| 1 | //===- AMDGPUInsertDelayAlu.cpp - Insert s_delay_alu instructions ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// Insert s_delay_alu instructions to avoid stalls on GFX11+. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AMDGPU.h" |
| 15 | #include "GCNSubtarget.h" |
| 16 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 17 | #include "SIInstrInfo.h" |
| 18 | #include "llvm/ADT/SetVector.h" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | #define DEBUG_TYPE "amdgpu-insert-delay-alu" |
| 23 | |
| 24 | namespace { |
| 25 | |
| 26 | class AMDGPUInsertDelayAlu { |
| 27 | public: |
| 28 | const SIInstrInfo *SII; |
| 29 | const TargetRegisterInfo *TRI; |
| 30 | |
| 31 | const TargetSchedModel *SchedModel; |
| 32 | |
| 33 | // Return true if MI waits for all outstanding VALU instructions to complete. |
| 34 | static bool instructionWaitsForVALU(const MachineInstr &MI) { |
| 35 | // These instruction types wait for VA_VDST==0 before issuing. |
| 36 | const uint64_t VA_VDST_0 = SIInstrFlags::DS | SIInstrFlags::EXP | |
| 37 | SIInstrFlags::FLAT | SIInstrFlags::MIMG | |
| 38 | SIInstrFlags::MTBUF | SIInstrFlags::MUBUF; |
| 39 | if (MI.getDesc().TSFlags & VA_VDST_0) |
| 40 | return true; |
| 41 | if (MI.getOpcode() == AMDGPU::S_SENDMSG_RTN_B32 || |
| 42 | MI.getOpcode() == AMDGPU::S_SENDMSG_RTN_B64) |
| 43 | return true; |
| 44 | if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 45 | AMDGPU::DepCtr::decodeFieldVaVdst(Encoded: MI.getOperand(i: 0).getImm()) == 0) |
| 46 | return true; |
| 47 | return false; |
| 48 | } |
| 49 | |
| 50 | static bool instructionWaitsForSGPRWrites(const MachineInstr &MI) { |
| 51 | // These instruction types wait for VA_SDST==0 before issuing. |
| 52 | uint64_t MIFlags = MI.getDesc().TSFlags; |
| 53 | if (MIFlags & SIInstrFlags::SMRD) |
| 54 | return true; |
| 55 | |
| 56 | if (MIFlags & SIInstrFlags::SALU) { |
| 57 | for (auto &Op : MI.operands()) { |
| 58 | if (Op.isReg()) |
| 59 | return true; |
| 60 | } |
| 61 | } |
| 62 | return false; |
| 63 | } |
| 64 | |
| 65 | // Types of delay that can be encoded in an s_delay_alu instruction. |
| 66 | enum DelayType { VALU, TRANS, SALU, OTHER }; |
| 67 | |
| 68 | // Get the delay type for an instruction with the specified TSFlags. |
| 69 | static DelayType getDelayType(uint64_t TSFlags) { |
| 70 | if (TSFlags & SIInstrFlags::TRANS) |
| 71 | return TRANS; |
| 72 | if (TSFlags & SIInstrFlags::VALU) |
| 73 | return VALU; |
| 74 | if (TSFlags & SIInstrFlags::SALU) |
| 75 | return SALU; |
| 76 | return OTHER; |
| 77 | } |
| 78 | |
| 79 | // Information about the last instruction(s) that wrote to a particular |
| 80 | // regunit. In straight-line code there will only be one such instruction, but |
| 81 | // when control flow converges we merge the delay information from each path |
| 82 | // to represent the union of the worst-case delays of each type. |
| 83 | struct DelayInfo { |
| 84 | // One larger than the maximum number of (non-TRANS) VALU instructions we |
| 85 | // can encode in an s_delay_alu instruction. |
| 86 | static constexpr unsigned VALU_MAX = 5; |
| 87 | |
| 88 | // One larger than the maximum number of TRANS instructions we can encode in |
| 89 | // an s_delay_alu instruction. |
| 90 | static constexpr unsigned TRANS_MAX = 4; |
| 91 | |
