| 1 | //===--- AMDGPUIGroupLP.cpp - AMDGPU IGroupLP ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // \file This file defines a set of schedule DAG mutations that can be used to |
| 10 | // override default scheduler behavior to enforce specific scheduling patterns. |
| 11 | // They should be used in cases where runtime performance considerations such as |
| 12 | // inter-wavefront interactions, mean that compile-time heuristics cannot |
| 13 | // predict the optimal instruction ordering, or in kernels where optimum |
| 14 | // instruction scheduling is important enough to warrant manual intervention. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "AMDGPUIGroupLP.h" |
| 19 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 20 | #include "SIInstrInfo.h" |
| 21 | #include "SIMachineFunctionInfo.h" |
| 22 | #include "llvm/ADT/BitmaskEnum.h" |
| 23 | #include "llvm/ADT/DenseMap.h" |
| 24 | #include "llvm/CodeGen/MachineScheduler.h" |
| 25 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | #define DEBUG_TYPE "igrouplp" |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | static cl::opt<bool> EnableExactSolver( |
| 34 | "amdgpu-igrouplp-exact-solver" , cl::Hidden, |
| 35 | cl::desc("Whether to use the exponential time solver to fit " |
| 36 | "the instructions to the pipeline as closely as " |
| 37 | "possible." ), |
| 38 | cl::init(Val: false)); |
| 39 | |
| 40 | static cl::opt<unsigned> CutoffForExact( |
| 41 | "amdgpu-igrouplp-exact-solver-cutoff" , cl::init(Val: 0), cl::Hidden, |
| 42 | cl::desc("The maximum number of scheduling group conflicts " |
| 43 | "which we attempt to solve with the exponential time " |
| 44 | "exact solver. Problem sizes greater than this will" |
| 45 | "be solved by the less accurate greedy algorithm. Selecting " |
| 46 | "solver by size is superseded by manually selecting " |
| 47 | "the solver (e.g. by amdgpu-igrouplp-exact-solver" )); |
| 48 | |
| 49 | static cl::opt<uint64_t> MaxBranchesExplored( |
| 50 | "amdgpu-igrouplp-exact-solver-max-branches" , cl::init(Val: 0), cl::Hidden, |
| 51 | cl::desc("The amount of branches that we are willing to explore with" |
| 52 | "the exact algorithm before giving up." )); |
| 53 | |
| 54 | static cl::opt<bool> UseCostHeur( |
| 55 | "amdgpu-igrouplp-exact-solver-cost-heur" , cl::init(Val: true), cl::Hidden, |
| 56 | cl::desc("Whether to use the cost heuristic to make choices as we " |
| 57 | "traverse the search space using the exact solver. Defaulted " |
| 58 | "to on, and if turned off, we will use the node order -- " |
| 59 | "attempting to put the later nodes in the later sched groups. " |
| 60 | "Experimentally, results are mixed, so this should be set on a " |
| 61 | "case-by-case basis." )); |
| 62 | |
| 63 | // Components of the mask that determines which instruction types may be may be |
| 64 | // classified into a SchedGroup. |
| 65 | enum class SchedGroupMask { |
| 66 | NONE = 0u, |
| 67 | ALU = 1u << 0, |
| 68 | VALU = 1u << 1, |
| 69 | SALU = 1u << 2, |
| 70 | MFMA = 1u << 3, |
| 71 | VMEM = 1u << 4, |
| 72 | VMEM_READ = 1u << 5, |
| 73 | VMEM_WRITE = 1u << 6, |
| 74 | DS = 1u << 7, |
| 75 | DS_READ = 1u << 8, |
| 76 | DS_WRITE = 1u << 9, |
| 77 | TRANS = 1u << 10, |
| 78 | ALL = ALU | VALU | SALU | MFMA | VMEM | VMEM_READ | VMEM_WRITE | DS | |
| 79 | DS_READ | DS_WRITE | TRANS, |
| 80 | LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) |
| 81 | }; |
| 82 | |
| 83 | class SchedGroup; |
| 84 | |
| 85 | // InstructionRule class is used to enact a filter which determines whether or |
| 86 | // not an SU maps to a given SchedGroup. It contains complementary data |
| 87 | // structures (e.g Cache) to help those filters. |
| 88 | class InstructionRule { |
| 89 | protected: |
| 90 | const SIInstrInfo *TII; |
| 91 | unsigned SGID; |
| 92 | // A cache made available to the Filter to store SUnits for subsequent |
| 93 | // invocations of the Filter |
| 94 | std::optional<SmallVector<SUnit *, 4>> Cache; |
| 95 | |
| 96 | public: |
| 97 | virtual bool |
| 98 | apply(const SUnit *, const ArrayRef<SUnit *>, |
| 99 | SmallVectorImpl<SchedGroup> &) { |
| 100 | return true; |
| 101 | }; |
| 102 | |
| 103 | InstructionRule(const SIInstrInfo *TII, unsigned SGID, |
| 104 | bool NeedsCache = false) |
| 105 | : TII(TII), SGID(SGID) { |
| 106 | if (NeedsCache) { |
| 107 | Cache = SmallVector<SUnit *, 4>(); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | virtual ~InstructionRule() = default; |
| 112 | }; |
| 113 | |
| 114 | using SUnitsToCandidateSGsMap = DenseMap<SUnit *, SmallVector<int, 4>>; |
| 115 | |
| 116 | // Classify instructions into groups to enable fine tuned control over the |
| 117 | // scheduler. These groups may be more specific than current SchedModel |
| 118 | // instruction classes. |
| 119 | class SchedGroup { |
| 120 | private: |
| 121 | // Mask that defines which instruction types can be classified into this |
| 122 | // SchedGroup. The instruction types correspond to the mask from SCHED_BARRIER |
| 123 | // and SCHED_GROUP_BARRIER. |
| 124 | SchedGroupMask SGMask; |
| 125 | |
| 126 | // Maximum number of SUnits that can be added to this group. |
| 127 | std::optional<unsigned> MaxSize; |
| 128 | |
| 129 | // SchedGroups will only synchronize with other SchedGroups that have the same |
| 130 | // SyncID. |
| 131 | int SyncID = 0; |
| 132 | |
| 133 | // SGID is used to map instructions to candidate SchedGroups |
| 134 | unsigned SGID; |
| 135 | |
| 136 | // The different rules each instruction in this SchedGroup must conform to |
| 137 | SmallVector<std::shared_ptr<InstructionRule>, 4> Rules; |
| 138 | |
| 139 | // Count of the number of created SchedGroups, used to initialize SGID. |
| 140 | static unsigned NumSchedGroups; |
| 141 | |
| 142 | // Try to add and edge from SU A to SU B. |
| 143 | bool tryAddEdge(SUnit *A, SUnit *B); |
| 144 | |
| 145 | // Use SGMask to determine whether we can classify MI as a member of this |
| 146 | // SchedGroup object. |
| 147 | bool canAddMI(const MachineInstr &MI) const; |
| 148 | |
| 149 | public: |
| 150 | // Collection of SUnits that are classified as members of this group. |
| 151 | SmallVector<SUnit *, 32> Collection; |
| 152 | |
| 153 | ScheduleDAGInstrs *DAG; |
| 154 | const SIInstrInfo *TII; |
| 155 | |
| 156 | // Returns true if SU can be added to this SchedGroup. |
| 157 | bool canAddSU(SUnit &SU) const; |
| 158 | |
| 159 | // Add DAG dependencies from all SUnits in this SchedGroup and this SU. If |
| 160 | // MakePred is true, SU will be a predecessor of the SUnits in this |
| 161 | // SchedGroup, otherwise SU will be a successor. |
| 162 | void link(SUnit &SU, bool MakePred = false); |
| 163 | |
| 164 | // Add DAG dependencies and track which edges are added, and the count of |
| 165 | // missed edges |
| 166 | int link(SUnit &SU, bool MakePred, |
| 167 | std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges); |
| 168 | |
| 169 | // Add DAG dependencies from all SUnits in this SchedGroup and this SU. |
| 170 | // Use the predicate to determine whether SU should be a predecessor (P = |
| 171 | // true) or a successor (P = false) of this SchedGroup. |
| 172 | void link(SUnit &SU, function_ref<bool(const SUnit *A, const SUnit *B)> P); |
| 173 | |
| 174 | // Add DAG dependencies such that SUnits in this group shall be ordered |
| 175 | // before SUnits in OtherGroup. |
| 176 | void link(SchedGroup &OtherGroup); |
| 177 | |
| 178 | // Returns true if no more instructions may be added to this group. |
| 179 | bool isFull() const { return MaxSize && Collection.size() >= *MaxSize; } |
| 180 | |
| 181 | // Append a constraint that SUs must meet in order to fit into this |
| 182 | // SchedGroup. Since many rules involve the relationship between a SchedGroup |
| 183 | // and the SUnits in other SchedGroups, rules are checked at Pipeline Solve |
| 184 | // time (rather than SchedGroup init time.) |
| 185 | void addRule(std::shared_ptr<InstructionRule> NewRule) { |
| 186 | Rules.push_back(Elt: NewRule); |
| 187 | } |
| 188 | |
| 189 | // Returns true if the SU matches all rules |
| 190 | bool allowedByRules(const SUnit *SU, |
| 191 | SmallVectorImpl<SchedGroup> &SyncPipe) const { |
| 192 | for (auto &Rule : Rules) { |
| 193 | if (!Rule->apply(SU, Collection, SyncPipe)) |
| 194 | return false; |
| 195 | } |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | // Add SU to the SchedGroup. |
| 200 | void add(SUnit &SU) { |
| 201 | LLVM_DEBUG(dbgs() << "For SchedGroup with mask " |
| 202 | << format_hex((int)SGMask, 10, true) << " adding " |
| 203 | << *SU.getInstr()); |
| 204 | Collection.push_back(Elt: &SU); |
| 205 | } |
| 206 | |
| 207 | // Remove last element in the SchedGroup |
| 208 | void pop() { Collection.pop_back(); } |
| 209 | |
| 210 | // Identify and add all relevant SUs from the DAG to this SchedGroup. |
| 211 | void initSchedGroup(); |
| 212 | |
| 213 | // Add instructions to the SchedGroup bottom up starting from RIter. |
| 214 | // PipelineInstrs is a set of instructions that should not be added to the |
| 215 | // SchedGroup even when the other conditions for adding it are satisfied. |
| 216 | // RIter will be added to the SchedGroup as well, and dependencies will be |
| 217 | // added so that RIter will always be scheduled at the end of the group. |
| 218 | void initSchedGroup(std::vector<SUnit>::reverse_iterator RIter, |
| 219 | SUnitsToCandidateSGsMap &SyncedInstrs); |
| 220 | |
| 221 | void initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs); |
| 222 | |
| 223 | int getSyncID() { return SyncID; } |
| 224 | |
| 225 | int getSGID() { return SGID; } |
| 226 | |
| 227 | SchedGroupMask getMask() { return SGMask; } |
| 228 | |
| 229 | SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize, |
| 230 | ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 231 | : SGMask(SGMask), MaxSize(MaxSize), DAG(DAG), TII(TII) { |
| 232 | SGID = NumSchedGroups++; |
| 233 | } |
| 234 | |
| 235 | SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize, int SyncID, |
| 236 | ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 237 | : SGMask(SGMask), MaxSize(MaxSize), SyncID(SyncID), DAG(DAG), TII(TII) { |
| 238 | SGID = NumSchedGroups++; |
| 239 | } |
| 240 | }; |
| 241 | |
| 242 | using SUToCandSGsPair = std::pair<SUnit *, SmallVector<int, 4>>; |
| 243 | using SUsToCandSGsVec = SmallVector<SUToCandSGsPair, 4>; |
| 244 | |
| 245 | // The PipelineSolver is used to assign SUnits to SchedGroups in a pipeline |
| 246 | // in non-trivial cases. For example, if the requested pipeline is |
| 247 | // {VMEM_READ, VALU, MFMA, VMEM_READ} and we encounter a VMEM_READ instruction |
| 248 | // in the DAG, then we will have an instruction that can not be trivially |
| 249 | // assigned to a SchedGroup. The PipelineSolver class implements two algorithms |
| 250 | // to find a good solution to the pipeline -- a greedy algorithm and an exact |
| 251 | // algorithm. The exact algorithm has an exponential time complexity and should |
| 252 | // only be used for small sized problems or medium sized problems where an exact |
| 253 | // solution is highly desired. |
| 254 | class PipelineSolver { |
| 255 | [[maybe_unused]] ScheduleDAGMI *DAG; |
| 256 | |
| 257 | // Instructions that can be assigned to multiple SchedGroups |
| 258 | DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs; |
| 259 | SmallVector<SUsToCandSGsVec, 4> PipelineInstrs; |
| 260 | DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups; |
| 261 | // The current working pipeline |
| 262 | SmallVector<SmallVector<SchedGroup, 4>, 4> CurrPipeline; |
| 263 | // The pipeline that has the best solution found so far |
| 264 | SmallVector<SmallVector<SchedGroup, 4>, 4> BestPipeline; |
| 265 | |
| 266 | // Whether or not we actually have any SyncedInstrs to try to solve. |
| 267 | bool NeedsSolver = false; |
| 268 | |
| 269 | // Compute an estimate of the size of search tree -- the true size is |
| 270 | // the product of each conflictedInst.Matches.size() across all SyncPipelines |
| 271 | unsigned computeProblemSize(); |
| 272 | |
| 273 | // The cost penalty of not assigning a SU to a SchedGroup |
| 274 | int MissPenalty = 0; |
| 275 | |
| 276 | // Costs in terms of the number of edges we are unable to add |
| 277 | int BestCost = -1; |
| 278 | int CurrCost = 0; |
| 279 | |
| 280 | // Index pointing to the conflicting instruction that is currently being |
| 281 | // fitted |
| 282 | int CurrConflInstNo = 0; |
| 283 | // Index to the pipeline that is currently being fitted |
| 284 | int CurrSyncGroupIdx = 0; |
| 285 | // The first non trivial pipeline |
| 286 | int BeginSyncGroupIdx = 0; |
| 287 | |
| 288 | // How many branches we have explored |
| 289 | uint64_t BranchesExplored = 0; |
| 290 | |
| 291 | // The direction in which we process the candidate SchedGroups per SU |
| 292 | bool IsBottomUp = true; |
| 293 | |
| 294 | // Update indices to fit next conflicting instruction |
| 295 | void advancePosition(); |
| 296 | // Recede indices to attempt to find better fit for previous conflicting |
| 297 | // instruction |
| 298 | void retreatPosition(); |
| 299 | |
| 300 | // The exponential time algorithm which finds the provably best fit |
| 301 | bool solveExact(); |
| 302 | // The polynomial time algorithm which attempts to find a good fit |
| 303 | bool solveGreedy(); |
| 304 | // Find the best SchedGroup for the current SU using the heuristic given all |
| 305 | // current information. One step in the greedy algorithm. Templated against |
| 306 | // the SchedGroup iterator (either reverse or forward). |
| 307 | template <typename T> |
| 308 | void greedyFind(std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, |
| 309 | T E); |
| 310 | // Whether or not the current solution is optimal |
| 311 | bool checkOptimal(); |
| 312 | // Populate the ready list, prioiritizing fewest missed edges first |
| 313 | // Templated against the SchedGroup iterator (either reverse or forward). |
| 314 | template <typename T> |
| 315 | void populateReadyList(SmallVectorImpl<std::pair<int, int>> &ReadyList, T I, |
| 316 | T E); |
| 317 | // Add edges corresponding to the SchedGroups as assigned by solver |
| 318 | void makePipeline(); |
