| 1 | //===- BitTracker.cpp -----------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // SSA-based bit propagation. |
| 10 | // |
| 11 | // The purpose of this code is, for a given virtual register, to provide |
| 12 | // information about the value of each bit in the register. The values |
| 13 | // of bits are represented by the class BitValue, and take one of four |
| 14 | // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the |
| 15 | // "ref" value means that the bit is a copy of another bit (which itself |
| 16 | // cannot be a copy of yet another bit---such chains are not allowed). |
| 17 | // A "ref" value is associated with a BitRef structure, which indicates |
| 18 | // which virtual register, and which bit in that register is the origin |
| 19 | // of the value. For example, given an instruction |
| 20 | // %2 = ASL %1, 1 |
| 21 | // assuming that nothing is known about bits of %1, bit 1 of %2 |
| 22 | // will be a "ref" to (%1, 0). If there is a subsequent instruction |
| 23 | // %3 = ASL %2, 2 |
| 24 | // then bit 3 of %3 will be a "ref" to (%1, 0) as well. |
| 25 | // The "bottom" case means that the bit's value cannot be determined, |
| 26 | // and that this virtual register actually defines it. The "bottom" case |
| 27 | // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref |
| 28 | // to self", so for the %1 above, the bit 0 of it will be a "ref" to |
| 29 | // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. |
| 30 | // |
| 31 | // The tracker implements the Wegman-Zadeck algorithm, originally developed |
| 32 | // for SSA-based constant propagation. Each register is represented as |
| 33 | // a sequence of bits, with the convention that bit 0 is the least signi- |
| 34 | // ficant bit. Each bit is propagated individually. The class RegisterCell |
| 35 | // implements the register's representation, and is also the subject of |
| 36 | // the lattice operations in the tracker. |
| 37 | // |
| 38 | // The intended usage of the bit tracker is to create a target-specific |
| 39 | // machine instruction evaluator, pass the evaluator to the BitTracker |
| 40 | // object, and run the tracker. The tracker will then collect the bit |
| 41 | // value information for a given machine function. After that, it can be |
| 42 | // queried for the cells for each virtual register. |
| 43 | // Sample code: |
| 44 | // const TargetSpecificEvaluator TSE(TRI, MRI); |
| 45 | // BitTracker BT(TSE, MF); |
| 46 | // BT.run(); |
| 47 | // ... |
| 48 | // unsigned Reg = interestingRegister(); |
| 49 | // RegisterCell RC = BT.get(Reg); |
| 50 | // if (RC[3].is(1)) |
| 51 | // Reg0bit3 = 1; |
| 52 | // |
| 53 | // The code below is intended to be fully target-independent. |
| 54 | |
| 55 | #include "BitTracker.h" |
| 56 | #include "llvm/ADT/APInt.h" |
| 57 | #include "llvm/ADT/BitVector.h" |
| 58 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 59 | #include "llvm/CodeGen/MachineFunction.h" |
| 60 | #include "llvm/CodeGen/MachineInstr.h" |
| 61 | #include "llvm/CodeGen/MachineOperand.h" |
| 62 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 63 | #include "llvm/IR/Constants.h" |
| 64 | #include "llvm/Support/Debug.h" |
| 65 | |
| 66 | using namespace llvm; |
| 67 | |
| 68 | using BT = BitTracker; |
| 69 | |
| 70 | namespace { |
| 71 | |
| 72 | // Local trickery to pretty print a register (without the whole "%number" |
| 73 | // business). |
| 74 | struct printv { |
| 75 | printv(unsigned r) : R(r) {} |
| 76 | |
| 77 | unsigned R; |
| 78 | }; |
| 79 | |
| 80 | raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { |
| 81 | if (PV.R) |
| 82 | OS << 'v' << Register(PV.R).virtRegIndex(); |
| 83 | else |
| 84 | OS << 's'; |
| 85 | return OS; |
| 86 | } |
| 87 | |
| 88 | } // end anonymous namespace |
| 89 | |
| 90 | namespace llvm { |
| 91 | |
| 92 | raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { |
| 93 | switch (BV.Type) { |
| 94 | case BT::BitValue::Top: |
| 95 | OS << 'T'; |
| 96 | break; |
| 97 | case BT::BitValue::Zero: |
| 98 | OS << '0'; |
| 99 | break; |
| 100 | case BT::BitValue::One: |
| 101 | OS << '1'; |
| 102 | break; |
| 103 | case BT::BitValue::Ref: |
| 104 | OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; |
| 105 | break; |
| 106 | } |
| 107 | return OS; |
| 108 | } |
| 109 | |
| 110 | raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { |
| 111 | unsigned n = RC.Bits.size(); |
| 112 | OS << "{ w:" << n; |
| 113 | // Instead of printing each bit value individually, try to group them |
| 114 | // into logical segments, such as sequences of 0 or 1 bits or references |
| 115 | // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). |
| 116 | // "Start" will be the index of the beginning of the most recent segment. |
| 117 | unsigned Start = 0; |
| 118 | bool SeqRef = false; // A sequence of refs to consecutive bits. |
| 119 | bool ConstRef = false; // A sequence of refs to the same bit. |
| 120 | |
| 121 | for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { |
| 122 | const BT::BitValue &V = RC[i]; |
| 123 | const BT::BitValue &SV = RC[Start]; |
| 124 | bool IsRef = (V.Type == BT::BitValue::Ref); |
| 125 | // If the current value is the same as Start, skip to the next one. |
| 126 | if (!IsRef && V == SV) |
| 127 | continue; |
| 128 | if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { |
| 129 | if (Start+1 == i) { |
| 130 | SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); |
| 131 | ConstRef = (V.RefI.Pos == SV.RefI.Pos); |
