| 1 | //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements folding of constants for LLVM. This implements the |
| 10 | // (internal) ConstantFold.h interface, which is used by the |
| 11 | // ConstantExpr::get* methods to automatically fold constants when possible. |
| 12 | // |
| 13 | // The current constant folding implementation is implemented in two pieces: the |
| 14 | // pieces that don't need DataLayout, and the pieces that do. This is to avoid |
| 15 | // a dependence in IR on Target. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "llvm/IR/ConstantFold.h" |
| 20 | #include "llvm/ADT/APSInt.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/IR/Constants.h" |
| 23 | #include "llvm/IR/DerivedTypes.h" |
| 24 | #include "llvm/IR/Function.h" |
| 25 | #include "llvm/IR/GlobalAlias.h" |
| 26 | #include "llvm/IR/GlobalVariable.h" |
| 27 | #include "llvm/IR/Instructions.h" |
| 28 | #include "llvm/IR/Module.h" |
| 29 | #include "llvm/IR/Operator.h" |
| 30 | #include "llvm/IR/PatternMatch.h" |
| 31 | #include "llvm/Support/ErrorHandling.h" |
| 32 | using namespace llvm; |
| 33 | using namespace llvm::PatternMatch; |
| 34 | |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | // ConstantFold*Instruction Implementations |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | |
| 39 | /// This function determines which opcode to use to fold two constant cast |
| 40 | /// expressions together. It uses CastInst::isEliminableCastPair to determine |
| 41 | /// the opcode. Consequently its just a wrapper around that function. |
| 42 | /// Determine if it is valid to fold a cast of a cast |
| 43 | static unsigned |
| 44 | foldConstantCastPair( |
| 45 | unsigned opc, ///< opcode of the second cast constant expression |
| 46 | ConstantExpr *Op, ///< the first cast constant expression |
| 47 | Type *DstTy ///< destination type of the first cast |
| 48 | ) { |
| 49 | assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!" ); |
| 50 | assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type" ); |
| 51 | assert(CastInst::isCast(opc) && "Invalid cast opcode" ); |
| 52 | |
| 53 | // The types and opcodes for the two Cast constant expressions |
| 54 | Type *SrcTy = Op->getOperand(i_nocapture: 0)->getType(); |
| 55 | Type *MidTy = Op->getType(); |
| 56 | Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); |
| 57 | Instruction::CastOps secondOp = Instruction::CastOps(opc); |
| 58 | |
| 59 | // Assume that pointers are never more than 64 bits wide, and only use this |
| 60 | // for the middle type. Otherwise we could end up folding away illegal |
| 61 | // bitcasts between address spaces with different sizes. |
| 62 | IntegerType *FakeIntPtrTy = Type::getInt64Ty(C&: DstTy->getContext()); |
| 63 | |
| 64 | // Let CastInst::isEliminableCastPair do the heavy lifting. |
| 65 | return CastInst::isEliminableCastPair(firstOpcode: firstOp, secondOpcode: secondOp, SrcTy, MidTy, DstTy, |
| 66 | SrcIntPtrTy: nullptr, MidIntPtrTy: FakeIntPtrTy, DstIntPtrTy: nullptr); |
| 67 | } |
| 68 | |
| 69 | static Constant *FoldBitCast(Constant *V, Type *DestTy) { |
| 70 | Type *SrcTy = V->getType(); |
| 71 | if (SrcTy == DestTy) |
| 72 | return V; // no-op cast |
| 73 | |
| 74 | if (V->isAllOnesValue()) |
| 75 | return Constant::getAllOnesValue(Ty: DestTy); |
| 76 | |
| 77 | // Handle ConstantInt -> ConstantFP |
| 78 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 79 | // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts |
| 80 | // This allows for other simplifications (although some of them |
| 81 | // can only be handled by Analysis/ConstantFolding.cpp). |
| 82 | if (isa<VectorType>(Val: DestTy) && !isa<VectorType>(Val: SrcTy)) |
| 83 | return ConstantExpr::getBitCast(C: ConstantVector::get(V), Ty: DestTy); |
| 84 | |
| 85 | // Make sure dest type is compatible with the folded fp constant. |
| 86 | // See note below regarding the PPC_FP128 restriction. |
| 87 | if (!DestTy->isFPOrFPVectorTy() || DestTy->isPPC_FP128Ty() || |
| 88 | DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits()) |
| 89 | return nullptr; |
| 90 | |
| 91 | return ConstantFP::get( |
| 92 | Ty: DestTy, |
| 93 | V: APFloat(DestTy->getScalarType()->getFltSemantics(), CI->getValue())); |
| 94 | } |
| 95 | |
| 96 | // Handle ConstantFP -> ConstantInt |
| 97 | if (ConstantFP *FP = dyn_cast<ConstantFP>(Val: V)) { |
| 98 | // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts |
| 99 | // This allows for other simplifications (although some of them |
| 100 | // can only be handled by Analysis/ConstantFolding.cpp). |
| 101 | if (isa<VectorType>(Val: DestTy) && !isa<VectorType>(Val: SrcTy)) |
| 102 | return ConstantExpr::getBitCast(C: ConstantVector::get(V), Ty: DestTy); |
| 103 | |
| 104 | // PPC_FP128 is really the sum of two consecutive doubles, where the first |
| 105 | // double is always stored first in memory, regardless of the target |
| 106 | // endianness. The memory layout of i128, however, depends on the target |
| 107 | // endianness, and so we can't fold this without target endianness |
| 108 | // information. This should instead be handled by |
| 109 | // Analysis/ConstantFolding.cpp |
| 110 | if (SrcTy->isPPC_FP128Ty()) |
| 111 | return nullptr; |
| 112 | |
| 113 | // Make sure dest type is compatible with the folded integer constant. |
| 114 | if (!DestTy->isIntOrIntVectorTy() || |
| 115 | DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits()) |
| 116 | return nullptr; |
| 117 | |
| 118 | return ConstantInt::get(Ty: DestTy, V: FP->getValueAPF().bitcastToAPInt()); |
| 119 | } |
| 120 | |
| 121 | return nullptr; |
| 122 | } |
| 123 | |
| 124 | static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, |
| 125 | Type *DestTy) { |
| 126 | return ConstantExpr::isDesirableCastOp(Opcode: opc) |
| 127 | ? ConstantExpr::getCast(ops: opc, C: V, Ty: DestTy) |
| 128 | : ConstantFoldCastInstruction(opcode: opc, V, DestTy); |
| 129 | } |
| 130 | |
| 131 | Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, |
| 132 | Type *DestTy) { |
| 133 | if (isa<PoisonValue>(Val: V)) |
| 134 | return PoisonValue::get(T: DestTy); |
| 135 | |
| 136 | if (isa<UndefValue>(Val: V)) { |
| 137 | // zext(undef) = 0, because the top bits will be zero. |
| 138 | // sext(undef) = 0, because the top bits will all be the same. |
| 139 | // [us]itofp(undef) = 0, because the result value is bounded. |
| 140 | if (opc == Instruction::ZExt || opc == Instruction::SExt || |
| 141 | opc == Instruction::UIToFP || opc == Instruction::SIToFP) |
| 142 | return Constant::getNullValue(Ty: DestTy); |
| 143 | return UndefValue::get(T: DestTy); |
| 144 | } |
| 145 | |
| 146 | if (V->isNullValue() && !DestTy->isX86_AMXTy() && |
| 147 | opc != Instruction::AddrSpaceCast) |
| 148 | return Constant::getNullValue(Ty: DestTy); |
| 149 | |
| 150 | // If the cast operand is a constant expression, there's a few things we can |
| 151 | // do to try to simplify it. |
| 152 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: V)) { |
| 153 | if (CE->isCast()) { |
| 154 | // Try hard to fold cast of cast because they are often eliminable. |
| 155 | if (unsigned newOpc = foldConstantCastPair(opc, Op: CE, DstTy: DestTy)) |
| 156 | return foldMaybeUndesirableCast(opc: newOpc, V: CE->getOperand(i_nocapture: 0), DestTy); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | // If the cast operand is a constant vector, perform the cast by |
| 161 | // operating on each element. In the cast of bitcasts, the element |
| 162 | // count may be mismatched; don't attempt to handle that here. |