| 92 | // One larger than the maximum number of SALU cycles we can encode in an |
| 93 | // s_delay_alu instruction. |
| 94 | static constexpr unsigned SALU_CYCLES_MAX = 4; |
| 95 | |
| 96 | // If it was written by a (non-TRANS) VALU, remember how many clock cycles |
| 97 | // are left until it completes, and how many other (non-TRANS) VALU we have |
| 98 | // seen since it was issued. |
| 99 | uint8_t VALUCycles = 0; |
| 100 | uint8_t VALUNum = VALU_MAX; |
| 101 | |
| 102 | // If it was written by a TRANS, remember how many clock cycles are left |
| 103 | // until it completes, and how many other TRANS we have seen since it was |
| 104 | // issued. |
| 105 | uint8_t TRANSCycles = 0; |
| 106 | uint8_t TRANSNum = TRANS_MAX; |
| 107 | // Also remember how many other (non-TRANS) VALU we have seen since it was |
| 108 | // issued. When an instruction depends on both a prior TRANS and a prior |
| 109 | // non-TRANS VALU, this is used to decide whether to encode a wait for just |
| 110 | // one or both of them. |
| 111 | uint8_t TRANSNumVALU = VALU_MAX; |
| 112 | |
| 113 | // If it was written by an SALU, remember how many clock cycles are left |
| 114 | // until it completes. |
| 115 | uint8_t SALUCycles = 0; |
| 116 | |
| 117 | DelayInfo() = default; |
| 118 | |
| 119 | DelayInfo(DelayType Type, unsigned Cycles) { |
| 120 | switch (Type) { |
| 121 | default: |
| 122 | llvm_unreachable("unexpected type" ); |
| 123 | case VALU: |
| 124 | VALUCycles = Cycles; |
| 125 | VALUNum = 0; |
| 126 | break; |
| 127 | case TRANS: |
| 128 | TRANSCycles = Cycles; |
| 129 | TRANSNum = 0; |
| 130 | TRANSNumVALU = 0; |
| 131 | break; |
| 132 | case SALU: |
| 133 | // Guard against pseudo-instructions like SI_CALL which are marked as |
| 134 | // SALU but with a very high latency. |
| 135 | SALUCycles = std::min(a: Cycles, b: SALU_CYCLES_MAX); |
| 136 | break; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | bool operator==(const DelayInfo &RHS) const { |
| 141 | return VALUCycles == RHS.VALUCycles && VALUNum == RHS.VALUNum && |
| 142 | TRANSCycles == RHS.TRANSCycles && TRANSNum == RHS.TRANSNum && |
| 143 | TRANSNumVALU == RHS.TRANSNumVALU && SALUCycles == RHS.SALUCycles; |
| 144 | } |
| 145 | |
| 146 | bool operator!=(const DelayInfo &RHS) const { return !(*this == RHS); } |
| 147 | |
| 148 | // Merge another DelayInfo into this one, to represent the union of the |
| 149 | // worst-case delays of each type. |
| 150 | void merge(const DelayInfo &RHS) { |
| 151 | VALUCycles = std::max(a: VALUCycles, b: RHS.VALUCycles); |
| 152 | VALUNum = std::min(a: VALUNum, b: RHS.VALUNum); |
| 153 | TRANSCycles = std::max(a: TRANSCycles, b: RHS.TRANSCycles); |
| 154 | TRANSNum = std::min(a: TRANSNum, b: RHS.TRANSNum); |
| 155 | TRANSNumVALU = std::min(a: TRANSNumVALU, b: RHS.TRANSNumVALU); |
| 156 | SALUCycles = std::max(a: SALUCycles, b: RHS.SALUCycles); |
| 157 | } |
| 158 | |
| 159 | // Update this DelayInfo after issuing an instruction of the specified type. |
| 160 | // Cycles is the number of cycles it takes to issue the instruction. Return |
| 161 | // true if there is no longer any useful delay info. |
| 162 | bool advance(DelayType Type, unsigned Cycles) { |
| 163 | bool Erase = true; |
| 164 | |
| 165 | VALUNum += (Type == VALU); |
| 166 | if (VALUNum >= VALU_MAX || VALUCycles <= Cycles) { |
