| 1 | //===-- AMDGPUMemoryUtils.cpp - -------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "AMDGPUMemoryUtils.h" |
| 10 | #include "AMDGPU.h" |
| 11 | #include "Utils/AMDGPUBaseInfo.h" |
| 12 | #include "llvm/ADT/SetOperations.h" |
| 13 | #include "llvm/ADT/SmallSet.h" |
| 14 | #include "llvm/Analysis/AliasAnalysis.h" |
| 15 | #include "llvm/Analysis/CallGraph.h" |
| 16 | #include "llvm/Analysis/MemorySSA.h" |
| 17 | #include "llvm/IR/DataLayout.h" |
| 18 | #include "llvm/IR/Instructions.h" |
| 19 | #include "llvm/IR/IntrinsicInst.h" |
| 20 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 21 | #include "llvm/IR/ReplaceConstant.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "amdgpu-memory-utils" |
| 24 | |
| 25 | using namespace llvm; |
| 26 | |
| 27 | namespace llvm::AMDGPU { |
| 28 | |
| 29 | Align getAlign(const DataLayout &DL, const GlobalVariable *GV) { |
| 30 | return DL.getValueOrABITypeAlignment(Alignment: GV->getPointerAlignment(DL), |
| 31 | Ty: GV->getValueType()); |
| 32 | } |
| 33 | |
| 34 | TargetExtType *isNamedBarrier(const GlobalVariable &GV) { |
| 35 | // TODO: Allow arrays and structs, if all members are barriers |
| 36 | // in the same scope. |
| 37 | // TODO: Disallow other uses of target("amdgcn.named.barrier") including: |
| 38 | // - Structs containing barriers in different scope. |
| 39 | // - Structs containing a mixture of barriers and other data. |
| 40 | // - Globals in other address spaces. |
| 41 | // - Allocas. |
| 42 | Type *Ty = GV.getValueType(); |
| 43 | while (true) { |
| 44 | if (auto *TTy = dyn_cast<TargetExtType>(Val: Ty)) |
| 45 | return TTy->getName() == "amdgcn.named.barrier" ? TTy : nullptr; |
| 46 | if (auto *STy = dyn_cast<StructType>(Val: Ty)) { |
| 47 | if (STy->getNumElements() == 0) |
| 48 | return nullptr; |
| 49 | Ty = STy->getElementType(N: 0); |
| 50 | continue; |
| 51 | } |
| 52 | return nullptr; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | bool isDynamicLDS(const GlobalVariable &GV) { |
| 57 | // external zero size addrspace(3) without initializer is dynlds. |
| 58 | const Module *M = GV.getParent(); |
| 59 | const DataLayout &DL = M->getDataLayout(); |
| 60 | if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) |
| 61 | return false; |
| 62 | return DL.getTypeAllocSize(Ty: GV.getValueType()) == 0; |
| 63 | } |
| 64 | |
| 65 | bool isLDSVariableToLower(const GlobalVariable &GV) { |
| 66 | if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) { |
| 67 | return false; |
| 68 | } |
| 69 | if (isDynamicLDS(GV)) { |
| 70 | return true; |
| 71 | } |
| 72 | if (GV.isConstant()) { |
| 73 | // A constant undef variable can't be written to, and any load is |
| 74 | // undef, so it should be eliminated by the optimizer. It could be |
| 75 | // dropped by the back end if not. This pass skips over it. |
| 76 | return false; |
| 77 | } |
| 78 | if (GV.hasInitializer() && !isa<UndefValue>(Val: GV.getInitializer())) { |
| 79 | // Initializers are unimplemented for LDS address space. |
| 80 | // Leave such variables in place for consistent error reporting. |
| 81 | return false; |
| 82 | } |
| 83 | return true; |
| 84 | } |
| 85 | |
| 86 | bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) { |
| 87 | // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS |
| 88 | // global may have uses from multiple different functions as a result. |
