| 1 | //===- BitTracker.h ---------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H |
| 10 | #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H |
| 11 | |
| 12 | #include "llvm/ADT/DenseSet.h" |
| 13 | #include "llvm/ADT/SetVector.h" |
| 14 | #include "llvm/ADT/SmallVector.h" |
| 15 | #include "llvm/CodeGen/MachineInstr.h" |
| 16 | #include "llvm/CodeGen/MachineOperand.h" |
| 17 | #include <map> |
| 18 | #include <queue> |
| 19 | #include <set> |
| 20 | |
| 21 | namespace llvm { |
| 22 | |
| 23 | class BitVector; |
| 24 | class ConstantInt; |
| 25 | class MachineRegisterInfo; |
| 26 | class MachineBasicBlock; |
| 27 | class MachineFunction; |
| 28 | class raw_ostream; |
| 29 | class TargetRegisterClass; |
| 30 | class TargetRegisterInfo; |
| 31 | |
| 32 | struct BitTracker { |
| 33 | struct BitRef; |
| 34 | struct RegisterRef; |
| 35 | struct BitValue; |
| 36 | struct BitMask; |
| 37 | struct RegisterCell; |
| 38 | struct MachineEvaluator; |
| 39 | |
| 40 | using BranchTargetList = SetVector<const MachineBasicBlock *>; |
| 41 | using CellMapType = std::map<unsigned, RegisterCell>; |
| 42 | |
| 43 | BitTracker(const MachineEvaluator &E, MachineFunction &F); |
| 44 | ~BitTracker(); |
| 45 | |
| 46 | void run(); |
| 47 | void trace(bool On = false) { Trace = On; } |
| 48 | bool has(unsigned Reg) const; |
| 49 | const RegisterCell &lookup(unsigned Reg) const; |
| 50 | RegisterCell get(RegisterRef RR) const; |
| 51 | void put(RegisterRef RR, const RegisterCell &RC); |
| 52 | void subst(RegisterRef OldRR, RegisterRef NewRR); |
| 53 | bool reached(const MachineBasicBlock *B) const; |
| 54 | void visit(const MachineInstr &MI); |
| 55 | |
| 56 | void print_cells(raw_ostream &OS) const; |
| 57 | |
| 58 | private: |
| 59 | void visitPHI(const MachineInstr &PI); |
| 60 | void visitNonBranch(const MachineInstr &MI); |
| 61 | void visitBranchesFrom(const MachineInstr &BI); |
| 62 | void visitUsesOf(Register Reg); |
| 63 | |
| 64 | using CFGEdge = std::pair<int, int>; |
| 65 | using EdgeSetType = std::set<CFGEdge>; |
| 66 | using InstrSetType = std::set<const MachineInstr *>; |
| 67 | using EdgeQueueType = std::queue<CFGEdge>; |
| 68 | |
| 69 | // Priority queue of instructions using modified registers, ordered by |
| 70 | // their relative position in a basic block. |
| 71 | struct UseQueueType { |
| 72 | UseQueueType() : Uses(Dist) {} |
| 73 | |
| 74 | unsigned size() const { |
| 75 | return Uses.size(); |
| 76 | } |
| 77 | bool empty() const { |
| 78 | return size() == 0; |
| 79 | } |
| 80 | MachineInstr *front() const { |
| 81 | return Uses.top(); |
| 82 | } |
| 83 | void push(MachineInstr *MI) { |
| 84 | if (Set.insert(V: MI).second) |
| 85 | Uses.push(x: MI); |
| 86 | } |
| 87 | void pop() { |
| 88 | Set.erase(V: front()); |
| 89 | Uses.pop(); |
| 90 | } |
| 91 | void reset() { |
| 92 | Dist.clear(); |
| 93 | } |
| 94 | private: |
| 95 | struct Cmp { |
| 96 | Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {} |
| 97 | bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const; |
| 98 | DenseMap<const MachineInstr*,unsigned> &Dist; |
| 99 | }; |
| 100 | DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries. |
| 101 | DenseMap<const MachineInstr*,unsigned> Dist; |
| 102 | std::priority_queue<MachineInstr *, std::vector<MachineInstr *>, Cmp> Uses; |
| 103 | }; |
| 104 | |
| 105 | void reset(); |
| 106 | void runEdgeQueue(BitVector &BlockScanned); |
| 107 | void runUseQueue(); |
| 108 | |
| 109 | const MachineEvaluator &ME; |
| 110 | MachineFunction &MF; |
| 111 | MachineRegisterInfo &MRI; |
| 112 | CellMapType ⤅ |
| 113 | |
| 114 | EdgeSetType EdgeExec; // Executable flow graph edges. |
| 115 | InstrSetType InstrExec; // Executable instructions. |
| 116 | UseQueueType UseQ; // Work queue of register uses. |
| 117 | EdgeQueueType FlowQ; // Work queue of CFG edges. |
| 118 | DenseSet<unsigned> ReachedBB; // Cache of reached blocks. |
| 119 | bool Trace; // Enable tracing for debugging. |
| 120 | }; |
| 121 | |
| 122 | // Abstraction of a reference to bit at position Pos from a register Reg. |
| 123 | struct BitTracker::BitRef { |