| 163 | if (DestTy->isVectorTy() && V->getType()->isVectorTy() && |
| 164 | cast<VectorType>(Val: DestTy)->getElementCount() == |
| 165 | cast<VectorType>(Val: V->getType())->getElementCount()) { |
| 166 | VectorType *DestVecTy = cast<VectorType>(Val: DestTy); |
| 167 | Type *DstEltTy = DestVecTy->getElementType(); |
| 168 | // Fast path for splatted constants. |
| 169 | if (Constant *Splat = V->getSplatValue()) { |
| 170 | Constant *Res = foldMaybeUndesirableCast(opc, V: Splat, DestTy: DstEltTy); |
| 171 | if (!Res) |
| 172 | return nullptr; |
| 173 | return ConstantVector::getSplat( |
| 174 | EC: cast<VectorType>(Val: DestTy)->getElementCount(), Elt: Res); |
| 175 | } |
| 176 | if (isa<ScalableVectorType>(Val: DestTy)) |
| 177 | return nullptr; |
| 178 | SmallVector<Constant *, 16> res; |
| 179 | Type *Ty = IntegerType::get(C&: V->getContext(), NumBits: 32); |
| 180 | for (unsigned i = 0, |
| 181 | e = cast<FixedVectorType>(Val: V->getType())->getNumElements(); |
| 182 | i != e; ++i) { |
| 183 | Constant *C = ConstantExpr::getExtractElement(Vec: V, Idx: ConstantInt::get(Ty, V: i)); |
| 184 | Constant *Casted = foldMaybeUndesirableCast(opc, V: C, DestTy: DstEltTy); |
| 185 | if (!Casted) |
| 186 | return nullptr; |
| 187 | res.push_back(Elt: Casted); |
| 188 | } |
| 189 | return ConstantVector::get(V: res); |
| 190 | } |
| 191 | |
| 192 | // We actually have to do a cast now. Perform the cast according to the |
| 193 | // opcode specified. |
| 194 | switch (opc) { |
| 195 | default: |
| 196 | llvm_unreachable("Failed to cast constant expression" ); |
| 197 | case Instruction::FPTrunc: |
| 198 | case Instruction::FPExt: |
| 199 | if (ConstantFP *FPC = dyn_cast<ConstantFP>(Val: V)) { |
| 200 | bool ignored; |
| 201 | APFloat Val = FPC->getValueAPF(); |
| 202 | Val.convert(ToSemantics: DestTy->getScalarType()->getFltSemantics(), |
| 203 | RM: APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 204 | return ConstantFP::get(Ty: DestTy, V: Val); |
| 205 | } |
| 206 | return nullptr; // Can't fold. |
| 207 | case Instruction::FPToUI: |
| 208 | case Instruction::FPToSI: |
| 209 | if (ConstantFP *FPC = dyn_cast<ConstantFP>(Val: V)) { |
| 210 | const APFloat &V = FPC->getValueAPF(); |
| 211 | bool ignored; |
| 212 | APSInt IntVal(DestTy->getScalarSizeInBits(), opc == Instruction::FPToUI); |
| 213 | if (APFloat::opInvalidOp == |
| 214 | V.convertToInteger(Result&: IntVal, RM: APFloat::rmTowardZero, IsExact: &ignored)) { |
| 215 | // Undefined behavior invoked - the destination type can't represent |
| 216 | // the input constant. |
| 217 | return PoisonValue::get(T: DestTy); |
| 218 | } |
| 219 | return ConstantInt::get(Ty: DestTy, V: IntVal); |
| 220 | } |
| 221 | return nullptr; // Can't fold. |
| 222 | case Instruction::UIToFP: |
| 223 | case Instruction::SIToFP: |
| 224 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 225 | const APInt &api = CI->getValue(); |
| 226 | APFloat apf(DestTy->getScalarType()->getFltSemantics(), |
| 227 | APInt::getZero(numBits: DestTy->getScalarSizeInBits())); |
| 228 | apf.convertFromAPInt(Input: api, IsSigned: opc==Instruction::SIToFP, |
| 229 | RM: APFloat::rmNearestTiesToEven); |
| 230 | return ConstantFP::get(Ty: DestTy, V: apf); |
| 231 | } |
| 232 | return nullptr; |
| 233 | case Instruction::ZExt: |
| 234 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 235 | uint32_t BitWidth = DestTy->getScalarSizeInBits(); |
| 236 | return ConstantInt::get(Ty: DestTy, V: CI->getValue().zext(width: BitWidth)); |
| 237 | } |
| 238 | return nullptr; |
| 239 | case Instruction::SExt: |
| 240 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 241 | uint32_t BitWidth = DestTy->getScalarSizeInBits(); |
| 242 | return ConstantInt::get(Ty: DestTy, V: CI->getValue().sext(width: BitWidth)); |
| 243 | } |
| 244 | return nullptr; |
| 245 | case Instruction::Trunc: { |
| 246 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 247 | uint32_t BitWidth = DestTy->getScalarSizeInBits(); |
| 248 | return ConstantInt::get(Ty: DestTy, V: CI->getValue().trunc(width: BitWidth)); |
| 249 | } |
| 250 | |
| 251 | return nullptr; |
| 252 | } |
| 253 | case Instruction::BitCast: |
| 254 | return FoldBitCast(V, DestTy); |
| 255 | case Instruction::AddrSpaceCast: |
| 256 | case Instruction::IntToPtr: |
| 257 | case Instruction::PtrToInt: |
| 258 | return nullptr; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, |
| 263 | Constant *V1, Constant *V2) { |
| 264 | // Check for i1 and vector true/false conditions. |
| 265 | if (Cond->isNullValue()) return V2; |
| 266 | if (Cond->isAllOnesValue()) return V1; |
| 267 | |
| 268 | // If the condition is a vector constant, fold the result elementwise. |
| 269 | if (ConstantVector *CondV = dyn_cast<ConstantVector>(Val: Cond)) { |
| 270 | auto *V1VTy = CondV->getType(); |
| 271 | SmallVector<Constant*, 16> Result; |
| 272 | Type *Ty = IntegerType::get(C&: CondV->getContext(), NumBits: 32); |
| 273 | for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { |
| 274 | Constant *V; |
| 275 | Constant *V1Element = ConstantExpr::getExtractElement(Vec: V1, |
| 276 | Idx: ConstantInt::get(Ty, V: i)); |
| 277 | Constant *V2Element = ConstantExpr::getExtractElement(Vec: V2, |
| 278 | Idx: ConstantInt::get(Ty, V: i)); |
| 279 | auto *Cond = cast<Constant>(Val: CondV->getOperand(i_nocapture: i)); |
| 280 | if (isa<PoisonValue>(Val: Cond)) { |
| 281 | V = PoisonValue::get(T: V1Element->getType()); |
| 282 | } else if (V1Element == V2Element) { |
| 283 | V = V1Element; |
| 284 | } else if (isa<UndefValue>(Val: Cond)) { |
| 285 | V = isa<UndefValue>(Val: V1Element) ? V1Element : V2Element; |
| 286 | } else { |
| 287 | if (!isa<ConstantInt>(Val: Cond)) break; |
| 288 | V = Cond->isNullValue() ? V2Element : V1Element; |
| 289 | } |
| 290 | Result.push_back(Elt: V); |
| 291 | } |
| 292 | |
| 293 | // If we were able to build the vector, return it. |
| 294 | if (Result.size() == V1VTy->getNumElements()) |
| 295 | return ConstantVector::get(V: Result); |
| 296 | } |
| 297 | |
| 298 | if (isa<PoisonValue>(Val: Cond)) |
| 299 | return PoisonValue::get(T: V1->getType()); |
| 300 | |
| 301 | if (isa<UndefValue>(Val: Cond)) { |
| 302 | if (isa<UndefValue>(Val: V1)) return V1; |
| 303 | return V2; |
| 304 | } |
| 305 | |
| 306 | if (V1 == V2) return V1; |
| 307 | |
| 308 | if (isa<PoisonValue>(Val: V1)) |
| 309 | return V2; |
| 310 | if (isa<PoisonValue>(Val: V2)) |
| 311 | return V1; |
| 312 | |
| 313 | // If the true or false value is undef, we can fold to the other value as |
| 314 | // long as the other value isn't poison. |
| 315 | auto NotPoison = [](Constant *C) { |
| 316 | if (isa<PoisonValue>(Val: C)) |
| 317 | return false; |
| 318 | |
| 319 | // TODO: We can analyze ConstExpr by opcode to determine if there is any |
| 320 | // possibility of poison. |
| 321 | if (isa<ConstantExpr>(Val: C)) |
| 322 | return false; |
| 323 | |
| 324 | if (isa<ConstantInt>(Val: C) || isa<GlobalVariable>(Val: C) || isa<ConstantFP>(Val: C) || |
| 325 | isa<ConstantPointerNull>(Val: C) || isa<Function>(Val: C)) |
| 326 | return true; |
| 327 | |
| 328 | if (C->getType()->isVectorTy()) |
| 329 | return !C->containsPoisonElement() && !C->containsConstantExpression(); |
| 330 | |
| 331 | // TODO: Recursively analyze aggregates or other constants. |
| 332 | return false; |
| 333 | }; |
| 334 | if (isa<UndefValue>(Val: V1) && NotPoison(V2)) return V2; |
| 335 | if (isa<UndefValue>(Val: V2) && NotPoison(V1)) return V1; |
| 336 | |
| 337 | return nullptr; |