| 89 | // This pass specialises LDS variables with respect to the kernel that |
| 90 | // allocates them. |
| 91 | |
| 92 | // This is semantically equivalent to (the unimplemented as slow): |
| 93 | // for (auto &F : M.functions()) |
| 94 | // for (auto &BB : F) |
| 95 | // for (auto &I : BB) |
| 96 | // for (Use &Op : I.operands()) |
| 97 | // if (constantExprUsesLDS(Op)) |
| 98 | // replaceConstantExprInFunction(I, Op); |
| 99 | |
| 100 | SmallVector<Constant *> LDSGlobals; |
| 101 | for (auto &GV : M.globals()) |
| 102 | if (AMDGPU::isLDSVariableToLower(GV)) |
| 103 | LDSGlobals.push_back(Elt: &GV); |
| 104 | return convertUsersOfConstantsToInstructions(Consts: LDSGlobals); |
| 105 | } |
| 106 | |
| 107 | void getUsesOfLDSByFunction(const CallGraph &CG, Module &M, |
| 108 | FunctionVariableMap &kernels, |
| 109 | FunctionVariableMap &Functions) { |
| 110 | // Get uses from the current function, excluding uses by called Functions |
| 111 | // Two output variables to avoid walking the globals list twice |
| 112 | for (auto &GV : M.globals()) { |
| 113 | if (!AMDGPU::isLDSVariableToLower(GV)) |
| 114 | continue; |
| 115 | for (User *V : GV.users()) { |
| 116 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 117 | Function *F = I->getFunction(); |
| 118 | if (isKernelLDS(F)) |
| 119 | kernels[F].insert(V: &GV); |
| 120 | else |
| 121 | Functions[F].insert(V: &GV); |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | bool isKernelLDS(const Function *F) { |
| 128 | return AMDGPU::isKernel(CC: F->getCallingConv()); |
| 129 | } |
| 130 | |
| 131 | LDSUsesInfoTy getTransitiveUsesOfLDS(const CallGraph &CG, Module &M) { |
| 132 | |
| 133 | FunctionVariableMap DirectMapKernel; |
| 134 | FunctionVariableMap DirectMapFunction; |
| 135 | getUsesOfLDSByFunction(CG, M, kernels&: DirectMapKernel, Functions&: DirectMapFunction); |
| 136 | |
| 137 | // Collect functions whose address has escaped |
| 138 | DenseSet<Function *> AddressTakenFuncs; |
| 139 | for (Function &F : M.functions()) { |
| 140 | if (!isKernelLDS(F: &F)) |
| 141 | if (F.hasAddressTaken(nullptr, |
| 142 | /* IgnoreCallbackUses */ false, |
| 143 | /* IgnoreAssumeLikeCalls */ false, |
| 144 | /* IgnoreLLVMUsed */ IngoreLLVMUsed: true, |
| 145 | /* IgnoreArcAttachedCall */ IgnoreARCAttachedCall: false)) { |
| 146 | AddressTakenFuncs.insert(V: &F); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | // Collect variables that are used by functions whose address has escaped |
| 151 | DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer; |
| 152 | for (Function *F : AddressTakenFuncs) { |
| 153 | set_union(S1&: VariablesReachableThroughFunctionPointer, S2: DirectMapFunction[F]); |
| 154 | } |
| 155 | |
| 156 | auto FunctionMakesUnknownCall = [&](const Function *F) -> bool { |
| 157 | assert(!F->isDeclaration()); |
| 158 | for (const CallGraphNode::CallRecord &R : *CG[F]) { |
| 159 | if (!R.second->getFunction()) |
| 160 | return true; |
| 161 | } |
| 162 | return false; |
| 163 | }; |
| 164 | |
| 165 | // Work out which variables are reachable through function calls |
| 166 | FunctionVariableMap TransitiveMapFunction = DirectMapFunction; |
| 167 | |
| 168 | // If the function makes any unknown call, assume the worst case that it can |
| 169 | // access all variables accessed by functions whose address escaped |