| 319 | // Link the SchedGroups in the best found pipeline. |
| 320 | // Tmplated against the SchedGroup iterator (either reverse or forward). |
| 321 | template <typename T> void linkSchedGroups(T I, T E); |
| 322 | // Add the edges from the SU to the other SchedGroups in pipeline, and |
| 323 | // return the number of edges missed. |
| 324 | int addEdges(SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID, |
| 325 | std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges); |
| 326 | /// Link the pipeline as if \p SU was in the SchedGroup with ID \p SGID. It |
| 327 | /// returns the cost (in terms of missed pipeline edges), and tracks the edges |
| 328 | /// added in \p AddedEdges |
| 329 | template <typename T> |
| 330 | int linkSUnit(SUnit *SU, int SGID, |
| 331 | std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E); |
| 332 | /// Remove the edges passed via \p AddedEdges |
| 333 | void removeEdges(const std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges); |
| 334 | // Convert the passed in maps to arrays for bidirectional iterators |
| 335 | void convertSyncMapsToArrays(); |
| 336 | |
| 337 | void reset(); |
| 338 | |
| 339 | public: |
| 340 | // Invoke the solver to map instructions to instruction groups. Heuristic && |
| 341 | // command-line-option determines to use exact or greedy algorithm. |
| 342 | void solve(); |
| 343 | |
| 344 | PipelineSolver(DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 345 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 346 | ScheduleDAGMI *DAG, bool IsBottomUp = true) |
| 347 | : DAG(DAG), SyncedInstrs(SyncedInstrs), |
| 348 | SyncedSchedGroups(SyncedSchedGroups), IsBottomUp(IsBottomUp) { |
| 349 | |
| 350 | for (auto &PipelineInstrs : SyncedInstrs) { |
| 351 | if (PipelineInstrs.second.size() > 0) { |
| 352 | NeedsSolver = true; |
| 353 | break; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | if (!NeedsSolver) |
| 358 | return; |
| 359 | |
| 360 | convertSyncMapsToArrays(); |
| 361 | |
| 362 | CurrPipeline = BestPipeline; |
| 363 | |
| 364 | while (static_cast<size_t>(BeginSyncGroupIdx) < PipelineInstrs.size() && |
| 365 | PipelineInstrs[BeginSyncGroupIdx].size() == 0) |
| 366 | ++BeginSyncGroupIdx; |
| 367 | |
| 368 | if (static_cast<size_t>(BeginSyncGroupIdx) >= PipelineInstrs.size()) |
| 369 | return; |
| 370 | } |
| 371 | }; |
| 372 | |
| 373 | void PipelineSolver::reset() { |
| 374 | |
| 375 | for (auto &SyncPipeline : CurrPipeline) { |
| 376 | for (auto &SG : SyncPipeline) { |
| 377 | SmallVector<SUnit *, 32> TempCollection = SG.Collection; |
| 378 | SG.Collection.clear(); |
| 379 | auto *SchedBarr = llvm::find_if(Range&: TempCollection, P: [](SUnit *SU) { |
| 380 | return SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER; |
| 381 | }); |
| 382 | if (SchedBarr != TempCollection.end()) |
| 383 | SG.Collection.push_back(Elt: *SchedBarr); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | CurrSyncGroupIdx = BeginSyncGroupIdx; |
| 388 | CurrConflInstNo = 0; |
| 389 | CurrCost = 0; |
| 390 | } |
| 391 | |
| 392 | void PipelineSolver::convertSyncMapsToArrays() { |
| 393 | for (auto &SyncPipe : SyncedSchedGroups) { |
| 394 | BestPipeline.insert(I: BestPipeline.begin(), Elt: SyncPipe.second); |
| 395 | } |
| 396 | |
| 397 | int PipelineIDx = SyncedInstrs.size() - 1; |
| 398 | PipelineInstrs.resize(N: SyncedInstrs.size()); |
| 399 | for (auto &SyncInstrMap : SyncedInstrs) { |
| 400 | for (auto &SUsToCandSGs : SyncInstrMap.second) { |
| 401 | if (PipelineInstrs[PipelineIDx].size() == 0) { |
| 402 | PipelineInstrs[PipelineIDx].push_back( |
| 403 | Elt: std::pair(SUsToCandSGs.first, SUsToCandSGs.second)); |
| 404 | continue; |
| 405 | } |
| 406 | auto *SortPosition = PipelineInstrs[PipelineIDx].begin(); |
| 407 | // Insert them in sorted order -- this allows for good parsing order in |
| 408 | // the greedy algorithm |
| 409 | while (SortPosition != PipelineInstrs[PipelineIDx].end() && |
| 410 | SUsToCandSGs.first->NodeNum > SortPosition->first->NodeNum) |
| 411 | ++SortPosition; |
| 412 | PipelineInstrs[PipelineIDx].insert( |
| 413 | I: SortPosition, Elt: std::pair(SUsToCandSGs.first, SUsToCandSGs.second)); |
| 414 | } |
| 415 | --PipelineIDx; |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | template <typename T> void PipelineSolver::linkSchedGroups(T I, T E) { |
| 420 | for (; I != E; ++I) { |
| 421 | auto &GroupA = *I; |
| 422 | for (auto J = std::next(I); J != E; ++J) { |
| 423 | auto &GroupB = *J; |
| 424 | GroupA.link(GroupB); |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | void PipelineSolver::makePipeline() { |
| 430 | // Preserve the order of barrier for subsequent SchedGroupBarrier mutations |
| 431 | for (auto &SyncPipeline : BestPipeline) { |
| 432 | LLVM_DEBUG(dbgs() << "Printing SchedGroups\n" ); |
| 433 | for (auto &SG : SyncPipeline) { |
| 434 | LLVM_DEBUG(dbgs() << "SchedGroup with SGID " << SG.getSGID() |
| 435 | << " has: \n" ); |
| 436 | SUnit *SGBarr = nullptr; |
| 437 | for (auto &SU : SG.Collection) { |
| 438 | if (SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER) |
| 439 | SGBarr = SU; |
| 440 | LLVM_DEBUG(dbgs() << "SU(" << SU->NodeNum << ")\n" ); |
| 441 | } |
| 442 | // Command line requested IGroupLP doesn't have SGBarr |
| 443 | if (!SGBarr) |
| 444 | continue; |
| 445 | SG.link(SU&: *SGBarr, MakePred: false); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | for (auto &SyncPipeline : BestPipeline) { |
| 450 | IsBottomUp ? linkSchedGroups(I: SyncPipeline.rbegin(), E: SyncPipeline.rend()) |
| 451 | : linkSchedGroups(I: SyncPipeline.begin(), E: SyncPipeline.end()); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | template <typename T> |
| 456 | int PipelineSolver::linkSUnit( |
| 457 | SUnit *SU, int SGID, std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, |
| 458 | T I, T E) { |
| 459 | bool MakePred = false; |
| 460 | int AddedCost = 0; |
| 461 | for (; I < E; ++I) { |
| 462 | if (I->getSGID() == SGID) { |
| 463 | MakePred = true; |
| 464 | continue; |
| 465 | } |
| 466 | auto Group = *I; |
| 467 | AddedCost += Group.link(*SU, MakePred, AddedEdges); |
| 468 | assert(AddedCost >= 0); |
| 469 | } |
| 470 | return AddedCost; |
| 471 | } |
| 472 | |
| 473 | int PipelineSolver::addEdges( |
| 474 | SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID, |
| 475 | std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) { |
| 476 | |
| 477 | // For IsBottomUp, the first SchedGroup in SyncPipeline contains the |
| 478 | // instructions that are the ultimate successors in the resultant mutation. |
| 479 | // Therefore, in such a configuration, the SchedGroups occurring before the |
| 480 | // candidate SGID are successors of the candidate SchedGroup, thus the current |
| 481 | // SU should be linked as a predecessor to SUs in those SchedGroups. The |
| 482 | // opposite is true if !IsBottomUp. IsBottomUp occurs in the case of multiple |
| 483 | // SCHED_GROUP_BARRIERS, or if a user specifies IGLP_OPT SchedGroups using |
| 484 | // IsBottomUp (in reverse). |
| 485 | return IsBottomUp ? linkSUnit(SU, SGID, AddedEdges, I: SyncPipeline.rbegin(), |
| 486 | E: SyncPipeline.rend()) |
| 487 | : linkSUnit(SU, SGID, AddedEdges, I: SyncPipeline.begin(), |
| 488 | E: SyncPipeline.end()); |
| 489 | } |
| 490 | |
| 491 | void PipelineSolver::removeEdges( |
| 492 | const std::vector<std::pair<SUnit *, SUnit *>> &EdgesToRemove) { |
| 493 | // Only remove the edges that we have added when testing |
| 494 | // the fit. |
| 495 | for (auto &PredSuccPair : EdgesToRemove) { |
| 496 | SUnit *Pred = PredSuccPair.first; |
| 497 | SUnit *Succ = PredSuccPair.second; |
| 498 | |
| 499 | auto *Match = llvm::find_if( |
| 500 | Range&: Succ->Preds, P: [&Pred](SDep &P) { return P.getSUnit() == Pred; }); |
| 501 | if (Match != Succ->Preds.end()) { |
| 502 | assert(Match->isArtificial()); |
| 503 | Succ->removePred(D: *Match); |
| 504 | } |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | void PipelineSolver::advancePosition() { |
| 509 | ++CurrConflInstNo; |
| 510 | |
| 511 | if (static_cast<size_t>(CurrConflInstNo) >= |
| 512 | PipelineInstrs[CurrSyncGroupIdx].size()) { |
| 513 | CurrConflInstNo = 0; |
| 514 | ++CurrSyncGroupIdx; |
| 515 | // Advance to next non-trivial pipeline |
| 516 | while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size() && |
| 517 | PipelineInstrs[CurrSyncGroupIdx].size() == 0) |
| 518 | ++CurrSyncGroupIdx; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | void PipelineSolver::retreatPosition() { |
| 523 | assert(CurrConflInstNo >= 0); |
| 524 | assert(CurrSyncGroupIdx >= 0); |
| 525 | |
| 526 | if (CurrConflInstNo > 0) { |
| 527 | --CurrConflInstNo; |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | if (CurrConflInstNo == 0) { |
| 532 | // If we return to the starting position, we have explored |
| 533 | // the entire tree |
| 534 | if (CurrSyncGroupIdx == BeginSyncGroupIdx) |
| 535 | return; |
| 536 | |
| 537 | --CurrSyncGroupIdx; |
| 538 | // Go to previous non-trivial pipeline |
| 539 | while (PipelineInstrs[CurrSyncGroupIdx].size() == 0) |
| 540 | --CurrSyncGroupIdx; |
| 541 | |
| 542 | CurrConflInstNo = PipelineInstrs[CurrSyncGroupIdx].size() - 1; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | bool PipelineSolver::checkOptimal() { |
| 547 | if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size()) { |
| 548 | if (BestCost == -1 || CurrCost < BestCost) { |
| 549 | BestPipeline = CurrPipeline; |
| 550 | BestCost = CurrCost; |
| 551 | LLVM_DEBUG(dbgs() << "Found Fit with cost " << BestCost << "\n" ); |
| 552 | } |
| 553 | assert(BestCost >= 0); |
| 554 | } |
| 555 | |
| 556 | bool DoneExploring = false; |
| 557 | if (MaxBranchesExplored > 0 && BranchesExplored >= MaxBranchesExplored) |
| 558 | DoneExploring = true; |
| 559 | |
| 560 | return (DoneExploring || BestCost == 0); |
| 561 | } |
| 562 | |
| 563 | template <typename T> |
| 564 | void PipelineSolver::populateReadyList( |
| 565 | SmallVectorImpl<std::pair<int, int>> &ReadyList, T I, T E) { |
| 566 | SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo]; |
| 567 | auto SyncPipeline = CurrPipeline[CurrSyncGroupIdx]; |
| 568 | assert(CurrSU.second.size() >= 1); |
| 569 | |
| 570 | for (; I != E; ++I) { |
| 571 | std::vector<std::pair<SUnit *, SUnit *>> AddedEdges; |
| 572 | int CandSGID = *I; |
| 573 | SchedGroup *Match = llvm::find_if(SyncPipeline, [CandSGID](SchedGroup &SG) { |
| 574 | return SG.getSGID() == CandSGID; |
| 575 | }); |
| 576 | assert(Match); |
| 577 | |
| 578 | if (UseCostHeur) { |
| 579 | if (Match->isFull()) { |
| 580 | ReadyList.push_back(Elt: std::pair(*I, MissPenalty)); |
| 581 | continue; |
| 582 | } |
| 583 | |
| 584 | int TempCost = addEdges(SyncPipeline, SU: CurrSU.first, SGID: CandSGID, AddedEdges); |
| 585 | ReadyList.push_back(Elt: std::pair(*I, TempCost)); |
| 586 | removeEdges(EdgesToRemove: AddedEdges); |
| 587 | } else |
| 588 | ReadyList.push_back(Elt: std::pair(*I, -1)); |
| 589 | } |
| 590 | |
| 591 | if (UseCostHeur) |
| 592 | std::sort(first: ReadyList.begin(), last: ReadyList.end(), comp: llvm::less_second()); |
| 593 | |
| 594 | assert(ReadyList.size() == CurrSU.second.size()); |
| 595 | } |
| 596 | |
| 597 | bool PipelineSolver::solveExact() { |
| 598 | if (checkOptimal()) |
| 599 | return true; |
| 600 | |
| 601 | if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size()) |
| 602 | return false; |
| 603 | |
| 604 | assert(static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size()); |
| 605 | assert(static_cast<size_t>(CurrConflInstNo) < |
| 606 | PipelineInstrs[CurrSyncGroupIdx].size()); |
| 607 | SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo]; |
| 608 | LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum |
| 609 | << ") in Pipeline # " << CurrSyncGroupIdx << "\n" ); |
| 610 | |
| 611 | // SchedGroup -> Cost pairs |
| 612 | SmallVector<std::pair<int, int>, 4> ReadyList; |
| 613 | // Prioritize the candidate sched groups in terms of lowest cost first |
| 614 | IsBottomUp ? populateReadyList(ReadyList, I: CurrSU.second.rbegin(), |
| 615 | E: CurrSU.second.rend()) |
| 616 | : populateReadyList(ReadyList, I: CurrSU.second.begin(), |
| 617 | E: CurrSU.second.end()); |
| 618 | |
| 619 | auto *I = ReadyList.begin(); |
| 620 | auto *E = ReadyList.end(); |
| 621 | for (; I != E; ++I) { |
| 622 | // If we are trying SGs in least cost order, and the current SG is cost |
| 623 | // infeasible, then all subsequent SGs will also be cost infeasible, so we |
| 624 | // can prune. |
| 625 | if (BestCost != -1 && (CurrCost + I->second > BestCost)) |
| 626 | return false; |
| 627 | |
| 628 | int CandSGID = I->first; |
| 629 | int AddedCost = 0; |
| 630 | std::vector<std::pair<SUnit *, SUnit *>> AddedEdges; |
| 631 | auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx]; |
| 632 | SchedGroup *Match; |
| 633 | for (auto &SG : SyncPipeline) { |
| 634 | if (SG.getSGID() == CandSGID) |
| 635 | Match = &SG; |
| 636 | } |
| 637 | |
| 638 | if (Match->isFull()) |
| 639 | continue; |
| 640 | |
| 641 | if (!Match->allowedByRules(SU: CurrSU.first, SyncPipe&: SyncPipeline)) |
| 642 | continue; |
| 643 | |
| 644 | LLVM_DEBUG(dbgs() << "Assigning to SchedGroup with Mask " |
| 645 | << (int)Match->getMask() << "and ID " << CandSGID |
| 646 | << "\n" ); |
| 647 | Match->add(SU&: *CurrSU.first); |
| 648 | AddedCost = addEdges(SyncPipeline, SU: CurrSU.first, SGID: CandSGID, AddedEdges); |
| 649 | LLVM_DEBUG(dbgs() << "Cost of Assignment: " << AddedCost << "\n" ); |
| 650 | CurrCost += AddedCost; |
| 651 | advancePosition(); |
| 652 | ++BranchesExplored; |
| 653 | bool FinishedExploring = false; |
| 654 | // If the Cost after adding edges is greater than a known solution, |
| 655 | // backtrack |
| 656 | if (CurrCost < BestCost || BestCost == -1) { |
| 657 | if (solveExact()) { |
| 658 | FinishedExploring = BestCost != 0; |
| 659 | if (!FinishedExploring) |
| 660 | return true; |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | retreatPosition(); |
| 665 | CurrCost -= AddedCost; |
| 666 | removeEdges(EdgesToRemove: AddedEdges); |
| 667 | Match->pop(); |
| 668 | CurrPipeline[CurrSyncGroupIdx] = SyncPipeline; |
| 669 | if (FinishedExploring) |
| 670 | return true; |
| 671 | } |
| 672 | |