| 167 | // Forget about the VALU instruction. It was too far back or has |
| 168 | // definitely completed by now. |
| 169 | VALUNum = VALU_MAX; |
| 170 | VALUCycles = 0; |
| 171 | } else { |
| 172 | VALUCycles -= Cycles; |
| 173 | Erase = false; |
| 174 | } |
| 175 | |
| 176 | TRANSNum += (Type == TRANS); |
| 177 | TRANSNumVALU += (Type == VALU); |
| 178 | if (TRANSNum >= TRANS_MAX || TRANSCycles <= Cycles) { |
| 179 | // Forget about any TRANS instruction. It was too far back or has |
| 180 | // definitely completed by now. |
| 181 | TRANSNum = TRANS_MAX; |
| 182 | TRANSNumVALU = VALU_MAX; |
| 183 | TRANSCycles = 0; |
| 184 | } else { |
| 185 | TRANSCycles -= Cycles; |
| 186 | Erase = false; |
| 187 | } |
| 188 | |
| 189 | if (SALUCycles <= Cycles) { |
| 190 | // Forget about any SALU instruction. It has definitely completed by |
| 191 | // now. |
| 192 | SALUCycles = 0; |
| 193 | } else { |
| 194 | SALUCycles -= Cycles; |
| 195 | Erase = false; |
| 196 | } |
| 197 | |
| 198 | return Erase; |
| 199 | } |
| 200 | |
| 201 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 202 | void dump() const { |
| 203 | if (VALUCycles) |
| 204 | dbgs() << " VALUCycles=" << (int)VALUCycles; |
| 205 | if (VALUNum < VALU_MAX) |
| 206 | dbgs() << " VALUNum=" << (int)VALUNum; |
| 207 | if (TRANSCycles) |
| 208 | dbgs() << " TRANSCycles=" << (int)TRANSCycles; |
| 209 | if (TRANSNum < TRANS_MAX) |
| 210 | dbgs() << " TRANSNum=" << (int)TRANSNum; |
| 211 | if (TRANSNumVALU < VALU_MAX) |
| 212 | dbgs() << " TRANSNumVALU=" << (int)TRANSNumVALU; |
| 213 | if (SALUCycles) |
| 214 | dbgs() << " SALUCycles=" << (int)SALUCycles; |
| 215 | } |
| 216 | #endif |
| 217 | }; |
| 218 | |
| 219 | // A map from regunits to the delay info for that regunit. |
| 220 | struct DelayState : DenseMap<unsigned, DelayInfo> { |
| 221 | // Merge another DelayState into this one by merging the delay info for each |
| 222 | // regunit. |
| 223 | void merge(const DelayState &RHS) { |
| 224 | for (const auto &KV : RHS) { |
| 225 | iterator It; |
| 226 | bool Inserted; |
| 227 | std::tie(args&: It, args&: Inserted) = insert(KV); |
| 228 | if (!Inserted) |
| 229 | It->second.merge(RHS: KV.second); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | // Advance the delay info for each regunit, erasing any that are no longer |
| 234 | // useful. |
| 235 | void advance(DelayType Type, unsigned Cycles) { |
| 236 | iterator Next; |
| 237 | for (auto I = begin(), E = end(); I != E; I = Next) { |
| 238 | Next = std::next(x: I); |
| 239 | if (I->second.advance(Type, Cycles)) |
| 240 | erase(I); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | void advanceByVALUNum(unsigned VALUNum) { |
| 245 | iterator Next; |
| 246 | for (auto I = begin(), E = end(); I != E; I = Next) { |
| 247 | Next = std::next(x: I); |
| 248 | if (I->second.VALUNum >= VALUNum && I->second.VALUCycles > 0) { |
| 249 | erase(I); |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 255 | void dump(const TargetRegisterInfo *TRI) const { |
| 256 | if (empty()) { |
| 257 | dbgs() << " empty\n" ; |
| 258 | return; |
| 259 | } |
| 260 | |
| 261 | // Dump DelayInfo for each RegUnit in numerical order. |
| 262 | SmallVector<const_iterator, 8> Order; |
| 263 | Order.reserve(size()); |
| 264 | for (const_iterator I = begin(), E = end(); I != E; ++I) |
