| 1 | //===- AArch64MIPeepholeOpt.cpp - AArch64 MI peephole optimization pass ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass performs below peephole optimizations on MIR level. |
| 10 | // |
| 11 | // 1. MOVi32imm + ANDWrr ==> ANDWri + ANDWri |
| 12 | // MOVi64imm + ANDXrr ==> ANDXri + ANDXri |
| 13 | // |
| 14 | // 2. MOVi32imm + ADDWrr ==> ADDWRi + ADDWRi |
| 15 | // MOVi64imm + ADDXrr ==> ANDXri + ANDXri |
| 16 | // |
| 17 | // 3. MOVi32imm + SUBWrr ==> SUBWRi + SUBWRi |
| 18 | // MOVi64imm + SUBXrr ==> SUBXri + SUBXri |
| 19 | // |
| 20 | // The mov pseudo instruction could be expanded to multiple mov instructions |
| 21 | // later. In this case, we could try to split the constant operand of mov |
| 22 | // instruction into two immediates which can be directly encoded into |
| 23 | // *Wri/*Xri instructions. It makes two AND/ADD/SUB instructions instead of |
| 24 | // multiple `mov` + `and/add/sub` instructions. |
| 25 | // |
| 26 | // 4. Remove redundant ORRWrs which is generated by zero-extend. |
| 27 | // |
| 28 | // %3:gpr32 = ORRWrs $wzr, %2, 0 |
| 29 | // %4:gpr64 = SUBREG_TO_REG 0, %3, %subreg.sub_32 |
| 30 | // |
| 31 | // If AArch64's 32-bit form of instruction defines the source operand of |
| 32 | // ORRWrs, we can remove the ORRWrs because the upper 32 bits of the source |
| 33 | // operand are set to zero. |
| 34 | // |
| 35 | // 5. %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx |
| 36 | // ==> %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx |
| 37 | // |
| 38 | // 6. %intermediate:gpr32 = COPY %src:fpr128 |
| 39 | // %dst:fpr128 = INSvi32gpr %dst_vec:fpr128, dst_index, %intermediate:gpr32 |
| 40 | // ==> %dst:fpr128 = INSvi32lane %dst_vec:fpr128, dst_index, %src:fpr128, 0 |
| 41 | // |
| 42 | // In cases where a source FPR is copied to a GPR in order to be copied |
| 43 | // to a destination FPR, we can directly copy the values between the FPRs, |
| 44 | // eliminating the use of the Integer unit. When we match a pattern of |
| 45 | // INSvi[X]gpr that is preceded by a chain of COPY instructions from a FPR |
| 46 | // source, we use the INSvi[X]lane to replace the COPY & INSvi[X]gpr |
| 47 | // instructions. |
| 48 | // |
| 49 | // 7. If MI sets zero for high 64-bits implicitly, remove `mov 0` for high |
| 50 | // 64-bits. For example, |
| 51 | // |
| 52 | // %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr |
| 53 | // %2:fpr64 = MOVID 0 |
| 54 | // %4:fpr128 = IMPLICIT_DEF |
| 55 | // %3:fpr128 = INSERT_SUBREG %4:fpr128(tied-def 0), %2:fpr64, %subreg.dsub |
| 56 | // %6:fpr128 = IMPLICIT_DEF |
| 57 | // %5:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), %1:fpr64, %subreg.dsub |
| 58 | // %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, %3:fpr128, 0 |
| 59 | // ==> |
| 60 | // %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr |
| 61 | // %6:fpr128 = IMPLICIT_DEF |
| 62 | // %7:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), %1:fpr64, %subreg.dsub |
| 63 | // |
| 64 | // 8. Remove redundant CSELs that select between identical registers, by |
| 65 | // replacing them with unconditional moves. |
| 66 | // |
| 67 | // 9. Replace UBFMXri with UBFMWri if the instruction is equivalent to a 32 bit |
| 68 | // LSR or LSL alias of UBFM. |
| 69 | // |
| 70 | //===----------------------------------------------------------------------===// |
| 71 | |
| 72 | #include "AArch64ExpandImm.h" |
| 73 | #include "AArch64InstrInfo.h" |
| 74 | #include "MCTargetDesc/AArch64AddressingModes.h" |
| 75 | #include "llvm/CodeGen/MachineDominators.h" |
| 76 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 77 | |
| 78 | using namespace llvm; |
| 79 | |
| 80 | #define DEBUG_TYPE "aarch64-mi-peephole-opt" |
| 81 | |
| 82 | namespace { |
| 83 | |
| 84 | struct AArch64MIPeepholeOpt : public MachineFunctionPass { |
| 85 | static char ID; |
| 86 | |
| 87 | AArch64MIPeepholeOpt() : MachineFunctionPass(ID) {} |
| 88 | |
| 89 | const AArch64InstrInfo *TII; |
| 90 | const AArch64RegisterInfo *TRI; |
| 91 | MachineLoopInfo *MLI; |
| 92 | MachineRegisterInfo *MRI; |
| 93 | |
| 94 | using OpcodePair = std::pair<unsigned, unsigned>; |
| 95 | template <typename T> |
| 96 | using SplitAndOpcFunc = |
| 97 | std::function<std::optional<OpcodePair>(T, unsigned, T &, T &)>; |
| 98 | using BuildMIFunc = |
| 99 | std::function<void(MachineInstr &, OpcodePair, unsigned, unsigned, |
| 100 | Register, Register, Register)>; |
| 101 | |
| 102 | /// For instructions where an immediate operand could be split into two |
| 103 | /// separate immediate instructions, use the splitTwoPartImm two handle the |
| 104 | /// optimization. |
| 105 | /// |
| 106 | /// To implement, the following function types must be passed to |
| 107 | /// splitTwoPartImm. A SplitAndOpcFunc must be implemented that determines if |
| 108 | /// splitting the immediate is valid and returns the associated new opcode. A |
| 109 | /// BuildMIFunc must be implemented to build the two immediate instructions. |
| 110 | /// |
| 111 | /// Example Pattern (where IMM would require 2+ MOV instructions): |
| 112 | /// %dst = <Instr>rr %src IMM [...] |
| 113 | /// becomes: |
| 114 | /// %tmp = <Instr>ri %src (encode half IMM) [...] |
| 115 | /// %dst = <Instr>ri %tmp (encode half IMM) [...] |
| 116 | template <typename T> |
