| 1 | //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass identifies loops where we can generate the Hexagon hardware |
| 10 | // loop instruction. The hardware loop can perform loop branches with a |
| 11 | // zero-cycle overhead. |
| 12 | // |
| 13 | // The pattern that defines the induction variable can changed depending on |
| 14 | // prior optimizations. For example, the IndVarSimplify phase run by 'opt' |
| 15 | // normalizes induction variables, and the Loop Strength Reduction pass |
| 16 | // run by 'llc' may also make changes to the induction variable. |
| 17 | // The pattern detected by this phase is due to running Strength Reduction. |
| 18 | // |
| 19 | // Criteria for hardware loops: |
| 20 | // - Countable loops (w/ ind. var for a trip count) |
| 21 | // - Assumes loops are normalized by IndVarSimplify |
| 22 | // - Try inner-most loops first |
| 23 | // - No function calls in loops. |
| 24 | // |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | #include "Hexagon.h" |
| 28 | #include "HexagonInstrInfo.h" |
| 29 | #include "HexagonSubtarget.h" |
| 30 | #include "llvm/ADT/ArrayRef.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/ADT/SmallSet.h" |
| 33 | #include "llvm/ADT/SmallVector.h" |
| 34 | #include "llvm/ADT/Statistic.h" |
| 35 | #include "llvm/ADT/StringRef.h" |
| 36 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 37 | #include "llvm/CodeGen/MachineDominators.h" |
| 38 | #include "llvm/CodeGen/MachineFunction.h" |
| 39 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 40 | #include "llvm/CodeGen/MachineInstr.h" |
| 41 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 42 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 43 | #include "llvm/CodeGen/MachineOperand.h" |
| 44 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 45 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 46 | #include "llvm/IR/DebugLoc.h" |
| 47 | #include "llvm/InitializePasses.h" |
| 48 | #include "llvm/Pass.h" |
| 49 | #include "llvm/Support/CommandLine.h" |
| 50 | #include "llvm/Support/Debug.h" |
| 51 | #include "llvm/Support/ErrorHandling.h" |
| 52 | #include "llvm/Support/MathExtras.h" |
| 53 | #include "llvm/Support/raw_ostream.h" |
| 54 | #include <cassert> |
| 55 | #include <cstdint> |
| 56 | #include <cstdlib> |
| 57 | #include <iterator> |
| 58 | #include <map> |
| 59 | #include <set> |
| 60 | #include <string> |
| 61 | #include <utility> |
| 62 | #include <vector> |
| 63 | |
| 64 | using namespace llvm; |
| 65 | |
| 66 | #define DEBUG_TYPE "hwloops" |
| 67 | |
| 68 | #ifndef NDEBUG |
| 69 | static cl::opt<int> HWLoopLimit("hexagon-max-hwloop" , cl::Hidden, cl::init(-1)); |
| 70 | |
| 71 | // Option to create preheader only for a specific function. |
| 72 | static cl::opt<std::string> PHFn("hexagon-hwloop-phfn" , cl::Hidden, |
| 73 | cl::init("" )); |
| 74 | #endif |
| 75 | |
| 76 | // Option to create a preheader if one doesn't exist. |
| 77 | static cl::opt<bool> ("hexagon-hwloop-preheader" , |
| 78 | cl::Hidden, cl::init(Val: true), |
| 79 | cl::desc("Add a preheader to a hardware loop if one doesn't exist" )); |
| 80 | |
| 81 | // Turn it off by default. If a preheader block is not created here, the |
| 82 | // software pipeliner may be unable to find a block suitable to serve as |
| 83 | // a preheader. In that case SWP will not run. |
| 84 | static cl::opt<bool> ("hwloop-spec-preheader" , cl::Hidden, |
| 85 | cl::desc("Allow speculation of preheader " |
| 86 | "instructions" )); |
| 87 | |
| 88 | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops" ); |
| 89 | |
| 90 | namespace { |
| 91 | |
| 92 | class CountValue; |
| 93 | |
| 94 | struct HexagonHardwareLoops : public MachineFunctionPass { |
| 95 | MachineLoopInfo *MLI; |
| 96 | MachineRegisterInfo *MRI; |
| 97 | MachineDominatorTree *MDT; |
| 98 | const HexagonInstrInfo *TII; |
| 99 | const HexagonRegisterInfo *TRI; |
| 100 | #ifndef NDEBUG |
| 101 | static int Counter; |
| 102 | #endif |
| 103 | |
| 104 | public: |
| 105 | static char ID; |
| 106 | |
| 107 | HexagonHardwareLoops() : MachineFunctionPass(ID) {} |
| 108 | |
| 109 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 110 | |
| 111 | StringRef getPassName() const override { return "Hexagon Hardware Loops" ; } |
| 112 | |
| 113 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 114 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 115 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 116 | MachineFunctionPass::getAnalysisUsage(AU); |
| 117 | } |
| 118 | |
| 119 | private: |
| 120 | using LoopFeederMap = std::map<Register, MachineInstr *>; |
| 121 | |
| 122 | /// Kinds of comparisons in the compare instructions. |
| 123 | struct Comparison { |
| 124 | enum Kind { |
| 125 | EQ = 0x01, |
| 126 | NE = 0x02, |
| 127 | L = 0x04, |
| 128 | G = 0x08, |
| 129 | U = 0x40, |
| 130 | LTs = L, |
| 131 | LEs = L | EQ, |
| 132 | GTs = G, |
| 133 | GEs = G | EQ, |
| 134 | LTu = L | U, |
| 135 | LEu = L | EQ | U, |
| 136 | GTu = G | U, |
| 137 | GEu = G | EQ | U |
| 138 | }; |
| 139 | |
| 140 | static Kind getSwappedComparison(Kind Cmp) { |
| 141 | assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator" ); |
| 142 | if ((Cmp & L) || (Cmp & G)) |
| 143 | return (Kind)(Cmp ^ (L|G)); |
| 144 | return Cmp; |
| 145 | } |
| 146 | |
| 147 | static Kind getNegatedComparison(Kind Cmp) { |
| 148 | if ((Cmp & L) || (Cmp & G)) |
| 149 | return (Kind)((Cmp ^ (L | G)) ^ EQ); |
| 150 | if ((Cmp & NE) || (Cmp & EQ)) |
| 151 | return (Kind)(Cmp ^ (EQ | NE)); |
| 152 | return (Kind)0; |
| 153 | } |
| 154 | |
| 155 | static bool isSigned(Kind Cmp) { |
| 156 | return (Cmp & (L | G) && !(Cmp & U)); |
| 157 | } |
| 158 | |
| 159 | static bool isUnsigned(Kind Cmp) { |
| 160 | return (Cmp & U); |
| 161 | } |
| 162 | }; |
| 163 | |
| 164 | /// Find the register that contains the loop controlling |
| 165 | /// induction variable. |
| 166 | /// If successful, it will return true and set the \p Reg, \p IVBump |
| 167 | /// and \p IVOp arguments. Otherwise it will return false. |
| 168 | /// The returned induction register is the register R that follows the |
| 169 | /// following induction pattern: |
| 170 | /// loop: |
| 171 | /// R = phi ..., [ R.next, LatchBlock ] |
| 172 | /// R.next = R + #bump |
| 173 | /// if (R.next < #N) goto loop |
| 174 | /// IVBump is the immediate value added to R, and IVOp is the instruction |
| 175 | /// "R.next = R + #bump". |
| 176 | bool findInductionRegister(MachineLoop *L, Register &Reg, |
| 177 | int64_t &IVBump, MachineInstr *&IVOp) const; |
| 178 | |
| 179 | /// Return the comparison kind for the specified opcode. |
| 180 | Comparison::Kind getComparisonKind(unsigned CondOpc, |
| 181 | MachineOperand *InitialValue, |
| 182 | const MachineOperand *Endvalue, |
| 183 | int64_t IVBump) const; |
| 184 | |
| 185 | /// Analyze the statements in a loop to determine if the loop |
| 186 | /// has a computable trip count and, if so, return a value that represents |
| 187 | /// the trip count expression. |
| 188 | CountValue *getLoopTripCount(MachineLoop *L, |
| 189 | SmallVectorImpl<MachineInstr *> &OldInsts); |
| 190 | |
| 191 | /// Return the expression that represents the number of times |
| 192 | /// a loop iterates. The function takes the operands that represent the |
| 193 | /// loop start value, loop end value, and induction value. Based upon |
| 194 | /// these operands, the function attempts to compute the trip count. |
| 195 | /// If the trip count is not directly available (as an immediate value, |
| 196 | /// or a register), the function will attempt to insert computation of it |
| 197 | /// to the loop's preheader. |
| 198 | CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, |
| 199 | const MachineOperand *End, Register IVReg, |
| 200 | int64_t IVBump, Comparison::Kind Cmp) const; |
| 201 | |
| 202 | /// Return true if the instruction is not valid within a hardware |
| 203 | /// loop. |
| 204 | bool isInvalidLoopOperation(const MachineInstr *MI, |
| 205 | bool IsInnerHWLoop) const; |
| 206 | |
| 207 | /// Return true if the loop contains an instruction that inhibits |
| 208 | /// using the hardware loop. |
| 209 | bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; |
| 210 | |
| 211 | /// Given a loop, check if we can convert it to a hardware loop. |
| 212 | /// If so, then perform the conversion and return true. |
| 213 | bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); |
| 214 | |
| 215 | /// Return true if the instruction is now dead. |
| 216 | bool isDead(const MachineInstr *MI, |
| 217 | SmallVectorImpl<MachineInstr *> &DeadPhis) const; |
| 218 | |
| 219 | /// Remove the instruction if it is now dead. |
| 220 | void removeIfDead(MachineInstr *MI); |
| 221 | |
| 222 | /// Make sure that the "bump" instruction executes before the |
| 223 | /// compare. We need that for the IV fixup, so that the compare |
| 224 | /// instruction would not use a bumped value that has not yet been |
| 225 | /// defined. If the instructions are out of order, try to reorder them. |
| 226 | bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); |
| 227 | |
| 228 | /// Return true if MO and MI pair is visited only once. If visited |
| 229 | /// more than once, this indicates there is recursion. In such a case, |
| 230 | /// return false. |
| 231 | bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, |
| 232 | const MachineOperand *MO, |
| 233 | LoopFeederMap &LoopFeederPhi) const; |
| 234 | |
| 235 | /// Return true if the Phi may generate a value that may underflow, |
| 236 | /// or may wrap. |
| 237 | bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, |
| 238 | MachineBasicBlock *MBB, MachineLoop *L, |
| 239 | LoopFeederMap &LoopFeederPhi) const; |
| 240 | |
| 241 | /// Return true if the induction variable may underflow an unsigned |
| 242 | /// value in the first iteration. |
| 243 | bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, |
| 244 | const MachineOperand *EndVal, |
| 245 | MachineBasicBlock *MBB, MachineLoop *L, |
| 246 | LoopFeederMap &LoopFeederPhi) const; |
| 247 | |
| 248 | /// Check if the given operand has a compile-time known constant |
| 249 | /// value. Return true if yes, and false otherwise. When returning true, set |
| 250 | /// Val to the corresponding constant value. |
| 251 | bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; |
| 252 | |
| 253 | /// Check if the operand has a compile-time known constant value. |
| 254 | bool isImmediate(const MachineOperand &MO) const { |
| 255 | int64_t V; |
| 256 | return checkForImmediate(MO, Val&: V); |
| 257 | } |
| 258 | |
| 259 | /// Return the immediate for the specified operand. |
| 260 | int64_t getImmediate(const MachineOperand &MO) const { |