| 265 | Order.push_back(I); |
| 266 | llvm::sort(Order, [](const const_iterator &A, const const_iterator &B) { |
| 267 | return A->first < B->first; |
| 268 | }); |
| 269 | for (const_iterator I : Order) { |
| 270 | dbgs() << " " << printRegUnit(I->first, TRI); |
| 271 | I->second.dump(); |
| 272 | dbgs() << "\n" ; |
| 273 | } |
| 274 | } |
| 275 | #endif |
| 276 | }; |
| 277 | |
| 278 | // The saved delay state at the end of each basic block. |
| 279 | DenseMap<MachineBasicBlock *, DelayState> BlockState; |
| 280 | |
| 281 | // Emit an s_delay_alu instruction if necessary before MI. |
| 282 | MachineInstr *emitDelayAlu(MachineInstr &MI, DelayInfo Delay, |
| 283 | MachineInstr *LastDelayAlu) { |
| 284 | unsigned Imm = 0; |
| 285 | |
| 286 | // Wait for a TRANS instruction. |
| 287 | if (Delay.TRANSNum < DelayInfo::TRANS_MAX) |
| 288 | Imm |= 4 + Delay.TRANSNum; |
| 289 | |
| 290 | // Wait for a VALU instruction (if it's more recent than any TRANS |
| 291 | // instruction that we're also waiting for). |
| 292 | if (Delay.VALUNum < DelayInfo::VALU_MAX && |
| 293 | Delay.VALUNum <= Delay.TRANSNumVALU) { |
| 294 | if (Imm & 0xf) |
| 295 | Imm |= Delay.VALUNum << 7; |
| 296 | else |
| 297 | Imm |= Delay.VALUNum; |
| 298 | } |
| 299 | |
| 300 | // Wait for an SALU instruction. |
| 301 | if (Delay.SALUCycles) { |
| 302 | assert(Delay.SALUCycles < DelayInfo::SALU_CYCLES_MAX); |
| 303 | if (Imm & 0x780) { |
| 304 | // We have already encoded a VALU and a TRANS delay. There's no room in |
| 305 | // the encoding for an SALU delay as well, so just drop it. |
| 306 | } else if (Imm & 0xf) { |
| 307 | Imm |= (Delay.SALUCycles + 8) << 7; |
| 308 | } else { |
| 309 | Imm |= Delay.SALUCycles + 8; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | // Don't emit the s_delay_alu instruction if there's nothing to wait for. |
| 314 | if (!Imm) |
| 315 | return LastDelayAlu; |
| 316 | |
| 317 | // If we only need to wait for one instruction, try encoding it in the last |
| 318 | // s_delay_alu that we emitted. |
| 319 | if (!(Imm & 0x780) && LastDelayAlu) { |
| 320 | unsigned Skip = 0; |
| 321 | for (auto I = MachineBasicBlock::instr_iterator(LastDelayAlu), |
| 322 | E = MachineBasicBlock::instr_iterator(MI); |
| 323 | ++I != E;) { |
| 324 | if (!I->isBundle() && !I->isMetaInstruction()) |
| 325 | ++Skip; |
| 326 | } |
| 327 | if (Skip < 6) { |
| 328 | MachineOperand &Op = LastDelayAlu->getOperand(i: 0); |
| 329 | unsigned LastImm = Op.getImm(); |
| 330 | assert((LastImm & ~0xf) == 0 && |
| 331 | "Remembered an s_delay_alu with no room for another delay!" ); |
| 332 | LastImm |= Imm << 7 | Skip << 4; |
| 333 | Op.setImm(LastImm); |
| 334 | return nullptr; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | auto &MBB = *MI.getParent(); |
| 339 | MachineInstr *DelayAlu = |
| 340 | BuildMI(BB&: MBB, I&: MI, MIMD: DebugLoc(), MCID: SII->get(Opcode: AMDGPU::S_DELAY_ALU)).addImm(Val: Imm); |
| 341 | // Remember the s_delay_alu for next time if there is still room in it to |
| 342 | // encode another delay. |
| 343 | return (Imm & 0x780) ? nullptr : DelayAlu; |
| 344 | } |
| 345 | |
| 346 | bool runOnMachineBasicBlock(MachineBasicBlock &MBB, bool Emit) { |
| 347 | DelayState State; |
| 348 | for (auto *Pred : MBB.predecessors()) |