| 170 | for (Function &F : M.functions()) { |
| 171 | if (!F.isDeclaration() && FunctionMakesUnknownCall(&F)) { |
| 172 | if (!isKernelLDS(F: &F)) { |
| 173 | set_union(S1&: TransitiveMapFunction[&F], |
| 174 | S2: VariablesReachableThroughFunctionPointer); |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | // Direct implementation of collecting all variables reachable from each |
| 180 | // function |
| 181 | for (Function &Func : M.functions()) { |
| 182 | if (Func.isDeclaration() || isKernelLDS(F: &Func)) |
| 183 | continue; |
| 184 | |
| 185 | DenseSet<Function *> seen; // catches cycles |
| 186 | SmallVector<Function *, 4> wip = {&Func}; |
| 187 | |
| 188 | while (!wip.empty()) { |
| 189 | Function *F = wip.pop_back_val(); |
| 190 | |
| 191 | // Can accelerate this by referring to transitive map for functions that |
| 192 | // have already been computed, with more care than this |
| 193 | set_union(S1&: TransitiveMapFunction[&Func], S2: DirectMapFunction[F]); |
| 194 | |
| 195 | for (const CallGraphNode::CallRecord &R : *CG[F]) { |
| 196 | Function *Ith = R.second->getFunction(); |
| 197 | if (Ith) { |
| 198 | if (!seen.contains(V: Ith)) { |
| 199 | seen.insert(V: Ith); |
| 200 | wip.push_back(Elt: Ith); |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | // Collect variables that are transitively used by functions whose address has |
| 208 | // escaped |
| 209 | for (Function *F : AddressTakenFuncs) { |
| 210 | set_union(S1&: VariablesReachableThroughFunctionPointer, |
| 211 | S2: TransitiveMapFunction[F]); |
| 212 | } |
| 213 | |
| 214 | // DirectMapKernel lists which variables are used by the kernel |
| 215 | // find the variables which are used through a function call |
| 216 | FunctionVariableMap IndirectMapKernel; |
| 217 | |
| 218 | for (Function &Func : M.functions()) { |
| 219 | if (Func.isDeclaration() || !isKernelLDS(F: &Func)) |
| 220 | continue; |
| 221 | |
| 222 | for (const CallGraphNode::CallRecord &R : *CG[&Func]) { |
| 223 | Function *Ith = R.second->getFunction(); |
| 224 | if (Ith) { |
| 225 | set_union(S1&: IndirectMapKernel[&Func], S2: TransitiveMapFunction[Ith]); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | // Check if the kernel encounters unknows calls, wheher directly or |
| 230 | // indirectly. |
| 231 | bool SeesUnknownCalls = [&]() { |
| 232 | SmallVector<Function *> WorkList = {CG[&Func]->getFunction()}; |
| 233 | SmallPtrSet<Function *, 8> Visited; |
| 234 | |
| 235 | while (!WorkList.empty()) { |
| 236 | Function *F = WorkList.pop_back_val(); |
| 237 | |
| 238 | for (const CallGraphNode::CallRecord &CallRecord : *CG[F]) { |
| 239 | if (!CallRecord.second) |
| 240 | continue; |
| 241 | |
| 242 | Function *Callee = CallRecord.second->getFunction(); |
| 243 | if (!Callee) |
| 244 | return true; |
| 245 | |
| 246 | if (Visited.insert(Ptr: Callee).second) |
| 247 | WorkList.push_back(Elt: Callee); |
| 248 | } |
| 249 | } |
| 250 | return false; |
| 251 | }(); |
| 252 | |
| 253 | if (SeesUnknownCalls) { |
| 254 | set_union(S1&: IndirectMapKernel[&Func], |
| 255 | S2: VariablesReachableThroughFunctionPointer); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | // Verify that we fall into one of 2 cases: |
| 260 | // - All variables are either absolute |
| 261 | // or direct mapped dynamic LDS that is not lowered. |