| 261 | int64_t V; |
| 262 | if (!checkForImmediate(MO, Val&: V)) |
| 263 | llvm_unreachable("Invalid operand" ); |
| 264 | return V; |
| 265 | } |
| 266 | |
| 267 | /// Reset the given machine operand to now refer to a new immediate |
| 268 | /// value. Assumes that the operand was already referencing an immediate |
| 269 | /// value, either directly, or via a register. |
| 270 | void setImmediate(MachineOperand &MO, int64_t Val); |
| 271 | |
| 272 | /// Fix the data flow of the induction variable. |
| 273 | /// The desired flow is: phi ---> bump -+-> comparison-in-latch. |
| 274 | /// | |
| 275 | /// +-> back to phi |
| 276 | /// where "bump" is the increment of the induction variable: |
| 277 | /// iv = iv + #const. |
| 278 | /// Due to some prior code transformations, the actual flow may look |
| 279 | /// like this: |
| 280 | /// phi -+-> bump ---> back to phi |
| 281 | /// | |
| 282 | /// +-> comparison-in-latch (against upper_bound-bump), |
| 283 | /// i.e. the comparison that controls the loop execution may be using |
| 284 | /// the value of the induction variable from before the increment. |
| 285 | /// |
| 286 | /// Return true if the loop's flow is the desired one (i.e. it's |
| 287 | /// either been fixed, or no fixing was necessary). |
| 288 | /// Otherwise, return false. This can happen if the induction variable |
| 289 | /// couldn't be identified, or if the value in the latch's comparison |
| 290 | /// cannot be adjusted to reflect the post-bump value. |
| 291 | bool fixupInductionVariable(MachineLoop *L); |
| 292 | |
| 293 | /// Given a loop, if it does not have a preheader, create one. |
| 294 | /// Return the block that is the preheader. |
| 295 | MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); |
| 296 | }; |
| 297 | |
| 298 | char HexagonHardwareLoops::ID = 0; |
| 299 | #ifndef NDEBUG |
| 300 | int HexagonHardwareLoops::Counter = 0; |
| 301 | #endif |
| 302 | |
| 303 | /// Abstraction for a trip count of a loop. A smaller version |
| 304 | /// of the MachineOperand class without the concerns of changing the |
| 305 | /// operand representation. |
| 306 | class CountValue { |
| 307 | public: |
| 308 | enum CountValueType { |
| 309 | CV_Register, |
| 310 | CV_Immediate |
| 311 | }; |
| 312 | |
| 313 | private: |
| 314 | CountValueType Kind; |
| 315 | union Values { |
| 316 | Values() : R{.Reg: Register(), .Sub: 0} {} |
| 317 | Values(const Values&) = default; |
| 318 | struct { |
| 319 | Register Reg; |
| 320 | unsigned Sub; |
| 321 | } R; |
| 322 | unsigned ImmVal; |
| 323 | } Contents; |
| 324 | |
| 325 | public: |
| 326 | explicit CountValue(CountValueType t, Register v, unsigned u = 0) { |
| 327 | Kind = t; |
| 328 | if (Kind == CV_Register) { |
| 329 | Contents.R.Reg = v; |
| 330 | Contents.R.Sub = u; |
| 331 | } else { |
| 332 | Contents.ImmVal = v; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | bool isReg() const { return Kind == CV_Register; } |
| 337 | bool isImm() const { return Kind == CV_Immediate; } |
| 338 | |
| 339 | Register getReg() const { |
| 340 | assert(isReg() && "Wrong CountValue accessor" ); |
| 341 | return Contents.R.Reg; |
| 342 | } |
| 343 | |
| 344 | unsigned getSubReg() const { |
| 345 | assert(isReg() && "Wrong CountValue accessor" ); |
| 346 | return Contents.R.Sub; |
| 347 | } |
| 348 | |
| 349 | unsigned getImm() const { |
| 350 | assert(isImm() && "Wrong CountValue accessor" ); |
| 351 | return Contents.ImmVal; |
| 352 | } |
| 353 | |
| 354 | void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { |
| 355 | if (isReg()) { OS << printReg(Reg: Contents.R.Reg, TRI, SubIdx: Contents.R.Sub); } |
| 356 | if (isImm()) { OS << Contents.ImmVal; } |
| 357 | } |
| 358 | }; |
| 359 | |
| 360 | } // end anonymous namespace |
| 361 | |
| 362 | INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops" , |
| 363 | "Hexagon Hardware Loops" , false, false) |
| 364 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 365 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 366 | INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops" , |
| 367 | "Hexagon Hardware Loops" , false, false) |
| 368 | |
| 369 | FunctionPass *llvm::createHexagonHardwareLoops() { |
| 370 | return new HexagonHardwareLoops(); |
| 371 | } |
| 372 | |
| 373 | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { |
| 374 | LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n" ); |
| 375 | if (skipFunction(F: MF.getFunction())) |
| 376 | return false; |
| 377 | |
| 378 | bool Changed = false; |
| 379 | |
| 380 | MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 381 | MRI = &MF.getRegInfo(); |
| 382 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 383 | const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); |
| 384 | TII = HST.getInstrInfo(); |
| 385 | TRI = HST.getRegisterInfo(); |
| 386 | |
| 387 | for (auto &L : *MLI) |
| 388 | if (L->isOutermost()) { |
| 389 | bool L0Used = false; |
| 390 | bool L1Used = false; |
| 391 | Changed |= convertToHardwareLoop(L, L0used&: L0Used, L1used&: L1Used); |
| 392 | } |
| 393 | |
| 394 | return Changed; |
| 395 | } |
| 396 | |
| 397 | bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, |
| 398 | Register &Reg, |
| 399 | int64_t &IVBump, |
| 400 | MachineInstr *&IVOp |
| 401 | ) const { |
| 402 | MachineBasicBlock * = L->getHeader(); |
| 403 | MachineBasicBlock * = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader); |
| 404 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 405 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
| 406 | if (!Header || !Preheader || !Latch || !ExitingBlock) |
| 407 | return false; |
| 408 | |
| 409 | // This pair represents an induction register together with an immediate |
| 410 | // value that will be added to it in each loop iteration. |
| 411 | using RegisterBump = std::pair<Register, int64_t>; |
| 412 | |
| 413 | // Mapping: R.next -> (R, bump), where R, R.next and bump are derived |
| 414 | // from an induction operation |
| 415 | // R.next = R + bump |
| 416 | // where bump is an immediate value. |
| 417 | using InductionMap = std::map<Register, RegisterBump>; |
| 418 | |
| 419 | InductionMap IndMap; |
| 420 | |
| 421 | using instr_iterator = MachineBasicBlock::instr_iterator; |
| 422 | |
| 423 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 424 | I != E && I->isPHI(); ++I) { |
| 425 | MachineInstr *Phi = &*I; |
| 426 | |
| 427 | // Have a PHI instruction. Get the operand that corresponds to the |
| 428 | // latch block, and see if is a result of an addition of form "reg+imm", |
| 429 | // where the "reg" is defined by the PHI node we are looking at. |
| 430 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
| 431 | if (Phi->getOperand(i: i+1).getMBB() != Latch) |
| 432 | continue; |
| 433 | |
| 434 | Register PhiOpReg = Phi->getOperand(i).getReg(); |
| 435 | MachineInstr *DI = MRI->getVRegDef(Reg: PhiOpReg); |
| 436 | |
| 437 | if (DI->getDesc().isAdd()) { |
| 438 | // If the register operand to the add is the PHI we're looking at, this |
| 439 | // meets the induction pattern. |
| 440 | Register IndReg = DI->getOperand(i: 1).getReg(); |
| 441 | MachineOperand &Opnd2 = DI->getOperand(i: 2); |
| 442 | int64_t V; |
| 443 | if (MRI->getVRegDef(Reg: IndReg) == Phi && checkForImmediate(MO: Opnd2, Val&: V)) { |
| 444 | Register UpdReg = DI->getOperand(i: 0).getReg(); |
| 445 | IndMap.insert(x: std::make_pair(x&: UpdReg, y: std::make_pair(x&: IndReg, y&: V))); |
| 446 | } |
| 447 | } |
| 448 | } // for (i) |
| 449 | } // for (instr) |
| 450 | |
| 451 | SmallVector<MachineOperand,2> Cond; |
| 452 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
| 453 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false); |
| 454 | if (NotAnalyzed) |
| 455 | return false; |
| 456 | |
| 457 | Register PredR; |
| 458 | unsigned PredPos, PredRegFlags; |
| 459 | if (!TII->getPredReg(Cond, PredReg&: PredR, PredRegPos&: PredPos, PredRegFlags)) |
| 460 | return false; |
| 461 | |
| 462 | MachineInstr *PredI = MRI->getVRegDef(Reg: PredR); |
| 463 | if (!PredI->isCompare()) |
| 464 | return false; |
| 465 | |
| 466 | Register CmpReg1, CmpReg2; |
| 467 | int64_t CmpImm = 0, CmpMask = 0; |
| 468 | bool CmpAnalyzed = |
| 469 | TII->analyzeCompare(MI: *PredI, SrcReg&: CmpReg1, SrcReg2&: CmpReg2, Mask&: CmpMask, Value&: CmpImm); |
| 470 | // Fail if the compare was not analyzed, or it's not comparing a register |
| 471 | // with an immediate value. Not checking the mask here, since we handle |
| 472 | // the individual compare opcodes (including A4_cmpb*) later on. |
| 473 | if (!CmpAnalyzed) |
| 474 | return false; |
| 475 | |
| 476 | // Exactly one of the input registers to the comparison should be among |
| 477 | // the induction registers. |
| 478 | InductionMap::iterator IndMapEnd = IndMap.end(); |
| 479 | InductionMap::iterator F = IndMapEnd; |
| 480 | if (CmpReg1 != 0) { |
| 481 | InductionMap::iterator F1 = IndMap.find(x: CmpReg1); |
| 482 | if (F1 != IndMapEnd) |
| 483 | F = F1; |
| 484 | } |
| 485 | if (CmpReg2 != 0) { |
| 486 | InductionMap::iterator F2 = IndMap.find(x: CmpReg2); |
| 487 | if (F2 != IndMapEnd) { |
| 488 | if (F != IndMapEnd) |
| 489 | return false; |
| 490 | F = F2; |
| 491 | } |
| 492 | } |
| 493 | if (F == IndMapEnd) |
| 494 | return false; |
| 495 | |
| 496 | Reg = F->second.first; |
| 497 | IVBump = F->second.second; |
| 498 | IVOp = MRI->getVRegDef(Reg: F->first); |
| 499 | return true; |
| 500 | } |
| 501 | |
| 502 | // Return the comparison kind for the specified opcode. |
| 503 | HexagonHardwareLoops::Comparison::Kind |
| 504 | HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, |
| 505 | MachineOperand *InitialValue, |
| 506 | const MachineOperand *EndValue, |
| 507 | int64_t IVBump) const { |
| 508 | Comparison::Kind Cmp = (Comparison::Kind)0; |
| 509 | switch (CondOpc) { |
| 510 | case Hexagon::C2_cmpeq: |
| 511 | case Hexagon::C2_cmpeqi: |
| 512 | case Hexagon::C2_cmpeqp: |
| 513 | Cmp = Comparison::EQ; |
| 514 | break; |
| 515 | case Hexagon::C4_cmpneq: |
| 516 | case Hexagon::C4_cmpneqi: |
| 517 | Cmp = Comparison::NE; |
| 518 | break; |
| 519 | case Hexagon::C2_cmplt: |
| 520 | Cmp = Comparison::LTs; |
| 521 | break; |
| 522 | case Hexagon::C2_cmpltu: |
| 523 | Cmp = Comparison::LTu; |
| 524 | break; |
| 525 | case Hexagon::C4_cmplte: |
| 526 | case Hexagon::C4_cmpltei: |
| 527 | Cmp = Comparison::LEs; |
| 528 | break; |
| 529 | case Hexagon::C4_cmplteu: |
| 530 | case Hexagon::C4_cmplteui: |
| 531 | Cmp = Comparison::LEu; |
| 532 | break; |
| 533 | case Hexagon::C2_cmpgt: |
| 534 | case Hexagon::C2_cmpgti: |
| 535 | case Hexagon::C2_cmpgtp: |
| 536 | Cmp = Comparison::GTs; |
| 537 | break; |
| 538 | case Hexagon::C2_cmpgtu: |
| 539 | case Hexagon::C2_cmpgtui: |