| 673 | // Try the pipeline where the current instruction is omitted |
| 674 | // Potentially if we omit a problematic instruction from the pipeline, |
| 675 | // all the other instructions can nicely fit. |
| 676 | CurrCost += MissPenalty; |
| 677 | advancePosition(); |
| 678 | |
| 679 | LLVM_DEBUG(dbgs() << "NOT Assigned (" << CurrSU.first->NodeNum << ")\n" ); |
| 680 | |
| 681 | bool FinishedExploring = false; |
| 682 | if (CurrCost < BestCost || BestCost == -1) { |
| 683 | if (solveExact()) { |
| 684 | bool FinishedExploring = BestCost != 0; |
| 685 | if (!FinishedExploring) |
| 686 | return true; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | retreatPosition(); |
| 691 | CurrCost -= MissPenalty; |
| 692 | return FinishedExploring; |
| 693 | } |
| 694 | |
| 695 | template <typename T> |
| 696 | void PipelineSolver::greedyFind( |
| 697 | std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E) { |
| 698 | SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo]; |
| 699 | int BestNodeCost = -1; |
| 700 | int TempCost; |
| 701 | SchedGroup *BestGroup = nullptr; |
| 702 | int BestGroupID = -1; |
| 703 | auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx]; |
| 704 | LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum |
| 705 | << ") in Pipeline # " << CurrSyncGroupIdx << "\n" ); |
| 706 | |
| 707 | // Since we have added the potential SchedGroups from bottom up, but |
| 708 | // traversed the DAG from top down, parse over the groups from last to |
| 709 | // first. If we fail to do this for the greedy algorithm, the solution will |
| 710 | // likely not be good in more complex cases. |
| 711 | for (; I != E; ++I) { |
| 712 | std::vector<std::pair<SUnit *, SUnit *>> AddedEdges; |
| 713 | int CandSGID = *I; |
| 714 | SchedGroup *Match = llvm::find_if(SyncPipeline, [CandSGID](SchedGroup &SG) { |
| 715 | return SG.getSGID() == CandSGID; |
| 716 | }); |
| 717 | assert(Match); |
| 718 | |
| 719 | LLVM_DEBUG(dbgs() << "Trying SGID # " << CandSGID << " with Mask " |
| 720 | << (int)Match->getMask() << "\n" ); |
| 721 | |
| 722 | if (Match->isFull()) { |
| 723 | LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " is full\n" ); |
| 724 | continue; |
| 725 | } |
| 726 | if (!Match->allowedByRules(SU: CurrSU.first, SyncPipe&: SyncPipeline)) { |
| 727 | LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " has conflicting rule\n" ); |
| 728 | continue; |
| 729 | } |
| 730 | TempCost = addEdges(SyncPipeline, SU: CurrSU.first, SGID: CandSGID, AddedEdges); |
| 731 | LLVM_DEBUG(dbgs() << "Cost of Group " << TempCost << "\n" ); |
| 732 | if (TempCost < BestNodeCost || BestNodeCost == -1) { |
| 733 | BestGroup = Match; |
| 734 | BestNodeCost = TempCost; |
| 735 | BestGroupID = CandSGID; |
| 736 | } |
| 737 | removeEdges(EdgesToRemove: AddedEdges); |
| 738 | if (BestNodeCost == 0) |
| 739 | break; |
| 740 | } |
| 741 | |
| 742 | if (BestGroupID != -1) { |
| 743 | BestGroup->add(SU&: *CurrSU.first); |
| 744 | addEdges(SyncPipeline, SU: CurrSU.first, SGID: BestGroupID, AddedEdges); |
| 745 | LLVM_DEBUG(dbgs() << "Best Group has ID: " << BestGroupID << " and Mask" |
| 746 | << (int)BestGroup->getMask() << "\n" ); |
| 747 | BestCost += TempCost; |
| 748 | } else |
| 749 | BestCost += MissPenalty; |
| 750 | |
| 751 | CurrPipeline[CurrSyncGroupIdx] = SyncPipeline; |
| 752 | } |
| 753 | |
| 754 | bool PipelineSolver::solveGreedy() { |
| 755 | BestCost = 0; |
| 756 | std::vector<std::pair<SUnit *, SUnit *>> AddedEdges; |
| 757 | |
| 758 | while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size()) { |
| 759 | SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo]; |
| 760 | IsBottomUp |
| 761 | ? greedyFind(AddedEdges, I: CurrSU.second.rbegin(), E: CurrSU.second.rend()) |
| 762 | : greedyFind(AddedEdges, I: CurrSU.second.begin(), E: CurrSU.second.end()); |
| 763 | advancePosition(); |
| 764 | } |
| 765 | BestPipeline = CurrPipeline; |
| 766 | removeEdges(EdgesToRemove: AddedEdges); |
| 767 | return false; |
| 768 | } |
| 769 | |
| 770 | unsigned PipelineSolver::computeProblemSize() { |
| 771 | unsigned ProblemSize = 0; |
| 772 | for (auto &PipeConflicts : PipelineInstrs) { |
| 773 | ProblemSize += PipeConflicts.size(); |
| 774 | } |
| 775 | |
| 776 | return ProblemSize; |
| 777 | } |
| 778 | |
| 779 | void PipelineSolver::solve() { |
| 780 | if (!NeedsSolver) |
| 781 | return; |
| 782 | |
| 783 | unsigned ProblemSize = computeProblemSize(); |
| 784 | assert(ProblemSize > 0); |
| 785 | |
| 786 | bool BelowCutoff = (CutoffForExact > 0) && ProblemSize <= CutoffForExact; |
| 787 | MissPenalty = (ProblemSize / 2) + 1; |
| 788 | |
| 789 | LLVM_DEBUG(DAG->dump()); |
| 790 | if (EnableExactSolver || BelowCutoff) { |
| 791 | LLVM_DEBUG(dbgs() << "Starting Greedy pipeline solver\n" ); |
| 792 | solveGreedy(); |
| 793 | reset(); |
| 794 | LLVM_DEBUG(dbgs() << "Greedy produced best cost of " << BestCost << "\n" ); |
| 795 | if (BestCost > 0) { |
| 796 | LLVM_DEBUG(dbgs() << "Starting EXACT pipeline solver\n" ); |
| 797 | solveExact(); |
| 798 | LLVM_DEBUG(dbgs() << "Exact produced best cost of " << BestCost << "\n" ); |
| 799 | } |
| 800 | } else { // Use the Greedy Algorithm by default |
| 801 | LLVM_DEBUG(dbgs() << "Starting GREEDY pipeline solver\n" ); |
| 802 | solveGreedy(); |
| 803 | } |
| 804 | |
| 805 | makePipeline(); |
| 806 | LLVM_DEBUG(dbgs() << "After applying mutation\n" ); |
| 807 | LLVM_DEBUG(DAG->dump()); |
| 808 | } |
| 809 | |
| 810 | enum IGLPStrategyID : int { |
| 811 | MFMASmallGemmOptID = 0, |
| 812 | MFMASmallGemmSingleWaveOptID = 1, |
| 813 | MFMAExpInterleaveID = 2, |
| 814 | MFMAExpSimpleInterleaveID = 3 |
| 815 | }; |
| 816 | |
| 817 | // Implement a IGLP scheduling strategy. |
| 818 | class IGLPStrategy { |
| 819 | protected: |
| 820 | ScheduleDAGInstrs *DAG; |
| 821 | |
| 822 | const SIInstrInfo *TII; |
| 823 | |
| 824 | public: |
| 825 | /// Add SchedGroups to \p SyncedSchedGroups to implement this Strategy. |
| 826 | virtual bool applyIGLPStrategy( |
| 827 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 828 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 829 | AMDGPU::SchedulingPhase Phase) = 0; |
| 830 | |
| 831 | // Returns true if this strategy should be applied to a ScheduleDAG. |
| 832 | virtual bool shouldApplyStrategy(ScheduleDAGInstrs *DAG, |
| 833 | AMDGPU::SchedulingPhase Phase) = 0; |
| 834 | |
| 835 | bool IsBottomUp = true; |
| 836 | |
| 837 | IGLPStrategy(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 838 | : DAG(DAG), TII(TII) {} |
| 839 | |
| 840 | virtual ~IGLPStrategy() = default; |
| 841 | }; |
| 842 | |
| 843 | class MFMASmallGemmOpt final : public IGLPStrategy { |
| 844 | private: |
| 845 | public: |
| 846 | bool applyIGLPStrategy( |
| 847 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 848 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 849 | AMDGPU::SchedulingPhase Phase) override; |
| 850 | |
| 851 | bool shouldApplyStrategy(ScheduleDAGInstrs *DAG, |
| 852 | AMDGPU::SchedulingPhase Phase) override { |
| 853 | return true; |
| 854 | } |
| 855 | |
| 856 | MFMASmallGemmOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 857 | : IGLPStrategy(DAG, TII) { |
| 858 | IsBottomUp = true; |
| 859 | } |
| 860 | }; |
| 861 | |
| 862 | bool MFMASmallGemmOpt::applyIGLPStrategy( |
| 863 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 864 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 865 | AMDGPU::SchedulingPhase Phase) { |
| 866 | // Count the number of MFMA instructions. |
| 867 | unsigned MFMACount = 0; |
| 868 | for (const MachineInstr &I : *DAG) |
| 869 | if (TII->isMFMAorWMMA(MI: I)) |
| 870 | ++MFMACount; |
| 871 | |
| 872 | const unsigned PipelineSyncID = 0; |
| 873 | SchedGroup *SG = nullptr; |
| 874 | for (unsigned I = 0; I < MFMACount * 3; ++I) { |
| 875 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 876 | Args: SchedGroupMask::DS, Args: 2, Args: PipelineSyncID, Args&: DAG, Args&: TII); |
| 877 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 878 | |
| 879 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 880 | Args: SchedGroupMask::MFMA, Args: 1, Args: PipelineSyncID, Args&: DAG, Args&: TII); |
| 881 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 882 | } |
| 883 | |
| 884 | return true; |
| 885 | } |
| 886 | |
| 887 | class MFMAExpInterleaveOpt final : public IGLPStrategy { |
| 888 | private: |
| 889 | // The count of TRANS SUs involved in the interleaved pipeline |
| 890 | static unsigned TransPipeCount; |
| 891 | // The count of MFMA SUs involved in the interleaved pipeline |
| 892 | static unsigned MFMAPipeCount; |
| 893 | // The count of Add SUs involved in the interleaved pipeline |
| 894 | static unsigned AddPipeCount; |
| 895 | // The number of transitive MFMA successors for each TRANS SU |
| 896 | static unsigned MFMAEnablement; |
| 897 | // The number of transitive TRANS predecessors for each MFMA SU |
| 898 | static unsigned ExpRequirement; |
| 899 | // The count of independent "chains" of MFMA instructions in the pipeline |
| 900 | static unsigned MFMAChains; |
| 901 | // The length of each independent "chain" of MFMA instructions |
| 902 | static unsigned MFMAChainLength; |
| 903 | // Whether or not the pipeline has V_CVT instructions |
| 904 | static bool HasCvt; |
| 905 | // Whether or not there are instructions between the TRANS instruction and |
| 906 | // V_CVT |
| 907 | static bool HasChainBetweenCvt; |
| 908 | // The first occuring DS_READ which feeds an MFMA chain |
| 909 | static std::optional<unsigned> FirstPipeDSR; |
| 910 | // The MFMAPipe SUs with no MFMA predecessors |
| 911 | SmallVector<SUnit *, 4> MFMAChainSeeds; |
| 912 | // Compute the heuristics for the pipeline, returning whether or not the DAG |
| 913 | // is well formatted for the mutation |
| 914 | bool analyzeDAG(const SIInstrInfo *TII); |
| 915 | |
| 916 | /// Whether or not the instruction is a transitive predecessor of an MFMA |
| 917 | /// instruction |
| 918 | class IsPipeExp final : public InstructionRule { |
| 919 | public: |
| 920 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 921 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 922 | |
| 923 | auto *DAG = SyncPipe[0].DAG; |
| 924 | |
| 925 | if (Cache->empty()) { |
| 926 | auto I = DAG->SUnits.rbegin(); |
| 927 | auto E = DAG->SUnits.rend(); |
| 928 | for (; I != E; I++) { |
| 929 | if (TII->isMFMAorWMMA(MI: *I->getInstr())) |
| 930 | Cache->push_back(Elt: &*I); |
| 931 | } |
| 932 | if (Cache->empty()) |
| 933 | return false; |
| 934 | } |
| 935 | |
| 936 | auto Reaches = any_of(Range&: *Cache, P: [&SU, &DAG](SUnit *TargetSU) { |
| 937 | return DAG->IsReachable(SU: TargetSU, TargetSU: const_cast<SUnit *>(SU)); |
| 938 | }); |
| 939 | |
| 940 | return Reaches; |
| 941 | } |
| 942 | IsPipeExp(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false) |
| 943 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 944 | }; |
| 945 | |
| 946 | /// Whether or not the instruction is a transitive predecessor of the |
| 947 | /// \p Number th MFMA of the MFMAs occuring after a TRANS instruction |
| 948 | class EnablesNthMFMA final : public InstructionRule { |
| 949 | private: |
| 950 | unsigned Number = 1; |
| 951 | |
| 952 | public: |
| 953 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 954 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 955 | bool FoundTrans = false; |
| 956 | unsigned Counter = 1; |
| 957 | auto *DAG = SyncPipe[0].DAG; |
| 958 | |
| 959 | if (Cache->empty()) { |
| 960 | auto I = DAG->SUnits.begin(); |
| 961 | auto E = DAG->SUnits.end(); |
| 962 | for (; I != E; I++) { |
| 963 | if (FoundTrans && TII->isMFMAorWMMA(MI: *I->getInstr())) { |
| 964 | if (Counter == Number) { |
| 965 | Cache->push_back(Elt: &*I); |
| 966 | break; |
| 967 | } |
| 968 | ++Counter; |
| 969 | } |
| 970 | if (!FoundTrans && TII->isTRANS(Opcode: I->getInstr()->getOpcode())) |
| 971 | FoundTrans = true; |
| 972 | } |
| 973 | if (Cache->empty()) |
| 974 | return false; |
| 975 | } |
| 976 | |
| 977 | return DAG->IsReachable(SU: (*Cache)[0], TargetSU: const_cast<SUnit *>(SU)); |
| 978 | } |
| 979 | |
| 980 | EnablesNthMFMA(unsigned Number, const SIInstrInfo *TII, unsigned SGID, |
| 981 | bool NeedsCache = false) |
| 982 | : InstructionRule(TII, SGID, NeedsCache), Number(Number) {} |
| 983 | }; |
| 984 | |
| 985 | /// Whether or not the instruction enables the exact MFMA that is the \p |
| 986 | /// Number th MFMA in the chain starting with \p ChainSeed |
| 987 | class EnablesNthMFMAInChain final : public InstructionRule { |
| 988 | private: |
| 989 | unsigned Number = 1; |
| 990 | SUnit *ChainSeed; |
| 991 | |
| 992 | public: |
| 993 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 994 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 995 | auto *DAG = SyncPipe[0].DAG; |
| 996 | |
| 997 | if (!SU || !TII->isMFMAorWMMA(MI: *ChainSeed->getInstr())) |
| 998 | return false; |
| 999 | |
| 1000 | if (Cache->empty()) { |
| 1001 | auto *TempSU = ChainSeed; |
| 1002 | auto Depth = Number; |
| 1003 | while (Depth > 0) { |
| 1004 | --Depth; |
| 1005 | bool Found = false; |
| 1006 | for (auto &Succ : TempSU->Succs) { |
| 1007 | if (TII->isMFMAorWMMA(MI: *Succ.getSUnit()->getInstr())) { |
| 1008 | TempSU = Succ.getSUnit(); |
| 1009 | Found = true; |
| 1010 | break; |
| 1011 | } |
| 1012 | } |
| 1013 | if (!Found) |
| 1014 | return false; |
| 1015 | } |
| 1016 | |
| 1017 | Cache->push_back(Elt: TempSU); |
| 1018 | } |
| 1019 | // If we failed to find the instruction to be placed into the cache, we |
| 1020 | // would have already exited. |
| 1021 | assert(!Cache->empty()); |
| 1022 | |
| 1023 | return DAG->IsReachable(SU: (*Cache)[0], TargetSU: const_cast<SUnit *>(SU)); |
| 1024 | } |
| 1025 | |
| 1026 | EnablesNthMFMAInChain(unsigned Number, SUnit *ChainSeed, |
| 1027 | const SIInstrInfo *TII, unsigned SGID, |
| 1028 | bool NeedsCache = false) |
| 1029 | : InstructionRule(TII, SGID, NeedsCache), Number(Number), |
| 1030 | ChainSeed(ChainSeed) {} |
| 1031 | }; |
| 1032 | |
| 1033 | /// Whether or not the instruction has less than \p Size immediate successors. |
| 1034 | /// If \p HasIntermediary is true, this tests also whether all successors of |
| 1035 | /// the SUnit have less than \p Size successors. |
