1 | //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | // This pass removes unnecessary copies/moves in BBs based on a dominating |
8 | // condition. |
9 | // |
10 | // We handle three cases: |
11 | // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of |
12 | // the CBZ/CBNZ source register is zero on the taken/not-taken path. For |
13 | // instance, the copy instruction in the code below can be removed because |
14 | // the CBZW jumps to %bb.2 when w0 is zero. |
15 | // |
16 | // %bb.1: |
17 | // cbz w0, .LBB0_2 |
18 | // .LBB0_2: |
19 | // mov w0, wzr ; <-- redundant |
20 | // |
21 | // 2. If the flag setting instruction defines a register other than WZR/XZR, we |
22 | // can remove a zero copy in some cases. |
23 | // |
24 | // %bb.0: |
25 | // subs w0, w1, w2 |
26 | // str w0, [x1] |
27 | // b.ne .LBB0_2 |
28 | // %bb.1: |
29 | // mov w0, wzr ; <-- redundant |
30 | // str w0, [x2] |
31 | // .LBB0_2 |
32 | // |
33 | // 3. Finally, if the flag setting instruction is a comparison against a |
34 | // constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate |
35 | // in some cases. |
36 | // |
37 | // %bb.0: |
38 | // subs xzr, x0, #1 |
39 | // b.eq .LBB0_1 |
40 | // .LBB0_1: |
41 | // orr x0, xzr, #0x1 ; <-- redundant |
42 | // |
43 | // This pass should be run after register allocation. |
44 | // |
45 | // FIXME: This could also be extended to check the whole dominance subtree below |
46 | // the comparison if the compile time regression is acceptable. |
47 | // |
48 | // FIXME: Add support for handling CCMP instructions. |
49 | // FIXME: If the known register value is zero, we should be able to rewrite uses |
50 | // to use WZR/XZR directly in some cases. |
51 | //===----------------------------------------------------------------------===// |
52 | #include "AArch64.h" |
53 | #include "llvm/ADT/SetVector.h" |
54 | #include "llvm/ADT/Statistic.h" |
55 | #include "llvm/ADT/iterator_range.h" |
56 | #include "llvm/CodeGen/LiveRegUnits.h" |
57 | #include "llvm/CodeGen/MachineFunctionPass.h" |
58 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
59 | #include "llvm/Support/Debug.h" |
60 | |
61 | using namespace llvm; |
62 | |
63 | #define DEBUG_TYPE "aarch64-copyelim" |
64 | |
65 | STATISTIC(NumCopiesRemoved, "Number of copies removed." ); |
66 | |
67 | namespace { |
68 | class AArch64RedundantCopyElimination : public MachineFunctionPass { |
69 | const MachineRegisterInfo *MRI; |
70 | const TargetRegisterInfo *TRI; |
71 | |
72 | // DomBBClobberedRegs is used when computing known values in the dominating |
73 | // BB. |
74 | LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs; |
75 | |
76 | // OptBBClobberedRegs is used when optimizing away redundant copies/moves. |
77 | LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs; |
78 | |
79 | public: |
80 | static char ID; |
81 | AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {} |
82 | |
83 | struct RegImm { |
84 | MCPhysReg Reg; |
85 | int32_t Imm; |
86 | RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {} |
87 | }; |
88 | |
89 | bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB, |
90 | SmallVectorImpl<RegImm> &KnownRegs, |
91 | MachineBasicBlock::iterator &FirstUse); |
92 | bool optimizeBlock(MachineBasicBlock *MBB); |
93 | bool runOnMachineFunction(MachineFunction &MF) override; |
94 | MachineFunctionProperties getRequiredProperties() const override { |
95 | return MachineFunctionProperties().setNoVRegs(); |
96 | } |
97 | StringRef getPassName() const override { |
98 | return "AArch64 Redundant Copy Elimination" ; |
99 | } |
100 | }; |
101 | char AArch64RedundantCopyElimination::ID = 0; |
102 | } |
103 | |
104 | INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim" , |
105 | "AArch64 redundant copy elimination pass" , false, false) |
106 | |
