| 1 | //===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the AVRMCCodeEmitter class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "AVRMCCodeEmitter.h" |
| 14 | |
| 15 | #include "MCTargetDesc/AVRMCAsmInfo.h" |
| 16 | #include "MCTargetDesc/AVRMCTargetDesc.h" |
| 17 | |
| 18 | #include "llvm/ADT/APFloat.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/MC/MCContext.h" |
| 21 | #include "llvm/MC/MCExpr.h" |
| 22 | #include "llvm/MC/MCFixup.h" |
| 23 | #include "llvm/MC/MCInst.h" |
| 24 | #include "llvm/MC/MCInstrInfo.h" |
| 25 | #include "llvm/MC/MCRegisterInfo.h" |
| 26 | #include "llvm/MC/MCSubtargetInfo.h" |
| 27 | #include "llvm/Support/Casting.h" |
| 28 | #include "llvm/Support/EndianStream.h" |
| 29 | |
| 30 | #define DEBUG_TYPE "mccodeemitter" |
| 31 | |
| 32 | #define GET_INSTRMAP_INFO |
| 33 | #include "AVRGenInstrInfo.inc" |
| 34 | #undef GET_INSTRMAP_INFO |
| 35 | |
| 36 | namespace llvm { |
| 37 | |
| 38 | /// Performs a post-encoding step on a `LD` or `ST` instruction. |
| 39 | /// |
| 40 | /// The encoding of the LD/ST family of instructions is inconsistent w.r.t |
| 41 | /// the pointer register and the addressing mode. |
| 42 | /// |
| 43 | /// The permutations of the format are as followed: |
| 44 | /// ld Rd, X `1001 000d dddd 1100` |
| 45 | /// ld Rd, X+ `1001 000d dddd 1101` |
| 46 | /// ld Rd, -X `1001 000d dddd 1110` |
| 47 | /// |
| 48 | /// ld Rd, Y `1000 000d dddd 1000` |
| 49 | /// ld Rd, Y+ `1001 000d dddd 1001` |
| 50 | /// ld Rd, -Y `1001 000d dddd 1010` |
| 51 | /// |
| 52 | /// ld Rd, Z `1000 000d dddd 0000` |
| 53 | /// ld Rd, Z+ `1001 000d dddd 0001` |
| 54 | /// ld Rd, -Z `1001 000d dddd 0010` |
| 55 | /// ^ |
| 56 | /// | |
| 57 | /// Note this one inconsistent bit - it is 1 sometimes and 0 at other times. |
| 58 | /// There is no logical pattern. Looking at a truth table, the following |
| 59 | /// formula can be derived to fit the pattern: |
| 60 | // |
| 61 | /// ``` |
| 62 | /// inconsistent_bit = is_predec OR is_postinc OR is_reg_x |
| 63 | /// ``` |
| 64 | // |
| 65 | /// We manually set this bit in this post encoder method. |
| 66 | unsigned |
| 67 | AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue, |
| 68 | const MCSubtargetInfo &STI) const { |
| 69 | |
| 70 | assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && |
| 71 | "the load/store operands must be registers" ); |
| 72 | |
| 73 | unsigned Opcode = MI.getOpcode(); |
| 74 | |
| 75 | // Get the index of the pointer register operand. |
| 76 | unsigned Idx = 0; |
| 77 | if (Opcode == AVR::LDRdPtrPd || Opcode == AVR::LDRdPtrPi || |
| 78 | Opcode == AVR::LDRdPtr) |
| 79 | Idx = 1; |
| 80 | |
| 81 | // Check if we need to set the inconsistent bit |
| 82 | bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr; |
| 83 | bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr; |
| 84 | if (MI.getOperand(i: Idx).getReg() == AVR::R27R26 || IsPredec || IsPostinc) |
| 85 | EncodedValue |= (1 << 12); |
| 86 | |
| 87 | // Encode the pointer register. |
| 88 | switch (MI.getOperand(i: Idx).getReg()) { |
| 89 | case AVR::R27R26: |
| 90 | EncodedValue |= 0xc; |
| 91 | break; |
| 92 | case AVR::R29R28: |
| 93 | EncodedValue |= 0x8; |
| 94 | break; |
| 95 | case AVR::R31R30: |
| 96 | break; |
| 97 | default: |
| 98 | llvm_unreachable("invalid pointer register" ); |
| 99 | break; |
| 100 | } |
| 101 | |
| 102 | return EncodedValue; |