| 117 | bool splitTwoPartImm(MachineInstr &MI, |
| 118 | SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr); |
| 119 | |
| 120 | bool checkMovImmInstr(MachineInstr &MI, MachineInstr *&MovMI, |
| 121 | MachineInstr *&SubregToRegMI); |
| 122 | |
| 123 | template <typename T> |
| 124 | bool visitADDSUB(unsigned PosOpc, unsigned NegOpc, MachineInstr &MI); |
| 125 | template <typename T> |
| 126 | bool visitADDSSUBS(OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI); |
| 127 | |
| 128 | template <typename T> |
| 129 | bool visitAND(unsigned Opc, MachineInstr &MI); |
| 130 | bool visitORR(MachineInstr &MI); |
| 131 | bool visitCSEL(MachineInstr &MI); |
| 132 | bool visitINSERT(MachineInstr &MI); |
| 133 | bool visitINSviGPR(MachineInstr &MI, unsigned Opc); |
| 134 | bool visitINSvi64lane(MachineInstr &MI); |
| 135 | bool visitFMOVDr(MachineInstr &MI); |
| 136 | bool visitUBFMXri(MachineInstr &MI); |
| 137 | bool visitCopy(MachineInstr &MI); |
| 138 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 139 | |
| 140 | StringRef getPassName() const override { |
| 141 | return "AArch64 MI Peephole Optimization pass" ; |
| 142 | } |
| 143 | |
| 144 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 145 | AU.setPreservesCFG(); |
| 146 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 147 | MachineFunctionPass::getAnalysisUsage(AU); |
| 148 | } |
| 149 | }; |
| 150 | |
| 151 | char AArch64MIPeepholeOpt::ID = 0; |
| 152 | |
| 153 | } // end anonymous namespace |
| 154 | |
| 155 | INITIALIZE_PASS(AArch64MIPeepholeOpt, "aarch64-mi-peephole-opt" , |
| 156 | "AArch64 MI Peephole Optimization" , false, false) |
| 157 | |
| 158 | template <typename T> |
| 159 | static bool splitBitmaskImm(T Imm, unsigned RegSize, T &Imm1Enc, T &Imm2Enc) { |
| 160 | T UImm = static_cast<T>(Imm); |
| 161 | if (AArch64_AM::isLogicalImmediate(imm: UImm, regSize: RegSize)) |
| 162 | return false; |
| 163 | |
| 164 | // If this immediate can be handled by one instruction, do not split it. |
| 165 | SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; |
| 166 | AArch64_IMM::expandMOVImm(Imm: UImm, BitSize: RegSize, Insn); |
| 167 | if (Insn.size() == 1) |
| 168 | return false; |
| 169 | |
| 170 | // The bitmask immediate consists of consecutive ones. Let's say there is |
| 171 | // constant 0b00000000001000000000010000000000 which does not consist of |
| 172 | // consecutive ones. We can split it in to two bitmask immediate like |
| 173 | // 0b00000000001111111111110000000000 and 0b11111111111000000000011111111111. |
| 174 | // If we do AND with these two bitmask immediate, we can see original one. |
| 175 | unsigned LowestBitSet = llvm::countr_zero(UImm); |
| 176 | unsigned HighestBitSet = Log2_64(UImm); |
| 177 | |
| 178 | // Create a mask which is filled with one from the position of lowest bit set |
| 179 | // to the position of highest bit set. |
| 180 | T NewImm1 = (static_cast<T>(2) << HighestBitSet) - |
| 181 | (static_cast<T>(1) << LowestBitSet); |
| 182 | // Create a mask which is filled with one outside the position of lowest bit |
| 183 | // set and the position of highest bit set. |
| 184 | T NewImm2 = UImm | ~NewImm1; |
| 185 | |
| 186 | // If the split value is not valid bitmask immediate, do not split this |
| 187 | // constant. |
| 188 | if (!AArch64_AM::isLogicalImmediate(imm: NewImm2, regSize: RegSize)) |
| 189 | return false; |
| 190 | |
| 191 | Imm1Enc = AArch64_AM::encodeLogicalImmediate(imm: NewImm1, regSize: RegSize); |
| 192 | Imm2Enc = AArch64_AM::encodeLogicalImmediate(imm: NewImm2, regSize: RegSize); |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | template <typename T> |
| 197 | bool AArch64MIPeepholeOpt::visitAND( |
| 198 | unsigned Opc, MachineInstr &MI) { |
| 199 | // Try below transformation. |
| 200 | // |
| 201 | // MOVi32imm + ANDWrr ==> ANDWri + ANDWri |
| 202 | // MOVi64imm + ANDXrr ==> ANDXri + ANDXri |
| 203 | // |
| 204 | // The mov pseudo instruction could be expanded to multiple mov instructions |
| 205 | // later. Let's try to split the constant operand of mov instruction into two |
| 206 | // bitmask immediates. It makes only two AND instructions instead of multiple |
| 207 | // mov + and instructions. |
| 208 | |
| 209 | return splitTwoPartImm<T>( |
| 210 | MI, |
| 211 | [Opc](T Imm, unsigned RegSize, T &Imm0, |
| 212 | T &Imm1) -> std::optional<OpcodePair> { |
| 213 | if (splitBitmaskImm(Imm, RegSize, Imm0, Imm1)) |
| 214 | return std::make_pair(x: Opc, y: Opc); |
| 215 | return std::nullopt; |
| 216 | }, |
| 217 | [&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0, |
| 218 | unsigned Imm1, Register SrcReg, Register NewTmpReg, |
| 219 | Register NewDstReg) { |
| 220 | DebugLoc DL = MI.getDebugLoc(); |
| 221 | MachineBasicBlock *MBB = MI.getParent(); |
| 222 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Opcode.first), DestReg: NewTmpReg) |
| 223 | .addReg(RegNo: SrcReg) |
| 224 | .addImm(Val: Imm0); |
| 225 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Opcode.second), DestReg: NewDstReg) |
| 226 | .addReg(RegNo: NewTmpReg) |
| 227 | .addImm(Val: Imm1); |
| 228 | }); |
| 229 | } |
| 230 | |
| 231 | bool AArch64MIPeepholeOpt::visitORR(MachineInstr &MI) { |
| 232 | // Check this ORR comes from below zero-extend pattern. |
| 233 | // |
