| 1 | //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the ARM specific subclass of TargetSubtargetInfo. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "ARM.h" |
| 14 | |
| 15 | #include "ARMCallLowering.h" |
| 16 | #include "ARMFrameLowering.h" |
| 17 | #include "ARMInstrInfo.h" |
| 18 | #include "ARMLegalizerInfo.h" |
| 19 | #include "ARMRegisterBankInfo.h" |
| 20 | #include "ARMSubtarget.h" |
| 21 | #include "ARMTargetMachine.h" |
| 22 | #include "MCTargetDesc/ARMMCTargetDesc.h" |
| 23 | #include "Thumb1FrameLowering.h" |
| 24 | #include "Thumb1InstrInfo.h" |
| 25 | #include "Thumb2InstrInfo.h" |
| 26 | #include "llvm/ADT/StringRef.h" |
| 27 | #include "llvm/ADT/Twine.h" |
| 28 | #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| 29 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 30 | #include "llvm/CodeGen/MachineFunction.h" |
| 31 | #include "llvm/IR/Function.h" |
| 32 | #include "llvm/IR/GlobalValue.h" |
| 33 | #include "llvm/MC/MCAsmInfo.h" |
| 34 | #include "llvm/MC/MCTargetOptions.h" |
| 35 | #include "llvm/Support/CodeGen.h" |
| 36 | #include "llvm/Support/CommandLine.h" |
| 37 | #include "llvm/Target/TargetOptions.h" |
| 38 | #include "llvm/TargetParser/ARMTargetParser.h" |
| 39 | #include "llvm/TargetParser/Triple.h" |
| 40 | |
| 41 | using namespace llvm; |
| 42 | |
| 43 | #define DEBUG_TYPE "arm-subtarget" |
| 44 | |
| 45 | #define GET_SUBTARGETINFO_TARGET_DESC |
| 46 | #define GET_SUBTARGETINFO_CTOR |
| 47 | #include "ARMGenSubtargetInfo.inc" |
| 48 | |
| 49 | static cl::opt<bool> |
| 50 | UseFusedMulOps("arm-use-mulops" , |
| 51 | cl::init(Val: true), cl::Hidden); |
| 52 | |
| 53 | enum ITMode { |
| 54 | DefaultIT, |
| 55 | RestrictedIT |
| 56 | }; |
| 57 | |
| 58 | static cl::opt<ITMode> |
| 59 | IT(cl::desc("IT block support" ), cl::Hidden, cl::init(Val: DefaultIT), |
| 60 | cl::values(clEnumValN(DefaultIT, "arm-default-it" , |
| 61 | "Generate any type of IT block" ), |
| 62 | clEnumValN(RestrictedIT, "arm-restrict-it" , |
| 63 | "Disallow complex IT blocks" ))); |
| 64 | |
| 65 | /// ForceFastISel - Use the fast-isel, even for subtargets where it is not |
| 66 | /// currently supported (for testing only). |
| 67 | static cl::opt<bool> |
| 68 | ForceFastISel("arm-force-fast-isel" , |
| 69 | cl::init(Val: false), cl::Hidden); |
| 70 | |
| 71 | /// initializeSubtargetDependencies - Initializes using a CPU and feature string |
| 72 | /// so that we can use initializer lists for subtarget initialization. |
| 73 | ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, |
| 74 | StringRef FS) { |
| 75 | initializeEnvironment(); |
| 76 | initSubtargetFeatures(CPU, FS); |
| 77 | return *this; |
| 78 | } |
| 79 | |
| 80 | ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, |
| 81 | StringRef FS) { |
| 82 | ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); |
| 83 | if (STI.isThumb1Only()) |
| 84 | return (ARMFrameLowering *)new Thumb1FrameLowering(STI); |
| 85 | |
| 86 | return new ARMFrameLowering(STI); |
| 87 | } |
| 88 | |
| 89 | ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, |
| 90 | const std::string &FS, |
| 91 | const ARMBaseTargetMachine &TM, bool IsLittle, |
| 92 | bool MinSize) |
| 93 | : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), |
| 94 | UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize), |
| 95 | IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM), |
| 96 | FrameLowering(initializeFrameLowering(CPU, FS)), |