| 1036 | class LessThanNSuccs final : public InstructionRule { |
| 1037 | private: |
| 1038 | unsigned Size = 1; |
| 1039 | bool HasIntermediary = false; |
| 1040 | |
| 1041 | public: |
| 1042 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1043 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1044 | if (!SyncPipe.size()) |
| 1045 | return false; |
| 1046 | |
| 1047 | auto SuccSize = llvm::count_if(Range: SU->Succs, P: [](const SDep &Succ) { |
| 1048 | return Succ.getKind() == SDep::Data; |
| 1049 | }); |
| 1050 | if (SuccSize >= Size) |
| 1051 | return false; |
| 1052 | |
| 1053 | if (HasIntermediary) { |
| 1054 | for (auto Succ : SU->Succs) { |
| 1055 | auto SuccSize = |
| 1056 | llvm::count_if(Range&: Succ.getSUnit()->Succs, P: [](const SDep &SuccSucc) { |
| 1057 | return SuccSucc.getKind() == SDep::Data; |
| 1058 | }); |
| 1059 | if (SuccSize >= Size) |
| 1060 | return false; |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | return true; |
| 1065 | } |
| 1066 | LessThanNSuccs(unsigned Size, const SIInstrInfo *TII, unsigned SGID, |
| 1067 | bool HasIntermediary = false, bool NeedsCache = false) |
| 1068 | : InstructionRule(TII, SGID, NeedsCache), Size(Size), |
| 1069 | HasIntermediary(HasIntermediary) {} |
| 1070 | }; |
| 1071 | |
| 1072 | /// Whether or not the instruction has greater than or equal to \p Size |
| 1073 | /// immediate successors. If \p HasIntermediary is true, this tests also |
| 1074 | /// whether all successors of the SUnit have greater than or equal to \p Size |
| 1075 | /// successors. |
| 1076 | class GreaterThanOrEqualToNSuccs final : public InstructionRule { |
| 1077 | private: |
| 1078 | unsigned Size = 1; |
| 1079 | bool HasIntermediary = false; |
| 1080 | |
| 1081 | public: |
| 1082 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1083 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1084 | if (!SyncPipe.size()) |
| 1085 | return false; |
| 1086 | |
| 1087 | auto SuccSize = llvm::count_if(Range: SU->Succs, P: [](const SDep &Succ) { |
| 1088 | return Succ.getKind() == SDep::Data; |
| 1089 | }); |
| 1090 | if (SuccSize >= Size) |
| 1091 | return true; |
| 1092 | |
| 1093 | if (HasIntermediary) { |
| 1094 | for (auto Succ : SU->Succs) { |
| 1095 | auto SuccSize = |
| 1096 | llvm::count_if(Range&: Succ.getSUnit()->Succs, P: [](const SDep &SuccSucc) { |
| 1097 | return SuccSucc.getKind() == SDep::Data; |
| 1098 | }); |
| 1099 | if (SuccSize >= Size) |
| 1100 | return true; |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | return false; |
| 1105 | } |
| 1106 | GreaterThanOrEqualToNSuccs(unsigned Size, const SIInstrInfo *TII, |
| 1107 | unsigned SGID, bool HasIntermediary = false, |
| 1108 | bool NeedsCache = false) |
| 1109 | : InstructionRule(TII, SGID, NeedsCache), Size(Size), |
| 1110 | HasIntermediary(HasIntermediary) {} |
| 1111 | }; |
| 1112 | |
| 1113 | // Whether or not the instruction is a relevant V_CVT instruction. |
| 1114 | class IsCvt final : public InstructionRule { |
| 1115 | public: |
| 1116 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1117 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1118 | auto Opc = SU->getInstr()->getOpcode(); |
| 1119 | return Opc == AMDGPU::V_CVT_F16_F32_e32 || |
| 1120 | Opc == AMDGPU::V_CVT_I32_F32_e32; |
| 1121 | } |
| 1122 | IsCvt(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false) |
| 1123 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1124 | }; |
| 1125 | |
| 1126 | // Whether or not the instruction is FMA_F32. |
| 1127 | class IsFMA final : public InstructionRule { |
| 1128 | public: |
| 1129 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1130 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1131 | return SU->getInstr()->getOpcode() == AMDGPU::V_FMA_F32_e64 || |
| 1132 | SU->getInstr()->getOpcode() == AMDGPU::V_PK_FMA_F32; |
| 1133 | } |
| 1134 | IsFMA(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false) |
| 1135 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1136 | }; |
| 1137 | |
| 1138 | // Whether or not the instruction is a V_ADD_F32 instruction. |
| 1139 | class IsPipeAdd final : public InstructionRule { |
| 1140 | public: |
| 1141 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1142 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1143 | return SU->getInstr()->getOpcode() == AMDGPU::V_ADD_F32_e32; |
| 1144 | } |
| 1145 | IsPipeAdd(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false) |
| 1146 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1147 | }; |
| 1148 | |
| 1149 | /// Whether or not the instruction is an immediate RAW successor |
| 1150 | /// of the SchedGroup \p Distance steps before. |
| 1151 | class IsSuccOfPrevNthGroup final : public InstructionRule { |
| 1152 | private: |
| 1153 | unsigned Distance = 1; |
| 1154 | |
| 1155 | public: |
| 1156 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1157 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1158 | SchedGroup *OtherGroup = nullptr; |
| 1159 | if (!SyncPipe.size()) |
| 1160 | return false; |
| 1161 | |
| 1162 | for (auto &PipeSG : SyncPipe) { |
| 1163 | if ((unsigned)PipeSG.getSGID() == SGID - Distance) |
| 1164 | OtherGroup = &PipeSG; |
| 1165 | } |
| 1166 | |
| 1167 | if (!OtherGroup) |
| 1168 | return false; |
| 1169 | if (!OtherGroup->Collection.size()) |
| 1170 | return true; |
| 1171 | |
| 1172 | for (auto &OtherEle : OtherGroup->Collection) { |
| 1173 | for (auto &Succ : OtherEle->Succs) { |
| 1174 | if (Succ.getSUnit() == SU && Succ.getKind() == SDep::Data) |
| 1175 | return true; |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | return false; |
| 1180 | } |
| 1181 | IsSuccOfPrevNthGroup(unsigned Distance, const SIInstrInfo *TII, |
| 1182 | unsigned SGID, bool NeedsCache = false) |
| 1183 | : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {} |
| 1184 | }; |
| 1185 | |
| 1186 | /// Whether or not the instruction is a transitive successor of any |
| 1187 | /// instruction the the SchedGroup \p Distance steps before. |
| 1188 | class IsReachableFromPrevNthGroup final : public InstructionRule { |
| 1189 | private: |
| 1190 | unsigned Distance = 1; |
| 1191 | |
| 1192 | public: |
| 1193 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1194 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1195 | SchedGroup *OtherGroup = nullptr; |
| 1196 | if (!SyncPipe.size()) |
| 1197 | return false; |
| 1198 | |
| 1199 | for (auto &PipeSG : SyncPipe) { |
| 1200 | if ((unsigned)PipeSG.getSGID() == SGID - Distance) |
| 1201 | OtherGroup = &PipeSG; |
| 1202 | } |
| 1203 | |
| 1204 | if (!OtherGroup) |
| 1205 | return false; |
| 1206 | if (!OtherGroup->Collection.size()) |
| 1207 | return true; |
| 1208 | |
| 1209 | auto *DAG = SyncPipe[0].DAG; |
| 1210 | |
| 1211 | for (auto &OtherEle : OtherGroup->Collection) |
| 1212 | if (DAG->IsReachable(SU: const_cast<SUnit *>(SU), TargetSU: OtherEle)) |
| 1213 | return true; |
| 1214 | |
| 1215 | return false; |
| 1216 | } |
| 1217 | IsReachableFromPrevNthGroup(unsigned Distance, const SIInstrInfo *TII, |
| 1218 | unsigned SGID, bool NeedsCache = false) |
| 1219 | : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {} |
| 1220 | }; |
| 1221 | |
| 1222 | /// Whether or not the instruction occurs after the SU with NodeNUm \p Number |
| 1223 | class OccursAtOrAfterNode final : public InstructionRule { |
| 1224 | private: |
| 1225 | unsigned Number = 1; |
| 1226 | |
| 1227 | public: |
| 1228 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1229 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1230 | |
| 1231 | return SU->NodeNum >= Number; |
| 1232 | } |
| 1233 | OccursAtOrAfterNode(unsigned Number, const SIInstrInfo *TII, unsigned SGID, |
| 1234 | bool NeedsCache = false) |
| 1235 | : InstructionRule(TII, SGID, NeedsCache), Number(Number) {} |
| 1236 | }; |
| 1237 | |
| 1238 | /// Whether or not the SU is exactly the \p Number th MFMA in the chain |
| 1239 | /// starting with \p ChainSeed |
| 1240 | class IsExactMFMA final : public InstructionRule { |
| 1241 | private: |
| 1242 | unsigned Number = 1; |
| 1243 | SUnit *ChainSeed; |
| 1244 | |
| 1245 | public: |
| 1246 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1247 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1248 | if (!SU || !TII->isMFMAorWMMA(MI: *ChainSeed->getInstr())) |
| 1249 | return false; |
| 1250 | |
| 1251 | if (Cache->empty()) { |
| 1252 | auto *TempSU = ChainSeed; |
| 1253 | auto Depth = Number; |
| 1254 | while (Depth > 0) { |
| 1255 | --Depth; |
| 1256 | bool Found = false; |
| 1257 | for (auto &Succ : TempSU->Succs) { |
| 1258 | if (TII->isMFMAorWMMA(MI: *Succ.getSUnit()->getInstr())) { |
| 1259 | TempSU = Succ.getSUnit(); |
| 1260 | Found = true; |
| 1261 | break; |
| 1262 | } |
| 1263 | } |
| 1264 | if (!Found) { |
| 1265 | return false; |
| 1266 | } |
| 1267 | } |
| 1268 | Cache->push_back(Elt: TempSU); |
| 1269 | } |
| 1270 | // If we failed to find the instruction to be placed into the cache, we |
| 1271 | // would have already exited. |
| 1272 | assert(!Cache->empty()); |
| 1273 | |
| 1274 | return (*Cache)[0] == SU; |
| 1275 | } |
| 1276 | |
| 1277 | IsExactMFMA(unsigned Number, SUnit *ChainSeed, const SIInstrInfo *TII, |
| 1278 | unsigned SGID, bool NeedsCache = false) |
| 1279 | : InstructionRule(TII, SGID, NeedsCache), Number(Number), |
| 1280 | ChainSeed(ChainSeed) {} |
| 1281 | }; |
| 1282 | |
| 1283 | // Whether the instruction occurs after the first TRANS instruction. This |
| 1284 | // implies the instruction can not be a predecessor of the first TRANS |
| 1285 | // insruction |
| 1286 | class OccursAfterExp final : public InstructionRule { |
| 1287 | public: |
| 1288 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1289 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1290 | |
| 1291 | auto *DAG = SyncPipe[0].DAG; |
| 1292 | if (Cache->empty()) { |
| 1293 | for (auto &SU : DAG->SUnits) |
| 1294 | if (TII->isTRANS(Opcode: SU.getInstr()->getOpcode())) { |
| 1295 | Cache->push_back(Elt: &SU); |
| 1296 | break; |
| 1297 | } |
| 1298 | if (Cache->empty()) |
| 1299 | return false; |
| 1300 | } |
| 1301 | |
| 1302 | return SU->NodeNum > (*Cache)[0]->NodeNum; |
| 1303 | } |
| 1304 | |
| 1305 | OccursAfterExp(const SIInstrInfo *TII, unsigned SGID, |
| 1306 | bool NeedsCache = false) |
| 1307 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1308 | }; |
| 1309 | |
| 1310 | public: |
| 1311 | bool applyIGLPStrategy( |
| 1312 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 1313 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 1314 | AMDGPU::SchedulingPhase Phase) override; |
| 1315 | |
| 1316 | bool shouldApplyStrategy(ScheduleDAGInstrs *DAG, |
| 1317 | AMDGPU::SchedulingPhase Phase) override; |
| 1318 | |
| 1319 | MFMAExpInterleaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 1320 | : IGLPStrategy(DAG, TII) { |
| 1321 | IsBottomUp = false; |
| 1322 | } |
| 1323 | }; |
| 1324 | |
| 1325 | unsigned MFMAExpInterleaveOpt::TransPipeCount = 0; |
| 1326 | unsigned MFMAExpInterleaveOpt::MFMAPipeCount = 0; |
| 1327 | unsigned MFMAExpInterleaveOpt::AddPipeCount = 0; |
| 1328 | unsigned MFMAExpInterleaveOpt::MFMAEnablement = 0; |
| 1329 | unsigned MFMAExpInterleaveOpt::ExpRequirement = 0; |
| 1330 | unsigned MFMAExpInterleaveOpt::MFMAChains = 0; |
| 1331 | unsigned MFMAExpInterleaveOpt::MFMAChainLength = 0; |
| 1332 | bool MFMAExpInterleaveOpt::HasCvt = false; |
| 1333 | bool MFMAExpInterleaveOpt::HasChainBetweenCvt = false; |
| 1334 | std::optional<unsigned> MFMAExpInterleaveOpt::FirstPipeDSR = std::nullopt; |
| 1335 | |
| 1336 | bool MFMAExpInterleaveOpt::analyzeDAG(const SIInstrInfo *TII) { |
| 1337 | SmallVector<SUnit *, 10> ExpPipeCands; |
| 1338 | SmallVector<SUnit *, 10> MFMAPipeCands; |
| 1339 | SmallVector<SUnit *, 10> MFMAPipeSUs; |
| 1340 | SmallVector<SUnit *, 10> PackSUs; |
| 1341 | SmallVector<SUnit *, 10> CvtSUs; |
| 1342 | |
| 1343 | auto isBitPack = [](unsigned Opc) { |
| 1344 | return Opc == AMDGPU::V_PACK_B32_F16_e64 || Opc == AMDGPU::V_PERM_B32_e64; |
| 1345 | }; |
| 1346 | |
| 1347 | auto isCvt = [](unsigned Opc) { |
| 1348 | return Opc == AMDGPU::V_CVT_F16_F32_e32 || Opc == AMDGPU::V_CVT_I32_F32_e32; |
| 1349 | }; |
| 1350 | |
| 1351 | auto isAdd = [](unsigned Opc) { return Opc == AMDGPU::V_ADD_F32_e32; }; |
| 1352 | |
| 1353 | AddPipeCount = 0; |
| 1354 | for (SUnit &SU : DAG->SUnits) { |
| 1355 | auto Opc = SU.getInstr()->getOpcode(); |
| 1356 | if (TII->isTRANS(Opcode: Opc)) { |
| 1357 | // Avoid counting a potential bonus V_EXP which all the MFMA depend on |
| 1358 | if (SU.Succs.size() >= 7) |
| 1359 | continue; |
| 1360 | for (auto &Succ : SU.Succs) { |
| 1361 | if (Succ.getSUnit()->Succs.size() >= 7) |
| 1362 | continue; |
| 1363 | } |
| 1364 | ExpPipeCands.push_back(Elt: &SU); |
| 1365 | } |
| 1366 | |
| 1367 | if (TII->isMFMAorWMMA(MI: *SU.getInstr())) |
| 1368 | MFMAPipeCands.push_back(Elt: &SU); |
| 1369 | |
| 1370 | if (isBitPack(Opc)) |
| 1371 | PackSUs.push_back(Elt: &SU); |
| 1372 | |
| 1373 | if (isCvt(Opc)) |
| 1374 | CvtSUs.push_back(Elt: &SU); |
| 1375 | |
| 1376 | if (isAdd(Opc)) |
| 1377 | ++AddPipeCount; |
| 1378 | } |
| 1379 | |
| 1380 | if (!(PackSUs.size() && MFMAPipeCands.size() && ExpPipeCands.size())) |
| 1381 | return false; |
| 1382 | |
| 1383 | TransPipeCount = 0; |
| 1384 | |
| 1385 | std::optional<SUnit *> TempMFMA; |
| 1386 | std::optional<SUnit *> TempExp; |
| 1387 | // Count the number of EXPs that reach an MFMA |
| 1388 | for (auto &PredSU : ExpPipeCands) { |
| 1389 | for (auto &SuccSU : MFMAPipeCands) { |
| 1390 | if (DAG->IsReachable(SU: SuccSU, TargetSU: PredSU)) { |
| 1391 | if (!TempExp) { |
| 1392 | TempExp = PredSU; |
| 1393 | TempMFMA = SuccSU; |
| 1394 | } |
| 1395 | MFMAPipeSUs.push_back(Elt: SuccSU); |
| 1396 | ++TransPipeCount; |
| 1397 | break; |
| 1398 | } |
| 1399 | } |
| 1400 | } |
| 1401 | |
| 1402 | if (!(TempExp && TempMFMA)) |
| 1403 | return false; |
| 1404 | |
| 1405 | HasChainBetweenCvt = none_of(Range&: (*TempExp)->Succs, P: [&isCvt](SDep &Succ) { |
| 1406 | return isCvt(Succ.getSUnit()->getInstr()->getOpcode()); |
| 1407 | }); |
| 1408 | |
| 1409 | // Count the number of MFMAs that are reached by an EXP |
| 1410 | for (auto &SuccSU : MFMAPipeCands) { |
| 1411 | if (MFMAPipeSUs.size() && |
