1 | //===- BitTracker.cpp -----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // SSA-based bit propagation. |
10 | // |
11 | // The purpose of this code is, for a given virtual register, to provide |
12 | // information about the value of each bit in the register. The values |
13 | // of bits are represented by the class BitValue, and take one of four |
14 | // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the |
15 | // "ref" value means that the bit is a copy of another bit (which itself |
16 | // cannot be a copy of yet another bit---such chains are not allowed). |
17 | // A "ref" value is associated with a BitRef structure, which indicates |
18 | // which virtual register, and which bit in that register is the origin |
19 | // of the value. For example, given an instruction |
20 | // %2 = ASL %1, 1 |
21 | // assuming that nothing is known about bits of %1, bit 1 of %2 |
22 | // will be a "ref" to (%1, 0). If there is a subsequent instruction |
23 | // %3 = ASL %2, 2 |
24 | // then bit 3 of %3 will be a "ref" to (%1, 0) as well. |
25 | // The "bottom" case means that the bit's value cannot be determined, |
26 | // and that this virtual register actually defines it. The "bottom" case |
27 | // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref |
28 | // to self", so for the %1 above, the bit 0 of it will be a "ref" to |
29 | // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. |
30 | // |
31 | // The tracker implements the Wegman-Zadeck algorithm, originally developed |
32 | // for SSA-based constant propagation. Each register is represented as |
33 | // a sequence of bits, with the convention that bit 0 is the least signi- |
34 | // ficant bit. Each bit is propagated individually. The class RegisterCell |
35 | // implements the register's representation, and is also the subject of |
36 | // the lattice operations in the tracker. |
37 | // |
38 | // The intended usage of the bit tracker is to create a target-specific |
39 | // machine instruction evaluator, pass the evaluator to the BitTracker |
40 | // object, and run the tracker. The tracker will then collect the bit |
41 | // value information for a given machine function. After that, it can be |
42 | // queried for the cells for each virtual register. |
43 | // Sample code: |
44 | // const TargetSpecificEvaluator TSE(TRI, MRI); |
45 | // BitTracker BT(TSE, MF); |
46 | // BT.run(); |
47 | // ... |
48 | // unsigned Reg = interestingRegister(); |
49 | // RegisterCell RC = BT.get(Reg); |
50 | // if (RC[3].is(1)) |
51 | // Reg0bit3 = 1; |
52 | // |
53 | // The code below is intended to be fully target-independent. |
54 | |
55 | #include "BitTracker.h" |
56 | #include "llvm/ADT/APInt.h" |
57 | #include "llvm/ADT/BitVector.h" |
58 | #include "llvm/CodeGen/MachineBasicBlock.h" |
59 | #include "llvm/CodeGen/MachineFunction.h" |
60 | #include "llvm/CodeGen/MachineInstr.h" |
61 | #include "llvm/CodeGen/MachineOperand.h" |
62 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
63 | #include "llvm/IR/Constants.h" |
64 | #include "llvm/Support/Debug.h" |
65 | |
66 | using namespace llvm; |
67 | |
68 | using BT = BitTracker; |
69 | |
70 | namespace { |
71 | |
72 | // Local trickery to pretty print a register (without the whole "%number" |
73 | // business). |
74 | struct printv { |
75 | printv(unsigned r) : R(r) {} |
76 | |
77 | unsigned R; |
78 | }; |
79 | |
80 | raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { |
81 | if (PV.R) |
82 | OS << 'v' << Register(PV.R).virtRegIndex(); |
83 | else |
84 | OS << 's'; |
85 | return OS; |
86 | } |
87 | |
88 | } // end anonymous namespace |
89 | |
90 | namespace llvm { |
91 | |
92 | raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { |
93 | switch (BV.Type) { |
94 | case BT::BitValue::Top: |
95 | OS << 'T'; |
96 | break; |
97 | case BT::BitValue::Zero: |
98 | OS << '0'; |
99 | break; |
100 | case BT::BitValue::One: |
101 | OS << '1'; |
102 | break; |
103 | case BT::BitValue::Ref: |
104 | OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; |
105 | break; |
106 | } |
107 | return OS; |
108 | } |
109 | |
110 | raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { |
111 | unsigned n = RC.Bits.size(); |
112 | OS << "{ w:" << n; |
113 | // Instead of printing each bit value individually, try to group them |
114 | // into logical segments, such as sequences of 0 or 1 bits or references |
115 | // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). |
116 | // "Start" will be the index of the beginning of the most recent segment. |
117 | unsigned Start = 0; |
118 | bool SeqRef = false; // A sequence of refs to consecutive bits. |
119 | bool ConstRef = false; // A sequence of refs to the same bit. |
120 | |
121 | for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { |
122 | const BT::BitValue &V = RC[i]; |
123 | const BT::BitValue &SV = RC[Start]; |
124 | bool IsRef = (V.Type == BT::BitValue::Ref); |
125 | // If the current value is the same as Start, skip to the next one. |
126 | if (!IsRef && V == SV) |
127 | continue; |
128 | if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { |
129 | if (Start+1 == i) { |
130 | SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); |