| 338 | } |
| 339 | |
| 340 | Constant *llvm::(Constant *Val, |
| 341 | Constant *Idx) { |
| 342 | auto *ValVTy = cast<VectorType>(Val: Val->getType()); |
| 343 | |
| 344 | // extractelt poison, C -> poison |
| 345 | // extractelt C, undef -> poison |
| 346 | if (isa<PoisonValue>(Val) || isa<UndefValue>(Val: Idx)) |
| 347 | return PoisonValue::get(T: ValVTy->getElementType()); |
| 348 | |
| 349 | // extractelt undef, C -> undef |
| 350 | if (isa<UndefValue>(Val)) |
| 351 | return UndefValue::get(T: ValVTy->getElementType()); |
| 352 | |
| 353 | auto *CIdx = dyn_cast<ConstantInt>(Val: Idx); |
| 354 | if (!CIdx) |
| 355 | return nullptr; |
| 356 | |
| 357 | if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val: Val->getType())) { |
| 358 | // ee({w,x,y,z}, wrong_value) -> poison |
| 359 | if (CIdx->uge(Num: ValFVTy->getNumElements())) |
| 360 | return PoisonValue::get(T: ValFVTy->getElementType()); |
| 361 | } |
| 362 | |
| 363 | // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) |
| 364 | if (auto *CE = dyn_cast<ConstantExpr>(Val)) { |
| 365 | if (auto *GEP = dyn_cast<GEPOperator>(Val: CE)) { |
| 366 | SmallVector<Constant *, 8> Ops; |
| 367 | Ops.reserve(N: CE->getNumOperands()); |
| 368 | for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { |
| 369 | Constant *Op = CE->getOperand(i_nocapture: i); |
| 370 | if (Op->getType()->isVectorTy()) { |
| 371 | Constant *ScalarOp = ConstantExpr::getExtractElement(Vec: Op, Idx); |
| 372 | if (!ScalarOp) |
| 373 | return nullptr; |
| 374 | Ops.push_back(Elt: ScalarOp); |
| 375 | } else |
| 376 | Ops.push_back(Elt: Op); |
| 377 | } |
| 378 | return CE->getWithOperands(Ops, Ty: ValVTy->getElementType(), OnlyIfReduced: false, |
| 379 | SrcTy: GEP->getSourceElementType()); |
| 380 | } else if (CE->getOpcode() == Instruction::InsertElement) { |
| 381 | if (const auto *IEIdx = dyn_cast<ConstantInt>(Val: CE->getOperand(i_nocapture: 2))) { |
| 382 | if (APSInt::isSameValue(I1: APSInt(IEIdx->getValue()), |
| 383 | I2: APSInt(CIdx->getValue()))) { |
| 384 | return CE->getOperand(i_nocapture: 1); |
| 385 | } else { |
| 386 | return ConstantExpr::getExtractElement(Vec: CE->getOperand(i_nocapture: 0), Idx: CIdx); |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | if (Constant *C = Val->getAggregateElement(Elt: CIdx)) |
| 393 | return C; |
| 394 | |
| 395 | // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x |
| 396 | if (CIdx->getValue().ult(RHS: ValVTy->getElementCount().getKnownMinValue())) { |
| 397 | if (Constant *SplatVal = Val->getSplatValue()) |
| 398 | return SplatVal; |
| 399 | } |
| 400 | |
| 401 | return nullptr; |
| 402 | } |
| 403 | |
| 404 | Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, |
| 405 | Constant *Elt, |
| 406 | Constant *Idx) { |
| 407 | if (isa<UndefValue>(Val: Idx)) |
| 408 | return PoisonValue::get(T: Val->getType()); |
| 409 | |
| 410 | // Inserting null into all zeros is still all zeros. |
| 411 | // TODO: This is true for undef and poison splats too. |
| 412 | if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) |
| 413 | return Val; |
| 414 | |
| 415 | ConstantInt *CIdx = dyn_cast<ConstantInt>(Val: Idx); |
| 416 | if (!CIdx) return nullptr; |
| 417 | |
| 418 | // Do not iterate on scalable vector. The num of elements is unknown at |
| 419 | // compile-time. |
| 420 | if (isa<ScalableVectorType>(Val: Val->getType())) |
| 421 | return nullptr; |
| 422 | |
| 423 | auto *ValTy = cast<FixedVectorType>(Val: Val->getType()); |
| 424 | |
| 425 | unsigned NumElts = ValTy->getNumElements(); |
| 426 | if (CIdx->uge(Num: NumElts)) |
| 427 | return PoisonValue::get(T: Val->getType()); |
| 428 | |
| 429 | SmallVector<Constant*, 16> Result; |
| 430 | Result.reserve(N: NumElts); |
| 431 | auto *Ty = Type::getInt32Ty(C&: Val->getContext()); |
| 432 | uint64_t IdxVal = CIdx->getZExtValue(); |
| 433 | for (unsigned i = 0; i != NumElts; ++i) { |
| 434 | if (i == IdxVal) { |
| 435 | Result.push_back(Elt); |
| 436 | continue; |
| 437 | } |
| 438 | |
| 439 | Constant *C = ConstantExpr::getExtractElement(Vec: Val, Idx: ConstantInt::get(Ty, V: i)); |
| 440 | Result.push_back(Elt: C); |
| 441 | } |
| 442 | |
| 443 | return ConstantVector::get(V: Result); |
| 444 | } |
| 445 | |
| 446 | Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, |
| 447 | ArrayRef<int> Mask) { |
| 448 | auto *V1VTy = cast<VectorType>(Val: V1->getType()); |
| 449 | unsigned MaskNumElts = Mask.size(); |
| 450 | auto MaskEltCount = |
| 451 | ElementCount::get(MinVal: MaskNumElts, Scalable: isa<ScalableVectorType>(Val: V1VTy)); |
| 452 | Type *EltTy = V1VTy->getElementType(); |
| 453 | |
| 454 | // Poison shuffle mask -> poison value. |
| 455 | if (all_of(Range&: Mask, P: [](int Elt) { return Elt == PoisonMaskElem; })) { |
| 456 | return PoisonValue::get(T: VectorType::get(ElementType: EltTy, EC: MaskEltCount)); |
| 457 | } |
| 458 | |
| 459 | // If the mask is all zeros this is a splat, no need to go through all |
| 460 | // elements. |
| 461 | if (all_of(Range&: Mask, P: [](int Elt) { return Elt == 0; })) { |
| 462 | Type *Ty = IntegerType::get(C&: V1->getContext(), NumBits: 32); |
| 463 | Constant *Elt = |
| 464 | ConstantExpr::getExtractElement(Vec: V1, Idx: ConstantInt::get(Ty, V: 0)); |
| 465 | |
| 466 | // For scalable vectors, make sure this doesn't fold back into a |
| 467 | // shufflevector. |
| 468 | if (!MaskEltCount.isScalable() || Elt->isNullValue() || isa<UndefValue>(Val: Elt)) |
| 469 | return ConstantVector::getSplat(EC: MaskEltCount, Elt); |
| 470 | } |
| 471 | |
| 472 | // Do not iterate on scalable vector. The num of elements is unknown at |
| 473 | // compile-time. |
| 474 | if (isa<ScalableVectorType>(Val: V1VTy)) |
| 475 | return nullptr; |
| 476 | |
| 477 | unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); |
| 478 | |
| 479 | // Loop over the shuffle mask, evaluating each element. |
| 480 | SmallVector<Constant*, 32> Result; |
| 481 | for (unsigned i = 0; i != MaskNumElts; ++i) { |
| 482 | int Elt = Mask[i]; |
| 483 | if (Elt == -1) { |
| 484 | Result.push_back(Elt: UndefValue::get(T: EltTy)); |
| 485 | continue; |
| 486 | } |
| 487 | Constant *InElt; |
| 488 | if (unsigned(Elt) >= SrcNumElts*2) |
| 489 | InElt = UndefValue::get(T: EltTy); |
| 490 | else if (unsigned(Elt) >= SrcNumElts) { |
| 491 | Type *Ty = IntegerType::get(C&: V2->getContext(), NumBits: 32); |
| 492 | InElt = |
| 493 | ConstantExpr::getExtractElement(Vec: V2, |
| 494 | Idx: ConstantInt::get(Ty, V: Elt - SrcNumElts)); |
| 495 | } else { |
| 496 | Type *Ty = IntegerType::get(C&: V1->getContext(), NumBits: 32); |
| 497 | InElt = ConstantExpr::getExtractElement(Vec: V1, Idx: ConstantInt::get(Ty, V: Elt)); |
| 498 | } |
| 499 | Result.push_back(Elt: InElt); |
| 500 | } |
| 501 | |
| 502 | return ConstantVector::get(V: Result); |
| 503 | } |
| 504 | |
| 505 | Constant *llvm::(Constant *Agg, |
| 506 | ArrayRef<unsigned> Idxs) { |
| 507 | // Base case: no indices, so return the entire value. |
| 508 | if (Idxs.empty()) |
| 509 | return Agg; |
| 510 | |
| 511 | if (Constant *C = Agg->getAggregateElement(Elt: Idxs[0])) |
| 512 | return ConstantFoldExtractValueInstruction(Agg: C, Idxs: Idxs.slice(N: 1)); |
| 513 | |
| 514 | return nullptr; |
| 515 | } |
| 516 | |
| 517 | Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, |
| 518 | Constant *Val, |
| 519 | ArrayRef<unsigned> Idxs) { |
| 520 | // Base case: no indices, so replace the entire value. |
| 521 | if (Idxs.empty()) |
| 522 | return Val; |
| 523 | |
| 524 | unsigned NumElts; |