| 97 | // At this point initializeSubtargetDependencies has been called so |
| 98 | // we can query directly. |
| 99 | InstrInfo(isThumb1Only() |
| 100 | ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) |
| 101 | : !isThumb() |
| 102 | ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) |
| 103 | : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), |
| 104 | TLInfo(TM, *this) { |
| 105 | |
| 106 | CallLoweringInfo.reset(p: new ARMCallLowering(*getTargetLowering())); |
| 107 | Legalizer.reset(p: new ARMLegalizerInfo(*this)); |
| 108 | |
| 109 | auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); |
| 110 | |
| 111 | // FIXME: At this point, we can't rely on Subtarget having RBI. |
| 112 | // It's awkward to mix passing RBI and the Subtarget; should we pass |
| 113 | // TII/TRI as well? |
| 114 | InstSelector.reset(p: createARMInstructionSelector(TM, STI: *this, RBI: *RBI)); |
| 115 | |
| 116 | RegBankInfo.reset(p: RBI); |
| 117 | } |
| 118 | |
| 119 | const CallLowering *ARMSubtarget::getCallLowering() const { |
| 120 | return CallLoweringInfo.get(); |
| 121 | } |
| 122 | |
| 123 | InstructionSelector *ARMSubtarget::getInstructionSelector() const { |
| 124 | return InstSelector.get(); |
| 125 | } |
| 126 | |
| 127 | const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { |
| 128 | return Legalizer.get(); |
| 129 | } |
| 130 | |
| 131 | const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { |
| 132 | return RegBankInfo.get(); |
| 133 | } |
| 134 | |
| 135 | bool ARMSubtarget::isXRaySupported() const { |
| 136 | // We don't currently suppport Thumb, but Windows requires Thumb. |
| 137 | return hasV6Ops() && hasARMOps() && !isTargetWindows(); |
| 138 | } |
| 139 | |
| 140 | void ARMSubtarget::initializeEnvironment() { |
| 141 | // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this |
| 142 | // directly from it, but we can try to make sure they're consistent when both |
| 143 | // available. |
| 144 | UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && |
| 145 | Options.ExceptionModel == ExceptionHandling::None) || |
| 146 | Options.ExceptionModel == ExceptionHandling::SjLj; |
| 147 | assert((!TM.getMCAsmInfo() || |
| 148 | (TM.getMCAsmInfo()->getExceptionHandlingType() == |
| 149 | ExceptionHandling::SjLj) == UseSjLjEH) && |
| 150 | "inconsistent sjlj choice between CodeGen and MC" ); |
| 151 | } |
| 152 | |
| 153 | void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { |
| 154 | if (CPUString.empty()) { |
| 155 | CPUString = "generic" ; |
| 156 | |
| 157 | if (isTargetDarwin()) { |
| 158 | StringRef ArchName = TargetTriple.getArchName(); |
| 159 | ARM::ArchKind AK = ARM::parseArch(Arch: ArchName); |
| 160 | if (AK == ARM::ArchKind::ARMV7S) |
| 161 | // Default to the Swift CPU when targeting armv7s/thumbv7s. |
| 162 | CPUString = "swift" ; |
| 163 | else if (AK == ARM::ArchKind::ARMV7K) |
| 164 | // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. |
| 165 | // ARMv7k does not use SjLj exception handling. |
| 166 | CPUString = "cortex-a7" ; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | // Insert the architecture feature derived from the target triple into the |
| 171 | // feature string. This is important for setting features that are implied |
| 172 | // based on the architecture version. |
| 173 | std::string ArchFS = ARM_MC::ParseARMTriple(TT: TargetTriple, CPU: CPUString); |
| 174 | if (!FS.empty()) { |
| 175 | if (!ArchFS.empty()) |
| 176 | ArchFS = (Twine(ArchFS) + "," + FS).str(); |
| 177 | else |
