1 | //===- HexagonEarlyIfConv.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements a Hexagon-specific if-conversion pass that runs on the |
10 | // SSA form. |
11 | // In SSA it is not straightforward to represent instructions that condi- |
12 | // tionally define registers, since a conditionally-defined register may |
13 | // only be used under the same condition on which the definition was based. |
14 | // To avoid complications of this nature, this patch will only generate |
15 | // predicated stores, and speculate other instructions from the "if-conver- |
16 | // ted" block. |
17 | // The code will recognize CFG patterns where a block with a conditional |
18 | // branch "splits" into a "true block" and a "false block". Either of these |
19 | // could be omitted (in case of a triangle, for example). |
20 | // If after conversion of the side block(s) the CFG allows it, the resul- |
21 | // ting blocks may be merged. If the "join" block contained PHI nodes, they |
22 | // will be replaced with MUX (or MUX-like) instructions to maintain the |
23 | // semantics of the PHI. |
24 | // |
25 | // Example: |
26 | // |
27 | // %40 = L2_loadrub_io killed %39, 1 |
28 | // %41 = S2_tstbit_i killed %40, 0 |
29 | // J2_jumpt killed %41, <%bb.5>, implicit dead %pc |
30 | // J2_jump <%bb.4>, implicit dead %pc |
31 | // Successors according to CFG: %bb.4(62) %bb.5(62) |
32 | // |
33 | // %bb.4: derived from LLVM BB %if.then |
34 | // Predecessors according to CFG: %bb.3 |
35 | // %11 = A2_addp %6, %10 |
36 | // S2_storerd_io %32, 16, %11 |
37 | // Successors according to CFG: %bb.5 |
38 | // |
39 | // %bb.5: derived from LLVM BB %if.end |
40 | // Predecessors according to CFG: %bb.3 %bb.4 |
41 | // %12 = PHI %6, <%bb.3>, %11, <%bb.4> |
42 | // %13 = A2_addp %7, %12 |
43 | // %42 = C2_cmpeqi %9, 10 |
44 | // J2_jumpf killed %42, <%bb.3>, implicit dead %pc |
45 | // J2_jump <%bb.6>, implicit dead %pc |
46 | // Successors according to CFG: %bb.6(4) %bb.3(124) |
47 | // |
48 | // would become: |
49 | // |
50 | // %40 = L2_loadrub_io killed %39, 1 |
51 | // %41 = S2_tstbit_i killed %40, 0 |
52 | // spec-> %11 = A2_addp %6, %10 |
53 | // pred-> S2_pstorerdf_io %41, %32, 16, %11 |
54 | // %46 = PS_pselect %41, %6, %11 |
55 | // %13 = A2_addp %7, %46 |
56 | // %42 = C2_cmpeqi %9, 10 |
57 | // J2_jumpf killed %42, <%bb.3>, implicit dead %pc |
58 | // J2_jump <%bb.6>, implicit dead %pc |
59 | // Successors according to CFG: %bb.6 %bb.3 |
60 | |
61 | #include "Hexagon.h" |
62 | #include "HexagonInstrInfo.h" |
63 | #include "HexagonSubtarget.h" |
64 | #include "llvm/ADT/DenseSet.h" |
65 | #include "llvm/ADT/SmallVector.h" |
66 | #include "llvm/ADT/StringRef.h" |
67 | #include "llvm/ADT/iterator_range.h" |
68 | #include "llvm/CodeGen/MachineBasicBlock.h" |
69 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
70 | #include "llvm/CodeGen/MachineDominators.h" |
71 | #include "llvm/CodeGen/MachineFunction.h" |
72 | #include "llvm/CodeGen/MachineFunctionPass.h" |
73 | #include "llvm/CodeGen/MachineInstr.h" |
74 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
75 | #include "llvm/CodeGen/MachineLoopInfo.h" |
76 | #include "llvm/CodeGen/MachineOperand.h" |
77 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
78 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
79 | #include "llvm/IR/DebugLoc.h" |
80 | #include "llvm/Pass.h" |
81 | #include "llvm/Support/BranchProbability.h" |
82 | #include "llvm/Support/CommandLine.h" |
83 | #include "llvm/Support/Compiler.h" |
84 | #include "llvm/Support/Debug.h" |
85 | #include "llvm/Support/ErrorHandling.h" |
86 | #include "llvm/Support/raw_ostream.h" |
87 | #include <cassert> |
88 | #include <iterator> |
89 | |
90 | #define DEBUG_TYPE "hexagon-eif" |
91 | |
92 | using namespace llvm; |
93 | |
94 | static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob" , cl::Hidden, |
95 | cl::init(Val: true), cl::desc("Enable branch probability info" )); |
96 | static cl::opt<unsigned> SizeLimit("eif-limit" , cl::init(Val: 6), cl::Hidden, |
97 | cl::desc("Size limit in Hexagon early if-conversion" )); |
98 | static cl::opt<bool> SkipExitBranches("eif-no-loop-exit" , cl::init(Val: false), |
99 | cl::Hidden, cl::desc("Do not convert branches that may exit the loop" )); |
100 | |
101 | namespace { |
102 | |
103 | struct PrintMB { |
104 | PrintMB(const MachineBasicBlock *B) : MB(B) {} |
105 | |
106 | const MachineBasicBlock *MB; |
107 | }; |
108 | raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { |
109 | if (!P.MB) |
110 | return OS << "<none>" ; |
111 | return OS << '#' << P.MB->getNumber(); |
112 | } |
113 | |
114 | struct FlowPattern { |
115 | FlowPattern() = default; |
116 | FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, |
117 | MachineBasicBlock *FB, MachineBasicBlock *JB) |
118 | : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} |
119 | |
120 | MachineBasicBlock *SplitB = nullptr; |
121 | MachineBasicBlock *TrueB = nullptr; |
122 | MachineBasicBlock *FalseB = nullptr; |
123 | MachineBasicBlock *JoinB = nullptr; |
124 | unsigned PredR = 0; |
125 | }; |
126 | |
127 | struct PrintFP { |
128 | PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) |
129 | : FP(P), TRI(T) {} |
130 | |
131 | const FlowPattern &FP; |
132 | const TargetRegisterInfo &TRI; |
133 | friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); |