| 103 | } |
| 104 | |
| 105 | template <AVR::Fixups Fixup> |
| 106 | unsigned |
| 107 | AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo, |
| 108 | SmallVectorImpl<MCFixup> &Fixups, |
| 109 | const MCSubtargetInfo &STI) const { |
| 110 | const MCOperand &MO = MI.getOperand(i: OpNo); |
| 111 | |
| 112 | if (MO.isExpr()) { |
| 113 | Fixups.push_back( |
| 114 | Elt: MCFixup::create(Offset: 0, Value: MO.getExpr(), Kind: MCFixupKind(Fixup), Loc: MI.getLoc())); |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | assert(MO.isImm()); |
| 119 | |
| 120 | // Take the size of the current instruction away. |
| 121 | // With labels, this is implicitly done. |
| 122 | auto target = MO.getImm(); |
| 123 | AVR::fixups::adjustBranchTarget(val&: target); |
| 124 | return target; |
| 125 | } |
| 126 | |
| 127 | /// Encodes a `memri` operand. |
| 128 | /// The operand is 7-bits. |
| 129 | /// * The lower 6 bits is the immediate |
| 130 | /// * The upper bit is the pointer register bit (Z=0,Y=1) |
| 131 | unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo, |
| 132 | SmallVectorImpl<MCFixup> &Fixups, |
| 133 | const MCSubtargetInfo &STI) const { |
| 134 | auto RegOp = MI.getOperand(i: OpNo); |
| 135 | auto OffsetOp = MI.getOperand(i: OpNo + 1); |
| 136 | |
| 137 | assert(RegOp.isReg() && "Expected register operand" ); |
| 138 | |
| 139 | uint8_t RegBit = 0; |
| 140 | |
| 141 | switch (RegOp.getReg().id()) { |
| 142 | default: |
| 143 | Ctx.reportError(L: MI.getLoc(), Msg: "Expected either Y or Z register" ); |
| 144 | return 0; |
| 145 | case AVR::R31R30: |
| 146 | RegBit = 0; |
| 147 | break; // Z register |
| 148 | case AVR::R29R28: |
| 149 | RegBit = 1; |
| 150 | break; // Y register |
| 151 | } |
| 152 | |
| 153 | int8_t OffsetBits; |
| 154 | |
| 155 | if (OffsetOp.isImm()) { |
| 156 | OffsetBits = OffsetOp.getImm(); |
| 157 | } else if (OffsetOp.isExpr()) { |
| 158 | OffsetBits = 0; |
| 159 | Fixups.push_back(Elt: MCFixup::create(Offset: 0, Value: OffsetOp.getExpr(), |
| 160 | Kind: MCFixupKind(AVR::fixup_6), Loc: MI.getLoc())); |
| 161 | } else { |
| 162 | llvm_unreachable("Invalid value for offset" ); |
| 163 | } |
| 164 | |
| 165 | return (RegBit << 6) | OffsetBits; |
| 166 | } |
| 167 | |
| 168 | unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo, |
| 169 | SmallVectorImpl<MCFixup> &Fixups, |
| 170 | const MCSubtargetInfo &STI) const { |
| 171 | // The operand should be an immediate. |
| 172 | assert(MI.getOperand(OpNo).isImm()); |
| 173 | |
| 174 | auto Imm = MI.getOperand(i: OpNo).getImm(); |
| 175 | return (~0) - Imm; |
| 176 | } |
| 177 | |
| 178 | template <AVR::Fixups Fixup, unsigned Offset> |
| 179 | unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo, |
| 180 | SmallVectorImpl<MCFixup> &Fixups, |
| 181 | const MCSubtargetInfo &STI) const { |
| 182 | auto MO = MI.getOperand(i: OpNo); |
| 183 | |
| 184 | if (MO.isExpr()) { |
| 185 | if (isa<AVRMCExpr>(Val: MO.getExpr())) { |
| 186 | // If the expression is already an AVRMCExpr (i.e. a lo8(symbol), |
| 187 | // we shouldn't perform any more fixups. Without this check, we would |
| 188 | // instead create a fixup to the symbol named 'lo8(symbol)' which |
| 189 | // is not correct. |
| 190 | return getExprOpValue(Expr: MO.getExpr(), Fixups, STI); |
| 191 | } |
| 192 | |
| 193 | MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup); |