| 124 | BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {} |
| 125 | |
| 126 | bool operator== (const BitRef &BR) const { |
| 127 | // If Reg is 0, disregard Pos. |
| 128 | return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos); |
| 129 | } |
| 130 | |
| 131 | Register Reg; |
| 132 | uint16_t Pos; |
| 133 | }; |
| 134 | |
| 135 | // Abstraction of a register reference in MachineOperand. It contains the |
| 136 | // register number and the subregister index. |
| 137 | // FIXME: Consolidate duplicate definitions of RegisterRef |
| 138 | struct BitTracker::RegisterRef { |
| 139 | RegisterRef(Register R = 0, unsigned S = 0) : Reg(R), Sub(S) {} |
| 140 | RegisterRef(const MachineOperand &MO) |
| 141 | : Reg(MO.getReg()), Sub(MO.getSubReg()) {} |
| 142 | |
| 143 | Register Reg; |
| 144 | unsigned Sub; |
| 145 | }; |
| 146 | |
| 147 | // Value that a single bit can take. This is outside of the context of |
| 148 | // any register, it is more of an abstraction of the two-element set of |
| 149 | // possible bit values. One extension here is the "Ref" type, which |
| 150 | // indicates that this bit takes the same value as the bit described by |
| 151 | // RefInfo. |
| 152 | struct BitTracker::BitValue { |
| 153 | enum ValueType { |
| 154 | Top, // Bit not yet defined. |
| 155 | Zero, // Bit = 0. |
| 156 | One, // Bit = 1. |
| 157 | Ref // Bit value same as the one described in RefI. |
| 158 | // Conceptually, there is no explicit "bottom" value: the lattice's |
| 159 | // bottom will be expressed as a "ref to itself", which, in the context |
| 160 | // of registers, could be read as "this value of this bit is defined by |
| 161 | // this bit". |
| 162 | // The ordering is: |
| 163 | // x <= Top, |
| 164 | // Self <= x, where "Self" is "ref to itself". |
| 165 | // This makes the value lattice different for each virtual register |
| 166 | // (even for each bit in the same virtual register), since the "bottom" |
| 167 | // for one register will be a simple "ref" for another register. |
| 168 | // Since we do not store the "Self" bit and register number, the meet |
| 169 | // operation will need to take it as a parameter. |
| 170 | // |
| 171 | // In practice there is a special case for values that are not associa- |
| 172 | // ted with any specific virtual register. An example would be a value |
| 173 | // corresponding to a bit of a physical register, or an intermediate |
| 174 | // value obtained in some computation (such as instruction evaluation). |
| 175 | // Such cases are identical to the usual Ref type, but the register |
| 176 | // number is 0. In such case the Pos field of the reference is ignored. |
| 177 | // |
| 178 | // What is worthy of notice is that in value V (that is a "ref"), as long |
| 179 | // as the RefI.Reg is not 0, it may actually be the same register as the |
| 180 | // one in which V will be contained. If the RefI.Pos refers to the posi- |
| 181 | // tion of V, then V is assumed to be "bottom" (as a "ref to itself"), |
| 182 | // otherwise V is taken to be identical to the referenced bit of the |
| 183 | // same register. |
| 184 | // If RefI.Reg is 0, however, such a reference to the same register is |
| 185 | // not possible. Any value V that is a "ref", and whose RefI.Reg is 0 |
| 186 | // is treated as "bottom". |
| 187 | }; |
| 188 | ValueType Type; |
| 189 | BitRef RefI; |
| 190 | |
| 191 | BitValue(ValueType T = Top) : Type(T) {} |
| 192 | BitValue(bool B) : Type(B ? One : Zero) {} |
| 193 | BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {} |
| 194 | |
| 195 | bool operator== (const BitValue &V) const { |
| 196 | if (Type != V.Type) |
| 197 | return false; |
| 198 | if (Type == Ref && !(RefI == V.RefI)) |
| 199 | return false; |
| 200 | return true; |
| 201 | } |
| 202 | bool operator!= (const BitValue &V) const { |
| 203 | return !operator==(V); |
| 204 | } |
| 205 | |
| 206 | bool is(unsigned T) const { |
| 207 | assert(T == 0 || T == 1); |
| 208 | return T == 0 ? Type == Zero |
| 209 | : (T == 1 ? Type == One : false); |
| 210 | } |
| 211 | |
| 212 | // The "meet" operation is the "." operation in a semilattice (L, ., T, B): |
