| 1 | //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | // This pass removes unnecessary copies/moves in BBs based on a dominating |
| 8 | // condition. |
| 9 | // |
| 10 | // We handle three cases: |
| 11 | // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of |
| 12 | // the CBZ/CBNZ source register is zero on the taken/not-taken path. For |
| 13 | // instance, the copy instruction in the code below can be removed because |
| 14 | // the CBZW jumps to %bb.2 when w0 is zero. |
| 15 | // |
| 16 | // %bb.1: |
| 17 | // cbz w0, .LBB0_2 |
| 18 | // .LBB0_2: |
| 19 | // mov w0, wzr ; <-- redundant |
| 20 | // |
| 21 | // 2. If the flag setting instruction defines a register other than WZR/XZR, we |
| 22 | // can remove a zero copy in some cases. |
| 23 | // |
| 24 | // %bb.0: |
| 25 | // subs w0, w1, w2 |
| 26 | // str w0, [x1] |
| 27 | // b.ne .LBB0_2 |
| 28 | // %bb.1: |
| 29 | // mov w0, wzr ; <-- redundant |
| 30 | // str w0, [x2] |
| 31 | // .LBB0_2 |
| 32 | // |
| 33 | // 3. Finally, if the flag setting instruction is a comparison against a |
| 34 | // constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate |
| 35 | // in some cases. |
| 36 | // |
| 37 | // %bb.0: |
| 38 | // subs xzr, x0, #1 |
| 39 | // b.eq .LBB0_1 |
| 40 | // .LBB0_1: |
| 41 | // orr x0, xzr, #0x1 ; <-- redundant |
| 42 | // |
| 43 | // This pass should be run after register allocation. |
| 44 | // |
| 45 | // FIXME: This could also be extended to check the whole dominance subtree below |
| 46 | // the comparison if the compile time regression is acceptable. |
| 47 | // |
| 48 | // FIXME: Add support for handling CCMP instructions. |
| 49 | // FIXME: If the known register value is zero, we should be able to rewrite uses |
| 50 | // to use WZR/XZR directly in some cases. |
| 51 | //===----------------------------------------------------------------------===// |
| 52 | #include "AArch64.h" |
| 53 | #include "llvm/ADT/SetVector.h" |
| 54 | #include "llvm/ADT/Statistic.h" |
| 55 | #include "llvm/ADT/iterator_range.h" |
| 56 | #include "llvm/CodeGen/LiveRegUnits.h" |
| 57 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 58 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 59 | #include "llvm/Support/Debug.h" |
| 60 | |
| 61 | using namespace llvm; |
| 62 | |
| 63 | #define DEBUG_TYPE "aarch64-copyelim" |
| 64 | |
| 65 | STATISTIC(NumCopiesRemoved, "Number of copies removed." ); |
| 66 | |
| 67 | namespace { |
| 68 | class AArch64RedundantCopyElimination : public MachineFunctionPass { |
| 69 | const MachineRegisterInfo *MRI; |
| 70 | const TargetRegisterInfo *TRI; |
| 71 | |
| 72 | // DomBBClobberedRegs is used when computing known values in the dominating |
| 73 | // BB. |
| 74 | LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs; |
| 75 | |
| 76 | // OptBBClobberedRegs is used when optimizing away redundant copies/moves. |
| 77 | LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs; |
| 78 | |
| 79 | public: |
| 80 | static char ID; |
| 81 | AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {} |
| 82 | |
| 83 | struct RegImm { |
| 84 | MCPhysReg Reg; |
| 85 | int32_t Imm; |
| 86 | RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {} |
| 87 | }; |
| 88 | |
| 89 | bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB, |
| 90 | SmallVectorImpl<RegImm> &KnownRegs, |
| 91 | MachineBasicBlock::iterator &FirstUse); |