| 132 | } |
| 133 | if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) |
| 134 | continue; |
| 135 | if (ConstRef && V.RefI.Pos == SV.RefI.Pos) |
| 136 | continue; |
| 137 | } |
| 138 | |
| 139 | // The current value is different. Print the previous one and reset |
| 140 | // the Start. |
| 141 | OS << " [" << Start; |
| 142 | unsigned Count = i - Start; |
| 143 | if (Count == 1) { |
| 144 | OS << "]:" << SV; |
| 145 | } else { |
| 146 | OS << '-' << i-1 << "]:" ; |
| 147 | if (SV.Type == BT::BitValue::Ref && SeqRef) |
| 148 | OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
| 149 | << SV.RefI.Pos+(Count-1) << ']'; |
| 150 | else |
| 151 | OS << SV; |
| 152 | } |
| 153 | Start = i; |
| 154 | SeqRef = ConstRef = false; |
| 155 | } |
| 156 | |
| 157 | OS << " [" << Start; |
| 158 | unsigned Count = n - Start; |
| 159 | if (n-Start == 1) { |
| 160 | OS << "]:" << RC[Start]; |
| 161 | } else { |
| 162 | OS << '-' << n-1 << "]:" ; |
| 163 | const BT::BitValue &SV = RC[Start]; |
| 164 | if (SV.Type == BT::BitValue::Ref && SeqRef) |
| 165 | OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
| 166 | << SV.RefI.Pos+(Count-1) << ']'; |
| 167 | else |
| 168 | OS << SV; |
| 169 | } |
| 170 | OS << " }" ; |
| 171 | |
| 172 | return OS; |
| 173 | } |
| 174 | |
| 175 | } // end namespace llvm |
| 176 | |
| 177 | void BitTracker::print_cells(raw_ostream &OS) const { |
| 178 | for (const std::pair<unsigned, RegisterCell> P : Map) |
| 179 | dbgs() << printReg(Reg: P.first, TRI: &ME.TRI) << " -> " << P.second << "\n" ; |
| 180 | } |
| 181 | |
| 182 | BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) |
| 183 | : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { |
| 184 | } |
| 185 | |
| 186 | BitTracker::~BitTracker() { |
| 187 | delete ⤅ |
| 188 | } |
| 189 | |
| 190 | // If we were allowed to update a cell for a part of a register, the meet |
| 191 | // operation would need to be parametrized by the register number and the |
| 192 | // exact part of the register, so that the computer BitRefs correspond to |
| 193 | // the actual bits of the "self" register. |
| 194 | // While this cannot happen in the current implementation, I'm not sure |
| 195 | // if this should be ruled out in the future. |
| 196 | bool BT::RegisterCell::meet(const RegisterCell &RC, Register SelfR) { |
| 197 | // An example when "meet" can be invoked with SelfR == 0 is a phi node |
| 198 | // with a physical register as an operand. |
| 199 | assert(SelfR == 0 || SelfR.isVirtual()); |
| 200 | bool Changed = false; |
| 201 | for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { |
| 202 | const BitValue &RCV = RC[i]; |
| 203 | Changed |= Bits[i].meet(V: RCV, Self: BitRef(SelfR, i)); |
| 204 | } |
| 205 | return Changed; |
| 206 | } |
| 207 | |
| 208 | // Insert the entire cell RC into the current cell at position given by M. |
| 209 | BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, |
| 210 | const BitMask &M) { |
| 211 | uint16_t B = M.first(), E = M.last(), W = width(); |
| 212 | // M must be a valid mask for *this. |
| 213 | assert(B < W && E < W); |
| 214 | // The masked part of *this must have the same number of bits |
| 215 | // as the source. |
| 216 | assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. |
| 217 | assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. |
| 218 | if (B <= E) { |
| 219 | for (uint16_t i = 0; i <= E-B; ++i) |
| 220 | Bits[i+B] = RC[i]; |
| 221 | } else { |
| 222 | for (uint16_t i = 0; i < W-B; ++i) |
| 223 | Bits[i+B] = RC[i]; |
| 224 | for (uint16_t i = 0; i <= E; ++i) |
| 225 | Bits[i] = RC[i+(W-B)]; |
| 226 | } |
| 227 | return *this; |
| 228 | } |
| 229 | |
| 230 | BT::RegisterCell BT::RegisterCell::(const BitMask &M) const { |
| 231 | uint16_t B = M.first(), E = M.last(), W = width(); |
| 232 | assert(B < W && E < W); |
| 233 | if (B <= E) { |
| 234 | RegisterCell RC(E-B+1); |
| 235 | for (uint16_t i = B; i <= E; ++i) |
| 236 | RC.Bits[i-B] = Bits[i]; |
| 237 | return RC; |
| 238 | } |
| 239 | |
| 240 | RegisterCell RC(E+(W-B)+1); |
| 241 | for (uint16_t i = 0; i < W-B; ++i) |
| 242 | RC.Bits[i] = Bits[i+B]; |
| 243 | for (uint16_t i = 0; i <= E; ++i) |
| 244 | RC.Bits[i+(W-B)] = Bits[i]; |
| 245 | return RC; |
| 246 | } |
| 247 | |
| 248 | BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { |
| 249 | // Rotate left (i.e. towards increasing bit indices). |
| 250 | // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] |
| 251 | uint16_t W = width(); |
| 252 | Sh = Sh % W; |
| 253 | if (Sh == 0) |
| 254 | return *this; |
| 255 | |
| 256 | RegisterCell Tmp(W-Sh); |
| 257 | // Tmp = [0..W-Sh-1]. |
| 258 | for (uint16_t i = 0; i < W-Sh; ++i) |
| 259 | Tmp[i] = Bits[i]; |
| 260 | // Shift [W-Sh..W-1] to [0..Sh-1]. |
| 261 | for (uint16_t i = 0; i < Sh; ++i) |
| 262 | Bits[i] = Bits[W-Sh+i]; |
| 263 | // Copy Tmp to [Sh..W-1]. |
| 264 | for (uint16_t i = 0; i < W-Sh; ++i) |
| 265 | Bits[i+Sh] = Tmp.Bits[i]; |
| 266 | return *this; |
| 267 | } |
| 268 | |
| 269 | BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, |
| 270 | const BitValue &V) { |
| 271 | assert(B <= E); |
| 272 | while (B < E) |
| 273 | Bits[B++] = V; |
| 274 | return *this; |
| 275 | } |
| 276 | |
| 277 | BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { |
| 278 | // Append the cell given as the argument to the "this" cell. |
| 279 | // Bit 0 of RC becomes bit W of the result, where W is this->width(). |
| 280 | uint16_t W = width(), WRC = RC.width(); |
