| 1 | //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// SI Machine Scheduler interface |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "SIMachineScheduler.h" |
| 15 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 16 | #include "SIInstrInfo.h" |
| 17 | #include "llvm/CodeGen/LiveIntervals.h" |
| 18 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | #define DEBUG_TYPE "machine-scheduler" |
| 23 | |
| 24 | // This scheduler implements a different scheduling algorithm than |
| 25 | // GenericScheduler. |
| 26 | // |
| 27 | // There are several specific architecture behaviours that can't be modelled |
| 28 | // for GenericScheduler: |
| 29 | // . When accessing the result of an SGPR load instruction, you have to wait |
| 30 | // for all the SGPR load instructions before your current instruction to |
| 31 | // have finished. |
| 32 | // . When accessing the result of an VGPR load instruction, you have to wait |
| 33 | // for all the VGPR load instructions previous to the VGPR load instruction |
| 34 | // you are interested in to finish. |
| 35 | // . The less the register pressure, the best load latencies are hidden |
| 36 | // |
| 37 | // Moreover some specifities (like the fact a lot of instructions in the shader |
| 38 | // have few dependencies) makes the generic scheduler have some unpredictable |
| 39 | // behaviours. For example when register pressure becomes high, it can either |
| 40 | // manage to prevent register pressure from going too high, or it can |
| 41 | // increase register pressure even more than if it hadn't taken register |
| 42 | // pressure into account. |
| 43 | // |
| 44 | // Also some other bad behaviours are generated, like loading at the beginning |
| 45 | // of the shader a constant in VGPR you won't need until the end of the shader. |
| 46 | // |
| 47 | // The scheduling problem for SI can distinguish three main parts: |
| 48 | // . Hiding high latencies (texture sampling, etc) |
| 49 | // . Hiding low latencies (SGPR constant loading, etc) |
| 50 | // . Keeping register usage low for better latency hiding and general |
| 51 | // performance |
| 52 | // |
| 53 | // Some other things can also affect performance, but are hard to predict |
| 54 | // (cache usage, the fact the HW can issue several instructions from different |
| 55 | // wavefronts if different types, etc) |
| 56 | // |
| 57 | // This scheduler tries to solve the scheduling problem by dividing it into |
| 58 | // simpler sub-problems. It divides the instructions into blocks, schedules |
| 59 | // locally inside the blocks where it takes care of low latencies, and then |
| 60 | // chooses the order of the blocks by taking care of high latencies. |
| 61 | // Dividing the instructions into blocks helps control keeping register |
| 62 | // usage low. |
| 63 | // |
| 64 | // First the instructions are put into blocks. |
| 65 | // We want the blocks help control register usage and hide high latencies |
| 66 | // later. To help control register usage, we typically want all local |
| 67 | // computations, when for example you create a result that can be consumed |
| 68 | // right away, to be contained in a block. Block inputs and outputs would |
| 69 | // typically be important results that are needed in several locations of |
| 70 | // the shader. Since we do want blocks to help hide high latencies, we want |
| 71 | // the instructions inside the block to have a minimal set of dependencies |
| 72 | // on high latencies. It will make it easy to pick blocks to hide specific |
| 73 | // high latencies. |
| 74 | // The block creation algorithm is divided into several steps, and several |
| 75 | // variants can be tried during the scheduling process. |
| 76 | // |
| 77 | // Second the order of the instructions inside the blocks is chosen. |
| 78 | // At that step we do take into account only register usage and hiding |
| 79 | // low latency instructions |
| 80 | // |
| 81 | // Third the block order is chosen, there we try to hide high latencies |
| 82 | // and keep register usage low. |
| 83 | // |
| 84 | // After the third step, a pass is done to improve the hiding of low |
| 85 | // latencies. |
| 86 | // |
| 87 | // Actually when talking about 'low latency' or 'high latency' it includes |
| 88 | // both the latency to get the cache (or global mem) data go to the register, |
| 89 | // and the bandwidth limitations. |
| 90 | // Increasing the number of active wavefronts helps hide the former, but it |
| 91 | // doesn't solve the latter, thus why even if wavefront count is high, we have |
| 92 | // to try have as many instructions hiding high latencies as possible. |
| 93 | // The OpenCL doc says for example latency of 400 cycles for a global mem |
| 94 | // access, which is hidden by 10 instructions if the wavefront count is 10. |
| 95 | |
| 96 | // Some figures taken from AMD docs: |
| 97 | // Both texture and constant L1 caches are 4-way associative with 64 bytes |
| 98 | // lines. |
| 99 | // Constant cache is shared with 4 CUs. |
| 100 | // For texture sampling, the address generation unit receives 4 texture |
| 101 | // addresses per cycle, thus we could expect texture sampling latency to be |
| 102 | // equivalent to 4 instructions in the very best case (a VGPR is 64 work items, |
| 103 | // instructions in a wavefront group are executed every 4 cycles), |
| 104 | // or 16 instructions if the other wavefronts associated to the 3 other VALUs |
| 105 | // of the CU do texture sampling too. (Don't take these figures too seriously, |
| 106 | // as I'm not 100% sure of the computation) |
| 107 | // Data exports should get similar latency. |
| 108 | // For constant loading, the cache is shader with 4 CUs. |
| 109 | // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit" |
| 110 | // I guess if the other CU don't read the cache, it can go up to 64B/cycle. |
| 111 | // It means a simple s_buffer_load should take one instruction to hide, as |
| 112 | // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same |
| 113 | // cache line. |
| 114 | // |
| 115 | // As of today the driver doesn't preload the constants in cache, thus the |
| 116 | // first loads get extra latency. The doc says global memory access can be |
| 117 | // 300-600 cycles. We do not specially take that into account when scheduling |
| 118 | // As we expect the driver to be able to preload the constants soon. |
| 119 | |
| 120 | // common code // |
| 121 | |
| 122 | #ifndef NDEBUG |
| 123 | |
| 124 | static const char *getReasonStr(SIScheduleCandReason Reason) { |
| 125 | switch (Reason) { |
| 126 | case NoCand: return "NOCAND" ; |
| 127 | case RegUsage: return "REGUSAGE" ; |
| 128 | case Latency: return "LATENCY" ; |
| 129 | case Successor: return "SUCCESSOR" ; |
| 130 | case Depth: return "DEPTH" ; |
| 131 | case NodeOrder: return "ORDER" ; |
| 132 | } |
| 133 | llvm_unreachable("Unknown reason!" ); |
| 134 | } |
| 135 | |
| 136 | #endif |
| 137 | |
| 138 | namespace llvm::SISched { |
| 139 | static bool tryLess(int TryVal, int CandVal, |
| 140 | SISchedulerCandidate &TryCand, |
| 141 | SISchedulerCandidate &Cand, |
| 142 | SIScheduleCandReason Reason) { |
| 143 | if (TryVal < CandVal) { |
| 144 | TryCand.Reason = Reason; |
| 145 | return true; |
| 146 | } |
| 147 | if (TryVal > CandVal) { |
| 148 | if (Cand.Reason > Reason) |
| 149 | Cand.Reason = Reason; |
| 150 | return true; |
| 151 | } |
| 152 | Cand.setRepeat(Reason); |
| 153 | return false; |
| 154 | } |
| 155 | |
| 156 | static bool tryGreater(int TryVal, int CandVal, |
| 157 | SISchedulerCandidate &TryCand, |
| 158 | SISchedulerCandidate &Cand, |
| 159 | SIScheduleCandReason Reason) { |
| 160 | if (TryVal > CandVal) { |
| 161 | TryCand.Reason = Reason; |
| 162 | return true; |
| 163 | } |
| 164 | if (TryVal < CandVal) { |
| 165 | if (Cand.Reason > Reason) |
| 166 | Cand.Reason = Reason; |
| 167 | return true; |
| 168 | } |
| 169 | Cand.setRepeat(Reason); |
| 170 | return false; |
| 171 | } |
| 172 | } // end namespace llvm::SISched |
| 173 | |
| 174 | // SIScheduleBlock // |
| 175 | |
| 176 | void SIScheduleBlock::addUnit(SUnit *SU) { |
| 177 | NodeNum2Index[SU->NodeNum] = SUnits.size(); |
| 178 | SUnits.push_back(x: SU); |
| 179 | } |
| 180 | |
| 181 | #ifndef NDEBUG |
| 182 | void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) { |
| 183 | |
| 184 | dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); |
| 185 | dbgs() << '\n'; |
| 186 | } |
| 187 | #endif |
| 188 | |
| 189 | void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand, |
| 190 | SISchedCandidate &TryCand) { |
| 191 | // Initialize the candidate if needed. |
| 192 | if (!Cand.isValid()) { |
| 193 | TryCand.Reason = NodeOrder; |
| 194 | return; |
| 195 | } |
| 196 | |
| 197 | if (Cand.SGPRUsage > 60 && |
| 198 | SISched::tryLess(TryVal: TryCand.SGPRUsage, CandVal: Cand.SGPRUsage, |
| 199 | TryCand, Cand, Reason: RegUsage)) |
| 200 | return; |
| 201 | |
| 202 | // Schedule low latency instructions as top as possible. |
| 203 | // Order of priority is: |
| 204 | // . Low latency instructions which do not depend on other low latency |
| 205 | // instructions we haven't waited for |
| 206 | // . Other instructions which do not depend on low latency instructions |
| 207 | // we haven't waited for |
| 208 | // . Low latencies |
| 209 | // . All other instructions |
| 210 | // Goal is to get: low latency instructions - independent instructions |
| 211 | // - (eventually some more low latency instructions) |
| 212 | // - instructions that depend on the first low latency instructions. |
| 213 | // If in the block there is a lot of constant loads, the SGPR usage |
| 214 | // could go quite high, thus above the arbitrary limit of 60 will encourage |
| 215 | // use the already loaded constants (in order to release some SGPRs) before |
| 216 | // loading more. |
| 217 | if (SISched::tryLess(TryVal: TryCand.HasLowLatencyNonWaitedParent, |
| 218 | CandVal: Cand.HasLowLatencyNonWaitedParent, |
| 219 | TryCand, Cand, Reason: SIScheduleCandReason::Depth)) |
| 220 | return; |
| 221 | |
| 222 | if (SISched::tryGreater(TryVal: TryCand.IsLowLatency, CandVal: Cand.IsLowLatency, |