| 540 | case Hexagon::C2_cmpgtup: |
| 541 | Cmp = Comparison::GTu; |
| 542 | break; |
| 543 | case Hexagon::C2_cmpgei: |
| 544 | Cmp = Comparison::GEs; |
| 545 | break; |
| 546 | case Hexagon::C2_cmpgeui: |
| 547 | Cmp = Comparison::GEs; |
| 548 | break; |
| 549 | default: |
| 550 | return (Comparison::Kind)0; |
| 551 | } |
| 552 | return Cmp; |
| 553 | } |
| 554 | |
| 555 | /// Analyze the statements in a loop to determine if the loop has |
| 556 | /// a computable trip count and, if so, return a value that represents |
| 557 | /// the trip count expression. |
| 558 | /// |
| 559 | /// This function iterates over the phi nodes in the loop to check for |
| 560 | /// induction variable patterns that are used in the calculation for |
| 561 | /// the number of time the loop is executed. |
| 562 | CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, |
| 563 | SmallVectorImpl<MachineInstr *> &OldInsts) { |
| 564 | MachineBasicBlock *TopMBB = L->getTopBlock(); |
| 565 | MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); |
| 566 | assert(PI != TopMBB->pred_end() && |
| 567 | "Loop must have more than one incoming edge!" ); |
| 568 | MachineBasicBlock *Backedge = *PI++; |
| 569 | if (PI == TopMBB->pred_end()) // dead loop? |
| 570 | return nullptr; |
| 571 | MachineBasicBlock *Incoming = *PI++; |
| 572 | if (PI != TopMBB->pred_end()) // multiple backedges? |
| 573 | return nullptr; |
| 574 | |
| 575 | // Make sure there is one incoming and one backedge and determine which |
| 576 | // is which. |
| 577 | if (L->contains(BB: Incoming)) { |
| 578 | if (L->contains(BB: Backedge)) |
| 579 | return nullptr; |
| 580 | std::swap(a&: Incoming, b&: Backedge); |
| 581 | } else if (!L->contains(BB: Backedge)) |
| 582 | return nullptr; |
| 583 | |
| 584 | // Look for the cmp instruction to determine if we can get a useful trip |
| 585 | // count. The trip count can be either a register or an immediate. The |
| 586 | // location of the value depends upon the type (reg or imm). |
| 587 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
| 588 | if (!ExitingBlock) |
| 589 | return nullptr; |
| 590 | |
| 591 | Register IVReg = 0; |
| 592 | int64_t IVBump = 0; |
| 593 | MachineInstr *IVOp; |
| 594 | bool FoundIV = findInductionRegister(L, Reg&: IVReg, IVBump, IVOp); |
| 595 | if (!FoundIV) |
| 596 | return nullptr; |
| 597 | |
| 598 | MachineBasicBlock * = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader); |
| 599 | |
| 600 | MachineOperand *InitialValue = nullptr; |
| 601 | MachineInstr *IV_Phi = MRI->getVRegDef(Reg: IVReg); |
| 602 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 603 | for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { |
| 604 | MachineBasicBlock *MBB = IV_Phi->getOperand(i: i+1).getMBB(); |
| 605 | if (MBB == Preheader) |
| 606 | InitialValue = &IV_Phi->getOperand(i); |
| 607 | else if (MBB == Latch) |
| 608 | IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. |
| 609 | } |
| 610 | if (!InitialValue) |
| 611 | return nullptr; |
| 612 | |
| 613 | SmallVector<MachineOperand,2> Cond; |
| 614 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
| 615 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false); |
| 616 | if (NotAnalyzed) |
| 617 | return nullptr; |
| 618 | |
| 619 | MachineBasicBlock * = L->getHeader(); |
| 620 | // TB must be non-null. If FB is also non-null, one of them must be |
| 621 | // the header. Otherwise, branch to TB could be exiting the loop, and |
| 622 | // the fall through can go to the header. |
| 623 | assert (TB && "Exit block without a branch?" ); |
| 624 | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { |
| 625 | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; |
| 626 | SmallVector<MachineOperand,2> LCond; |
| 627 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *Latch, TBB&: LTB, FBB&: LFB, Cond&: LCond, AllowModify: false); |
| 628 | if (NotAnalyzed) |
| 629 | return nullptr; |
| 630 | if (TB == Latch) |
| 631 | TB = (LTB == Header) ? LTB : LFB; |
| 632 | else |
| 633 | FB = (LTB == Header) ? LTB: LFB; |
| 634 | } |
| 635 | assert ((!FB || TB == Header || FB == Header) && "Branches not to header?" ); |
| 636 | if (!TB || (FB && TB != Header && FB != Header)) |
| 637 | return nullptr; |
| 638 | |
| 639 | // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch |
| 640 | // to put imm(0), followed by P in the vector Cond. |
| 641 | // If TB is not the header, it means that the "not-taken" path must lead |
| 642 | // to the header. |
| 643 | bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); |
| 644 | Register PredReg; |
| 645 | unsigned PredPos, PredRegFlags; |
| 646 | if (!TII->getPredReg(Cond, PredReg, PredRegPos&: PredPos, PredRegFlags)) |
| 647 | return nullptr; |
| 648 | MachineInstr *CondI = MRI->getVRegDef(Reg: PredReg); |
| 649 | unsigned CondOpc = CondI->getOpcode(); |
| 650 | |
| 651 | Register CmpReg1, CmpReg2; |
| 652 | int64_t Mask = 0, ImmValue = 0; |
| 653 | bool AnalyzedCmp = |
| 654 | TII->analyzeCompare(MI: *CondI, SrcReg&: CmpReg1, SrcReg2&: CmpReg2, Mask, Value&: ImmValue); |
| 655 | if (!AnalyzedCmp) |
| 656 | return nullptr; |
| 657 | |
| 658 | // The comparison operator type determines how we compute the loop |
| 659 | // trip count. |
| 660 | OldInsts.push_back(Elt: CondI); |
| 661 | OldInsts.push_back(Elt: IVOp); |
| 662 | |
| 663 | // Sadly, the following code gets information based on the position |
| 664 | // of the operands in the compare instruction. This has to be done |
| 665 | // this way, because the comparisons check for a specific relationship |
| 666 | // between the operands (e.g. is-less-than), rather than to find out |
| 667 | // what relationship the operands are in (as on PPC). |
| 668 | Comparison::Kind Cmp; |
| 669 | bool isSwapped = false; |
| 670 | const MachineOperand &Op1 = CondI->getOperand(i: 1); |
| 671 | const MachineOperand &Op2 = CondI->getOperand(i: 2); |
| 672 | const MachineOperand *EndValue = nullptr; |
| 673 | |
| 674 | if (Op1.isReg()) { |
| 675 | if (Op2.isImm() || Op1.getReg() == IVReg) |
| 676 | EndValue = &Op2; |
| 677 | else { |
| 678 | EndValue = &Op1; |
| 679 | isSwapped = true; |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | if (!EndValue) |
| 684 | return nullptr; |
| 685 | |
| 686 | Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); |
| 687 | if (!Cmp) |
| 688 | return nullptr; |
| 689 | if (Negated) |
| 690 | Cmp = Comparison::getNegatedComparison(Cmp); |
| 691 | if (isSwapped) |
| 692 | Cmp = Comparison::getSwappedComparison(Cmp); |
| 693 | |
| 694 | if (InitialValue->isReg()) { |
| 695 | Register R = InitialValue->getReg(); |
| 696 | MachineBasicBlock *DefBB = MRI->getVRegDef(Reg: R)->getParent(); |
| 697 | if (!MDT->properlyDominates(A: DefBB, B: Header)) { |
| 698 | int64_t V; |
| 699 | if (!checkForImmediate(MO: *InitialValue, Val&: V)) |
| 700 | return nullptr; |
| 701 | } |
| 702 | OldInsts.push_back(Elt: MRI->getVRegDef(Reg: R)); |
| 703 | } |
| 704 | if (EndValue->isReg()) { |
| 705 | Register R = EndValue->getReg(); |
| 706 | MachineBasicBlock *DefBB = MRI->getVRegDef(Reg: R)->getParent(); |
| 707 | if (!MDT->properlyDominates(A: DefBB, B: Header)) { |
| 708 | int64_t V; |
| 709 | if (!checkForImmediate(MO: *EndValue, Val&: V)) |
| 710 | return nullptr; |
| 711 | } |
| 712 | OldInsts.push_back(Elt: MRI->getVRegDef(Reg: R)); |
| 713 | } |
| 714 | |
| 715 | return computeCount(Loop: L, Start: InitialValue, End: EndValue, IVReg, IVBump, Cmp); |
| 716 | } |
| 717 | |
| 718 | /// Helper function that returns the expression that represents the |
| 719 | /// number of times a loop iterates. The function takes the operands that |
| 720 | /// represent the loop start value, loop end value, and induction value. |
| 721 | /// Based upon these operands, the function attempts to compute the trip count. |
| 722 | CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, |
| 723 | const MachineOperand *Start, |
| 724 | const MachineOperand *End, |
| 725 | Register IVReg, |
| 726 | int64_t IVBump, |
| 727 | Comparison::Kind Cmp) const { |
| 728 | LLVM_DEBUG(llvm::dbgs() << "Loop: " << *Loop << "\n" ); |
| 729 | LLVM_DEBUG(llvm::dbgs() << "Initial Value: " << *Start << "\n" ); |
| 730 | LLVM_DEBUG(llvm::dbgs() << "End Value: " << *End << "\n" ); |
| 731 | LLVM_DEBUG(llvm::dbgs() << "Inc/Dec Value: " << IVBump << "\n" ); |
| 732 | LLVM_DEBUG(llvm::dbgs() << "Comparison: " << Cmp << "\n" ); |
| 733 | // Cannot handle comparison EQ, i.e. while (A == B). |
| 734 | if (Cmp == Comparison::EQ) |
| 735 | return nullptr; |
| 736 | |
| 737 | // Check if either the start or end values are an assignment of an immediate. |
| 738 | // If so, use the immediate value rather than the register. |
| 739 | if (Start->isReg()) { |
| 740 | const MachineInstr *StartValInstr = MRI->getVRegDef(Reg: Start->getReg()); |
| 741 | if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || |
| 742 | StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) |
| 743 | Start = &StartValInstr->getOperand(i: 1); |
| 744 | } |
| 745 | if (End->isReg()) { |
| 746 | const MachineInstr *EndValInstr = MRI->getVRegDef(Reg: End->getReg()); |
| 747 | if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || |
| 748 | EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) |
| 749 | End = &EndValInstr->getOperand(i: 1); |
| 750 | } |
| 751 | |
| 752 | if (!Start->isReg() && !Start->isImm()) |
| 753 | return nullptr; |
| 754 | if (!End->isReg() && !End->isImm()) |
| 755 | return nullptr; |
| 756 | |
| 757 | bool CmpLess = Cmp & Comparison::L; |
| 758 | bool CmpGreater = Cmp & Comparison::G; |
| 759 | bool CmpHasEqual = Cmp & Comparison::EQ; |
| 760 | |
| 761 | // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. |
| 762 | if (CmpLess && IVBump < 0) |
| 763 | // Loop going while iv is "less" with the iv value going down. Must wrap. |
| 764 | return nullptr; |
| 765 | |
| 766 | if (CmpGreater && IVBump > 0) |
| 767 | // Loop going while iv is "greater" with the iv value going up. Must wrap. |
| 768 | return nullptr; |
| 769 | |
| 770 | // Phis that may feed into the loop. |
| 771 | LoopFeederMap LoopFeederPhi; |
| 772 | |
| 773 | // Check if the initial value may be zero and can be decremented in the first |
| 774 | // iteration. If the value is zero, the endloop instruction will not decrement |
| 775 | // the loop counter, so we shouldn't generate a hardware loop in this case. |
| 776 | if (loopCountMayWrapOrUnderFlow(InitVal: Start, EndVal: End, MBB: Loop->getLoopPreheader(), L: Loop, |
| 777 | LoopFeederPhi)) |
| 778 | return nullptr; |
| 779 | |
| 780 | if (Start->isImm() && End->isImm()) { |
| 781 | // Both, start and end are immediates. |
| 782 | int64_t StartV = Start->getImm(); |