134 | }; |
135 | raw_ostream &operator<<(raw_ostream &OS, |
136 | const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; |
137 | raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { |
138 | OS << "{ SplitB:" << PrintMB(P.FP.SplitB) |
139 | << ", PredR:" << printReg(Reg: P.FP.PredR, TRI: &P.TRI) |
140 | << ", TrueB:" << PrintMB(P.FP.TrueB) |
141 | << ", FalseB:" << PrintMB(P.FP.FalseB) |
142 | << ", JoinB:" << PrintMB(P.FP.JoinB) << " }" ; |
143 | return OS; |
144 | } |
145 | |
146 | class HexagonEarlyIfConversion : public MachineFunctionPass { |
147 | public: |
148 | static char ID; |
149 | |
150 | HexagonEarlyIfConversion() : MachineFunctionPass(ID) {} |
151 | |
152 | StringRef getPassName() const override { |
153 | return "Hexagon early if conversion" ; |
154 | } |
155 | |
156 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
157 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
158 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
159 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
160 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
161 | MachineFunctionPass::getAnalysisUsage(AU); |
162 | } |
163 | |
164 | bool runOnMachineFunction(MachineFunction &MF) override; |
165 | |
166 | private: |
167 | using BlockSetType = DenseSet<MachineBasicBlock *>; |
168 | |
169 | bool isPreheader(const MachineBasicBlock *B) const; |
170 | bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, |
171 | FlowPattern &FP); |
172 | bool visitBlock(MachineBasicBlock *B, MachineLoop *L); |
173 | bool visitLoop(MachineLoop *L); |
174 | |
175 | bool hasEHLabel(const MachineBasicBlock *B) const; |
176 | bool hasUncondBranch(const MachineBasicBlock *B) const; |
177 | bool isValidCandidate(const MachineBasicBlock *B) const; |
178 | bool usesUndefVReg(const MachineInstr *MI) const; |
179 | bool isValid(const FlowPattern &FP) const; |
180 | unsigned countPredicateDefs(const MachineBasicBlock *B) const; |
181 | unsigned computePhiCost(const MachineBasicBlock *B, |
182 | const FlowPattern &FP) const; |
183 | bool isProfitable(const FlowPattern &FP) const; |
184 | bool isPredicableStore(const MachineInstr *MI) const; |
185 | bool isSafeToSpeculate(const MachineInstr *MI) const; |
186 | bool isPredicate(unsigned R) const; |
187 | |
188 | unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; |
189 | void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, |
190 | MachineInstr *MI, unsigned PredR, bool IfTrue); |
191 | void predicateBlockNB(MachineBasicBlock *ToB, |
192 | MachineBasicBlock::iterator At, MachineBasicBlock *FromB, |
193 | unsigned PredR, bool IfTrue); |
194 | |
195 | unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, |
196 | const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, |
197 | unsigned TSR, unsigned FR, unsigned FSR); |
198 | void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); |
199 | void convert(const FlowPattern &FP); |
200 | |
201 | void removeBlock(MachineBasicBlock *B); |
202 | void eliminatePhis(MachineBasicBlock *B); |
203 | void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); |
204 | void simplifyFlowGraph(const FlowPattern &FP); |
205 | |
206 | const HexagonInstrInfo *HII = nullptr; |
207 | const TargetRegisterInfo *TRI = nullptr; |
208 | MachineFunction *MFN = nullptr; |
209 | MachineRegisterInfo *MRI = nullptr; |
210 | MachineDominatorTree *MDT = nullptr; |
211 | MachineLoopInfo *MLI = nullptr; |
212 | BlockSetType Deleted; |
213 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
214 | }; |
215 | |
216 | } // end anonymous namespace |
217 | |
218 | char HexagonEarlyIfConversion::ID = 0; |
219 | |
220 | INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if" , |
221 | "Hexagon early if conversion" , false, false) |
222 | |
223 | bool HexagonEarlyIfConversion::(const MachineBasicBlock *B) const { |
224 | if (B->succ_size() != 1) |
225 | return false; |
226 | MachineBasicBlock *SB = *B->succ_begin(); |
227 | MachineLoop *L = MLI->getLoopFor(BB: SB); |
228 | return L && SB == L->getHeader() && MDT->dominates(A: B, B: SB); |
229 | } |
230 | |
231 | bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, |
232 | MachineLoop *L, FlowPattern &FP) { |
233 | LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B) |
234 | << "\n" ); |
235 | |
236 | // Interested only in conditional branches, no .new, no new-value, etc. |
237 | // Check the terminators directly, it's easier than handling all responses |
238 | // from analyzeBranch. |
239 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
240 | MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); |
241 | if (T1I == B->end()) |
242 | return false; |
243 | unsigned Opc = T1I->getOpcode(); |
244 | if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) |
245 | return false; |
246 | Register PredR = T1I->getOperand(i: 0).getReg(); |
247 | |
248 | // Get the layout successor, or 0 if B does not have one. |
249 | MachineFunction::iterator NextBI = std::next(x: MachineFunction::iterator(B)); |
250 | MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr; |
251 | |
252 | MachineBasicBlock *T1B = T1I->getOperand(i: 1).getMBB(); |
253 | MachineBasicBlock::const_iterator T2I = std::next(x: T1I); |
254 | // The second terminator should be an unconditional branch. |
255 | assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); |