| 213 | // (1) x.x = x |
| 214 | // (2) x.y = y.x |
| 215 | // (3) x.(y.z) = (x.y).z |
| 216 | // (4) x.T = x (i.e. T = "top") |
| 217 | // (5) x.B = B (i.e. B = "bottom") |
| 218 | // |
| 219 | // This "meet" function will update the value of the "*this" object with |
| 220 | // the newly calculated one, and return "true" if the value of *this has |
| 221 | // changed, and "false" otherwise. |
| 222 | // To prove that it satisfies the conditions (1)-(5), it is sufficient |
| 223 | // to show that a relation |
| 224 | // x <= y <=> x.y = x |
| 225 | // defines a partial order (i.e. that "meet" is same as "infimum"). |
| 226 | bool meet(const BitValue &V, const BitRef &Self) { |
| 227 | // First, check the cases where there is nothing to be done. |
| 228 | if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This) |
| 229 | return false; |
| 230 | if (V.Type == Top) // This.meet(Top) = This |
| 231 | return false; |
| 232 | if (*this == V) // This.meet(This) = This |
| 233 | return false; |
| 234 | |
| 235 | // At this point, we know that the value of "this" will change. |
| 236 | // If it is Top, it will become the same as V, otherwise it will |
| 237 | // become "bottom" (i.e. Self). |
| 238 | if (Type == Top) { |
| 239 | Type = V.Type; |
| 240 | RefI = V.RefI; // This may be irrelevant, but copy anyway. |
| 241 | return true; |
| 242 | } |
| 243 | // Become "bottom". |
| 244 | Type = Ref; |
| 245 | RefI = Self; |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | // Create a reference to the bit value V. |
| 250 | static BitValue ref(const BitValue &V); |
| 251 | // Create a "self". |
| 252 | static BitValue self(const BitRef &Self = BitRef()); |
| 253 | |
| 254 | bool num() const { |
| 255 | return Type == Zero || Type == One; |
| 256 | } |
| 257 | |
| 258 | operator bool() const { |
| 259 | assert(Type == Zero || Type == One); |
| 260 | return Type == One; |
| 261 | } |
| 262 | |
| 263 | friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV); |
| 264 | }; |
| 265 | |
| 266 | // This operation must be idempotent, i.e. ref(ref(V)) == ref(V). |
| 267 | inline BitTracker::BitValue |
| 268 | BitTracker::BitValue::ref(const BitValue &V) { |
| 269 | if (V.Type != Ref) |
| 270 | return BitValue(V.Type); |
| 271 | if (V.RefI.Reg != 0) |
| 272 | return BitValue(V.RefI.Reg, V.RefI.Pos); |
| 273 | return self(); |
| 274 | } |
| 275 | |
| 276 | inline BitTracker::BitValue |
| 277 | BitTracker::BitValue::self(const BitRef &Self) { |
| 278 | return BitValue(Self.Reg, Self.Pos); |
| 279 | } |
| 280 | |
| 281 | // A sequence of bits starting from index B up to and including index E. |
| 282 | // If E < B, the mask represents two sections: [0..E] and [B..W) where |
| 283 | // W is the width of the register. |
| 284 | struct BitTracker::BitMask { |
| 285 | BitMask() = default; |
| 286 | BitMask(uint16_t b, uint16_t e) : B(b), E(e) {} |
| 287 | |
| 288 | uint16_t first() const { return B; } |
| 289 | uint16_t last() const { return E; } |
| 290 | |
| 291 | private: |
| 292 | uint16_t B = 0; |
| 293 | uint16_t E = 0; |
| 294 | }; |
| 295 | |
| 296 | // Representation of a register: a list of BitValues. |
| 297 | struct BitTracker::RegisterCell { |
| 298 | RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {} |
| 299 | |
| 300 | uint16_t width() const { |
| 301 | return Bits.size(); |
| 302 | } |
| 303 | |
| 304 | const BitValue &operator[](uint16_t BitN) const { |
| 305 | assert(BitN < Bits.size()); |
| 306 | return Bits[BitN]; |
| 307 | } |
| 308 | BitValue &operator[](uint16_t BitN) { |
| 309 | assert(BitN < Bits.size()); |
| 310 | return Bits[BitN]; |
| 311 | } |
| 312 | |
| 313 | bool meet(const RegisterCell &RC, Register SelfR); |
| 314 | RegisterCell &insert(const RegisterCell &RC, const BitMask &M); |
| 315 | RegisterCell (const BitMask &M) const; // Returns a new cell. |
| 316 | RegisterCell &rol(uint16_t Sh); // Rotate left. |
| 317 | RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V); |
| 318 | RegisterCell &cat(const RegisterCell &RC); // Concatenate. |
| 319 | uint16_t cl(bool B) const; |
