv(Idx: IntvOut); |
| 1740 | SlotIndex Idx; |
| 1741 | if (LeaveBefore && LeaveBefore < LSP) { |
| 1742 | Idx = enterIntvBefore(Idx: LeaveBefore); |
| 1743 | useIntv(Start: Idx, End: Stop); |
| 1744 | } else { |
| 1745 | Idx = enterIntvAtEnd(MBB&: *MBB); |
| 1746 | } |
| 1747 | selectIntv(Idx: IntvIn); |
| 1748 | useIntv(Start, End: Idx); |
| 1749 | assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference" ); |
| 1750 | assert((!EnterAfter || Idx >= EnterAfter) && "Interference" ); |
| 1751 | return; |
| 1752 | } |
| 1753 | |
| 1754 | LLVM_DEBUG(dbgs() << ", create local intv for interference.\n" ); |
| 1755 | // |
| 1756 | // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. |
| 1757 | // |-----------| Live through. |
| 1758 | // ==---------== Switch intervals before/after interference. |
| 1759 | // |
| 1760 | assert(LeaveBefore <= EnterAfter && "Missed case" ); |
| 1761 | |
| 1762 | selectIntv(Idx: IntvOut); |
| 1763 | SlotIndex Idx = enterIntvAfter(Idx: EnterAfter); |
| 1764 | useIntv(Start: Idx, End: Stop); |
| 1765 | assert((!EnterAfter || Idx >= EnterAfter) && "Interference" ); |
| 1766 | |
| 1767 | selectIntv(Idx: IntvIn); |
| 1768 | Idx = leaveIntvBefore(Idx: LeaveBefore); |
| 1769 | useIntv(Start, End: Idx); |
| 1770 | assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference" ); |
| 1771 | } |
| 1772 | |
| 1773 | void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, |
| 1774 | unsigned IntvIn, SlotIndex LeaveBefore) { |
| 1775 | SlotIndex Start, Stop; |
| 1776 | std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(MBB: BI.MBB); |
| 1777 | |
| 1778 | LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' |
| 1779 | << Stop << "), uses " << BI.FirstInstr << '-' |
| 1780 | << BI.LastInstr << ", reg-in " << IntvIn |
| 1781 | << ", leave before " << LeaveBefore |
| 1782 | << (BI.LiveOut ? ", stack-out" : ", killed in block" )); |
| 1783 | |
| 1784 | assert(IntvIn && "Must have register in" ); |
| 1785 | assert(BI.LiveIn && "Must be live-in" ); |
| 1786 | assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference" ); |
| 1787 | |
| 1788 | if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { |
| 1789 | LLVM_DEBUG(dbgs() << " before interference.\n" ); |
| 1790 | // |
| 1791 | // <<< Interference after kill. |
| 1792 | // |---o---x | Killed in block. |
| 1793 | // ========= Use IntvIn everywhere. |
| 1794 | // |
| 1795 | selectIntv(Idx: IntvIn); |
| 1796 | useIntv(Start, End: BI.LastInstr); |
| 1797 | return; |
| 1798 | } |
| 1799 | |
| 1800 | SlotIndex LSP = SA.getLastSplitPoint(BB: BI.MBB); |
| 1801 | |
| 1802 | if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { |
| 1803 | // |
| 1804 | // <<< Possible interference after last use. |
| 1805 | // |---o---o---| Live-out on stack. |
| 1806 | // =========____ Leave IntvIn after last use. |
| 1807 | // |
| 1808 | // < Interference after last use. |
| 1809 | // |---o---o--o| Live-out on stack, late last use. |
| 1810 | // ============ Copy to stack after LSP, overlap IntvIn. |
| 1811 | // \_____ Stack interval is live-out. |
| 1812 | // |
| 1813 | if (BI.LastInstr < LSP) { |
| 1814 | LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n" ); |
| 1815 | selectIntv(Idx: IntvIn); |
| 1816 | SlotIndex Idx = leaveIntvAfter(Idx: BI.LastInstr); |
| 1817 | useIntv(Start, End: Idx); |
| 1818 | assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference" ); |
| 1819 | } else { |
| 1820 | LLVM_DEBUG(dbgs() << ", spill before last split point.\n" ); |
| 1821 | selectIntv(Idx: IntvIn); |
| 1822 | SlotIndex Idx = leaveIntvBefore(Idx: LSP); |
| 1823 | overlapIntv(Start: Idx, End: BI.LastInstr); |
| 1824 | useIntv(Start, End: Idx); |
| 1825 | assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference" ); |
| 1826 | } |
| 1827 | return; |
| 1828 | } |
| 1829 | |
| 1830 | // The interference is overlapping somewhere we wanted to use IntvIn. That |
| 1831 | // means we need to create a local interval that can be allocated a |
| 1832 | // different register. |
| 1833 | unsigned LocalIntv = openIntv(); |
| 1834 | (void)LocalIntv; |
| 1835 | LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n" ); |
| 1836 | |
| 1837 | if (!BI.LiveOut || BI.LastInstr < LSP) { |
| 1838 | // |
| 1839 | // <<<<<<< Interference overlapping uses. |
| 1840 | // |---o---o---| Live-out on stack. |