107 | /// It's possible to determine the value of a register based on a dominating |
108 | /// condition. To do so, this function checks to see if the basic block \p MBB |
109 | /// is the target of a conditional branch \p CondBr with an equality comparison. |
110 | /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero |
111 | /// in \p MBB for some cases. Otherwise, we find and inspect the NZCV setting |
112 | /// instruction (e.g., SUBS, ADDS). If this instruction defines a register |
113 | /// other than WZR/XZR, we know the value of the destination register is zero in |
114 | /// \p MMB for some cases. In addition, if the NZCV setting instruction is |
115 | /// comparing against a constant we know the other source register is equal to |
116 | /// the constant in \p MBB for some cases. If we find any constant values, push |
117 | /// a physical register and constant value pair onto the KnownRegs vector and |
118 | /// return true. Otherwise, return false if no known values were found. |
119 | bool AArch64RedundantCopyElimination::knownRegValInBlock( |
120 | MachineInstr &CondBr, MachineBasicBlock *MBB, |
121 | SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) { |
122 | unsigned Opc = CondBr.getOpcode(); |
123 | |
124 | // Check if the current basic block is the target block to which the |
125 | // CBZ/CBNZ instruction jumps when its Wt/Xt is zero. |
126 | if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) && |
127 | MBB == CondBr.getOperand(i: 1).getMBB()) || |
128 | ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) && |
129 | MBB != CondBr.getOperand(i: 1).getMBB())) { |
130 | FirstUse = CondBr; |
131 | KnownRegs.push_back(Elt: RegImm(CondBr.getOperand(i: 0).getReg(), 0)); |
132 | return true; |
133 | } |
134 | |
135 | // Otherwise, must be a conditional branch. |
136 | if (Opc != AArch64::Bcc) |
137 | return false; |
138 | |
139 | // Must be an equality check (i.e., == or !=). |
140 | AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(i: 0).getImm(); |
141 | if (CC != AArch64CC::EQ && CC != AArch64CC::NE) |
142 | return false; |
143 | |
144 | MachineBasicBlock *BrTarget = CondBr.getOperand(i: 1).getMBB(); |
145 | if ((CC == AArch64CC::EQ && BrTarget != MBB) || |
146 | (CC == AArch64CC::NE && BrTarget == MBB)) |
147 | return false; |
148 | |
149 | // Stop if we get to the beginning of PredMBB. |
150 | MachineBasicBlock *PredMBB = *MBB->pred_begin(); |
151 | assert(PredMBB == CondBr.getParent() && |
152 | "Conditional branch not in predecessor block!" ); |
153 | if (CondBr == PredMBB->begin()) |
154 | return false; |
155 | |
156 | // Registers clobbered in PredMBB between CondBr instruction and current |
157 | // instruction being checked in loop. |
158 | DomBBClobberedRegs.clear(); |
159 | DomBBUsedRegs.clear(); |
160 | |
161 | // Find compare instruction that sets NZCV used by CondBr. |
162 | MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator(); |
163 | for (MachineInstr &PredI : make_range(x: std::next(x: RIt), y: PredMBB->rend())) { |
164 | |
165 | bool IsCMN = false; |
166 | switch (PredI.getOpcode()) { |
167 | default: |
168 | break; |
169 | |
170 | // CMN is an alias for ADDS with a dead destination register. |
171 | case AArch64::ADDSWri: |
172 | case AArch64::ADDSXri: |
173 | IsCMN = true; |
174 | [[fallthrough]]; |
175 | // CMP is an alias for SUBS with a dead destination register. |
176 | case AArch64::SUBSWri: |
177 | case AArch64::SUBSXri: { |
178 | // Sometimes the first operand is a FrameIndex. Bail if tht happens. |
179 | if (!PredI.getOperand(i: 1).isReg()) |
180 | return false; |
181 | MCPhysReg DstReg = PredI.getOperand(i: 0).getReg(); |
182 | MCPhysReg SrcReg = PredI.getOperand(i: 1).getReg(); |
183 | |
184 | bool Res = false; |
185 | // If we're comparing against a non-symbolic immediate and the source |
186 | // register of the compare is not modified (including a self-clobbering |