| 281 | Bits.resize(N: W+WRC); |
| 282 | for (uint16_t i = 0; i < WRC; ++i) |
| 283 | Bits[i+W] = RC.Bits[i]; |
| 284 | return *this; |
| 285 | } |
| 286 | |
| 287 | uint16_t BT::RegisterCell::ct(bool B) const { |
| 288 | uint16_t W = width(); |
| 289 | uint16_t C = 0; |
| 290 | BitValue V = B; |
| 291 | while (C < W && Bits[C] == V) |
| 292 | C++; |
| 293 | return C; |
| 294 | } |
| 295 | |
| 296 | uint16_t BT::RegisterCell::cl(bool B) const { |
| 297 | uint16_t W = width(); |
| 298 | uint16_t C = 0; |
| 299 | BitValue V = B; |
| 300 | while (C < W && Bits[W-(C+1)] == V) |
| 301 | C++; |
| 302 | return C; |
| 303 | } |
| 304 | |
| 305 | bool BT::RegisterCell::operator== (const RegisterCell &RC) const { |
| 306 | uint16_t W = Bits.size(); |
| 307 | if (RC.Bits.size() != W) |
| 308 | return false; |
| 309 | for (uint16_t i = 0; i < W; ++i) |
| 310 | if (Bits[i] != RC[i]) |
| 311 | return false; |
| 312 | return true; |
| 313 | } |
| 314 | |
| 315 | BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { |
| 316 | for (unsigned i = 0, n = width(); i < n; ++i) { |
| 317 | const BitValue &V = Bits[i]; |
| 318 | if (V.Type == BitValue::Ref && V.RefI.Reg == 0) |
| 319 | Bits[i].RefI = BitRef(R, i); |
| 320 | } |
| 321 | return *this; |
| 322 | } |
| 323 | |
| 324 | uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { |
| 325 | // The general problem is with finding a register class that corresponds |
| 326 | // to a given reference reg:sub. There can be several such classes, and |
| 327 | // since we only care about the register size, it does not matter which |
| 328 | // such class we would find. |
| 329 | // The easiest way to accomplish what we want is to |
| 330 | // 1. find a physical register PhysR from the same class as RR.Reg, |
| 331 | // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, |
| 332 | // 3. find a register class that contains PhysS. |
| 333 | if (RR.Reg.isVirtual()) { |
| 334 | const auto &VC = composeWithSubRegIndex(RC: *MRI.getRegClass(Reg: RR.Reg), Idx: RR.Sub); |
| 335 | return TRI.getRegSizeInBits(RC: VC); |
| 336 | } |
| 337 | assert(RR.Reg.isPhysical()); |
| 338 | MCRegister PhysR = |
| 339 | (RR.Sub == 0) ? RR.Reg.asMCReg() : TRI.getSubReg(Reg: RR.Reg, Idx: RR.Sub); |
| 340 | return getPhysRegBitWidth(Reg: PhysR); |
| 341 | } |
| 342 | |
| 343 | BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, |
| 344 | const CellMapType &M) const { |
| 345 | uint16_t BW = getRegBitWidth(RR); |
| 346 | |
| 347 | // Physical registers are assumed to be present in the map with an unknown |
| 348 | // value. Don't actually insert anything in the map, just return the cell. |
| 349 | if (RR.Reg.isPhysical()) |
| 350 | return RegisterCell::self(Reg: 0, Width: BW); |
| 351 | |
| 352 | assert(RR.Reg.isVirtual()); |
| 353 | // For virtual registers that belong to a class that is not tracked, |
| 354 | // generate an "unknown" value as well. |
| 355 | const TargetRegisterClass *C = MRI.getRegClass(Reg: RR.Reg); |
| 356 | if (!track(RC: C)) |
| 357 | return RegisterCell::self(Reg: 0, Width: BW); |
| 358 | |
| 359 | CellMapType::const_iterator F = M.find(x: RR.Reg); |
| 360 | if (F != M.end()) { |
| 361 | if (!RR.Sub) |
| 362 | return F->second; |
| 363 | BitMask M = mask(Reg: RR.Reg, Sub: RR.Sub); |
| 364 | return F->second.extract(M); |
| 365 | } |
| 366 | // If not found, create a "top" entry, but do not insert it in the map. |
| 367 | return RegisterCell::top(Width: BW); |
| 368 | } |
| 369 | |
| 370 | void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, |
| 371 | CellMapType &M) const { |
| 372 | // While updating the cell map can be done in a meaningful way for |
| 373 | // a part of a register, it makes little sense to implement it as the |
| 374 | // SSA representation would never contain such "partial definitions". |
| 375 | if (!RR.Reg.isVirtual()) |
| 376 | return; |
| 377 | assert(RR.Sub == 0 && "Unexpected sub-register in definition" ); |
| 378 | // Eliminate all ref-to-reg-0 bit values: replace them with "self". |
| 379 | M[RR.Reg] = RC.regify(R: RR.Reg); |
| 380 | } |
| 381 | |
| 382 | // Check if the cell represents a compile-time integer value. |
| 383 | bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { |
| 384 | uint16_t W = A.width(); |
| 385 | for (uint16_t i = 0; i < W; ++i) |
| 386 | if (!A[i].is(T: 0) && !A[i].is(T: 1)) |
| 387 | return false; |
| 388 | return true; |
| 389 | } |
| 390 | |
| 391 | // Convert a cell to the integer value. The result must fit in uint64_t. |
| 392 | uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { |
| 393 | assert(isInt(A)); |
| 394 | uint64_t Val = 0; |
| 395 | uint16_t W = A.width(); |
| 396 | for (uint16_t i = 0; i < W; ++i) { |
| 397 | Val <<= 1; |
| 398 | Val |= A[i].is(T: 1); |
| 399 | } |
| 400 | return Val; |
| 401 | } |
| 402 | |
| 403 | // Evaluator helper functions. These implement some common operation on |
| 404 | // register cells that can be used to implement target-specific instructions |
| 405 | // in a target-specific evaluator. |
| 406 | |
| 407 | BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { |
| 408 | RegisterCell Res(W); |
| 409 | // For bits beyond the 63rd, this will generate the sign bit of V. |
| 410 | for (uint16_t i = 0; i < W; ++i) { |
| 411 | Res[i] = BitValue(V & 1); |
| 412 | V >>= 1; |
| 413 | } |
| 414 | return Res; |
| 415 | } |
| 416 | |
| 417 | BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { |
| 418 | const APInt &A = CI->getValue(); |