| 223 | TryCand, Cand, Reason: SIScheduleCandReason::Depth)) |
| 224 | return; |
| 225 | |
| 226 | if (TryCand.IsLowLatency && |
| 227 | SISched::tryLess(TryVal: TryCand.LowLatencyOffset, CandVal: Cand.LowLatencyOffset, |
| 228 | TryCand, Cand, Reason: SIScheduleCandReason::Depth)) |
| 229 | return; |
| 230 | |
| 231 | if (SISched::tryLess(TryVal: TryCand.VGPRUsage, CandVal: Cand.VGPRUsage, |
| 232 | TryCand, Cand, Reason: RegUsage)) |
| 233 | return; |
| 234 | |
| 235 | // Fall through to original instruction order. |
| 236 | if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { |
| 237 | TryCand.Reason = NodeOrder; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | SUnit* SIScheduleBlock::pickNode() { |
| 242 | SISchedCandidate TopCand; |
| 243 | |
| 244 | for (SUnit* SU : TopReadySUs) { |
| 245 | SISchedCandidate TryCand; |
| 246 | std::vector<unsigned> pressure; |
| 247 | std::vector<unsigned> MaxPressure; |
| 248 | // Predict register usage after this instruction. |
| 249 | TryCand.SU = SU; |
| 250 | TopRPTracker.getDownwardPressure(MI: SU->getInstr(), PressureResult&: pressure, MaxPressureResult&: MaxPressure); |
| 251 | TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32]; |
| 252 | TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32]; |
| 253 | TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum]; |
| 254 | TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum]; |
| 255 | TryCand.HasLowLatencyNonWaitedParent = |
| 256 | HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]; |
| 257 | tryCandidateTopDown(Cand&: TopCand, TryCand); |
| 258 | if (TryCand.Reason != NoCand) |
| 259 | TopCand.setBest(TryCand); |
| 260 | } |
| 261 | |
| 262 | return TopCand.SU; |
| 263 | } |
| 264 | |
| 265 | |
| 266 | // Schedule something valid. |
| 267 | void SIScheduleBlock::fastSchedule() { |
| 268 | TopReadySUs.clear(); |
| 269 | if (Scheduled) |
| 270 | undoSchedule(); |
| 271 | |
| 272 | for (SUnit* SU : SUnits) { |
| 273 | if (!SU->NumPredsLeft) |
| 274 | TopReadySUs.push_back(x: SU); |
| 275 | } |
| 276 | |
| 277 | while (!TopReadySUs.empty()) { |
| 278 | SUnit *SU = TopReadySUs[0]; |
| 279 | ScheduledSUnits.push_back(x: SU); |
| 280 | nodeScheduled(SU); |
| 281 | } |
| 282 | |
| 283 | Scheduled = true; |
| 284 | } |
| 285 | |
| 286 | // Returns if the register was set between first and last. |
| 287 | static bool isDefBetween(Register Reg, SlotIndex First, SlotIndex Last, |
| 288 | const MachineRegisterInfo *MRI, |
| 289 | const LiveIntervals *LIS) { |
| 290 | for (const MachineInstr &MI : MRI->def_instructions(Reg)) { |
| 291 | if (MI.isDebugValue()) |
| 292 | continue; |
| 293 | SlotIndex InstSlot = LIS->getInstructionIndex(Instr: MI).getRegSlot(); |
| 294 | if (InstSlot >= First && InstSlot <= Last) |
| 295 | return true; |
| 296 | } |
| 297 | return false; |
| 298 | } |
| 299 | |
| 300 | void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock, |
| 301 | MachineBasicBlock::iterator EndBlock) { |
| 302 | IntervalPressure Pressure, BotPressure; |
| 303 | RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure); |
| 304 | LiveIntervals *LIS = DAG->getLIS(); |
| 305 | MachineRegisterInfo *MRI = DAG->getMRI(); |
| 306 | DAG->initRPTracker(RPTracker&: TopRPTracker); |
| 307 | DAG->initRPTracker(RPTracker&: BotRPTracker); |
| 308 | DAG->initRPTracker(RPTracker); |
| 309 | |
| 310 | // Goes though all SU. RPTracker captures what had to be alive for the SUs |
| 311 | // to execute, and what is still alive at the end. |
| 312 | for (SUnit* SU : ScheduledSUnits) { |
| 313 | RPTracker.setPos(SU->getInstr()); |
| 314 | RPTracker.advance(); |
| 315 | } |
| 316 | |
| 317 | // Close the RPTracker to finalize live ins/outs. |
| 318 | RPTracker.closeRegion(); |
| 319 | |
| 320 | // Initialize the live ins and live outs. |
| 321 | TopRPTracker.addLiveRegs(Regs: RPTracker.getPressure().LiveInRegs); |
| 322 | BotRPTracker.addLiveRegs(Regs: RPTracker.getPressure().LiveOutRegs); |
| 323 | |
| 324 | // Do not Track Physical Registers, because it messes up. |
| 325 | for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) { |
| 326 | if (RegMaskPair.RegUnit.isVirtual()) |
| 327 | LiveInRegs.insert(x: RegMaskPair.RegUnit); |
| 328 | } |
| 329 | LiveOutRegs.clear(); |
| 330 | // There is several possibilities to distinguish: |
| 331 | // 1) Reg is not input to any instruction in the block, but is output of one |
| 332 | // 2) 1) + read in the block and not needed after it |
| 333 | // 3) 1) + read in the block but needed in another block |
| 334 | // 4) Reg is input of an instruction but another block will read it too |
| 335 | // 5) Reg is input of an instruction and then rewritten in the block. |
| 336 | // result is not read in the block (implies used in another block) |
| 337 | // 6) Reg is input of an instruction and then rewritten in the block. |
| 338 | // result is read in the block and not needed in another block |
| 339 | // 7) Reg is input of an instruction and then rewritten in the block. |
| 340 | // result is read in the block but also needed in another block |
| 341 | // LiveInRegs will contains all the regs in situation 4, 5, 6, 7 |
| 342 | // We want LiveOutRegs to contain only Regs whose content will be read after |
| 343 | // in another block, and whose content was written in the current block, |
| 344 | // that is we want it to get 1, 3, 5, 7 |
| 345 | // Since we made the MIs of a block to be packed all together before |
| 346 | // scheduling, then the LiveIntervals were correct, and the RPTracker was |
| 347 | // able to correctly handle 5 vs 6, 2 vs 3. |
| 348 | // (Note: This is not sufficient for RPTracker to not do mistakes for case 4) |
| 349 | // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7 |
| 350 | // Comparing to LiveInRegs is not sufficient to differentiate 4 vs 5, 7 |
| 351 | // The use of findDefBetween removes the case 4. |
| 352 | for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) { |
| 353 | Register Reg = RegMaskPair.RegUnit; |
| 354 | if (Reg.isVirtual() && |
| 355 | isDefBetween(Reg, First: LIS->getInstructionIndex(Instr: *BeginBlock).getRegSlot(), |
| 356 | Last: LIS->getInstructionIndex(Instr: *EndBlock).getRegSlot(), MRI, |
| 357 | LIS)) { |
| 358 | LiveOutRegs.insert(x: Reg); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | // Pressure = sum_alive_registers register size |
| 363 | // Internally llvm will represent some registers as big 128 bits registers |
| 364 | // for example, but they actually correspond to 4 actual 32 bits registers. |
| 365 | // Thus Pressure is not equal to num_alive_registers * constant. |
| 366 | LiveInPressure = TopPressure.MaxSetPressure; |
| 367 | LiveOutPressure = BotPressure.MaxSetPressure; |
| 368 | |
| 369 | // Prepares TopRPTracker for top down scheduling. |
| 370 | TopRPTracker.closeTop(); |
| 371 | } |
| 372 | |
| 373 | void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock, |
| 374 | MachineBasicBlock::iterator EndBlock) { |
| 375 | if (!Scheduled) |
| 376 | fastSchedule(); |
| 377 | |
| 378 | // PreScheduling phase to set LiveIn and LiveOut. |
| 379 | initRegPressure(BeginBlock, EndBlock); |
| 380 | undoSchedule(); |
| 381 | |
| 382 | // Schedule for real now. |
| 383 | |
| 384 | TopReadySUs.clear(); |
| 385 | |
| 386 | for (SUnit* SU : SUnits) { |
| 387 | if (!SU->NumPredsLeft) |
| 388 | TopReadySUs.push_back(x: SU); |
| 389 | } |
| 390 | |
| 391 | while (!TopReadySUs.empty()) { |
| 392 | SUnit *SU = pickNode(); |
| 393 | ScheduledSUnits.push_back(x: SU); |
| 394 | TopRPTracker.setPos(SU->getInstr()); |
| 395 | TopRPTracker.advance(); |
| 396 | nodeScheduled(SU); |
| 397 | } |
| 398 | |
| 399 | // TODO: compute InternalAdditionalPressure. |
| 400 | InternalAdditionalPressure.resize(new_size: TopPressure.MaxSetPressure.size()); |
| 401 | |
| 402 | // Check everything is right. |
| 403 | #ifndef NDEBUG |
| 404 | assert(SUnits.size() == ScheduledSUnits.size() && |
| 405 | TopReadySUs.empty()); |
| 406 | for (SUnit* SU : SUnits) { |
| 407 | assert(SU->isScheduled && |
| 408 | SU->NumPredsLeft == 0); |
| 409 | } |
| 410 | #endif |
| 411 | |
| 412 | Scheduled = true; |
| 413 | } |
| 414 | |
| 415 | void SIScheduleBlock::undoSchedule() { |
| 416 | for (SUnit* SU : SUnits) { |
| 417 | SU->isScheduled = false; |
| 418 | for (SDep& Succ : SU->Succs) { |
| 419 | if (BC->isSUInBlock(SU: Succ.getSUnit(), ID)) |
| 420 | undoReleaseSucc(SU, SuccEdge: &Succ); |
| 421 | } |
| 422 | } |
| 423 | HasLowLatencyNonWaitedParent.assign(n: SUnits.size(), val: 0); |
| 424 | ScheduledSUnits.clear(); |
| 425 | Scheduled = false; |
| 426 | } |
| 427 | |
| 428 | void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) { |
| 429 | SUnit *SuccSU = SuccEdge->getSUnit(); |
| 430 | |
| 431 | if (SuccEdge->isWeak()) { |
| 432 | ++SuccSU->WeakPredsLeft; |
| 433 | return; |
| 434 | } |
| 435 | ++SuccSU->NumPredsLeft; |
| 436 | } |
| 437 | |
| 438 | void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) { |
| 439 | SUnit *SuccSU = SuccEdge->getSUnit(); |
| 440 | |
| 441 | if (SuccEdge->isWeak()) { |
| 442 | --SuccSU->WeakPredsLeft; |
| 443 | return; |
| 444 | } |
| 445 | #ifndef NDEBUG |
| 446 | if (SuccSU->NumPredsLeft == 0) { |
| 447 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 448 | DAG->dumpNode(*SuccSU); |
| 449 | dbgs() << " has been released too many times!\n" ; |
| 450 | llvm_unreachable(nullptr); |
| 451 | } |
| 452 | #endif |
| 453 | |
| 454 | --SuccSU->NumPredsLeft; |
| 455 | } |
| 456 | |
| 457 | /// Release Successors of the SU that are in the block or not. |
| 458 | void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) { |
| 459 | for (SDep& Succ : SU->Succs) { |
| 460 | SUnit *SuccSU = Succ.getSUnit(); |
| 461 | |
| 462 | if (SuccSU->NodeNum >= DAG->SUnits.size()) |
| 463 | continue; |
| 464 | |
| 465 | if (BC->isSUInBlock(SU: SuccSU, ID) != InOrOutBlock) |
| 466 | continue; |
| 467 | |
| 468 | releaseSucc(SU, SuccEdge: &Succ); |
| 469 | if (SuccSU->NumPredsLeft == 0 && InOrOutBlock) |
| 470 | TopReadySUs.push_back(x: SuccSU); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | void SIScheduleBlock::nodeScheduled(SUnit *SU) { |
| 475 | // Is in TopReadySUs |