| 320 | uint16_t ct(bool B) const; |
| 321 | |
| 322 | bool operator== (const RegisterCell &RC) const; |
| 323 | bool operator!= (const RegisterCell &RC) const { |
| 324 | return !operator==(RC); |
| 325 | } |
| 326 | |
| 327 | // Replace the ref-to-reg-0 bit values with the given register. |
| 328 | RegisterCell ®ify(unsigned R); |
| 329 | |
| 330 | // Generate a "ref" cell for the corresponding register. In the resulting |
| 331 | // cell each bit will be described as being the same as the corresponding |
| 332 | // bit in register Reg (i.e. the cell is "defined" by register Reg). |
| 333 | static RegisterCell self(unsigned Reg, uint16_t Width); |
| 334 | // Generate a "top" cell of given size. |
| 335 | static RegisterCell top(uint16_t Width); |
| 336 | // Generate a cell that is a "ref" to another cell. |
| 337 | static RegisterCell ref(const RegisterCell &C); |
| 338 | |
| 339 | private: |
| 340 | // The DefaultBitN is here only to avoid frequent reallocation of the |
| 341 | // memory in the vector. |
| 342 | static const unsigned DefaultBitN = 32; |
| 343 | using BitValueList = SmallVector<BitValue, DefaultBitN>; |
| 344 | BitValueList Bits; |
| 345 | |
| 346 | friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC); |
| 347 | }; |
| 348 | |
| 349 | inline bool BitTracker::has(unsigned Reg) const { |
| 350 | return Map.find(x: Reg) != Map.end(); |
| 351 | } |
| 352 | |
| 353 | inline const BitTracker::RegisterCell& |
| 354 | BitTracker::lookup(unsigned Reg) const { |
| 355 | CellMapType::const_iterator F = Map.find(x: Reg); |
| 356 | assert(F != Map.end()); |
| 357 | return F->second; |
| 358 | } |
| 359 | |
| 360 | inline BitTracker::RegisterCell |
| 361 | BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) { |
| 362 | RegisterCell RC(Width); |
| 363 | for (uint16_t i = 0; i < Width; ++i) |
| 364 | RC.Bits[i] = BitValue::self(Self: BitRef(Reg, i)); |
| 365 | return RC; |
| 366 | } |
| 367 | |
| 368 | inline BitTracker::RegisterCell |
| 369 | BitTracker::RegisterCell::top(uint16_t Width) { |
| 370 | RegisterCell RC(Width); |
| 371 | for (uint16_t i = 0; i < Width; ++i) |
| 372 | RC.Bits[i] = BitValue(BitValue::Top); |
| 373 | return RC; |
| 374 | } |
| 375 | |
| 376 | inline BitTracker::RegisterCell |
| 377 | BitTracker::RegisterCell::ref(const RegisterCell &C) { |
| 378 | uint16_t W = C.width(); |
| 379 | RegisterCell RC(W); |
| 380 | for (unsigned i = 0; i < W; ++i) |
| 381 | RC[i] = BitValue::ref(V: C[i]); |
| 382 | return RC; |
| 383 | } |
| 384 | |
| 385 | // A class to evaluate target's instructions and update the cell maps. |
| 386 | // This is used internally by the bit tracker. A target that wants to |
| 387 | // utilize this should implement the evaluation functions (noted below) |
| 388 | // in a subclass of this class. |
| 389 | struct BitTracker::MachineEvaluator { |
| 390 | MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M) |
| 391 | : TRI(T), MRI(M) {} |
| 392 | virtual ~MachineEvaluator() = default; |
| 393 | |
| 394 | uint16_t getRegBitWidth(const RegisterRef &RR) const; |
| 395 | |
| 396 | RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const; |
| 397 | void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const; |
| 398 | |
| 399 | // A result of any operation should use refs to the source cells, not |
| 400 | // the cells directly. This function is a convenience wrapper to quickly |
| 401 | // generate a ref for a cell corresponding to a register reference. |
| 402 | RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const { |
| 403 | RegisterCell RC = getCell(RR, M); |
| 404 | return RegisterCell::ref(C: RC); |
| 405 | } |
| 406 | |
| 407 | // Helper functions. |
| 408 | // Check if a cell is an immediate value (i.e. all bits are either 0 or 1). |
| 409 | bool isInt(const RegisterCell &A) const; |
| 410 | // Convert cell to an immediate value. |
| 411 | uint64_t toInt(const RegisterCell &A) const; |
| 412 | |
| 413 | // Generate cell from an immediate value. |
| 414 | RegisterCell eIMM(int64_t V, uint16_t W) const; |
| 415 | RegisterCell eIMM(const ConstantInt *CI) const; |
| 416 | |
| 417 | // Arithmetic. |