| 419 | uint16_t BW = A.getBitWidth(); |
| 420 | assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow" ); |
| 421 | RegisterCell Res(BW); |
| 422 | for (uint16_t i = 0; i < BW; ++i) |
| 423 | Res[i] = A[i]; |
| 424 | return Res; |
| 425 | } |
| 426 | |
| 427 | BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, |
| 428 | const RegisterCell &A2) const { |
| 429 | uint16_t W = A1.width(); |
| 430 | assert(W == A2.width()); |
| 431 | RegisterCell Res(W); |
| 432 | bool Carry = false; |
| 433 | uint16_t I; |
| 434 | for (I = 0; I < W; ++I) { |
| 435 | const BitValue &V1 = A1[I]; |
| 436 | const BitValue &V2 = A2[I]; |
| 437 | if (!V1.num() || !V2.num()) |
| 438 | break; |
| 439 | unsigned S = bool(V1) + bool(V2) + Carry; |
| 440 | Res[I] = BitValue(S & 1); |
| 441 | Carry = (S > 1); |
| 442 | } |
| 443 | for (; I < W; ++I) { |
| 444 | const BitValue &V1 = A1[I]; |
| 445 | const BitValue &V2 = A2[I]; |
| 446 | // If the next bit is same as Carry, the result will be 0 plus the |
| 447 | // other bit. The Carry bit will remain unchanged. |
| 448 | if (V1.is(T: Carry)) |
| 449 | Res[I] = BitValue::ref(V: V2); |
| 450 | else if (V2.is(T: Carry)) |
| 451 | Res[I] = BitValue::ref(V: V1); |
| 452 | else |
| 453 | break; |
| 454 | } |
| 455 | for (; I < W; ++I) |
| 456 | Res[I] = BitValue::self(); |
| 457 | return Res; |
| 458 | } |
| 459 | |
| 460 | BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, |
| 461 | const RegisterCell &A2) const { |
| 462 | uint16_t W = A1.width(); |
| 463 | assert(W == A2.width()); |
| 464 | RegisterCell Res(W); |
| 465 | bool Borrow = false; |
| 466 | uint16_t I; |
| 467 | for (I = 0; I < W; ++I) { |
| 468 | const BitValue &V1 = A1[I]; |
| 469 | const BitValue &V2 = A2[I]; |
| 470 | if (!V1.num() || !V2.num()) |
| 471 | break; |
| 472 | unsigned S = bool(V1) - bool(V2) - Borrow; |
| 473 | Res[I] = BitValue(S & 1); |
| 474 | Borrow = (S > 1); |
| 475 | } |
| 476 | for (; I < W; ++I) { |
| 477 | const BitValue &V1 = A1[I]; |
| 478 | const BitValue &V2 = A2[I]; |
| 479 | if (V1.is(T: Borrow)) { |
| 480 | Res[I] = BitValue::ref(V: V2); |
| 481 | break; |
| 482 | } |
| 483 | if (V2.is(T: Borrow)) |
| 484 | Res[I] = BitValue::ref(V: V1); |
| 485 | else |
| 486 | break; |
| 487 | } |
| 488 | for (; I < W; ++I) |
| 489 | Res[I] = BitValue::self(); |
| 490 | return Res; |
| 491 | } |
| 492 | |
| 493 | BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, |
| 494 | const RegisterCell &A2) const { |
| 495 | uint16_t W = A1.width() + A2.width(); |
| 496 | uint16_t Z = A1.ct(B: false) + A2.ct(B: false); |
| 497 | RegisterCell Res(W); |
| 498 | Res.fill(B: 0, E: Z, V: BitValue::Zero); |
| 499 | Res.fill(B: Z, E: W, V: BitValue::self()); |
| 500 | return Res; |
| 501 | } |
| 502 | |
| 503 | BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, |
| 504 | const RegisterCell &A2) const { |
| 505 | uint16_t W = A1.width() + A2.width(); |
| 506 | uint16_t Z = A1.ct(B: false) + A2.ct(B: false); |
| 507 | RegisterCell Res(W); |
| 508 | Res.fill(B: 0, E: Z, V: BitValue::Zero); |
| 509 | Res.fill(B: Z, E: W, V: BitValue::self()); |
| 510 | return Res; |
| 511 | } |
| 512 | |
| 513 | BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, |
| 514 | uint16_t Sh) const { |
| 515 | assert(Sh <= A1.width()); |
| 516 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 517 | Res.rol(Sh); |
| 518 | Res.fill(B: 0, E: Sh, V: BitValue::Zero); |
| 519 | return Res; |
| 520 | } |
| 521 | |
| 522 | BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, |
| 523 | uint16_t Sh) const { |
| 524 | uint16_t W = A1.width(); |
| 525 | assert(Sh <= W); |
| 526 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 527 | Res.rol(Sh: W-Sh); |
| 528 | Res.fill(B: W-Sh, E: W, V: BitValue::Zero); |
| 529 | return Res; |
| 530 | } |
| 531 | |
| 532 | BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, |
| 533 | uint16_t Sh) const { |
| 534 | uint16_t W = A1.width(); |
| 535 | assert(Sh <= W); |
| 536 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 537 | BitValue Sign = Res[W-1]; |
| 538 | Res.rol(Sh: W-Sh); |
| 539 | Res.fill(B: W-Sh, E: W, V: Sign); |
| 540 | return Res; |
| 541 | } |
| 542 | |
| 543 | BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, |
| 544 | const RegisterCell &A2) const { |
| 545 | uint16_t W = A1.width(); |
| 546 | assert(W == A2.width()); |
| 547 | RegisterCell Res(W); |
| 548 | for (uint16_t i = 0; i < W; ++i) { |
| 549 | const BitValue &V1 = A1[i]; |
| 550 | const BitValue &V2 = A2[i]; |
| 551 | if (V1.is(T: 1)) |
| 552 | Res[i] = BitValue::ref(V: V2); |
| 553 | else if (V2.is(T: 1)) |
| 554 | Res[i] = BitValue::ref(V: V1); |
| 555 | else if (V1.is(T: 0) || V2.is(T: 0)) |
| 556 | Res[i] = BitValue::Zero; |
| 557 | else if (V1 == V2) |
| 558 | Res[i] = V1; |
| 559 | else |
| 560 | Res[i] = BitValue::self(); |
| 561 | } |
| 562 | return Res; |
| 563 | } |
| 564 | |
| 565 | BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, |
| 566 | const RegisterCell &A2) const { |
| 567 | uint16_t W = A1.width(); |
| 568 | assert(W == A2.width()); |
| 569 | RegisterCell Res(W); |
| 570 | for (uint16_t i = 0; i < W; ++i) { |
| 571 | const BitValue &V1 = A1[i]; |
| 572 | const BitValue &V2 = A2[i]; |
| 573 | if (V1.is(T: 1) || V2.is(T: 1)) |
| 574 | Res[i] = BitValue::One; |
| 575 | else if (V1.is(T: 0)) |
| 576 | Res[i] = BitValue::ref(V: V2); |
| 577 | else if (V2.is(T: 0)) |
| 578 | Res[i] = BitValue::ref(V: V1); |
| 579 | else if (V1 == V2) |