| 234 | // def : Pat<(i64 (zext GPR32:$src)), |
| 235 | // (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>; |
| 236 | if (MI.getOperand(i: 3).getImm() != 0) |
| 237 | return false; |
| 238 | |
| 239 | if (MI.getOperand(i: 1).getReg() != AArch64::WZR) |
| 240 | return false; |
| 241 | |
| 242 | MachineInstr *SrcMI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 2).getReg()); |
| 243 | if (!SrcMI) |
| 244 | return false; |
| 245 | |
| 246 | // From https://developer.arm.com/documentation/dui0801/b/BABBGCAC |
| 247 | // |
| 248 | // When you use the 32-bit form of an instruction, the upper 32 bits of the |
| 249 | // source registers are ignored and the upper 32 bits of the destination |
| 250 | // register are set to zero. |
| 251 | // |
| 252 | // If AArch64's 32-bit form of instruction defines the source operand of |
| 253 | // zero-extend, we do not need the zero-extend. Let's check the MI's opcode is |
| 254 | // real AArch64 instruction and if it is not, do not process the opcode |
| 255 | // conservatively. |
| 256 | if (SrcMI->getOpcode() == TargetOpcode::COPY && |
| 257 | SrcMI->getOperand(i: 1).getReg().isVirtual()) { |
| 258 | const TargetRegisterClass *RC = |
| 259 | MRI->getRegClass(Reg: SrcMI->getOperand(i: 1).getReg()); |
| 260 | |
| 261 | // A COPY from an FPR will become a FMOVSWr, so do so now so that we know |
| 262 | // that the upper bits are zero. |
| 263 | if (RC != &AArch64::FPR32RegClass && |
| 264 | ((RC != &AArch64::FPR64RegClass && RC != &AArch64::FPR128RegClass && |
| 265 | RC != &AArch64::ZPRRegClass) || |
| 266 | SrcMI->getOperand(i: 1).getSubReg() != AArch64::ssub)) |
| 267 | return false; |
| 268 | Register CpySrc; |
| 269 | if (SrcMI->getOperand(i: 1).getSubReg() == AArch64::ssub) { |
| 270 | CpySrc = MRI->createVirtualRegister(RegClass: &AArch64::FPR32RegClass); |
| 271 | BuildMI(BB&: *SrcMI->getParent(), I: SrcMI, MIMD: SrcMI->getDebugLoc(), |
| 272 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: CpySrc) |
| 273 | .add(MO: SrcMI->getOperand(i: 1)); |
| 274 | } else { |
| 275 | CpySrc = SrcMI->getOperand(i: 1).getReg(); |
| 276 | } |
| 277 | BuildMI(BB&: *SrcMI->getParent(), I: SrcMI, MIMD: SrcMI->getDebugLoc(), |
| 278 | MCID: TII->get(Opcode: AArch64::FMOVSWr), DestReg: SrcMI->getOperand(i: 0).getReg()) |
| 279 | .addReg(RegNo: CpySrc); |
| 280 | SrcMI->eraseFromParent(); |
| 281 | } |
| 282 | else if (SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END) |
| 283 | return false; |
| 284 | |
| 285 | Register DefReg = MI.getOperand(i: 0).getReg(); |
| 286 | Register SrcReg = MI.getOperand(i: 2).getReg(); |
| 287 | MRI->replaceRegWith(FromReg: DefReg, ToReg: SrcReg); |
| 288 | MRI->clearKillFlags(Reg: SrcReg); |
| 289 | LLVM_DEBUG(dbgs() << "Removed: " << MI << "\n" ); |
| 290 | MI.eraseFromParent(); |
| 291 | |
| 292 | return true; |
| 293 | } |
| 294 | |
| 295 | bool AArch64MIPeepholeOpt::visitCSEL(MachineInstr &MI) { |
| 296 | // Replace CSEL with MOV when both inputs are the same register. |
| 297 | if (MI.getOperand(i: 1).getReg() != MI.getOperand(i: 2).getReg()) |
| 298 | return false; |
| 299 | |
| 300 | auto ZeroReg = |
| 301 | MI.getOpcode() == AArch64::CSELXr ? AArch64::XZR : AArch64::WZR; |
| 302 | auto OrOpcode = |
| 303 | MI.getOpcode() == AArch64::CSELXr ? AArch64::ORRXrs : AArch64::ORRWrs; |
| 304 | |
| 305 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: OrOpcode)) |
| 306 | .addReg(RegNo: MI.getOperand(i: 0).getReg(), flags: RegState::Define) |
| 307 | .addReg(RegNo: ZeroReg) |
| 308 | .addReg(RegNo: MI.getOperand(i: 1).getReg()) |
| 309 | .addImm(Val: 0); |
| 310 | |
| 311 | MI.eraseFromParent(); |
| 312 | return true; |
| 313 | } |
| 314 | |
| 315 | bool AArch64MIPeepholeOpt::visitINSERT(MachineInstr &MI) { |
| 316 | // Check this INSERT_SUBREG comes from below zero-extend pattern. |
| 317 | // |
| 318 | // From %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx |
| 319 | // To %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx |
| 320 | // |
| 321 | // We're assuming the first operand to INSERT_SUBREG is irrelevant because a |
| 322 | // COPY would destroy the upper part of the register anyway |
| 323 | if (!MI.isRegTiedToDefOperand(UseOpIdx: 1)) |
| 324 | return false; |
| 325 | |
| 326 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 327 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DstReg); |
| 328 | MachineInstr *SrcMI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 2).getReg()); |
| 329 | if (!SrcMI) |
| 330 | return false; |
| 331 | |
| 332 | // From https://developer.arm.com/documentation/dui0801/b/BABBGCAC |
| 333 | // |
| 334 | // When you use the 32-bit form of an instruction, the upper 32 bits of the |
| 335 | // source registers are ignored and the upper 32 bits of the destination |
| 336 | // register are set to zero. |
| 337 | // |
| 338 | // If AArch64's 32-bit form of instruction defines the source operand of |
| 339 | // zero-extend, we do not need the zero-extend. Let's check the MI's opcode is |
| 340 | // real AArch64 instruction and if it is not, do not process the opcode |
| 341 | // conservatively. |
| 342 | if ((SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END) || |
| 343 | !AArch64::GPR64allRegClass.hasSubClassEq(RC)) |
| 344 | return false; |
| 345 | |