| 1412 | any_of(Range&: MFMAPipeSUs, P: [&SuccSU](SUnit *PotentialMatch) { |
| 1413 | return PotentialMatch->NodeNum == SuccSU->NodeNum; |
| 1414 | })) |
| 1415 | continue; |
| 1416 | |
| 1417 | for (auto &PredSU : ExpPipeCands) { |
| 1418 | if (DAG->IsReachable(SU: SuccSU, TargetSU: PredSU)) { |
| 1419 | MFMAPipeSUs.push_back(Elt: SuccSU); |
| 1420 | break; |
| 1421 | } |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | MFMAPipeCount = MFMAPipeSUs.size(); |
| 1426 | |
| 1427 | assert(TempExp && TempMFMA); |
| 1428 | assert(MFMAPipeCount > 0); |
| 1429 | |
| 1430 | std::optional<SUnit *> TempCvt; |
| 1431 | for (auto &SuccSU : CvtSUs) { |
| 1432 | if (DAG->IsReachable(SU: SuccSU, TargetSU: *TempExp)) { |
| 1433 | TempCvt = SuccSU; |
| 1434 | break; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | HasCvt = false; |
| 1439 | if (TempCvt.has_value()) { |
| 1440 | for (auto &SuccSU : MFMAPipeSUs) { |
| 1441 | if (DAG->IsReachable(SU: SuccSU, TargetSU: *TempCvt)) { |
| 1442 | HasCvt = true; |
| 1443 | break; |
| 1444 | } |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | MFMAChains = 0; |
| 1449 | for (auto &MFMAPipeSU : MFMAPipeSUs) { |
| 1450 | if (is_contained(Range&: MFMAChainSeeds, Element: MFMAPipeSU)) |
| 1451 | continue; |
| 1452 | if (none_of(Range&: MFMAPipeSU->Preds, P: [&TII](SDep &Succ) { |
| 1453 | return TII->isMFMAorWMMA(MI: *Succ.getSUnit()->getInstr()); |
| 1454 | })) { |
| 1455 | MFMAChainSeeds.push_back(Elt: MFMAPipeSU); |
| 1456 | ++MFMAChains; |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | if (!MFMAChains) |
| 1461 | return false; |
| 1462 | |
| 1463 | for (auto Pred : MFMAChainSeeds[0]->Preds) { |
| 1464 | if (TII->isDS(Opcode: Pred.getSUnit()->getInstr()->getOpcode()) && |
| 1465 | Pred.getSUnit()->getInstr()->mayLoad()) |
| 1466 | FirstPipeDSR = Pred.getSUnit()->NodeNum; |
| 1467 | } |
| 1468 | |
| 1469 | MFMAChainLength = MFMAPipeCount / MFMAChains; |
| 1470 | |
| 1471 | // The number of bit pack operations that depend on a single V_EXP |
| 1472 | unsigned PackSuccCount = |
| 1473 | llvm::count_if(Range&: PackSUs, P: [this, &TempExp](SUnit *VPack) { |
| 1474 | return DAG->IsReachable(SU: VPack, TargetSU: *TempExp); |
| 1475 | }); |
| 1476 | |
| 1477 | // The number of bit pack operations an MFMA depends on |
| 1478 | unsigned PackPredCount = |
| 1479 | llvm::count_if(Range&: (*TempMFMA)->Preds, P: [&isBitPack](SDep &Pred) { |
| 1480 | auto Opc = Pred.getSUnit()->getInstr()->getOpcode(); |
| 1481 | return isBitPack(Opc); |
| 1482 | }); |
| 1483 | |
| 1484 | auto *PackPred = llvm::find_if(Range&: (*TempMFMA)->Preds, P: [&isBitPack](SDep &Pred) { |
| 1485 | auto Opc = Pred.getSUnit()->getInstr()->getOpcode(); |
| 1486 | return isBitPack(Opc); |
| 1487 | }); |
| 1488 | |
| 1489 | if (PackPred == (*TempMFMA)->Preds.end()) |
| 1490 | return false; |
| 1491 | |
| 1492 | MFMAEnablement = 0; |
| 1493 | ExpRequirement = 0; |
| 1494 | // How many MFMAs depend on a single bit pack operation |
| 1495 | MFMAEnablement = |
| 1496 | llvm::count_if(Range&: PackPred->getSUnit()->Succs, P: [&TII](SDep &Succ) { |
| 1497 | return TII->isMFMAorWMMA(MI: *Succ.getSUnit()->getInstr()); |
| 1498 | }); |
| 1499 | |
| 1500 | // The number of MFMAs that depend on a single V_EXP |
| 1501 | MFMAEnablement *= PackSuccCount; |
| 1502 | |
| 1503 | // The number of V_EXPs required to resolve all dependencies for an MFMA |
| 1504 | ExpRequirement = |
| 1505 | llvm::count_if(Range&: ExpPipeCands, P: [this, &PackPred](SUnit *ExpBase) { |
| 1506 | return DAG->IsReachable(SU: PackPred->getSUnit(), TargetSU: ExpBase); |
| 1507 | }); |
| 1508 | |
| 1509 | ExpRequirement *= PackPredCount; |
| 1510 | return true; |
| 1511 | } |
| 1512 | |
| 1513 | bool MFMAExpInterleaveOpt::shouldApplyStrategy(ScheduleDAGInstrs *DAG, |
| 1514 | AMDGPU::SchedulingPhase Phase) { |
| 1515 | const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>(); |
| 1516 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1517 | |
| 1518 | if (Phase != AMDGPU::SchedulingPhase::PostRA) |
| 1519 | MFMAChainSeeds.clear(); |
| 1520 | if (Phase != AMDGPU::SchedulingPhase::PostRA && !analyzeDAG(TII)) |
| 1521 | return false; |
| 1522 | |
| 1523 | return true; |
| 1524 | } |
| 1525 | |
| 1526 | bool MFMAExpInterleaveOpt::applyIGLPStrategy( |
| 1527 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 1528 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 1529 | AMDGPU::SchedulingPhase Phase) { |
| 1530 | |
| 1531 | bool IsSmallKernelType = |
| 1532 | MFMAEnablement == 2 && ExpRequirement == 4 && TransPipeCount == 32; |
| 1533 | bool IsLargeKernelType = |
| 1534 | MFMAEnablement == 4 && ExpRequirement == 4 && TransPipeCount == 64; |
| 1535 | |
| 1536 | if (!(IsSmallKernelType || IsLargeKernelType)) |
| 1537 | return false; |
| 1538 | |
| 1539 | const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>(); |
| 1540 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1541 | |
| 1542 | unsigned PipelineSyncID = 0; |
| 1543 | SchedGroup *SG = nullptr; |
| 1544 | |
| 1545 | unsigned MFMAChain = 0; |
| 1546 | unsigned PositionInChain = 0; |
| 1547 | unsigned CurrMFMAForTransPosition = 0; |
| 1548 | |
| 1549 | auto incrementTransPosition = [&MFMAChain, &PositionInChain, |
| 1550 | &CurrMFMAForTransPosition]() { |
| 1551 | CurrMFMAForTransPosition += MFMAEnablement; |
| 1552 | PositionInChain = (CurrMFMAForTransPosition / MFMAChains); |
| 1553 | MFMAChain = CurrMFMAForTransPosition % MFMAChains; |
| 1554 | }; |
| 1555 | |
| 1556 | auto getNextTransPositionInChain = [&CurrMFMAForTransPosition]() { |
| 1557 | auto TempMFMAForTrans = CurrMFMAForTransPosition + MFMAEnablement; |
| 1558 | return (TempMFMAForTrans / MFMAChains); |
| 1559 | }; |
| 1560 | |
| 1561 | auto getNextTransMFMAChain = [&CurrMFMAForTransPosition]() { |
| 1562 | auto TempMFMAForTrans = CurrMFMAForTransPosition + MFMAEnablement; |
| 1563 | return TempMFMAForTrans % MFMAChains; |
| 1564 | }; |
| 1565 | |
| 1566 | unsigned CurrMFMAPosition = 0; |
| 1567 | unsigned MFMAChainForMFMA = 0; |
| 1568 | unsigned PositionInChainForMFMA = 0; |
| 1569 | |
| 1570 | auto incrementMFMAPosition = [&CurrMFMAPosition, &MFMAChainForMFMA, |
| 1571 | &PositionInChainForMFMA]() { |
| 1572 | ++CurrMFMAPosition; |
| 1573 | MFMAChainForMFMA = CurrMFMAPosition % MFMAChains; |
| 1574 | PositionInChainForMFMA = CurrMFMAPosition / MFMAChains; |
| 1575 | }; |
| 1576 | |
| 1577 | bool IsPostRA = Phase == AMDGPU::SchedulingPhase::PostRA; |
| 1578 | assert(IsPostRA || MFMAChainSeeds.size() == MFMAChains); |
| 1579 | |
| 1580 | bool UsesFMA = IsSmallKernelType || !IsPostRA; |
| 1581 | bool UsesDSRead = IsLargeKernelType && !IsPostRA && FirstPipeDSR; |
| 1582 | bool UsesCvt = HasCvt && (IsSmallKernelType || !IsPostRA); |
| 1583 | bool UsesVALU = IsSmallKernelType; |
| 1584 | |
| 1585 | // PHASE 1: "Prefetch" |
| 1586 | if (UsesFMA) { |
| 1587 | // First Round FMA |
| 1588 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1589 | Args: SchedGroupMask::VALU, Args&: ExpRequirement, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1590 | if (!IsPostRA && MFMAChains) { |
| 1591 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1592 | args&: PositionInChain, args&: MFMAChainSeeds[MFMAChain], args&: TII, args: SG->getSGID(), |
| 1593 | args: true)); |
| 1594 | } else |
| 1595 | SG->addRule( |
| 1596 | NewRule: std::make_shared<EnablesNthMFMA>(args: 1, args&: TII, args: SG->getSGID(), args: true)); |
| 1597 | SG->addRule(NewRule: std::make_shared<IsFMA>(args&: TII, args: SG->getSGID())); |
| 1598 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1599 | |
| 1600 | // Second Round FMA |
| 1601 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1602 | Args: SchedGroupMask::VALU, Args&: ExpRequirement, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1603 | if (!IsPostRA && MFMAChains) { |
| 1604 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1605 | args: getNextTransPositionInChain(), |
| 1606 | args&: MFMAChainSeeds[getNextTransMFMAChain()], args&: TII, args: SG->getSGID(), args: true)); |
| 1607 | } else |
| 1608 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMA>(args: MFMAEnablement + 1, args&: TII, |
| 1609 | args: SG->getSGID(), args: true)); |
| 1610 | SG->addRule(NewRule: std::make_shared<IsFMA>(args&: TII, args: SG->getSGID())); |
| 1611 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1612 | } |
| 1613 | |
| 1614 | if (UsesDSRead) { |
| 1615 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1616 | Args: SchedGroupMask::DS_READ, Args: 2, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1617 | SG->addRule(NewRule: std::make_shared<OccursAtOrAfterNode>(args&: *FirstPipeDSR, args&: TII, |
| 1618 | args: SG->getSGID())); |
| 1619 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1620 | } |
| 1621 | |
| 1622 | // First Round EXP |
| 1623 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1624 | Args: SchedGroupMask::TRANS, Args&: ExpRequirement, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1625 | if (!IsPostRA && MFMAChains) |
| 1626 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1627 | args&: PositionInChain, args&: MFMAChainSeeds[MFMAChain], args&: TII, args: SG->getSGID(), args: true)); |
| 1628 | else |
| 1629 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMA>(args: 1, args&: TII, args: SG->getSGID(), args: true)); |
| 1630 | SG->addRule(NewRule: std::make_shared<IsPipeExp>(args&: TII, args: SG->getSGID(), args: true)); |
| 1631 | SG->addRule(NewRule: std::make_shared<LessThanNSuccs>(args: 8, args&: TII, args: SG->getSGID(), |
| 1632 | args&: HasChainBetweenCvt)); |
| 1633 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1634 | |
| 1635 | incrementTransPosition(); |
| 1636 | |
| 1637 | // First Round CVT, Third Round FMA, Second Round EXP; interleaved |
| 1638 | for (unsigned I = 0; I < ExpRequirement; I++) { |
| 1639 | // First Round CVT |
| 1640 | if (UsesCvt) { |
| 1641 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1642 | Args: SchedGroupMask::VALU, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1643 | SG->addRule(NewRule: std::make_shared<IsCvt>(args&: TII, args: SG->getSGID())); |
| 1644 | if (HasChainBetweenCvt) |
| 1645 | SG->addRule(NewRule: std::make_shared<IsReachableFromPrevNthGroup>( |
| 1646 | args: 1 + (2 + UsesFMA) * I, args&: TII, args: SG->getSGID())); |
| 1647 | else |
| 1648 | SG->addRule(NewRule: std::make_shared<IsSuccOfPrevNthGroup>( |
| 1649 | args: 1 + (2 + UsesFMA) * I, args&: TII, args: SG->getSGID())); |
| 1650 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1651 | } |
| 1652 | |
| 1653 | // Third Round FMA |
| 1654 | if (UsesFMA) { |
| 1655 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1656 | Args: SchedGroupMask::VALU, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1657 | if (!IsPostRA && MFMAChains) { |
| 1658 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1659 | args: getNextTransPositionInChain(), |
| 1660 | args&: MFMAChainSeeds[getNextTransMFMAChain()], args&: TII, args: SG->getSGID(), args: true)); |
| 1661 | } else |
| 1662 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMA>(args: 2 * MFMAEnablement + 1, |
| 1663 | args&: TII, args: SG->getSGID(), args: true)); |
| 1664 | SG->addRule(NewRule: std::make_shared<IsFMA>(args&: TII, args: SG->getSGID())); |
| 1665 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1666 | } |
| 1667 | |
| 1668 | // Second Round EXP |
| 1669 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1670 | Args: SchedGroupMask::TRANS, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1671 | if (!IsPostRA && MFMAChains) |
| 1672 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1673 | args&: PositionInChain, args&: MFMAChainSeeds[MFMAChain], args&: TII, args: SG->getSGID(), |
| 1674 | args: true)); |
| 1675 | else |
| 1676 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMA>(args: MFMAEnablement + 1, args&: TII, |
| 1677 | args: SG->getSGID(), args: true)); |
| 1678 | SG->addRule(NewRule: std::make_shared<IsPipeExp>(args&: TII, args: SG->getSGID(), args: true)); |
| 1679 | SG->addRule(NewRule: std::make_shared<LessThanNSuccs>(args: 8, args&: TII, args: SG->getSGID(), |
| 1680 | args&: HasChainBetweenCvt)); |
| 1681 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1682 | } |
| 1683 | |
| 1684 | // The "extra" EXP which enables all MFMA |
| 1685 | // TODO: UsesExtraExp |
| 1686 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1687 | Args: SchedGroupMask::TRANS, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1688 | SG->addRule(NewRule: std::make_shared<IsPipeExp>(args&: TII, args: SG->getSGID(), args: true)); |
| 1689 | SG->addRule(NewRule: std::make_shared<GreaterThanOrEqualToNSuccs>( |
| 1690 | args: 8, args&: TII, args: SG->getSGID(), args&: HasChainBetweenCvt)); |
| 1691 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1692 | |
| 1693 | // PHASE 2: Main Interleave Loop |
| 1694 | |
| 1695 | // The number of MFMAs per iteration |
| 1696 | unsigned MFMARatio = |
| 1697 | MFMAEnablement > ExpRequirement ? MFMAEnablement / ExpRequirement : 1; |
| 1698 | // The number of Exps per iteration |
| 1699 | unsigned ExpRatio = |
| 1700 | MFMAEnablement > ExpRequirement ? 1 : ExpRequirement / MFMAEnablement; |
| 1701 | // The reamaining Exps |
| 1702 | unsigned RemainingExp = TransPipeCount > (2 * ExpRequirement) |
| 1703 | ? TransPipeCount - (2 * ExpRequirement) |
| 1704 | : 0; |
| 1705 | unsigned ExpLoopCount = RemainingExp / ExpRatio; |
| 1706 | // In loop MFMAs |
| 1707 | unsigned MFMAInLoop = MFMAPipeCount > (MFMAEnablement * 2) |
| 1708 | ? MFMAPipeCount - (MFMAEnablement * 2) |
| 1709 | : 0; |
| 1710 | unsigned MFMALoopCount = MFMAInLoop / MFMARatio; |
| 1711 | unsigned VALUOps = |
| 1712 | AddPipeCount < MFMAPipeCount ? 1 : AddPipeCount / MFMAPipeCount; |
| 1713 | unsigned LoopSize = std::min(a: ExpLoopCount, b: MFMALoopCount); |
| 1714 | |
| 1715 | for (unsigned I = 0; I < LoopSize; I++) { |
| 1716 | if (!(I * ExpRatio % ExpRequirement)) |
| 1717 | incrementTransPosition(); |
| 1718 | |
| 1719 | // Round N MFMA |
| 1720 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1721 | Args: SchedGroupMask::MFMA, Args&: MFMARatio, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1722 | if (!IsPostRA && MFMAChains) |