| 580 | Res[i] = V1; |
| 581 | else |
| 582 | Res[i] = BitValue::self(); |
| 583 | } |
| 584 | return Res; |
| 585 | } |
| 586 | |
| 587 | BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, |
| 588 | const RegisterCell &A2) const { |
| 589 | uint16_t W = A1.width(); |
| 590 | assert(W == A2.width()); |
| 591 | RegisterCell Res(W); |
| 592 | for (uint16_t i = 0; i < W; ++i) { |
| 593 | const BitValue &V1 = A1[i]; |
| 594 | const BitValue &V2 = A2[i]; |
| 595 | if (V1.is(T: 0)) |
| 596 | Res[i] = BitValue::ref(V: V2); |
| 597 | else if (V2.is(T: 0)) |
| 598 | Res[i] = BitValue::ref(V: V1); |
| 599 | else if (V1 == V2) |
| 600 | Res[i] = BitValue::Zero; |
| 601 | else |
| 602 | Res[i] = BitValue::self(); |
| 603 | } |
| 604 | return Res; |
| 605 | } |
| 606 | |
| 607 | BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { |
| 608 | uint16_t W = A1.width(); |
| 609 | RegisterCell Res(W); |
| 610 | for (uint16_t i = 0; i < W; ++i) { |
| 611 | const BitValue &V = A1[i]; |
| 612 | if (V.is(T: 0)) |
| 613 | Res[i] = BitValue::One; |
| 614 | else if (V.is(T: 1)) |
| 615 | Res[i] = BitValue::Zero; |
| 616 | else |
| 617 | Res[i] = BitValue::self(); |
| 618 | } |
| 619 | return Res; |
| 620 | } |
| 621 | |
| 622 | BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, |
| 623 | uint16_t BitN) const { |
| 624 | assert(BitN < A1.width()); |
| 625 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 626 | Res[BitN] = BitValue::One; |
| 627 | return Res; |
| 628 | } |
| 629 | |
| 630 | BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, |
| 631 | uint16_t BitN) const { |
| 632 | assert(BitN < A1.width()); |
| 633 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 634 | Res[BitN] = BitValue::Zero; |
| 635 | return Res; |
| 636 | } |
| 637 | |
| 638 | BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, |
| 639 | uint16_t W) const { |
| 640 | uint16_t C = A1.cl(B), AW = A1.width(); |
| 641 | // If the last leading non-B bit is not a constant, then we don't know |
| 642 | // the real count. |
| 643 | if ((C < AW && A1[AW-1-C].num()) || C == AW) |
| 644 | return eIMM(V: C, W); |
| 645 | return RegisterCell::self(Reg: 0, Width: W); |
| 646 | } |
| 647 | |
| 648 | BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, |
| 649 | uint16_t W) const { |
| 650 | uint16_t C = A1.ct(B), AW = A1.width(); |
| 651 | // If the last trailing non-B bit is not a constant, then we don't know |
| 652 | // the real count. |
| 653 | if ((C < AW && A1[C].num()) || C == AW) |
| 654 | return eIMM(V: C, W); |
| 655 | return RegisterCell::self(Reg: 0, Width: W); |
| 656 | } |
| 657 | |
| 658 | BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, |
| 659 | uint16_t FromN) const { |
| 660 | uint16_t W = A1.width(); |
| 661 | assert(FromN <= W); |
| 662 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 663 | BitValue Sign = Res[FromN-1]; |
| 664 | // Sign-extend "inreg". |
| 665 | Res.fill(B: FromN, E: W, V: Sign); |
| 666 | return Res; |
| 667 | } |
| 668 | |
| 669 | BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, |
| 670 | uint16_t FromN) const { |
| 671 | uint16_t W = A1.width(); |
| 672 | assert(FromN <= W); |
| 673 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 674 | Res.fill(B: FromN, E: W, V: BitValue::Zero); |
| 675 | return Res; |
| 676 | } |
| 677 | |
| 678 | BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, |
| 679 | uint16_t B, uint16_t E) const { |
| 680 | uint16_t W = A1.width(); |
| 681 | assert(B < W && E <= W); |
| 682 | if (B == E) |
| 683 | return RegisterCell(0); |
| 684 | uint16_t Last = (E > 0) ? E-1 : W-1; |
| 685 | RegisterCell Res = RegisterCell::ref(C: A1).extract(M: BT::BitMask(B, Last)); |
| 686 | // Return shorter cell. |
| 687 | return Res; |
| 688 | } |
| 689 | |
| 690 | BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, |
| 691 | const RegisterCell &A2, uint16_t AtN) const { |
| 692 | uint16_t W1 = A1.width(), W2 = A2.width(); |
| 693 | (void)W1; |
| 694 | assert(AtN < W1 && AtN+W2 <= W1); |
| 695 | // Copy bits from A1, insert A2 at position AtN. |
| 696 | RegisterCell Res = RegisterCell::ref(C: A1); |
| 697 | if (W2 > 0) |
| 698 | Res.insert(RC: RegisterCell::ref(C: A2), M: BT::BitMask(AtN, AtN+W2-1)); |
| 699 | return Res; |
| 700 | } |
| 701 | |
| 702 | BT::BitMask BT::MachineEvaluator::mask(Register Reg, unsigned Sub) const { |
| 703 | assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0" ); |
| 704 | uint16_t W = getRegBitWidth(RR: Reg); |
| 705 | assert(W > 0 && "Cannot generate mask for empty register" ); |
| 706 | return BitMask(0, W-1); |
| 707 | } |
| 708 | |
| 709 | uint16_t BT::MachineEvaluator::getPhysRegBitWidth(MCRegister Reg) const { |
| 710 | const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); |
| 711 | return TRI.getRegSizeInBits(RC: PC); |
| 712 | } |
| 713 | |
| 714 | bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, |
| 715 | const CellMapType &Inputs, |
| 716 | CellMapType &Outputs) const { |
| 717 | unsigned Opc = MI.getOpcode(); |
| 718 | switch (Opc) { |
| 719 | case TargetOpcode::REG_SEQUENCE: { |
| 720 | RegisterRef RD = MI.getOperand(i: 0); |
| 721 | assert(RD.Sub == 0); |
| 722 | RegisterRef RS = MI.getOperand(i: 1); |
| 723 | unsigned SS = MI.getOperand(i: 2).getImm(); |
| 724 | RegisterRef RT = MI.getOperand(i: 3); |
| 725 | unsigned ST = MI.getOperand(i: 4).getImm(); |
| 726 | assert(SS != ST); |
| 727 | |
| 728 | uint16_t W = getRegBitWidth(RR: RD); |
| 729 | RegisterCell Res(W); |