| 346 | // Build a SUBREG_TO_REG instruction |
| 347 | MachineInstr *SubregMI = |
| 348 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), |
| 349 | MCID: TII->get(Opcode: TargetOpcode::SUBREG_TO_REG), DestReg: DstReg) |
| 350 | .addImm(Val: 0) |
| 351 | .add(MO: MI.getOperand(i: 2)) |
| 352 | .add(MO: MI.getOperand(i: 3)); |
| 353 | LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *SubregMI << "\n" ); |
| 354 | (void)SubregMI; |
| 355 | MI.eraseFromParent(); |
| 356 | |
| 357 | return true; |
| 358 | } |
| 359 | |
| 360 | template <typename T> |
| 361 | static bool splitAddSubImm(T Imm, unsigned RegSize, T &Imm0, T &Imm1) { |
| 362 | // The immediate must be in the form of ((imm0 << 12) + imm1), in which both |
| 363 | // imm0 and imm1 are non-zero 12-bit unsigned int. |
| 364 | if ((Imm & 0xfff000) == 0 || (Imm & 0xfff) == 0 || |
| 365 | (Imm & ~static_cast<T>(0xffffff)) != 0) |
| 366 | return false; |
| 367 | |
| 368 | // The immediate can not be composed via a single instruction. |
| 369 | SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; |
| 370 | AArch64_IMM::expandMOVImm(Imm, BitSize: RegSize, Insn); |
| 371 | if (Insn.size() == 1) |
| 372 | return false; |
| 373 | |
| 374 | // Split Imm into (Imm0 << 12) + Imm1; |
| 375 | Imm0 = (Imm >> 12) & 0xfff; |
| 376 | Imm1 = Imm & 0xfff; |
| 377 | return true; |
| 378 | } |
| 379 | |
| 380 | template <typename T> |
| 381 | bool AArch64MIPeepholeOpt::visitADDSUB( |
| 382 | unsigned PosOpc, unsigned NegOpc, MachineInstr &MI) { |
| 383 | // Try below transformation. |
| 384 | // |
| 385 | // ADDWrr X, MOVi32imm ==> ADDWri + ADDWri |
| 386 | // ADDXrr X, MOVi64imm ==> ADDXri + ADDXri |
| 387 | // |
| 388 | // SUBWrr X, MOVi32imm ==> SUBWri + SUBWri |
| 389 | // SUBXrr X, MOVi64imm ==> SUBXri + SUBXri |
| 390 | // |
| 391 | // The mov pseudo instruction could be expanded to multiple mov instructions |
| 392 | // later. Let's try to split the constant operand of mov instruction into two |
| 393 | // legal add/sub immediates. It makes only two ADD/SUB instructions instead of |
| 394 | // multiple `mov` + `and/sub` instructions. |
| 395 | |
| 396 | // We can sometimes have ADDWrr WZR, MULi32imm that have not been constant |
| 397 | // folded. Make sure that we don't generate invalid instructions that use XZR |
| 398 | // in those cases. |
| 399 | if (MI.getOperand(i: 1).getReg() == AArch64::XZR || |
| 400 | MI.getOperand(i: 1).getReg() == AArch64::WZR) |
| 401 | return false; |
| 402 | |
| 403 | return splitTwoPartImm<T>( |
| 404 | MI, |
| 405 | [PosOpc, NegOpc](T Imm, unsigned RegSize, T &Imm0, |
| 406 | T &Imm1) -> std::optional<OpcodePair> { |
| 407 | if (splitAddSubImm(Imm, RegSize, Imm0, Imm1)) |
| 408 | return std::make_pair(x: PosOpc, y: PosOpc); |
| 409 | if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1)) |
| 410 | return std::make_pair(x: NegOpc, y: NegOpc); |
| 411 | return std::nullopt; |
| 412 | }, |
| 413 | [&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0, |
| 414 | unsigned Imm1, Register SrcReg, Register NewTmpReg, |
| 415 | Register NewDstReg) { |
| 416 | DebugLoc DL = MI.getDebugLoc(); |
| 417 | MachineBasicBlock *MBB = MI.getParent(); |
| 418 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Opcode.first), DestReg: NewTmpReg) |
| 419 | .addReg(RegNo: SrcReg) |
| 420 | .addImm(Val: Imm0) |
| 421 | .addImm(Val: 12); |
| 422 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Opcode.second), DestReg: NewDstReg) |
| 423 | .addReg(RegNo: NewTmpReg) |
| 424 | .addImm(Val: Imm1) |
| 425 | .addImm(Val: 0); |
| 426 | }); |
| 427 | } |
| 428 | |
| 429 | template <typename T> |
| 430 | bool AArch64MIPeepholeOpt::visitADDSSUBS( |
| 431 | OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI) { |
| 432 | // Try the same transformation as ADDSUB but with additional requirement |
| 433 | // that the condition code usages are only for Equal and Not Equal |
| 434 | |
| 435 | if (MI.getOperand(i: 1).getReg() == AArch64::XZR || |
| 436 | MI.getOperand(i: 1).getReg() == AArch64::WZR) |
| 437 | return false; |
| 438 | |
| 439 | return splitTwoPartImm<T>( |
| 440 | MI, |
| 441 | [PosOpcs, NegOpcs, &MI, &TRI = TRI, |
| 442 | &MRI = MRI](T Imm, unsigned RegSize, T &Imm0, |
| 443 | T &Imm1) -> std::optional<OpcodePair> { |
| 444 | OpcodePair OP; |
| 445 | if (splitAddSubImm(Imm, RegSize, Imm0, Imm1)) |
| 446 | OP = PosOpcs; |
| 447 | else if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1)) |
| 448 | OP = NegOpcs; |
| 449 | else |
| 450 | return std::nullopt; |
| 451 | // Check conditional uses last since it is expensive for scanning |
| 452 | // proceeding instructions |
| 453 | MachineInstr &SrcMI = *MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 1).getReg()); |
| 454 | std::optional<UsedNZCV> NZCVUsed = examineCFlagsUse(MI&: SrcMI, CmpInstr&: MI, TRI: *TRI); |
| 455 | if (!NZCVUsed || NZCVUsed->C || NZCVUsed->V) |
| 456 | return std::nullopt; |
| 457 | return OP; |
| 458 | }, |
| 459 | [&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0, |
| 460 | unsigned Imm1, Register SrcReg, Register NewTmpReg, |
| 461 | Register NewDstReg) { |
| 462 | DebugLoc DL = MI.getDebugLoc(); |
| 463 | MachineBasicBlock *MBB = MI.getParent(); |
| 464 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Opcode.first), DestReg: NewTmpReg) |