256 | MachineBasicBlock *T2B = (T2I == B->end()) ? NextB |
257 | : T2I->getOperand(i: 0).getMBB(); |
258 | if (T1B == T2B) { |
259 | // XXX merge if T1B == NextB, or convert branch to unconditional. |
260 | // mark as diamond with both sides equal? |
261 | return false; |
262 | } |
263 | |
264 | // Record the true/false blocks in such a way that "true" means "if (PredR)", |
265 | // and "false" means "if (!PredR)". |
266 | if (Opc == Hexagon::J2_jumpt) |
267 | TB = T1B, FB = T2B; |
268 | else |
269 | TB = T2B, FB = T1B; |
270 | |
271 | if (!MDT->properlyDominates(A: B, B: TB) || !MDT->properlyDominates(A: B, B: FB)) |
272 | return false; |
273 | |
274 | // Detect triangle first. In case of a triangle, one of the blocks TB/FB |
275 | // can fall through into the other, in other words, it will be executed |
276 | // in both cases. We only want to predicate the block that is executed |
277 | // conditionally. |
278 | assert(TB && FB && "Failed to find triangle control flow blocks" ); |
279 | unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); |
280 | unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); |
281 | |
282 | // A block is predicable if it has one predecessor (it must be B), and |
283 | // it has a single successor. In fact, the block has to end either with |
284 | // an unconditional branch (which can be predicated), or with a fall- |
285 | // through. |
286 | // Also, skip blocks that do not belong to the same loop. |
287 | bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(BB: TB) == L); |
288 | bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(BB: FB) == L); |
289 | |
290 | // If requested (via an option), do not consider branches where the |
291 | // true and false targets do not belong to the same loop. |
292 | if (SkipExitBranches && MLI->getLoopFor(BB: TB) != MLI->getLoopFor(BB: FB)) |
293 | return false; |
294 | |
295 | // If neither is predicable, there is nothing interesting. |
296 | if (!TOk && !FOk) |
297 | return false; |
298 | |
299 | MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr; |
300 | MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr; |
301 | MachineBasicBlock *JB = nullptr; |
302 | |
303 | if (TOk) { |
304 | if (FOk) { |
305 | if (TSB == FSB) |
306 | JB = TSB; |
307 | // Diamond: "if (P) then TB; else FB;". |
308 | } else { |
309 | // TOk && !FOk |
310 | if (TSB == FB) |
311 | JB = FB; |
312 | FB = nullptr; |
313 | } |
314 | } else { |
315 | // !TOk && FOk (at least one must be true by now). |
316 | if (FSB == TB) |
317 | JB = TB; |
318 | TB = nullptr; |
319 | } |
320 | // Don't try to predicate loop preheaders. |
321 | if ((TB && isPreheader(B: TB)) || (FB && isPreheader(B: FB))) { |
322 | LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) |
323 | << " is a loop preheader. Skipping.\n" ); |
324 | return false; |
325 | } |
326 | |
327 | FP = FlowPattern(B, PredR, TB, FB, JB); |
328 | LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n" ); |
329 | return true; |
330 | } |
331 | |
332 | // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that |
333 | // contains EH_LABEL. |
334 | bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { |
335 | for (auto &I : *B) |
336 | if (I.isEHLabel()) |
337 | return true; |
338 | return false; |
339 | } |
340 | |
341 | // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize |
342 | // that a block can never fall-through. |
343 | bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) |
344 | const { |
345 | MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); |
346 | while (I != E) { |
347 | if (I->isBarrier()) |
348 | return true; |
349 | ++I; |
350 | } |
351 | return false; |
352 | } |
353 | |
354 | bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) |
355 | const { |
356 | if (!B) |
357 | return true; |
358 | if (B->isEHPad() || B->hasAddressTaken()) |
359 | return false; |
360 | if (B->succ_empty()) |
361 | return false; |
362 | |
363 | for (auto &MI : *B) { |
364 | if (MI.isDebugInstr()) |
365 | continue; |
366 | if (MI.isConditionalBranch()) |
367 | return false; |
368 | unsigned Opc = MI.getOpcode(); |
369 | bool IsJMP = (Opc == Hexagon::J2_jump); |
370 | if (!isPredicableStore(MI: &MI) && !IsJMP && !isSafeToSpeculate(MI: &MI)) |
371 | return false; |
372 | // Look for predicate registers defined by this instruction. It's ok |
373 | // to speculate such an instruction, but the predicate register cannot |
374 | // be used outside of this block (or else it won't be possible to |
375 | // update the use of it after predication). PHI uses will be updated |
376 | // to use a result of a MUX, and a MUX cannot be created for predicate |
377 | // registers. |
378 | for (const MachineOperand &MO : MI.operands()) { |
379 | if (!MO.isReg() || !MO.isDef()) |
380 | continue; |
381 | Register R = MO.getReg(); |
382 | if (!R.isVirtual()) |
383 | continue; |
384 | if (!isPredicate(R)) |
385 | continue; |
386 | for (const MachineOperand &U : MRI->use_operands(Reg: R)) |
387 | if (U.getParent()->isPHI()) |
388 | return false; |
389 | } |
390 | } |
391 | return true; |
392 | } |
393 | |
394 | bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { |
395 | for (const MachineOperand &MO : MI->operands()) { |
396 | if (!MO.isReg() || !MO.isUse()) |
397 | continue; |
398 | Register R = MO.getReg(); |
399 | if (!R.isVirtual()) |