| 1723 | SG->addRule(NewRule: std::make_shared<IsExactMFMA>( |
| 1724 | args&: PositionInChainForMFMA, args&: MFMAChainSeeds[MFMAChainForMFMA], args&: TII, |
| 1725 | args: SG->getSGID(), args: true)); |
| 1726 | else |
| 1727 | SG->addRule(NewRule: std::make_shared<OccursAfterExp>(args&: TII, args: SG->getSGID(), args: true)); |
| 1728 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1729 | incrementMFMAPosition(); |
| 1730 | |
| 1731 | if (UsesVALU) { |
| 1732 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1733 | Args: SchedGroupMask::VALU, Args&: VALUOps, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1734 | SG->addRule(NewRule: std::make_shared<IsPipeAdd>(args&: TII, args: SG->getSGID())); |
| 1735 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1736 | } |
| 1737 | |
| 1738 | if (UsesDSRead && !(I % 4)) { |
| 1739 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1740 | Args: SchedGroupMask::DS_READ, Args: 2, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1741 | SG->addRule(NewRule: std::make_shared<OccursAtOrAfterNode>(args&: *FirstPipeDSR, args&: TII, |
| 1742 | args: SG->getSGID())); |
| 1743 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1744 | } |
| 1745 | |
| 1746 | // CVT, EXP, FMA Interleaving |
| 1747 | for (unsigned J = 0; J < ExpRatio; J++) { |
| 1748 | auto MFMAOffset = (1 + UsesVALU) * MFMARatio * (I + 1); |
| 1749 | auto MaxMFMAOffset = |
| 1750 | (1 + UsesVALU) * ExpRequirement * MFMARatio / ExpRatio; |
| 1751 | |
| 1752 | // Round N + 1 CVT |
| 1753 | if (UsesCvt) { |
| 1754 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1755 | Args: SchedGroupMask::VALU, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1756 | SG->addRule(NewRule: std::make_shared<IsCvt>(args&: TII, args: SG->getSGID())); |
| 1757 | auto BaseDiff = (2 + UsesFMA) * (ExpRequirement - 1) + 1; |
| 1758 | auto DSROffset = I / 4 + 1; |
| 1759 | auto MaxDSROffset = MaxMFMAOffset / 4; |
| 1760 | // TODO: UsesExtraExp |
| 1761 | auto ExpOffset = I * ExpRatio + J >= ExpRequirement ? 0 : 1; |
| 1762 | auto CurrentOffset = UsesDSRead * std::min(a: MaxDSROffset, b: DSROffset) + |
| 1763 | std::min(a: MaxMFMAOffset, b: MFMAOffset) + BaseDiff + |
| 1764 | ExpOffset; |
| 1765 | if (HasChainBetweenCvt) |
| 1766 | SG->addRule(NewRule: std::make_shared<IsReachableFromPrevNthGroup>( |
| 1767 | args&: CurrentOffset, args&: TII, args: SG->getSGID())); |
| 1768 | else |
| 1769 | SG->addRule(NewRule: std::make_shared<IsSuccOfPrevNthGroup>(args&: CurrentOffset, args&: TII, |
| 1770 | args: SG->getSGID())); |
| 1771 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1772 | } |
| 1773 | |
| 1774 | // Round N + 3 FMA |
| 1775 | if (UsesFMA) { |
| 1776 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1777 | Args: SchedGroupMask::VALU, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1778 | if (!IsPostRA && MFMAChains) |
| 1779 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1780 | args: getNextTransPositionInChain(), |
| 1781 | args&: MFMAChainSeeds[getNextTransMFMAChain()], args&: TII, args: SG->getSGID(), |
| 1782 | args: true)); |
| 1783 | else |
| 1784 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMA>( |
| 1785 | args: (((I * ExpRatio + J) / ExpRequirement) + 3) * MFMAEnablement + 1, |
| 1786 | args&: TII, args: SG->getSGID(), args: true)); |
| 1787 | SG->addRule(NewRule: std::make_shared<IsFMA>(args&: TII, args: SG->getSGID())); |
| 1788 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1789 | } |
| 1790 | |
| 1791 | // Round N + 2 Exp |
| 1792 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1793 | Args: SchedGroupMask::TRANS, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1794 | if (!IsPostRA && MFMAChains) |
| 1795 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMAInChain>( |
| 1796 | args&: PositionInChain, args&: MFMAChainSeeds[MFMAChain], args&: TII, args: SG->getSGID(), |
| 1797 | args: true)); |
| 1798 | else |
| 1799 | SG->addRule(NewRule: std::make_shared<EnablesNthMFMA>( |
| 1800 | args: (((I * ExpRatio + J) / ExpRequirement) + 2) * MFMAEnablement + 1, |
| 1801 | args&: TII, args: SG->getSGID(), args: true)); |
| 1802 | SG->addRule(NewRule: std::make_shared<IsPipeExp>(args&: TII, args: SG->getSGID(), args: true)); |
| 1803 | SG->addRule(NewRule: std::make_shared<LessThanNSuccs>(args: 8, args&: TII, args: SG->getSGID(), |
| 1804 | args&: HasChainBetweenCvt)); |
| 1805 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | // PHASE 3: Remaining MFMAs |
| 1810 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1811 | Args: SchedGroupMask::MFMA, Args: MFMAEnablement * 2, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1812 | SG->addRule(NewRule: std::make_shared<OccursAfterExp>(args&: TII, args: SG->getSGID(), args: true)); |
| 1813 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1814 | return true; |
| 1815 | } |
| 1816 | |
| 1817 | class MFMAExpSimpleInterleaveOpt final : public IGLPStrategy { |
| 1818 | public: |
| 1819 | bool applyIGLPStrategy( |
| 1820 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 1821 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 1822 | AMDGPU::SchedulingPhase Phase) override; |
| 1823 | |
| 1824 | bool shouldApplyStrategy(ScheduleDAGInstrs *DAG, |
| 1825 | AMDGPU::SchedulingPhase Phase) override { |
| 1826 | return true; |
| 1827 | } |
| 1828 | |
| 1829 | MFMAExpSimpleInterleaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 1830 | : IGLPStrategy(DAG, TII) { |
| 1831 | IsBottomUp = true; |
| 1832 | } |
| 1833 | }; |
| 1834 | |
| 1835 | bool MFMAExpSimpleInterleaveOpt::applyIGLPStrategy( |
| 1836 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 1837 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 1838 | AMDGPU::SchedulingPhase Phase) { |
| 1839 | // Count the number of MFMA instructions. |
| 1840 | unsigned MFMACount = 0; |
| 1841 | for (const MachineInstr &I : *DAG) |
| 1842 | if (TII->isMFMAorWMMA(MI: I)) |
| 1843 | ++MFMACount; |
| 1844 | |
| 1845 | const unsigned PipelineSyncID = 0; |
| 1846 | for (unsigned I = 0; I < MFMACount * 3; ++I) { |
| 1847 | SchedGroup *SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1848 | Args: SchedGroupMask::TRANS, Args: 1, Args: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1849 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1850 | |
| 1851 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 1852 | Args: SchedGroupMask::MFMA, Args: 1, Args: PipelineSyncID, Args&: DAG, Args&: TII); |
| 1853 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 1854 | } |
| 1855 | |
| 1856 | return true; |
| 1857 | } |
| 1858 | |
| 1859 | class MFMASmallGemmSingleWaveOpt final : public IGLPStrategy { |
| 1860 | private: |
| 1861 | // Whether the DS_READ is a predecessor of first four MFMA in region |
| 1862 | class EnablesInitialMFMA final : public InstructionRule { |
| 1863 | public: |
| 1864 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1865 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1866 | if (!SyncPipe.size()) |
| 1867 | return false; |
| 1868 | int MFMAsFound = 0; |
| 1869 | if (!Cache->size()) { |
| 1870 | for (auto &Elt : SyncPipe[0].DAG->SUnits) { |
| 1871 | if (TII->isMFMAorWMMA(MI: *Elt.getInstr())) { |
| 1872 | ++MFMAsFound; |
| 1873 | if (MFMAsFound > 4) |
| 1874 | break; |
| 1875 | Cache->push_back(Elt: &Elt); |
| 1876 | } |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | auto *DAG = SyncPipe[0].DAG; |
| 1881 | for (auto &Elt : *Cache) { |
| 1882 | if (DAG->IsReachable(SU: Elt, TargetSU: const_cast<SUnit *>(SU))) |
| 1883 | return true; |
| 1884 | } |
| 1885 | return false; |
| 1886 | } |
| 1887 | |
| 1888 | EnablesInitialMFMA(const SIInstrInfo *TII, unsigned SGID, |
| 1889 | bool NeedsCache = false) |
| 1890 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1891 | }; |
| 1892 | |
| 1893 | // Whether the MI is a V_PERM and is a predecessor of a common DS_WRITE |
| 1894 | class IsPermForDSW final : public InstructionRule { |
| 1895 | public: |
| 1896 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1897 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1898 | auto *MI = SU->getInstr(); |
| 1899 | if (MI->getOpcode() != AMDGPU::V_PERM_B32_e64) |
| 1900 | return false; |
| 1901 | |
| 1902 | bool FitsInGroup = false; |
| 1903 | // Does the VALU have a DS_WRITE successor |
| 1904 | if (!Collection.size()) { |
| 1905 | for (auto &Succ : SU->Succs) { |
| 1906 | SUnit *SuccUnit = Succ.getSUnit(); |
| 1907 | if (TII->isDS(MI: *SuccUnit->getInstr()) && |
| 1908 | SuccUnit->getInstr()->mayStore()) { |
| 1909 | Cache->push_back(Elt: SuccUnit); |
| 1910 | FitsInGroup = true; |
| 1911 | } |
| 1912 | } |
| 1913 | return FitsInGroup; |
| 1914 | } |
| 1915 | |
| 1916 | // Does the VALU have a DS_WRITE successor that is the same as other |
| 1917 | // VALU already in the group. The V_PERMs will all share 1 DS_W succ |
| 1918 | return llvm::any_of(Range&: *Cache, P: [&SU](SUnit *Elt) { |
| 1919 | return llvm::any_of(Range: SU->Succs, P: [&Elt](const SDep &ThisSucc) { |
| 1920 | return ThisSucc.getSUnit() == Elt; |
| 1921 | }); |
| 1922 | }); |
| 1923 | } |
| 1924 | |
| 1925 | IsPermForDSW(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false) |
| 1926 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1927 | }; |
| 1928 | |
| 1929 | // Whether the SU is a successor of any element in previous SchedGroup |
| 1930 | class IsSuccOfPrevGroup final : public InstructionRule { |
| 1931 | public: |
| 1932 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1933 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1934 | SchedGroup *OtherGroup = nullptr; |
| 1935 | for (auto &PipeSG : SyncPipe) { |
| 1936 | if ((unsigned)PipeSG.getSGID() == SGID - 1) { |
| 1937 | OtherGroup = &PipeSG; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | if (!OtherGroup) |
| 1942 | return false; |
| 1943 | if (!OtherGroup->Collection.size()) |
| 1944 | return true; |
| 1945 | |
| 1946 | // Does the previous VALU have this DS_Write as a successor |
| 1947 | return any_of(Range&: OtherGroup->Collection, P: [&SU](SUnit *Elt) { |
| 1948 | return any_of(Range&: Elt->Succs, |
| 1949 | P: [&SU](SDep &Succ) { return Succ.getSUnit() == SU; }); |
| 1950 | }); |
| 1951 | } |
| 1952 | IsSuccOfPrevGroup(const SIInstrInfo *TII, unsigned SGID, |
| 1953 | bool NeedsCache = false) |
| 1954 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1955 | }; |
| 1956 | |
| 1957 | // Whether the combined load width of group is 128 bits |
| 1958 | class VMEMSize final : public InstructionRule { |
| 1959 | public: |
| 1960 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 1961 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 1962 | auto *MI = SU->getInstr(); |
| 1963 | if (MI->getOpcode() == TargetOpcode::BUNDLE) |
| 1964 | return false; |
| 1965 | if (!Collection.size()) |
| 1966 | return true; |
| 1967 | |
| 1968 | int NumBits = 0; |
| 1969 | |
| 1970 | auto TRI = TII->getRegisterInfo(); |
| 1971 | auto &MRI = MI->getParent()->getParent()->getRegInfo(); |
| 1972 | for (auto &Elt : Collection) { |
| 1973 | auto Op = Elt->getInstr()->getOperand(i: 0); |
| 1974 | auto Size = |
| 1975 | TRI.getRegSizeInBits(RC: *TRI.getRegClassForOperandReg(MRI, MO: Op)); |
| 1976 | NumBits += Size; |
| 1977 | } |
| 1978 | |
| 1979 | if (NumBits < 128) { |
| 1980 | assert(TII->isVMEM(*MI) && MI->mayLoad()); |
| 1981 | if (NumBits + TRI.getRegSizeInBits(RC: *TRI.getRegClassForOperandReg( |
| 1982 | MRI, MO: MI->getOperand(i: 0))) <= |
| 1983 | 128) |
| 1984 | return true; |
| 1985 | } |
| 1986 | |
| 1987 | return false; |
| 1988 | } |
| 1989 | |
| 1990 | VMEMSize(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false) |
| 1991 | : InstructionRule(TII, SGID, NeedsCache) {} |
| 1992 | }; |
| 1993 | |
| 1994 | /// Whether the SU shares a V_PERM predecessor with any SU in the SchedGroup |
| 1995 | /// that is \p Distance steps away |
| 1996 | class SharesPredWithPrevNthGroup final : public InstructionRule { |
| 1997 | private: |
| 1998 | unsigned Distance = 1; |
| 1999 | |
| 2000 | public: |
| 2001 | bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection, |
| 2002 | SmallVectorImpl<SchedGroup> &SyncPipe) override { |
| 2003 | SchedGroup *OtherGroup = nullptr; |
| 2004 | if (!SyncPipe.size()) |
| 2005 | return false; |
| 2006 | |
| 2007 | if (!Cache->size()) { |
| 2008 | |
| 2009 | for (auto &PipeSG : SyncPipe) { |
| 2010 | if ((unsigned)PipeSG.getSGID() == SGID - Distance) { |
| 2011 | OtherGroup = &PipeSG; |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | if (!OtherGroup) |
| 2016 | return false; |
| 2017 | if (!OtherGroup->Collection.size()) |
| 2018 | return true; |
| 2019 | |
| 2020 | for (auto &OtherEle : OtherGroup->Collection) { |
| 2021 | for (auto &Pred : OtherEle->Preds) { |
| 2022 | if (Pred.getSUnit()->getInstr()->getOpcode() == |
| 2023 | AMDGPU::V_PERM_B32_e64) |
| 2024 | Cache->push_back(Elt: Pred.getSUnit()); |
| 2025 | } |
| 2026 | } |
| 2027 | |
| 2028 | // If the other group has no PERM preds, then this group won't share any |
| 2029 | if (!Cache->size()) |
| 2030 | return false; |
| 2031 | } |
| 2032 | |
| 2033 | auto *DAG = SyncPipe[0].DAG; |
| 2034 | // Does the previous DS_WRITE share a V_PERM predecessor with this |
| 2035 | // VMEM_READ |
| 2036 | return llvm::any_of(Range&: *Cache, P: [&SU, &DAG](SUnit *Elt) { |
| 2037 | return DAG->IsReachable(SU: const_cast<SUnit *>(SU), TargetSU: Elt); |
| 2038 | }); |
| 2039 | } |
| 2040 | SharesPredWithPrevNthGroup(unsigned Distance, const SIInstrInfo *TII, |
| 2041 | unsigned SGID, bool NeedsCache = false) |
| 2042 | : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {} |
| 2043 | }; |
| 2044 | |
| 2045 | public: |
| 2046 | bool applyIGLPStrategy( |
| 2047 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 2048 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 2049 | AMDGPU::SchedulingPhase Phase) override; |
| 2050 | |
| 2051 | bool shouldApplyStrategy(ScheduleDAGInstrs *DAG, |
| 2052 | AMDGPU::SchedulingPhase Phase) override { |
| 2053 | return true; |
| 2054 | } |
| 2055 | |
| 2056 | MFMASmallGemmSingleWaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII) |
| 2057 | : IGLPStrategy(DAG, TII) { |