| 783 | int64_t EndV = End->getImm(); |
| 784 | int64_t Dist = EndV - StartV; |
| 785 | if (Dist == 0) |
| 786 | return nullptr; |
| 787 | |
| 788 | bool Exact = (Dist % IVBump) == 0; |
| 789 | |
| 790 | if (Cmp == Comparison::NE) { |
| 791 | if (!Exact) |
| 792 | return nullptr; |
| 793 | if ((Dist < 0) ^ (IVBump < 0)) |
| 794 | return nullptr; |
| 795 | } |
| 796 | |
| 797 | // For comparisons that include the final value (i.e. include equality |
| 798 | // with the final value), we need to increase the distance by 1. |
| 799 | if (CmpHasEqual) |
| 800 | Dist = Dist > 0 ? Dist+1 : Dist-1; |
| 801 | |
| 802 | // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, |
| 803 | // CmpGreater should imply Dist < 0. These conditions could actually |
| 804 | // fail, for example, in unreachable code (which may still appear to be |
| 805 | // reachable in the CFG). |
| 806 | if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) |
| 807 | return nullptr; |
| 808 | |
| 809 | // "Normalized" distance, i.e. with the bump set to +-1. |
| 810 | int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump |
| 811 | : (-Dist + (-IVBump - 1)) / (-IVBump); |
| 812 | assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign." ); |
| 813 | |
| 814 | uint64_t Count = Dist1; |
| 815 | |
| 816 | if (Count > 0xFFFFFFFFULL) |
| 817 | return nullptr; |
| 818 | |
| 819 | return new CountValue(CountValue::CV_Immediate, Count); |
| 820 | } |
| 821 | |
| 822 | // A general case: Start and End are some values, but the actual |
| 823 | // iteration count may not be available. If it is not, insert |
| 824 | // a computation of it into the preheader. |
| 825 | |
| 826 | // If the induction variable bump is not a power of 2, quit. |
| 827 | // Otherwise we'd need a general integer division. |
| 828 | if (!isPowerOf2_64(Value: std::abs(i: IVBump))) |
| 829 | return nullptr; |
| 830 | |
| 831 | MachineBasicBlock *PH = MLI->findLoopPreheader(L: Loop, SpeculativePreheader: SpecPreheader); |
| 832 | assert (PH && "Should have a preheader by now" ); |
| 833 | MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); |
| 834 | DebugLoc DL; |
| 835 | if (InsertPos != PH->end()) |
| 836 | DL = InsertPos->getDebugLoc(); |
| 837 | |
| 838 | // If Start is an immediate and End is a register, the trip count |
| 839 | // will be "reg - imm". Hexagon's "subtract immediate" instruction |
| 840 | // is actually "reg + -imm". |
| 841 | |
| 842 | // If the loop IV is going downwards, i.e. if the bump is negative, |
| 843 | // then the iteration count (computed as End-Start) will need to be |
| 844 | // negated. To avoid the negation, just swap Start and End. |
| 845 | if (IVBump < 0) { |
| 846 | std::swap(a&: Start, b&: End); |
| 847 | IVBump = -IVBump; |
| 848 | std::swap(a&: CmpLess, b&: CmpGreater); |
| 849 | } |
| 850 | // Cmp may now have a wrong direction, e.g. LEs may now be GEs. |
| 851 | // Signedness, and "including equality" are preserved. |
| 852 | |
| 853 | bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) |
| 854 | bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) |
| 855 | |
| 856 | int64_t StartV = 0, EndV = 0; |
| 857 | if (Start->isImm()) |
| 858 | StartV = Start->getImm(); |
| 859 | if (End->isImm()) |
| 860 | EndV = End->getImm(); |
| 861 | |
| 862 | int64_t AdjV = 0; |
| 863 | // To compute the iteration count, we would need this computation: |
| 864 | // Count = (End - Start + (IVBump-1)) / IVBump |
| 865 | // or, when CmpHasEqual: |
| 866 | // Count = (End - Start + (IVBump-1)+1) / IVBump |
| 867 | // The "IVBump-1" part is the adjustment (AdjV). We can avoid |
| 868 | // generating an instruction specifically to add it if we can adjust |
| 869 | // the immediate values for Start or End. |
| 870 | |
| 871 | if (CmpHasEqual) { |
| 872 | // Need to add 1 to the total iteration count. |
| 873 | if (Start->isImm()) |
| 874 | StartV--; |
| 875 | else if (End->isImm()) |
| 876 | EndV++; |
| 877 | else |
| 878 | AdjV += 1; |
| 879 | } |
| 880 | |
| 881 | if (Cmp != Comparison::NE) { |
| 882 | if (Start->isImm()) |
| 883 | StartV -= (IVBump-1); |
| 884 | else if (End->isImm()) |
| 885 | EndV += (IVBump-1); |
| 886 | else |
| 887 | AdjV += (IVBump-1); |
| 888 | } |
| 889 | |
| 890 | Register R = 0; |
| 891 | unsigned SR = 0; |
| 892 | if (Start->isReg()) { |
| 893 | R = Start->getReg(); |
| 894 | SR = Start->getSubReg(); |
| 895 | } else { |
| 896 | R = End->getReg(); |
| 897 | SR = End->getSubReg(); |
| 898 | } |
| 899 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: R); |
| 900 | // Hardware loops cannot handle 64-bit registers. If it's a double |
| 901 | // register, it has to have a subregister. |
| 902 | if (!SR && RC == &Hexagon::DoubleRegsRegClass) |
| 903 | return nullptr; |
| 904 | const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; |
| 905 | |
| 906 | // Compute DistR (register with the distance between Start and End). |
| 907 | Register DistR; |
| 908 | unsigned DistSR; |
| 909 | |
| 910 | // Avoid special case, where the start value is an imm(0). |
| 911 | if (Start->isImm() && StartV == 0) { |
| 912 | DistR = End->getReg(); |
| 913 | DistSR = End->getSubReg(); |
| 914 | } else { |
| 915 | const MCInstrDesc &SubD = RegToReg ? TII->get(Opcode: Hexagon::A2_sub) : |
| 916 | (RegToImm ? TII->get(Opcode: Hexagon::A2_subri) : |
| 917 | TII->get(Opcode: Hexagon::A2_addi)); |
| 918 | if (RegToReg || RegToImm) { |
| 919 | Register SubR = MRI->createVirtualRegister(RegClass: IntRC); |
| 920 | MachineInstrBuilder SubIB = |
| 921 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: SubD, DestReg: SubR); |
| 922 | |
| 923 | if (RegToReg) |
| 924 | SubIB.addReg(RegNo: End->getReg(), flags: 0, SubReg: End->getSubReg()) |
| 925 | .addReg(RegNo: Start->getReg(), flags: 0, SubReg: Start->getSubReg()); |
| 926 | else |
| 927 | SubIB.addImm(Val: EndV) |
| 928 | .addReg(RegNo: Start->getReg(), flags: 0, SubReg: Start->getSubReg()); |
| 929 | DistR = SubR; |
| 930 | } else { |
| 931 | // If the loop has been unrolled, we should use the original loop count |
| 932 | // instead of recalculating the value. This will avoid additional |
| 933 | // 'Add' instruction. |
| 934 | const MachineInstr *EndValInstr = MRI->getVRegDef(Reg: End->getReg()); |
| 935 | if (EndValInstr->getOpcode() == Hexagon::A2_addi && |
| 936 | EndValInstr->getOperand(i: 1).getSubReg() == 0 && |
| 937 | EndValInstr->getOperand(i: 2).getImm() == StartV) { |
| 938 | DistR = EndValInstr->getOperand(i: 1).getReg(); |
| 939 | } else { |
| 940 | Register SubR = MRI->createVirtualRegister(RegClass: IntRC); |
| 941 | MachineInstrBuilder SubIB = |
| 942 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: SubD, DestReg: SubR); |
| 943 | SubIB.addReg(RegNo: End->getReg(), flags: 0, SubReg: End->getSubReg()) |
| 944 | .addImm(Val: -StartV); |
| 945 | DistR = SubR; |
| 946 | } |
| 947 | } |
| 948 | DistSR = 0; |
| 949 | } |
| 950 | |
| 951 | // From DistR, compute AdjR (register with the adjusted distance). |
| 952 | Register AdjR; |
| 953 | unsigned AdjSR; |
| 954 | |
| 955 | if (AdjV == 0) { |
| 956 | AdjR = DistR; |
| 957 | AdjSR = DistSR; |
| 958 | } else { |
| 959 | // Generate CountR = ADD DistR, AdjVal |
| 960 | Register AddR = MRI->createVirtualRegister(RegClass: IntRC); |
| 961 | MCInstrDesc const &AddD = TII->get(Opcode: Hexagon::A2_addi); |
| 962 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: AddD, DestReg: AddR) |
| 963 | .addReg(RegNo: DistR, flags: 0, SubReg: DistSR) |
| 964 | .addImm(Val: AdjV); |
| 965 | |
| 966 | AdjR = AddR; |
| 967 | AdjSR = 0; |
| 968 | } |
| 969 | |
| 970 | // From AdjR, compute CountR (register with the final count). |
| 971 | Register CountR; |
| 972 | unsigned CountSR; |
| 973 | |
| 974 | if (IVBump == 1) { |
| 975 | CountR = AdjR; |
| 976 | CountSR = AdjSR; |
| 977 | } else { |
| 978 | // The IV bump is a power of two. Log_2(IV bump) is the shift amount. |
| 979 | unsigned Shift = Log2_32(Value: IVBump); |
| 980 | |
| 981 | // Generate NormR = LSR DistR, Shift. |
| 982 | Register LsrR = MRI->createVirtualRegister(RegClass: IntRC); |
| 983 | const MCInstrDesc &LsrD = TII->get(Opcode: Hexagon::S2_lsr_i_r); |
| 984 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: LsrD, DestReg: LsrR) |
| 985 | .addReg(RegNo: AdjR, flags: 0, SubReg: AdjSR) |
| 986 | .addImm(Val: Shift); |
| 987 | |
| 988 | CountR = LsrR; |
| 989 | CountSR = 0; |
| 990 | } |
| 991 | |
| 992 | const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass; |
| 993 | Register MuxR = CountR; |
| 994 | unsigned MuxSR = CountSR; |
| 995 | // For the loop count to be valid unsigned number, CmpLess should imply |
| 996 | // Dist >= 0. Similarly, CmpGreater should imply Dist < 0. We can skip the |
| 997 | // check if the initial distance is zero and the comparison is LTu || LTEu. |
| 998 | if (!(Start->isImm() && StartV == 0 && Comparison::isUnsigned(Cmp) && |
| 999 | CmpLess) && |
| 1000 | (CmpLess || CmpGreater)) { |
| 1001 | // Generate: |
| 1002 | // DistCheck = CMP_GT DistR, 0 --> CmpLess |
| 1003 | // DistCheck = CMP_GT DistR, -1 --> CmpGreater |
| 1004 | Register DistCheckR = MRI->createVirtualRegister(RegClass: PredRC); |
| 1005 | const MCInstrDesc &DistCheckD = TII->get(Opcode: Hexagon::C2_cmpgti); |
| 1006 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: DistCheckD, DestReg: DistCheckR) |
| 1007 | .addReg(RegNo: DistR, flags: 0, SubReg: DistSR) |
| 1008 | .addImm(Val: (CmpLess) ? 0 : -1); |
| 1009 | |
| 1010 | // Generate: |
| 1011 | // MUXR = MUX DistCheck, CountR, 1 --> CmpLess |
| 1012 | // MUXR = MUX DistCheck, 1, CountR --> CmpGreater |
| 1013 | MuxR = MRI->createVirtualRegister(RegClass: IntRC); |
| 1014 | if (CmpLess) { |
| 1015 | const MCInstrDesc &MuxD = TII->get(Opcode: Hexagon::C2_muxir); |
| 1016 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: MuxD, DestReg: MuxR) |
| 1017 | .addReg(RegNo: DistCheckR) |
| 1018 | .addReg(RegNo: CountR, flags: 0, SubReg: CountSR) |
| 1019 | .addImm(Val: 1); |
| 1020 | } else { |
| 1021 | const MCInstrDesc &MuxD = TII->get(Opcode: Hexagon::C2_muxri); |
| 1022 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: MuxD, DestReg: MuxR) |
| 1023 | .addReg(RegNo: DistCheckR) |
| 1024 | .addImm(Val: 1) |
| 1025 | .addReg(RegNo: CountR, flags: 0, SubReg: CountSR); |
| 1026 | } |
| 1027 | MuxSR = 0; |
| 1028 | } |
| 1029 | |
| 1030 | return new CountValue(CountValue::CV_Register, MuxR, MuxSR); |
| 1031 | } |
| 1032 | |
| 1033 | /// Return true if the operation is invalid within hardware loop. |
| 1034 | bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, |
| 1035 | bool IsInnerHWLoop) const { |
| 1036 | // Call is not allowed because the callee may use a hardware loop except for |