400 | continue; |
401 | const MachineInstr *DefI = MRI->getVRegDef(Reg: R); |
402 | // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. |
403 | assert(DefI && "Expecting a reaching def in MRI" ); |
404 | if (DefI->isImplicitDef()) |
405 | return true; |
406 | } |
407 | return false; |
408 | } |
409 | |
410 | bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { |
411 | if (hasEHLabel(B: FP.SplitB)) // KLUDGE: see function definition |
412 | return false; |
413 | if (FP.TrueB && !isValidCandidate(B: FP.TrueB)) |
414 | return false; |
415 | if (FP.FalseB && !isValidCandidate(B: FP.FalseB)) |
416 | return false; |
417 | // Check the PHIs in the join block. If any of them use a register |
418 | // that is defined as IMPLICIT_DEF, do not convert this. This can |
419 | // legitimately happen if one side of the split never executes, but |
420 | // the compiler is unable to prove it. That side may then seem to |
421 | // provide an "undef" value to the join block, however it will never |
422 | // execute at run-time. If we convert this case, the "undef" will |
423 | // be used in a MUX instruction, and that may seem like actually |
424 | // using an undefined value to other optimizations. This could lead |
425 | // to trouble further down the optimization stream, cause assertions |
426 | // to fail, etc. |
427 | if (FP.JoinB) { |
428 | const MachineBasicBlock &B = *FP.JoinB; |
429 | for (auto &MI : B) { |
430 | if (!MI.isPHI()) |
431 | break; |
432 | if (usesUndefVReg(MI: &MI)) |
433 | return false; |
434 | Register DefR = MI.getOperand(i: 0).getReg(); |
435 | if (isPredicate(R: DefR)) |
436 | return false; |
437 | } |
438 | } |
439 | return true; |
440 | } |
441 | |
442 | unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B, |
443 | const FlowPattern &FP) const { |
444 | if (B->pred_size() < 2) |
445 | return 0; |
446 | |
447 | unsigned Cost = 0; |
448 | for (const MachineInstr &MI : *B) { |
449 | if (!MI.isPHI()) |
450 | break; |
451 | // If both incoming blocks are one of the TrueB/FalseB/SplitB, then |
452 | // a MUX may be needed. Otherwise the PHI will need to be updated at |
453 | // no extra cost. |
454 | // Find the interesting PHI operands for further checks. |
455 | SmallVector<unsigned,2> Inc; |
456 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { |
457 | const MachineBasicBlock *BB = MI.getOperand(i: i+1).getMBB(); |
458 | if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB) |
459 | Inc.push_back(Elt: i); |
460 | } |
461 | assert(Inc.size() <= 2); |
462 | if (Inc.size() < 2) |
463 | continue; |
464 | |
465 | const MachineOperand &RA = MI.getOperand(i: 1); |
466 | const MachineOperand &RB = MI.getOperand(i: 3); |
467 | assert(RA.isReg() && RB.isReg()); |
468 | // Must have a MUX if the phi uses a subregister. |
469 | if (RA.getSubReg() != 0 || RB.getSubReg() != 0) { |
470 | Cost++; |
471 | continue; |
472 | } |
473 | const MachineInstr *Def1 = MRI->getVRegDef(Reg: RA.getReg()); |
474 | const MachineInstr *Def3 = MRI->getVRegDef(Reg: RB.getReg()); |
475 | if (!HII->isPredicable(MI: *Def1) || !HII->isPredicable(MI: *Def3)) |
476 | Cost++; |
477 | } |
478 | return Cost; |
479 | } |
480 | |
481 | unsigned HexagonEarlyIfConversion::countPredicateDefs( |
482 | const MachineBasicBlock *B) const { |
483 | unsigned PredDefs = 0; |
484 | for (auto &MI : *B) { |
485 | for (const MachineOperand &MO : MI.operands()) { |
486 | if (!MO.isReg() || !MO.isDef()) |
487 | continue; |
488 | Register R = MO.getReg(); |
489 | if (!R.isVirtual()) |
490 | continue; |
491 | if (isPredicate(R)) |
492 | PredDefs++; |
493 | } |
494 | } |
495 | return PredDefs; |
496 | } |
497 | |
498 | bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { |
499 | BranchProbability JumpProb(1, 10); |
500 | BranchProbability Prob(9, 10); |
501 | if (MBPI && FP.TrueB && !FP.FalseB && |
502 | (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.TrueB) < JumpProb || |
503 | MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.TrueB) > Prob)) |
504 | return false; |
505 | |
506 | if (MBPI && !FP.TrueB && FP.FalseB && |
507 | (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.FalseB) < JumpProb || |
508 | MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.FalseB) > Prob)) |
509 | return false; |
510 | |
511 | if (FP.TrueB && FP.FalseB) { |
512 | // Do not IfCovert if the branch is one sided. |
513 | if (MBPI) { |
514 | if (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.TrueB) > Prob) |
515 | return false; |
516 | if (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.FalseB) > Prob) |
517 | return false; |
518 | } |
519 | |
520 | // If both sides are predicable, convert them if they join, and the |
521 | // join block has no other predecessors. |
522 | MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); |
523 | MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); |
524 | if (TSB != FSB) |
525 | return false; |
526 | if (TSB->pred_size() != 2) |
527 | return false; |
528 | } |
529 | |
530 | // Calculate the total size of the predicated blocks. |
531 | // Assume instruction counts without branches to be the approximation of |
532 | // the code size. If the predicated blocks are smaller than a packet size, |
533 | // approximate the spare room in the packet that could be filled with the |
534 | // predicated/speculated instructions. |