| 730 | Res.insert(RC: RegisterCell::ref(C: getCell(RR: RS, M: Inputs)), M: mask(Reg: RD.Reg, Sub: SS)); |
| 731 | Res.insert(RC: RegisterCell::ref(C: getCell(RR: RT, M: Inputs)), M: mask(Reg: RD.Reg, Sub: ST)); |
| 732 | putCell(RR: RD, RC: Res, M&: Outputs); |
| 733 | break; |
| 734 | } |
| 735 | |
| 736 | case TargetOpcode::COPY: { |
| 737 | // COPY can transfer a smaller register into a wider one. |
| 738 | // If that is the case, fill the remaining high bits with 0. |
| 739 | RegisterRef RD = MI.getOperand(i: 0); |
| 740 | RegisterRef RS = MI.getOperand(i: 1); |
| 741 | assert(RD.Sub == 0); |
| 742 | uint16_t WD = getRegBitWidth(RR: RD); |
| 743 | uint16_t WS = getRegBitWidth(RR: RS); |
| 744 | assert(WD >= WS); |
| 745 | RegisterCell Src = getCell(RR: RS, M: Inputs); |
| 746 | RegisterCell Res(WD); |
| 747 | Res.insert(RC: Src, M: BitMask(0, WS-1)); |
| 748 | Res.fill(B: WS, E: WD, V: BitValue::Zero); |
| 749 | putCell(RR: RD, RC: Res, M&: Outputs); |
| 750 | break; |
| 751 | } |
| 752 | |
| 753 | default: |
| 754 | return false; |
| 755 | } |
| 756 | |
| 757 | return true; |
| 758 | } |
| 759 | |
| 760 | bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, |
| 761 | const MachineInstr *InstB) const { |
| 762 | // This is a comparison function for a priority queue: give higher priority |
| 763 | // to earlier instructions. |
| 764 | // This operator is used as "less", so returning "true" gives InstB higher |
| 765 | // priority (because then InstA < InstB). |
| 766 | if (InstA == InstB) |
| 767 | return false; |
| 768 | const MachineBasicBlock *BA = InstA->getParent(); |
| 769 | const MachineBasicBlock *BB = InstB->getParent(); |
| 770 | if (BA != BB) { |
| 771 | // If the blocks are different, ideally the dominating block would |
| 772 | // have a higher priority, but it may be too expensive to check. |
| 773 | return BA->getNumber() > BB->getNumber(); |
| 774 | } |
| 775 | |
| 776 | auto getDist = [this] (const MachineInstr *MI) { |
| 777 | auto F = Dist.find(Val: MI); |
| 778 | if (F != Dist.end()) |
| 779 | return F->second; |
| 780 | MachineBasicBlock::const_iterator I = MI->getParent()->begin(); |
| 781 | MachineBasicBlock::const_iterator E = MI->getIterator(); |
| 782 | unsigned D = std::distance(first: I, last: E); |
| 783 | Dist.insert(KV: std::make_pair(x&: MI, y&: D)); |
| 784 | return D; |
| 785 | }; |
| 786 | |
| 787 | return getDist(InstA) > getDist(InstB); |
| 788 | } |
| 789 | |
| 790 | // Main W-Z implementation. |
| 791 | |
| 792 | void BT::visitPHI(const MachineInstr &PI) { |
| 793 | int ThisN = PI.getParent()->getNumber(); |
| 794 | if (Trace) |
| 795 | dbgs() << "Visit FI(" << printMBBReference(MBB: *PI.getParent()) << "): " << PI; |
| 796 | |
| 797 | const MachineOperand &MD = PI.getOperand(i: 0); |
| 798 | assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition" ); |
| 799 | RegisterRef DefRR(MD); |
| 800 | uint16_t DefBW = ME.getRegBitWidth(RR: DefRR); |
| 801 | |
| 802 | RegisterCell DefC = ME.getCell(RR: DefRR, M: Map); |
| 803 | if (DefC == RegisterCell::self(Reg: DefRR.Reg, Width: DefBW)) // XXX slow |
| 804 | return; |
| 805 | |
| 806 | bool Changed = false; |
| 807 | |
| 808 | for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { |
| 809 | const MachineBasicBlock *PB = PI.getOperand(i: i + 1).getMBB(); |
| 810 | int PredN = PB->getNumber(); |
| 811 | if (Trace) |
| 812 | dbgs() << " edge " << printMBBReference(MBB: *PB) << "->" |
| 813 | << printMBBReference(MBB: *PI.getParent()); |
| 814 | if (!EdgeExec.count(x: CFGEdge(PredN, ThisN))) { |
| 815 | if (Trace) |
| 816 | dbgs() << " not executable\n" ; |
| 817 | continue; |
| 818 | } |
| 819 | |
| 820 | RegisterRef RU = PI.getOperand(i); |
| 821 | RegisterCell ResC = ME.getCell(RR: RU, M: Map); |
| 822 | if (Trace) |
| 823 | dbgs() << " input reg: " << printReg(Reg: RU.Reg, TRI: &ME.TRI, SubIdx: RU.Sub) |
| 824 | << " cell: " << ResC << "\n" ; |
| 825 | Changed |= DefC.meet(RC: ResC, SelfR: DefRR.Reg); |
| 826 | } |
| 827 | |
| 828 | if (Changed) { |
| 829 | if (Trace) |
| 830 | dbgs() << "Output: " << printReg(Reg: DefRR.Reg, TRI: &ME.TRI, SubIdx: DefRR.Sub) |
| 831 | << " cell: " << DefC << "\n" ; |
| 832 | ME.putCell(RR: DefRR, RC: DefC, M&: Map); |
| 833 | visitUsesOf(Reg: DefRR.Reg); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | void BT::visitNonBranch(const MachineInstr &MI) { |
| 838 | if (Trace) |
| 839 | dbgs() << "Visit MI(" << printMBBReference(MBB: *MI.getParent()) << "): " << MI; |
| 840 | if (MI.isDebugInstr()) |
| 841 | return; |
| 842 | assert(!MI.isBranch() && "Unexpected branch instruction" ); |
| 843 | |
| 844 | CellMapType ResMap; |
| 845 | bool Eval = ME.evaluate(MI, Inputs: Map, Outputs&: ResMap); |
| 846 | |
| 847 | if (Trace && Eval) { |
| 848 | for (const MachineOperand &MO : MI.operands()) { |
| 849 | if (!MO.isReg() || !MO.isUse()) |
| 850 | continue; |
| 851 | RegisterRef RU(MO); |
| 852 | dbgs() << " input reg: " << printReg(Reg: RU.Reg, TRI: &ME.TRI, SubIdx: RU.Sub) |
| 853 | << " cell: " << ME.getCell(RR: RU, M: Map) << "\n" ; |
| 854 | } |
| 855 | dbgs() << "Outputs:\n" ; |
| 856 | for (const std::pair<const unsigned, RegisterCell> &P : ResMap) { |
| 857 | RegisterRef RD(P.first); |
| 858 | dbgs() << " " << printReg(Reg: P.first, TRI: &ME.TRI) << " cell: " |
| 859 | << ME.getCell(RR: RD, M: ResMap) << "\n" ; |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | // Iterate over all definitions of the instruction, and update the |