| 418 | RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const; |
| 419 | RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const; |
| 420 | RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const; |
| 421 | RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const; |
| 422 | |
| 423 | // Shifts. |
| 424 | RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const; |
| 425 | RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const; |
| 426 | RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const; |
| 427 | |
| 428 | // Logical. |
| 429 | RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const; |
| 430 | RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const; |
| 431 | RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const; |
| 432 | RegisterCell eNOT(const RegisterCell &A1) const; |
| 433 | |
| 434 | // Set bit, clear bit. |
| 435 | RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const; |
| 436 | RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const; |
| 437 | |
| 438 | // Count leading/trailing bits (zeros/ones). |
| 439 | RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const; |
| 440 | RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const; |
| 441 | |
| 442 | // Sign/zero extension. |
| 443 | RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const; |
| 444 | RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const; |
| 445 | |
| 446 | // Extract/insert |
| 447 | // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1. |
| 448 | // INS R,S,b: take R and replace bits starting from b with S. |
| 449 | RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const; |
| 450 | RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2, |
| 451 | uint16_t AtN) const; |
| 452 | |
| 453 | // User-provided functions for individual targets: |
| 454 | |
| 455 | // Return a sub-register mask that indicates which bits in Reg belong |
| 456 | // to the subregister Sub. These bits are assumed to be contiguous in |
| 457 | // the super-register, and have the same ordering in the sub-register |
| 458 | // as in the super-register. It is valid to call this function with |
| 459 | // Sub == 0, in this case, the function should return a mask that spans |
| 460 | // the entire register Reg (which is what the default implementation |
| 461 | // does). |
| 462 | virtual BitMask mask(Register Reg, unsigned Sub) const; |
| 463 | // Indicate whether a given register class should be tracked. |
| 464 | virtual bool track(const TargetRegisterClass *RC) const { return true; } |
| 465 | // Evaluate a non-branching machine instruction, given the cell map with |
| 466 | // the input values. Place the results in the Outputs map. Return "true" |
| 467 | // if evaluation succeeded, "false" otherwise. |
| 468 | virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs, |
| 469 | CellMapType &Outputs) const; |
| 470 | // Evaluate a branch, given the cell map with the input values. Fill out |
| 471 | // a list of all possible branch targets and indicate (through a flag) |
| 472 | // whether the branch could fall-through. Return "true" if this information |
| 473 | // has been successfully computed, "false" otherwise. |
| 474 | virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs, |
| 475 | BranchTargetList &Targets, bool &FallsThru) const = 0; |
| 476 | // Given a register class RC, return a register class that should be assumed |
| 477 | // when a register from class RC is used with a subregister of index Idx. |
| 478 | virtual const TargetRegisterClass& |
| 479 | composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const { |
| 480 | if (Idx == 0) |
| 481 | return RC; |
| 482 | llvm_unreachable("Unimplemented composeWithSubRegIndex" ); |
| 483 | } |
| 484 | // Return the size in bits of the physical register Reg. |
| 485 | virtual uint16_t getPhysRegBitWidth(MCRegister Reg) const; |
| 486 | |
| 487 | const TargetRegisterInfo &TRI; |
| 488 | MachineRegisterInfo &MRI; |
| 489 | }; |
| 490 | |
| 491 | } // end namespace llvm |
| 492 | |
| 493 | #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H |
| 494 | |