| 1841 | // =====----____ Leave IntvIn before interference, then spill. |
| 1842 | // |
| 1843 | SlotIndex To = leaveIntvAfter(Idx: BI.LastInstr); |
| 1844 | SlotIndex From = enterIntvBefore(Idx: LeaveBefore); |
| 1845 | useIntv(Start: From, End: To); |
| 1846 | selectIntv(Idx: IntvIn); |
| 1847 | useIntv(Start, End: From); |
| 1848 | assert((!LeaveBefore || From <= LeaveBefore) && "Interference" ); |
| 1849 | return; |
| 1850 | } |
| 1851 | |
| 1852 | // <<<<<<< Interference overlapping uses. |
| 1853 | // |---o---o--o| Live-out on stack, late last use. |
| 1854 | // =====------- Copy to stack before LSP, overlap LocalIntv. |
| 1855 | // \_____ Stack interval is live-out. |
| 1856 | // |
| 1857 | SlotIndex To = leaveIntvBefore(Idx: LSP); |
| 1858 | overlapIntv(Start: To, End: BI.LastInstr); |
| 1859 | SlotIndex From = enterIntvBefore(Idx: std::min(a: To, b: LeaveBefore)); |
| 1860 | useIntv(Start: From, End: To); |
| 1861 | selectIntv(Idx: IntvIn); |
| 1862 | useIntv(Start, End: From); |
| 1863 | assert((!LeaveBefore || From <= LeaveBefore) && "Interference" ); |
| 1864 | } |
| 1865 | |
| 1866 | void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, |
| 1867 | unsigned IntvOut, SlotIndex EnterAfter) { |
| 1868 | SlotIndex Start, Stop; |
| 1869 | std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(MBB: BI.MBB); |
| 1870 | |
| 1871 | LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' |
| 1872 | << Stop << "), uses " << BI.FirstInstr << '-' |
| 1873 | << BI.LastInstr << ", reg-out " << IntvOut |
| 1874 | << ", enter after " << EnterAfter |
| 1875 | << (BI.LiveIn ? ", stack-in" : ", defined in block" )); |
| 1876 | |
| 1877 | SlotIndex LSP = SA.getLastSplitPoint(BB: BI.MBB); |
| 1878 | |
| 1879 | assert(IntvOut && "Must have register out" ); |
| 1880 | assert(BI.LiveOut && "Must be live-out" ); |
| 1881 | assert((!EnterAfter || EnterAfter < LSP) && "Bad interference" ); |
| 1882 | |
| 1883 | if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { |
| 1884 | LLVM_DEBUG(dbgs() << " after interference.\n" ); |
| 1885 | // |
| 1886 | // >>>> Interference before def. |
| 1887 | // | o---o---| Defined in block. |
| 1888 | // ========= Use IntvOut everywhere. |
| 1889 | // |
| 1890 | selectIntv(Idx: IntvOut); |
| 1891 | useIntv(Start: BI.FirstInstr, End: Stop); |
| 1892 | return; |
| 1893 | } |
| 1894 | |
| 1895 | if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { |
| 1896 | LLVM_DEBUG(dbgs() << ", reload after interference.\n" ); |
| 1897 | // |
| 1898 | // >>>> Interference before def. |
| 1899 | // |---o---o---| Live-through, stack-in. |
| 1900 | // ____========= Enter IntvOut before first use. |
| 1901 | // |
| 1902 | selectIntv(Idx: IntvOut); |
| 1903 | SlotIndex Idx = enterIntvBefore(Idx: std::min(a: LSP, b: BI.FirstInstr)); |
| 1904 | useIntv(Start: Idx, End: Stop); |
| 1905 | assert((!EnterAfter || Idx >= EnterAfter) && "Interference" ); |
| 1906 | return; |
| 1907 | } |
| 1908 | |
| 1909 | // The interference is overlapping somewhere we wanted to use IntvOut. That |
| 1910 | // means we need to create a local interval that can be allocated a |
| 1911 | // different register. |
| 1912 | LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n" ); |
| 1913 | // |
| 1914 | // >>>>>>> Interference overlapping uses. |
| 1915 | // |---o---o---| Live-through, stack-in. |
| 1916 | // ____---====== Create local interval for interference range. |
| 1917 | // |
| 1918 | selectIntv(Idx: IntvOut); |
| 1919 | SlotIndex Idx = enterIntvAfter(Idx: EnterAfter); |
| 1920 | useIntv(Start: Idx, End: Stop); |
| 1921 | assert((!EnterAfter || Idx >= EnterAfter) && "Interference" ); |
| 1922 | |
| 1923 | openIntv(); |
| 1924 | SlotIndex From = enterIntvBefore(Idx: std::min(a: Idx, b: BI.FirstInstr)); |
| 1925 | useIntv(Start: From, End: Idx); |
| 1926 | } |
| 1927 | |
| 1928 | void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { |
| 1929 | OS << "{" << printMBBReference(MBB: *MBB) << ", " |
| 1930 | << "uses " << FirstInstr << " to " << LastInstr << ", " |
| 1931 | << "1st def " << FirstDef << ", " |
| 1932 | << (LiveIn ? "live in" : "dead in" ) << ", " |
| 1933 | << (LiveOut ? "live out" : "dead out" ) << "}" ; |
| 1934 | } |
| 1935 | |
| 1936 | void SplitAnalysis::BlockInfo::dump() const { |
| 1937 | print(OS&: dbgs()); |
| 1938 | dbgs() << "\n" ; |
| 1939 | } |
| 1940 | |