| 525 | if (StructType *ST = dyn_cast<StructType>(Val: Agg->getType())) |
| 526 | NumElts = ST->getNumElements(); |
| 527 | else |
| 528 | NumElts = cast<ArrayType>(Val: Agg->getType())->getNumElements(); |
| 529 | |
| 530 | SmallVector<Constant*, 32> Result; |
| 531 | for (unsigned i = 0; i != NumElts; ++i) { |
| 532 | Constant *C = Agg->getAggregateElement(Elt: i); |
| 533 | if (!C) return nullptr; |
| 534 | |
| 535 | if (Idxs[0] == i) |
| 536 | C = ConstantFoldInsertValueInstruction(Agg: C, Val, Idxs: Idxs.slice(N: 1)); |
| 537 | |
| 538 | Result.push_back(Elt: C); |
| 539 | } |
| 540 | |
| 541 | if (StructType *ST = dyn_cast<StructType>(Val: Agg->getType())) |
| 542 | return ConstantStruct::get(T: ST, V: Result); |
| 543 | return ConstantArray::get(T: cast<ArrayType>(Val: Agg->getType()), V: Result); |
| 544 | } |
| 545 | |
| 546 | Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { |
| 547 | assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected" ); |
| 548 | |
| 549 | // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length |
| 550 | // vectors are always evaluated per element. |
| 551 | bool IsScalableVector = isa<ScalableVectorType>(Val: C->getType()); |
| 552 | bool HasScalarUndefOrScalableVectorUndef = |
| 553 | (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(Val: C); |
| 554 | |
| 555 | if (HasScalarUndefOrScalableVectorUndef) { |
| 556 | switch (static_cast<Instruction::UnaryOps>(Opcode)) { |
| 557 | case Instruction::FNeg: |
| 558 | return C; // -undef -> undef |
| 559 | case Instruction::UnaryOpsEnd: |
| 560 | llvm_unreachable("Invalid UnaryOp" ); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | // Constant should not be UndefValue, unless these are vector constants. |
| 565 | assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue" ); |
| 566 | // We only have FP UnaryOps right now. |
| 567 | assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp" ); |
| 568 | |
| 569 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) { |
| 570 | const APFloat &CV = CFP->getValueAPF(); |
| 571 | switch (Opcode) { |
| 572 | default: |
| 573 | break; |
| 574 | case Instruction::FNeg: |
| 575 | return ConstantFP::get(Ty: C->getType(), V: neg(X: CV)); |
| 576 | } |
| 577 | } else if (auto *VTy = dyn_cast<VectorType>(Val: C->getType())) { |
| 578 | // Fast path for splatted constants. |
| 579 | if (Constant *Splat = C->getSplatValue()) |
| 580 | if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, C: Splat)) |
| 581 | return ConstantVector::getSplat(EC: VTy->getElementCount(), Elt); |
| 582 | |
| 583 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: VTy)) { |
| 584 | // Fold each element and create a vector constant from those constants. |
| 585 | Type *Ty = IntegerType::get(C&: FVTy->getContext(), NumBits: 32); |
| 586 | SmallVector<Constant *, 16> Result; |
| 587 | for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { |
| 588 | Constant * = ConstantInt::get(Ty, V: i); |
| 589 | Constant *Elt = ConstantExpr::getExtractElement(Vec: C, Idx: ExtractIdx); |
| 590 | Constant *Res = ConstantFoldUnaryInstruction(Opcode, C: Elt); |
| 591 | if (!Res) |
| 592 | return nullptr; |
| 593 | Result.push_back(Elt: Res); |
| 594 | } |
| 595 | |
| 596 | return ConstantVector::get(V: Result); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | // We don't know how to fold this. |
| 601 | return nullptr; |
| 602 | } |
| 603 | |
| 604 | Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, |
| 605 | Constant *C2) { |
| 606 | assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected" ); |
| 607 | |
| 608 | // Simplify BinOps with their identity values first. They are no-ops and we |
| 609 | // can always return the other value, including undef or poison values. |
| 610 | if (Constant *Identity = ConstantExpr::getBinOpIdentity( |
| 611 | Opcode, Ty: C1->getType(), /*AllowRHSIdentity*/ AllowRHSConstant: false)) { |
| 612 | if (C1 == Identity) |
| 613 | return C2; |
| 614 | if (C2 == Identity) |
| 615 | return C1; |
| 616 | } else if (Constant *Identity = ConstantExpr::getBinOpIdentity( |
| 617 | Opcode, Ty: C1->getType(), /*AllowRHSIdentity*/ AllowRHSConstant: true)) { |
| 618 | if (C2 == Identity) |
| 619 | return C1; |
| 620 | } |
| 621 | |
| 622 | // Binary operations propagate poison. |
| 623 | if (isa<PoisonValue>(Val: C1) || isa<PoisonValue>(Val: C2)) |
| 624 | return PoisonValue::get(T: C1->getType()); |
| 625 | |
| 626 | // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length |
| 627 | // vectors are always evaluated per element. |
| 628 | bool IsScalableVector = isa<ScalableVectorType>(Val: C1->getType()); |
| 629 | bool HasScalarUndefOrScalableVectorUndef = |
| 630 | (!C1->getType()->isVectorTy() || IsScalableVector) && |
| 631 | (isa<UndefValue>(Val: C1) || isa<UndefValue>(Val: C2)); |
| 632 | if (HasScalarUndefOrScalableVectorUndef) { |
| 633 | switch (static_cast<Instruction::BinaryOps>(Opcode)) { |
| 634 | case Instruction::Xor: |
| 635 | if (isa<UndefValue>(Val: C1) && isa<UndefValue>(Val: C2)) |
| 636 | // Handle undef ^ undef -> 0 special case. This is a common |
| 637 | // idiom (misuse). |
| 638 | return Constant::getNullValue(Ty: C1->getType()); |
| 639 | [[fallthrough]]; |
| 640 | case Instruction::Add: |
| 641 | case Instruction::Sub: |
| 642 | return UndefValue::get(T: C1->getType()); |
| 643 | case Instruction::And: |
| 644 | if (isa<UndefValue>(Val: C1) && isa<UndefValue>(Val: C2)) // undef & undef -> undef |
| 645 | return C1; |
| 646 | return Constant::getNullValue(Ty: C1->getType()); // undef & X -> 0 |
| 647 | case Instruction::Mul: { |
| 648 | // undef * undef -> undef |
| 649 | if (isa<UndefValue>(Val: C1) && isa<UndefValue>(Val: C2)) |
| 650 | return C1; |
| 651 | const APInt *CV; |
| 652 | // X * undef -> undef if X is odd |
| 653 | if (match(V: C1, P: m_APInt(Res&: CV)) || match(V: C2, P: m_APInt(Res&: CV))) |
| 654 | if ((*CV)[0]) |
| 655 | return UndefValue::get(T: C1->getType()); |
| 656 | |
| 657 | // X * undef -> 0 otherwise |
| 658 | return Constant::getNullValue(Ty: C1->getType()); |
| 659 | } |
| 660 | case Instruction::SDiv: |
| 661 | case Instruction::UDiv: |
| 662 | // X / undef -> poison |
| 663 | // X / 0 -> poison |
| 664 | if (match(V: C2, P: m_CombineOr(L: m_Undef(), R: m_Zero()))) |
| 665 | return PoisonValue::get(T: C2->getType()); |
| 666 | // undef / X -> 0 otherwise |
| 667 | return Constant::getNullValue(Ty: C1->getType()); |
| 668 | case Instruction::URem: |
| 669 | case Instruction::SRem: |
| 670 | // X % undef -> poison |
| 671 | // X % 0 -> poison |
| 672 | if (match(V: C2, P: m_CombineOr(L: m_Undef(), R: m_Zero()))) |
| 673 | return PoisonValue::get(T: C2->getType()); |
| 674 | // undef % X -> 0 otherwise |
| 675 | return Constant::getNullValue(Ty: C1->getType()); |
| 676 | case Instruction::Or: // X | undef -> -1 |
| 677 | if (isa<UndefValue>(Val: C1) && isa<UndefValue>(Val: C2)) // undef | undef -> undef |
| 678 | return C1; |
| 679 | return Constant::getAllOnesValue(Ty: C1->getType()); // undef | X -> ~0 |
| 680 | case Instruction::LShr: |
| 681 | // X >>l undef -> poison |
| 682 | if (isa<UndefValue>(Val: C2)) |
| 683 | return PoisonValue::get(T: C2->getType()); |
| 684 | // undef >>l X -> 0 |
| 685 | return Constant::getNullValue(Ty: C1->getType()); |
| 686 | case Instruction::AShr: |
| 687 | // X >>a undef -> poison |
| 688 | if (isa<UndefValue>(Val: C2)) |
| 689 | return PoisonValue::get(T: C2->getType()); |
| 690 | // TODO: undef >>a X -> poison if the shift is exact |
| 691 | // undef >>a X -> 0 |