131 | ConstRef = (V.RefI.Pos == SV.RefI.Pos); |
132 | } |
133 | if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) |
134 | continue; |
135 | if (ConstRef && V.RefI.Pos == SV.RefI.Pos) |
136 | continue; |
137 | } |
138 | |
139 | // The current value is different. Print the previous one and reset |
140 | // the Start. |
141 | OS << " [" << Start; |
142 | unsigned Count = i - Start; |
143 | if (Count == 1) { |
144 | OS << "]:" << SV; |
145 | } else { |
146 | OS << '-' << i-1 << "]:" ; |
147 | if (SV.Type == BT::BitValue::Ref && SeqRef) |
148 | OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
149 | << SV.RefI.Pos+(Count-1) << ']'; |
150 | else |
151 | OS << SV; |
152 | } |
153 | Start = i; |
154 | SeqRef = ConstRef = false; |
155 | } |
156 | |
157 | OS << " [" << Start; |
158 | unsigned Count = n - Start; |
159 | if (n-Start == 1) { |
160 | OS << "]:" << RC[Start]; |
161 | } else { |
162 | OS << '-' << n-1 << "]:" ; |
163 | const BT::BitValue &SV = RC[Start]; |
164 | if (SV.Type == BT::BitValue::Ref && SeqRef) |
165 | OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
166 | << SV.RefI.Pos+(Count-1) << ']'; |
167 | else |
168 | OS << SV; |
169 | } |
170 | OS << " }" ; |
171 | |
172 | return OS; |
173 | } |
174 | |
175 | } // end namespace llvm |
176 | |
177 | void BitTracker::print_cells(raw_ostream &OS) const { |
178 | for (const std::pair<unsigned, RegisterCell> P : Map) |
179 | dbgs() << printReg(Reg: P.first, TRI: &ME.TRI) << " -> " << P.second << "\n" ; |
180 | } |
181 | |
182 | BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) |
183 | : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { |
184 | } |
185 | |
186 | BitTracker::~BitTracker() { |
187 | delete ⤅ |
188 | } |
189 | |
190 | // If we were allowed to update a cell for a part of a register, the meet |
191 | // operation would need to be parametrized by the register number and the |
192 | // exact part of the register, so that the computer BitRefs correspond to |
193 | // the actual bits of the "self" register. |
194 | // While this cannot happen in the current implementation, I'm not sure |
195 | // if this should be ruled out in the future. |
196 | bool BT::RegisterCell::meet(const RegisterCell &RC, Register SelfR) { |
197 | // An example when "meet" can be invoked with SelfR == 0 is a phi node |
198 | // with a physical register as an operand. |
199 | assert(SelfR == 0 || SelfR.isVirtual()); |
200 | bool Changed = false; |
201 | for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { |
202 | const BitValue &RCV = RC[i]; |
203 | Changed |= Bits[i].meet(V: RCV, Self: BitRef(SelfR, i)); |
204 | } |
205 | return Changed; |
206 | } |
207 | |
208 | // Insert the entire cell RC into the current cell at position given by M. |
209 | BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, |
210 | const BitMask &M) { |
211 | uint16_t B = M.first(), E = M.last(), W = width(); |
212 | // M must be a valid mask for *this. |
213 | assert(B < W && E < W); |
214 | // The masked part of *this must have the same number of bits |
215 | // as the source. |
216 | assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. |
217 | assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. |
218 | if (B <= E) { |
219 | for (uint16_t i = 0; i <= E-B; ++i) |
220 | Bits[i+B] = RC[i]; |
221 | } else { |
222 | for (uint16_t i = 0; i < W-B; ++i) |
223 | Bits[i+B] = RC[i]; |
224 | for (uint16_t i = 0; i <= E; ++i) |
225 | Bits[i] = RC[i+(W-B)]; |
226 | } |
227 | return *this; |
228 | } |
229 | |
230 | BT::RegisterCell BT::RegisterCell::(const BitMask &M) const { |
231 | uint16_t B = M.first(), E = M.last(), W = width(); |
232 | assert(B < W && E < W); |
233 | if (B <= E) { |
234 | RegisterCell RC(E-B+1); |
235 | for (uint16_t i = B; i <= E; ++i) |
236 | RC.Bits[i-B] = Bits[i]; |
237 | return RC; |
238 | } |
239 | |
240 | RegisterCell RC(E+(W-B)+1); |
241 | for (uint16_t i = 0; i < W-B; ++i) |
242 | RC.Bits[i] = Bits[i+B]; |
243 | for (uint16_t i = 0; i <= E; ++i) |
244 | RC.Bits[i+(W-B)] = Bits[i]; |
245 | return RC; |
246 | } |
247 | |
248 | BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { |
249 | // Rotate left (i.e. towards increasing bit indices). |
250 | // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] |
251 | uint16_t W = width(); |
252 | Sh = Sh % W; |
253 | if (Sh == 0) |
254 | return *this; |
255 | |
256 | RegisterCell Tmp(W-Sh); |
257 | // Tmp = [0..W-Sh-1]. |
258 | for (uint16_t i = 0; i < W-Sh; ++i) |
259 | Tmp[i] = Bits[i]; |
260 | // Shift [W-Sh..W-1] to [0..Sh-1]. |
261 | for (uint16_t i = 0; i < Sh; ++i) |
262 | Bits[i] = Bits[W-Sh+i]; |
263 | // Copy Tmp to [Sh..W-1]. |
264 | for (uint16_t i = 0; i < W-Sh; ++i) |
265 | Bits[i+Sh] = Tmp.Bits[i]; |
266 | return *this; |
267 | } |
268 | |
269 | BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, |
270 | const BitValue &V) { |
271 | assert(B <= E); |
272 | while (B < E) |
273 | Bits[B++] = V; |
274 | return *this; |
275 | } |
276 | |
277 | BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { |
278 | // Append the cell given as the argument to the "this" cell. |
279 | // Bit 0 of RC becomes bit W of the result, where W is this->width(). |