| 476 | assert (!SU->NumPredsLeft); |
| 477 | std::vector<SUnit *>::iterator I = llvm::find(Range&: TopReadySUs, Val: SU); |
| 478 | if (I == TopReadySUs.end()) { |
| 479 | dbgs() << "Data Structure Bug in SI Scheduler\n" ; |
| 480 | llvm_unreachable(nullptr); |
| 481 | } |
| 482 | TopReadySUs.erase(position: I); |
| 483 | |
| 484 | releaseSuccessors(SU, InOrOutBlock: true); |
| 485 | // Scheduling this node will trigger a wait, |
| 486 | // thus propagate to other instructions that they do not need to wait either. |
| 487 | if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]) |
| 488 | HasLowLatencyNonWaitedParent.assign(n: SUnits.size(), val: 0); |
| 489 | |
| 490 | if (DAG->IsLowLatencySU[SU->NodeNum]) { |
| 491 | for (SDep& Succ : SU->Succs) { |
| 492 | std::map<unsigned, unsigned>::iterator I = |
| 493 | NodeNum2Index.find(x: Succ.getSUnit()->NodeNum); |
| 494 | if (I != NodeNum2Index.end()) |
| 495 | HasLowLatencyNonWaitedParent[I->second] = 1; |
| 496 | } |
| 497 | } |
| 498 | SU->isScheduled = true; |
| 499 | } |
| 500 | |
| 501 | void SIScheduleBlock::finalizeUnits() { |
| 502 | // We remove links from outside blocks to enable scheduling inside the block. |
| 503 | for (SUnit* SU : SUnits) { |
| 504 | releaseSuccessors(SU, InOrOutBlock: false); |
| 505 | if (DAG->IsHighLatencySU[SU->NodeNum]) |
| 506 | HighLatencyBlock = true; |
| 507 | } |
| 508 | HasLowLatencyNonWaitedParent.resize(new_size: SUnits.size(), x: 0); |
| 509 | } |
| 510 | |
| 511 | // we maintain ascending order of IDs |
| 512 | void SIScheduleBlock::addPred(SIScheduleBlock *Pred) { |
| 513 | unsigned PredID = Pred->getID(); |
| 514 | |
| 515 | // Check if not already predecessor. |
| 516 | for (SIScheduleBlock* P : Preds) { |
| 517 | if (PredID == P->getID()) |
| 518 | return; |
| 519 | } |
| 520 | Preds.push_back(x: Pred); |
| 521 | |
| 522 | assert(none_of(Succs, |
| 523 | [=](std::pair<SIScheduleBlock*, |
| 524 | SIScheduleBlockLinkKind> S) { |
| 525 | return PredID == S.first->getID(); |
| 526 | }) && |
| 527 | "Loop in the Block Graph!" ); |
| 528 | } |
| 529 | |
| 530 | void SIScheduleBlock::addSucc(SIScheduleBlock *Succ, |
| 531 | SIScheduleBlockLinkKind Kind) { |
| 532 | unsigned SuccID = Succ->getID(); |
| 533 | |
| 534 | // Check if not already predecessor. |
| 535 | for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) { |
| 536 | if (SuccID == S.first->getID()) { |
| 537 | if (S.second == SIScheduleBlockLinkKind::NoData && |
| 538 | Kind == SIScheduleBlockLinkKind::Data) |
| 539 | S.second = Kind; |
| 540 | return; |
| 541 | } |
| 542 | } |
| 543 | if (Succ->isHighLatencyBlock()) |
| 544 | ++NumHighLatencySuccessors; |
| 545 | Succs.emplace_back(args&: Succ, args&: Kind); |
| 546 | |
| 547 | assert(none_of(Preds, |
| 548 | [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) && |
| 549 | "Loop in the Block Graph!" ); |
| 550 | } |
| 551 | |
| 552 | #ifndef NDEBUG |
| 553 | void SIScheduleBlock::printDebug(bool full) { |
| 554 | dbgs() << "Block (" << ID << ")\n" ; |
| 555 | if (!full) |
| 556 | return; |
| 557 | |
| 558 | dbgs() << "\nContains High Latency Instruction: " |
| 559 | << HighLatencyBlock << '\n'; |
| 560 | dbgs() << "\nDepends On:\n" ; |
| 561 | for (SIScheduleBlock* P : Preds) { |
| 562 | P->printDebug(false); |
| 563 | } |
| 564 | |
| 565 | dbgs() << "\nSuccessors:\n" ; |
| 566 | for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) { |
| 567 | if (S.second == SIScheduleBlockLinkKind::Data) |
| 568 | dbgs() << "(Data Dep) " ; |
| 569 | S.first->printDebug(false); |
| 570 | } |
| 571 | |
| 572 | if (Scheduled) { |
| 573 | dbgs() << "LiveInPressure " |
| 574 | << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' ' |
| 575 | << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n'; |
| 576 | dbgs() << "LiveOutPressure " |
| 577 | << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' ' |
| 578 | << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n" ; |
| 579 | dbgs() << "LiveIns:\n" ; |
| 580 | for (Register Reg : LiveInRegs) |
| 581 | dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; |
| 582 | |
| 583 | dbgs() << "\nLiveOuts:\n" ; |
| 584 | for (Register Reg : LiveOutRegs) |
| 585 | dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; |
| 586 | } |
| 587 | |
| 588 | dbgs() << "\nInstructions:\n" ; |
| 589 | for (const SUnit* SU : SUnits) |
| 590 | DAG->dumpNode(*SU); |
| 591 | |
| 592 | dbgs() << "///////////////////////\n" ; |
| 593 | } |
| 594 | #endif |
| 595 | |
| 596 | // SIScheduleBlockCreator // |
| 597 | |
| 598 | SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) |
| 599 | : DAG(DAG) {} |
| 600 | |
| 601 | SIScheduleBlocks |
| 602 | SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) { |
| 603 | std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B = |
| 604 | Blocks.find(x: BlockVariant); |
| 605 | if (B == Blocks.end()) { |
| 606 | SIScheduleBlocks Res; |
| 607 | createBlocksForVariant(BlockVariant); |
| 608 | topologicalSort(); |
| 609 | scheduleInsideBlocks(); |
| 610 | fillStats(); |
| 611 | Res.Blocks = CurrentBlocks; |
| 612 | Res.TopDownIndex2Block = TopDownIndex2Block; |
| 613 | Res.TopDownBlock2Index = TopDownBlock2Index; |
| 614 | Blocks[BlockVariant] = Res; |
| 615 | return Res; |
| 616 | } |
| 617 | return B->second; |
| 618 | } |
| 619 | |
| 620 | bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) { |
| 621 | if (SU->NodeNum >= DAG->SUnits.size()) |
| 622 | return false; |
| 623 | return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID; |
| 624 | } |
| 625 | |
| 626 | void SIScheduleBlockCreator::colorHighLatenciesAlone() { |
| 627 | unsigned DAGSize = DAG->SUnits.size(); |
| 628 | |
| 629 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 630 | SUnit *SU = &DAG->SUnits[i]; |
| 631 | if (DAG->IsHighLatencySU[SU->NodeNum]) { |
| 632 | CurrentColoring[SU->NodeNum] = NextReservedID++; |
| 633 | } |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | static bool |
| 638 | hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) { |
| 639 | for (const auto &PredDep : SU.Preds) { |
| 640 | if (PredDep.getSUnit() == &FromSU && |
| 641 | PredDep.getKind() == llvm::SDep::Data) |
| 642 | return true; |
| 643 | } |
| 644 | return false; |
| 645 | } |
| 646 | |
| 647 | void SIScheduleBlockCreator::colorHighLatenciesGroups() { |
| 648 | unsigned DAGSize = DAG->SUnits.size(); |
| 649 | unsigned NumHighLatencies = 0; |
| 650 | unsigned GroupSize; |
| 651 | int Color = NextReservedID; |
| 652 | unsigned Count = 0; |
| 653 | std::set<unsigned> FormingGroup; |
| 654 | |
| 655 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 656 | SUnit *SU = &DAG->SUnits[i]; |
| 657 | if (DAG->IsHighLatencySU[SU->NodeNum]) |
| 658 | ++NumHighLatencies; |
| 659 | } |
| 660 | |
| 661 | if (NumHighLatencies == 0) |
| 662 | return; |
| 663 | |
| 664 | if (NumHighLatencies <= 6) |
| 665 | GroupSize = 2; |
| 666 | else if (NumHighLatencies <= 12) |
| 667 | GroupSize = 3; |
| 668 | else |
| 669 | GroupSize = 4; |
| 670 | |
| 671 | for (unsigned SUNum : DAG->TopDownIndex2SU) { |
| 672 | const SUnit &SU = DAG->SUnits[SUNum]; |
| 673 | if (DAG->IsHighLatencySU[SU.NodeNum]) { |
| 674 | unsigned CompatibleGroup = true; |
| 675 | int ProposedColor = Color; |
| 676 | std::vector<int> AdditionalElements; |
| 677 | |
| 678 | // We don't want to put in the same block |
| 679 | // two high latency instructions that depend |
| 680 | // on each other. |
| 681 | // One way would be to check canAddEdge |
| 682 | // in both directions, but that currently is not |
| 683 | // enough because there the high latency order is |
| 684 | // enforced (via links). |
| 685 | // Instead, look at the dependencies between the |
| 686 | // high latency instructions and deduce if it is |
| 687 | // a data dependency or not. |
| 688 | for (unsigned j : FormingGroup) { |
| 689 | bool HasSubGraph; |
| 690 | std::vector<int> SubGraph; |
| 691 | // By construction (topological order), if SU and |
| 692 | // DAG->SUnits[j] are linked, DAG->SUnits[j] is necessary |
| 693 | // in the parent graph of SU. |
| 694 | #ifndef NDEBUG |
| 695 | SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], |
| 696 | HasSubGraph); |
| 697 | assert(!HasSubGraph); |
| 698 | #endif |
| 699 | SubGraph = DAG->GetTopo()->GetSubGraph(StartSU: DAG->SUnits[j], TargetSU: SU, |
| 700 | Success&: HasSubGraph); |
| 701 | if (!HasSubGraph) |
| 702 | continue; // No dependencies between each other |
| 703 | if (SubGraph.size() > 5) { |
| 704 | // Too many elements would be required to be added to the block. |
| 705 | CompatibleGroup = false; |
| 706 | break; |
| 707 | } |
| 708 | // Check the type of dependency |
| 709 | for (unsigned k : SubGraph) { |
| 710 | // If in the path to join the two instructions, |
| 711 | // there is another high latency instruction, |
| 712 | // or instructions colored for another block |
| 713 | // abort the merge. |
| 714 | if (DAG->IsHighLatencySU[k] || (CurrentColoring[k] != ProposedColor && |
| 715 | CurrentColoring[k] != 0)) { |
| 716 | CompatibleGroup = false; |
| 717 | break; |
| 718 | } |
| 719 | // If one of the SU in the subgraph depends on the result of SU j, |
| 720 | // there'll be a data dependency. |
| 721 | if (hasDataDependencyPred(SU: DAG->SUnits[k], FromSU: DAG->SUnits[j])) { |
| 722 | CompatibleGroup = false; |
| 723 | break; |
| 724 | } |
| 725 | } |
| 726 | if (!CompatibleGroup) |
| 727 | break; |
| 728 | // Same check for the SU |
| 729 | if (hasDataDependencyPred(SU, FromSU: DAG->SUnits[j])) { |
| 730 | CompatibleGroup = false; |
| 731 | break; |
| 732 | } |
| 733 | // Add all the required instructions to the block |
| 734 | // These cannot live in another block (because they |
| 735 | // depend (order dependency) on one of the |
| 736 | // instruction in the block, and are required for the |
| 737 | // high latency instruction we add. |
| 738 | llvm::append_range(C&: AdditionalElements, R&: SubGraph); |
| 739 | } |
| 740 | if (CompatibleGroup) { |
| 741 | FormingGroup.insert(x: SU.NodeNum); |
| 742 | for (unsigned j : AdditionalElements) |
| 743 | CurrentColoring[j] = ProposedColor; |
| 744 | CurrentColoring[SU.NodeNum] = ProposedColor; |
| 745 | ++Count; |