535 | auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) { |
536 | if (!B) |
537 | return 0u; |
538 | unsigned T = std::count_if(first: B->begin(), last: B->getFirstTerminator(), |
539 | pred: [](const MachineInstr &MI) { |
540 | return !MI.isMetaInstruction(); |
541 | }); |
542 | if (T < HEXAGON_PACKET_SIZE) |
543 | Spare += HEXAGON_PACKET_SIZE-T; |
544 | return T; |
545 | }; |
546 | unsigned Spare = 0; |
547 | unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare); |
548 | LLVM_DEBUG( |
549 | dbgs() << "Total number of instructions to be predicated/speculated: " |
550 | << TotalIn << ", spare room: " << Spare << "\n" ); |
551 | if (TotalIn >= SizeLimit+Spare) |
552 | return false; |
553 | |
554 | // Count the number of PHI nodes that will need to be updated (converted |
555 | // to MUX). Those can be later converted to predicated instructions, so |
556 | // they aren't always adding extra cost. |
557 | // KLUDGE: Also, count the number of predicate register definitions in |
558 | // each block. The scheduler may increase the pressure of these and cause |
559 | // expensive spills (e.g. bitmnp01). |
560 | unsigned TotalPh = 0; |
561 | unsigned PredDefs = countPredicateDefs(B: FP.SplitB); |
562 | if (FP.JoinB) { |
563 | TotalPh = computePhiCost(B: FP.JoinB, FP); |
564 | PredDefs += countPredicateDefs(B: FP.JoinB); |
565 | } else { |
566 | if (FP.TrueB && !FP.TrueB->succ_empty()) { |
567 | MachineBasicBlock *SB = *FP.TrueB->succ_begin(); |
568 | TotalPh += computePhiCost(B: SB, FP); |
569 | PredDefs += countPredicateDefs(B: SB); |
570 | } |
571 | if (FP.FalseB && !FP.FalseB->succ_empty()) { |
572 | MachineBasicBlock *SB = *FP.FalseB->succ_begin(); |
573 | TotalPh += computePhiCost(B: SB, FP); |
574 | PredDefs += countPredicateDefs(B: SB); |
575 | } |
576 | } |
577 | LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: " |
578 | << TotalPh << "\n" ); |
579 | if (TotalIn+TotalPh >= SizeLimit+Spare) |
580 | return false; |
581 | |
582 | LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs |
583 | << "\n" ); |
584 | if (PredDefs > 4) |
585 | return false; |
586 | |
587 | return true; |
588 | } |
589 | |
590 | bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, |
591 | MachineLoop *L) { |
592 | bool Changed = false; |
593 | |
594 | // Visit all dominated blocks from the same loop first, then process B. |
595 | MachineDomTreeNode *N = MDT->getNode(BB: B); |
596 | |
597 | // We will change CFG/DT during this traversal, so take precautions to |
598 | // avoid problems related to invalidated iterators. In fact, processing |
599 | // a child C of B cannot cause another child to be removed, but it can |
600 | // cause a new child to be added (which was a child of C before C itself |
601 | // was removed. This new child C, however, would have been processed |
602 | // prior to processing B, so there is no need to process it again. |
603 | // Simply keep a list of children of B, and traverse that list. |
604 | using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; |
605 | DTNodeVectType Cn(llvm::children<MachineDomTreeNode *>(G: N)); |
606 | for (auto &I : Cn) { |
607 | MachineBasicBlock *SB = I->getBlock(); |
608 | if (!Deleted.count(V: SB)) |
609 | Changed |= visitBlock(B: SB, L); |
610 | } |
611 | // When walking down the dominator tree, we want to traverse through |
612 | // blocks from nested (other) loops, because they can dominate blocks |
613 | // that are in L. Skip the non-L blocks only after the tree traversal. |
614 | if (MLI->getLoopFor(BB: B) != L) |
615 | return Changed; |
616 | |
617 | FlowPattern FP; |
618 | if (!matchFlowPattern(B, L, FP)) |
619 | return Changed; |
620 | |
621 | if (!isValid(FP)) { |
622 | LLVM_DEBUG(dbgs() << "Conversion is not valid\n" ); |
623 | return Changed; |
624 | } |
625 | if (!isProfitable(FP)) { |
626 | LLVM_DEBUG(dbgs() << "Conversion is not profitable\n" ); |
627 | return Changed; |
628 | } |
629 | |
630 | convert(FP); |
631 | simplifyFlowGraph(FP); |
632 | return true; |
633 | } |
634 | |
635 | bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { |
636 | MachineBasicBlock *HB = L ? L->getHeader() : nullptr; |
637 | LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) |
638 | : dbgs() << "Visiting function" ) |
639 | << "\n" ); |
640 | bool Changed = false; |
641 | if (L) { |
642 | for (MachineLoop *I : *L) |
643 | Changed |= visitLoop(L: I); |
644 | } |
645 | |
646 | MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(F: MFN); |
647 | Changed |= visitBlock(B: L ? HB : EntryB, L); |
648 | return Changed; |
649 | } |
650 | |
651 | bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) |
652 | const { |
653 | // HexagonInstrInfo::isPredicable will consider these stores are non- |
654 | // -predicable if the offset would become constant-extended after |
655 | // predication. |
656 | unsigned Opc = MI->getOpcode(); |
657 | switch (Opc) { |
658 | case Hexagon::S2_storerb_io: |
659 | case Hexagon::S2_storerbnew_io: |
660 | case Hexagon::S2_storerh_io: |
661 | case Hexagon::S2_storerhnew_io: |
662 | case Hexagon::S2_storeri_io: |
663 | case Hexagon::S2_storerinew_io: |
664 | case Hexagon::S2_storerd_io: |
665 | case Hexagon::S4_storeirb_io: |
666 | case Hexagon::S4_storeirh_io: |
667 | case Hexagon::S4_storeiri_io: |
668 | return true; |
669 | } |
670 | |