280 | uint16_t W = width(), WRC = RC.width(); |
281 | Bits.resize(N: W+WRC); |
282 | for (uint16_t i = 0; i < WRC; ++i) |
283 | Bits[i+W] = RC.Bits[i]; |
284 | return *this; |
285 | } |
286 | |
287 | uint16_t BT::RegisterCell::ct(bool B) const { |
288 | uint16_t W = width(); |
289 | uint16_t C = 0; |
290 | BitValue V = B; |
291 | while (C < W && Bits[C] == V) |
292 | C++; |
293 | return C; |
294 | } |
295 | |
296 | uint16_t BT::RegisterCell::cl(bool B) const { |
297 | uint16_t W = width(); |
298 | uint16_t C = 0; |
299 | BitValue V = B; |
300 | while (C < W && Bits[W-(C+1)] == V) |
301 | C++; |
302 | return C; |
303 | } |
304 | |
305 | bool BT::RegisterCell::operator== (const RegisterCell &RC) const { |
306 | uint16_t W = Bits.size(); |
307 | if (RC.Bits.size() != W) |
308 | return false; |
309 | for (uint16_t i = 0; i < W; ++i) |
310 | if (Bits[i] != RC[i]) |
311 | return false; |
312 | return true; |
313 | } |
314 | |
315 | BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { |
316 | for (unsigned i = 0, n = width(); i < n; ++i) { |
317 | const BitValue &V = Bits[i]; |
318 | if (V.Type == BitValue::Ref && V.RefI.Reg == 0) |
319 | Bits[i].RefI = BitRef(R, i); |
320 | } |
321 | return *this; |
322 | } |
323 | |
324 | uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { |
325 | // The general problem is with finding a register class that corresponds |
326 | // to a given reference reg:sub. There can be several such classes, and |
327 | // since we only care about the register size, it does not matter which |
328 | // such class we would find. |
329 | // The easiest way to accomplish what we want is to |
330 | // 1. find a physical register PhysR from the same class as RR.Reg, |
331 | // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, |
332 | // 3. find a register class that contains PhysS. |
333 | if (RR.Reg.isVirtual()) { |
334 | const auto &VC = composeWithSubRegIndex(RC: *MRI.getRegClass(Reg: RR.Reg), Idx: RR.Sub); |
335 | return TRI.getRegSizeInBits(RC: VC); |
336 | } |
337 | assert(RR.Reg.isPhysical()); |
338 | MCRegister PhysR = |
339 | (RR.Sub == 0) ? RR.Reg.asMCReg() : TRI.getSubReg(Reg: RR.Reg, Idx: RR.Sub); |
340 | return getPhysRegBitWidth(Reg: PhysR); |
341 | } |
342 | |
343 | BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, |
344 | const CellMapType &M) const { |
345 | uint16_t BW = getRegBitWidth(RR); |
346 | |
347 | // Physical registers are assumed to be present in the map with an unknown |
348 | // value. Don't actually insert anything in the map, just return the cell. |
349 | if (RR.Reg.isPhysical()) |
350 | return RegisterCell::self(Reg: 0, Width: BW); |
351 | |
352 | assert(RR.Reg.isVirtual()); |
353 | // For virtual registers that belong to a class that is not tracked, |
354 | // generate an "unknown" value as well. |
355 | const TargetRegisterClass *C = MRI.getRegClass(Reg: RR.Reg); |
356 | if (!track(RC: C)) |
357 | return RegisterCell::self(Reg: 0, Width: BW); |
358 | |
359 | CellMapType::const_iterator F = M.find(x: RR.Reg); |
360 | if (F != M.end()) { |
361 | if (!RR.Sub) |
362 | return F->second; |
363 | BitMask M = mask(Reg: RR.Reg, Sub: RR.Sub); |
364 | return F->second.extract(M); |
365 | } |
366 | // If not found, create a "top" entry, but do not insert it in the map. |
367 | return RegisterCell::top(Width: BW); |
368 | } |
369 | |
370 | void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, |
371 | CellMapType &M) const { |
372 | // While updating the cell map can be done in a meaningful way for |
373 | // a part of a register, it makes little sense to implement it as the |
374 | // SSA representation would never contain such "partial definitions". |
375 | if (!RR.Reg.isVirtual()) |
376 | return; |
377 | assert(RR.Sub == 0 && "Unexpected sub-register in definition" ); |
378 | // Eliminate all ref-to-reg-0 bit values: replace them with "self". |
379 | M[RR.Reg] = RC.regify(R: RR.Reg); |
380 | } |
381 | |
382 | // Check if the cell represents a compile-time integer value. |
383 | bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { |
384 | uint16_t W = A.width(); |
385 | for (uint16_t i = 0; i < W; ++i) |
386 | if (!A[i].is(T: 0) && !A[i].is(T: 1)) |
387 | return false; |
388 | return true; |
389 | } |
390 | |
391 | // Convert a cell to the integer value. The result must fit in uint64_t. |
392 | uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { |
393 | assert(isInt(A)); |
394 | uint64_t Val = 0; |
395 | uint16_t W = A.width(); |
396 | for (uint16_t i = 0; i < W; ++i) { |
397 | Val <<= 1; |
398 | Val |= A[i].is(T: 1); |
399 | } |
400 | return Val; |
401 | } |
402 | |
403 | // Evaluator helper functions. These implement some common operation on |
404 | // register cells that can be used to implement target-specific instructions |
405 | // in a target-specific evaluator. |
406 | |
407 | BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { |
408 | RegisterCell Res(W); |
409 | // For bits beyond the 63rd, this will generate the sign bit of V. |
410 | for (uint16_t i = 0; i < W; ++i) { |
411 | Res[i] = BitValue(V & 1); |
412 | V >>= 1; |
413 | } |
414 | return Res; |
415 | } |
416 | |
417 | BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { |
418 | const APInt &A = CI->getValue(); |
419 | uint16_t BW = A.getBitWidth(); |
420 | assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow" ); |
421 | RegisterCell Res(BW); |
422 | for (uint16_t i = 0; i < BW; ++i) |
423 | Res[i] = A[i]; |
424 | return Res; |
425 | } |
426 | |
427 | BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, |
428 | const RegisterCell &A2) const { |
429 | uint16_t W = A1.width(); |
430 | assert(W == A2.width()); |
431 | RegisterCell Res(W); |
432 | bool Carry = false; |
433 | uint16_t I; |
434 | for (I = 0; I < W; ++I) { |
435 | const BitValue &V1 = A1[I]; |
436 | const BitValue &V2 = A2[I]; |
437 | if (!V1.num() || !V2.num()) |
438 | break; |
439 | unsigned S = bool(V1) + bool(V2) + Carry; |
440 | Res[I] = BitValue(S & 1); |
441 | Carry = (S > 1); |
442 | } |
443 | for (; I < W; ++I) { |
444 | const BitValue &V1 = A1[I]; |
445 | const BitValue &V2 = A2[I]; |
446 | // If the next bit is same as Carry, the result will be 0 plus the |
447 | // other bit. The Carry bit will remain unchanged. |
448 | if (V1.is(T: Carry)) |
449 | Res[I] = BitValue::ref(V: V2); |
450 | else if (V2.is(T: Carry)) |
451 | Res[I] = BitValue::ref(V: V1); |
452 | else |
453 | break; |
454 | } |
455 | for (; I < W; ++I) |
456 | Res[I] = BitValue::self(); |
457 | return Res; |
458 | } |
459 | |
460 | BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, |
461 | const RegisterCell &A2) const { |
462 | uint16_t W = A1.width(); |
463 | assert(W == A2.width()); |
464 | RegisterCell Res(W); |
465 | bool Borrow = false; |
466 | uint16_t I; |
467 | for (I = 0; I < W; ++I) { |
468 | const BitValue &V1 = A1[I]; |
469 | const BitValue &V2 = A2[I]; |
470 | if (!V1.num() || !V2.num()) |
471 | break; |
472 | unsigned S = bool(V1) - bool(V2) - Borrow; |
473 | Res[I] = BitValue(S & 1); |
474 | Borrow = (S > 1); |
475 | } |
476 | for (; I < W; ++I) { |
477 | const BitValue &V1 = A1[I]; |
478 | const BitValue &V2 = A2[I]; |
479 | if (V1.is(T: Borrow)) { |
480 | Res[I] = BitValue::ref(V: V2); |
481 | break; |
482 | } |
483 | if (V2.is(T: Borrow)) |
484 | Res[I] = BitValue::ref(V: V1); |
485 | else |
486 | break; |
487 | } |
488 | for (; I < W; ++I) |
489 | Res[I] = BitValue::self(); |
490 | return Res; |
491 | } |
492 | |
493 | BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, |
494 | const RegisterCell &A2) const { |
495 | uint16_t W = A1.width() + A2.width(); |
496 | uint16_t Z = A1.ct(B: false) + A2.ct(B: false); |
497 | RegisterCell Res(W); |
498 | Res.fill(B: 0, E: Z, V: BitValue::Zero); |
499 | Res.fill(B: Z, E: W, V: BitValue::self()); |
500 | return Res; |
501 | } |
502 | |
503 | BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, |
504 | const RegisterCell &A2) const { |
505 | uint16_t W = A1.width() + A2.width(); |
506 | uint16_t Z = A1.ct(B: false) + A2.ct(B: false); |
507 | RegisterCell Res(W); |
508 | Res.fill(B: 0, E: Z, V: BitValue::Zero); |
509 | Res.fill(B: Z, E: W, V: BitValue::self()); |
510 | return Res; |
511 | } |
512 | |
513 | BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, |
514 | uint16_t Sh) const { |
515 | assert(Sh <= A1.width()); |
516 | RegisterCell Res = RegisterCell::ref(C: A1); |
517 | Res.rol(Sh); |
518 | Res.fill(B: 0, E: Sh, V: BitValue::Zero); |
519 | return Res; |
520 | } |
521 | |
522 | BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, |
523 | uint16_t Sh) const { |
524 | uint16_t W = A1.width(); |
525 | assert(Sh <= W); |
526 | RegisterCell Res = RegisterCell::ref(C: A1); |
527 | Res.rol(Sh: W-Sh); |
528 | Res.fill(B: W-Sh, E: W, V: BitValue::Zero); |
529 | return Res; |
530 | } |
531 | |
532 | BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, |
533 | uint16_t Sh) const { |
534 | uint16_t W = A1.width(); |
535 | assert(Sh <= W); |
536 | RegisterCell Res = RegisterCell::ref(C: A1); |
537 | BitValue Sign = Res[W-1]; |
538 | Res.rol(Sh: W-Sh); |
539 | Res.fill(B: W-Sh, E: W, V: Sign); |
540 | return Res; |
541 | } |
542 | |
543 | BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, |
544 | const RegisterCell &A2) const { |
545 | uint16_t W = A1.width(); |
546 | assert(W == A2.width()); |
547 | RegisterCell Res(W); |
548 | for (uint16_t i = 0; i < W; ++i) { |
549 | const BitValue &V1 = A1[i]; |
550 | const BitValue &V2 = A2[i]; |
551 | if (V1.is(T: 1)) |
552 | Res[i] = BitValue::ref(V: V2); |
553 | else if (V2.is(T: 1)) |
554 | Res[i] = BitValue::ref(V: V1); |
555 | else if (V1.is(T: 0) || V2.is(T: 0)) |
556 | Res[i] = BitValue::Zero; |
557 | else if (V1 == V2) |
558 | Res[i] = V1; |
559 | else |
560 | Res[i] = BitValue::self(); |
561 | } |
562 | return Res; |
563 | } |
564 | |
565 | BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, |
566 | const RegisterCell &A2) const { |
567 | uint16_t W = A1.width(); |
568 | assert(W == A2.width()); |
569 | RegisterCell Res(W); |
570 | for (uint16_t i = 0; i < W; ++i) { |
571 | const BitValue &V1 = A1[i]; |
572 | const BitValue &V2 = A2[i]; |
573 | if (V1.is(T: 1) || V2.is(T: 1)) |
574 | Res[i] = BitValue::One; |
575 | else if (V1.is(T: 0)) |
576 | Res[i] = BitValue::ref(V: V2); |
577 | else if (V2.is(T: 0)) |
578 | Res[i] = BitValue::ref(V: V1); |
579 | else if (V1 == V2) |