| 262 | // this is a re-run of the pass |
| 263 | // so we don't have anything to do. |
| 264 | // - No variables are absolute. |
| 265 | std::optional<bool> HasAbsoluteGVs; |
| 266 | bool HasSpecialGVs = false; |
| 267 | for (auto &Map : {DirectMapKernel, IndirectMapKernel}) { |
| 268 | for (auto &[Fn, GVs] : Map) { |
| 269 | for (auto *GV : GVs) { |
| 270 | bool IsAbsolute = GV->isAbsoluteSymbolRef(); |
| 271 | bool IsDirectMapDynLDSGV = |
| 272 | AMDGPU::isDynamicLDS(GV: *GV) && DirectMapKernel.contains(Val: Fn); |
| 273 | if (IsDirectMapDynLDSGV) |
| 274 | continue; |
| 275 | if (isNamedBarrier(GV: *GV)) { |
| 276 | HasSpecialGVs = true; |
| 277 | continue; |
| 278 | } |
| 279 | if (HasAbsoluteGVs.has_value()) { |
| 280 | if (*HasAbsoluteGVs != IsAbsolute) { |
| 281 | reportFatalUsageError( |
| 282 | reason: "module cannot mix absolute and non-absolute LDS GVs" ); |
| 283 | } |
| 284 | } else |
| 285 | HasAbsoluteGVs = IsAbsolute; |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // If we only had absolute GVs, we have nothing to do, return an empty |
| 291 | // result. |
| 292 | if (HasAbsoluteGVs && *HasAbsoluteGVs) |
| 293 | return {.direct_access: FunctionVariableMap(), .indirect_access: FunctionVariableMap(), .HasSpecialGVs: false}; |
| 294 | |
| 295 | return {.direct_access: std::move(DirectMapKernel), .indirect_access: std::move(IndirectMapKernel), |
| 296 | .HasSpecialGVs: HasSpecialGVs}; |
| 297 | } |
| 298 | |
| 299 | void removeFnAttrFromReachable(CallGraph &CG, Function *KernelRoot, |
| 300 | ArrayRef<StringRef> FnAttrs) { |
| 301 | for (StringRef Attr : FnAttrs) |
| 302 | KernelRoot->removeFnAttr(Kind: Attr); |
| 303 | |
| 304 | SmallVector<Function *> WorkList = {CG[KernelRoot]->getFunction()}; |
| 305 | SmallPtrSet<Function *, 8> Visited; |
| 306 | bool SeenUnknownCall = false; |
| 307 | |
| 308 | while (!WorkList.empty()) { |
| 309 | Function *F = WorkList.pop_back_val(); |
| 310 | |
| 311 | for (auto &CallRecord : *CG[F]) { |
| 312 | if (!CallRecord.second) |
| 313 | continue; |
| 314 | |
| 315 | Function *Callee = CallRecord.second->getFunction(); |
| 316 | if (!Callee) { |
| 317 | if (!SeenUnknownCall) { |
| 318 | SeenUnknownCall = true; |
| 319 | |
| 320 | // If we see any indirect calls, assume nothing about potential |
| 321 | // targets. |
| 322 | // TODO: This could be refined to possible LDS global users. |
| 323 | for (auto &ExternalCallRecord : *CG.getExternalCallingNode()) { |
| 324 | Function *PotentialCallee = |
| 325 | ExternalCallRecord.second->getFunction(); |
| 326 | assert(PotentialCallee); |
| 327 | if (!isKernelLDS(F: PotentialCallee)) { |
| 328 | for (StringRef Attr : FnAttrs) |
| 329 | PotentialCallee->removeFnAttr(Kind: Attr); |
| 330 | } |
| 331 | } |
| 332 | } |
| 333 | } else { |
| 334 | for (StringRef Attr : FnAttrs) |
| 335 | Callee->removeFnAttr(Kind: Attr); |
| 336 | if (Visited.insert(Ptr: Callee).second) |
| 337 | WorkList.push_back(Elt: Callee); |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | bool isReallyAClobber(const Value *Ptr, MemoryDef *Def, AAResults *AA) { |
| 344 | Instruction *DefInst = Def->getMemoryInst(); |
| 345 | |
| 346 | if (isa<FenceInst>(Val: DefInst)) |
| 347 | return false; |
| 348 | |
| 349 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: DefInst)) { |
| 350 | switch (II->getIntrinsicID()) { |