| 1037 | // the case when the call never returns. |
| 1038 | if (MI->getDesc().isCall()) |
| 1039 | return !TII->doesNotReturn(CallMI: *MI); |
| 1040 | |
| 1041 | // Check if the instruction defines a hardware loop register. |
| 1042 | using namespace Hexagon; |
| 1043 | |
| 1044 | static const Register Regs01[] = { LC0, SA0, LC1, SA1 }; |
| 1045 | static const Register Regs1[] = { LC1, SA1 }; |
| 1046 | auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1); |
| 1047 | for (Register R : CheckRegs) |
| 1048 | if (MI->modifiesRegister(Reg: R, TRI)) |
| 1049 | return true; |
| 1050 | |
| 1051 | return false; |
| 1052 | } |
| 1053 | |
| 1054 | /// Return true if the loop contains an instruction that inhibits |
| 1055 | /// the use of the hardware loop instruction. |
| 1056 | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, |
| 1057 | bool IsInnerHWLoop) const { |
| 1058 | LLVM_DEBUG(dbgs() << "\nhw_loop head, " |
| 1059 | << printMBBReference(**L->block_begin())); |
| 1060 | for (MachineBasicBlock *MBB : L->getBlocks()) { |
| 1061 | for (const MachineInstr &MI : *MBB) { |
| 1062 | if (isInvalidLoopOperation(MI: &MI, IsInnerHWLoop)) { |
| 1063 | LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:" ; |
| 1064 | MI.dump();); |
| 1065 | return true; |
| 1066 | } |
| 1067 | } |
| 1068 | } |
| 1069 | return false; |
| 1070 | } |
| 1071 | |
| 1072 | /// Returns true if the instruction is dead. This was essentially |
| 1073 | /// copied from DeadMachineInstructionElim::isDead, but with special cases |
| 1074 | /// for inline asm, physical registers and instructions with side effects |
| 1075 | /// removed. |
| 1076 | bool HexagonHardwareLoops::isDead(const MachineInstr *MI, |
| 1077 | SmallVectorImpl<MachineInstr *> &DeadPhis) const { |
| 1078 | // Examine each operand. |
| 1079 | for (const MachineOperand &MO : MI->operands()) { |
| 1080 | if (!MO.isReg() || !MO.isDef()) |
| 1081 | continue; |
| 1082 | |
| 1083 | Register Reg = MO.getReg(); |
| 1084 | if (MRI->use_nodbg_empty(RegNo: Reg)) |
| 1085 | continue; |
| 1086 | |
| 1087 | using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; |
| 1088 | |
| 1089 | // This instruction has users, but if the only user is the phi node for the |
| 1090 | // parent block, and the only use of that phi node is this instruction, then |
| 1091 | // this instruction is dead: both it (and the phi node) can be removed. |
| 1092 | use_nodbg_iterator I = MRI->use_nodbg_begin(RegNo: Reg); |
| 1093 | use_nodbg_iterator End = MRI->use_nodbg_end(); |
| 1094 | if (std::next(x: I) != End || !I->getParent()->isPHI()) |
| 1095 | return false; |
| 1096 | |
| 1097 | MachineInstr *OnePhi = I->getParent(); |
| 1098 | for (const MachineOperand &OPO : OnePhi->operands()) { |
| 1099 | if (!OPO.isReg() || !OPO.isDef()) |
| 1100 | continue; |
| 1101 | |
| 1102 | Register OPReg = OPO.getReg(); |
| 1103 | use_nodbg_iterator nextJ; |
| 1104 | for (use_nodbg_iterator J = MRI->use_nodbg_begin(RegNo: OPReg); |
| 1105 | J != End; J = nextJ) { |
| 1106 | nextJ = std::next(x: J); |
| 1107 | MachineOperand &Use = *J; |
| 1108 | MachineInstr *UseMI = Use.getParent(); |
| 1109 | |
| 1110 | // If the phi node has a user that is not MI, bail. |
| 1111 | if (MI != UseMI) |
| 1112 | return false; |
| 1113 | } |
| 1114 | } |
| 1115 | DeadPhis.push_back(Elt: OnePhi); |
| 1116 | } |
| 1117 | |
| 1118 | // If there are no defs with uses, the instruction is dead. |
| 1119 | return true; |
| 1120 | } |
| 1121 | |
| 1122 | void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { |
| 1123 | // This procedure was essentially copied from DeadMachineInstructionElim. |
| 1124 | |
| 1125 | SmallVector<MachineInstr*, 1> DeadPhis; |
| 1126 | if (isDead(MI, DeadPhis)) { |
| 1127 | LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); |
| 1128 | |
| 1129 | // It is possible that some DBG_VALUE instructions refer to this |
| 1130 | // instruction. Examine each def operand for such references; |
| 1131 | // if found, mark the DBG_VALUE as undef (but don't delete it). |
| 1132 | for (const MachineOperand &MO : MI->operands()) { |
| 1133 | if (!MO.isReg() || !MO.isDef()) |
| 1134 | continue; |
| 1135 | Register Reg = MO.getReg(); |
| 1136 | // We use make_early_inc_range here because setReg below invalidates the |
| 1137 | // iterator. |
| 1138 | for (MachineOperand &MO : |
| 1139 | llvm::make_early_inc_range(Range: MRI->use_operands(Reg))) { |
| 1140 | MachineInstr *UseMI = MO.getParent(); |
| 1141 | if (UseMI == MI) |
| 1142 | continue; |
| 1143 | if (MO.isDebug()) |
| 1144 | MO.setReg(0U); |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | MI->eraseFromParent(); |
| 1149 | for (unsigned i = 0; i < DeadPhis.size(); ++i) |
| 1150 | DeadPhis[i]->eraseFromParent(); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | /// Check if the loop is a candidate for converting to a hardware |
| 1155 | /// loop. If so, then perform the transformation. |
| 1156 | /// |
| 1157 | /// This function works on innermost loops first. A loop can be converted |
| 1158 | /// if it is a counting loop; either a register value or an immediate. |
| 1159 | /// |
| 1160 | /// The code makes several assumptions about the representation of the loop |
| 1161 | /// in llvm. |
| 1162 | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, |
| 1163 | bool &RecL0used, |
| 1164 | bool &RecL1used) { |
| 1165 | // This is just to confirm basic correctness. |
| 1166 | assert(L->getHeader() && "Loop without a header?" ); |
| 1167 | |
| 1168 | bool Changed = false; |
| 1169 | bool L0Used = false; |
| 1170 | bool L1Used = false; |
| 1171 | |
| 1172 | // Process nested loops first. |
| 1173 | for (MachineLoop *I : *L) { |
| 1174 | Changed |= convertToHardwareLoop(L: I, RecL0used, RecL1used); |
| 1175 | L0Used |= RecL0used; |
| 1176 | L1Used |= RecL1used; |
| 1177 | } |
| 1178 | |
| 1179 | // If a nested loop has been converted, then we can't convert this loop. |
| 1180 | if (Changed && L0Used && L1Used) |
| 1181 | return Changed; |
| 1182 | |
| 1183 | unsigned LOOP_i; |
| 1184 | unsigned LOOP_r; |
| 1185 | unsigned ENDLOOP; |
| 1186 | |
| 1187 | // Flag used to track loopN instruction: |
| 1188 | // 1 - Hardware loop is being generated for the inner most loop. |
| 1189 | // 0 - Hardware loop is being generated for the outer loop. |
| 1190 | unsigned IsInnerHWLoop = 1; |
| 1191 | |
| 1192 | if (L0Used) { |
| 1193 | LOOP_i = Hexagon::J2_loop1i; |
| 1194 | LOOP_r = Hexagon::J2_loop1r; |
| 1195 | ENDLOOP = Hexagon::ENDLOOP1; |
| 1196 | IsInnerHWLoop = 0; |
| 1197 | } else { |
| 1198 | LOOP_i = Hexagon::J2_loop0i; |
| 1199 | LOOP_r = Hexagon::J2_loop0r; |
| 1200 | ENDLOOP = Hexagon::ENDLOOP0; |
| 1201 | } |
| 1202 | |
| 1203 | #ifndef NDEBUG |
| 1204 | // Stop trying after reaching the limit (if any). |
| 1205 | int Limit = HWLoopLimit; |
| 1206 | if (Limit >= 0) { |
| 1207 | if (Counter >= HWLoopLimit) |
| 1208 | return false; |
| 1209 | Counter++; |
| 1210 | } |
| 1211 | #endif |
| 1212 | |
| 1213 | // Does the loop contain any invalid instructions? |
| 1214 | if (containsInvalidInstruction(L, IsInnerHWLoop)) |
| 1215 | return false; |
| 1216 | |
| 1217 | MachineBasicBlock *LastMBB = L->findLoopControlBlock(); |
| 1218 | // Don't generate hw loop if the loop has more than one exit. |
| 1219 | if (!LastMBB) |
| 1220 | return false; |
| 1221 | |
| 1222 | MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); |
| 1223 | if (LastI == LastMBB->end()) |
| 1224 | return false; |
| 1225 | |
| 1226 | // Is the induction variable bump feeding the latch condition? |
| 1227 | if (!fixupInductionVariable(L)) |
| 1228 | return false; |
| 1229 | |
| 1230 | // Ensure the loop has a preheader: the loop instruction will be |
| 1231 | // placed there. |
| 1232 | MachineBasicBlock * = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader); |
| 1233 | if (!Preheader) { |
| 1234 | Preheader = createPreheaderForLoop(L); |
| 1235 | if (!Preheader) |
| 1236 | return false; |
| 1237 | } |
| 1238 | |
| 1239 | MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); |
| 1240 | |
| 1241 | SmallVector<MachineInstr*, 2> OldInsts; |
| 1242 | // Are we able to determine the trip count for the loop? |
| 1243 | CountValue *TripCount = getLoopTripCount(L, OldInsts); |
| 1244 | if (!TripCount) |
| 1245 | return false; |
| 1246 | |
| 1247 | // Is the trip count available in the preheader? |
| 1248 | if (TripCount->isReg()) { |
| 1249 | // There will be a use of the register inserted into the preheader, |
| 1250 | // so make sure that the register is actually defined at that point. |
| 1251 | MachineInstr *TCDef = MRI->getVRegDef(Reg: TripCount->getReg()); |
| 1252 | MachineBasicBlock *BBDef = TCDef->getParent(); |
| 1253 | if (!MDT->dominates(A: BBDef, B: Preheader)) |
| 1254 | return false; |
| 1255 | } |
| 1256 | |
| 1257 | // Determine the loop start. |
| 1258 | MachineBasicBlock *TopBlock = L->getTopBlock(); |
| 1259 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
| 1260 | MachineBasicBlock *LoopStart = nullptr; |
| 1261 | if (ExitingBlock != L->getLoopLatch()) { |
| 1262 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
| 1263 | SmallVector<MachineOperand, 2> Cond; |
| 1264 | |
| 1265 | if (TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false)) |
| 1266 | return false; |
| 1267 | |
| 1268 | if (L->contains(BB: TB)) |
| 1269 | LoopStart = TB; |
| 1270 | else if (L->contains(BB: FB)) |
| 1271 | LoopStart = FB; |
| 1272 | else |
| 1273 | return false; |
| 1274 | } |
| 1275 | else |
| 1276 | LoopStart = TopBlock; |
| 1277 | |
| 1278 | // Convert the loop to a hardware loop. |
| 1279 | LLVM_DEBUG(dbgs() << "Change to hardware loop at " ; L->dump()); |
| 1280 | DebugLoc DL; |
| 1281 | if (InsertPos != Preheader->end()) |
| 1282 | DL = InsertPos->getDebugLoc(); |
| 1283 | |
| 1284 | if (TripCount->isReg()) { |
| 1285 | // Create a copy of the loop count register. |
| 1286 | Register CountReg = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 1287 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: CountReg) |
| 1288 | .addReg(RegNo: TripCount->getReg(), flags: 0, SubReg: TripCount->getSubReg()); |
| 1289 | // Add the Loop instruction to the beginning of the loop. |
| 1290 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: LOOP_r)).addMBB(MBB: LoopStart) |
| 1291 | .addReg(RegNo: CountReg); |
| 1292 | } else { |
| 1293 | assert(TripCount->isImm() && "Expecting immediate value for trip count" ); |
| 1294 | // Add the Loop immediate instruction to the beginning of the loop, |
| 1295 | // if the immediate fits in the instructions. Otherwise, we need to |
| 1296 | // create a new virtual register. |
| 1297 | int64_t CountImm = TripCount->getImm(); |
| 1298 | if (!TII->isValidOffset(Opcode: LOOP_i, Offset: CountImm, TRI)) { |