187 | // compare) between the compare and conditional branch we known the value |
188 | // of the 1st source operand. |
189 | if (PredI.getOperand(i: 2).isImm() && DomBBClobberedRegs.available(Reg: SrcReg) && |
190 | SrcReg != DstReg) { |
191 | // We've found the instruction that sets NZCV. |
192 | int32_t KnownImm = PredI.getOperand(i: 2).getImm(); |
193 | int32_t Shift = PredI.getOperand(i: 3).getImm(); |
194 | KnownImm <<= Shift; |
195 | if (IsCMN) |
196 | KnownImm = -KnownImm; |
197 | FirstUse = PredI; |
198 | KnownRegs.push_back(Elt: RegImm(SrcReg, KnownImm)); |
199 | Res = true; |
200 | } |
201 | |
202 | // If this instructions defines something other than WZR/XZR, we know it's |
203 | // result is zero in some cases. |
204 | if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) |
205 | return Res; |
206 | |
207 | // The destination register must not be modified between the NZCV setting |
208 | // instruction and the conditional branch. |
209 | if (!DomBBClobberedRegs.available(Reg: DstReg)) |
210 | return Res; |
211 | |
212 | FirstUse = PredI; |
213 | KnownRegs.push_back(Elt: RegImm(DstReg, 0)); |
214 | return true; |
215 | } |
216 | |
217 | // Look for NZCV setting instructions that define something other than |
218 | // WZR/XZR. |
219 | case AArch64::ADCSWr: |
220 | case AArch64::ADCSXr: |
221 | case AArch64::ADDSWrr: |
222 | case AArch64::ADDSWrs: |
223 | case AArch64::ADDSWrx: |
224 | case AArch64::ADDSXrr: |
225 | case AArch64::ADDSXrs: |
226 | case AArch64::ADDSXrx: |
227 | case AArch64::ADDSXrx64: |
228 | case AArch64::ANDSWri: |
229 | case AArch64::ANDSWrr: |
230 | case AArch64::ANDSWrs: |
231 | case AArch64::ANDSXri: |
232 | case AArch64::ANDSXrr: |
233 | case AArch64::ANDSXrs: |
234 | case AArch64::BICSWrr: |
235 | case AArch64::BICSWrs: |
236 | case AArch64::BICSXrs: |
237 | case AArch64::BICSXrr: |
238 | case AArch64::SBCSWr: |
239 | case AArch64::SBCSXr: |
240 | case AArch64::SUBSWrr: |
241 | case AArch64::SUBSWrs: |
242 | case AArch64::SUBSWrx: |
243 | case AArch64::SUBSXrr: |
244 | case AArch64::SUBSXrs: |
245 | case AArch64::SUBSXrx: |
246 | case AArch64::SUBSXrx64: { |
247 | MCPhysReg DstReg = PredI.getOperand(i: 0).getReg(); |
248 | if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) |
249 | return false; |
250 | |
251 | // The destination register of the NZCV setting instruction must not be |
252 | // modified before the conditional branch. |
253 | if (!DomBBClobberedRegs.available(Reg: DstReg)) |
254 | return false; |
255 | |
256 | // We've found the instruction that sets NZCV whose DstReg == 0. |
257 | FirstUse = PredI; |
258 | KnownRegs.push_back(Elt: RegImm(DstReg, 0)); |
259 | return true; |
260 | } |
261 | } |
262 | |
263 | // Bail if we see an instruction that defines NZCV that we don't handle. |
264 | if (PredI.definesRegister(Reg: AArch64::NZCV, /*TRI=*/nullptr)) |
265 | return false; |
266 | |
267 | // Track clobbered and used registers. |
268 | LiveRegUnits::accumulateUsedDefed(MI: PredI, ModifiedRegUnits&: DomBBClobberedRegs, UsedRegUnits&: DomBBUsedRegs, |
269 | TRI); |
270 | } |
271 | return false; |
272 | } |
273 | |
274 | bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) { |
275 | // Check if the current basic block has a single predecessor. |
276 | if (MBB->pred_size() != 1) |
277 | return false; |
278 | |
279 | // Check if the predecessor has two successors, implying the block ends in a |
280 | // conditional branch. |
281 | MachineBasicBlock *PredMBB = *MBB->pred_begin(); |
282 | if (PredMBB->succ_size() != 2) |
283 | return false; |
284 | |
285 | MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr(); |
286 | if (CondBr == PredMBB->end()) |
287 | return false; |
288 | |
289 | // Keep track of the earliest point in the PredMBB block where kill markers |