| 349 | State.merge(RHS: BlockState[Pred]); |
| 350 | |
| 351 | LLVM_DEBUG(dbgs() << " State at start of " << printMBBReference(MBB) |
| 352 | << "\n" ; |
| 353 | State.dump(TRI);); |
| 354 | |
| 355 | bool Changed = false; |
| 356 | MachineInstr *LastDelayAlu = nullptr; |
| 357 | |
| 358 | MCRegUnit LastSGPRFromVALU = 0; |
| 359 | // Iterate over the contents of bundles, but don't emit any instructions |
| 360 | // inside a bundle. |
| 361 | for (auto &MI : MBB.instrs()) { |
| 362 | if (MI.isBundle() || MI.isMetaInstruction()) |
| 363 | continue; |
| 364 | |
| 365 | // Ignore some more instructions that do not generate any code. |
| 366 | switch (MI.getOpcode()) { |
| 367 | case AMDGPU::SI_RETURN_TO_EPILOG: |
| 368 | continue; |
| 369 | } |
| 370 | |
| 371 | DelayType Type = getDelayType(TSFlags: MI.getDesc().TSFlags); |
| 372 | |
| 373 | if (instructionWaitsForSGPRWrites(MI)) { |
| 374 | auto It = State.find(Val: LastSGPRFromVALU); |
| 375 | if (It != State.end()) { |
| 376 | DelayInfo Info = It->getSecond(); |
| 377 | State.advanceByVALUNum(VALUNum: Info.VALUNum); |
| 378 | LastSGPRFromVALU = 0; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (instructionWaitsForVALU(MI)) { |
| 383 | // Forget about all outstanding VALU delays. |
| 384 | // TODO: This is overkill since it also forgets about SALU delays. |
| 385 | State = DelayState(); |
| 386 | } else if (Type != OTHER) { |
| 387 | DelayInfo Delay; |
| 388 | // TODO: Scan implicit uses too? |
| 389 | for (const auto &Op : MI.explicit_uses()) { |
| 390 | if (Op.isReg()) { |
| 391 | // One of the operands of the writelane is also the output operand. |
| 392 | // This creates the insertion of redundant delays. Hence, we have to |
| 393 | // ignore this operand. |
| 394 | if (MI.getOpcode() == AMDGPU::V_WRITELANE_B32 && Op.isTied()) |
| 395 | continue; |
| 396 | for (MCRegUnit Unit : TRI->regunits(Reg: Op.getReg())) { |
| 397 | auto It = State.find(Val: Unit); |
| 398 | if (It != State.end()) { |
| 399 | Delay.merge(RHS: It->second); |
| 400 | State.erase(Val: Unit); |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | if (SII->isVALU(Opcode: MI.getOpcode())) { |
| 407 | for (const auto &Op : MI.defs()) { |
| 408 | Register Reg = Op.getReg(); |
| 409 | if (AMDGPU::isSGPR(Reg, TRI)) { |
| 410 | LastSGPRFromVALU = *TRI->regunits(Reg).begin(); |
| 411 | break; |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | if (Emit && !MI.isBundledWithPred()) { |
| 417 | // TODO: For VALU->SALU delays should we use s_delay_alu or s_nop or |
| 418 | // just ignore them? |
| 419 | LastDelayAlu = emitDelayAlu(MI, Delay, LastDelayAlu); |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | if (Type != OTHER) { |
| 424 | // TODO: Scan implicit defs too? |
| 425 | for (const auto &Op : MI.defs()) { |
| 426 | unsigned Latency = SchedModel->computeOperandLatency( |
| 427 | DefMI: &MI, DefOperIdx: Op.getOperandNo(), UseMI: nullptr, UseOperIdx: 0); |
| 428 | for (MCRegUnit Unit : TRI->regunits(Reg: Op.getReg())) |
| 429 | State[Unit] = DelayInfo(Type, Latency); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | // Advance by the number of cycles it takes to issue this instruction. |
| 434 | // TODO: Use a more advanced model that accounts for instructions that |
| 435 | // take multiple cycles to issue on a particular pipeline. |