| 92 | bool optimizeBlock(MachineBasicBlock *MBB); |
| 93 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 94 | MachineFunctionProperties getRequiredProperties() const override { |
| 95 | return MachineFunctionProperties().setNoVRegs(); |
| 96 | } |
| 97 | StringRef getPassName() const override { |
| 98 | return "AArch64 Redundant Copy Elimination" ; |
| 99 | } |
| 100 | }; |
| 101 | char AArch64RedundantCopyElimination::ID = 0; |
| 102 | } |
| 103 | |
| 104 | INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim" , |
| 105 | "AArch64 redundant copy elimination pass" , false, false) |
| 106 | |
| 107 | /// It's possible to determine the value of a register based on a dominating |
| 108 | /// condition. To do so, this function checks to see if the basic block \p MBB |
| 109 | /// is the target of a conditional branch \p CondBr with an equality comparison. |
| 110 | /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero |
| 111 | /// in \p MBB for some cases. Otherwise, we find and inspect the NZCV setting |
| 112 | /// instruction (e.g., SUBS, ADDS). If this instruction defines a register |
| 113 | /// other than WZR/XZR, we know the value of the destination register is zero in |
| 114 | /// \p MMB for some cases. In addition, if the NZCV setting instruction is |
| 115 | /// comparing against a constant we know the other source register is equal to |
| 116 | /// the constant in \p MBB for some cases. If we find any constant values, push |
| 117 | /// a physical register and constant value pair onto the KnownRegs vector and |
| 118 | /// return true. Otherwise, return false if no known values were found. |
| 119 | bool AArch64RedundantCopyElimination::knownRegValInBlock( |
| 120 | MachineInstr &CondBr, MachineBasicBlock *MBB, |
| 121 | SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) { |
| 122 | unsigned Opc = CondBr.getOpcode(); |
| 123 | |
| 124 | // Check if the current basic block is the target block to which the |
| 125 | // CBZ/CBNZ instruction jumps when its Wt/Xt is zero. |
| 126 | if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) && |
| 127 | MBB == CondBr.getOperand(i: 1).getMBB()) || |
| 128 | ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) && |
| 129 | MBB != CondBr.getOperand(i: 1).getMBB())) { |
| 130 | FirstUse = CondBr; |
| 131 | KnownRegs.push_back(Elt: RegImm(CondBr.getOperand(i: 0).getReg(), 0)); |
| 132 | return true; |
| 133 | } |
| 134 | |
| 135 | // Otherwise, must be a conditional branch. |
| 136 | if (Opc != AArch64::Bcc) |
| 137 | return false; |
| 138 | |
| 139 | // Must be an equality check (i.e., == or !=). |
| 140 | AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(i: 0).getImm(); |
| 141 | if (CC != AArch64CC::EQ && CC != AArch64CC::NE) |
| 142 | return false; |
| 143 | |
| 144 | MachineBasicBlock *BrTarget = CondBr.getOperand(i: 1).getMBB(); |
| 145 | if ((CC == AArch64CC::EQ && BrTarget != MBB) || |
| 146 | (CC == AArch64CC::NE && BrTarget == MBB)) |
| 147 | return false; |
| 148 | |
| 149 | // Stop if we get to the beginning of PredMBB. |
| 150 | MachineBasicBlock *PredMBB = *MBB->pred_begin(); |
| 151 | assert(PredMBB == CondBr.getParent() && |
| 152 | "Conditional branch not in predecessor block!" ); |
| 153 | if (CondBr == PredMBB->begin()) |
| 154 | return false; |
| 155 | |