290 | // need to be removed if a COPY is removed. |
291 | MachineBasicBlock::iterator FirstUse; |
292 | // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ |
293 | // or a compare (i.e., SUBS). In the latter case, we must take care when |
294 | // updating FirstUse when scanning for COPY instructions. In particular, if |
295 | // there's a COPY in between the compare and branch the COPY should not |
296 | // update FirstUse. |
297 | bool SeenFirstUse = false; |
298 | // Registers that contain a known value at the start of MBB. |
299 | SmallVector<RegImm, 4> KnownRegs; |
300 | |
301 | MachineBasicBlock::iterator Itr = std::next(x: CondBr); |
302 | do { |
303 | --Itr; |
304 | |
305 | if (!knownRegValInBlock(CondBr&: *Itr, MBB, KnownRegs, FirstUse)) |
306 | continue; |
307 | |
308 | // Reset the clobbered and used register units. |
309 | OptBBClobberedRegs.clear(); |
310 | OptBBUsedRegs.clear(); |
311 | |
312 | // Look backward in PredMBB for COPYs from the known reg to find other |
313 | // registers that are known to be a constant value. |
314 | for (auto PredI = Itr;; --PredI) { |
315 | if (FirstUse == PredI) |
316 | SeenFirstUse = true; |
317 | |
318 | if (PredI->isCopy()) { |
319 | MCPhysReg CopyDstReg = PredI->getOperand(i: 0).getReg(); |
320 | MCPhysReg CopySrcReg = PredI->getOperand(i: 1).getReg(); |
321 | for (auto &KnownReg : KnownRegs) { |
322 | if (!OptBBClobberedRegs.available(Reg: KnownReg.Reg)) |
323 | continue; |
324 | // If we have X = COPY Y, and Y is known to be zero, then now X is |
325 | // known to be zero. |
326 | if (CopySrcReg == KnownReg.Reg && |
327 | OptBBClobberedRegs.available(Reg: CopyDstReg)) { |
328 | KnownRegs.push_back(Elt: RegImm(CopyDstReg, KnownReg.Imm)); |
329 | if (SeenFirstUse) |
330 | FirstUse = PredI; |
331 | break; |
332 | } |
333 | // If we have X = COPY Y, and X is known to be zero, then now Y is |
334 | // known to be zero. |
335 | if (CopyDstReg == KnownReg.Reg && |
336 | OptBBClobberedRegs.available(Reg: CopySrcReg)) { |
337 | KnownRegs.push_back(Elt: RegImm(CopySrcReg, KnownReg.Imm)); |
338 | if (SeenFirstUse) |
339 | FirstUse = PredI; |
340 | break; |
341 | } |
342 | } |
343 | } |
344 | |
345 | // Stop if we get to the beginning of PredMBB. |
346 | if (PredI == PredMBB->begin()) |
347 | break; |
348 | |
349 | LiveRegUnits::accumulateUsedDefed(MI: *PredI, ModifiedRegUnits&: OptBBClobberedRegs, |
350 | UsedRegUnits&: OptBBUsedRegs, TRI); |
351 | // Stop if all of the known-zero regs have been clobbered. |
352 | if (all_of(Range&: KnownRegs, P: [&](RegImm KnownReg) { |
353 | return !OptBBClobberedRegs.available(Reg: KnownReg.Reg); |
354 | })) |
355 | break; |
356 | } |
357 | break; |
358 | |
359 | } while (Itr != PredMBB->begin() && Itr->isTerminator()); |
360 | |
361 | // We've not found a registers with a known value, time to bail out. |
362 | if (KnownRegs.empty()) |
363 | return false; |
364 | |
365 | bool Changed = false; |
366 | // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB. |
367 | SmallSetVector<unsigned, 4> UsedKnownRegs; |
368 | MachineBasicBlock::iterator LastChange = MBB->begin(); |
369 | // Remove redundant copy/move instructions unless KnownReg is modified. |
370 | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { |
371 | MachineInstr *MI = &*I; |
372 | ++I; |
373 | bool RemovedMI = false; |
374 | bool IsCopy = MI->isCopy(); |
375 | bool IsMoveImm = MI->isMoveImmediate(); |
376 | if (IsCopy || IsMoveImm) { |
377 | Register DefReg = MI->getOperand(i: 0).getReg(); |
378 | Register SrcReg = IsCopy ? MI->getOperand(i: 1).getReg() : Register(); |
379 | int64_t SrcImm = IsMoveImm ? MI->getOperand(i: 1).getImm() : 0; |
380 | if (!MRI->isReserved(PhysReg: DefReg) && |
381 | ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) || |
382 | IsMoveImm)) { |
383 | for (RegImm &KnownReg : KnownRegs) { |
384 | if (KnownReg.Reg != DefReg && |