| 465 | .addReg(RegNo: SrcReg) |
| 466 | .addImm(Val: Imm0) |
| 467 | .addImm(Val: 12); |
| 468 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Opcode.second), DestReg: NewDstReg) |
| 469 | .addReg(RegNo: NewTmpReg) |
| 470 | .addImm(Val: Imm1) |
| 471 | .addImm(Val: 0); |
| 472 | }); |
| 473 | } |
| 474 | |
| 475 | // Checks if the corresponding MOV immediate instruction is applicable for |
| 476 | // this peephole optimization. |
| 477 | bool AArch64MIPeepholeOpt::checkMovImmInstr(MachineInstr &MI, |
| 478 | MachineInstr *&MovMI, |
| 479 | MachineInstr *&SubregToRegMI) { |
| 480 | // Check whether current MBB is in loop and the AND is loop invariant. |
| 481 | MachineBasicBlock *MBB = MI.getParent(); |
| 482 | MachineLoop *L = MLI->getLoopFor(BB: MBB); |
| 483 | if (L && !L->isLoopInvariant(I&: MI)) |
| 484 | return false; |
| 485 | |
| 486 | // Check whether current MI's operand is MOV with immediate. |
| 487 | MovMI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 2).getReg()); |
| 488 | if (!MovMI) |
| 489 | return false; |
| 490 | |
| 491 | // If it is SUBREG_TO_REG, check its operand. |
| 492 | SubregToRegMI = nullptr; |
| 493 | if (MovMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) { |
| 494 | SubregToRegMI = MovMI; |
| 495 | MovMI = MRI->getUniqueVRegDef(Reg: MovMI->getOperand(i: 2).getReg()); |
| 496 | if (!MovMI) |
| 497 | return false; |
| 498 | } |
| 499 | |
| 500 | if (MovMI->getOpcode() != AArch64::MOVi32imm && |
| 501 | MovMI->getOpcode() != AArch64::MOVi64imm) |
| 502 | return false; |
| 503 | |
| 504 | // If the MOV has multiple uses, do not split the immediate because it causes |
| 505 | // more instructions. |
| 506 | if (!MRI->hasOneUse(RegNo: MovMI->getOperand(i: 0).getReg())) |
| 507 | return false; |
| 508 | if (SubregToRegMI && !MRI->hasOneUse(RegNo: SubregToRegMI->getOperand(i: 0).getReg())) |
| 509 | return false; |
| 510 | |
| 511 | // It is OK to perform this peephole optimization. |
| 512 | return true; |
| 513 | } |
| 514 | |
| 515 | template <typename T> |
| 516 | bool AArch64MIPeepholeOpt::splitTwoPartImm( |
| 517 | MachineInstr &MI, |
| 518 | SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr) { |
| 519 | unsigned RegSize = sizeof(T) * 8; |
| 520 | assert((RegSize == 32 || RegSize == 64) && |
| 521 | "Invalid RegSize for legal immediate peephole optimization" ); |
| 522 | |
| 523 | // Perform several essential checks against current MI. |
| 524 | MachineInstr *MovMI, *SubregToRegMI; |
| 525 | if (!checkMovImmInstr(MI, MovMI, SubregToRegMI)) |
| 526 | return false; |
| 527 | |
| 528 | // Split the immediate to Imm0 and Imm1, and calculate the Opcode. |
| 529 | T Imm = static_cast<T>(MovMI->getOperand(i: 1).getImm()), Imm0, Imm1; |
| 530 | // For the 32 bit form of instruction, the upper 32 bits of the destination |
| 531 | // register are set to zero. If there is SUBREG_TO_REG, set the upper 32 bits |
| 532 | // of Imm to zero. This is essential if the Immediate value was a negative |
| 533 | // number since it was sign extended when we assign to the 64-bit Imm. |
| 534 | if (SubregToRegMI) |
| 535 | Imm &= 0xFFFFFFFF; |
| 536 | OpcodePair Opcode; |
| 537 | if (auto R = SplitAndOpc(Imm, RegSize, Imm0, Imm1)) |
| 538 | Opcode = *R; |
| 539 | else |
| 540 | return false; |
| 541 | |
| 542 | // Create new MIs using the first and second opcodes. Opcodes might differ for |
| 543 | // flag setting operations that should only set flags on second instruction. |
| 544 | // NewTmpReg = Opcode.first SrcReg Imm0 |
| 545 | // NewDstReg = Opcode.second NewTmpReg Imm1 |
| 546 | |
| 547 | // Determine register classes for destinations and register operands |
| 548 | MachineFunction *MF = MI.getMF(); |
| 549 | const TargetRegisterClass *FirstInstrDstRC = |
| 550 | TII->getRegClass(MCID: TII->get(Opcode: Opcode.first), OpNum: 0, TRI, MF: *MF); |
| 551 | const TargetRegisterClass *FirstInstrOperandRC = |
| 552 | TII->getRegClass(MCID: TII->get(Opcode: Opcode.first), OpNum: 1, TRI, MF: *MF); |
| 553 | const TargetRegisterClass *SecondInstrDstRC = |
| 554 | (Opcode.first == Opcode.second) |
| 555 | ? FirstInstrDstRC |
| 556 | : TII->getRegClass(MCID: TII->get(Opcode: Opcode.second), OpNum: 0, TRI, MF: *MF); |
| 557 | const TargetRegisterClass *SecondInstrOperandRC = |
| 558 | (Opcode.first == Opcode.second) |
| 559 | ? FirstInstrOperandRC |
| 560 | : TII->getRegClass(MCID: TII->get(Opcode: Opcode.second), OpNum: 1, TRI, MF: *MF); |
| 561 | |
| 562 | // Get old registers destinations and new register destinations |
| 563 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 564 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 565 | Register NewTmpReg = MRI->createVirtualRegister(RegClass: FirstInstrDstRC); |
| 566 | // In the situation that DstReg is not Virtual (likely WZR or XZR), we want to |
| 567 | // reuse that same destination register. |
| 568 | Register NewDstReg = DstReg.isVirtual() |
| 569 | ? MRI->createVirtualRegister(RegClass: SecondInstrDstRC) |
| 570 | : DstReg; |
| 571 | |
| 572 | // Constrain registers based on their new uses |
| 573 | MRI->constrainRegClass(Reg: SrcReg, RC: FirstInstrOperandRC); |
| 574 | MRI->constrainRegClass(Reg: NewTmpReg, RC: SecondInstrOperandRC); |
| 575 | if (DstReg != NewDstReg) |