580 | Res[i] = V1; |
581 | else |
582 | Res[i] = BitValue::self(); |
583 | } |
584 | return Res; |
585 | } |
586 | |
587 | BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, |
588 | const RegisterCell &A2) const { |
589 | uint16_t W = A1.width(); |
590 | assert(W == A2.width()); |
591 | RegisterCell Res(W); |
592 | for (uint16_t i = 0; i < W; ++i) { |
593 | const BitValue &V1 = A1[i]; |
594 | const BitValue &V2 = A2[i]; |
595 | if (V1.is(T: 0)) |
596 | Res[i] = BitValue::ref(V: V2); |
597 | else if (V2.is(T: 0)) |
598 | Res[i] = BitValue::ref(V: V1); |
599 | else if (V1 == V2) |
600 | Res[i] = BitValue::Zero; |
601 | else |
602 | Res[i] = BitValue::self(); |
603 | } |
604 | return Res; |
605 | } |
606 | |
607 | BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { |
608 | uint16_t W = A1.width(); |
609 | RegisterCell Res(W); |
610 | for (uint16_t i = 0; i < W; ++i) { |
611 | const BitValue &V = A1[i]; |
612 | if (V.is(T: 0)) |
613 | Res[i] = BitValue::One; |
614 | else if (V.is(T: 1)) |
615 | Res[i] = BitValue::Zero; |
616 | else |
617 | Res[i] = BitValue::self(); |
618 | } |
619 | return Res; |
620 | } |
621 | |
622 | BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, |
623 | uint16_t BitN) const { |
624 | assert(BitN < A1.width()); |
625 | RegisterCell Res = RegisterCell::ref(C: A1); |
626 | Res[BitN] = BitValue::One; |
627 | return Res; |
628 | } |
629 | |
630 | BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, |
631 | uint16_t BitN) const { |
632 | assert(BitN < A1.width()); |
633 | RegisterCell Res = RegisterCell::ref(C: A1); |
634 | Res[BitN] = BitValue::Zero; |
635 | return Res; |
636 | } |
637 | |
638 | BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, |
639 | uint16_t W) const { |
640 | uint16_t C = A1.cl(B), AW = A1.width(); |
641 | // If the last leading non-B bit is not a constant, then we don't know |
642 | // the real count. |
643 | if ((C < AW && A1[AW-1-C].num()) || C == AW) |
644 | return eIMM(V: C, W); |
645 | return RegisterCell::self(Reg: 0, Width: W); |
646 | } |
647 | |
648 | BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, |
649 | uint16_t W) const { |
650 | uint16_t C = A1.ct(B), AW = A1.width(); |
651 | // If the last trailing non-B bit is not a constant, then we don't know |
652 | // the real count. |
653 | if ((C < AW && A1[C].num()) || C == AW) |
654 | return eIMM(V: C, W); |
655 | return RegisterCell::self(Reg: 0, Width: W); |
656 | } |
657 | |
658 | BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, |
659 | uint16_t FromN) const { |
660 | uint16_t W = A1.width(); |
661 | assert(FromN <= W); |
662 | RegisterCell Res = RegisterCell::ref(C: A1); |
663 | BitValue Sign = Res[FromN-1]; |
664 | // Sign-extend "inreg". |
665 | Res.fill(B: FromN, E: W, V: Sign); |
666 | return Res; |
667 | } |
668 | |
669 | BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, |
670 | uint16_t FromN) const { |
671 | uint16_t W = A1.width(); |
672 | assert(FromN <= W); |
673 | RegisterCell Res = RegisterCell::ref(C: A1); |
674 | Res.fill(B: FromN, E: W, V: BitValue::Zero); |
675 | return Res; |
676 | } |
677 | |
678 | BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, |
679 | uint16_t B, uint16_t E) const { |
680 | uint16_t W = A1.width(); |
681 | assert(B < W && E <= W); |
682 | if (B == E) |
683 | return RegisterCell(0); |
684 | uint16_t Last = (E > 0) ? E-1 : W-1; |
685 | RegisterCell Res = RegisterCell::ref(C: A1).extract(M: BT::BitMask(B, Last)); |
686 | // Return shorter cell. |
687 | return Res; |
688 | } |
689 | |
690 | BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, |
691 | const RegisterCell &A2, uint16_t AtN) const { |
692 | uint16_t W1 = A1.width(), W2 = A2.width(); |
693 | (void)W1; |
694 | assert(AtN < W1 && AtN+W2 <= W1); |
695 | // Copy bits from A1, insert A2 at position AtN. |
696 | RegisterCell Res = RegisterCell::ref(C: A1); |
697 | if (W2 > 0) |
698 | Res.insert(RC: RegisterCell::ref(C: A2), M: BT::BitMask(AtN, AtN+W2-1)); |
699 | return Res; |
700 | } |
701 | |
702 | BT::BitMask BT::MachineEvaluator::mask(Register Reg, unsigned Sub) const { |
703 | assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0" ); |
704 | uint16_t W = getRegBitWidth(RR: Reg); |
705 | assert(W > 0 && "Cannot generate mask for empty register" ); |
706 | return BitMask(0, W-1); |
707 | } |
708 | |
709 | uint16_t BT::MachineEvaluator::getPhysRegBitWidth(MCRegister Reg) const { |
710 | const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); |
711 | return TRI.getRegSizeInBits(RC: PC); |
712 | } |
713 | |
714 | bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, |
715 | const CellMapType &Inputs, |
716 | CellMapType &Outputs) const { |
717 | unsigned Opc = MI.getOpcode(); |
718 | switch (Opc) { |
719 | case TargetOpcode::REG_SEQUENCE: { |
720 | RegisterRef RD = MI.getOperand(i: 0); |
721 | assert(RD.Sub == 0); |
722 | RegisterRef RS = MI.getOperand(i: 1); |
723 | unsigned SS = MI.getOperand(i: 2).getImm(); |
724 | RegisterRef RT = MI.getOperand(i: 3); |
725 | unsigned ST = MI.getOperand(i: 4).getImm(); |
726 | assert(SS != ST); |
727 | |
728 | uint16_t W = getRegBitWidth(RR: RD); |
729 | RegisterCell Res(W); |