| 746 | } |
| 747 | // Found one incompatible instruction, |
| 748 | // or has filled a big enough group. |
| 749 | // -> start a new one. |
| 750 | if (!CompatibleGroup) { |
| 751 | FormingGroup.clear(); |
| 752 | Color = ++NextReservedID; |
| 753 | ProposedColor = Color; |
| 754 | FormingGroup.insert(x: SU.NodeNum); |
| 755 | CurrentColoring[SU.NodeNum] = ProposedColor; |
| 756 | Count = 0; |
| 757 | } else if (Count == GroupSize) { |
| 758 | FormingGroup.clear(); |
| 759 | Color = ++NextReservedID; |
| 760 | ProposedColor = Color; |
| 761 | Count = 0; |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | void SIScheduleBlockCreator::colorComputeReservedDependencies() { |
| 768 | unsigned DAGSize = DAG->SUnits.size(); |
| 769 | std::map<std::set<unsigned>, unsigned> ColorCombinations; |
| 770 | |
| 771 | CurrentTopDownReservedDependencyColoring.clear(); |
| 772 | CurrentBottomUpReservedDependencyColoring.clear(); |
| 773 | |
| 774 | CurrentTopDownReservedDependencyColoring.resize(new_size: DAGSize, x: 0); |
| 775 | CurrentBottomUpReservedDependencyColoring.resize(new_size: DAGSize, x: 0); |
| 776 | |
| 777 | // Traverse TopDown, and give different colors to SUs depending |
| 778 | // on which combination of High Latencies they depend on. |
| 779 | |
| 780 | for (unsigned SUNum : DAG->TopDownIndex2SU) { |
| 781 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 782 | std::set<unsigned> SUColors; |
| 783 | |
| 784 | // Already given. |
| 785 | if (CurrentColoring[SU->NodeNum]) { |
| 786 | CurrentTopDownReservedDependencyColoring[SU->NodeNum] = |
| 787 | CurrentColoring[SU->NodeNum]; |
| 788 | continue; |
| 789 | } |
| 790 | |
| 791 | for (SDep& PredDep : SU->Preds) { |
| 792 | SUnit *Pred = PredDep.getSUnit(); |
| 793 | if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) |
| 794 | continue; |
| 795 | if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0) |
| 796 | SUColors.insert(x: CurrentTopDownReservedDependencyColoring[Pred->NodeNum]); |
| 797 | } |
| 798 | // Color 0 by default. |
| 799 | if (SUColors.empty()) |
| 800 | continue; |
| 801 | // Same color than parents. |
| 802 | if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) |
| 803 | CurrentTopDownReservedDependencyColoring[SU->NodeNum] = |
| 804 | *SUColors.begin(); |
| 805 | else { |
| 806 | auto [Pos, Inserted] = |
| 807 | ColorCombinations.try_emplace(k: SUColors, args&: NextNonReservedID); |
| 808 | if (Inserted) |
| 809 | ++NextNonReservedID; |
| 810 | CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | ColorCombinations.clear(); |
| 815 | |
| 816 | // Same as before, but BottomUp. |
| 817 | |
| 818 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 819 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 820 | std::set<unsigned> SUColors; |
| 821 | |
| 822 | // Already given. |
| 823 | if (CurrentColoring[SU->NodeNum]) { |
| 824 | CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = |
| 825 | CurrentColoring[SU->NodeNum]; |
| 826 | continue; |
| 827 | } |
| 828 | |
| 829 | for (SDep& SuccDep : SU->Succs) { |
| 830 | SUnit *Succ = SuccDep.getSUnit(); |
| 831 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 832 | continue; |
| 833 | if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0) |
| 834 | SUColors.insert(x: CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]); |
| 835 | } |
| 836 | // Keep color 0. |
| 837 | if (SUColors.empty()) |
| 838 | continue; |
| 839 | // Same color than parents. |
| 840 | if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) |
| 841 | CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = |
| 842 | *SUColors.begin(); |
| 843 | else { |
| 844 | std::map<std::set<unsigned>, unsigned>::iterator Pos = |
| 845 | ColorCombinations.find(x: SUColors); |
| 846 | if (Pos != ColorCombinations.end()) { |
| 847 | CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second; |
| 848 | } else { |
| 849 | CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = |
| 850 | NextNonReservedID; |
| 851 | ColorCombinations[SUColors] = NextNonReservedID++; |
| 852 | } |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | void SIScheduleBlockCreator::colorAccordingToReservedDependencies() { |
| 858 | std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations; |
| 859 | |
| 860 | // Every combination of colors given by the top down |
| 861 | // and bottom up Reserved node dependency |
| 862 | |
| 863 | for (const SUnit &SU : DAG->SUnits) { |
| 864 | std::pair<unsigned, unsigned> SUColors; |
| 865 | |
| 866 | // High latency instructions: already given. |
| 867 | if (CurrentColoring[SU.NodeNum]) |
| 868 | continue; |
| 869 | |
| 870 | SUColors.first = CurrentTopDownReservedDependencyColoring[SU.NodeNum]; |
| 871 | SUColors.second = CurrentBottomUpReservedDependencyColoring[SU.NodeNum]; |
| 872 | |
| 873 | auto [Pos, Inserted] = |
| 874 | ColorCombinations.try_emplace(k: SUColors, args&: NextNonReservedID); |
| 875 | CurrentColoring[SU.NodeNum] = Pos->second; |
| 876 | if (Inserted) |
| 877 | NextNonReservedID++; |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | void SIScheduleBlockCreator::colorEndsAccordingToDependencies() { |
| 882 | unsigned DAGSize = DAG->SUnits.size(); |
| 883 | std::vector<int> PendingColoring = CurrentColoring; |
| 884 | |
| 885 | assert(DAGSize >= 1 && |
| 886 | CurrentBottomUpReservedDependencyColoring.size() == DAGSize && |
| 887 | CurrentTopDownReservedDependencyColoring.size() == DAGSize); |
| 888 | // If there is no reserved block at all, do nothing. We don't want |
| 889 | // everything in one block. |
| 890 | if (*llvm::max_element(Range&: CurrentBottomUpReservedDependencyColoring) == 0 && |
| 891 | *llvm::max_element(Range&: CurrentTopDownReservedDependencyColoring) == 0) |
| 892 | return; |
| 893 | |
| 894 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 895 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 896 | std::set<unsigned> SUColors; |
| 897 | std::set<unsigned> SUColorsPending; |
| 898 | |
| 899 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 900 | continue; |
| 901 | |
| 902 | if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 || |
| 903 | CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0) |
| 904 | continue; |
| 905 | |
| 906 | for (SDep& SuccDep : SU->Succs) { |
| 907 | SUnit *Succ = SuccDep.getSUnit(); |
| 908 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 909 | continue; |
| 910 | if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 || |
| 911 | CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0) |
| 912 | SUColors.insert(x: CurrentColoring[Succ->NodeNum]); |
| 913 | SUColorsPending.insert(x: PendingColoring[Succ->NodeNum]); |
| 914 | } |
| 915 | // If there is only one child/parent block, and that block |
| 916 | // is not among the ones we are removing in this path, then |
| 917 | // merge the instruction to that block |
| 918 | if (SUColors.size() == 1 && SUColorsPending.size() == 1) |
| 919 | PendingColoring[SU->NodeNum] = *SUColors.begin(); |
| 920 | else // TODO: Attribute new colors depending on color |
| 921 | // combination of children. |
| 922 | PendingColoring[SU->NodeNum] = NextNonReservedID++; |
| 923 | } |
| 924 | CurrentColoring = PendingColoring; |
| 925 | } |
| 926 | |
| 927 | |
| 928 | void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() { |
| 929 | unsigned DAGSize = DAG->SUnits.size(); |
| 930 | unsigned PreviousColor; |
| 931 | std::set<unsigned> SeenColors; |
| 932 | |
| 933 | if (DAGSize <= 1) |
| 934 | return; |
| 935 | |
| 936 | PreviousColor = CurrentColoring[0]; |
| 937 | |
| 938 | for (unsigned i = 1, e = DAGSize; i != e; ++i) { |
| 939 | SUnit *SU = &DAG->SUnits[i]; |
| 940 | unsigned CurrentColor = CurrentColoring[i]; |
| 941 | unsigned PreviousColorSave = PreviousColor; |
| 942 | assert(i == SU->NodeNum); |
| 943 | |
| 944 | if (CurrentColor != PreviousColor) |
| 945 | SeenColors.insert(x: PreviousColor); |
| 946 | PreviousColor = CurrentColor; |
| 947 | |
| 948 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 949 | continue; |
| 950 | |
| 951 | if (SeenColors.find(x: CurrentColor) == SeenColors.end()) |
| 952 | continue; |
| 953 | |
| 954 | if (PreviousColorSave != CurrentColor) |
| 955 | CurrentColoring[i] = NextNonReservedID++; |
| 956 | else |
| 957 | CurrentColoring[i] = CurrentColoring[i-1]; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() { |
| 962 | unsigned DAGSize = DAG->SUnits.size(); |
| 963 | |
| 964 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 965 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 966 | std::set<unsigned> SUColors; |
| 967 | |
| 968 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 969 | continue; |
| 970 | |
| 971 | // No predecessor: Vgpr constant loading. |
| 972 | // Low latency instructions usually have a predecessor (the address) |
| 973 | if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum]) |
| 974 | continue; |
| 975 | |
| 976 | for (SDep& SuccDep : SU->Succs) { |
| 977 | SUnit *Succ = SuccDep.getSUnit(); |
| 978 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 979 | continue; |
| 980 | SUColors.insert(x: CurrentColoring[Succ->NodeNum]); |
| 981 | } |
| 982 | if (SUColors.size() == 1) |
| 983 | CurrentColoring[SU->NodeNum] = *SUColors.begin(); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() { |
| 988 | unsigned DAGSize = DAG->SUnits.size(); |
| 989 | |
| 990 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 991 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 992 | std::set<unsigned> SUColors; |
| 993 | |
| 994 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 995 | continue; |
| 996 | |
| 997 | for (SDep& SuccDep : SU->Succs) { |
| 998 | SUnit *Succ = SuccDep.getSUnit(); |
| 999 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 1000 | continue; |
| 1001 | SUColors.insert(x: CurrentColoring[Succ->NodeNum]); |
| 1002 | } |
| 1003 | if (SUColors.size() == 1) |
| 1004 | CurrentColoring[SU->NodeNum] = *SUColors.begin(); |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() { |
| 1009 | unsigned DAGSize = DAG->SUnits.size(); |
| 1010 | |
| 1011 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 1012 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 1013 | std::set<unsigned> SUColors; |