| 576 | MRI->constrainRegClass(Reg: NewDstReg, RC: MRI->getRegClass(Reg: DstReg)); |
| 577 | |
| 578 | // Call the delegating operation to build the instruction |
| 579 | BuildInstr(MI, Opcode, Imm0, Imm1, SrcReg, NewTmpReg, NewDstReg); |
| 580 | |
| 581 | // replaceRegWith changes MI's definition register. Keep it for SSA form until |
| 582 | // deleting MI. Only if we made a new destination register. |
| 583 | if (DstReg != NewDstReg) { |
| 584 | MRI->replaceRegWith(FromReg: DstReg, ToReg: NewDstReg); |
| 585 | MI.getOperand(i: 0).setReg(DstReg); |
| 586 | } |
| 587 | |
| 588 | // Record the MIs need to be removed. |
| 589 | MI.eraseFromParent(); |
| 590 | if (SubregToRegMI) |
| 591 | SubregToRegMI->eraseFromParent(); |
| 592 | MovMI->eraseFromParent(); |
| 593 | |
| 594 | return true; |
| 595 | } |
| 596 | |
| 597 | bool AArch64MIPeepholeOpt::visitINSviGPR(MachineInstr &MI, unsigned Opc) { |
| 598 | // Check if this INSvi[X]gpr comes from COPY of a source FPR128 |
| 599 | // |
| 600 | // From |
| 601 | // %intermediate1:gpr64 = COPY %src:fpr128 |
| 602 | // %intermediate2:gpr32 = COPY %intermediate1:gpr64 |
| 603 | // %dst:fpr128 = INSvi[X]gpr %dst_vec:fpr128, dst_index, %intermediate2:gpr32 |
| 604 | // To |
| 605 | // %dst:fpr128 = INSvi[X]lane %dst_vec:fpr128, dst_index, %src:fpr128, |
| 606 | // src_index |
| 607 | // where src_index = 0, X = [8|16|32|64] |
| 608 | |
| 609 | MachineInstr *SrcMI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 3).getReg()); |
| 610 | |
| 611 | // For a chain of COPY instructions, find the initial source register |
| 612 | // and check if it's an FPR128 |
| 613 | while (true) { |
| 614 | if (!SrcMI || SrcMI->getOpcode() != TargetOpcode::COPY) |
| 615 | return false; |
| 616 | |
| 617 | if (!SrcMI->getOperand(i: 1).getReg().isVirtual()) |
| 618 | return false; |
| 619 | |
| 620 | if (MRI->getRegClass(Reg: SrcMI->getOperand(i: 1).getReg()) == |
| 621 | &AArch64::FPR128RegClass) { |
| 622 | break; |
| 623 | } |
| 624 | SrcMI = MRI->getUniqueVRegDef(Reg: SrcMI->getOperand(i: 1).getReg()); |
| 625 | } |
| 626 | |
| 627 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 628 | Register SrcReg = SrcMI->getOperand(i: 1).getReg(); |
| 629 | MachineInstr *INSvilaneMI = |
| 630 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: Opc), DestReg: DstReg) |
| 631 | .add(MO: MI.getOperand(i: 1)) |
| 632 | .add(MO: MI.getOperand(i: 2)) |
| 633 | .addUse(RegNo: SrcReg, Flags: getRegState(RegOp: SrcMI->getOperand(i: 1))) |
| 634 | .addImm(Val: 0); |
| 635 | |
| 636 | LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *INSvilaneMI << "\n" ); |
| 637 | (void)INSvilaneMI; |
| 638 | MI.eraseFromParent(); |
| 639 | return true; |
| 640 | } |
| 641 | |
| 642 | // All instructions that set a FPR64 will implicitly zero the top bits of the |
| 643 | // register. |
| 644 | static bool is64bitDefwithZeroHigh64bit(MachineInstr *MI, |
| 645 | MachineRegisterInfo *MRI) { |
| 646 | if (!MI->getOperand(i: 0).isReg() || !MI->getOperand(i: 0).isDef()) |
| 647 | return false; |
| 648 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: MI->getOperand(i: 0).getReg()); |
| 649 | if (RC != &AArch64::FPR64RegClass) |
| 650 | return false; |
| 651 | return MI->getOpcode() > TargetOpcode::GENERIC_OP_END; |
| 652 | } |
| 653 | |
| 654 | bool AArch64MIPeepholeOpt::visitINSvi64lane(MachineInstr &MI) { |
| 655 | // Check the MI for low 64-bits sets zero for high 64-bits implicitly. |
| 656 | // We are expecting below case. |
| 657 | // |
| 658 | // %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr |
| 659 | // %6:fpr128 = IMPLICIT_DEF |
| 660 | // %5:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub |
| 661 | // %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0 |
| 662 | MachineInstr *Low64MI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 1).getReg()); |
| 663 | if (Low64MI->getOpcode() != AArch64::INSERT_SUBREG) |
| 664 | return false; |
| 665 | Low64MI = MRI->getUniqueVRegDef(Reg: Low64MI->getOperand(i: 2).getReg()); |
| 666 | if (!Low64MI || !is64bitDefwithZeroHigh64bit(MI: Low64MI, MRI)) |
| 667 | return false; |
| 668 | |
| 669 | // Check there is `mov 0` MI for high 64-bits. |
| 670 | // We are expecting below cases. |
| 671 | // |
| 672 | // %2:fpr64 = MOVID 0 |
| 673 | // %4:fpr128 = IMPLICIT_DEF |
| 674 | // %3:fpr128 = INSERT_SUBREG %4:fpr128(tied-def 0), killed %2:fpr64, %subreg.dsub |
| 675 | // %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0 |
| 676 | // or |
| 677 | // %5:fpr128 = MOVIv2d_ns 0 |
| 678 | // %6:fpr64 = COPY %5.dsub:fpr128 |
| 679 | // %8:fpr128 = IMPLICIT_DEF |
| 680 | // %7:fpr128 = INSERT_SUBREG %8:fpr128(tied-def 0), killed %6:fpr64, %subreg.dsub |
| 681 | // %11:fpr128 = INSvi64lane %9:fpr128(tied-def 0), 1, killed %7:fpr128, 0 |
| 682 | MachineInstr *High64MI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 3).getReg()); |
| 683 | if (!High64MI || High64MI->getOpcode() != AArch64::INSERT_SUBREG) |
| 684 | return false; |
| 685 | High64MI = MRI->getUniqueVRegDef(Reg: High64MI->getOperand(i: 2).getReg()); |
| 686 | if (High64MI && High64MI->getOpcode() == TargetOpcode::COPY) |
| 687 | High64MI = MRI->getUniqueVRegDef(Reg: High64MI->getOperand(i: 1).getReg()); |
| 688 | if (!High64MI || (High64MI->getOpcode() != AArch64::MOVID && |
| 689 | High64MI->getOpcode() != AArch64::MOVIv2d_ns)) |