| 1299 | Register CountReg = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 1300 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: Hexagon::A2_tfrsi), DestReg: CountReg) |
| 1301 | .addImm(Val: CountImm); |
| 1302 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: LOOP_r)) |
| 1303 | .addMBB(MBB: LoopStart).addReg(RegNo: CountReg); |
| 1304 | } else |
| 1305 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: LOOP_i)) |
| 1306 | .addMBB(MBB: LoopStart).addImm(Val: CountImm); |
| 1307 | } |
| 1308 | |
| 1309 | // Make sure the loop start always has a reference in the CFG. |
| 1310 | LoopStart->setMachineBlockAddressTaken(); |
| 1311 | |
| 1312 | // Replace the loop branch with an endloop instruction. |
| 1313 | DebugLoc LastIDL = LastI->getDebugLoc(); |
| 1314 | BuildMI(BB&: *LastMBB, I: LastI, MIMD: LastIDL, MCID: TII->get(Opcode: ENDLOOP)).addMBB(MBB: LoopStart); |
| 1315 | |
| 1316 | // The loop ends with either: |
| 1317 | // - a conditional branch followed by an unconditional branch, or |
| 1318 | // - a conditional branch to the loop start. |
| 1319 | if (LastI->getOpcode() == Hexagon::J2_jumpt || |
| 1320 | LastI->getOpcode() == Hexagon::J2_jumpf) { |
| 1321 | // Delete one and change/add an uncond. branch to out of the loop. |
| 1322 | MachineBasicBlock *BranchTarget = LastI->getOperand(i: 1).getMBB(); |
| 1323 | LastI = LastMBB->erase(I: LastI); |
| 1324 | if (!L->contains(BB: BranchTarget)) { |
| 1325 | if (LastI != LastMBB->end()) |
| 1326 | LastI = LastMBB->erase(I: LastI); |
| 1327 | SmallVector<MachineOperand, 0> Cond; |
| 1328 | TII->insertBranch(MBB&: *LastMBB, TBB: BranchTarget, FBB: nullptr, Cond, DL: LastIDL); |
| 1329 | } |
| 1330 | } else { |
| 1331 | // Conditional branch to loop start; just delete it. |
| 1332 | LastMBB->erase(I: LastI); |
| 1333 | } |
| 1334 | delete TripCount; |
| 1335 | |
| 1336 | // The induction operation and the comparison may now be |
| 1337 | // unneeded. If these are unneeded, then remove them. |
| 1338 | for (unsigned i = 0; i < OldInsts.size(); ++i) |
| 1339 | removeIfDead(MI: OldInsts[i]); |
| 1340 | |
| 1341 | ++NumHWLoops; |
| 1342 | |
| 1343 | // Set RecL1used and RecL0used only after hardware loop has been |
| 1344 | // successfully generated. Doing it earlier can cause wrong loop instruction |
| 1345 | // to be used. |
| 1346 | if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. |
| 1347 | RecL1used = true; |
| 1348 | else |
| 1349 | RecL0used = true; |
| 1350 | |
| 1351 | return true; |
| 1352 | } |
| 1353 | |
| 1354 | bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, |
| 1355 | MachineInstr *CmpI) { |
| 1356 | assert (BumpI != CmpI && "Bump and compare in the same instruction?" ); |
| 1357 | |
| 1358 | MachineBasicBlock *BB = BumpI->getParent(); |
| 1359 | if (CmpI->getParent() != BB) |
| 1360 | return false; |
| 1361 | |
| 1362 | using instr_iterator = MachineBasicBlock::instr_iterator; |
| 1363 | |
| 1364 | // Check if things are in order to begin with. |
| 1365 | for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) |
| 1366 | if (&*I == CmpI) |
| 1367 | return true; |
| 1368 | |
| 1369 | // Out of order. |
| 1370 | Register PredR = CmpI->getOperand(i: 0).getReg(); |
| 1371 | bool FoundBump = false; |
| 1372 | instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(x: CmpIt); |
| 1373 | for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { |
| 1374 | MachineInstr *In = &*I; |
| 1375 | for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { |
| 1376 | MachineOperand &MO = In->getOperand(i); |
| 1377 | if (MO.isReg() && MO.isUse()) { |
| 1378 | if (MO.getReg() == PredR) // Found an intervening use of PredR. |
| 1379 | return false; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | if (In == BumpI) { |
| 1384 | BB->splice(Where: ++BumpI->getIterator(), Other: BB, From: CmpI->getIterator()); |
| 1385 | FoundBump = true; |
| 1386 | break; |
| 1387 | } |
| 1388 | } |
| 1389 | assert (FoundBump && "Cannot determine instruction order" ); |
| 1390 | return FoundBump; |
| 1391 | } |
| 1392 | |
| 1393 | /// This function is required to break recursion. Visiting phis in a loop may |
| 1394 | /// result in recursion during compilation. We break the recursion by making |
| 1395 | /// sure that we visit a MachineOperand and its definition in a |
| 1396 | /// MachineInstruction only once. If we attempt to visit more than once, then |
| 1397 | /// there is recursion, and will return false. |
| 1398 | bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, |
| 1399 | MachineInstr *MI, |
| 1400 | const MachineOperand *MO, |
| 1401 | LoopFeederMap &LoopFeederPhi) const { |
| 1402 | if (LoopFeederPhi.find(x: MO->getReg()) == LoopFeederPhi.end()) { |
| 1403 | LLVM_DEBUG(dbgs() << "\nhw_loop head, " |
| 1404 | << printMBBReference(**L->block_begin())); |
| 1405 | // Ignore all BBs that form Loop. |
| 1406 | if (llvm::is_contained(Range: L->getBlocks(), Element: A)) |
| 1407 | return false; |
| 1408 | MachineInstr *Def = MRI->getVRegDef(Reg: MO->getReg()); |
| 1409 | LoopFeederPhi.insert(x: std::make_pair(x: MO->getReg(), y&: Def)); |
| 1410 | return true; |
| 1411 | } else |
| 1412 | // Already visited node. |
| 1413 | return false; |
| 1414 | } |
| 1415 | |
| 1416 | /// Return true if a Phi may generate a value that can underflow. |
| 1417 | /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. |
| 1418 | bool HexagonHardwareLoops::phiMayWrapOrUnderflow( |
| 1419 | MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, |
| 1420 | MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { |
| 1421 | assert(Phi->isPHI() && "Expecting a Phi." ); |
| 1422 | // Walk through each Phi, and its used operands. Make sure that |
| 1423 | // if there is recursion in Phi, we won't generate hardware loops. |
| 1424 | for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) |
| 1425 | if (isLoopFeeder(L, A: MBB, MI: Phi, MO: &(Phi->getOperand(i)), LoopFeederPhi)) |
| 1426 | if (loopCountMayWrapOrUnderFlow(InitVal: &(Phi->getOperand(i)), EndVal, |
| 1427 | MBB: Phi->getParent(), L, LoopFeederPhi)) |
| 1428 | return true; |
| 1429 | return false; |
| 1430 | } |
| 1431 | |
| 1432 | /// Return true if the induction variable can underflow in the first iteration. |
| 1433 | /// An example, is an initial unsigned value that is 0 and is decrement in the |
| 1434 | /// first itertion of a do-while loop. In this case, we cannot generate a |
| 1435 | /// hardware loop because the endloop instruction does not decrement the loop |
| 1436 | /// counter if it is <= 1. We only need to perform this analysis if the |
| 1437 | /// initial value is a register. |
| 1438 | /// |
| 1439 | /// This function assumes the initial value may underflow unless proven |
| 1440 | /// otherwise. If the type is signed, then we don't care because signed |
| 1441 | /// underflow is undefined. We attempt to prove the initial value is not |
| 1442 | /// zero by performing a crude analysis of the loop counter. This function |
| 1443 | /// checks if the initial value is used in any comparison prior to the loop |
| 1444 | /// and, if so, assumes the comparison is a range check. This is inexact, |
| 1445 | /// but will catch the simple cases. |
| 1446 | bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( |
| 1447 | const MachineOperand *InitVal, const MachineOperand *EndVal, |
| 1448 | MachineBasicBlock *MBB, MachineLoop *L, |
| 1449 | LoopFeederMap &LoopFeederPhi) const { |
| 1450 | // Only check register values since they are unknown. |
| 1451 | if (!InitVal->isReg()) |
| 1452 | return false; |
| 1453 | |
| 1454 | if (!EndVal->isImm()) |
| 1455 | return false; |
| 1456 | |
| 1457 | // A register value that is assigned an immediate is a known value, and it |
| 1458 | // won't underflow in the first iteration. |
| 1459 | int64_t Imm; |
| 1460 | if (checkForImmediate(MO: *InitVal, Val&: Imm)) |
| 1461 | return (EndVal->getImm() == Imm); |
| 1462 | |
| 1463 | Register Reg = InitVal->getReg(); |
| 1464 | |
| 1465 | // We don't know the value of a physical register. |
| 1466 | if (!Reg.isVirtual()) |
| 1467 | return true; |
| 1468 | |
| 1469 | MachineInstr *Def = MRI->getVRegDef(Reg); |
| 1470 | if (!Def) |
| 1471 | return true; |
| 1472 | |
| 1473 | // If the initial value is a Phi or copy and the operands may not underflow, |
| 1474 | // then the definition cannot be underflow either. |
| 1475 | if (Def->isPHI() && !phiMayWrapOrUnderflow(Phi: Def, EndVal, MBB: Def->getParent(), |
| 1476 | L, LoopFeederPhi)) |
| 1477 | return false; |
| 1478 | if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(InitVal: &(Def->getOperand(i: 1)), |
| 1479 | EndVal, MBB: Def->getParent(), |
| 1480 | L, LoopFeederPhi)) |
| 1481 | return false; |
| 1482 | |
| 1483 | // Iterate over the uses of the initial value. If the initial value is used |
| 1484 | // in a compare, then we assume this is a range check that ensures the loop |
| 1485 | // doesn't underflow. This is not an exact test and should be improved. |
| 1486 | for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(RegNo: Reg), |
| 1487 | E = MRI->use_instr_nodbg_end(); I != E; ++I) { |
| 1488 | MachineInstr *MI = &*I; |
| 1489 | Register CmpReg1, CmpReg2; |
| 1490 | int64_t CmpMask = 0, CmpValue = 0; |
| 1491 | |
| 1492 | if (!TII->analyzeCompare(MI: *MI, SrcReg&: CmpReg1, SrcReg2&: CmpReg2, Mask&: CmpMask, Value&: CmpValue)) |
| 1493 | continue; |
| 1494 | |
| 1495 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 1496 | SmallVector<MachineOperand, 2> Cond; |
| 1497 | if (TII->analyzeBranch(MBB&: *MI->getParent(), TBB, FBB, Cond, AllowModify: false)) |
| 1498 | continue; |
| 1499 | |
| 1500 | Comparison::Kind Cmp = |
| 1501 | getComparisonKind(CondOpc: MI->getOpcode(), InitialValue: nullptr, EndValue: nullptr, IVBump: 0); |
| 1502 | if (Cmp == 0) |
| 1503 | continue; |
| 1504 | if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) |
| 1505 | Cmp = Comparison::getNegatedComparison(Cmp); |
| 1506 | if (CmpReg2 != 0 && CmpReg2 == Reg) |
| 1507 | Cmp = Comparison::getSwappedComparison(Cmp); |
| 1508 | |
| 1509 | // Signed underflow is undefined. |
| 1510 | if (Comparison::isSigned(Cmp)) |
| 1511 | return false; |
| 1512 | |
| 1513 | // Check if there is a comparison of the initial value. If the initial value |
| 1514 | // is greater than or not equal to another value, then assume this is a |
| 1515 | // range check. |
| 1516 | if ((Cmp & Comparison::G) || Cmp == Comparison::NE) |
| 1517 | return false; |
| 1518 | } |
| 1519 | |
| 1520 | // OK - this is a hack that needs to be improved. We really need to analyze |
| 1521 | // the instructions performed on the initial value. This works on the simplest |