| 351 | case Intrinsic::amdgcn_s_barrier: |
| 352 | case Intrinsic::amdgcn_s_barrier_signal: |
| 353 | case Intrinsic::amdgcn_s_barrier_signal_var: |
| 354 | case Intrinsic::amdgcn_s_barrier_signal_isfirst: |
| 355 | case Intrinsic::amdgcn_s_barrier_wait: |
| 356 | case Intrinsic::amdgcn_s_get_barrier_state: |
| 357 | case Intrinsic::amdgcn_wave_barrier: |
| 358 | case Intrinsic::amdgcn_sched_barrier: |
| 359 | case Intrinsic::amdgcn_sched_group_barrier: |
| 360 | case Intrinsic::amdgcn_iglp_opt: |
| 361 | return false; |
| 362 | default: |
| 363 | break; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // Ignore atomics not aliasing with the original load, any atomic is a |
| 368 | // universal MemoryDef from MSSA's point of view too, just like a fence. |
| 369 | const auto checkNoAlias = [AA, Ptr](auto I) -> bool { |
| 370 | return I && AA->isNoAlias(I->getPointerOperand(), Ptr); |
| 371 | }; |
| 372 | |
| 373 | if (checkNoAlias(dyn_cast<AtomicCmpXchgInst>(Val: DefInst)) || |
| 374 | checkNoAlias(dyn_cast<AtomicRMWInst>(Val: DefInst))) |
| 375 | return false; |
| 376 | |
| 377 | return true; |
| 378 | } |
| 379 | |
| 380 | bool isClobberedInFunction(const LoadInst *Load, MemorySSA *MSSA, |
| 381 | AAResults *AA) { |
| 382 | MemorySSAWalker *Walker = MSSA->getWalker(); |
| 383 | SmallVector<MemoryAccess *> WorkList{Walker->getClobberingMemoryAccess(I: Load)}; |
| 384 | SmallSet<MemoryAccess *, 8> Visited; |
| 385 | MemoryLocation Loc(MemoryLocation::get(LI: Load)); |
| 386 | |
| 387 | LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n'); |
| 388 | |
| 389 | // Start with a nearest dominating clobbering access, it will be either |
| 390 | // live on entry (nothing to do, load is not clobbered), MemoryDef, or |
| 391 | // MemoryPhi if several MemoryDefs can define this memory state. In that |
| 392 | // case add all Defs to WorkList and continue going up and checking all |
| 393 | // the definitions of this memory location until the root. When all the |
| 394 | // defs are exhausted and came to the entry state we have no clobber. |
| 395 | // Along the scan ignore barriers and fences which are considered clobbers |
| 396 | // by the MemorySSA, but not really writing anything into the memory. |
| 397 | while (!WorkList.empty()) { |
| 398 | MemoryAccess *MA = WorkList.pop_back_val(); |
| 399 | if (!Visited.insert(Ptr: MA).second) |
| 400 | continue; |
| 401 | |
| 402 | if (MSSA->isLiveOnEntryDef(MA)) |
| 403 | continue; |
| 404 | |
| 405 | if (MemoryDef *Def = dyn_cast<MemoryDef>(Val: MA)) { |
| 406 | LLVM_DEBUG(dbgs() << " Def: " << *Def->getMemoryInst() << '\n'); |
| 407 | |
| 408 | if (isReallyAClobber(Ptr: Load->getPointerOperand(), Def, AA)) { |
| 409 | LLVM_DEBUG(dbgs() << " -> load is clobbered\n" ); |
| 410 | return true; |
| 411 | } |
| 412 | |
| 413 | WorkList.push_back( |
| 414 | Elt: Walker->getClobberingMemoryAccess(MA: Def->getDefiningAccess(), Loc)); |
| 415 | continue; |
| 416 | } |
| 417 | |
| 418 | const MemoryPhi *Phi = cast<MemoryPhi>(Val: MA); |
| 419 | for (const auto &Use : Phi->incoming_values()) |
| 420 | WorkList.push_back(Elt: cast<MemoryAccess>(Val: &Use)); |
| 421 | } |
| 422 | |
| 423 | LLVM_DEBUG(dbgs() << " -> no clobber\n" ); |
| 424 | return false; |
| 425 | } |
| 426 | |
| 427 | } // end namespace llvm::AMDGPU |
| 428 | |