| 156 | // Registers clobbered in PredMBB between CondBr instruction and current |
| 157 | // instruction being checked in loop. |
| 158 | DomBBClobberedRegs.clear(); |
| 159 | DomBBUsedRegs.clear(); |
| 160 | |
| 161 | // Find compare instruction that sets NZCV used by CondBr. |
| 162 | MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator(); |
| 163 | for (MachineInstr &PredI : make_range(x: std::next(x: RIt), y: PredMBB->rend())) { |
| 164 | |
| 165 | bool IsCMN = false; |
| 166 | switch (PredI.getOpcode()) { |
| 167 | default: |
| 168 | break; |
| 169 | |
| 170 | // CMN is an alias for ADDS with a dead destination register. |
| 171 | case AArch64::ADDSWri: |
| 172 | case AArch64::ADDSXri: |
| 173 | IsCMN = true; |
| 174 | [[fallthrough]]; |
| 175 | // CMP is an alias for SUBS with a dead destination register. |
| 176 | case AArch64::SUBSWri: |
| 177 | case AArch64::SUBSXri: { |
| 178 | // Sometimes the first operand is a FrameIndex. Bail if tht happens. |
| 179 | if (!PredI.getOperand(i: 1).isReg()) |
| 180 | return false; |
| 181 | MCPhysReg DstReg = PredI.getOperand(i: 0).getReg(); |
| 182 | MCPhysReg SrcReg = PredI.getOperand(i: 1).getReg(); |
| 183 | |
| 184 | bool Res = false; |
| 185 | // If we're comparing against a non-symbolic immediate and the source |
| 186 | // register of the compare is not modified (including a self-clobbering |
| 187 | // compare) between the compare and conditional branch we known the value |
| 188 | // of the 1st source operand. |
| 189 | if (PredI.getOperand(i: 2).isImm() && DomBBClobberedRegs.available(Reg: SrcReg) && |
| 190 | SrcReg != DstReg) { |
| 191 | // We've found the instruction that sets NZCV. |
| 192 | int32_t KnownImm = PredI.getOperand(i: 2).getImm(); |
| 193 | int32_t Shift = PredI.getOperand(i: 3).getImm(); |
| 194 | KnownImm <<= Shift; |
| 195 | if (IsCMN) |
| 196 | KnownImm = -KnownImm; |
| 197 | FirstUse = PredI; |
| 198 | KnownRegs.push_back(Elt: RegImm(SrcReg, KnownImm)); |
| 199 | Res = true; |
| 200 | } |
| 201 | |
| 202 | // If this instructions defines something other than WZR/XZR, we know it's |
| 203 | // result is zero in some cases. |
| 204 | if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) |
| 205 | return Res; |
| 206 | |
| 207 | // The destination register must not be modified between the NZCV setting |
| 208 | // instruction and the conditional branch. |
| 209 | if (!DomBBClobberedRegs.available(Reg: DstReg)) |
| 210 | return Res; |
| 211 | |
| 212 | FirstUse = PredI; |
| 213 | KnownRegs.push_back(Elt: RegImm(DstReg, 0)); |
| 214 | return true; |
| 215 | } |
| 216 | |
| 217 | // Look for NZCV setting instructions that define something other than |
| 218 | // WZR/XZR. |
| 219 | case AArch64::ADCSWr: |
| 220 | case AArch64::ADCSXr: |
| 221 | case AArch64::ADDSWrr: |
| 222 | case AArch64::ADDSWrs: |
| 223 | case AArch64::ADDSWrx: |
| 224 | case AArch64::ADDSXrr: |
| 225 | case AArch64::ADDSXrs: |
| 226 | case AArch64::ADDSXrx: |
| 227 | case AArch64::ADDSXrx64: |
| 228 | case AArch64::ANDSWri: |
| 229 | case AArch64::ANDSWrr: |
| 230 | case AArch64::ANDSWrs: |
| 231 | case AArch64::ANDSXri: |
| 232 | case AArch64::ANDSXrr: |
| 233 | case AArch64::ANDSXrs: |
| 234 | case AArch64::BICSWrr: |
| 235 | case AArch64::BICSWrs: |
| 236 | case AArch64::BICSXrs: |
| 237 | case AArch64::BICSXrr: |
| 238 | case AArch64::SBCSWr: |
| 239 | case AArch64::SBCSXr: |