| 1014 | |
| 1015 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 1016 | continue; |
| 1017 | |
| 1018 | for (SDep& SuccDep : SU->Succs) { |
| 1019 | SUnit *Succ = SuccDep.getSUnit(); |
| 1020 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 1021 | continue; |
| 1022 | SUColors.insert(x: CurrentColoring[Succ->NodeNum]); |
| 1023 | } |
| 1024 | if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize) |
| 1025 | CurrentColoring[SU->NodeNum] = *SUColors.begin(); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() { |
| 1030 | unsigned DAGSize = DAG->SUnits.size(); |
| 1031 | std::map<unsigned, unsigned> ColorCount; |
| 1032 | |
| 1033 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 1034 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 1035 | unsigned color = CurrentColoring[SU->NodeNum]; |
| 1036 | ++ColorCount[color]; |
| 1037 | } |
| 1038 | |
| 1039 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 1040 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 1041 | unsigned color = CurrentColoring[SU->NodeNum]; |
| 1042 | std::set<unsigned> SUColors; |
| 1043 | |
| 1044 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 1045 | continue; |
| 1046 | |
| 1047 | if (ColorCount[color] > 1) |
| 1048 | continue; |
| 1049 | |
| 1050 | for (SDep& SuccDep : SU->Succs) { |
| 1051 | SUnit *Succ = SuccDep.getSUnit(); |
| 1052 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 1053 | continue; |
| 1054 | SUColors.insert(x: CurrentColoring[Succ->NodeNum]); |
| 1055 | } |
| 1056 | if (SUColors.size() == 1 && *SUColors.begin() != color) { |
| 1057 | --ColorCount[color]; |
| 1058 | CurrentColoring[SU->NodeNum] = *SUColors.begin(); |
| 1059 | ++ColorCount[*SUColors.begin()]; |
| 1060 | } |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | void SIScheduleBlockCreator::cutHugeBlocks() { |
| 1065 | // TODO |
| 1066 | } |
| 1067 | |
| 1068 | void SIScheduleBlockCreator::regroupNoUserInstructions() { |
| 1069 | unsigned DAGSize = DAG->SUnits.size(); |
| 1070 | int GroupID = NextNonReservedID++; |
| 1071 | |
| 1072 | for (unsigned SUNum : DAG->BottomUpIndex2SU) { |
| 1073 | SUnit *SU = &DAG->SUnits[SUNum]; |
| 1074 | bool hasSuccessor = false; |
| 1075 | |
| 1076 | if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) |
| 1077 | continue; |
| 1078 | |
| 1079 | for (SDep& SuccDep : SU->Succs) { |
| 1080 | SUnit *Succ = SuccDep.getSUnit(); |
| 1081 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 1082 | continue; |
| 1083 | hasSuccessor = true; |
| 1084 | } |
| 1085 | if (!hasSuccessor) |
| 1086 | CurrentColoring[SU->NodeNum] = GroupID; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | void SIScheduleBlockCreator::colorExports() { |
| 1091 | unsigned ExportColor = NextNonReservedID++; |
| 1092 | SmallVector<unsigned, 8> ExpGroup; |
| 1093 | |
| 1094 | // Put all exports together in a block. |
| 1095 | // The block will naturally end up being scheduled last, |
| 1096 | // thus putting exports at the end of the schedule, which |
| 1097 | // is better for performance. |
| 1098 | // However we must ensure, for safety, the exports can be put |
| 1099 | // together in the same block without any other instruction. |
| 1100 | // This could happen, for example, when scheduling after regalloc |
| 1101 | // if reloading a spilled register from memory using the same |
| 1102 | // register than used in a previous export. |
| 1103 | // If that happens, do not regroup the exports. |
| 1104 | for (unsigned SUNum : DAG->TopDownIndex2SU) { |
| 1105 | const SUnit &SU = DAG->SUnits[SUNum]; |
| 1106 | if (SIInstrInfo::isEXP(MI: *SU.getInstr())) { |
| 1107 | // SU is an export instruction. Check whether one of its successor |
| 1108 | // dependencies is a non-export, in which case we skip export grouping. |
| 1109 | for (const SDep &SuccDep : SU.Succs) { |
| 1110 | const SUnit *SuccSU = SuccDep.getSUnit(); |
| 1111 | if (SuccDep.isWeak() || SuccSU->NodeNum >= DAG->SUnits.size()) { |
| 1112 | // Ignore these dependencies. |
| 1113 | continue; |
| 1114 | } |
| 1115 | assert(SuccSU->isInstr() && |
| 1116 | "SUnit unexpectedly not representing an instruction!" ); |
| 1117 | |
| 1118 | if (!SIInstrInfo::isEXP(MI: *SuccSU->getInstr())) { |
| 1119 | // A non-export depends on us. Skip export grouping. |
| 1120 | // Note that this is a bit pessimistic: We could still group all other |
| 1121 | // exports that are not depended on by non-exports, directly or |
| 1122 | // indirectly. Simply skipping this particular export but grouping all |
| 1123 | // others would not account for indirect dependencies. |
| 1124 | return; |
| 1125 | } |
| 1126 | } |
| 1127 | ExpGroup.push_back(Elt: SUNum); |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | // The group can be formed. Give the color. |
| 1132 | for (unsigned j : ExpGroup) |
| 1133 | CurrentColoring[j] = ExportColor; |
| 1134 | } |
| 1135 | |
| 1136 | void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) { |
| 1137 | unsigned DAGSize = DAG->SUnits.size(); |
| 1138 | std::map<unsigned,unsigned> RealID; |
| 1139 | |
| 1140 | CurrentBlocks.clear(); |
| 1141 | CurrentColoring.clear(); |
| 1142 | CurrentColoring.resize(new_size: DAGSize, x: 0); |
| 1143 | Node2CurrentBlock.clear(); |
| 1144 | |
| 1145 | // Restore links previous scheduling variant has overridden. |
| 1146 | DAG->restoreSULinksLeft(); |
| 1147 | |
| 1148 | NextReservedID = 1; |
| 1149 | NextNonReservedID = DAGSize + 1; |
| 1150 | |
| 1151 | LLVM_DEBUG(dbgs() << "Coloring the graph\n" ); |
| 1152 | |
| 1153 | if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped) |
| 1154 | colorHighLatenciesGroups(); |
| 1155 | else |
| 1156 | colorHighLatenciesAlone(); |
| 1157 | colorComputeReservedDependencies(); |
| 1158 | colorAccordingToReservedDependencies(); |
| 1159 | colorEndsAccordingToDependencies(); |
| 1160 | if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive) |
| 1161 | colorForceConsecutiveOrderInGroup(); |
| 1162 | regroupNoUserInstructions(); |
| 1163 | colorMergeConstantLoadsNextGroup(); |
| 1164 | colorMergeIfPossibleNextGroupOnlyForReserved(); |
| 1165 | colorExports(); |
| 1166 | |
| 1167 | // Put SUs of same color into same block |
| 1168 | Node2CurrentBlock.resize(new_size: DAGSize, x: -1); |
| 1169 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1170 | SUnit *SU = &DAG->SUnits[i]; |
| 1171 | unsigned Color = CurrentColoring[SU->NodeNum]; |
| 1172 | auto [It, Inserted] = RealID.try_emplace(k: Color); |
| 1173 | if (Inserted) { |
| 1174 | int ID = CurrentBlocks.size(); |
| 1175 | BlockPtrs.push_back(x: std::make_unique<SIScheduleBlock>(args&: DAG, args: this, args&: ID)); |
| 1176 | CurrentBlocks.push_back(x: BlockPtrs.rbegin()->get()); |
| 1177 | It->second = ID; |
| 1178 | } |
| 1179 | CurrentBlocks[It->second]->addUnit(SU); |
| 1180 | Node2CurrentBlock[SU->NodeNum] = It->second; |
| 1181 | } |
| 1182 | |
| 1183 | // Build dependencies between blocks. |
| 1184 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1185 | SUnit *SU = &DAG->SUnits[i]; |
| 1186 | int SUID = Node2CurrentBlock[i]; |
| 1187 | for (SDep& SuccDep : SU->Succs) { |
| 1188 | SUnit *Succ = SuccDep.getSUnit(); |
| 1189 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 1190 | continue; |
| 1191 | if (Node2CurrentBlock[Succ->NodeNum] != SUID) |
| 1192 | CurrentBlocks[SUID]->addSucc(Succ: CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]], |
| 1193 | Kind: SuccDep.isCtrl() ? NoData : Data); |
| 1194 | } |
| 1195 | for (SDep& PredDep : SU->Preds) { |
| 1196 | SUnit *Pred = PredDep.getSUnit(); |
| 1197 | if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) |
| 1198 | continue; |
| 1199 | if (Node2CurrentBlock[Pred->NodeNum] != SUID) |
| 1200 | CurrentBlocks[SUID]->addPred(Pred: CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]); |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | // Free root and leafs of all blocks to enable scheduling inside them. |
| 1205 | for (SIScheduleBlock *Block : CurrentBlocks) |
| 1206 | Block->finalizeUnits(); |
| 1207 | LLVM_DEBUG({ |
| 1208 | dbgs() << "Blocks created:\n\n" ; |
| 1209 | for (SIScheduleBlock *Block : CurrentBlocks) |
| 1210 | Block->printDebug(true); |
| 1211 | }); |
| 1212 | } |
| 1213 | |
| 1214 | // Two functions taken from Codegen/MachineScheduler.cpp |
| 1215 | |
| 1216 | /// Non-const version. |
| 1217 | static MachineBasicBlock::iterator |
| 1218 | nextIfDebug(MachineBasicBlock::iterator I, |
| 1219 | MachineBasicBlock::const_iterator End) { |
| 1220 | for (; I != End; ++I) { |
| 1221 | if (!I->isDebugInstr()) |
| 1222 | break; |
| 1223 | } |
| 1224 | return I; |
| 1225 | } |
| 1226 | |
| 1227 | void SIScheduleBlockCreator::topologicalSort() { |
| 1228 | unsigned DAGSize = CurrentBlocks.size(); |
| 1229 | std::vector<int> WorkList; |
| 1230 | |
| 1231 | LLVM_DEBUG(dbgs() << "Topological Sort\n" ); |
| 1232 | |
| 1233 | WorkList.reserve(n: DAGSize); |
| 1234 | TopDownIndex2Block.resize(new_size: DAGSize); |
| 1235 | TopDownBlock2Index.resize(new_size: DAGSize); |
| 1236 | BottomUpIndex2Block.resize(new_size: DAGSize); |
| 1237 | |
| 1238 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1239 | SIScheduleBlock *Block = CurrentBlocks[i]; |
| 1240 | unsigned Degree = Block->getSuccs().size(); |
| 1241 | TopDownBlock2Index[i] = Degree; |
| 1242 | if (Degree == 0) { |
| 1243 | WorkList.push_back(x: i); |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | int Id = DAGSize; |
| 1248 | while (!WorkList.empty()) { |
| 1249 | int i = WorkList.back(); |
| 1250 | SIScheduleBlock *Block = CurrentBlocks[i]; |
| 1251 | WorkList.pop_back(); |
| 1252 | TopDownBlock2Index[i] = --Id; |
| 1253 | TopDownIndex2Block[Id] = i; |
| 1254 | for (SIScheduleBlock* Pred : Block->getPreds()) { |
| 1255 | if (!--TopDownBlock2Index[Pred->getID()]) |
| 1256 | WorkList.push_back(x: Pred->getID()); |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | #ifndef NDEBUG |
| 1261 | // Check correctness of the ordering. |
| 1262 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1263 | SIScheduleBlock *Block = CurrentBlocks[i]; |
| 1264 | for (SIScheduleBlock* Pred : Block->getPreds()) { |