| 178 | ArchFS = std::string(FS); |
| 179 | } |
| 180 | ParseSubtargetFeatures(CPU: CPUString, /*TuneCPU*/ CPUString, FS: ArchFS); |
| 181 | |
| 182 | // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. |
| 183 | // Assert this for now to make the change obvious. |
| 184 | assert(hasV6T2Ops() || !hasThumb2()); |
| 185 | |
| 186 | if (genExecuteOnly()) { |
| 187 | // Execute only support for >= v8-M Baseline requires movt support |
| 188 | if (hasV8MBaselineOps()) |
| 189 | NoMovt = false; |
| 190 | if (!hasV6MOps()) |
| 191 | report_fatal_error(reason: "Cannot generate execute-only code for this target" ); |
| 192 | } |
| 193 | |
| 194 | // Keep a pointer to static instruction cost data for the specified CPU. |
| 195 | SchedModel = getSchedModelForCPU(CPU: CPUString); |
| 196 | |
| 197 | // Initialize scheduling itinerary for the specified CPU. |
| 198 | InstrItins = getInstrItineraryForCPU(CPU: CPUString); |
| 199 | |
| 200 | // FIXME: this is invalid for WindowsCE |
| 201 | if (isTargetWindows()) |
| 202 | NoARM = true; |
| 203 | |
| 204 | if (TM.isAAPCS_ABI()) |
| 205 | stackAlignment = Align(8); |
| 206 | if (isTargetNaCl() || TM.isAAPCS16_ABI()) |
| 207 | stackAlignment = Align(16); |
| 208 | |
| 209 | // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: |
| 210 | // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as |
| 211 | // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation |
| 212 | // support in the assembler and linker to be used. This would need to be |
| 213 | // fixed to fully support tail calls in Thumb1. |
| 214 | // |
| 215 | // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M |
| 216 | // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This |
| 217 | // means if we need to reload LR, it takes extra instructions, which outweighs |
| 218 | // the value of the tail call; but here we don't know yet whether LR is going |
| 219 | // to be used. We take the optimistic approach of generating the tail call and |
| 220 | // perhaps taking a hit if we need to restore the LR. |
| 221 | |
| 222 | // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, |
| 223 | // but we need to make sure there are enough registers; the only valid |
| 224 | // registers are the 4 used for parameters. We don't currently do this |
| 225 | // case. |
| 226 | |
| 227 | SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps(); |
| 228 | |
| 229 | switch (IT) { |
| 230 | case DefaultIT: |
| 231 | RestrictIT = false; |
| 232 | break; |
| 233 | case RestrictedIT: |
| 234 | RestrictIT = true; |
| 235 | break; |
| 236 | } |
| 237 | |
| 238 | // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. |
| 239 | const FeatureBitset &Bits = getFeatureBits(); |
| 240 | if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters |
| 241 | (Options.UnsafeFPMath || isTargetDarwin())) |
| 242 | HasNEONForFP = true; |
| 243 | |
| 244 | if (isRWPI()) |
| 245 | ReserveR9 = true; |
| 246 | |
| 247 | // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2 |
| 248 | if (MVEVectorCostFactor == 0) |
| 249 | MVEVectorCostFactor = 2; |
| 250 | |
| 251 | // FIXME: Teach TableGen to deal with these instead of doing it manually here. |
| 252 | switch (ARMProcFamily) { |
| 253 | case Others: |
| 254 | case CortexA5: |
| 255 | break; |
| 256 | case CortexA7: |
| 257 | LdStMultipleTiming = DoubleIssue; |
| 258 | break; |
| 259 | case CortexA8: |
| 260 | LdStMultipleTiming = DoubleIssue; |
| 261 | break; |
| 262 | case CortexA9: |