| 240 | case AArch64::SUBSWrr: |
| 241 | case AArch64::SUBSWrs: |
| 242 | case AArch64::SUBSWrx: |
| 243 | case AArch64::SUBSXrr: |
| 244 | case AArch64::SUBSXrs: |
| 245 | case AArch64::SUBSXrx: |
| 246 | case AArch64::SUBSXrx64: { |
| 247 | MCPhysReg DstReg = PredI.getOperand(i: 0).getReg(); |
| 248 | if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) |
| 249 | return false; |
| 250 | |
| 251 | // The destination register of the NZCV setting instruction must not be |
| 252 | // modified before the conditional branch. |
| 253 | if (!DomBBClobberedRegs.available(Reg: DstReg)) |
| 254 | return false; |
| 255 | |
| 256 | // We've found the instruction that sets NZCV whose DstReg == 0. |
| 257 | FirstUse = PredI; |
| 258 | KnownRegs.push_back(Elt: RegImm(DstReg, 0)); |
| 259 | return true; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | // Bail if we see an instruction that defines NZCV that we don't handle. |
| 264 | if (PredI.definesRegister(Reg: AArch64::NZCV, /*TRI=*/nullptr)) |
| 265 | return false; |
| 266 | |
| 267 | // Track clobbered and used registers. |
| 268 | LiveRegUnits::accumulateUsedDefed(MI: PredI, ModifiedRegUnits&: DomBBClobberedRegs, UsedRegUnits&: DomBBUsedRegs, |
| 269 | TRI); |
| 270 | } |
| 271 | return false; |
| 272 | } |
| 273 | |
| 274 | bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) { |
| 275 | // Check if the current basic block has a single predecessor. |
| 276 | if (MBB->pred_size() != 1) |
| 277 | return false; |
| 278 | |
| 279 | // Check if the predecessor has two successors, implying the block ends in a |
| 280 | // conditional branch. |
| 281 | MachineBasicBlock *PredMBB = *MBB->pred_begin(); |
| 282 | if (PredMBB->succ_size() != 2) |
| 283 | return false; |
| 284 | |
| 285 | MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr(); |
| 286 | if (CondBr == PredMBB->end()) |
| 287 | return false; |
| 288 | |
| 289 | // Keep track of the earliest point in the PredMBB block where kill markers |
| 290 | // need to be removed if a COPY is removed. |
| 291 | MachineBasicBlock::iterator FirstUse; |
| 292 | // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ |
| 293 | // or a compare (i.e., SUBS). In the latter case, we must take care when |
| 294 | // updating FirstUse when scanning for COPY instructions. In particular, if |
| 295 | // there's a COPY in between the compare and branch the COPY should not |
| 296 | // update FirstUse. |
| 297 | bool SeenFirstUse = false; |
| 298 | // Registers that contain a known value at the start of MBB. |
| 299 | SmallVector<RegImm, 4> KnownRegs; |
| 300 | |
| 301 | MachineBasicBlock::iterator Itr = std::next(x: CondBr); |
| 302 | do { |
| 303 | --Itr; |
| 304 | |
| 305 | if (!knownRegValInBlock(CondBr&: *Itr, MBB, KnownRegs, FirstUse)) |
| 306 | continue; |
| 307 | |
| 308 | // Reset the clobbered and used register units. |
| 309 | OptBBClobberedRegs.clear(); |
| 310 | OptBBUsedRegs.clear(); |
| 311 | |
| 312 | // Look backward in PredMBB for COPYs from the known reg to find other |
| 313 | // registers that are known to be a constant value. |
| 314 | for (auto PredI = Itr;; --PredI) { |
| 315 | if (FirstUse == PredI) |
| 316 | SeenFirstUse = true; |
| 317 | |
| 318 | if (PredI->isCopy()) { |
| 319 | MCPhysReg CopyDstReg = PredI->getOperand(i: 0).getReg(); |
| 320 | MCPhysReg CopySrcReg = PredI->getOperand(i: 1).getReg(); |