| 1265 | assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] && |
| 1266 | "Wrong Top Down topological sorting" ); |
| 1267 | } |
| 1268 | } |
| 1269 | #endif |
| 1270 | |
| 1271 | BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(), |
| 1272 | TopDownIndex2Block.rend()); |
| 1273 | } |
| 1274 | |
| 1275 | void SIScheduleBlockCreator::scheduleInsideBlocks() { |
| 1276 | unsigned DAGSize = CurrentBlocks.size(); |
| 1277 | |
| 1278 | LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n" ); |
| 1279 | |
| 1280 | // We do schedule a valid scheduling such that a Block corresponds |
| 1281 | // to a range of instructions. |
| 1282 | LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n" ); |
| 1283 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1284 | SIScheduleBlock *Block = CurrentBlocks[i]; |
| 1285 | Block->fastSchedule(); |
| 1286 | } |
| 1287 | |
| 1288 | // Note: the following code, and the part restoring previous position |
| 1289 | // is by far the most expensive operation of the Scheduler. |
| 1290 | |
| 1291 | // Do not update CurrentTop. |
| 1292 | MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop(); |
| 1293 | std::vector<MachineBasicBlock::iterator> PosOld; |
| 1294 | std::vector<MachineBasicBlock::iterator> PosNew; |
| 1295 | PosOld.reserve(n: DAG->SUnits.size()); |
| 1296 | PosNew.reserve(n: DAG->SUnits.size()); |
| 1297 | |
| 1298 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1299 | int BlockIndice = TopDownIndex2Block[i]; |
| 1300 | SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; |
| 1301 | std::vector<SUnit*> SUs = Block->getScheduledUnits(); |
| 1302 | |
| 1303 | for (SUnit* SU : SUs) { |
| 1304 | MachineInstr *MI = SU->getInstr(); |
| 1305 | MachineBasicBlock::iterator Pos = MI; |
| 1306 | PosOld.push_back(x: Pos); |
| 1307 | if (&*CurrentTopFastSched == MI) { |
| 1308 | PosNew.push_back(x: Pos); |
| 1309 | CurrentTopFastSched = nextIfDebug(I: ++CurrentTopFastSched, |
| 1310 | End: DAG->getCurrentBottom()); |
| 1311 | } else { |
| 1312 | // Update the instruction stream. |
| 1313 | DAG->getBB()->splice(Where: CurrentTopFastSched, Other: DAG->getBB(), From: MI); |
| 1314 | |
| 1315 | // Update LiveIntervals. |
| 1316 | // Note: Moving all instructions and calling handleMove every time |
| 1317 | // is the most cpu intensive operation of the scheduler. |
| 1318 | // It would gain a lot if there was a way to recompute the |
| 1319 | // LiveIntervals for the entire scheduling region. |
| 1320 | DAG->getLIS()->handleMove(MI&: *MI, /*UpdateFlags=*/true); |
| 1321 | PosNew.push_back(x: CurrentTopFastSched); |
| 1322 | } |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | // Now we have Block of SUs == Block of MI. |
| 1327 | // We do the final schedule for the instructions inside the block. |
| 1328 | // The property that all the SUs of the Block are grouped together as MI |
| 1329 | // is used for correct reg usage tracking. |
| 1330 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1331 | SIScheduleBlock *Block = CurrentBlocks[i]; |
| 1332 | std::vector<SUnit*> SUs = Block->getScheduledUnits(); |
| 1333 | Block->schedule(BeginBlock: (*SUs.begin())->getInstr(), EndBlock: (*SUs.rbegin())->getInstr()); |
| 1334 | } |
| 1335 | |
| 1336 | LLVM_DEBUG(dbgs() << "Restoring MI Pos\n" ); |
| 1337 | // Restore old ordering (which prevents a LIS->handleMove bug). |
| 1338 | for (unsigned i = PosOld.size(), e = 0; i != e; --i) { |
| 1339 | MachineBasicBlock::iterator POld = PosOld[i-1]; |
| 1340 | MachineBasicBlock::iterator PNew = PosNew[i-1]; |
| 1341 | if (PNew != POld) { |
| 1342 | // Update the instruction stream. |
| 1343 | DAG->getBB()->splice(Where: POld, Other: DAG->getBB(), From: PNew); |
| 1344 | |
| 1345 | // Update LiveIntervals. |
| 1346 | DAG->getLIS()->handleMove(MI&: *POld, /*UpdateFlags=*/true); |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | LLVM_DEBUG({ |
| 1351 | for (SIScheduleBlock *Block : CurrentBlocks) |
| 1352 | Block->printDebug(true); |
| 1353 | }); |
| 1354 | } |
| 1355 | |
| 1356 | void SIScheduleBlockCreator::fillStats() { |
| 1357 | unsigned DAGSize = CurrentBlocks.size(); |
| 1358 | |
| 1359 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1360 | int BlockIndice = TopDownIndex2Block[i]; |
| 1361 | SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; |
| 1362 | if (Block->getPreds().empty()) |
| 1363 | Block->Depth = 0; |
| 1364 | else { |
| 1365 | unsigned Depth = 0; |
| 1366 | for (SIScheduleBlock *Pred : Block->getPreds()) { |
| 1367 | if (Depth < Pred->Depth + Pred->getCost()) |
| 1368 | Depth = Pred->Depth + Pred->getCost(); |
| 1369 | } |
| 1370 | Block->Depth = Depth; |
| 1371 | } |
| 1372 | } |
| 1373 | |
| 1374 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 1375 | int BlockIndice = BottomUpIndex2Block[i]; |
| 1376 | SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; |
| 1377 | if (Block->getSuccs().empty()) |
| 1378 | Block->Height = 0; |
| 1379 | else { |
| 1380 | unsigned Height = 0; |
| 1381 | for (const auto &Succ : Block->getSuccs()) |
| 1382 | Height = std::max(a: Height, b: Succ.first->Height + Succ.first->getCost()); |
| 1383 | Block->Height = Height; |
| 1384 | } |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | // SIScheduleBlockScheduler // |
| 1389 | |
| 1390 | SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG, |
| 1391 | SISchedulerBlockSchedulerVariant Variant, |
| 1392 | SIScheduleBlocks BlocksStruct) : |
| 1393 | DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks), |
| 1394 | LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0), |
| 1395 | SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) { |
| 1396 | |
| 1397 | // Fill the usage of every output |
| 1398 | // Warning: while by construction we always have a link between two blocks |
| 1399 | // when one needs a result from the other, the number of users of an output |
| 1400 | // is not the sum of child blocks having as input the same virtual register. |
| 1401 | // Here is an example. A produces x and y. B eats x and produces x'. |
| 1402 | // C eats x' and y. The register coalescer may have attributed the same |
| 1403 | // virtual register to x and x'. |
| 1404 | // To count accurately, we do a topological sort. In case the register is |
| 1405 | // found for several parents, we increment the usage of the one with the |
| 1406 | // highest topological index. |
| 1407 | LiveOutRegsNumUsages.resize(new_size: Blocks.size()); |
| 1408 | for (SIScheduleBlock *Block : Blocks) { |
| 1409 | for (Register Reg : Block->getInRegs()) { |
| 1410 | bool Found = false; |
| 1411 | int topoInd = -1; |
| 1412 | for (SIScheduleBlock* Pred: Block->getPreds()) { |
| 1413 | std::set<Register> PredOutRegs = Pred->getOutRegs(); |
| 1414 | std::set<Register>::iterator RegPos = PredOutRegs.find(x: Reg); |
| 1415 | |
| 1416 | if (RegPos != PredOutRegs.end()) { |
| 1417 | Found = true; |
| 1418 | if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) { |
| 1419 | topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()]; |
| 1420 | } |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | if (!Found) |
| 1425 | continue; |
| 1426 | |
| 1427 | int PredID = BlocksStruct.TopDownIndex2Block[topoInd]; |
| 1428 | ++LiveOutRegsNumUsages[PredID][Reg]; |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | LastPosHighLatencyParentScheduled.resize(new_size: Blocks.size(), x: 0); |
| 1433 | BlockNumPredsLeft.resize(new_size: Blocks.size()); |
| 1434 | BlockNumSuccsLeft.resize(new_size: Blocks.size()); |
| 1435 | |
| 1436 | for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| 1437 | SIScheduleBlock *Block = Blocks[i]; |
| 1438 | BlockNumPredsLeft[i] = Block->getPreds().size(); |
| 1439 | BlockNumSuccsLeft[i] = Block->getSuccs().size(); |
| 1440 | } |
| 1441 | |
| 1442 | #ifndef NDEBUG |
| 1443 | for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| 1444 | SIScheduleBlock *Block = Blocks[i]; |
| 1445 | assert(Block->getID() == i); |
| 1446 | } |
| 1447 | #endif |
| 1448 | |
| 1449 | std::set<Register> InRegs = DAG->getInRegs(); |
| 1450 | addLiveRegs(Regs&: InRegs); |
| 1451 | |
| 1452 | // Increase LiveOutRegsNumUsages for blocks |
| 1453 | // producing registers consumed in another |
| 1454 | // scheduling region. |
| 1455 | for (Register Reg : DAG->getOutRegs()) { |
| 1456 | for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| 1457 | // Do reverse traversal |
| 1458 | int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i]; |
| 1459 | SIScheduleBlock *Block = Blocks[ID]; |
| 1460 | const std::set<Register> &OutRegs = Block->getOutRegs(); |
| 1461 | |
| 1462 | if (OutRegs.find(x: Reg) == OutRegs.end()) |
| 1463 | continue; |
| 1464 | |
| 1465 | ++LiveOutRegsNumUsages[ID][Reg]; |
| 1466 | break; |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | // Fill LiveRegsConsumers for regs that were already |
| 1471 | // defined before scheduling. |
| 1472 | for (SIScheduleBlock *Block : Blocks) { |
| 1473 | for (Register Reg : Block->getInRegs()) { |
| 1474 | bool Found = false; |
| 1475 | for (SIScheduleBlock* Pred: Block->getPreds()) { |
| 1476 | std::set<Register> PredOutRegs = Pred->getOutRegs(); |
| 1477 | std::set<Register>::iterator RegPos = PredOutRegs.find(x: Reg); |
| 1478 | |
| 1479 | if (RegPos != PredOutRegs.end()) { |
| 1480 | Found = true; |
| 1481 | break; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | if (!Found) |
| 1486 | ++LiveRegsConsumers[Reg]; |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| 1491 | SIScheduleBlock *Block = Blocks[i]; |
| 1492 | if (BlockNumPredsLeft[i] == 0) { |
| 1493 | ReadyBlocks.push_back(x: Block); |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | while (SIScheduleBlock *Block = pickBlock()) { |
| 1498 | BlocksScheduled.push_back(x: Block); |
| 1499 | blockScheduled(Block); |
| 1500 | } |
| 1501 | |
| 1502 | LLVM_DEBUG(dbgs() << "Block Order:" ; for (SIScheduleBlock *Block |
| 1503 | : BlocksScheduled) { |
| 1504 | dbgs() << ' ' << Block->getID(); |
| 1505 | } dbgs() << '\n';); |
| 1506 | } |
| 1507 | |
| 1508 | bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand, |
| 1509 | SIBlockSchedCandidate &TryCand) { |