| 263 | LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; |
| 264 | PreISelOperandLatencyAdjustment = 1; |
| 265 | break; |
| 266 | case CortexA12: |
| 267 | break; |
| 268 | case CortexA15: |
| 269 | MaxInterleaveFactor = 2; |
| 270 | PreISelOperandLatencyAdjustment = 1; |
| 271 | PartialUpdateClearance = 12; |
| 272 | break; |
| 273 | case CortexA17: |
| 274 | case CortexA32: |
| 275 | case CortexA35: |
| 276 | case CortexA53: |
| 277 | case CortexA55: |
| 278 | case CortexA57: |
| 279 | case CortexA72: |
| 280 | case CortexA73: |
| 281 | case CortexA75: |
| 282 | case CortexA76: |
| 283 | case CortexA77: |
| 284 | case CortexA78: |
| 285 | case CortexA78AE: |
| 286 | case CortexA78C: |
| 287 | case CortexA510: |
| 288 | case CortexA710: |
| 289 | case CortexR4: |
| 290 | case CortexR5: |
| 291 | case CortexR7: |
| 292 | case CortexM3: |
| 293 | case CortexM55: |
| 294 | case CortexM7: |
| 295 | case CortexM85: |
| 296 | case CortexR52: |
| 297 | case CortexR52plus: |
| 298 | case CortexX1: |
| 299 | case CortexX1C: |
| 300 | break; |
| 301 | case Exynos: |
| 302 | LdStMultipleTiming = SingleIssuePlusExtras; |
| 303 | MaxInterleaveFactor = 4; |
| 304 | if (!isThumb()) |
| 305 | PreferBranchLogAlignment = 3; |
| 306 | break; |
| 307 | case Kryo: |
| 308 | break; |
| 309 | case Krait: |
| 310 | PreISelOperandLatencyAdjustment = 1; |
| 311 | break; |
| 312 | case NeoverseV1: |
| 313 | break; |
| 314 | case Swift: |
| 315 | MaxInterleaveFactor = 2; |
| 316 | LdStMultipleTiming = SingleIssuePlusExtras; |
| 317 | PreISelOperandLatencyAdjustment = 1; |
| 318 | PartialUpdateClearance = 12; |
| 319 | break; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | bool ARMSubtarget::isROPI() const { |
| 324 | return TM.getRelocationModel() == Reloc::ROPI || |
| 325 | TM.getRelocationModel() == Reloc::ROPI_RWPI; |
| 326 | } |
| 327 | bool ARMSubtarget::isRWPI() const { |
| 328 | return TM.getRelocationModel() == Reloc::RWPI || |
| 329 | TM.getRelocationModel() == Reloc::ROPI_RWPI; |
| 330 | } |
| 331 | |
| 332 | bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { |
| 333 | if (!TM.shouldAssumeDSOLocal(GV)) |
| 334 | return true; |
| 335 | |
| 336 | // 32 bit macho has no relocation for a-b if a is undefined, even if b is in |
| 337 | // the section that is being relocated. This means we have to use o load even |
| 338 | // for GVs that are known to be local to the dso. |
| 339 | if (isTargetMachO() && TM.isPositionIndependent() && |
| 340 | (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) |
| 341 | return true; |
| 342 | |
| 343 | return false; |
| 344 | } |
| 345 | |
| 346 | bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { |
| 347 | return isTargetELF() && TM.isPositionIndependent() && !GV->isDSOLocal(); |
| 348 | } |
| 349 | |
| 350 | unsigned ARMSubtarget::getMispredictionPenalty() const { |
| 351 | return SchedModel.MispredictPenalty; |
| 352 | } |
| 353 | |
| 354 | bool ARMSubtarget::enableMachineScheduler() const { |
| 355 | // The MachineScheduler can increase register usage, so we use more high |
| 356 | // registers and end up with more T2 instructions that cannot be converted to |
| 357 | // T1 instructions. At least until we do better at converting to thumb1 |
| 358 | // instructions, on cortex-m at Oz where we are size-paranoid, don't use the |
| 359 | // Machine scheduler, relying on the DAG register pressure scheduler instead. |
| 360 | if (isMClass() && hasMinSize()) |
| 361 | return false; |