| 864 | // cells accordingly. |
| 865 | for (const MachineOperand &MO : MI.operands()) { |
| 866 | // Visit register defs only. |
| 867 | if (!MO.isReg() || !MO.isDef()) |
| 868 | continue; |
| 869 | RegisterRef RD(MO); |
| 870 | assert(RD.Sub == 0 && "Unexpected sub-register in definition" ); |
| 871 | if (!RD.Reg.isVirtual()) |
| 872 | continue; |
| 873 | |
| 874 | bool Changed = false; |
| 875 | if (!Eval || ResMap.count(x: RD.Reg) == 0) { |
| 876 | // Set to "ref" (aka "bottom"). |
| 877 | uint16_t DefBW = ME.getRegBitWidth(RR: RD); |
| 878 | RegisterCell RefC = RegisterCell::self(Reg: RD.Reg, Width: DefBW); |
| 879 | if (RefC != ME.getCell(RR: RD, M: Map)) { |
| 880 | ME.putCell(RR: RD, RC: RefC, M&: Map); |
| 881 | Changed = true; |
| 882 | } |
| 883 | } else { |
| 884 | RegisterCell DefC = ME.getCell(RR: RD, M: Map); |
| 885 | RegisterCell ResC = ME.getCell(RR: RD, M: ResMap); |
| 886 | // This is a non-phi instruction, so the values of the inputs come |
| 887 | // from the same registers each time this instruction is evaluated. |
| 888 | // During the propagation, the values of the inputs can become lowered |
| 889 | // in the sense of the lattice operation, which may cause different |
| 890 | // results to be calculated in subsequent evaluations. This should |
| 891 | // not cause the bottoming of the result in the map, since the new |
| 892 | // result is already reflecting the lowered inputs. |
| 893 | for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { |
| 894 | BitValue &V = DefC[i]; |
| 895 | // Bits that are already "bottom" should not be updated. |
| 896 | if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) |
| 897 | continue; |
| 898 | // Same for those that are identical in DefC and ResC. |
| 899 | if (V == ResC[i]) |
| 900 | continue; |
| 901 | V = ResC[i]; |
| 902 | Changed = true; |
| 903 | } |
| 904 | if (Changed) |
| 905 | ME.putCell(RR: RD, RC: DefC, M&: Map); |
| 906 | } |
| 907 | if (Changed) |
| 908 | visitUsesOf(Reg: RD.Reg); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | void BT::visitBranchesFrom(const MachineInstr &BI) { |
| 913 | const MachineBasicBlock &B = *BI.getParent(); |
| 914 | MachineBasicBlock::const_iterator It = BI, End = B.end(); |
| 915 | BranchTargetList Targets, BTs; |
| 916 | bool FallsThrough = true, DefaultToAll = false; |
| 917 | int ThisN = B.getNumber(); |
| 918 | |
| 919 | do { |
| 920 | BTs.clear(); |
| 921 | const MachineInstr &MI = *It; |
| 922 | if (Trace) |
| 923 | dbgs() << "Visit BR(" << printMBBReference(MBB: B) << "): " << MI; |
| 924 | assert(MI.isBranch() && "Expecting branch instruction" ); |
| 925 | InstrExec.insert(x: &MI); |
| 926 | bool Eval = ME.evaluate(BI: MI, Inputs: Map, Targets&: BTs, FallsThru&: FallsThrough); |
| 927 | if (!Eval) { |
| 928 | // If the evaluation failed, we will add all targets. Keep going in |
| 929 | // the loop to mark all executable branches as such. |
| 930 | DefaultToAll = true; |
| 931 | FallsThrough = true; |
| 932 | if (Trace) |
| 933 | dbgs() << " failed to evaluate: will add all CFG successors\n" ; |
| 934 | } else if (!DefaultToAll) { |
| 935 | // If evaluated successfully add the targets to the cumulative list. |
| 936 | if (Trace) { |
| 937 | dbgs() << " adding targets:" ; |
| 938 | for (const MachineBasicBlock *BT : BTs) |
| 939 | dbgs() << " " << printMBBReference(MBB: *BT); |
| 940 | if (FallsThrough) |
| 941 | dbgs() << "\n falls through\n" ; |
| 942 | else |
| 943 | dbgs() << "\n does not fall through\n" ; |
| 944 | } |
| 945 | Targets.insert_range(R&: BTs); |
| 946 | } |
| 947 | ++It; |
| 948 | } while (FallsThrough && It != End); |
| 949 | |
| 950 | if (B.mayHaveInlineAsmBr()) |
| 951 | DefaultToAll = true; |
| 952 | |
| 953 | if (!DefaultToAll) { |
| 954 | // Need to add all CFG successors that lead to EH landing pads. |
| 955 | // There won't be explicit branches to these blocks, but they must |
| 956 | // be processed. |
| 957 | for (const MachineBasicBlock *SB : B.successors()) { |
| 958 | if (SB->isEHPad()) |
| 959 | Targets.insert(X: SB); |
| 960 | } |
| 961 | if (FallsThrough) { |
| 962 | MachineFunction::const_iterator BIt = B.getIterator(); |
| 963 | MachineFunction::const_iterator Next = std::next(x: BIt); |
| 964 | if (Next != MF.end()) |
| 965 | Targets.insert(X: &*Next); |
| 966 | } |
| 967 | } else { |
| 968 | Targets.insert_range(R: B.successors()); |
| 969 | } |
| 970 | |
| 971 | for (const MachineBasicBlock *TB : Targets) |
| 972 | FlowQ.push(x: CFGEdge(ThisN, TB->getNumber())); |
| 973 | } |
| 974 | |
| 975 | void BT::visitUsesOf(Register Reg) { |
| 976 | if (Trace) |
| 977 | dbgs() << "queuing uses of modified reg " << printReg(Reg, TRI: &ME.TRI) |
| 978 | << " cell: " << ME.getCell(RR: Reg, M: Map) << '\n'; |
| 979 | |
| 980 | for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) |
| 981 | UseQ.push(MI: &UseI); |
| 982 | } |
| 983 | |
| 984 | BT::RegisterCell BT::get(RegisterRef RR) const { |
| 985 | return ME.getCell(RR, M: Map); |
| 986 | } |
| 987 | |
| 988 | void BT::put(RegisterRef RR, const RegisterCell &RC) { |
| 989 | ME.putCell(RR, RC, M&: Map); |
| 990 | } |
| 991 | |
| 992 | // Replace all references to bits from OldRR with the corresponding bits |
| 993 | // in NewRR. |
| 994 | void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { |
| 995 | assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map" ); |
| 996 | BitMask OM = ME.mask(Reg: OldRR.Reg, Sub: OldRR.Sub); |
| 997 | BitMask NM = ME.mask(Reg: NewRR.Reg, Sub: NewRR.Sub); |