| 1510 | if (!Cand.isValid()) { |
| 1511 | TryCand.Reason = NodeOrder; |
| 1512 | return true; |
| 1513 | } |
| 1514 | |
| 1515 | // Try to hide high latencies. |
| 1516 | if (SISched::tryLess(TryVal: TryCand.LastPosHighLatParentScheduled, |
| 1517 | CandVal: Cand.LastPosHighLatParentScheduled, TryCand, Cand, Reason: Latency)) |
| 1518 | return true; |
| 1519 | // Schedule high latencies early so you can hide them better. |
| 1520 | if (SISched::tryGreater(TryVal: TryCand.IsHighLatency, CandVal: Cand.IsHighLatency, |
| 1521 | TryCand, Cand, Reason: Latency)) |
| 1522 | return true; |
| 1523 | if (TryCand.IsHighLatency && SISched::tryGreater(TryVal: TryCand.Height, CandVal: Cand.Height, |
| 1524 | TryCand, Cand, Reason: Depth)) |
| 1525 | return true; |
| 1526 | if (SISched::tryGreater(TryVal: TryCand.NumHighLatencySuccessors, |
| 1527 | CandVal: Cand.NumHighLatencySuccessors, |
| 1528 | TryCand, Cand, Reason: Successor)) |
| 1529 | return true; |
| 1530 | return false; |
| 1531 | } |
| 1532 | |
| 1533 | bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand, |
| 1534 | SIBlockSchedCandidate &TryCand) { |
| 1535 | if (!Cand.isValid()) { |
| 1536 | TryCand.Reason = NodeOrder; |
| 1537 | return true; |
| 1538 | } |
| 1539 | |
| 1540 | if (SISched::tryLess(TryVal: TryCand.VGPRUsageDiff > 0, CandVal: Cand.VGPRUsageDiff > 0, |
| 1541 | TryCand, Cand, Reason: RegUsage)) |
| 1542 | return true; |
| 1543 | if (SISched::tryGreater(TryVal: TryCand.NumSuccessors > 0, |
| 1544 | CandVal: Cand.NumSuccessors > 0, |
| 1545 | TryCand, Cand, Reason: Successor)) |
| 1546 | return true; |
| 1547 | if (SISched::tryGreater(TryVal: TryCand.Height, CandVal: Cand.Height, TryCand, Cand, Reason: Depth)) |
| 1548 | return true; |
| 1549 | if (SISched::tryLess(TryVal: TryCand.VGPRUsageDiff, CandVal: Cand.VGPRUsageDiff, |
| 1550 | TryCand, Cand, Reason: RegUsage)) |
| 1551 | return true; |
| 1552 | return false; |
| 1553 | } |
| 1554 | |
| 1555 | SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() { |
| 1556 | SIBlockSchedCandidate Cand; |
| 1557 | std::vector<SIScheduleBlock*>::iterator Best; |
| 1558 | SIScheduleBlock *Block; |
| 1559 | if (ReadyBlocks.empty()) |
| 1560 | return nullptr; |
| 1561 | |
| 1562 | DAG->fillVgprSgprCost(First: LiveRegs.begin(), End: LiveRegs.end(), |
| 1563 | VgprUsage&: VregCurrentUsage, SgprUsage&: SregCurrentUsage); |
| 1564 | if (VregCurrentUsage > maxVregUsage) |
| 1565 | maxVregUsage = VregCurrentUsage; |
| 1566 | if (SregCurrentUsage > maxSregUsage) |
| 1567 | maxSregUsage = SregCurrentUsage; |
| 1568 | LLVM_DEBUG(dbgs() << "Picking New Blocks\n" ; dbgs() << "Available: " ; |
| 1569 | for (SIScheduleBlock *Block : ReadyBlocks) |
| 1570 | dbgs() << Block->getID() << ' '; |
| 1571 | dbgs() << "\nCurrent Live:\n" ; |
| 1572 | for (Register Reg : LiveRegs) |
| 1573 | dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; |
| 1574 | dbgs() << '\n'; |
| 1575 | dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n'; |
| 1576 | dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';); |
| 1577 | |
| 1578 | Cand.Block = nullptr; |
| 1579 | for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(), |
| 1580 | E = ReadyBlocks.end(); I != E; ++I) { |
| 1581 | SIBlockSchedCandidate TryCand; |
| 1582 | TryCand.Block = *I; |
| 1583 | TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock(); |
| 1584 | TryCand.VGPRUsageDiff = |
| 1585 | checkRegUsageImpact(InRegs&: TryCand.Block->getInRegs(), |
| 1586 | OutRegs&: TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32]; |
| 1587 | TryCand.NumSuccessors = TryCand.Block->getSuccs().size(); |
| 1588 | TryCand.NumHighLatencySuccessors = |
| 1589 | TryCand.Block->getNumHighLatencySuccessors(); |
| 1590 | TryCand.LastPosHighLatParentScheduled = |
| 1591 | (unsigned int) std::max<int> (a: 0, |
| 1592 | b: LastPosHighLatencyParentScheduled[TryCand.Block->getID()] - |
| 1593 | LastPosWaitedHighLatency); |
| 1594 | TryCand.Height = TryCand.Block->Height; |
| 1595 | // Try not to increase VGPR usage too much, else we may spill. |
| 1596 | if (VregCurrentUsage > 120 || |
| 1597 | Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) { |
| 1598 | if (!tryCandidateRegUsage(Cand, TryCand) && |
| 1599 | Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage) |
| 1600 | tryCandidateLatency(Cand, TryCand); |
| 1601 | } else { |
| 1602 | if (!tryCandidateLatency(Cand, TryCand)) |
| 1603 | tryCandidateRegUsage(Cand, TryCand); |
| 1604 | } |
| 1605 | if (TryCand.Reason != NoCand) { |
| 1606 | Cand.setBest(TryCand); |
| 1607 | Best = I; |
| 1608 | LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' ' |
| 1609 | << getReasonStr(Cand.Reason) << '\n'); |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n'; |
| 1614 | dbgs() << "Is a block with high latency instruction: " |
| 1615 | << (Cand.IsHighLatency ? "yes\n" : "no\n" ); |
| 1616 | dbgs() << "Position of last high latency dependency: " |
| 1617 | << Cand.LastPosHighLatParentScheduled << '\n'; |
| 1618 | dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n'; |
| 1619 | dbgs() << '\n';); |
| 1620 | |
| 1621 | Block = Cand.Block; |
| 1622 | ReadyBlocks.erase(position: Best); |
| 1623 | return Block; |
| 1624 | } |
| 1625 | |
| 1626 | // Tracking of currently alive registers to determine VGPR Usage. |
| 1627 | |
| 1628 | void SIScheduleBlockScheduler::addLiveRegs(std::set<Register> &Regs) { |
| 1629 | for (Register Reg : Regs) { |
| 1630 | // For now only track virtual registers. |
| 1631 | if (!Reg.isVirtual()) |
| 1632 | continue; |
| 1633 | // If not already in the live set, then add it. |
| 1634 | (void) LiveRegs.insert(x: Reg); |
| 1635 | } |
| 1636 | } |
| 1637 | |
| 1638 | void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block, |
| 1639 | std::set<Register> &Regs) { |
| 1640 | for (Register Reg : Regs) { |
| 1641 | // For now only track virtual registers. |
| 1642 | std::set<Register>::iterator Pos = LiveRegs.find(x: Reg); |
| 1643 | assert (Pos != LiveRegs.end() && // Reg must be live. |
| 1644 | LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() && |
| 1645 | LiveRegsConsumers[Reg] >= 1); |
| 1646 | --LiveRegsConsumers[Reg]; |
| 1647 | if (LiveRegsConsumers[Reg] == 0) |
| 1648 | LiveRegs.erase(position: Pos); |
| 1649 | } |
| 1650 | } |
| 1651 | |
| 1652 | void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) { |
| 1653 | for (const auto &Block : Parent->getSuccs()) { |
| 1654 | if (--BlockNumPredsLeft[Block.first->getID()] == 0) |
| 1655 | ReadyBlocks.push_back(x: Block.first); |
| 1656 | |
| 1657 | if (Parent->isHighLatencyBlock() && |
| 1658 | Block.second == SIScheduleBlockLinkKind::Data) |
| 1659 | LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled; |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) { |
| 1664 | decreaseLiveRegs(Block, Regs&: Block->getInRegs()); |
| 1665 | addLiveRegs(Regs&: Block->getOutRegs()); |
| 1666 | releaseBlockSuccs(Parent: Block); |
| 1667 | for (const auto &RegP : LiveOutRegsNumUsages[Block->getID()]) { |
| 1668 | // We produce this register, thus it must not be previously alive. |
| 1669 | assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() || |
| 1670 | LiveRegsConsumers[RegP.first] == 0); |
| 1671 | LiveRegsConsumers[RegP.first] += RegP.second; |
| 1672 | } |
| 1673 | if (LastPosHighLatencyParentScheduled[Block->getID()] > |
| 1674 | (unsigned)LastPosWaitedHighLatency) |
| 1675 | LastPosWaitedHighLatency = |
| 1676 | LastPosHighLatencyParentScheduled[Block->getID()]; |
| 1677 | ++NumBlockScheduled; |
| 1678 | } |
| 1679 | |
| 1680 | std::vector<int> |
| 1681 | SIScheduleBlockScheduler::checkRegUsageImpact(std::set<Register> &InRegs, |
| 1682 | std::set<Register> &OutRegs) { |
| 1683 | std::vector<int> DiffSetPressure; |
| 1684 | DiffSetPressure.assign(n: DAG->getTRI()->getNumRegPressureSets(), val: 0); |
| 1685 | |
| 1686 | for (Register Reg : InRegs) { |
| 1687 | // For now only track virtual registers. |
| 1688 | if (!Reg.isVirtual()) |
| 1689 | continue; |
| 1690 | if (LiveRegsConsumers[Reg] > 1) |
| 1691 | continue; |
| 1692 | PSetIterator PSetI = DAG->getMRI()->getPressureSets(RegUnit: Reg); |
| 1693 | for (; PSetI.isValid(); ++PSetI) { |
| 1694 | DiffSetPressure[*PSetI] -= PSetI.getWeight(); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | for (Register Reg : OutRegs) { |
| 1699 | // For now only track virtual registers. |
| 1700 | if (!Reg.isVirtual()) |
| 1701 | continue; |
| 1702 | PSetIterator PSetI = DAG->getMRI()->getPressureSets(RegUnit: Reg); |
| 1703 | for (; PSetI.isValid(); ++PSetI) { |
| 1704 | DiffSetPressure[*PSetI] += PSetI.getWeight(); |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | return DiffSetPressure; |
| 1709 | } |
| 1710 | |
| 1711 | // SIScheduler // |
| 1712 | |
| 1713 | struct SIScheduleBlockResult |
| 1714 | SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant, |
| 1715 | SISchedulerBlockSchedulerVariant ScheduleVariant) { |
| 1716 | SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant); |
| 1717 | SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks); |
| 1718 | std::vector<SIScheduleBlock*> ScheduledBlocks; |
| 1719 | struct SIScheduleBlockResult Res; |
| 1720 | |
| 1721 | ScheduledBlocks = Scheduler.getBlocks(); |
| 1722 | |
| 1723 | for (SIScheduleBlock *Block : ScheduledBlocks) { |
| 1724 | std::vector<SUnit*> SUs = Block->getScheduledUnits(); |
| 1725 | |
| 1726 | for (SUnit* SU : SUs) |
| 1727 | Res.SUs.push_back(x: SU->NodeNum); |
| 1728 | } |
| 1729 | |
| 1730 | Res.MaxSGPRUsage = Scheduler.getSGPRUsage(); |
| 1731 | Res.MaxVGPRUsage = Scheduler.getVGPRUsage(); |
| 1732 | return Res; |
| 1733 | } |
| 1734 | |
| 1735 | // SIScheduleDAGMI // |
| 1736 | |
| 1737 | SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) : |
| 1738 | ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(args&: C)) { |
| 1739 | SITII = static_cast<const SIInstrInfo*>(TII); |
| 1740 | SITRI = static_cast<const SIRegisterInfo*>(TRI); |
| 1741 | } |
| 1742 | |
| 1743 | SIScheduleDAGMI::~SIScheduleDAGMI() = default; |
| 1744 | |
| 1745 | // Code adapted from scheduleDAG.cpp |
| 1746 | // Does a topological sort over the SUs. |