| 362 | // Enable the MachineScheduler before register allocation for subtargets |
| 363 | // with the use-misched feature. |
| 364 | return useMachineScheduler(); |
| 365 | } |
| 366 | |
| 367 | bool ARMSubtarget::enableSubRegLiveness() const { |
| 368 | // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs |
| 369 | // and q subregs for qqqqpr regs. |
| 370 | return hasMVEIntegerOps(); |
| 371 | } |
| 372 | |
| 373 | bool ARMSubtarget::enableMachinePipeliner() const { |
| 374 | // Enable the MachinePipeliner before register allocation for subtargets |
| 375 | // with the use-mipipeliner feature. |
| 376 | return getSchedModel().hasInstrSchedModel() && useMachinePipeliner(); |
| 377 | } |
| 378 | |
| 379 | bool ARMSubtarget::useDFAforSMS() const { return false; } |
| 380 | |
| 381 | // This overrides the PostRAScheduler bit in the SchedModel for any CPU. |
| 382 | bool ARMSubtarget::enablePostRAScheduler() const { |
| 383 | if (enableMachineScheduler()) |
| 384 | return false; |
| 385 | if (disablePostRAScheduler()) |
| 386 | return false; |
| 387 | // Thumb1 cores will generally not benefit from post-ra scheduling |
| 388 | return !isThumb1Only(); |
| 389 | } |
| 390 | |
| 391 | bool ARMSubtarget::enablePostRAMachineScheduler() const { |
| 392 | if (!enableMachineScheduler()) |
| 393 | return false; |
| 394 | if (disablePostRAScheduler()) |
| 395 | return false; |
| 396 | return !isThumb1Only(); |
| 397 | } |
| 398 | |
| 399 | bool ARMSubtarget::useStride4VFPs() const { |
| 400 | // For general targets, the prologue can grow when VFPs are allocated with |
| 401 | // stride 4 (more vpush instructions). But WatchOS uses a compact unwind |
| 402 | // format which it's more important to get right. |
| 403 | return isTargetWatchABI() || |
| 404 | (useWideStrideVFP() && !OptMinSize); |
| 405 | } |
| 406 | |
| 407 | bool ARMSubtarget::useMovt() const { |
| 408 | // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit |
| 409 | // immediates as it is inherently position independent, and may be out of |
| 410 | // range otherwise. |
| 411 | return !NoMovt && hasV8MBaselineOps() && |
| 412 | (isTargetWindows() || !OptMinSize || genExecuteOnly()); |
| 413 | } |
| 414 | |
| 415 | bool ARMSubtarget::useFastISel() const { |
| 416 | // Enable fast-isel for any target, for testing only. |
| 417 | if (ForceFastISel) |
| 418 | return true; |
| 419 | |
| 420 | // Limit fast-isel to the targets that are or have been tested. |
| 421 | if (!hasV6Ops()) |
| 422 | return false; |
| 423 | |
| 424 | // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. |
| 425 | return TM.Options.EnableFastISel && |
| 426 | ((isTargetMachO() && !isThumb1Only()) || |
| 427 | (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); |
| 428 | } |
| 429 | |
| 430 | unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const { |
| 431 | // The GPR register class has multiple possible allocation orders, with |
| 432 | // tradeoffs preferred by different sub-architectures and optimisation goals. |
| 433 | // The allocation orders are: |
| 434 | // 0: (the default tablegen order, not used) |
| 435 | // 1: r14, r0-r13 |
| 436 | // 2: r0-r7 |
| 437 | // 3: r0-r7, r12, lr, r8-r11 |
| 438 | // Note that the register allocator will change this order so that |
| 439 | // callee-saved registers are used later, as they require extra work in the |
| 440 | // prologue/epilogue (though we sometimes override that). |
| 441 | |
| 442 | // For thumb1-only targets, only the low registers are allocatable. |