| 321 | for (auto &KnownReg : KnownRegs) { |
| 322 | if (!OptBBClobberedRegs.available(Reg: KnownReg.Reg)) |
| 323 | continue; |
| 324 | // If we have X = COPY Y, and Y is known to be zero, then now X is |
| 325 | // known to be zero. |
| 326 | if (CopySrcReg == KnownReg.Reg && |
| 327 | OptBBClobberedRegs.available(Reg: CopyDstReg)) { |
| 328 | KnownRegs.push_back(Elt: RegImm(CopyDstReg, KnownReg.Imm)); |
| 329 | if (SeenFirstUse) |
| 330 | FirstUse = PredI; |
| 331 | break; |
| 332 | } |
| 333 | // If we have X = COPY Y, and X is known to be zero, then now Y is |
| 334 | // known to be zero. |
| 335 | if (CopyDstReg == KnownReg.Reg && |
| 336 | OptBBClobberedRegs.available(Reg: CopySrcReg)) { |
| 337 | KnownRegs.push_back(Elt: RegImm(CopySrcReg, KnownReg.Imm)); |
| 338 | if (SeenFirstUse) |
| 339 | FirstUse = PredI; |
| 340 | break; |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | // Stop if we get to the beginning of PredMBB. |
| 346 | if (PredI == PredMBB->begin()) |
| 347 | break; |
| 348 | |
| 349 | LiveRegUnits::accumulateUsedDefed(MI: *PredI, ModifiedRegUnits&: OptBBClobberedRegs, |
| 350 | UsedRegUnits&: OptBBUsedRegs, TRI); |
| 351 | // Stop if all of the known-zero regs have been clobbered. |
| 352 | if (all_of(Range&: KnownRegs, P: [&](RegImm KnownReg) { |
| 353 | return !OptBBClobberedRegs.available(Reg: KnownReg.Reg); |
| 354 | })) |
| 355 | break; |
| 356 | } |
| 357 | break; |
| 358 | |
| 359 | } while (Itr != PredMBB->begin() && Itr->isTerminator()); |
| 360 | |
| 361 | // We've not found a registers with a known value, time to bail out. |
| 362 | if (KnownRegs.empty()) |
| 363 | return false; |
| 364 | |
| 365 | bool Changed = false; |
| 366 | // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB. |
| 367 | SmallSetVector<unsigned, 4> UsedKnownRegs; |
| 368 | MachineBasicBlock::iterator LastChange = MBB->begin(); |
| 369 | // Remove redundant copy/move instructions unless KnownReg is modified. |
| 370 | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { |
| 371 | MachineInstr *MI = &*I; |
| 372 | ++I; |
| 373 | bool RemovedMI = false; |
| 374 | bool IsCopy = MI->isCopy(); |
| 375 | bool IsMoveImm = MI->isMoveImmediate(); |
| 376 | if (IsCopy || IsMoveImm) { |
| 377 | Register DefReg = MI->getOperand(i: 0).getReg(); |
| 378 | Register SrcReg = IsCopy ? MI->getOperand(i: 1).getReg() : Register(); |
| 379 | int64_t SrcImm = IsMoveImm ? MI->getOperand(i: 1).getImm() : 0; |
| 380 | if (!MRI->isReserved(PhysReg: DefReg) && |
| 381 | ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) || |
| 382 | IsMoveImm)) { |
| 383 | for (RegImm &KnownReg : KnownRegs) { |
| 384 | if (KnownReg.Reg != DefReg && |
| 385 | !TRI->isSuperRegister(RegA: DefReg, RegB: KnownReg.Reg)) |
| 386 | continue; |
| 387 | |
| 388 | // For a copy, the known value must be a zero. |
| 389 | if (IsCopy && KnownReg.Imm != 0) |
| 390 | continue; |
| 391 | |
| 392 | if (IsMoveImm) { |
| 393 | // For a move immediate, the known immediate must match the source |
| 394 | // immediate. |
| 395 | if (KnownReg.Imm != SrcImm) |
| 396 | continue; |
| 397 | |
| 398 | // Don't remove a move immediate that implicitly defines the upper |
| 399 | // bits when only the lower 32 bits are known. |
| 400 | MCPhysReg CmpReg = KnownReg.Reg; |
| 401 | if (any_of(Range: MI->implicit_operands(), P: [CmpReg](MachineOperand &O) { |