671 | // TargetInstrInfo::isPredicable takes a non-const pointer. |
672 | return MI->mayStore() && HII->isPredicable(MI: const_cast<MachineInstr&>(*MI)); |
673 | } |
674 | |
675 | bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) |
676 | const { |
677 | if (MI->mayLoadOrStore()) |
678 | return false; |
679 | if (MI->isCall() || MI->isBarrier() || MI->isBranch()) |
680 | return false; |
681 | if (MI->hasUnmodeledSideEffects()) |
682 | return false; |
683 | if (MI->getOpcode() == TargetOpcode::LIFETIME_END) |
684 | return false; |
685 | |
686 | return true; |
687 | } |
688 | |
689 | bool HexagonEarlyIfConversion::isPredicate(unsigned R) const { |
690 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: R); |
691 | return RC == &Hexagon::PredRegsRegClass || |
692 | RC == &Hexagon::HvxQRRegClass; |
693 | } |
694 | |
695 | unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, |
696 | bool IfTrue) const { |
697 | return HII->getCondOpcode(Opc, sense: !IfTrue); |
698 | } |
699 | |
700 | void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, |
701 | MachineBasicBlock::iterator At, MachineInstr *MI, |
702 | unsigned PredR, bool IfTrue) { |
703 | DebugLoc DL; |
704 | if (At != ToB->end()) |
705 | DL = At->getDebugLoc(); |
706 | else if (!ToB->empty()) |
707 | DL = ToB->back().getDebugLoc(); |
708 | |
709 | unsigned Opc = MI->getOpcode(); |
710 | |
711 | if (isPredicableStore(MI)) { |
712 | unsigned COpc = getCondStoreOpcode(Opc, IfTrue); |
713 | assert(COpc); |
714 | MachineInstrBuilder MIB = BuildMI(BB&: *ToB, I: At, MIMD: DL, MCID: HII->get(Opcode: COpc)); |
715 | MachineInstr::mop_iterator MOI = MI->operands_begin(); |
716 | if (HII->isPostIncrement(MI: *MI)) { |
717 | MIB.add(MO: *MOI); |
718 | ++MOI; |
719 | } |
720 | MIB.addReg(RegNo: PredR); |
721 | for (const MachineOperand &MO : make_range(x: MOI, y: MI->operands_end())) |
722 | MIB.add(MO); |
723 | |
724 | // Set memory references. |
725 | MIB.cloneMemRefs(OtherMI: *MI); |
726 | |
727 | MI->eraseFromParent(); |
728 | return; |
729 | } |
730 | |
731 | if (Opc == Hexagon::J2_jump) { |
732 | MachineBasicBlock *TB = MI->getOperand(i: 0).getMBB(); |
733 | const MCInstrDesc &D = HII->get(Opcode: IfTrue ? Hexagon::J2_jumpt |
734 | : Hexagon::J2_jumpf); |
735 | BuildMI(BB&: *ToB, I: At, MIMD: DL, MCID: D) |
736 | .addReg(RegNo: PredR) |
737 | .addMBB(MBB: TB); |
738 | MI->eraseFromParent(); |
739 | return; |
740 | } |
741 | |
742 | // Print the offending instruction unconditionally as we are about to |
743 | // abort. |
744 | dbgs() << *MI; |
745 | llvm_unreachable("Unexpected instruction" ); |
746 | } |
747 | |
748 | // Predicate/speculate non-branch instructions from FromB into block ToB. |
749 | // Leave the branches alone, they will be handled later. Btw, at this point |
750 | // FromB should have at most one branch, and it should be unconditional. |
751 | void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, |
752 | MachineBasicBlock::iterator At, MachineBasicBlock *FromB, |
753 | unsigned PredR, bool IfTrue) { |
754 | LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n" ); |
755 | MachineBasicBlock::iterator End = FromB->getFirstTerminator(); |
756 | MachineBasicBlock::iterator I, NextI; |
757 | |
758 | for (I = FromB->begin(); I != End; I = NextI) { |
759 | assert(!I->isPHI()); |
760 | NextI = std::next(x: I); |
761 | if (isSafeToSpeculate(MI: &*I)) |
762 | ToB->splice(Where: At, Other: FromB, From: I); |
763 | else |
764 | predicateInstr(ToB, At, MI: &*I, PredR, IfTrue); |
765 | } |
766 | } |
767 | |
768 | unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B, |
769 | MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, |
770 | unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) { |
771 | unsigned Opc = 0; |
772 | switch (DRC->getID()) { |
773 | case Hexagon::IntRegsRegClassID: |
774 | case Hexagon::IntRegsLow8RegClassID: |
775 | Opc = Hexagon::C2_mux; |
776 | break; |
777 | case Hexagon::DoubleRegsRegClassID: |
778 | case Hexagon::GeneralDoubleLow8RegsRegClassID: |
779 | Opc = Hexagon::PS_pselect; |
780 | break; |
781 | case Hexagon::HvxVRRegClassID: |
782 | Opc = Hexagon::PS_vselect; |
783 | break; |
784 | case Hexagon::HvxWRRegClassID: |
785 | Opc = Hexagon::PS_wselect; |
786 | break; |
787 | default: |
788 | llvm_unreachable("unexpected register type" ); |
789 | } |
790 | const MCInstrDesc &D = HII->get(Opcode: Opc); |
791 | |
792 | DebugLoc DL = B->findBranchDebugLoc(); |
793 | Register MuxR = MRI->createVirtualRegister(RegClass: DRC); |
794 | BuildMI(BB&: *B, I: At, MIMD: DL, MCID: D, DestReg: MuxR) |
795 | .addReg(RegNo: PredR) |
796 | .addReg(RegNo: TR, flags: 0, SubReg: TSR) |
797 | .addReg(RegNo: FR, flags: 0, SubReg: FSR); |
798 | return MuxR; |
799 | } |
800 | |
801 | void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, |
802 | const FlowPattern &FP) { |
803 | // Visit all PHI nodes in the WhereB block and generate MUX instructions |
804 | // in the split block. Update the PHI nodes with the values of the MUX. |
805 | auto NonPHI = WhereB->getFirstNonPHI(); |
806 | for (auto I = WhereB->begin(); I != NonPHI; ++I) { |
807 | MachineInstr *PN = &*I; |
808 | // Registers and subregisters corresponding to TrueB, FalseB and SplitB. |
809 | unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; |
810 | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { |
811 | const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i: i+1); |
812 | if (BO.getMBB() == FP.SplitB) |
813 | SR = RO.getReg(), SSR = RO.getSubReg(); |
814 | else if (BO.getMBB() == FP.TrueB) |
815 | TR = RO.getReg(), TSR = RO.getSubReg(); |
816 | else if (BO.getMBB() == FP.FalseB) |
817 | FR = RO.getReg(), FSR = RO.getSubReg(); |
818 | else |
819 | continue; |
820 | PN->removeOperand(OpNo: i+1); |
821 | PN->removeOperand(OpNo: i); |
822 | } |
823 | if (TR == 0) |
824 | TR = SR, TSR = SSR; |
825 | else if (FR == 0) |
826 | FR = SR, FSR = SSR; |
827 | |
828 | assert(TR || FR); |
829 | unsigned MuxR = 0, MuxSR = 0; |
830 | |
831 | if (TR && FR) { |
832 | Register DR = PN->getOperand(i: 0).getReg(); |
833 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DR); |
834 | MuxR = buildMux(B: FP.SplitB, At: FP.SplitB->getFirstTerminator(), DRC: RC, |
835 | PredR: FP.PredR, TR, TSR, FR, FSR); |
836 | } else if (TR) { |
837 | MuxR = TR; |
838 | MuxSR = TSR; |
839 | } else { |
840 | MuxR = FR; |
841 | MuxSR = FSR; |
842 | } |
843 | |
844 | PN->addOperand(Op: MachineOperand::CreateReg(Reg: MuxR, isDef: false, isImp: false, isKill: false, isDead: false, |
845 | isUndef: false, isEarlyClobber: false, SubReg: MuxSR)); |
846 | PN->addOperand(Op: MachineOperand::CreateMBB(MBB: FP.SplitB)); |
847 | } |
848 | } |
849 | |
850 | void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { |
851 | MachineBasicBlock *TSB = nullptr, *FSB = nullptr; |
852 | MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); |
853 | assert(OldTI != FP.SplitB->end()); |
854 | DebugLoc DL = OldTI->getDebugLoc(); |
855 | |
856 | if (FP.TrueB) { |
857 | TSB = *FP.TrueB->succ_begin(); |
858 | predicateBlockNB(ToB: FP.SplitB, At: OldTI, FromB: FP.TrueB, PredR: FP.PredR, IfTrue: true); |
859 | } |
860 | if (FP.FalseB) { |
861 | FSB = *FP.FalseB->succ_begin(); |
862 | MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); |
863 | predicateBlockNB(ToB: FP.SplitB, At, FromB: FP.FalseB, PredR: FP.PredR, IfTrue: false); |
864 | } |
865 | |
866 | // Regenerate new terminators in the split block and update the successors. |
867 | // First, remember any information that may be needed later and remove the |
868 | // existing terminators/successors from the split block. |
869 | MachineBasicBlock *SSB = nullptr; |
870 | FP.SplitB->erase(I: OldTI, E: FP.SplitB->end()); |
871 | while (!FP.SplitB->succ_empty()) { |
872 | MachineBasicBlock *T = *FP.SplitB->succ_begin(); |
873 | // It's possible that the split block had a successor that is not a pre- |
874 | // dicated block. This could only happen if there was only one block to |
875 | // be predicated. Example: |
876 | // split_b: |
877 | // if (p) jump true_b |
878 | // jump unrelated2_b |
879 | // unrelated1_b: |
880 | // ... |
881 | // unrelated2_b: ; can have other predecessors, so it's not "false_b" |
882 | // jump other_b |
883 | // true_b: ; only reachable from split_b, can be predicated |
884 | // ... |
885 | // |
886 | // Find this successor (SSB) if it exists. |
887 | if (T != FP.TrueB && T != FP.FalseB) { |
888 | assert(!SSB); |
889 | SSB = T; |
890 | } |
891 | FP.SplitB->removeSuccessor(I: FP.SplitB->succ_begin()); |
892 | } |
893 | |
894 | // Insert new branches and update the successors of the split block. This |
895 | // may create unconditional branches to the layout successor, etc., but |
896 | // that will be cleaned up later. For now, make sure that correct code is |
897 | // generated. |
898 | if (FP.JoinB) { |
899 | assert(!SSB || SSB == FP.JoinB); |
900 | BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: HII->get(Opcode: Hexagon::J2_jump)) |
901 | .addMBB(MBB: FP.JoinB); |
902 | FP.SplitB->addSuccessor(Succ: FP.JoinB); |
903 | } else { |
904 | bool HasBranch = false; |
905 | if (TSB) { |
906 | BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: HII->get(Opcode: Hexagon::J2_jumpt)) |
907 | .addReg(RegNo: FP.PredR) |
908 | .addMBB(MBB: TSB); |
909 | FP.SplitB->addSuccessor(Succ: TSB); |
910 | HasBranch = true; |
911 | } |
912 | if (FSB) { |
913 | const MCInstrDesc &D = HasBranch ? HII->get(Opcode: Hexagon::J2_jump) |
914 | : HII->get(Opcode: Hexagon::J2_jumpf); |
915 | MachineInstrBuilder MIB = BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: D); |
916 | if (!HasBranch) |
917 | MIB.addReg(RegNo: FP.PredR); |
918 | MIB.addMBB(MBB: FSB); |
919 | FP.SplitB->addSuccessor(Succ: FSB); |
920 | } |
921 | if (SSB) { |
922 | // This cannot happen if both TSB and FSB are set. [TF]SB are the |
923 | // successor blocks of the TrueB and FalseB (or null of the TrueB |
924 | // or FalseB block is null). SSB is the potential successor block |
925 | // of the SplitB that is neither TrueB nor FalseB. |
926 | BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: HII->get(Opcode: Hexagon::J2_jump)) |
927 | .addMBB(MBB: SSB); |
928 | FP.SplitB->addSuccessor(Succ: SSB); |
929 | } |
930 | } |
931 | |
932 | // What is left to do is to update the PHI nodes that could have entries |
933 | // referring to predicated blocks. |
934 | if (FP.JoinB) { |
935 | updatePhiNodes(WhereB: FP.JoinB, FP); |
936 | } else { |
937 | if (TSB) |
938 | updatePhiNodes(WhereB: TSB, FP); |
939 | if (FSB) |
940 | updatePhiNodes(WhereB: FSB, FP); |
941 | // Nothing to update in SSB, since SSB's predecessors haven't changed. |
942 | } |
943 | } |
944 | |