| 436 | unsigned Cycles = SIInstrInfo::getNumWaitStates(MI); |
| 437 | // TODO: In wave64 mode, double the number of cycles for VALU and VMEM |
| 438 | // instructions on the assumption that they will usually have to be issued |
| 439 | // twice? |
| 440 | State.advance(Type, Cycles); |
| 441 | |
| 442 | LLVM_DEBUG(dbgs() << " State after " << MI; State.dump(TRI);); |
| 443 | } |
| 444 | |
| 445 | if (Emit) { |
| 446 | assert(State == BlockState[&MBB] && |
| 447 | "Basic block state should not have changed on final pass!" ); |
| 448 | } else if (DelayState &BS = BlockState[&MBB]; State != BS) { |
| 449 | BS = std::move(State); |
| 450 | Changed = true; |
| 451 | } |
| 452 | return Changed; |
| 453 | } |
| 454 | |
| 455 | bool run(MachineFunction &MF) { |
| 456 | LLVM_DEBUG(dbgs() << "AMDGPUInsertDelayAlu running on " << MF.getName() |
| 457 | << "\n" ); |
| 458 | |
| 459 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 460 | if (!ST.hasDelayAlu()) |
| 461 | return false; |
| 462 | |
| 463 | SII = ST.getInstrInfo(); |
| 464 | TRI = ST.getRegisterInfo(); |
| 465 | SchedModel = &SII->getSchedModel(); |
| 466 | |
| 467 | // Calculate the delay state for each basic block, iterating until we reach |
| 468 | // a fixed point. |
| 469 | SetVector<MachineBasicBlock *> WorkList; |
| 470 | for (auto &MBB : reverse(C&: MF)) |
| 471 | WorkList.insert(X: &MBB); |
| 472 | while (!WorkList.empty()) { |
| 473 | auto &MBB = *WorkList.pop_back_val(); |
| 474 | bool Changed = runOnMachineBasicBlock(MBB, Emit: false); |
| 475 | if (Changed) |
| 476 | WorkList.insert_range(R: MBB.successors()); |
| 477 | } |
| 478 | |
| 479 | LLVM_DEBUG(dbgs() << "Final pass over all BBs\n" ); |
| 480 | |
| 481 | // Make one last pass over all basic blocks to emit s_delay_alu |
| 482 | // instructions. |
| 483 | bool Changed = false; |
| 484 | for (auto &MBB : MF) |
| 485 | Changed |= runOnMachineBasicBlock(MBB, Emit: true); |
| 486 | return Changed; |
| 487 | } |
| 488 | }; |
| 489 | |
| 490 | class AMDGPUInsertDelayAluLegacy : public MachineFunctionPass { |
| 491 | public: |
| 492 | static char ID; |
| 493 | |
| 494 | AMDGPUInsertDelayAluLegacy() : MachineFunctionPass(ID) {} |
| 495 | |
| 496 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 497 | AU.setPreservesCFG(); |
| 498 | MachineFunctionPass::getAnalysisUsage(AU); |
| 499 | } |
| 500 | |
| 501 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 502 | if (skipFunction(F: MF.getFunction())) |
| 503 | return false; |
| 504 | AMDGPUInsertDelayAlu Impl; |
| 505 | return Impl.run(MF); |
| 506 | } |
| 507 | }; |
| 508 | } // namespace |
| 509 | |
| 510 | PreservedAnalyses |
| 511 | AMDGPUInsertDelayAluPass::run(MachineFunction &MF, |
| 512 | MachineFunctionAnalysisManager &MFAM) { |
| 513 | if (!AMDGPUInsertDelayAlu().run(MF)) |
| 514 | return PreservedAnalyses::all(); |
| 515 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
| 516 | PA.preserveSet<CFGAnalyses>(); |
| 517 | return PA; |
| 518 | } // end namespace llvm |
| 519 | |
| 520 | char AMDGPUInsertDelayAluLegacy::ID = 0; |
| 521 | |
| 522 | char &llvm::AMDGPUInsertDelayAluID = AMDGPUInsertDelayAluLegacy::ID; |
| 523 | |
| 524 | INITIALIZE_PASS(AMDGPUInsertDelayAluLegacy, DEBUG_TYPE, |
| 525 | "AMDGPU Insert Delay ALU" , false, false) |
| 526 | |