| 1747 | // Both TopDown and BottomUp |
| 1748 | void SIScheduleDAGMI::topologicalSort() { |
| 1749 | Topo.InitDAGTopologicalSorting(); |
| 1750 | |
| 1751 | TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end()); |
| 1752 | BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend()); |
| 1753 | } |
| 1754 | |
| 1755 | // Move low latencies further from their user without |
| 1756 | // increasing SGPR usage (in general) |
| 1757 | // This is to be replaced by a better pass that would |
| 1758 | // take into account SGPR usage (based on VGPR Usage |
| 1759 | // and the corresponding wavefront count), that would |
| 1760 | // try to merge groups of loads if it make sense, etc |
| 1761 | void SIScheduleDAGMI::moveLowLatencies() { |
| 1762 | unsigned DAGSize = SUnits.size(); |
| 1763 | int LastLowLatencyUser = -1; |
| 1764 | int LastLowLatencyPos = -1; |
| 1765 | |
| 1766 | for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) { |
| 1767 | SUnit *SU = &SUnits[ScheduledSUnits[i]]; |
| 1768 | bool IsLowLatencyUser = false; |
| 1769 | unsigned MinPos = 0; |
| 1770 | |
| 1771 | for (SDep& PredDep : SU->Preds) { |
| 1772 | SUnit *Pred = PredDep.getSUnit(); |
| 1773 | if (SITII->isLowLatencyInstruction(MI: *Pred->getInstr())) { |
| 1774 | IsLowLatencyUser = true; |
| 1775 | } |
| 1776 | if (Pred->NodeNum >= DAGSize) |
| 1777 | continue; |
| 1778 | unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum]; |
| 1779 | if (PredPos >= MinPos) |
| 1780 | MinPos = PredPos + 1; |
| 1781 | } |
| 1782 | |
| 1783 | if (SITII->isLowLatencyInstruction(MI: *SU->getInstr())) { |
| 1784 | unsigned BestPos = LastLowLatencyUser + 1; |
| 1785 | if ((int)BestPos <= LastLowLatencyPos) |
| 1786 | BestPos = LastLowLatencyPos + 1; |
| 1787 | if (BestPos < MinPos) |
| 1788 | BestPos = MinPos; |
| 1789 | if (BestPos < i) { |
| 1790 | for (unsigned u = i; u > BestPos; --u) { |
| 1791 | ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; |
| 1792 | ScheduledSUnits[u] = ScheduledSUnits[u-1]; |
| 1793 | } |
| 1794 | ScheduledSUnits[BestPos] = SU->NodeNum; |
| 1795 | ScheduledSUnitsInv[SU->NodeNum] = BestPos; |
| 1796 | } |
| 1797 | LastLowLatencyPos = BestPos; |
| 1798 | if (IsLowLatencyUser) |
| 1799 | LastLowLatencyUser = BestPos; |
| 1800 | } else if (IsLowLatencyUser) { |
| 1801 | LastLowLatencyUser = i; |
| 1802 | // Moves COPY instructions on which depends |
| 1803 | // the low latency instructions too. |
| 1804 | } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) { |
| 1805 | bool CopyForLowLat = false; |
| 1806 | for (SDep& SuccDep : SU->Succs) { |
| 1807 | SUnit *Succ = SuccDep.getSUnit(); |
| 1808 | if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) |
| 1809 | continue; |
| 1810 | if (SITII->isLowLatencyInstruction(MI: *Succ->getInstr())) { |
| 1811 | CopyForLowLat = true; |
| 1812 | } |
| 1813 | } |
| 1814 | if (!CopyForLowLat) |
| 1815 | continue; |
| 1816 | if (MinPos < i) { |
| 1817 | for (unsigned u = i; u > MinPos; --u) { |
| 1818 | ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; |
| 1819 | ScheduledSUnits[u] = ScheduledSUnits[u-1]; |
| 1820 | } |
| 1821 | ScheduledSUnits[MinPos] = SU->NodeNum; |
| 1822 | ScheduledSUnitsInv[SU->NodeNum] = MinPos; |
| 1823 | } |
| 1824 | } |
| 1825 | } |
| 1826 | } |
| 1827 | |
| 1828 | void SIScheduleDAGMI::restoreSULinksLeft() { |
| 1829 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 1830 | SUnits[i].isScheduled = false; |
| 1831 | SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft; |
| 1832 | SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft; |
| 1833 | SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft; |
| 1834 | SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft; |
| 1835 | } |
| 1836 | } |
| 1837 | |
| 1838 | // Return the Vgpr and Sgpr usage corresponding to some virtual registers. |
| 1839 | template<typename _Iterator> void |
| 1840 | SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End, |
| 1841 | unsigned &VgprUsage, unsigned &SgprUsage) { |
| 1842 | VgprUsage = 0; |
| 1843 | SgprUsage = 0; |
| 1844 | for (_Iterator RegI = First; RegI != End; ++RegI) { |
| 1845 | Register Reg = *RegI; |
| 1846 | // For now only track virtual registers |
| 1847 | if (!Reg.isVirtual()) |
| 1848 | continue; |
| 1849 | PSetIterator PSetI = MRI.getPressureSets(RegUnit: Reg); |
| 1850 | for (; PSetI.isValid(); ++PSetI) { |
| 1851 | if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32) |
| 1852 | VgprUsage += PSetI.getWeight(); |
| 1853 | else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32) |
| 1854 | SgprUsage += PSetI.getWeight(); |
| 1855 | } |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | void SIScheduleDAGMI::schedule() |
| 1860 | { |
| 1861 | SmallVector<SUnit*, 8> TopRoots, BotRoots; |
| 1862 | SIScheduleBlockResult Best, Temp; |
| 1863 | LLVM_DEBUG(dbgs() << "Preparing Scheduling\n" ); |
| 1864 | |
| 1865 | buildDAGWithRegPressure(); |
| 1866 | postProcessDAG(); |
| 1867 | |
| 1868 | LLVM_DEBUG(dump()); |
| 1869 | if (PrintDAGs) |
| 1870 | dump(); |
| 1871 | if (ViewMISchedDAGs) |
| 1872 | viewGraph(); |
| 1873 | |
| 1874 | topologicalSort(); |
| 1875 | findRootsAndBiasEdges(TopRoots, BotRoots); |
| 1876 | // We reuse several ScheduleDAGMI and ScheduleDAGMILive |
| 1877 | // functions, but to make them happy we must initialize |
| 1878 | // the default Scheduler implementation (even if we do not |
| 1879 | // run it) |
| 1880 | SchedImpl->initialize(DAG: this); |
| 1881 | initQueues(TopRoots, BotRoots); |
| 1882 | |
| 1883 | // Fill some stats to help scheduling. |
| 1884 | |
| 1885 | SUnitsLinksBackup = SUnits; |
| 1886 | IsLowLatencySU.clear(); |
| 1887 | LowLatencyOffset.clear(); |
| 1888 | IsHighLatencySU.clear(); |
| 1889 | |
| 1890 | IsLowLatencySU.resize(new_size: SUnits.size(), x: 0); |
| 1891 | LowLatencyOffset.resize(new_size: SUnits.size(), x: 0); |
| 1892 | IsHighLatencySU.resize(new_size: SUnits.size(), x: 0); |
| 1893 | |
| 1894 | for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { |
| 1895 | SUnit *SU = &SUnits[i]; |
| 1896 | const MachineOperand *BaseLatOp; |
| 1897 | int64_t OffLatReg; |
| 1898 | if (SITII->isLowLatencyInstruction(MI: *SU->getInstr())) { |
| 1899 | IsLowLatencySU[i] = 1; |
| 1900 | bool OffsetIsScalable; |
| 1901 | if (SITII->getMemOperandWithOffset(MI: *SU->getInstr(), BaseOp&: BaseLatOp, Offset&: OffLatReg, |
| 1902 | OffsetIsScalable, TRI)) |
| 1903 | LowLatencyOffset[i] = OffLatReg; |
| 1904 | } else if (SITII->isHighLatencyDef(Opc: SU->getInstr()->getOpcode())) |
| 1905 | IsHighLatencySU[i] = 1; |
| 1906 | } |
| 1907 | |
| 1908 | SIScheduler Scheduler(this); |
| 1909 | Best = Scheduler.scheduleVariant(BlockVariant: SISchedulerBlockCreatorVariant::LatenciesAlone, |
| 1910 | ScheduleVariant: SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage); |
| 1911 | |
| 1912 | // if VGPR usage is extremely high, try other good performing variants |
| 1913 | // which could lead to lower VGPR usage |
| 1914 | if (Best.MaxVGPRUsage > 180) { |
| 1915 | static const std::pair<SISchedulerBlockCreatorVariant, |
| 1916 | SISchedulerBlockSchedulerVariant> |
| 1917 | Variants[] = { |
| 1918 | { LatenciesAlone, BlockRegUsageLatency }, |
| 1919 | // { LatenciesAlone, BlockRegUsage }, |
| 1920 | { LatenciesGrouped, BlockLatencyRegUsage }, |
| 1921 | // { LatenciesGrouped, BlockRegUsageLatency }, |
| 1922 | // { LatenciesGrouped, BlockRegUsage }, |
| 1923 | { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, |
| 1924 | // { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, |
| 1925 | // { LatenciesAlonePlusConsecutive, BlockRegUsage } |
| 1926 | }; |
| 1927 | for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { |
| 1928 | Temp = Scheduler.scheduleVariant(BlockVariant: v.first, ScheduleVariant: v.second); |
| 1929 | if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) |
| 1930 | Best = Temp; |
| 1931 | } |
| 1932 | } |
| 1933 | // if VGPR usage is still extremely high, we may spill. Try other variants |
| 1934 | // which are less performing, but that could lead to lower VGPR usage. |
| 1935 | if (Best.MaxVGPRUsage > 200) { |
| 1936 | static const std::pair<SISchedulerBlockCreatorVariant, |
| 1937 | SISchedulerBlockSchedulerVariant> |
| 1938 | Variants[] = { |
| 1939 | // { LatenciesAlone, BlockRegUsageLatency }, |
| 1940 | { LatenciesAlone, BlockRegUsage }, |
| 1941 | // { LatenciesGrouped, BlockLatencyRegUsage }, |
| 1942 | { LatenciesGrouped, BlockRegUsageLatency }, |
| 1943 | { LatenciesGrouped, BlockRegUsage }, |
| 1944 | // { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, |
| 1945 | { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, |
| 1946 | { LatenciesAlonePlusConsecutive, BlockRegUsage } |
| 1947 | }; |
| 1948 | for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { |
| 1949 | Temp = Scheduler.scheduleVariant(BlockVariant: v.first, ScheduleVariant: v.second); |
| 1950 | if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) |
| 1951 | Best = Temp; |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | ScheduledSUnits = Best.SUs; |
| 1956 | ScheduledSUnitsInv.resize(new_size: SUnits.size()); |
| 1957 | |
| 1958 | for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { |
| 1959 | ScheduledSUnitsInv[ScheduledSUnits[i]] = i; |
| 1960 | } |
| 1961 | |
| 1962 | moveLowLatencies(); |
| 1963 | |
| 1964 | // Tell the outside world about the result of the scheduling. |
| 1965 | |
| 1966 | assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker" ); |
| 1967 | TopRPTracker.setPos(CurrentTop); |
| 1968 | |
| 1969 | for (unsigned I : ScheduledSUnits) { |
| 1970 | SUnit *SU = &SUnits[I]; |
| 1971 | |
| 1972 | scheduleMI(SU, IsTopNode: true); |
| 1973 | |
| 1974 | LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " |
| 1975 | << *SU->getInstr()); |
| 1976 | } |
| 1977 | |
| 1978 | assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone." ); |
| 1979 | |
| 1980 | placeDebugValues(); |
| 1981 | |
| 1982 | LLVM_DEBUG({ |
| 1983 | dbgs() << "*** Final schedule for " |
| 1984 | << printMBBReference(*begin()->getParent()) << " ***\n" ; |
| 1985 | dumpSchedule(); |
| 1986 | dbgs() << '\n'; |
| 1987 | }); |
| 1988 | } |
| 1989 | |