730 | Res.insert(RC: RegisterCell::ref(C: getCell(RR: RS, M: Inputs)), M: mask(Reg: RD.Reg, Sub: SS)); |
731 | Res.insert(RC: RegisterCell::ref(C: getCell(RR: RT, M: Inputs)), M: mask(Reg: RD.Reg, Sub: ST)); |
732 | putCell(RR: RD, RC: Res, M&: Outputs); |
733 | break; |
734 | } |
735 | |
736 | case TargetOpcode::COPY: { |
737 | // COPY can transfer a smaller register into a wider one. |
738 | // If that is the case, fill the remaining high bits with 0. |
739 | RegisterRef RD = MI.getOperand(i: 0); |
740 | RegisterRef RS = MI.getOperand(i: 1); |
741 | assert(RD.Sub == 0); |
742 | uint16_t WD = getRegBitWidth(RR: RD); |
743 | uint16_t WS = getRegBitWidth(RR: RS); |
744 | assert(WD >= WS); |
745 | RegisterCell Src = getCell(RR: RS, M: Inputs); |
746 | RegisterCell Res(WD); |
747 | Res.insert(RC: Src, M: BitMask(0, WS-1)); |
748 | Res.fill(B: WS, E: WD, V: BitValue::Zero); |
749 | putCell(RR: RD, RC: Res, M&: Outputs); |
750 | break; |
751 | } |
752 | |
753 | default: |
754 | return false; |
755 | } |
756 | |
757 | return true; |
758 | } |
759 | |
760 | bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, |
761 | const MachineInstr *InstB) const { |
762 | // This is a comparison function for a priority queue: give higher priority |
763 | // to earlier instructions. |
764 | // This operator is used as "less", so returning "true" gives InstB higher |
765 | // priority (because then InstA < InstB). |
766 | if (InstA == InstB) |
767 | return false; |
768 | const MachineBasicBlock *BA = InstA->getParent(); |
769 | const MachineBasicBlock *BB = InstB->getParent(); |
770 | if (BA != BB) { |
771 | // If the blocks are different, ideally the dominating block would |
772 | // have a higher priority, but it may be too expensive to check. |
773 | return BA->getNumber() > BB->getNumber(); |
774 | } |
775 | |
776 | auto getDist = [this] (const MachineInstr *MI) { |
777 | auto F = Dist.find(Val: MI); |
778 | if (F != Dist.end()) |
779 | return F->second; |
780 | MachineBasicBlock::const_iterator I = MI->getParent()->begin(); |
781 | MachineBasicBlock::const_iterator E = MI->getIterator(); |
782 | unsigned D = std::distance(first: I, last: E); |
783 | Dist.insert(KV: std::make_pair(x&: MI, y&: D)); |
784 | return D; |
785 | }; |
786 | |
787 | return getDist(InstA) > getDist(InstB); |
788 | } |
789 | |
790 | // Main W-Z implementation. |
791 | |
792 | void BT::visitPHI(const MachineInstr &PI) { |
793 | int ThisN = PI.getParent()->getNumber(); |
794 | if (Trace) |
795 | dbgs() << "Visit FI(" << printMBBReference(MBB: *PI.getParent()) << "): " << PI; |
796 | |
797 | const MachineOperand &MD = PI.getOperand(i: 0); |
798 | assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition" ); |
799 | RegisterRef DefRR(MD); |
800 | uint16_t DefBW = ME.getRegBitWidth(RR: DefRR); |
801 | |
802 | RegisterCell DefC = ME.getCell(RR: DefRR, M: Map); |
803 | if (DefC == RegisterCell::self(Reg: DefRR.Reg, Width: DefBW)) // XXX slow |
804 | return; |
805 | |
806 | bool Changed = false; |
807 | |
808 | for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { |
809 | const MachineBasicBlock *PB = PI.getOperand(i: i + 1).getMBB(); |
810 | int PredN = PB->getNumber(); |
811 | if (Trace) |
812 | dbgs() << " edge " << printMBBReference(MBB: *PB) << "->" |
813 | << printMBBReference(MBB: *PI.getParent()); |
814 | if (!EdgeExec.count(x: CFGEdge(PredN, ThisN))) { |
815 | if (Trace) |
816 | dbgs() << " not executable\n" ; |
817 | continue; |
818 | } |
819 | |
820 | RegisterRef RU = PI.getOperand(i); |
821 | RegisterCell ResC = ME.getCell(RR: RU, M: Map); |
822 | if (Trace) |
823 | dbgs() << " input reg: " << printReg(Reg: RU.Reg, TRI: &ME.TRI, SubIdx: RU.Sub) |
824 | << " cell: " << ResC << "\n" ; |
825 | Changed |= DefC.meet(RC: ResC, SelfR: DefRR.Reg); |
826 | } |
827 | |
828 | if (Changed) { |
829 | if (Trace) |
830 | dbgs() << "Output: " << printReg(Reg: DefRR.Reg, TRI: &ME.TRI, SubIdx: DefRR.Sub) |
831 | << " cell: " << DefC << "\n" ; |
832 | ME.putCell(RR: DefRR, RC: DefC, M&: Map); |
833 | visitUsesOf(Reg: DefRR.Reg); |
834 | } |
835 | } |
836 | |
837 | void BT::visitNonBranch(const MachineInstr &MI) { |
838 | if (Trace) |
839 | dbgs() << "Visit MI(" << printMBBReference(MBB: *MI.getParent()) << "): " << MI; |
840 | if (MI.isDebugInstr()) |
841 | return; |
842 | assert(!MI.isBranch() && "Unexpected branch instruction" ); |
843 | |
844 | CellMapType ResMap; |
845 | bool Eval = ME.evaluate(MI, Inputs: Map, Outputs&: ResMap); |
846 | |
847 | if (Trace && Eval) { |
848 | for (const MachineOperand &MO : MI.operands()) { |
849 | if (!MO.isReg() || !MO.isUse()) |
850 | continue; |
851 | RegisterRef RU(MO); |
852 | dbgs() << " input reg: " << printReg(Reg: RU.Reg, TRI: &ME.TRI, SubIdx: RU.Sub) |
853 | << " cell: " << ME.getCell(RR: RU, M: Map) << "\n" ; |
854 | } |
855 | dbgs() << "Outputs:\n" ; |
856 | for (const std::pair<const unsigned, RegisterCell> &P : ResMap) { |
857 | RegisterRef RD(P.first); |
858 | dbgs() << " " << printReg(Reg: P.first, TRI: &ME.TRI) << " cell: " |
859 | << ME.getCell(RR: RD, M: ResMap) << "\n" ; |
860 | } |
861 | } |
862 | |
863 | // Iterate over all definitions of the instruction, and update the |
864 | // cells accordingly. |