| 402 | return !O.isDead() && O.isReg() && O.isDef() && |
| 403 | O.getReg() != CmpReg; |
| 404 | })) |
| 405 | continue; |
| 406 | |
| 407 | // Don't remove a move immediate that implicitly defines the upper |
| 408 | // bits as different. |
| 409 | if (TRI->isSuperRegister(RegA: DefReg, RegB: KnownReg.Reg) && KnownReg.Imm < 0) |
| 410 | continue; |
| 411 | } |
| 412 | |
| 413 | if (IsCopy) |
| 414 | LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI); |
| 415 | else |
| 416 | LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI); |
| 417 | |
| 418 | MI->eraseFromParent(); |
| 419 | Changed = true; |
| 420 | LastChange = I; |
| 421 | NumCopiesRemoved++; |
| 422 | UsedKnownRegs.insert(X: KnownReg.Reg); |
| 423 | RemovedMI = true; |
| 424 | break; |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | // Skip to the next instruction if we removed the COPY/MovImm. |
| 430 | if (RemovedMI) |
| 431 | continue; |
| 432 | |
| 433 | // Remove any regs the MI clobbers from the KnownConstRegs set. |
| 434 | for (unsigned RI = 0; RI < KnownRegs.size();) |
| 435 | if (MI->modifiesRegister(Reg: KnownRegs[RI].Reg, TRI)) { |
| 436 | std::swap(a&: KnownRegs[RI], b&: KnownRegs[KnownRegs.size() - 1]); |
| 437 | KnownRegs.pop_back(); |
| 438 | // Don't increment RI since we need to now check the swapped-in |
| 439 | // KnownRegs[RI]. |
| 440 | } else { |
| 441 | ++RI; |
| 442 | } |
| 443 | |
| 444 | // Continue until the KnownRegs set is empty. |
| 445 | if (KnownRegs.empty()) |
| 446 | break; |
| 447 | } |
| 448 | |
| 449 | if (!Changed) |
| 450 | return false; |
| 451 | |
| 452 | // Add newly used regs to the block's live-in list if they aren't there |
| 453 | // already. |
| 454 | for (MCPhysReg KnownReg : UsedKnownRegs) |
| 455 | if (!MBB->isLiveIn(Reg: KnownReg)) |
| 456 | MBB->addLiveIn(PhysReg: KnownReg); |
| 457 | |
| 458 | // Clear kills in the range where changes were made. This is conservative, |
| 459 | // but should be okay since kill markers are being phased out. |
| 460 | LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse |
| 461 | << "\tLastChange: " ; |
| 462 | if (LastChange == MBB->end()) dbgs() << "<end>\n" ; |
| 463 | else dbgs() << *LastChange); |
| 464 | for (MachineInstr &MMI : make_range(x: FirstUse, y: PredMBB->end())) |
| 465 | MMI.clearKillInfo(); |
| 466 | for (MachineInstr &MMI : make_range(x: MBB->begin(), y: LastChange)) |
| 467 | MMI.clearKillInfo(); |
| 468 | |
| 469 | return true; |
| 470 | } |
| 471 | |
| 472 | bool AArch64RedundantCopyElimination::runOnMachineFunction( |
| 473 | MachineFunction &MF) { |
| 474 | if (skipFunction(F: MF.getFunction())) |
| 475 | return false; |
| 476 | TRI = MF.getSubtarget().getRegisterInfo(); |
| 477 | MRI = &MF.getRegInfo(); |
| 478 | |
| 479 | // Resize the clobbered and used register unit trackers. We do this once per |
| 480 | // function. |
| 481 | DomBBClobberedRegs.init(TRI: *TRI); |
| 482 | DomBBUsedRegs.init(TRI: *TRI); |
| 483 | OptBBClobberedRegs.init(TRI: *TRI); |
| 484 | OptBBUsedRegs.init(TRI: *TRI); |
| 485 | |
| 486 | bool Changed = false; |
| 487 | for (MachineBasicBlock &MBB : MF) |
| 488 | Changed |= optimizeBlock(MBB: &MBB); |
| 489 | return Changed; |
| 490 | } |
| 491 | |
| 492 | FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() { |
| 493 | return new AArch64RedundantCopyElimination(); |
| 494 | } |
| 495 | |