| 690 | return false; |
| 691 | if (High64MI->getOperand(i: 1).getImm() != 0) |
| 692 | return false; |
| 693 | |
| 694 | // Let's remove MIs for high 64-bits. |
| 695 | Register OldDef = MI.getOperand(i: 0).getReg(); |
| 696 | Register NewDef = MI.getOperand(i: 1).getReg(); |
| 697 | MRI->constrainRegClass(Reg: NewDef, RC: MRI->getRegClass(Reg: OldDef)); |
| 698 | MRI->replaceRegWith(FromReg: OldDef, ToReg: NewDef); |
| 699 | MI.eraseFromParent(); |
| 700 | |
| 701 | return true; |
| 702 | } |
| 703 | |
| 704 | bool AArch64MIPeepholeOpt::visitFMOVDr(MachineInstr &MI) { |
| 705 | // An FMOVDr sets the high 64-bits to zero implicitly, similar to ORR for GPR. |
| 706 | MachineInstr *Low64MI = MRI->getUniqueVRegDef(Reg: MI.getOperand(i: 1).getReg()); |
| 707 | if (!Low64MI || !is64bitDefwithZeroHigh64bit(MI: Low64MI, MRI)) |
| 708 | return false; |
| 709 | |
| 710 | // Let's remove MIs for high 64-bits. |
| 711 | Register OldDef = MI.getOperand(i: 0).getReg(); |
| 712 | Register NewDef = MI.getOperand(i: 1).getReg(); |
| 713 | LLVM_DEBUG(dbgs() << "Removing: " << MI << "\n" ); |
| 714 | MRI->clearKillFlags(Reg: OldDef); |
| 715 | MRI->clearKillFlags(Reg: NewDef); |
| 716 | MRI->constrainRegClass(Reg: NewDef, RC: MRI->getRegClass(Reg: OldDef)); |
| 717 | MRI->replaceRegWith(FromReg: OldDef, ToReg: NewDef); |
| 718 | MI.eraseFromParent(); |
| 719 | |
| 720 | return true; |
| 721 | } |
| 722 | |
| 723 | bool AArch64MIPeepholeOpt::visitUBFMXri(MachineInstr &MI) { |
| 724 | // Check if the instruction is equivalent to a 32 bit LSR or LSL alias of |
| 725 | // UBFM, and replace the UBFMXri instruction with its 32 bit variant, UBFMWri. |
| 726 | int64_t Immr = MI.getOperand(i: 2).getImm(); |
| 727 | int64_t Imms = MI.getOperand(i: 3).getImm(); |
| 728 | |
| 729 | bool IsLSR = Imms == 31 && Immr <= Imms; |
| 730 | bool IsLSL = Immr == Imms + 33; |
| 731 | if (!IsLSR && !IsLSL) |
| 732 | return false; |
| 733 | |
| 734 | if (IsLSL) { |
| 735 | Immr -= 32; |
| 736 | } |
| 737 | |
| 738 | const TargetRegisterClass *DstRC64 = |
| 739 | TII->getRegClass(MCID: TII->get(Opcode: MI.getOpcode()), OpNum: 0, TRI, MF: *MI.getMF()); |
| 740 | const TargetRegisterClass *DstRC32 = |
| 741 | TRI->getSubRegisterClass(DstRC64, AArch64::sub_32); |
| 742 | assert(DstRC32 && "Destination register class of UBFMXri doesn't have a " |
| 743 | "sub_32 subregister class" ); |
| 744 | |
| 745 | const TargetRegisterClass *SrcRC64 = |
| 746 | TII->getRegClass(MCID: TII->get(Opcode: MI.getOpcode()), OpNum: 1, TRI, MF: *MI.getMF()); |
| 747 | const TargetRegisterClass *SrcRC32 = |
| 748 | TRI->getSubRegisterClass(SrcRC64, AArch64::sub_32); |
| 749 | assert(SrcRC32 && "Source register class of UBFMXri doesn't have a sub_32 " |
| 750 | "subregister class" ); |
| 751 | |
| 752 | Register DstReg64 = MI.getOperand(i: 0).getReg(); |
| 753 | Register DstReg32 = MRI->createVirtualRegister(RegClass: DstRC32); |
| 754 | Register SrcReg64 = MI.getOperand(i: 1).getReg(); |
| 755 | Register SrcReg32 = MRI->createVirtualRegister(RegClass: SrcRC32); |
| 756 | |
| 757 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: AArch64::COPY), |
| 758 | DestReg: SrcReg32) |
| 759 | .addReg(RegNo: SrcReg64, flags: 0, SubReg: AArch64::sub_32); |
| 760 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: AArch64::UBFMWri), |
| 761 | DestReg: DstReg32) |
| 762 | .addReg(RegNo: SrcReg32) |
| 763 | .addImm(Val: Immr) |
| 764 | .addImm(Val: Imms); |
| 765 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), |
| 766 | MCID: TII->get(Opcode: AArch64::SUBREG_TO_REG), DestReg: DstReg64) |
| 767 | .addImm(Val: 0) |
| 768 | .addReg(RegNo: DstReg32) |
| 769 | .addImm(Val: AArch64::sub_32); |
| 770 | MI.eraseFromParent(); |
| 771 | return true; |
| 772 | } |
| 773 | |
| 774 | // Across a basic-block we might have in i32 extract from a value that only |
| 775 | // operates on upper bits (for example a sxtw). We can replace the COPY with a |
| 776 | // new version skipping the sxtw. |
| 777 | bool AArch64MIPeepholeOpt::visitCopy(MachineInstr &MI) { |
| 778 | Register InputReg = MI.getOperand(i: 1).getReg(); |
| 779 | if (MI.getOperand(i: 1).getSubReg() != AArch64::sub_32 || |
| 780 | !MRI->hasOneNonDBGUse(RegNo: InputReg)) |
| 781 | return false; |
| 782 | |
| 783 | MachineInstr *SrcMI = MRI->getUniqueVRegDef(Reg: InputReg); |
| 784 | SmallPtrSet<MachineInstr *, 4> DeadInstrs; |
| 785 | DeadInstrs.insert(Ptr: SrcMI); |
| 786 | while (SrcMI && SrcMI->isFullCopy() && |
| 787 | MRI->hasOneNonDBGUse(RegNo: SrcMI->getOperand(i: 1).getReg())) { |
| 788 | SrcMI = MRI->getUniqueVRegDef(Reg: SrcMI->getOperand(i: 1).getReg()); |
| 789 | DeadInstrs.insert(Ptr: SrcMI); |
| 790 | } |
| 791 | |
| 792 | if (!SrcMI) |
| 793 | return false; |
| 794 | |
| 795 | // Look for SXTW(X) and return Reg. |
| 796 | auto getSXTWSrcReg = [](MachineInstr *SrcMI) -> Register { |
| 797 | if (SrcMI->getOpcode() != AArch64::SBFMXri || |
| 798 | SrcMI->getOperand(i: 2).getImm() != 0 || |
| 799 | SrcMI->getOperand(i: 3).getImm() != 31) |
| 800 | return AArch64::NoRegister; |
| 801 | return SrcMI->getOperand(i: 1).getReg(); |
| 802 | }; |
| 803 | // Look for SUBREG_TO_REG(ORRWrr(WZR, COPY(X.sub_32))) |
| 804 | auto getUXTWSrcReg = [&](MachineInstr *SrcMI) -> Register { |