385 | !TRI->isSuperRegister(RegA: DefReg, RegB: KnownReg.Reg)) |
386 | continue; |
387 | |
388 | // For a copy, the known value must be a zero. |
389 | if (IsCopy && KnownReg.Imm != 0) |
390 | continue; |
391 | |
392 | if (IsMoveImm) { |
393 | // For a move immediate, the known immediate must match the source |
394 | // immediate. |
395 | if (KnownReg.Imm != SrcImm) |
396 | continue; |
397 | |
398 | // Don't remove a move immediate that implicitly defines the upper |
399 | // bits when only the lower 32 bits are known. |
400 | MCPhysReg CmpReg = KnownReg.Reg; |
401 | if (any_of(Range: MI->implicit_operands(), P: [CmpReg](MachineOperand &O) { |
402 | return !O.isDead() && O.isReg() && O.isDef() && |
403 | O.getReg() != CmpReg; |
404 | })) |
405 | continue; |
406 | |
407 | // Don't remove a move immediate that implicitly defines the upper |
408 | // bits as different. |
409 | if (TRI->isSuperRegister(RegA: DefReg, RegB: KnownReg.Reg) && KnownReg.Imm < 0) |
410 | continue; |
411 | } |
412 | |
413 | if (IsCopy) |
414 | LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI); |
415 | else |
416 | LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI); |
417 | |
418 | MI->eraseFromParent(); |
419 | Changed = true; |
420 | LastChange = I; |
421 | NumCopiesRemoved++; |
422 | UsedKnownRegs.insert(X: KnownReg.Reg); |
423 | RemovedMI = true; |
424 | break; |
425 | } |
426 | } |
427 | } |
428 | |
429 | // Skip to the next instruction if we removed the COPY/MovImm. |
430 | if (RemovedMI) |
431 | continue; |
432 | |
433 | // Remove any regs the MI clobbers from the KnownConstRegs set. |
434 | for (unsigned RI = 0; RI < KnownRegs.size();) |
435 | if (MI->modifiesRegister(Reg: KnownRegs[RI].Reg, TRI)) { |
436 | std::swap(a&: KnownRegs[RI], b&: KnownRegs[KnownRegs.size() - 1]); |
437 | KnownRegs.pop_back(); |
438 | // Don't increment RI since we need to now check the swapped-in |
439 | // KnownRegs[RI]. |
440 | } else { |
441 | ++RI; |
442 | } |
443 | |
444 | // Continue until the KnownRegs set is empty. |
445 | if (KnownRegs.empty()) |
446 | break; |
447 | } |
448 | |
449 | if (!Changed) |
450 | return false; |
451 | |
452 | // Add newly used regs to the block's live-in list if they aren't there |
453 | // already. |
454 | for (MCPhysReg KnownReg : UsedKnownRegs) |
455 | if (!MBB->isLiveIn(Reg: KnownReg)) |
456 | MBB->addLiveIn(PhysReg: KnownReg); |
457 | |
458 | // Clear kills in the range where changes were made. This is conservative, |
459 | // but should be okay since kill markers are being phased out. |
460 | LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse |
461 | << "\tLastChange: " ; |
462 | if (LastChange == MBB->end()) dbgs() << "<end>\n" ; |
463 | else dbgs() << *LastChange); |
464 | for (MachineInstr &MMI : make_range(x: FirstUse, y: PredMBB->end())) |
465 | MMI.clearKillInfo(); |
466 | for (MachineInstr &MMI : make_range(x: MBB->begin(), y: LastChange)) |
467 | MMI.clearKillInfo(); |
468 | |
469 | return true; |
470 | } |
471 | |
472 | bool AArch64RedundantCopyElimination::runOnMachineFunction( |
473 | MachineFunction &MF) { |
474 | if (skipFunction(F: MF.getFunction())) |
475 | return false; |
476 | TRI = MF.getSubtarget().getRegisterInfo(); |
477 | MRI = &MF.getRegInfo(); |
478 | |
479 | // Resize the clobbered and used register unit trackers. We do this once per |
480 | // function. |
481 | DomBBClobberedRegs.init(TRI: *TRI); |
482 | DomBBUsedRegs.init(TRI: *TRI); |
483 | OptBBClobberedRegs.init(TRI: *TRI); |
484 | OptBBUsedRegs.init(TRI: *TRI); |
485 | |
486 | bool Changed = false; |
487 | for (MachineBasicBlock &MBB : MF) |
488 | Changed |= optimizeBlock(MBB: &MBB); |
489 | return Changed; |
490 | } |
491 | |
492 | FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() { |
493 | return new AArch64RedundantCopyElimination(); |
494 | } |
495 | |