| 692 | return Constant::getNullValue(Ty: C1->getType()); |
| 693 | case Instruction::Shl: |
| 694 | // X << undef -> undef |
| 695 | if (isa<UndefValue>(Val: C2)) |
| 696 | return PoisonValue::get(T: C2->getType()); |
| 697 | // undef << X -> 0 |
| 698 | return Constant::getNullValue(Ty: C1->getType()); |
| 699 | case Instruction::FSub: |
| 700 | // -0.0 - undef --> undef (consistent with "fneg undef") |
| 701 | if (match(V: C1, P: m_NegZeroFP()) && isa<UndefValue>(Val: C2)) |
| 702 | return C2; |
| 703 | [[fallthrough]]; |
| 704 | case Instruction::FAdd: |
| 705 | case Instruction::FMul: |
| 706 | case Instruction::FDiv: |
| 707 | case Instruction::FRem: |
| 708 | // [any flop] undef, undef -> undef |
| 709 | if (isa<UndefValue>(Val: C1) && isa<UndefValue>(Val: C2)) |
| 710 | return C1; |
| 711 | // [any flop] C, undef -> NaN |
| 712 | // [any flop] undef, C -> NaN |
| 713 | // We could potentially specialize NaN/Inf constants vs. 'normal' |
| 714 | // constants (possibly differently depending on opcode and operand). This |
| 715 | // would allow returning undef sometimes. But it is always safe to fold to |
| 716 | // NaN because we can choose the undef operand as NaN, and any FP opcode |
| 717 | // with a NaN operand will propagate NaN. |
| 718 | return ConstantFP::getNaN(Ty: C1->getType()); |
| 719 | case Instruction::BinaryOpsEnd: |
| 720 | llvm_unreachable("Invalid BinaryOp" ); |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | // Neither constant should be UndefValue, unless these are vector constants. |
| 725 | assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue" ); |
| 726 | |
| 727 | // Handle simplifications when the RHS is a constant int. |
| 728 | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Val: C2)) { |
| 729 | if (C2 == ConstantExpr::getBinOpAbsorber(Opcode, Ty: C2->getType(), |
| 730 | /*AllowLHSConstant*/ false)) |
| 731 | return C2; |
| 732 | |
| 733 | switch (Opcode) { |
| 734 | case Instruction::UDiv: |
| 735 | case Instruction::SDiv: |
| 736 | if (CI2->isZero()) |
| 737 | return PoisonValue::get(T: CI2->getType()); // X / 0 == poison |
| 738 | break; |
| 739 | case Instruction::URem: |
| 740 | case Instruction::SRem: |
| 741 | if (CI2->isOne()) |
| 742 | return Constant::getNullValue(Ty: CI2->getType()); // X % 1 == 0 |
| 743 | if (CI2->isZero()) |
| 744 | return PoisonValue::get(T: CI2->getType()); // X % 0 == poison |
| 745 | break; |
| 746 | case Instruction::And: |
| 747 | assert(!CI2->isZero() && "And zero handled above" ); |
| 748 | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Val: C1)) { |
| 749 | // If and'ing the address of a global with a constant, fold it. |
| 750 | if (CE1->getOpcode() == Instruction::PtrToInt && |
| 751 | isa<GlobalValue>(Val: CE1->getOperand(i_nocapture: 0))) { |
| 752 | GlobalValue *GV = cast<GlobalValue>(Val: CE1->getOperand(i_nocapture: 0)); |
| 753 | |
| 754 | Align GVAlign; // defaults to 1 |
| 755 | |
| 756 | if (Module *TheModule = GV->getParent()) { |
| 757 | const DataLayout &DL = TheModule->getDataLayout(); |
| 758 | GVAlign = GV->getPointerAlignment(DL); |
| 759 | |
| 760 | // If the function alignment is not specified then assume that it |
| 761 | // is 4. |
| 762 | // This is dangerous; on x86, the alignment of the pointer |
| 763 | // corresponds to the alignment of the function, but might be less |
| 764 | // than 4 if it isn't explicitly specified. |
| 765 | // However, a fix for this behaviour was reverted because it |
| 766 | // increased code size (see https://reviews.llvm.org/D55115) |
| 767 | // FIXME: This code should be deleted once existing targets have |
| 768 | // appropriate defaults |
| 769 | if (isa<Function>(Val: GV) && !DL.getFunctionPtrAlign()) |
| 770 | GVAlign = Align(4); |
| 771 | } else if (isa<GlobalVariable>(Val: GV)) { |
| 772 | GVAlign = cast<GlobalVariable>(Val: GV)->getAlign().valueOrOne(); |
| 773 | } |
| 774 | |
| 775 | if (GVAlign > 1) { |
| 776 | unsigned DstWidth = CI2->getBitWidth(); |
| 777 | unsigned SrcWidth = std::min(a: DstWidth, b: Log2(A: GVAlign)); |
| 778 | APInt BitsNotSet(APInt::getLowBitsSet(numBits: DstWidth, loBitsSet: SrcWidth)); |
| 779 | |
| 780 | // If checking bits we know are clear, return zero. |
| 781 | if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) |
| 782 | return Constant::getNullValue(Ty: CI2->getType()); |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | break; |
| 787 | } |
| 788 | } else if (isa<ConstantInt>(Val: C1)) { |
| 789 | // If C1 is a ConstantInt and C2 is not, swap the operands. |
| 790 | if (Instruction::isCommutative(Opcode)) |
| 791 | return ConstantExpr::isDesirableBinOp(Opcode) |
| 792 | ? ConstantExpr::get(Opcode, C1: C2, C2: C1) |
| 793 | : ConstantFoldBinaryInstruction(Opcode, C1: C2, C2: C1); |
| 794 | } |
| 795 | |
| 796 | if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Val: C1)) { |
| 797 | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Val: C2)) { |
| 798 | const APInt &C1V = CI1->getValue(); |
| 799 | const APInt &C2V = CI2->getValue(); |
| 800 | switch (Opcode) { |
| 801 | default: |
| 802 | break; |
| 803 | case Instruction::Add: |
| 804 | return ConstantInt::get(Ty: C1->getType(), V: C1V + C2V); |
| 805 | case Instruction::Sub: |
| 806 | return ConstantInt::get(Ty: C1->getType(), V: C1V - C2V); |
| 807 | case Instruction::Mul: |
| 808 | return ConstantInt::get(Ty: C1->getType(), V: C1V * C2V); |
| 809 | case Instruction::UDiv: |
| 810 | assert(!CI2->isZero() && "Div by zero handled above" ); |
| 811 | return ConstantInt::get(Ty: CI1->getType(), V: C1V.udiv(RHS: C2V)); |
| 812 | case Instruction::SDiv: |
| 813 | assert(!CI2->isZero() && "Div by zero handled above" ); |
| 814 | if (C2V.isAllOnes() && C1V.isMinSignedValue()) |
| 815 | return PoisonValue::get(T: CI1->getType()); // MIN_INT / -1 -> poison |
| 816 | return ConstantInt::get(Ty: CI1->getType(), V: C1V.sdiv(RHS: C2V)); |
| 817 | case Instruction::URem: |
| 818 | assert(!CI2->isZero() && "Div by zero handled above" ); |
| 819 | return ConstantInt::get(Ty: C1->getType(), V: C1V.urem(RHS: C2V)); |
| 820 | case Instruction::SRem: |
| 821 | assert(!CI2->isZero() && "Div by zero handled above" ); |
| 822 | if (C2V.isAllOnes() && C1V.isMinSignedValue()) |
| 823 | return PoisonValue::get(T: C1->getType()); // MIN_INT % -1 -> poison |
| 824 | return ConstantInt::get(Ty: C1->getType(), V: C1V.srem(RHS: C2V)); |
| 825 | case Instruction::And: |
| 826 | return ConstantInt::get(Ty: C1->getType(), V: C1V & C2V); |
| 827 | case Instruction::Or: |
| 828 | return ConstantInt::get(Ty: C1->getType(), V: C1V | C2V); |
| 829 | case Instruction::Xor: |
| 830 | return ConstantInt::get(Ty: C1->getType(), V: C1V ^ C2V); |
| 831 | case Instruction::Shl: |
| 832 | if (C2V.ult(RHS: C1V.getBitWidth())) |
| 833 | return ConstantInt::get(Ty: C1->getType(), V: C1V.shl(ShiftAmt: C2V)); |
| 834 | return PoisonValue::get(T: C1->getType()); // too big shift is poison |
| 835 | case Instruction::LShr: |
| 836 | if (C2V.ult(RHS: C1V.getBitWidth())) |
| 837 | return ConstantInt::get(Ty: C1->getType(), V: C1V.lshr(ShiftAmt: C2V)); |
| 838 | return PoisonValue::get(T: C1->getType()); // too big shift is poison |
| 839 | case Instruction::AShr: |
| 840 | if (C2V.ult(RHS: C1V.getBitWidth())) |
| 841 | return ConstantInt::get(Ty: C1->getType(), V: C1V.ashr(ShiftAmt: C2V)); |
| 842 | return PoisonValue::get(T: C1->getType()); // too big shift is poison |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | if (C1 == ConstantExpr::getBinOpAbsorber(Opcode, Ty: C1->getType(), |