| 805 | if (SrcMI->getOpcode() != AArch64::SUBREG_TO_REG || |
| 806 | SrcMI->getOperand(i: 3).getImm() != AArch64::sub_32 || |
| 807 | !MRI->hasOneNonDBGUse(RegNo: SrcMI->getOperand(i: 2).getReg())) |
| 808 | return AArch64::NoRegister; |
| 809 | MachineInstr *Orr = MRI->getUniqueVRegDef(Reg: SrcMI->getOperand(i: 2).getReg()); |
| 810 | if (!Orr || Orr->getOpcode() != AArch64::ORRWrr || |
| 811 | Orr->getOperand(i: 1).getReg() != AArch64::WZR || |
| 812 | !MRI->hasOneNonDBGUse(RegNo: Orr->getOperand(i: 2).getReg())) |
| 813 | return AArch64::NoRegister; |
| 814 | MachineInstr *Cpy = MRI->getUniqueVRegDef(Reg: Orr->getOperand(i: 2).getReg()); |
| 815 | if (!Cpy || Cpy->getOpcode() != AArch64::COPY || |
| 816 | Cpy->getOperand(i: 1).getSubReg() != AArch64::sub_32) |
| 817 | return AArch64::NoRegister; |
| 818 | DeadInstrs.insert(Ptr: Orr); |
| 819 | return Cpy->getOperand(i: 1).getReg(); |
| 820 | }; |
| 821 | |
| 822 | Register SrcReg = getSXTWSrcReg(SrcMI); |
| 823 | if (!SrcReg) |
| 824 | SrcReg = getUXTWSrcReg(SrcMI); |
| 825 | if (!SrcReg) |
| 826 | return false; |
| 827 | |
| 828 | MRI->constrainRegClass(Reg: SrcReg, RC: MRI->getRegClass(Reg: InputReg)); |
| 829 | LLVM_DEBUG(dbgs() << "Optimizing: " << MI); |
| 830 | MI.getOperand(i: 1).setReg(SrcReg); |
| 831 | LLVM_DEBUG(dbgs() << " to: " << MI); |
| 832 | for (auto *DeadMI : DeadInstrs) { |
| 833 | LLVM_DEBUG(dbgs() << " Removing: " << *DeadMI); |
| 834 | DeadMI->eraseFromParent(); |
| 835 | } |
| 836 | return true; |
| 837 | } |
| 838 | |
| 839 | bool AArch64MIPeepholeOpt::runOnMachineFunction(MachineFunction &MF) { |
| 840 | if (skipFunction(F: MF.getFunction())) |
| 841 | return false; |
| 842 | |
| 843 | TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); |
| 844 | TRI = static_cast<const AArch64RegisterInfo *>( |
| 845 | MF.getSubtarget().getRegisterInfo()); |
| 846 | MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 847 | MRI = &MF.getRegInfo(); |
| 848 | |
| 849 | assert(MRI->isSSA() && "Expected to be run on SSA form!" ); |
| 850 | |
| 851 | bool Changed = false; |
| 852 | |
| 853 | for (MachineBasicBlock &MBB : MF) { |
| 854 | for (MachineInstr &MI : make_early_inc_range(Range&: MBB)) { |
| 855 | switch (MI.getOpcode()) { |
| 856 | default: |
| 857 | break; |
| 858 | case AArch64::INSERT_SUBREG: |
| 859 | Changed |= visitINSERT(MI); |
| 860 | break; |
| 861 | case AArch64::ANDWrr: |
| 862 | Changed |= visitAND<uint32_t>(Opc: AArch64::ANDWri, MI); |
| 863 | break; |
| 864 | case AArch64::ANDXrr: |
| 865 | Changed |= visitAND<uint64_t>(Opc: AArch64::ANDXri, MI); |
| 866 | break; |
| 867 | case AArch64::ORRWrs: |
| 868 | Changed |= visitORR(MI); |
| 869 | break; |
| 870 | case AArch64::ADDWrr: |
| 871 | Changed |= visitADDSUB<uint32_t>(PosOpc: AArch64::ADDWri, NegOpc: AArch64::SUBWri, MI); |
| 872 | break; |
| 873 | case AArch64::SUBWrr: |
| 874 | Changed |= visitADDSUB<uint32_t>(PosOpc: AArch64::SUBWri, NegOpc: AArch64::ADDWri, MI); |
| 875 | break; |
| 876 | case AArch64::ADDXrr: |
| 877 | Changed |= visitADDSUB<uint64_t>(PosOpc: AArch64::ADDXri, NegOpc: AArch64::SUBXri, MI); |
| 878 | break; |
| 879 | case AArch64::SUBXrr: |
| 880 | Changed |= visitADDSUB<uint64_t>(PosOpc: AArch64::SUBXri, NegOpc: AArch64::ADDXri, MI); |
| 881 | break; |
| 882 | case AArch64::ADDSWrr: |
| 883 | Changed |= |
| 884 | visitADDSSUBS<uint32_t>(PosOpcs: {AArch64::ADDWri, AArch64::ADDSWri}, |
| 885 | NegOpcs: {AArch64::SUBWri, AArch64::SUBSWri}, MI); |
| 886 | break; |
| 887 | case AArch64::SUBSWrr: |
| 888 | Changed |= |
| 889 | visitADDSSUBS<uint32_t>(PosOpcs: {AArch64::SUBWri, AArch64::SUBSWri}, |
| 890 | NegOpcs: {AArch64::ADDWri, AArch64::ADDSWri}, MI); |
| 891 | break; |
| 892 | case AArch64::ADDSXrr: |
| 893 | Changed |= |
| 894 | visitADDSSUBS<uint64_t>(PosOpcs: {AArch64::ADDXri, AArch64::ADDSXri}, |
| 895 | NegOpcs: {AArch64::SUBXri, AArch64::SUBSXri}, MI); |
| 896 | break; |
| 897 | case AArch64::SUBSXrr: |
| 898 | Changed |= |
| 899 | visitADDSSUBS<uint64_t>(PosOpcs: {AArch64::SUBXri, AArch64::SUBSXri}, |
| 900 | NegOpcs: {AArch64::ADDXri, AArch64::ADDSXri}, MI); |
| 901 | break; |
| 902 | case AArch64::CSELWr: |
| 903 | case AArch64::CSELXr: |
| 904 | Changed |= visitCSEL(MI); |
| 905 | break; |
| 906 | case AArch64::INSvi64gpr: |
| 907 | Changed |= visitINSviGPR(MI, Opc: AArch64::INSvi64lane); |
| 908 | break; |
| 909 | case AArch64::INSvi32gpr: |
| 910 | Changed |= visitINSviGPR(MI, Opc: AArch64::INSvi32lane); |
| 911 | break; |
| 912 | case AArch64::INSvi16gpr: |
| 913 | Changed |= visitINSviGPR(MI, Opc: AArch64::INSvi16lane); |
| 914 | break; |
| 915 | case AArch64::INSvi8gpr: |
| 916 | Changed |= visitINSviGPR(MI, Opc: AArch64::INSvi8lane); |
| 917 | break; |
| 918 | case AArch64::INSvi64lane: |
| 919 | Changed |= visitINSvi64lane(MI); |
| 920 | break; |
| 921 | case AArch64::FMOVDr: |
| 922 | Changed |= visitFMOVDr(MI); |
| 923 | break; |
| 924 | case AArch64::UBFMXri: |
| 925 | Changed |= visitUBFMXri(MI); |
| 926 | break; |
| 927 | case AArch64::COPY: |
| 928 | Changed |= visitCopy(MI); |
| 929 | break; |
| 930 | } |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | return Changed; |
| 935 | } |
| 936 | |
| 937 | FunctionPass *llvm::createAArch64MIPeepholeOptPass() { |
| 938 | return new AArch64MIPeepholeOpt(); |
| 939 | } |
| 940 | |