865 | for (const MachineOperand &MO : MI.operands()) { |
866 | // Visit register defs only. |
867 | if (!MO.isReg() || !MO.isDef()) |
868 | continue; |
869 | RegisterRef RD(MO); |
870 | assert(RD.Sub == 0 && "Unexpected sub-register in definition" ); |
871 | if (!RD.Reg.isVirtual()) |
872 | continue; |
873 | |
874 | bool Changed = false; |
875 | if (!Eval || ResMap.count(x: RD.Reg) == 0) { |
876 | // Set to "ref" (aka "bottom"). |
877 | uint16_t DefBW = ME.getRegBitWidth(RR: RD); |
878 | RegisterCell RefC = RegisterCell::self(Reg: RD.Reg, Width: DefBW); |
879 | if (RefC != ME.getCell(RR: RD, M: Map)) { |
880 | ME.putCell(RR: RD, RC: RefC, M&: Map); |
881 | Changed = true; |
882 | } |
883 | } else { |
884 | RegisterCell DefC = ME.getCell(RR: RD, M: Map); |
885 | RegisterCell ResC = ME.getCell(RR: RD, M: ResMap); |
886 | // This is a non-phi instruction, so the values of the inputs come |
887 | // from the same registers each time this instruction is evaluated. |
888 | // During the propagation, the values of the inputs can become lowered |
889 | // in the sense of the lattice operation, which may cause different |
890 | // results to be calculated in subsequent evaluations. This should |
891 | // not cause the bottoming of the result in the map, since the new |
892 | // result is already reflecting the lowered inputs. |
893 | for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { |
894 | BitValue &V = DefC[i]; |
895 | // Bits that are already "bottom" should not be updated. |
896 | if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) |
897 | continue; |
898 | // Same for those that are identical in DefC and ResC. |
899 | if (V == ResC[i]) |
900 | continue; |
901 | V = ResC[i]; |
902 | Changed = true; |
903 | } |
904 | if (Changed) |
905 | ME.putCell(RR: RD, RC: DefC, M&: Map); |
906 | } |
907 | if (Changed) |
908 | visitUsesOf(Reg: RD.Reg); |
909 | } |
910 | } |
911 | |
912 | void BT::visitBranchesFrom(const MachineInstr &BI) { |
913 | const MachineBasicBlock &B = *BI.getParent(); |
914 | MachineBasicBlock::const_iterator It = BI, End = B.end(); |
915 | BranchTargetList Targets, BTs; |
916 | bool FallsThrough = true, DefaultToAll = false; |
917 | int ThisN = B.getNumber(); |
918 | |
919 | do { |
920 | BTs.clear(); |
921 | const MachineInstr &MI = *It; |
922 | if (Trace) |
923 | dbgs() << "Visit BR(" << printMBBReference(MBB: B) << "): " << MI; |
924 | assert(MI.isBranch() && "Expecting branch instruction" ); |
925 | InstrExec.insert(x: &MI); |
926 | bool Eval = ME.evaluate(BI: MI, Inputs: Map, Targets&: BTs, FallsThru&: FallsThrough); |
927 | if (!Eval) { |
928 | // If the evaluation failed, we will add all targets. Keep going in |
929 | // the loop to mark all executable branches as such. |
930 | DefaultToAll = true; |
931 | FallsThrough = true; |
932 | if (Trace) |
933 | dbgs() << " failed to evaluate: will add all CFG successors\n" ; |
934 | } else if (!DefaultToAll) { |
935 | // If evaluated successfully add the targets to the cumulative list. |
936 | if (Trace) { |
937 | dbgs() << " adding targets:" ; |
938 | for (const MachineBasicBlock *BT : BTs) |
939 | dbgs() << " " << printMBBReference(MBB: *BT); |
940 | if (FallsThrough) |
941 | dbgs() << "\n falls through\n" ; |
942 | else |
943 | dbgs() << "\n does not fall through\n" ; |
944 | } |
945 | Targets.insert_range(R&: BTs); |
946 | } |
947 | ++It; |
948 | } while (FallsThrough && It != End); |
949 | |
950 | if (B.mayHaveInlineAsmBr()) |
951 | DefaultToAll = true; |
952 | |
953 | if (!DefaultToAll) { |
954 | // Need to add all CFG successors that lead to EH landing pads. |
955 | // There won't be explicit branches to these blocks, but they must |
956 | // be processed. |
957 | for (const MachineBasicBlock *SB : B.successors()) { |
958 | if (SB->isEHPad()) |
959 | Targets.insert(X: SB); |
960 | } |
961 | if (FallsThrough) { |
962 | MachineFunction::const_iterator BIt = B.getIterator(); |
963 | MachineFunction::const_iterator Next = std::next(x: BIt); |
964 | if (Next != MF.end()) |
965 | Targets.insert(X: &*Next); |
966 | } |
967 | } else { |
968 | Targets.insert_range(R: B.successors()); |
969 | } |
970 | |
971 | for (const MachineBasicBlock *TB : Targets) |
972 | FlowQ.push(x: CFGEdge(ThisN, TB->getNumber())); |
973 | } |
974 | |
975 | void BT::visitUsesOf(Register Reg) { |
976 | if (Trace) |
977 | dbgs() << "queuing uses of modified reg " << printReg(Reg, TRI: &ME.TRI) |
978 | << " cell: " << ME.getCell(RR: Reg, M: Map) << '\n'; |
979 | |
980 | for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) |
981 | UseQ.push(MI: &UseI); |
982 | } |
983 | |
984 | BT::RegisterCell BT::get(RegisterRef RR) const { |
985 | return ME.getCell(RR, M: Map); |
986 | } |
987 | |
988 | void BT::put(RegisterRef RR, const RegisterCell &RC) { |
989 | ME.putCell(RR, RC, M&: Map); |
990 | } |
991 | |
992 | // Replace all references to bits from OldRR with the corresponding bits |
993 | // in NewRR. |
994 | void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { |
995 | assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map" ); |
996 | BitMask OM = ME.mask(Reg: OldRR.Reg, Sub: OldRR.Sub); |
997 | BitMask NM = ME.mask(Reg: NewRR.Reg, Sub: NewRR.Sub); |