| 443 | if (isThumb1Only()) |
| 444 | return 2; |
| 445 | |
| 446 | // Allocate low registers first, so we can select more 16-bit instructions. |
| 447 | // We also (in ignoreCSRForAllocationOrder) override the default behaviour |
| 448 | // with regards to callee-saved registers, because pushing extra registers is |
| 449 | // much cheaper (in terms of code size) than using high registers. After |
| 450 | // that, we allocate r12 (doesn't need to be saved), lr (saving it means we |
| 451 | // can return with the pop, don't need an extra "bx lr") and then the rest of |
| 452 | // the high registers. |
| 453 | if (isThumb2() && MF.getFunction().hasMinSize()) |
| 454 | return 3; |
| 455 | |
| 456 | // Otherwise, allocate in the default order, using LR first because saving it |
| 457 | // allows a shorter epilogue sequence. |
| 458 | return 1; |
| 459 | } |
| 460 | |
| 461 | bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF, |
| 462 | MCRegister PhysReg) const { |
| 463 | // To minimize code size in Thumb2, we prefer the usage of low regs (lower |
| 464 | // cost per use) so we can use narrow encoding. By default, caller-saved |
| 465 | // registers (e.g. lr, r12) are always allocated first, regardless of |
| 466 | // their cost per use. When optForMinSize, we prefer the low regs even if |
| 467 | // they are CSR because usually push/pop can be folded into existing ones. |
| 468 | return isThumb2() && MF.getFunction().hasMinSize() && |
| 469 | ARM::GPRRegClass.contains(Reg: PhysReg); |
| 470 | } |
| 471 | |
| 472 | ARMSubtarget::PushPopSplitVariation |
| 473 | ARMSubtarget::getPushPopSplitVariation(const MachineFunction &MF) const { |
| 474 | const Function &F = MF.getFunction(); |
| 475 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 476 | |
| 477 | // Thumb1 always splits the pushes at R7, because the Thumb1 push instruction |
| 478 | // cannot use high registers except for lr. |
| 479 | if (isThumb1Only()) |
| 480 | return SplitR7; |
| 481 | |
| 482 | // If R7 is the frame pointer, we must split at R7 to ensure that the |
| 483 | // previous frame pointer (R7) and return address (LR) are adjacent on the |
| 484 | // stack, to form a valid frame record. |
| 485 | if (getFramePointerReg() == ARM::R7 && |
| 486 | MF.getTarget().Options.FramePointerIsReserved(MF)) |
| 487 | return SplitR7; |
| 488 | |
| 489 | // Returns SplitR11WindowsSEH when the stack pointer needs to be |
| 490 | // restored from the frame pointer r11 + an offset and Windows CFI is enabled. |
| 491 | // This stack unwinding cannot be expressed with SEH unwind opcodes when done |
| 492 | // with a single push, making it necessary to split the push into r4-r10, and |
| 493 | // another containing r11+lr. |
| 494 | if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && |
| 495 | F.needsUnwindTableEntry() && |
| 496 | (MFI.hasVarSizedObjects() || getRegisterInfo()->hasStackRealignment(MF))) |
| 497 | return SplitR11WindowsSEH; |
| 498 | |
| 499 | // Returns SplitR11AAPCSSignRA when the frame pointer is R11, requiring R11 |
| 500 | // and LR to be adjacent on the stack, and branch signing is enabled, |
| 501 | // requiring R12 to be on the stack. |
| 502 | if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress() && |
| 503 | getFramePointerReg() == ARM::R11 && |
| 504 | MF.getTarget().Options.FramePointerIsReserved(MF)) |
| 505 | return SplitR11AAPCSSignRA; |
| 506 | return NoSplit; |
| 507 | } |
| 508 | |