| 2058 | IsBottomUp = false; |
| 2059 | } |
| 2060 | }; |
| 2061 | |
| 2062 | static unsigned DSWCount = 0; |
| 2063 | static unsigned DSWWithPermCount = 0; |
| 2064 | static unsigned DSWWithSharedVMEMCount = 0; |
| 2065 | |
| 2066 | bool MFMASmallGemmSingleWaveOpt::applyIGLPStrategy( |
| 2067 | DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs, |
| 2068 | DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups, |
| 2069 | AMDGPU::SchedulingPhase Phase) { |
| 2070 | unsigned MFMACount = 0; |
| 2071 | unsigned DSRCount = 0; |
| 2072 | |
| 2073 | bool IsInitial = Phase == AMDGPU::SchedulingPhase::Initial; |
| 2074 | |
| 2075 | assert((!IsInitial || (DSWCount == 0 && DSWWithPermCount == 0 && |
| 2076 | DSWWithSharedVMEMCount == 0)) && |
| 2077 | "DSWCounters should be zero in pre-RA scheduling!" ); |
| 2078 | SmallVector<SUnit *, 6> DSWithPerms; |
| 2079 | for (auto &SU : DAG->SUnits) { |
| 2080 | auto *I = SU.getInstr(); |
| 2081 | if (TII->isMFMAorWMMA(MI: *I)) |
| 2082 | ++MFMACount; |
| 2083 | else if (TII->isDS(MI: *I)) { |
| 2084 | if (I->mayLoad()) |
| 2085 | ++DSRCount; |
| 2086 | else if (I->mayStore() && IsInitial) { |
| 2087 | ++DSWCount; |
| 2088 | for (auto Pred : SU.Preds) { |
| 2089 | if (Pred.getSUnit()->getInstr()->getOpcode() == |
| 2090 | AMDGPU::V_PERM_B32_e64) { |
| 2091 | DSWithPerms.push_back(Elt: &SU); |
| 2092 | break; |
| 2093 | } |
| 2094 | } |
| 2095 | } |
| 2096 | } |
| 2097 | } |
| 2098 | |
| 2099 | if (IsInitial) { |
| 2100 | DSWWithPermCount = DSWithPerms.size(); |
| 2101 | auto *I = DSWithPerms.begin(); |
| 2102 | auto *E = DSWithPerms.end(); |
| 2103 | |
| 2104 | // Get the count of DS_WRITES with V_PERM predecessors which |
| 2105 | // have loop carried dependencies (WAR) on the same VMEM_READs. |
| 2106 | // We consider partial overlap as a miss -- in other words, |
| 2107 | // for a given DS_W, we only consider another DS_W as matching |
| 2108 | // if there is a corresponding (in terms of the VMEM_R it uses) V_PERM pred |
| 2109 | // for every V_PERM pred of this DS_W. |
| 2110 | DenseMap<MachineInstr *, SUnit *> VMEMLookup; |
| 2111 | SmallVector<SUnit *, 6> Counted; |
| 2112 | for (; I != E; I++) { |
| 2113 | SUnit *Cand = nullptr; |
| 2114 | bool MissedAny = false; |
| 2115 | for (auto &Pred : (*I)->Preds) { |
| 2116 | if (Pred.getSUnit()->getInstr()->getOpcode() != AMDGPU::V_PERM_B32_e64) |
| 2117 | continue; |
| 2118 | |
| 2119 | if (Cand && llvm::is_contained(Range&: Counted, Element: Cand)) |
| 2120 | break; |
| 2121 | |
| 2122 | for (auto &Succ : Pred.getSUnit()->Succs) { |
| 2123 | auto *MI = Succ.getSUnit()->getInstr(); |
| 2124 | if (!TII->isVMEM(MI: *MI) || !MI->mayLoad()) |
| 2125 | continue; |
| 2126 | |
| 2127 | if (MissedAny || !VMEMLookup.size()) { |
| 2128 | MissedAny = true; |
| 2129 | VMEMLookup[MI] = *I; |
| 2130 | continue; |
| 2131 | } |
| 2132 | |
| 2133 | auto [It, Inserted] = VMEMLookup.try_emplace(Key: MI, Args&: *I); |
| 2134 | if (Inserted) { |
| 2135 | MissedAny = true; |
| 2136 | continue; |
| 2137 | } |
| 2138 | |
| 2139 | Cand = It->second; |
| 2140 | if (llvm::is_contained(Range&: Counted, Element: Cand)) { |
| 2141 | MissedAny = true; |
| 2142 | break; |
| 2143 | } |
| 2144 | } |
| 2145 | } |
| 2146 | if (!MissedAny && Cand) { |
| 2147 | DSWWithSharedVMEMCount += 2; |
| 2148 | Counted.push_back(Elt: Cand); |
| 2149 | Counted.push_back(Elt: *I); |
| 2150 | } |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | assert(DSWWithSharedVMEMCount <= DSWWithPermCount); |
| 2155 | SchedGroup *SG; |
| 2156 | unsigned PipelineSyncID = 0; |
| 2157 | // For kernels with V_PERM, there are enough VALU to mix in between MFMAs |
| 2158 | if (DSWWithPermCount) { |
| 2159 | for (unsigned I = 0; I < MFMACount; I++) { |
| 2160 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2161 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2162 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2163 | |
| 2164 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2165 | Args: SchedGroupMask::VALU, Args: 2, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2166 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2167 | } |
| 2168 | } |
| 2169 | |
| 2170 | PipelineSyncID = 1; |
| 2171 | // Phase 1: Break up DS_READ and MFMA clusters. |
| 2172 | // First DS_READ to make ready initial MFMA, then interleave MFMA with DS_READ |
| 2173 | // prefetch |
| 2174 | |
| 2175 | // Make ready initial MFMA |
| 2176 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2177 | Args: SchedGroupMask::DS_READ, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2178 | SG->addRule(NewRule: std::make_shared<EnablesInitialMFMA>(args&: TII, args: SG->getSGID(), args: true)); |
| 2179 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2180 | |
| 2181 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2182 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2183 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2184 | |
| 2185 | // Interleave MFMA with DS_READ prefetch |
| 2186 | for (unsigned I = 0; I < DSRCount - 4; ++I) { |
| 2187 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2188 | Args: SchedGroupMask::DS_READ, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2189 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2190 | |
| 2191 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2192 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2193 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2194 | } |
| 2195 | |
| 2196 | // Phase 2a: Loop carried dependency with V_PERM |
| 2197 | // Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they |
| 2198 | // depend on. Interleave MFMA to keep XDL unit busy throughout. |
| 2199 | for (unsigned I = 0; I < DSWWithPermCount - DSWWithSharedVMEMCount; ++I) { |
| 2200 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2201 | Args: SchedGroupMask::VALU, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2202 | SG->addRule(NewRule: std::make_shared<IsPermForDSW>(args&: TII, args: SG->getSGID(), args: true)); |
| 2203 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2204 | |
| 2205 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2206 | Args: SchedGroupMask::DS_WRITE, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2207 | SG->addRule(NewRule: std::make_shared<IsSuccOfPrevGroup>(args&: TII, args: SG->getSGID())); |
| 2208 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2209 | |
| 2210 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2211 | Args: SchedGroupMask::VMEM_READ, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2212 | SG->addRule(NewRule: std::make_shared<SharesPredWithPrevNthGroup>( |
| 2213 | args: 1, args&: TII, args: SG->getSGID(), args: true)); |
| 2214 | SG->addRule(NewRule: std::make_shared<VMEMSize>(args&: TII, args: SG->getSGID())); |
| 2215 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2216 | |
| 2217 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2218 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2219 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2220 | |
| 2221 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2222 | Args: SchedGroupMask::VMEM_READ, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2223 | SG->addRule(NewRule: std::make_shared<SharesPredWithPrevNthGroup>( |
| 2224 | args: 3, args&: TII, args: SG->getSGID(), args: true)); |
| 2225 | SG->addRule(NewRule: std::make_shared<VMEMSize>(args&: TII, args: SG->getSGID())); |
| 2226 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2227 | |
| 2228 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2229 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2230 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2231 | } |
| 2232 | |
| 2233 | // Phase 2b: Loop carried dependency without V_PERM |
| 2234 | // Schedule DS_WRITE as closely as possible to the VMEM_READ they depend on. |
| 2235 | // Interleave MFMA to keep XDL unit busy throughout. |
| 2236 | for (unsigned I = 0; I < DSWCount - DSWWithPermCount; I++) { |
| 2237 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2238 | Args: SchedGroupMask::DS_WRITE, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2239 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2240 | |
| 2241 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2242 | Args: SchedGroupMask::VMEM_READ, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2243 | SG->addRule(NewRule: std::make_shared<VMEMSize>(args&: TII, args: SG->getSGID())); |
| 2244 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2245 | |
| 2246 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2247 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2248 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2249 | } |
| 2250 | |
| 2251 | // Phase 2c: Loop carried dependency with V_PERM, VMEM_READs are |
| 2252 | // ultimately used by two DS_WRITE |
| 2253 | // Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they |
| 2254 | // depend on. Interleave MFMA to keep XDL unit busy throughout. |
| 2255 | |
| 2256 | for (unsigned I = 0; I < DSWWithSharedVMEMCount; ++I) { |
| 2257 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2258 | Args: SchedGroupMask::VALU, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2259 | SG->addRule(NewRule: std::make_shared<IsPermForDSW>(args&: TII, args: SG->getSGID(), args: true)); |
| 2260 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2261 | |
| 2262 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2263 | Args: SchedGroupMask::DS_WRITE, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2264 | SG->addRule(NewRule: std::make_shared<IsSuccOfPrevGroup>(args&: TII, args: SG->getSGID())); |
| 2265 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2266 | |
| 2267 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2268 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2269 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2270 | |
| 2271 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2272 | Args: SchedGroupMask::VALU, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2273 | SG->addRule(NewRule: std::make_shared<IsPermForDSW>(args&: TII, args: SG->getSGID(), args: true)); |
| 2274 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2275 | |
| 2276 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2277 | Args: SchedGroupMask::DS_WRITE, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2278 | SG->addRule(NewRule: std::make_shared<IsSuccOfPrevGroup>(args&: TII, args: SG->getSGID())); |
| 2279 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2280 | |
| 2281 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2282 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2283 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2284 | |
| 2285 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2286 | Args: SchedGroupMask::VMEM_READ, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2287 | SG->addRule(NewRule: std::make_shared<SharesPredWithPrevNthGroup>( |
| 2288 | args: 2, args&: TII, args: SG->getSGID(), args: true)); |
| 2289 | SG->addRule(NewRule: std::make_shared<VMEMSize>(args&: TII, args: SG->getSGID())); |
| 2290 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2291 | |
| 2292 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2293 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2294 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2295 | |
| 2296 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2297 | Args: SchedGroupMask::VMEM_READ, Args: 4, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2298 | SG->addRule(NewRule: std::make_shared<SharesPredWithPrevNthGroup>( |
| 2299 | args: 4, args&: TII, args: SG->getSGID(), args: true)); |
| 2300 | SG->addRule(NewRule: std::make_shared<VMEMSize>(args&: TII, args: SG->getSGID())); |
| 2301 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2302 | |
| 2303 | SG = &SyncedSchedGroups[PipelineSyncID].emplace_back( |
| 2304 | Args: SchedGroupMask::MFMA, Args: 1, Args&: PipelineSyncID, Args&: DAG, Args&: TII); |
| 2305 | SG->initSchedGroup(SyncedInstrs&: SyncedInstrs[SG->getSyncID()]); |
| 2306 | } |
| 2307 | |
| 2308 | return true; |
| 2309 | } |
| 2310 | |
| 2311 | static std::unique_ptr<IGLPStrategy> |
| 2312 | createIGLPStrategy(IGLPStrategyID ID, ScheduleDAGInstrs *DAG, |
| 2313 | const SIInstrInfo *TII) { |
| 2314 | switch (ID) { |
| 2315 | case MFMASmallGemmOptID: |
| 2316 | return std::make_unique<MFMASmallGemmOpt>(args&: DAG, args&: TII); |
| 2317 | case MFMASmallGemmSingleWaveOptID: |
| 2318 | return std::make_unique<MFMASmallGemmSingleWaveOpt>(args&: DAG, args&: TII); |
| 2319 | case MFMAExpInterleaveID: |
| 2320 | return std::make_unique<MFMAExpInterleaveOpt>(args&: DAG, args&: TII); |
| 2321 | case MFMAExpSimpleInterleaveID: |
| 2322 | return std::make_unique<MFMAExpSimpleInterleaveOpt>(args&: DAG, args&: TII); |
| 2323 | } |
| 2324 | |
| 2325 | llvm_unreachable("Unknown IGLPStrategyID" ); |
| 2326 | } |
| 2327 | |
| 2328 | class IGroupLPDAGMutation : public ScheduleDAGMutation { |
| 2329 | private: |
| 2330 | const SIInstrInfo *TII; |
| 2331 | |
| 2332 | ScheduleDAGMI *DAG; |
| 2333 | |
| 2334 | // Organize lists of SchedGroups by their SyncID. SchedGroups / |
| 2335 | // SCHED_GROUP_BARRIERs with different SyncIDs will have no edges added |
| 2336 | // between then. |
| 2337 | DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups; |
| 2338 | |
| 2339 | // Used to track instructions that can be mapped to multiple sched groups |
| 2340 | DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs; |
| 2341 | |
| 2342 | // Add DAG edges that enforce SCHED_BARRIER ordering. |
| 2343 | void addSchedBarrierEdges(SUnit &SU); |
| 2344 | |
| 2345 | // Use a SCHED_BARRIER's mask to identify instruction SchedGroups that should |
| 2346 | // not be reordered accross the SCHED_BARRIER. This is used for the base |
| 2347 | // SCHED_BARRIER, and not SCHED_GROUP_BARRIER. The difference is that |
| 2348 | // SCHED_BARRIER will always block all instructions that can be classified |
| 2349 | // into a particular SchedClass, whereas SCHED_GROUP_BARRIER has a fixed size |
| 2350 | // and may only synchronize with some SchedGroups. Returns the inverse of |