| 847 | /*AllowLHSConstant*/ true)) |
| 848 | return C1; |
| 849 | } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(Val: C1)) { |
| 850 | if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(Val: C2)) { |
| 851 | const APFloat &C1V = CFP1->getValueAPF(); |
| 852 | const APFloat &C2V = CFP2->getValueAPF(); |
| 853 | APFloat C3V = C1V; // copy for modification |
| 854 | switch (Opcode) { |
| 855 | default: |
| 856 | break; |
| 857 | case Instruction::FAdd: |
| 858 | (void)C3V.add(RHS: C2V, RM: APFloat::rmNearestTiesToEven); |
| 859 | return ConstantFP::get(Ty: C1->getType(), V: C3V); |
| 860 | case Instruction::FSub: |
| 861 | (void)C3V.subtract(RHS: C2V, RM: APFloat::rmNearestTiesToEven); |
| 862 | return ConstantFP::get(Ty: C1->getType(), V: C3V); |
| 863 | case Instruction::FMul: |
| 864 | (void)C3V.multiply(RHS: C2V, RM: APFloat::rmNearestTiesToEven); |
| 865 | return ConstantFP::get(Ty: C1->getType(), V: C3V); |
| 866 | case Instruction::FDiv: |
| 867 | (void)C3V.divide(RHS: C2V, RM: APFloat::rmNearestTiesToEven); |
| 868 | return ConstantFP::get(Ty: C1->getType(), V: C3V); |
| 869 | case Instruction::FRem: |
| 870 | (void)C3V.mod(RHS: C2V); |
| 871 | return ConstantFP::get(Ty: C1->getType(), V: C3V); |
| 872 | } |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | if (auto *VTy = dyn_cast<VectorType>(Val: C1->getType())) { |
| 877 | // Fast path for splatted constants. |
| 878 | if (Constant *C2Splat = C2->getSplatValue()) { |
| 879 | if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) |
| 880 | return PoisonValue::get(T: VTy); |
| 881 | if (Constant *C1Splat = C1->getSplatValue()) { |
| 882 | Constant *Res = |
| 883 | ConstantExpr::isDesirableBinOp(Opcode) |
| 884 | ? ConstantExpr::get(Opcode, C1: C1Splat, C2: C2Splat) |
| 885 | : ConstantFoldBinaryInstruction(Opcode, C1: C1Splat, C2: C2Splat); |
| 886 | if (!Res) |
| 887 | return nullptr; |
| 888 | return ConstantVector::getSplat(EC: VTy->getElementCount(), Elt: Res); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: VTy)) { |
| 893 | // Fold each element and create a vector constant from those constants. |
| 894 | SmallVector<Constant*, 16> Result; |
| 895 | Type *Ty = IntegerType::get(C&: FVTy->getContext(), NumBits: 32); |
| 896 | for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { |
| 897 | Constant * = ConstantInt::get(Ty, V: i); |
| 898 | Constant *LHS = ConstantExpr::getExtractElement(Vec: C1, Idx: ExtractIdx); |
| 899 | Constant *RHS = ConstantExpr::getExtractElement(Vec: C2, Idx: ExtractIdx); |
| 900 | Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) |
| 901 | ? ConstantExpr::get(Opcode, C1: LHS, C2: RHS) |
| 902 | : ConstantFoldBinaryInstruction(Opcode, C1: LHS, C2: RHS); |
| 903 | if (!Res) |
| 904 | return nullptr; |
| 905 | Result.push_back(Elt: Res); |
| 906 | } |
| 907 | |
| 908 | return ConstantVector::get(V: Result); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Val: C1)) { |
| 913 | // There are many possible foldings we could do here. We should probably |
| 914 | // at least fold add of a pointer with an integer into the appropriate |
| 915 | // getelementptr. This will improve alias analysis a bit. |
| 916 | |
| 917 | // Given ((a + b) + c), if (b + c) folds to something interesting, return |
| 918 | // (a + (b + c)). |
| 919 | if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { |
| 920 | Constant *T = ConstantExpr::get(Opcode, C1: CE1->getOperand(i_nocapture: 1), C2); |
| 921 | if (!isa<ConstantExpr>(Val: T) || cast<ConstantExpr>(Val: T)->getOpcode() != Opcode) |
| 922 | return ConstantExpr::get(Opcode, C1: CE1->getOperand(i_nocapture: 0), C2: T); |
| 923 | } |
| 924 | } else if (isa<ConstantExpr>(Val: C2)) { |
| 925 | // If C2 is a constant expr and C1 isn't, flop them around and fold the |
| 926 | // other way if possible. |
| 927 | if (Instruction::isCommutative(Opcode)) |
| 928 | return ConstantFoldBinaryInstruction(Opcode, C1: C2, C2: C1); |
| 929 | } |
| 930 | |
| 931 | // i1 can be simplified in many cases. |
| 932 | if (C1->getType()->isIntegerTy(Bitwidth: 1)) { |
| 933 | switch (Opcode) { |
| 934 | case Instruction::Add: |
| 935 | case Instruction::Sub: |
| 936 | return ConstantExpr::getXor(C1, C2); |
| 937 | case Instruction::Shl: |
| 938 | case Instruction::LShr: |
| 939 | case Instruction::AShr: |
| 940 | // We can assume that C2 == 0. If it were one the result would be |
| 941 | // undefined because the shift value is as large as the bitwidth. |
| 942 | return C1; |
| 943 | case Instruction::SDiv: |
| 944 | case Instruction::UDiv: |
| 945 | // We can assume that C2 == 1. If it were zero the result would be |
| 946 | // undefined through division by zero. |
| 947 | return C1; |
| 948 | case Instruction::URem: |
| 949 | case Instruction::SRem: |
| 950 | // We can assume that C2 == 1. If it were zero the result would be |
| 951 | // undefined through division by zero. |
| 952 | return ConstantInt::getFalse(Context&: C1->getContext()); |
| 953 | default: |
| 954 | break; |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | // We don't know how to fold this. |
| 959 | return nullptr; |
| 960 | } |
| 961 | |
| 962 | static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, |
| 963 | const GlobalValue *GV2) { |
| 964 | auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { |
| 965 | if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) |
| 966 | return true; |
| 967 | if (const auto *GVar = dyn_cast<GlobalVariable>(Val: GV)) { |
| 968 | Type *Ty = GVar->getValueType(); |
| 969 | // A global with opaque type might end up being zero sized. |
| 970 | if (!Ty->isSized()) |
| 971 | return true; |
| 972 | // A global with an empty type might lie at the address of any other |
| 973 | // global. |
| 974 | if (Ty->isEmptyTy()) |
| 975 | return true; |
| 976 | } |
| 977 | return false; |
| 978 | }; |
| 979 | // Don't try to decide equality of aliases. |
| 980 | if (!isa<GlobalAlias>(Val: GV1) && !isa<GlobalAlias>(Val: GV2)) |
| 981 | if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) |
| 982 | return ICmpInst::ICMP_NE; |
| 983 | return ICmpInst::BAD_ICMP_PREDICATE; |
| 984 | } |
| 985 | |
| 986 | /// This function determines if there is anything we can decide about the two |
| 987 | /// constants provided. This doesn't need to handle simple things like integer |
| 988 | /// comparisons, but should instead handle ConstantExprs and GlobalValues. |
| 989 | /// If we can determine that the two constants have a particular relation to |
| 990 | /// each other, we should return the corresponding ICmp predicate, otherwise |
| 991 | /// return ICmpInst::BAD_ICMP_PREDICATE. |
| 992 | static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { |
| 993 | assert(V1->getType() == V2->getType() && |
| 994 | "Cannot compare different types of values!" ); |
| 995 | if (V1 == V2) return ICmpInst::ICMP_EQ; |
| 996 | |
| 997 | // The following folds only apply to pointers. |
| 998 | if (!V1->getType()->isPointerTy()) |
| 999 | return ICmpInst::BAD_ICMP_PREDICATE; |
| 1000 | |
| 1001 | // To simplify this code we canonicalize the relation so that the first |
| 1002 | // operand is always the most "complex" of the two. We consider simple |
| 1003 | // constants (like ConstantPointerNull) to be the simplest, followed by |
| 1004 | // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). |
| 1005 | auto GetComplexity = [](Constant *V) { |
| 1006 | if (isa<ConstantExpr>(Val: V)) |
| 1007 | return 3; |
| 1008 | if (isa<GlobalValue>(Val: V)) |
| 1009 | return 2; |