| 1522 | // cases only. |
| 1523 | if (!Def->isCopy() && !Def->isPHI()) |
| 1524 | return false; |
| 1525 | |
| 1526 | return true; |
| 1527 | } |
| 1528 | |
| 1529 | bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, |
| 1530 | int64_t &Val) const { |
| 1531 | if (MO.isImm()) { |
| 1532 | Val = MO.getImm(); |
| 1533 | return true; |
| 1534 | } |
| 1535 | if (!MO.isReg()) |
| 1536 | return false; |
| 1537 | |
| 1538 | // MO is a register. Check whether it is defined as an immediate value, |
| 1539 | // and if so, get the value of it in TV. That value will then need to be |
| 1540 | // processed to handle potential subregisters in MO. |
| 1541 | int64_t TV; |
| 1542 | |
| 1543 | Register R = MO.getReg(); |
| 1544 | if (!R.isVirtual()) |
| 1545 | return false; |
| 1546 | MachineInstr *DI = MRI->getVRegDef(Reg: R); |
| 1547 | unsigned DOpc = DI->getOpcode(); |
| 1548 | switch (DOpc) { |
| 1549 | case TargetOpcode::COPY: |
| 1550 | case Hexagon::A2_tfrsi: |
| 1551 | case Hexagon::A2_tfrpi: |
| 1552 | case Hexagon::CONST32: |
| 1553 | case Hexagon::CONST64: |
| 1554 | // Call recursively to avoid an extra check whether operand(1) is |
| 1555 | // indeed an immediate (it could be a global address, for example), |
| 1556 | // plus we can handle COPY at the same time. |
| 1557 | if (!checkForImmediate(MO: DI->getOperand(i: 1), Val&: TV)) |
| 1558 | return false; |
| 1559 | break; |
| 1560 | case Hexagon::A2_combineii: |
| 1561 | case Hexagon::A4_combineir: |
| 1562 | case Hexagon::A4_combineii: |
| 1563 | case Hexagon::A4_combineri: |
| 1564 | case Hexagon::A2_combinew: { |
| 1565 | const MachineOperand &S1 = DI->getOperand(i: 1); |
| 1566 | const MachineOperand &S2 = DI->getOperand(i: 2); |
| 1567 | int64_t V1, V2; |
| 1568 | if (!checkForImmediate(MO: S1, Val&: V1) || !checkForImmediate(MO: S2, Val&: V2)) |
| 1569 | return false; |
| 1570 | TV = V2 | (static_cast<uint64_t>(V1) << 32); |
| 1571 | break; |
| 1572 | } |
| 1573 | case TargetOpcode::REG_SEQUENCE: { |
| 1574 | const MachineOperand &S1 = DI->getOperand(i: 1); |
| 1575 | const MachineOperand &S3 = DI->getOperand(i: 3); |
| 1576 | int64_t V1, V3; |
| 1577 | if (!checkForImmediate(MO: S1, Val&: V1) || !checkForImmediate(MO: S3, Val&: V3)) |
| 1578 | return false; |
| 1579 | unsigned Sub2 = DI->getOperand(i: 2).getImm(); |
| 1580 | unsigned Sub4 = DI->getOperand(i: 4).getImm(); |
| 1581 | if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) |
| 1582 | TV = V1 | (V3 << 32); |
| 1583 | else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) |
| 1584 | TV = V3 | (V1 << 32); |
| 1585 | else |
| 1586 | llvm_unreachable("Unexpected form of REG_SEQUENCE" ); |
| 1587 | break; |
| 1588 | } |
| 1589 | |
| 1590 | default: |
| 1591 | return false; |
| 1592 | } |
| 1593 | |
| 1594 | // By now, we should have successfully obtained the immediate value defining |
| 1595 | // the register referenced in MO. Handle a potential use of a subregister. |
| 1596 | switch (MO.getSubReg()) { |
| 1597 | case Hexagon::isub_lo: |
| 1598 | Val = TV & 0xFFFFFFFFULL; |
| 1599 | break; |
| 1600 | case Hexagon::isub_hi: |
| 1601 | Val = (TV >> 32) & 0xFFFFFFFFULL; |
| 1602 | break; |
| 1603 | default: |
| 1604 | Val = TV; |
| 1605 | break; |
| 1606 | } |
| 1607 | return true; |
| 1608 | } |
| 1609 | |
| 1610 | void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { |
| 1611 | if (MO.isImm()) { |
| 1612 | MO.setImm(Val); |
| 1613 | return; |
| 1614 | } |
| 1615 | |
| 1616 | assert(MO.isReg()); |
| 1617 | Register R = MO.getReg(); |
| 1618 | MachineInstr *DI = MRI->getVRegDef(Reg: R); |
| 1619 | |
| 1620 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: R); |
| 1621 | Register NewR = MRI->createVirtualRegister(RegClass: RC); |
| 1622 | MachineBasicBlock &B = *DI->getParent(); |
| 1623 | DebugLoc DL = DI->getDebugLoc(); |
| 1624 | BuildMI(BB&: B, I: DI, MIMD: DL, MCID: TII->get(Opcode: DI->getOpcode()), DestReg: NewR).addImm(Val); |
| 1625 | MO.setReg(NewR); |
| 1626 | } |
| 1627 | |
| 1628 | bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { |
| 1629 | MachineBasicBlock * = L->getHeader(); |
| 1630 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 1631 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
| 1632 | |
| 1633 | if (!(Header && Latch && ExitingBlock)) |
| 1634 | return false; |
| 1635 | |
| 1636 | // These data structures follow the same concept as the corresponding |
| 1637 | // ones in findInductionRegister (where some comments are). |
| 1638 | using RegisterBump = std::pair<Register, int64_t>; |
| 1639 | using RegisterInduction = std::pair<Register, RegisterBump>; |
| 1640 | using RegisterInductionSet = std::set<RegisterInduction>; |
| 1641 | |
| 1642 | // Register candidates for induction variables, with their associated bumps. |
| 1643 | RegisterInductionSet IndRegs; |
| 1644 | |
| 1645 | // Look for induction patterns: |
| 1646 | // %1 = PHI ..., [ latch, %2 ] |
| 1647 | // %2 = ADD %1, imm |
| 1648 | using instr_iterator = MachineBasicBlock::instr_iterator; |
| 1649 | |
| 1650 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 1651 | I != E && I->isPHI(); ++I) { |
| 1652 | MachineInstr *Phi = &*I; |
| 1653 | |
| 1654 | // Have a PHI instruction. |
| 1655 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
| 1656 | if (Phi->getOperand(i: i+1).getMBB() != Latch) |
| 1657 | continue; |
| 1658 | |
| 1659 | Register PhiReg = Phi->getOperand(i).getReg(); |
| 1660 | MachineInstr *DI = MRI->getVRegDef(Reg: PhiReg); |
| 1661 | |
| 1662 | if (DI->getDesc().isAdd()) { |
| 1663 | // If the register operand to the add/sub is the PHI we are looking |
| 1664 | // at, this meets the induction pattern. |
| 1665 | Register IndReg = DI->getOperand(i: 1).getReg(); |
| 1666 | MachineOperand &Opnd2 = DI->getOperand(i: 2); |
| 1667 | int64_t V; |
| 1668 | if (MRI->getVRegDef(Reg: IndReg) == Phi && checkForImmediate(MO: Opnd2, Val&: V)) { |
| 1669 | Register UpdReg = DI->getOperand(i: 0).getReg(); |
| 1670 | IndRegs.insert(x: std::make_pair(x&: UpdReg, y: std::make_pair(x&: IndReg, y&: V))); |
| 1671 | } |
| 1672 | } |
| 1673 | } // for (i) |
| 1674 | } // for (instr) |
| 1675 | |
| 1676 | if (IndRegs.empty()) |
| 1677 | return false; |
| 1678 | |
| 1679 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
| 1680 | SmallVector<MachineOperand,2> Cond; |
| 1681 | // analyzeBranch returns true if it fails to analyze branch. |
| 1682 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false); |
| 1683 | if (NotAnalyzed || Cond.empty()) |
| 1684 | return false; |
| 1685 | |
| 1686 | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { |
| 1687 | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; |
| 1688 | SmallVector<MachineOperand,2> LCond; |
| 1689 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *Latch, TBB&: LTB, FBB&: LFB, Cond&: LCond, AllowModify: false); |
| 1690 | if (NotAnalyzed) |
| 1691 | return false; |
| 1692 | |
| 1693 | // Since latch is not the exiting block, the latch branch should be an |
| 1694 | // unconditional branch to the loop header. |
| 1695 | if (TB == Latch) |
| 1696 | TB = (LTB == Header) ? LTB : LFB; |
| 1697 | else |
| 1698 | FB = (LTB == Header) ? LTB : LFB; |
| 1699 | } |
| 1700 | if (TB != Header) { |
| 1701 | if (FB != Header) { |
| 1702 | // The latch/exit block does not go back to the header. |
| 1703 | return false; |
| 1704 | } |
| 1705 | // FB is the header (i.e., uncond. jump to branch header) |
| 1706 | // In this case, the LoopBody -> TB should not be a back edge otherwise |
| 1707 | // it could result in an infinite loop after conversion to hw_loop. |
| 1708 | // This case can happen when the Latch has two jumps like this: |
| 1709 | // Jmp_c OuterLoopHeader <-- TB |
| 1710 | // Jmp InnerLoopHeader <-- FB |
| 1711 | if (MDT->dominates(A: TB, B: FB)) |
| 1712 | return false; |
| 1713 | } |
| 1714 | |
| 1715 | // Expecting a predicate register as a condition. It won't be a hardware |
| 1716 | // predicate register at this point yet, just a vreg. |
| 1717 | // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) |
| 1718 | // into Cond, followed by the predicate register. For non-negated branches |
| 1719 | // it's just the register. |
| 1720 | unsigned CSz = Cond.size(); |
| 1721 | if (CSz != 1 && CSz != 2) |
| 1722 | return false; |
| 1723 | |
| 1724 | if (!Cond[CSz-1].isReg()) |
| 1725 | return false; |
| 1726 | |
| 1727 | Register P = Cond[CSz - 1].getReg(); |
| 1728 | MachineInstr *PredDef = MRI->getVRegDef(Reg: P); |
| 1729 | |
| 1730 | if (!PredDef->isCompare()) |
| 1731 | return false; |
| 1732 | |
| 1733 | SmallSet<Register,2> CmpRegs; |
| 1734 | MachineOperand *CmpImmOp = nullptr; |
| 1735 | |
| 1736 | // Go over all operands to the compare and look for immediate and register |
| 1737 | // operands. Assume that if the compare has a single register use and a |
| 1738 | // single immediate operand, then the register is being compared with the |
| 1739 | // immediate value. |
| 1740 | for (MachineOperand &MO : PredDef->operands()) { |
| 1741 | if (MO.isReg()) { |
| 1742 | // Skip all implicit references. In one case there was: |
| 1743 | // %140 = FCMPUGT32_rr %138, %139, implicit %usr |
| 1744 | if (MO.isImplicit()) |
| 1745 | continue; |
| 1746 | if (MO.isUse()) { |
| 1747 | if (!isImmediate(MO)) { |
| 1748 | CmpRegs.insert(V: MO.getReg()); |
| 1749 | continue; |
| 1750 | } |
| 1751 | // Consider the register to be the "immediate" operand. |
| 1752 | if (CmpImmOp) |
| 1753 | return false; |
| 1754 | CmpImmOp = &MO; |
| 1755 | } |
| 1756 | } else if (MO.isImm()) { |
| 1757 | if (CmpImmOp) // A second immediate argument? Confusing. Bail out. |
| 1758 | return false; |
| 1759 | CmpImmOp = &MO; |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | if (CmpRegs.empty()) |
| 1764 | return false; |
| 1765 | |
| 1766 | // Check if the compared register follows the order we want. Fix if needed. |
| 1767 | for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); |
| 1768 | I != E; ++I) { |
| 1769 | // This is a success. If the register used in the comparison is one that |
| 1770 | // we have identified as a bumped (updated) induction register, there is |
| 1771 | // nothing to do. |
| 1772 | if (CmpRegs.count(V: I->first)) |
| 1773 | return true; |
| 1774 | |
| 1775 | // Otherwise, if the register being compared comes out of a PHI node, |
| 1776 | // and has been recognized as following the induction pattern, and is |
| 1777 | // compared against an immediate, we can fix it. |
| 1778 | const RegisterBump &RB = I->second; |
| 1779 | if (CmpRegs.count(V: RB.first)) { |
| 1780 | if (!CmpImmOp) { |
| 1781 | // If both operands to the compare instruction are registers, see if |
| 1782 | // it can be changed to use induction register as one of the operands. |