945 | void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { |
946 | LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n" ); |
947 | |
948 | // Transfer the immediate dominator information from B to its descendants. |
949 | MachineDomTreeNode *N = MDT->getNode(BB: B); |
950 | MachineDomTreeNode *IDN = N->getIDom(); |
951 | if (IDN) { |
952 | MachineBasicBlock *IDB = IDN->getBlock(); |
953 | |
954 | using GTN = GraphTraits<MachineDomTreeNode *>; |
955 | using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; |
956 | |
957 | DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); |
958 | for (auto &I : Cn) { |
959 | MachineBasicBlock *SB = I->getBlock(); |
960 | MDT->changeImmediateDominator(BB: SB, NewBB: IDB); |
961 | } |
962 | } |
963 | |
964 | while (!B->succ_empty()) |
965 | B->removeSuccessor(I: B->succ_begin()); |
966 | |
967 | for (MachineBasicBlock *Pred : B->predecessors()) |
968 | Pred->removeSuccessor(Succ: B, NormalizeSuccProbs: true); |
969 | |
970 | Deleted.insert(V: B); |
971 | MDT->eraseNode(BB: B); |
972 | MFN->erase(MBBI: B->getIterator()); |
973 | } |
974 | |
975 | void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { |
976 | LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n" ); |
977 | MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); |
978 | for (I = B->begin(); I != NonPHI; I = NextI) { |
979 | NextI = std::next(x: I); |
980 | MachineInstr *PN = &*I; |
981 | assert(PN->getNumOperands() == 3 && "Invalid phi node" ); |
982 | MachineOperand &UO = PN->getOperand(i: 1); |
983 | Register UseR = UO.getReg(), UseSR = UO.getSubReg(); |
984 | Register DefR = PN->getOperand(i: 0).getReg(); |
985 | unsigned NewR = UseR; |
986 | if (UseSR) { |
987 | // MRI.replaceVregUsesWith does not allow to update the subregister, |
988 | // so instead of doing the use-iteration here, create a copy into a |
989 | // "non-subregistered" register. |
990 | const DebugLoc &DL = PN->getDebugLoc(); |
991 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DefR); |
992 | NewR = MRI->createVirtualRegister(RegClass: RC); |
993 | NonPHI = BuildMI(BB&: *B, I: NonPHI, MIMD: DL, MCID: HII->get(Opcode: TargetOpcode::COPY), DestReg: NewR) |
994 | .addReg(RegNo: UseR, flags: 0, SubReg: UseSR); |
995 | } |
996 | MRI->replaceRegWith(FromReg: DefR, ToReg: NewR); |
997 | B->erase(I); |
998 | } |
999 | } |
1000 | |
1001 | void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, |
1002 | MachineBasicBlock *SuccB) { |
1003 | LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " |
1004 | << PrintMB(SuccB) << "\n" ); |
1005 | bool TermOk = hasUncondBranch(B: SuccB); |
1006 | eliminatePhis(B: SuccB); |
1007 | HII->removeBranch(MBB&: *PredB); |
1008 | PredB->removeSuccessor(Succ: SuccB); |
1009 | PredB->splice(Where: PredB->end(), Other: SuccB, From: SuccB->begin(), To: SuccB->end()); |
1010 | PredB->transferSuccessorsAndUpdatePHIs(FromMBB: SuccB); |
1011 | MachineBasicBlock *OldLayoutSuccessor = SuccB->getNextNode(); |
1012 | removeBlock(B: SuccB); |
1013 | if (!TermOk) |
1014 | PredB->updateTerminator(PreviousLayoutSuccessor: OldLayoutSuccessor); |
1015 | } |
1016 | |
1017 | void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { |
1018 | MachineBasicBlock *OldLayoutSuccessor = FP.SplitB->getNextNode(); |
1019 | if (FP.TrueB) |
1020 | removeBlock(B: FP.TrueB); |
1021 | if (FP.FalseB) |
1022 | removeBlock(B: FP.FalseB); |
1023 | |
1024 | FP.SplitB->updateTerminator(PreviousLayoutSuccessor: OldLayoutSuccessor); |
1025 | if (FP.SplitB->succ_size() != 1) |
1026 | return; |
1027 | |
1028 | MachineBasicBlock *SB = *FP.SplitB->succ_begin(); |
1029 | if (SB->pred_size() != 1) |
1030 | return; |
1031 | |
1032 | // By now, the split block has only one successor (SB), and SB has only |
1033 | // one predecessor. We can try to merge them. We will need to update ter- |
1034 | // minators in FP.Split+SB, and that requires working analyzeBranch, which |
1035 | // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends |
1036 | // with an unconditional branch, we won't need to touch the terminators. |
1037 | if (!hasEHLabel(B: SB) || hasUncondBranch(B: SB)) |
1038 | mergeBlocks(PredB: FP.SplitB, SuccB: SB); |
1039 | } |
1040 | |
1041 | bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { |
1042 | if (skipFunction(F: MF.getFunction())) |
1043 | return false; |
1044 | |
1045 | auto &ST = MF.getSubtarget<HexagonSubtarget>(); |
1046 | HII = ST.getInstrInfo(); |
1047 | TRI = ST.getRegisterInfo(); |
1048 | MFN = &MF; |
1049 | MRI = &MF.getRegInfo(); |
1050 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
1051 | MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
1052 | MBPI = EnableHexagonBP |
1053 | ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI() |
1054 | : nullptr; |
1055 | |
1056 | Deleted.clear(); |
1057 | bool Changed = false; |
1058 | |
1059 | for (MachineLoop *L : *MLI) |
1060 | Changed |= visitLoop(L); |
1061 | Changed |= visitLoop(L: nullptr); |
1062 | |
1063 | return Changed; |
1064 | } |
1065 | |
1066 | //===----------------------------------------------------------------------===// |
1067 | // Public Constructor Functions |
1068 | //===----------------------------------------------------------------------===// |
1069 | FunctionPass *llvm::createHexagonEarlyIfConversion() { |
1070 | return new HexagonEarlyIfConversion(); |
1071 | } |
1072 | |