| 1010 | if (isa<BlockAddress>(Val: V)) |
| 1011 | return 1; |
| 1012 | return 0; |
| 1013 | }; |
| 1014 | if (GetComplexity(V1) < GetComplexity(V2)) { |
| 1015 | ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V1: V2, V2: V1); |
| 1016 | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) |
| 1017 | return ICmpInst::getSwappedPredicate(pred: SwappedRelation); |
| 1018 | return ICmpInst::BAD_ICMP_PREDICATE; |
| 1019 | } |
| 1020 | |
| 1021 | if (const BlockAddress *BA = dyn_cast<BlockAddress>(Val: V1)) { |
| 1022 | // Now we know that the RHS is a BlockAddress or simple constant. |
| 1023 | if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(Val: V2)) { |
| 1024 | // Block address in another function can't equal this one, but block |
| 1025 | // addresses in the current function might be the same if blocks are |
| 1026 | // empty. |
| 1027 | if (BA2->getFunction() != BA->getFunction()) |
| 1028 | return ICmpInst::ICMP_NE; |
| 1029 | } else if (isa<ConstantPointerNull>(Val: V2)) { |
| 1030 | return ICmpInst::ICMP_NE; |
| 1031 | } |
| 1032 | } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: V1)) { |
| 1033 | // Now we know that the RHS is a GlobalValue, BlockAddress or simple |
| 1034 | // constant. |
| 1035 | if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(Val: V2)) { |
| 1036 | return areGlobalsPotentiallyEqual(GV1: GV, GV2); |
| 1037 | } else if (isa<BlockAddress>(Val: V2)) { |
| 1038 | return ICmpInst::ICMP_NE; // Globals never equal labels. |
| 1039 | } else if (isa<ConstantPointerNull>(Val: V2)) { |
| 1040 | // GlobalVals can never be null unless they have external weak linkage. |
| 1041 | // We don't try to evaluate aliases here. |
| 1042 | // NOTE: We should not be doing this constant folding if null pointer |
| 1043 | // is considered valid for the function. But currently there is no way to |
| 1044 | // query it from the Constant type. |
| 1045 | if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(Val: GV) && |
| 1046 | !NullPointerIsDefined(F: nullptr /* F */, |
| 1047 | AS: GV->getType()->getAddressSpace())) |
| 1048 | return ICmpInst::ICMP_UGT; |
| 1049 | } |
| 1050 | } else if (auto *CE1 = dyn_cast<ConstantExpr>(Val: V1)) { |
| 1051 | // Ok, the LHS is known to be a constantexpr. The RHS can be any of a |
| 1052 | // constantexpr, a global, block address, or a simple constant. |
| 1053 | Constant *CE1Op0 = CE1->getOperand(i_nocapture: 0); |
| 1054 | |
| 1055 | switch (CE1->getOpcode()) { |
| 1056 | case Instruction::GetElementPtr: { |
| 1057 | GEPOperator *CE1GEP = cast<GEPOperator>(Val: CE1); |
| 1058 | // Ok, since this is a getelementptr, we know that the constant has a |
| 1059 | // pointer type. Check the various cases. |
| 1060 | if (isa<ConstantPointerNull>(Val: V2)) { |
| 1061 | // If we are comparing a GEP to a null pointer, check to see if the base |
| 1062 | // of the GEP equals the null pointer. |
| 1063 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: CE1Op0)) { |
| 1064 | // If its not weak linkage, the GVal must have a non-zero address |
| 1065 | // so the result is greater-than |
| 1066 | if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) |
| 1067 | return ICmpInst::ICMP_UGT; |
| 1068 | } |
| 1069 | } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(Val: V2)) { |
| 1070 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: CE1Op0)) { |
| 1071 | if (GV != GV2) { |
| 1072 | if (CE1GEP->hasAllZeroIndices()) |
| 1073 | return areGlobalsPotentiallyEqual(GV1: GV, GV2); |
| 1074 | return ICmpInst::BAD_ICMP_PREDICATE; |
| 1075 | } |
| 1076 | } |
| 1077 | } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(Val: V2)) { |
| 1078 | // By far the most common case to handle is when the base pointers are |
| 1079 | // obviously to the same global. |
| 1080 | const Constant *CE2Op0 = cast<Constant>(Val: CE2GEP->getPointerOperand()); |
| 1081 | if (isa<GlobalValue>(Val: CE1Op0) && isa<GlobalValue>(Val: CE2Op0)) { |
| 1082 | // Don't know relative ordering, but check for inequality. |
| 1083 | if (CE1Op0 != CE2Op0) { |
| 1084 | if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) |
| 1085 | return areGlobalsPotentiallyEqual(GV1: cast<GlobalValue>(Val: CE1Op0), |
| 1086 | GV2: cast<GlobalValue>(Val: CE2Op0)); |
| 1087 | return ICmpInst::BAD_ICMP_PREDICATE; |
| 1088 | } |
| 1089 | } |
| 1090 | } |
| 1091 | break; |
| 1092 | } |
| 1093 | default: |
| 1094 | break; |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | return ICmpInst::BAD_ICMP_PREDICATE; |
| 1099 | } |
| 1100 | |
| 1101 | Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, |
| 1102 | Constant *C1, Constant *C2) { |
| 1103 | Type *ResultTy; |
| 1104 | if (VectorType *VT = dyn_cast<VectorType>(Val: C1->getType())) |
| 1105 | ResultTy = VectorType::get(ElementType: Type::getInt1Ty(C&: C1->getContext()), |
| 1106 | EC: VT->getElementCount()); |
| 1107 | else |
| 1108 | ResultTy = Type::getInt1Ty(C&: C1->getContext()); |
| 1109 | |
| 1110 | // Fold FCMP_FALSE/FCMP_TRUE unconditionally. |
| 1111 | if (Predicate == FCmpInst::FCMP_FALSE) |
| 1112 | return Constant::getNullValue(Ty: ResultTy); |
| 1113 | |
| 1114 | if (Predicate == FCmpInst::FCMP_TRUE) |
| 1115 | return Constant::getAllOnesValue(Ty: ResultTy); |
| 1116 | |
| 1117 | // Handle some degenerate cases first |
| 1118 | if (isa<PoisonValue>(Val: C1) || isa<PoisonValue>(Val: C2)) |
| 1119 | return PoisonValue::get(T: ResultTy); |
| 1120 | |
| 1121 | if (isa<UndefValue>(Val: C1) || isa<UndefValue>(Val: C2)) { |
| 1122 | bool isIntegerPredicate = ICmpInst::isIntPredicate(P: Predicate); |
| 1123 | // For EQ and NE, we can always pick a value for the undef to make the |
| 1124 | // predicate pass or fail, so we can return undef. |
| 1125 | // Also, if both operands are undef, we can return undef for int comparison. |
| 1126 | if (ICmpInst::isEquality(P: Predicate) || (isIntegerPredicate && C1 == C2)) |
| 1127 | return UndefValue::get(T: ResultTy); |
| 1128 | |
| 1129 | // Otherwise, for integer compare, pick the same value as the non-undef |
| 1130 | // operand, and fold it to true or false. |
| 1131 | if (isIntegerPredicate) |
| 1132 | return ConstantInt::get(Ty: ResultTy, V: CmpInst::isTrueWhenEqual(predicate: Predicate)); |
| 1133 | |
| 1134 | // Choosing NaN for the undef will always make unordered comparison succeed |
| 1135 | // and ordered comparison fails. |
| 1136 | return ConstantInt::get(Ty: ResultTy, V: CmpInst::isUnordered(predicate: Predicate)); |
| 1137 | } |
| 1138 | |
| 1139 | if (C2->isNullValue()) { |
| 1140 | // The caller is expected to commute the operands if the constant expression |
| 1141 | // is C2. |
| 1142 | // C1 >= 0 --> true |
| 1143 | if (Predicate == ICmpInst::ICMP_UGE) |
| 1144 | return Constant::getAllOnesValue(Ty: ResultTy); |
| 1145 | // C1 < 0 --> false |
| 1146 | if (Predicate == ICmpInst::ICMP_ULT) |
| 1147 | return Constant::getNullValue(Ty: ResultTy); |
| 1148 | } |
| 1149 | |
| 1150 | // If the comparison is a comparison between two i1's, simplify it. |
| 1151 | if (C1->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 1152 | switch (Predicate) { |
| 1153 | case ICmpInst::ICMP_EQ: |
| 1154 | if (isa<ConstantExpr>(Val: C1)) |
| 1155 | return ConstantExpr::getXor(C1, C2: ConstantExpr::getNot(C: C2)); |
| 1156 | return ConstantExpr::getXor(C1: ConstantExpr::getNot(C: C1), C2); |
| 1157 | case ICmpInst::ICMP_NE: |
| 1158 | return ConstantExpr::getXor(C1, C2); |
| 1159 | default: |
| 1160 | break; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | if (isa<ConstantInt>(Val: C1) && isa<ConstantInt>(Val: C2)) { |