| 194 | Fixups.push_back( |
| 195 | Elt: MCFixup::create(Offset, Value: MO.getExpr(), Kind: FixupKind, Loc: MI.getLoc())); |
| 196 | |
| 197 | return 0; |
| 198 | } |
| 199 | |
| 200 | assert(MO.isImm()); |
| 201 | return MO.getImm(); |
| 202 | } |
| 203 | |
| 204 | unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo, |
| 205 | SmallVectorImpl<MCFixup> &Fixups, |
| 206 | const MCSubtargetInfo &STI) const { |
| 207 | auto MO = MI.getOperand(i: OpNo); |
| 208 | |
| 209 | if (MO.isExpr()) { |
| 210 | MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call); |
| 211 | Fixups.push_back(Elt: MCFixup::create(Offset: 0, Value: MO.getExpr(), Kind: FixupKind, Loc: MI.getLoc())); |
| 212 | return 0; |
| 213 | } |
| 214 | |
| 215 | assert(MO.isImm()); |
| 216 | |
| 217 | auto Target = MO.getImm(); |
| 218 | AVR::fixups::adjustBranchTarget(val&: Target); |
| 219 | return Target; |
| 220 | } |
| 221 | |
| 222 | unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr, |
| 223 | SmallVectorImpl<MCFixup> &Fixups, |
| 224 | const MCSubtargetInfo &STI) const { |
| 225 | |
| 226 | MCExpr::ExprKind Kind = Expr->getKind(); |
| 227 | |
| 228 | if (Kind == MCExpr::Binary) { |
| 229 | Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS(); |
| 230 | Kind = Expr->getKind(); |
| 231 | } |
| 232 | |
| 233 | if (Kind == MCExpr::Specifier) { |
| 234 | AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Val: Expr); |
| 235 | int64_t Result; |
| 236 | if (AVRExpr->evaluateAsConstant(Result)) { |
| 237 | return Result; |
| 238 | } |
| 239 | |
| 240 | MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind()); |
| 241 | Fixups.push_back(Elt: MCFixup::create(Offset: 0, Value: AVRExpr, Kind: FixupKind)); |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | assert(Kind == MCExpr::SymbolRef); |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI, |
| 250 | const MCOperand &MO, |
| 251 | SmallVectorImpl<MCFixup> &Fixups, |
| 252 | const MCSubtargetInfo &STI) const { |
| 253 | if (MO.isReg()) |
| 254 | return Ctx.getRegisterInfo()->getEncodingValue(Reg: MO.getReg()); |
| 255 | if (MO.isImm()) |
| 256 | return static_cast<unsigned>(MO.getImm()); |
| 257 | |
| 258 | if (MO.isDFPImm()) |
| 259 | return static_cast<unsigned>(bit_cast<double>(from: MO.getDFPImm())); |
| 260 | |
| 261 | // MO must be an Expr. |
| 262 | assert(MO.isExpr()); |
| 263 | |
| 264 | return getExprOpValue(Expr: MO.getExpr(), Fixups, STI); |
| 265 | } |
| 266 | |
| 267 | void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, |
| 268 | SmallVectorImpl<char> &CB, |
| 269 | SmallVectorImpl<MCFixup> &Fixups, |
| 270 | const MCSubtargetInfo &STI) const { |
| 271 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
| 272 | |
| 273 | // Get byte count of instruction |
| 274 | unsigned Size = Desc.getSize(); |
| 275 | |
| 276 | assert(Size > 0 && "Instruction size cannot be zero" ); |
| 277 | |
| 278 | uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI); |
| 279 | |
| 280 | for (int64_t i = Size / 2 - 1; i >= 0; --i) { |
| 281 | uint16_t Word = (BinaryOpCode >> (i * 16)) & 0xFFFF; |
| 282 | support::endian::write(Out&: CB, V: Word, E: llvm::endianness::little); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx) { |
| 287 | return new AVRMCCodeEmitter(MCII, Ctx); |
| 288 | } |
| 289 | |
| 290 | #include "AVRGenMCCodeEmitter.inc" |
| 291 | |
| 292 | } // end of namespace llvm |
| 293 | |