998 | uint16_t OMB = OM.first(), OME = OM.last(); |
999 | uint16_t NMB = NM.first(), NME = NM.last(); |
1000 | (void)NME; |
1001 | assert((OME-OMB == NME-NMB) && |
1002 | "Substituting registers of different lengths" ); |
1003 | for (std::pair<const unsigned, RegisterCell> &P : Map) { |
1004 | RegisterCell &RC = P.second; |
1005 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
1006 | BitValue &V = RC[i]; |
1007 | if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) |
1008 | continue; |
1009 | if (V.RefI.Pos < OMB || V.RefI.Pos > OME) |
1010 | continue; |
1011 | V.RefI.Reg = NewRR.Reg; |
1012 | V.RefI.Pos += NMB-OMB; |
1013 | } |
1014 | } |
1015 | } |
1016 | |
1017 | // Check if the block has been "executed" during propagation. (If not, the |
1018 | // block is dead, but it may still appear to be reachable.) |
1019 | bool BT::reached(const MachineBasicBlock *B) const { |
1020 | int BN = B->getNumber(); |
1021 | assert(BN >= 0); |
1022 | return ReachedBB.count(V: BN); |
1023 | } |
1024 | |
1025 | // Visit an individual instruction. This could be a newly added instruction, |
1026 | // or one that has been modified by an optimization. |
1027 | void BT::visit(const MachineInstr &MI) { |
1028 | assert(!MI.isBranch() && "Only non-branches are allowed" ); |
1029 | InstrExec.insert(x: &MI); |
1030 | visitNonBranch(MI); |
1031 | // Make sure to flush all the pending use updates. |
1032 | runUseQueue(); |
1033 | // The call to visitNonBranch could propagate the changes until a branch |
1034 | // is actually visited. This could result in adding CFG edges to the flow |
1035 | // queue. Since the queue won't be processed, clear it. |
1036 | while (!FlowQ.empty()) |
1037 | FlowQ.pop(); |
1038 | } |
1039 | |
1040 | void BT::reset() { |
1041 | EdgeExec.clear(); |
1042 | InstrExec.clear(); |
1043 | Map.clear(); |
1044 | ReachedBB.clear(); |
1045 | ReachedBB.reserve(Size: MF.size()); |
1046 | } |
1047 | |
1048 | void BT::runEdgeQueue(BitVector &BlockScanned) { |
1049 | while (!FlowQ.empty()) { |
1050 | CFGEdge Edge = FlowQ.front(); |
1051 | FlowQ.pop(); |
1052 | |
1053 | if (!EdgeExec.insert(x: Edge).second) |
1054 | return; |
1055 | ReachedBB.insert(V: Edge.second); |
1056 | |
1057 | const MachineBasicBlock &B = *MF.getBlockNumbered(N: Edge.second); |
1058 | MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); |
1059 | // Visit PHI nodes first. |
1060 | while (It != End && It->isPHI()) { |
1061 | const MachineInstr &PI = *It++; |
1062 | InstrExec.insert(x: &PI); |
1063 | visitPHI(PI); |
1064 | } |
1065 | |
1066 | // If this block has already been visited through a flow graph edge, |
1067 | // then the instructions have already been processed. Any updates to |
1068 | // the cells would now only happen through visitUsesOf... |
1069 | if (BlockScanned[Edge.second]) |
1070 | return; |
1071 | BlockScanned[Edge.second] = true; |
1072 | |
1073 | // Visit non-branch instructions. |
1074 | while (It != End && !It->isBranch()) { |
1075 | const MachineInstr &MI = *It++; |
1076 | InstrExec.insert(x: &MI); |
1077 | visitNonBranch(MI); |
1078 | } |
1079 | // If block end has been reached, add the fall-through edge to the queue. |
1080 | if (It == End) { |
1081 | MachineFunction::const_iterator BIt = B.getIterator(); |
1082 | MachineFunction::const_iterator Next = std::next(x: BIt); |
1083 | if (Next != MF.end() && B.isSuccessor(MBB: &*Next)) { |
1084 | int ThisN = B.getNumber(); |
1085 | int NextN = Next->getNumber(); |
1086 | FlowQ.push(x: CFGEdge(ThisN, NextN)); |
1087 | } |
1088 | } else { |
1089 | // Handle the remaining sequence of branches. This function will update |
1090 | // the work queue. |
1091 | visitBranchesFrom(BI: *It); |
1092 | } |
1093 | } // while (!FlowQ->empty()) |
1094 | } |
1095 | |
1096 | void BT::runUseQueue() { |
1097 | while (!UseQ.empty()) { |
1098 | MachineInstr &UseI = *UseQ.front(); |
1099 | UseQ.pop(); |
1100 | |
1101 | if (!InstrExec.count(x: &UseI)) |
1102 | continue; |
1103 | if (UseI.isPHI()) |
1104 | visitPHI(PI: UseI); |
1105 | else if (!UseI.isBranch()) |
1106 | visitNonBranch(MI: UseI); |
1107 | else |
1108 | visitBranchesFrom(BI: UseI); |
1109 | } |
1110 | } |
1111 | |
1112 | void BT::run() { |
1113 | reset(); |
1114 | assert(FlowQ.empty()); |
1115 | |
1116 | using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; |
1117 | const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(F: &MF); |
1118 | |
1119 | unsigned MaxBN = 0; |
1120 | for (const MachineBasicBlock &B : MF) { |
1121 | assert(B.getNumber() >= 0 && "Disconnected block" ); |
1122 | unsigned BN = B.getNumber(); |
1123 | if (BN > MaxBN) |
1124 | MaxBN = BN; |
1125 | } |
1126 | |
1127 | // Keep track of visited blocks. |
1128 | BitVector BlockScanned(MaxBN+1); |
1129 | |
1130 | int EntryN = Entry->getNumber(); |
1131 | // Generate a fake edge to get something to start with. |
1132 | FlowQ.push(x: CFGEdge(-1, EntryN)); |
1133 | |
1134 | while (!FlowQ.empty() || !UseQ.empty()) { |
1135 | runEdgeQueue(BlockScanned); |
1136 | runUseQueue(); |
1137 | } |
1138 | UseQ.reset(); |
1139 | |
1140 | if (Trace) |
1141 | print_cells(OS&: dbgs() << "Cells after propagation:\n" ); |
1142 | } |
1143 | |