| 1165 | const APInt &V1 = cast<ConstantInt>(Val: C1)->getValue(); |
| 1166 | const APInt &V2 = cast<ConstantInt>(Val: C2)->getValue(); |
| 1167 | return ConstantInt::get(Ty: ResultTy, V: ICmpInst::compare(LHS: V1, RHS: V2, Pred: Predicate)); |
| 1168 | } else if (isa<ConstantFP>(Val: C1) && isa<ConstantFP>(Val: C2)) { |
| 1169 | const APFloat &C1V = cast<ConstantFP>(Val: C1)->getValueAPF(); |
| 1170 | const APFloat &C2V = cast<ConstantFP>(Val: C2)->getValueAPF(); |
| 1171 | return ConstantInt::get(Ty: ResultTy, V: FCmpInst::compare(LHS: C1V, RHS: C2V, Pred: Predicate)); |
| 1172 | } else if (auto *C1VTy = dyn_cast<VectorType>(Val: C1->getType())) { |
| 1173 | |
| 1174 | // Fast path for splatted constants. |
| 1175 | if (Constant *C1Splat = C1->getSplatValue()) |
| 1176 | if (Constant *C2Splat = C2->getSplatValue()) |
| 1177 | if (Constant *Elt = |
| 1178 | ConstantFoldCompareInstruction(Predicate, C1: C1Splat, C2: C2Splat)) |
| 1179 | return ConstantVector::getSplat(EC: C1VTy->getElementCount(), Elt); |
| 1180 | |
| 1181 | // Do not iterate on scalable vector. The number of elements is unknown at |
| 1182 | // compile-time. |
| 1183 | if (isa<ScalableVectorType>(Val: C1VTy)) |
| 1184 | return nullptr; |
| 1185 | |
| 1186 | // If we can constant fold the comparison of each element, constant fold |
| 1187 | // the whole vector comparison. |
| 1188 | SmallVector<Constant*, 4> ResElts; |
| 1189 | Type *Ty = IntegerType::get(C&: C1->getContext(), NumBits: 32); |
| 1190 | // Compare the elements, producing an i1 result or constant expr. |
| 1191 | for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); |
| 1192 | I != E; ++I) { |
| 1193 | Constant *C1E = |
| 1194 | ConstantExpr::getExtractElement(Vec: C1, Idx: ConstantInt::get(Ty, V: I)); |
| 1195 | Constant *C2E = |
| 1196 | ConstantExpr::getExtractElement(Vec: C2, Idx: ConstantInt::get(Ty, V: I)); |
| 1197 | Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1: C1E, C2: C2E); |
| 1198 | if (!Elt) |
| 1199 | return nullptr; |
| 1200 | |
| 1201 | ResElts.push_back(Elt); |
| 1202 | } |
| 1203 | |
| 1204 | return ConstantVector::get(V: ResElts); |
| 1205 | } |
| 1206 | |
| 1207 | if (C1->getType()->isFPOrFPVectorTy()) { |
| 1208 | if (C1 == C2) { |
| 1209 | // We know that C1 == C2 || isUnordered(C1, C2). |
| 1210 | if (Predicate == FCmpInst::FCMP_ONE) |
| 1211 | return ConstantInt::getFalse(Ty: ResultTy); |
| 1212 | else if (Predicate == FCmpInst::FCMP_UEQ) |
| 1213 | return ConstantInt::getTrue(Ty: ResultTy); |
| 1214 | } |
| 1215 | } else { |
| 1216 | // Evaluate the relation between the two constants, per the predicate. |
| 1217 | int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. |
| 1218 | switch (evaluateICmpRelation(V1: C1, V2: C2)) { |
| 1219 | default: llvm_unreachable("Unknown relational!" ); |
| 1220 | case ICmpInst::BAD_ICMP_PREDICATE: |
| 1221 | break; // Couldn't determine anything about these constants. |
| 1222 | case ICmpInst::ICMP_EQ: // We know the constants are equal! |
| 1223 | // If we know the constants are equal, we can decide the result of this |
| 1224 | // computation precisely. |
| 1225 | Result = ICmpInst::isTrueWhenEqual(predicate: Predicate); |
| 1226 | break; |
| 1227 | case ICmpInst::ICMP_ULT: |
| 1228 | switch (Predicate) { |
| 1229 | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: |
| 1230 | Result = 1; break; |
| 1231 | case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: |
| 1232 | Result = 0; break; |
| 1233 | default: |
| 1234 | break; |
| 1235 | } |
| 1236 | break; |
| 1237 | case ICmpInst::ICMP_SLT: |
| 1238 | switch (Predicate) { |
| 1239 | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: |
| 1240 | Result = 1; break; |
| 1241 | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: |
| 1242 | Result = 0; break; |
| 1243 | default: |
| 1244 | break; |
| 1245 | } |
| 1246 | break; |
| 1247 | case ICmpInst::ICMP_UGT: |
| 1248 | switch (Predicate) { |
| 1249 | case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: |
| 1250 | Result = 1; break; |
| 1251 | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: |
| 1252 | Result = 0; break; |
| 1253 | default: |
| 1254 | break; |
| 1255 | } |
| 1256 | break; |
| 1257 | case ICmpInst::ICMP_SGT: |
| 1258 | switch (Predicate) { |
| 1259 | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: |
| 1260 | Result = 1; break; |
| 1261 | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: |
| 1262 | Result = 0; break; |
| 1263 | default: |
| 1264 | break; |
| 1265 | } |
| 1266 | break; |
| 1267 | case ICmpInst::ICMP_ULE: |
| 1268 | if (Predicate == ICmpInst::ICMP_UGT) |
| 1269 | Result = 0; |
| 1270 | if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) |
| 1271 | Result = 1; |
| 1272 | break; |
| 1273 | case ICmpInst::ICMP_SLE: |
| 1274 | if (Predicate == ICmpInst::ICMP_SGT) |
| 1275 | Result = 0; |
| 1276 | if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) |
| 1277 | Result = 1; |
| 1278 | break; |
| 1279 | case ICmpInst::ICMP_UGE: |
| 1280 | if (Predicate == ICmpInst::ICMP_ULT) |
| 1281 | Result = 0; |
| 1282 | if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) |
| 1283 | Result = 1; |
| 1284 | break; |
| 1285 | case ICmpInst::ICMP_SGE: |
| 1286 | if (Predicate == ICmpInst::ICMP_SLT) |
| 1287 | Result = 0; |
| 1288 | if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) |
| 1289 | Result = 1; |
| 1290 | break; |
| 1291 | case ICmpInst::ICMP_NE: |
| 1292 | if (Predicate == ICmpInst::ICMP_EQ) |
| 1293 | Result = 0; |
| 1294 | if (Predicate == ICmpInst::ICMP_NE) |
| 1295 | Result = 1; |
| 1296 | break; |
| 1297 | } |
| 1298 | |
| 1299 | // If we evaluated the result, return it now. |
| 1300 | if (Result != -1) |
| 1301 | return ConstantInt::get(Ty: ResultTy, V: Result); |
| 1302 | |
| 1303 | if ((!isa<ConstantExpr>(Val: C1) && isa<ConstantExpr>(Val: C2)) || |
| 1304 | (C1->isNullValue() && !C2->isNullValue())) { |
| 1305 | // If C2 is a constant expr and C1 isn't, flip them around and fold the |
| 1306 | // other way if possible. |
| 1307 | // Also, if C1 is null and C2 isn't, flip them around. |
| 1308 | Predicate = ICmpInst::getSwappedPredicate(pred: Predicate); |
| 1309 | return ConstantFoldCompareInstruction(Predicate, C1: C2, C2: C1); |
| 1310 | } |
| 1311 | } |
| 1312 | return nullptr; |
| 1313 | } |
| 1314 | |
| 1315 | Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, |
| 1316 | std::optional<ConstantRange> InRange, |
| 1317 | ArrayRef<Value *> Idxs) { |
| 1318 | if (Idxs.empty()) return C; |
| 1319 | |
| 1320 | Type *GEPTy = GetElementPtrInst::getGEPReturnType( |
| 1321 | Ptr: C, IdxList: ArrayRef((Value *const *)Idxs.data(), Idxs.size())); |
| 1322 | |
| 1323 | if (isa<PoisonValue>(Val: C)) |
| 1324 | return PoisonValue::get(T: GEPTy); |
| 1325 | |
| 1326 | if (isa<UndefValue>(Val: C)) |
| 1327 | return UndefValue::get(T: GEPTy); |
| 1328 | |
| 1329 | auto IsNoOp = [&]() { |
| 1330 | // Avoid losing inrange information. |
| 1331 | if (InRange) |
| 1332 | return false; |
| 1333 | |
| 1334 | return all_of(Range&: Idxs, P: [](Value *Idx) { |
| 1335 | Constant *IdxC = cast<Constant>(Val: Idx); |
| 1336 | return IdxC->isNullValue() || isa<UndefValue>(Val: IdxC); |
| 1337 | }); |
| 1338 | }; |
| 1339 | if (IsNoOp()) |
| 1340 | return GEPTy->isVectorTy() && !C->getType()->isVectorTy() |
| 1341 | ? ConstantVector::getSplat( |
| 1342 | EC: cast<VectorType>(Val: GEPTy)->getElementCount(), Elt: C) |
| 1343 | : C; |
| 1344 | |
| 1345 | return nullptr; |
| 1346 | } |
| 1347 | |