| 2351 | // Mask. SCHED_BARRIER's mask describes which instruction types should be |
| 2352 | // allowed to be scheduled across it. Invert the mask to get the |
| 2353 | // SchedGroupMask of instructions that should be barred. |
| 2354 | SchedGroupMask invertSchedBarrierMask(SchedGroupMask Mask) const; |
| 2355 | |
| 2356 | // Create SchedGroups for a SCHED_GROUP_BARRIER. |
| 2357 | void initSchedGroupBarrierPipelineStage( |
| 2358 | std::vector<SUnit>::reverse_iterator RIter); |
| 2359 | |
| 2360 | bool initIGLPOpt(SUnit &SU); |
| 2361 | |
| 2362 | public: |
| 2363 | void apply(ScheduleDAGInstrs *DAGInstrs) override; |
| 2364 | |
| 2365 | // The order in which the PipelineSolver should process the candidate |
| 2366 | // SchedGroup for a PipelineInstr. BOTTOM_UP will try to add SUs to the last |
| 2367 | // created SchedGroup first, and will consider that as the ultimate |
| 2368 | // predecessor group when linking. TOP_DOWN instead links and processes the |
| 2369 | // first created SchedGroup first. |
| 2370 | bool IsBottomUp = true; |
| 2371 | |
| 2372 | // The scheduling phase this application of IGLP corresponds with. |
| 2373 | AMDGPU::SchedulingPhase Phase = AMDGPU::SchedulingPhase::Initial; |
| 2374 | |
| 2375 | IGroupLPDAGMutation() = default; |
| 2376 | IGroupLPDAGMutation(AMDGPU::SchedulingPhase Phase) : Phase(Phase) {} |
| 2377 | }; |
| 2378 | |
| 2379 | unsigned SchedGroup::NumSchedGroups = 0; |
| 2380 | |
| 2381 | bool SchedGroup::tryAddEdge(SUnit *A, SUnit *B) { |
| 2382 | if (A != B && DAG->canAddEdge(SuccSU: B, PredSU: A)) { |
| 2383 | DAG->addEdge(SuccSU: B, PredDep: SDep(A, SDep::Artificial)); |
| 2384 | return true; |
| 2385 | } |
| 2386 | return false; |
| 2387 | } |
| 2388 | |
| 2389 | bool SchedGroup::canAddMI(const MachineInstr &MI) const { |
| 2390 | bool Result = false; |
| 2391 | if (MI.isMetaInstruction()) |
| 2392 | Result = false; |
| 2393 | |
| 2394 | else if (((SGMask & SchedGroupMask::ALU) != SchedGroupMask::NONE) && |
| 2395 | (TII->isVALU(MI) || TII->isMFMAorWMMA(MI) || TII->isSALU(MI) || |
| 2396 | TII->isTRANS(MI))) |
| 2397 | Result = true; |
| 2398 | |
| 2399 | else if (((SGMask & SchedGroupMask::VALU) != SchedGroupMask::NONE) && |
| 2400 | TII->isVALU(MI) && !TII->isMFMAorWMMA(MI) && !TII->isTRANS(MI)) |
| 2401 | Result = true; |
| 2402 | |
| 2403 | else if (((SGMask & SchedGroupMask::SALU) != SchedGroupMask::NONE) && |
| 2404 | TII->isSALU(MI)) |
| 2405 | Result = true; |
| 2406 | |
| 2407 | else if (((SGMask & SchedGroupMask::MFMA) != SchedGroupMask::NONE) && |
| 2408 | TII->isMFMAorWMMA(MI)) |
| 2409 | Result = true; |
| 2410 | |
| 2411 | else if (((SGMask & SchedGroupMask::VMEM) != SchedGroupMask::NONE) && |
| 2412 | TII->isVMEM(MI)) |
| 2413 | Result = true; |
| 2414 | |
| 2415 | else if (((SGMask & SchedGroupMask::VMEM_READ) != SchedGroupMask::NONE) && |
| 2416 | MI.mayLoad() && TII->isVMEM(MI)) |
| 2417 | Result = true; |
| 2418 | |
| 2419 | else if (((SGMask & SchedGroupMask::VMEM_WRITE) != SchedGroupMask::NONE) && |
| 2420 | MI.mayStore() && TII->isVMEM(MI)) |
| 2421 | Result = true; |
| 2422 | |
| 2423 | else if (((SGMask & SchedGroupMask::DS) != SchedGroupMask::NONE) && |
| 2424 | TII->isDS(MI)) |
| 2425 | Result = true; |
| 2426 | |
| 2427 | else if (((SGMask & SchedGroupMask::DS_READ) != SchedGroupMask::NONE) && |
| 2428 | MI.mayLoad() && TII->isDS(MI)) |
| 2429 | Result = true; |
| 2430 | |
| 2431 | else if (((SGMask & SchedGroupMask::DS_WRITE) != SchedGroupMask::NONE) && |
| 2432 | MI.mayStore() && TII->isDS(MI)) |
| 2433 | Result = true; |
| 2434 | |
| 2435 | else if (((SGMask & SchedGroupMask::TRANS) != SchedGroupMask::NONE) && |
| 2436 | TII->isTRANS(MI)) |
| 2437 | Result = true; |
| 2438 | |
| 2439 | LLVM_DEBUG( |
| 2440 | dbgs() << "For SchedGroup with mask " << format_hex((int)SGMask, 10, true) |
| 2441 | << (Result ? " could classify " : " unable to classify " ) << MI); |
| 2442 | |
| 2443 | return Result; |
| 2444 | } |
| 2445 | |
| 2446 | int SchedGroup::link(SUnit &SU, bool MakePred, |
| 2447 | std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) { |
| 2448 | int MissedEdges = 0; |
| 2449 | for (auto *A : Collection) { |
| 2450 | SUnit *B = &SU; |
| 2451 | if (A == B || A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER) |
| 2452 | continue; |
| 2453 | if (MakePred) |
| 2454 | std::swap(a&: A, b&: B); |
| 2455 | |
| 2456 | if (DAG->IsReachable(SU: B, TargetSU: A)) |
| 2457 | continue; |
| 2458 | |
| 2459 | // tryAddEdge returns false if there is a dependency that makes adding |
| 2460 | // the A->B edge impossible, otherwise it returns true; |
| 2461 | bool Added = tryAddEdge(A, B); |
| 2462 | if (Added) |
| 2463 | AddedEdges.emplace_back(args&: A, args&: B); |
| 2464 | else |
| 2465 | ++MissedEdges; |
| 2466 | } |
| 2467 | |
| 2468 | return MissedEdges; |
| 2469 | } |
| 2470 | |
| 2471 | void SchedGroup::link(SUnit &SU, bool MakePred) { |
| 2472 | for (auto *A : Collection) { |
| 2473 | SUnit *B = &SU; |
| 2474 | if (A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER) |
| 2475 | continue; |
| 2476 | if (MakePred) |
| 2477 | std::swap(a&: A, b&: B); |
| 2478 | |
| 2479 | tryAddEdge(A, B); |
| 2480 | } |
| 2481 | } |
| 2482 | |
| 2483 | void SchedGroup::link(SUnit &SU, |
| 2484 | function_ref<bool(const SUnit *A, const SUnit *B)> P) { |
| 2485 | for (auto *A : Collection) { |
| 2486 | SUnit *B = &SU; |
| 2487 | if (P(A, B)) |
| 2488 | std::swap(a&: A, b&: B); |
| 2489 | |
| 2490 | tryAddEdge(A, B); |
| 2491 | } |
| 2492 | } |
| 2493 | |
| 2494 | void SchedGroup::link(SchedGroup &OtherGroup) { |
| 2495 | for (auto *B : OtherGroup.Collection) |
| 2496 | link(SU&: *B); |
| 2497 | } |
| 2498 | |
| 2499 | bool SchedGroup::canAddSU(SUnit &SU) const { |
| 2500 | MachineInstr &MI = *SU.getInstr(); |
| 2501 | if (MI.getOpcode() != TargetOpcode::BUNDLE) |
| 2502 | return canAddMI(MI); |
| 2503 | |
| 2504 | // Special case for bundled MIs. |
| 2505 | const MachineBasicBlock *MBB = MI.getParent(); |
| 2506 | MachineBasicBlock::instr_iterator B = MI.getIterator(), E = ++B; |
| 2507 | while (E != MBB->end() && E->isBundledWithPred()) |
| 2508 | ++E; |
| 2509 | |
| 2510 | // Return true if all of the bundled MIs can be added to this group. |
| 2511 | return std::all_of(first: B, last: E, pred: [this](MachineInstr &MI) { return canAddMI(MI); }); |
| 2512 | } |
| 2513 | |
| 2514 | void SchedGroup::initSchedGroup() { |
| 2515 | for (auto &SU : DAG->SUnits) { |
| 2516 | if (isFull()) |
| 2517 | break; |
| 2518 | |
| 2519 | if (canAddSU(SU)) |
| 2520 | add(SU); |
| 2521 | } |
| 2522 | } |
| 2523 | |
| 2524 | void SchedGroup::initSchedGroup(std::vector<SUnit>::reverse_iterator RIter, |
| 2525 | SUnitsToCandidateSGsMap &SyncedInstrs) { |
| 2526 | SUnit &InitSU = *RIter; |
| 2527 | for (auto E = DAG->SUnits.rend(); RIter != E; ++RIter) { |
| 2528 | auto &SU = *RIter; |
| 2529 | if (isFull()) |
| 2530 | break; |
| 2531 | |
| 2532 | if (canAddSU(SU)) |
| 2533 | SyncedInstrs[&SU].push_back(Elt: SGID); |
| 2534 | } |
| 2535 | |
| 2536 | add(SU&: InitSU); |
| 2537 | assert(MaxSize); |
| 2538 | (*MaxSize)++; |
| 2539 | } |
| 2540 | |
| 2541 | void SchedGroup::initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs) { |
| 2542 | auto I = DAG->SUnits.rbegin(); |
| 2543 | auto E = DAG->SUnits.rend(); |
| 2544 | for (; I != E; ++I) { |
| 2545 | auto &SU = *I; |
| 2546 | if (isFull()) |
| 2547 | break; |
| 2548 | if (canAddSU(SU)) |
| 2549 | SyncedInstrs[&SU].push_back(Elt: SGID); |
| 2550 | } |
| 2551 | } |
| 2552 | |
| 2553 | void IGroupLPDAGMutation::apply(ScheduleDAGInstrs *DAGInstrs) { |
| 2554 | const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); |
| 2555 | if (!TSchedModel || DAGInstrs->SUnits.empty()) |
| 2556 | return; |
| 2557 | |
| 2558 | LLVM_DEBUG(dbgs() << "Applying IGroupLPDAGMutation...\n" ); |
| 2559 | const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); |
| 2560 | TII = ST.getInstrInfo(); |
| 2561 | DAG = static_cast<ScheduleDAGMI *>(DAGInstrs); |
| 2562 | SyncedSchedGroups.clear(); |
| 2563 | SyncedInstrs.clear(); |
| 2564 | bool FoundSB = false; |
| 2565 | bool FoundIGLP = false; |
| 2566 | bool ShouldApplyIGLP = false; |
| 2567 | for (auto R = DAG->SUnits.rbegin(), E = DAG->SUnits.rend(); R != E; ++R) { |
| 2568 | unsigned Opc = R->getInstr()->getOpcode(); |
| 2569 | // SCHED_[GROUP_]BARRIER and IGLP are mutually exclusive. |
| 2570 | if (Opc == AMDGPU::SCHED_BARRIER) { |
| 2571 | addSchedBarrierEdges(SU&: *R); |
| 2572 | FoundSB = true; |
| 2573 | } else if (Opc == AMDGPU::SCHED_GROUP_BARRIER) { |
| 2574 | initSchedGroupBarrierPipelineStage(RIter: R); |
| 2575 | FoundSB = true; |
| 2576 | } else if (Opc == AMDGPU::IGLP_OPT) { |
| 2577 | if (!FoundSB && !FoundIGLP) { |
| 2578 | FoundIGLP = true; |
| 2579 | ShouldApplyIGLP = initIGLPOpt(SU&: *R); |
| 2580 | } |
| 2581 | } |
| 2582 | } |
| 2583 | |
| 2584 | if (FoundSB || (FoundIGLP && ShouldApplyIGLP)) { |
| 2585 | PipelineSolver PS(SyncedSchedGroups, SyncedInstrs, DAG, IsBottomUp); |
| 2586 | // PipelineSolver performs the mutation by adding the edges it |
| 2587 | // determined as the best |
| 2588 | PS.solve(); |
| 2589 | return; |
| 2590 | } |
| 2591 | } |
| 2592 | |
| 2593 | void IGroupLPDAGMutation::addSchedBarrierEdges(SUnit &SchedBarrier) { |
| 2594 | MachineInstr &MI = *SchedBarrier.getInstr(); |
| 2595 | assert(MI.getOpcode() == AMDGPU::SCHED_BARRIER); |
| 2596 | // Remove all existing edges from the SCHED_BARRIER that were added due to the |
| 2597 | // instruction having side effects. |
| 2598 | LLVM_DEBUG(dbgs() << "Building SchedGroup for SchedBarrier with Mask: " |
| 2599 | << MI.getOperand(0).getImm() << "\n" ); |
| 2600 | auto InvertedMask = |
| 2601 | invertSchedBarrierMask(Mask: (SchedGroupMask)MI.getOperand(i: 0).getImm()); |
| 2602 | SchedGroup SG(InvertedMask, std::nullopt, DAG, TII); |
| 2603 | SG.initSchedGroup(); |
| 2604 | |
| 2605 | // Preserve original instruction ordering relative to the SCHED_BARRIER. |
| 2606 | SG.link( |
| 2607 | SU&: SchedBarrier, |
| 2608 | P: (function_ref<bool(const SUnit *A, const SUnit *B)>)[]( |
| 2609 | const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; }); |
| 2610 | } |
| 2611 | |
| 2612 | SchedGroupMask |
| 2613 | IGroupLPDAGMutation::invertSchedBarrierMask(SchedGroupMask Mask) const { |
| 2614 | // Invert mask and erase bits for types of instructions that are implied to be |
| 2615 | // allowed past the SCHED_BARRIER. |
| 2616 | SchedGroupMask InvertedMask = ~Mask; |
| 2617 | |
| 2618 | // ALU implies VALU, SALU, MFMA, TRANS. |
| 2619 | if ((InvertedMask & SchedGroupMask::ALU) == SchedGroupMask::NONE) |
| 2620 | InvertedMask &= ~SchedGroupMask::VALU & ~SchedGroupMask::SALU & |
| 2621 | ~SchedGroupMask::MFMA & ~SchedGroupMask::TRANS; |
| 2622 | // VALU, SALU, MFMA, TRANS implies ALU. |
| 2623 | else if ((InvertedMask & SchedGroupMask::VALU) == SchedGroupMask::NONE || |
| 2624 | (InvertedMask & SchedGroupMask::SALU) == SchedGroupMask::NONE || |
| 2625 | (InvertedMask & SchedGroupMask::MFMA) == SchedGroupMask::NONE || |
| 2626 | (InvertedMask & SchedGroupMask::TRANS) == SchedGroupMask::NONE) |
| 2627 | InvertedMask &= ~SchedGroupMask::ALU; |
| 2628 | |
| 2629 | // VMEM implies VMEM_READ, VMEM_WRITE. |
| 2630 | if ((InvertedMask & SchedGroupMask::VMEM) == SchedGroupMask::NONE) |
| 2631 | InvertedMask &= ~SchedGroupMask::VMEM_READ & ~SchedGroupMask::VMEM_WRITE; |
| 2632 | // VMEM_READ, VMEM_WRITE implies VMEM. |
| 2633 | else if ((InvertedMask & SchedGroupMask::VMEM_READ) == SchedGroupMask::NONE || |
| 2634 | (InvertedMask & SchedGroupMask::VMEM_WRITE) == SchedGroupMask::NONE) |
| 2635 | InvertedMask &= ~SchedGroupMask::VMEM; |
| 2636 | |
| 2637 | // DS implies DS_READ, DS_WRITE. |
| 2638 | if ((InvertedMask & SchedGroupMask::DS) == SchedGroupMask::NONE) |
| 2639 | InvertedMask &= ~SchedGroupMask::DS_READ & ~SchedGroupMask::DS_WRITE; |
| 2640 | // DS_READ, DS_WRITE implies DS. |
| 2641 | else if ((InvertedMask & SchedGroupMask::DS_READ) == SchedGroupMask::NONE || |
| 2642 | (InvertedMask & SchedGroupMask::DS_WRITE) == SchedGroupMask::NONE) |
| 2643 | InvertedMask &= ~SchedGroupMask::DS; |
| 2644 | |
| 2645 | LLVM_DEBUG(dbgs() << "After Inverting, SchedGroup Mask: " << (int)InvertedMask |
| 2646 | << "\n" ); |
| 2647 | |
| 2648 | return InvertedMask; |
| 2649 | } |
| 2650 | |
| 2651 | void IGroupLPDAGMutation::initSchedGroupBarrierPipelineStage( |
| 2652 | std::vector<SUnit>::reverse_iterator RIter) { |
| 2653 | // Remove all existing edges from the SCHED_GROUP_BARRIER that were added due |
| 2654 | // to the instruction having side effects. |
| 2655 | MachineInstr &SGB = *RIter->getInstr(); |
| 2656 | assert(SGB.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER); |
| 2657 | int32_t SGMask = SGB.getOperand(i: 0).getImm(); |
| 2658 | int32_t Size = SGB.getOperand(i: 1).getImm(); |
| 2659 | int32_t SyncID = SGB.getOperand(i: 2).getImm(); |
| 2660 | |
| 2661 | auto &SG = SyncedSchedGroups[SyncID].emplace_back(Args: (SchedGroupMask)SGMask, |
| 2662 | Args&: Size, Args&: SyncID, Args&: DAG, Args&: TII); |
| 2663 | |
| 2664 | SG.initSchedGroup(RIter, SyncedInstrs&: SyncedInstrs[SG.getSyncID()]); |
| 2665 | } |
| 2666 | |
| 2667 | bool IGroupLPDAGMutation::initIGLPOpt(SUnit &SU) { |
| 2668 | IGLPStrategyID StrategyID = |
| 2669 | (IGLPStrategyID)SU.getInstr()->getOperand(i: 0).getImm(); |
| 2670 | auto S = createIGLPStrategy(ID: StrategyID, DAG, TII); |
| 2671 | if (!S->shouldApplyStrategy(DAG, Phase)) |
| 2672 | return false; |
| 2673 | |
| 2674 | IsBottomUp = S->IsBottomUp; |
| 2675 | return S->applyIGLPStrategy(SyncedInstrs, SyncedSchedGroups, Phase); |
| 2676 | } |
| 2677 | |
| 2678 | } // namespace |
| 2679 | |
| 2680 | /// \p Phase specifes whether or not this is a reentry into the |
| 2681 | /// IGroupLPDAGMutation. Since there may be multiple scheduling passes on the |
| 2682 | /// same scheduling region (e.g. pre and post-RA scheduling / multiple |
| 2683 | /// scheduling "phases"), we can reenter this mutation framework more than once |
| 2684 | /// for a given region. |
| 2685 | std::unique_ptr<ScheduleDAGMutation> |
| 2686 | llvm::createIGroupLPDAGMutation(AMDGPU::SchedulingPhase Phase) { |
| 2687 | return std::make_unique<IGroupLPDAGMutation>(args&: Phase); |
| 2688 | } |
| 2689 | |