| 1783 | MachineInstr *IndI = nullptr; |
| 1784 | MachineInstr *nonIndI = nullptr; |
| 1785 | MachineOperand *IndMO = nullptr; |
| 1786 | MachineOperand *nonIndMO = nullptr; |
| 1787 | |
| 1788 | for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { |
| 1789 | MachineOperand &MO = PredDef->getOperand(i); |
| 1790 | if (MO.isReg() && MO.getReg() == RB.first) { |
| 1791 | LLVM_DEBUG(dbgs() << "\n DefMI(" << i |
| 1792 | << ") = " << *(MRI->getVRegDef(I->first))); |
| 1793 | if (IndI) |
| 1794 | return false; |
| 1795 | |
| 1796 | IndI = MRI->getVRegDef(Reg: I->first); |
| 1797 | IndMO = &MO; |
| 1798 | } else if (MO.isReg()) { |
| 1799 | LLVM_DEBUG(dbgs() << "\n DefMI(" << i |
| 1800 | << ") = " << *(MRI->getVRegDef(MO.getReg()))); |
| 1801 | if (nonIndI) |
| 1802 | return false; |
| 1803 | |
| 1804 | nonIndI = MRI->getVRegDef(Reg: MO.getReg()); |
| 1805 | nonIndMO = &MO; |
| 1806 | } |
| 1807 | } |
| 1808 | if (IndI && nonIndI && |
| 1809 | nonIndI->getOpcode() == Hexagon::A2_addi && |
| 1810 | nonIndI->getOperand(i: 2).isImm() && |
| 1811 | nonIndI->getOperand(i: 2).getImm() == - RB.second) { |
| 1812 | bool Order = orderBumpCompare(BumpI: IndI, CmpI: PredDef); |
| 1813 | if (Order) { |
| 1814 | IndMO->setReg(I->first); |
| 1815 | nonIndMO->setReg(nonIndI->getOperand(i: 1).getReg()); |
| 1816 | return true; |
| 1817 | } |
| 1818 | } |
| 1819 | return false; |
| 1820 | } |
| 1821 | |
| 1822 | // It is not valid to do this transformation on an unsigned comparison |
| 1823 | // because it may underflow. |
| 1824 | Comparison::Kind Cmp = |
| 1825 | getComparisonKind(CondOpc: PredDef->getOpcode(), InitialValue: nullptr, EndValue: nullptr, IVBump: 0); |
| 1826 | if (!Cmp || Comparison::isUnsigned(Cmp)) |
| 1827 | return false; |
| 1828 | |
| 1829 | // If the register is being compared against an immediate, try changing |
| 1830 | // the compare instruction to use induction register and adjust the |
| 1831 | // immediate operand. |
| 1832 | int64_t CmpImm = getImmediate(MO: *CmpImmOp); |
| 1833 | int64_t V = RB.second; |
| 1834 | // Handle Overflow (64-bit). |
| 1835 | if (((V > 0) && (CmpImm > INT64_MAX - V)) || |
| 1836 | ((V < 0) && (CmpImm < INT64_MIN - V))) |
| 1837 | return false; |
| 1838 | CmpImm += V; |
| 1839 | // Most comparisons of register against an immediate value allow |
| 1840 | // the immediate to be constant-extended. There are some exceptions |
| 1841 | // though. Make sure the new combination will work. |
| 1842 | if (CmpImmOp->isImm() && !TII->isExtendable(MI: *PredDef) && |
| 1843 | !TII->isValidOffset(Opcode: PredDef->getOpcode(), Offset: CmpImm, TRI, Extend: false)) |
| 1844 | return false; |
| 1845 | |
| 1846 | // Make sure that the compare happens after the bump. Otherwise, |
| 1847 | // after the fixup, the compare would use a yet-undefined register. |
| 1848 | MachineInstr *BumpI = MRI->getVRegDef(Reg: I->first); |
| 1849 | bool Order = orderBumpCompare(BumpI, CmpI: PredDef); |
| 1850 | if (!Order) |
| 1851 | return false; |
| 1852 | |
| 1853 | // Finally, fix the compare instruction. |
| 1854 | setImmediate(MO&: *CmpImmOp, Val: CmpImm); |
| 1855 | for (MachineOperand &MO : PredDef->operands()) { |
| 1856 | if (MO.isReg() && MO.getReg() == RB.first) { |
| 1857 | MO.setReg(I->first); |
| 1858 | return true; |
| 1859 | } |
| 1860 | } |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | return false; |
| 1865 | } |
| 1866 | |
| 1867 | /// createPreheaderForLoop - Create a preheader for a given loop. |
| 1868 | MachineBasicBlock *HexagonHardwareLoops::( |
| 1869 | MachineLoop *L) { |
| 1870 | if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader)) |
| 1871 | return TmpPH; |
| 1872 | if (!HWCreatePreheader) |
| 1873 | return nullptr; |
| 1874 | |
| 1875 | MachineBasicBlock * = L->getHeader(); |
| 1876 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 1877 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
| 1878 | MachineFunction *MF = Header->getParent(); |
| 1879 | DebugLoc DL; |
| 1880 | |
| 1881 | #ifndef NDEBUG |
| 1882 | if ((!PHFn.empty()) && (PHFn != MF->getName())) |
| 1883 | return nullptr; |
| 1884 | #endif |
| 1885 | |
| 1886 | if (!Latch || !ExitingBlock || Header->hasAddressTaken()) |
| 1887 | return nullptr; |
| 1888 | |
| 1889 | using instr_iterator = MachineBasicBlock::instr_iterator; |
| 1890 | |
| 1891 | // Verify that all existing predecessors have analyzable branches |
| 1892 | // (or no branches at all). |
| 1893 | using MBBVector = std::vector<MachineBasicBlock *>; |
| 1894 | |
| 1895 | MBBVector Preds(Header->pred_begin(), Header->pred_end()); |
| 1896 | SmallVector<MachineOperand,2> Tmp1; |
| 1897 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
| 1898 | |
| 1899 | if (TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond&: Tmp1, AllowModify: false)) |
| 1900 | return nullptr; |
| 1901 | |
| 1902 | for (MachineBasicBlock *PB : Preds) { |
| 1903 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *PB, TBB&: TB, FBB&: FB, Cond&: Tmp1, AllowModify: false); |
| 1904 | if (NotAnalyzed) |
| 1905 | return nullptr; |
| 1906 | } |
| 1907 | |
| 1908 | MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); |
| 1909 | MF->insert(MBBI: Header->getIterator(), MBB: NewPH); |
| 1910 | |
| 1911 | if (Header->pred_size() > 2) { |
| 1912 | // Ensure that the header has only two predecessors: the preheader and |
| 1913 | // the loop latch. Any additional predecessors of the header should |
| 1914 | // join at the newly created preheader. Inspect all PHI nodes from the |
| 1915 | // header and create appropriate corresponding PHI nodes in the preheader. |
| 1916 | |
| 1917 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 1918 | I != E && I->isPHI(); ++I) { |
| 1919 | MachineInstr *PN = &*I; |
| 1920 | |
| 1921 | const MCInstrDesc &PD = TII->get(Opcode: TargetOpcode::PHI); |
| 1922 | MachineInstr *NewPN = MF->CreateMachineInstr(MCID: PD, DL); |
| 1923 | NewPH->insert(I: NewPH->end(), MI: NewPN); |
| 1924 | |
| 1925 | Register PR = PN->getOperand(i: 0).getReg(); |
| 1926 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: PR); |
| 1927 | Register NewPR = MRI->createVirtualRegister(RegClass: RC); |
| 1928 | NewPN->addOperand(Op: MachineOperand::CreateReg(Reg: NewPR, isDef: true)); |
| 1929 | |
| 1930 | // Copy all non-latch operands of a header's PHI node to the newly |
| 1931 | // created PHI node in the preheader. |
| 1932 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
| 1933 | Register PredR = PN->getOperand(i).getReg(); |
| 1934 | unsigned PredRSub = PN->getOperand(i).getSubReg(); |
| 1935 | MachineBasicBlock *PredB = PN->getOperand(i: i+1).getMBB(); |
| 1936 | if (PredB == Latch) |
| 1937 | continue; |
| 1938 | |
| 1939 | MachineOperand MO = MachineOperand::CreateReg(Reg: PredR, isDef: false); |
| 1940 | MO.setSubReg(PredRSub); |
| 1941 | NewPN->addOperand(Op: MO); |
| 1942 | NewPN->addOperand(Op: MachineOperand::CreateMBB(MBB: PredB)); |
| 1943 | } |
| 1944 | |
| 1945 | // Remove copied operands from the old PHI node and add the value |
| 1946 | // coming from the preheader's PHI. |
| 1947 | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { |
| 1948 | MachineBasicBlock *PredB = PN->getOperand(i: i+1).getMBB(); |
| 1949 | if (PredB != Latch) { |
| 1950 | PN->removeOperand(OpNo: i+1); |
| 1951 | PN->removeOperand(OpNo: i); |
| 1952 | } |
| 1953 | } |
| 1954 | PN->addOperand(Op: MachineOperand::CreateReg(Reg: NewPR, isDef: false)); |
| 1955 | PN->addOperand(Op: MachineOperand::CreateMBB(MBB: NewPH)); |
| 1956 | } |
| 1957 | } else { |
| 1958 | assert(Header->pred_size() == 2); |
| 1959 | |
| 1960 | // The header has only two predecessors, but the non-latch predecessor |
| 1961 | // is not a preheader (e.g. it has other successors, etc.) |
| 1962 | // In such a case we don't need any extra PHI nodes in the new preheader, |
| 1963 | // all we need is to adjust existing PHIs in the header to now refer to |
| 1964 | // the new preheader. |
| 1965 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 1966 | I != E && I->isPHI(); ++I) { |
| 1967 | MachineInstr *PN = &*I; |
| 1968 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
| 1969 | MachineOperand &MO = PN->getOperand(i: i+1); |
| 1970 | if (MO.getMBB() != Latch) |
| 1971 | MO.setMBB(NewPH); |
| 1972 | } |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | // "Reroute" the CFG edges to link in the new preheader. |
| 1977 | // If any of the predecessors falls through to the header, insert a branch |
| 1978 | // to the new preheader in that place. |
| 1979 | SmallVector<MachineOperand,1> Tmp2; |
| 1980 | SmallVector<MachineOperand,1> EmptyCond; |
| 1981 | |
| 1982 | TB = FB = nullptr; |
| 1983 | |
| 1984 | for (MachineBasicBlock *PB : Preds) { |
| 1985 | if (PB != Latch) { |
| 1986 | Tmp2.clear(); |
| 1987 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *PB, TBB&: TB, FBB&: FB, Cond&: Tmp2, AllowModify: false); |
| 1988 | (void)NotAnalyzed; // suppress compiler warning |
| 1989 | assert (!NotAnalyzed && "Should be analyzable!" ); |
| 1990 | if (TB != Header && (Tmp2.empty() || FB != Header)) |
| 1991 | TII->insertBranch(MBB&: *PB, TBB: NewPH, FBB: nullptr, Cond: EmptyCond, DL); |
| 1992 | PB->ReplaceUsesOfBlockWith(Old: Header, New: NewPH); |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | // It can happen that the latch block will fall through into the header. |
| 1997 | // Insert an unconditional branch to the header. |
| 1998 | TB = FB = nullptr; |
| 1999 | bool LatchNotAnalyzed = TII->analyzeBranch(MBB&: *Latch, TBB&: TB, FBB&: FB, Cond&: Tmp2, AllowModify: false); |
| 2000 | (void)LatchNotAnalyzed; // suppress compiler warning |
| 2001 | assert (!LatchNotAnalyzed && "Should be analyzable!" ); |
| 2002 | if (!TB && !FB) |
| 2003 | TII->insertBranch(MBB&: *Latch, TBB: Header, FBB: nullptr, Cond: EmptyCond, DL); |
| 2004 | |
| 2005 | // Finally, the branch from the preheader to the header. |
| 2006 | TII->insertBranch(MBB&: *NewPH, TBB: Header, FBB: nullptr, Cond: EmptyCond, DL); |
| 2007 | NewPH->addSuccessor(Succ: Header); |
| 2008 | |
| 2009 | MachineLoop *ParentLoop = L->getParentLoop(); |
| 2010 | if (ParentLoop) |
| 2011 | ParentLoop->addBasicBlockToLoop(NewBB: NewPH, LI&: *MLI); |
| 2012 | |
| 2013 | // Update the dominator information with the new preheader. |
| 2014 | if (MDT) { |
| 2015 | if (MachineDomTreeNode *HN = MDT->getNode(BB: Header)) { |
| 2016 | if (MachineDomTreeNode *DHN = HN->getIDom()) { |
| 2017 | MDT->addNewBlock(BB: NewPH, DomBB: DHN->getBlock()); |
| 2018 | MDT->changeImmediateDominator(BB: Header, NewBB: NewPH); |
| 2019 | } |
| 2020 | } |
| 2021 | } |
| 2022 | |
| 2023 | return NewPH; |
| 2024 | } |
| 2025 | |