| 998 | uint16_t OMB = OM.first(), OME = OM.last(); |
| 999 | uint16_t NMB = NM.first(), NME = NM.last(); |
| 1000 | (void)NME; |
| 1001 | assert((OME-OMB == NME-NMB) && |
| 1002 | "Substituting registers of different lengths" ); |
| 1003 | for (std::pair<const unsigned, RegisterCell> &P : Map) { |
| 1004 | RegisterCell &RC = P.second; |
| 1005 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
| 1006 | BitValue &V = RC[i]; |
| 1007 | if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) |
| 1008 | continue; |
| 1009 | if (V.RefI.Pos < OMB || V.RefI.Pos > OME) |
| 1010 | continue; |
| 1011 | V.RefI.Reg = NewRR.Reg; |
| 1012 | V.RefI.Pos += NMB-OMB; |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | // Check if the block has been "executed" during propagation. (If not, the |
| 1018 | // block is dead, but it may still appear to be reachable.) |
| 1019 | bool BT::reached(const MachineBasicBlock *B) const { |
| 1020 | int BN = B->getNumber(); |
| 1021 | assert(BN >= 0); |
| 1022 | return ReachedBB.count(V: BN); |
| 1023 | } |
| 1024 | |
| 1025 | // Visit an individual instruction. This could be a newly added instruction, |
| 1026 | // or one that has been modified by an optimization. |
| 1027 | void BT::visit(const MachineInstr &MI) { |
| 1028 | assert(!MI.isBranch() && "Only non-branches are allowed" ); |
| 1029 | InstrExec.insert(x: &MI); |
| 1030 | visitNonBranch(MI); |
| 1031 | // Make sure to flush all the pending use updates. |
| 1032 | runUseQueue(); |
| 1033 | // The call to visitNonBranch could propagate the changes until a branch |
| 1034 | // is actually visited. This could result in adding CFG edges to the flow |
| 1035 | // queue. Since the queue won't be processed, clear it. |
| 1036 | while (!FlowQ.empty()) |
| 1037 | FlowQ.pop(); |
| 1038 | } |
| 1039 | |
| 1040 | void BT::reset() { |
| 1041 | EdgeExec.clear(); |
| 1042 | InstrExec.clear(); |
| 1043 | Map.clear(); |
| 1044 | ReachedBB.clear(); |
| 1045 | ReachedBB.reserve(Size: MF.size()); |
| 1046 | } |
| 1047 | |
| 1048 | void BT::runEdgeQueue(BitVector &BlockScanned) { |
| 1049 | while (!FlowQ.empty()) { |
| 1050 | CFGEdge Edge = FlowQ.front(); |
| 1051 | FlowQ.pop(); |
| 1052 | |
| 1053 | if (!EdgeExec.insert(x: Edge).second) |
| 1054 | return; |
| 1055 | ReachedBB.insert(V: Edge.second); |
| 1056 | |
| 1057 | const MachineBasicBlock &B = *MF.getBlockNumbered(N: Edge.second); |
| 1058 | MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); |
| 1059 | // Visit PHI nodes first. |
| 1060 | while (It != End && It->isPHI()) { |
| 1061 | const MachineInstr &PI = *It++; |
| 1062 | InstrExec.insert(x: &PI); |
| 1063 | visitPHI(PI); |
| 1064 | } |
| 1065 | |
| 1066 | // If this block has already been visited through a flow graph edge, |
| 1067 | // then the instructions have already been processed. Any updates to |
| 1068 | // the cells would now only happen through visitUsesOf... |
| 1069 | if (BlockScanned[Edge.second]) |
| 1070 | return; |
| 1071 | BlockScanned[Edge.second] = true; |
| 1072 | |
| 1073 | // Visit non-branch instructions. |
| 1074 | while (It != End && !It->isBranch()) { |
| 1075 | const MachineInstr &MI = *It++; |
| 1076 | InstrExec.insert(x: &MI); |
| 1077 | visitNonBranch(MI); |
| 1078 | } |
| 1079 | // If block end has been reached, add the fall-through edge to the queue. |
| 1080 | if (It == End) { |
| 1081 | MachineFunction::const_iterator BIt = B.getIterator(); |
| 1082 | MachineFunction::const_iterator Next = std::next(x: BIt); |
| 1083 | if (Next != MF.end() && B.isSuccessor(MBB: &*Next)) { |
| 1084 | int ThisN = B.getNumber(); |
| 1085 | int NextN = Next->getNumber(); |
| 1086 | FlowQ.push(x: CFGEdge(ThisN, NextN)); |
| 1087 | } |
| 1088 | } else { |
| 1089 | // Handle the remaining sequence of branches. This function will update |
| 1090 | // the work queue. |
| 1091 | visitBranchesFrom(BI: *It); |
| 1092 | } |
| 1093 | } // while (!FlowQ->empty()) |
| 1094 | } |
| 1095 | |
| 1096 | void BT::runUseQueue() { |
| 1097 | while (!UseQ.empty()) { |
| 1098 | MachineInstr &UseI = *UseQ.front(); |
| 1099 | UseQ.pop(); |
| 1100 | |
| 1101 | if (!InstrExec.count(x: &UseI)) |
| 1102 | continue; |
| 1103 | if (UseI.isPHI()) |
| 1104 | visitPHI(PI: UseI); |
| 1105 | else if (!UseI.isBranch()) |
| 1106 | visitNonBranch(MI: UseI); |
| 1107 | else |
| 1108 | visitBranchesFrom(BI: UseI); |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | void BT::run() { |
| 1113 | reset(); |
| 1114 | assert(FlowQ.empty()); |
| 1115 | |
| 1116 | using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; |
| 1117 | const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(F: &MF); |
| 1118 | |
| 1119 | unsigned MaxBN = 0; |
| 1120 | for (const MachineBasicBlock &B : MF) { |
| 1121 | assert(B.getNumber() >= 0 && "Disconnected block" ); |
| 1122 | unsigned BN = B.getNumber(); |
| 1123 | if (BN > MaxBN) |
| 1124 | MaxBN = BN; |
| 1125 | } |
| 1126 | |
| 1127 | // Keep track of visited blocks. |
| 1128 | BitVector BlockScanned(MaxBN+1); |
| 1129 | |
| 1130 | int EntryN = Entry->getNumber(); |
| 1131 | // Generate a fake edge to get something to start with. |
| 1132 | FlowQ.push(x: CFGEdge(-1, EntryN)); |
| 1133 | |
| 1134 | while (!FlowQ.empty() || !UseQ.empty()) { |
| 1135 | runEdgeQueue(BlockScanned); |
| 1136 | runUseQueue(); |
| 1137 | } |
| 1138 | UseQ.reset(); |
| 1139 | |
| 1140 | if (Trace) |
| 1141 | print_cells(OS&: dbgs() << "Cells after propagation:\n" ); |
| 1142 | } |
| 1143 | |