1 | //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass identifies loops where we can generate the Hexagon hardware |
10 | // loop instruction. The hardware loop can perform loop branches with a |
11 | // zero-cycle overhead. |
12 | // |
13 | // The pattern that defines the induction variable can changed depending on |
14 | // prior optimizations. For example, the IndVarSimplify phase run by 'opt' |
15 | // normalizes induction variables, and the Loop Strength Reduction pass |
16 | // run by 'llc' may also make changes to the induction variable. |
17 | // The pattern detected by this phase is due to running Strength Reduction. |
18 | // |
19 | // Criteria for hardware loops: |
20 | // - Countable loops (w/ ind. var for a trip count) |
21 | // - Assumes loops are normalized by IndVarSimplify |
22 | // - Try inner-most loops first |
23 | // - No function calls in loops. |
24 | // |
25 | //===----------------------------------------------------------------------===// |
26 | |
27 | #include "Hexagon.h" |
28 | #include "HexagonInstrInfo.h" |
29 | #include "HexagonSubtarget.h" |
30 | #include "llvm/ADT/ArrayRef.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/SmallSet.h" |
33 | #include "llvm/ADT/SmallVector.h" |
34 | #include "llvm/ADT/Statistic.h" |
35 | #include "llvm/ADT/StringRef.h" |
36 | #include "llvm/CodeGen/MachineBasicBlock.h" |
37 | #include "llvm/CodeGen/MachineDominators.h" |
38 | #include "llvm/CodeGen/MachineFunction.h" |
39 | #include "llvm/CodeGen/MachineFunctionPass.h" |
40 | #include "llvm/CodeGen/MachineInstr.h" |
41 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
42 | #include "llvm/CodeGen/MachineLoopInfo.h" |
43 | #include "llvm/CodeGen/MachineOperand.h" |
44 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
45 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
46 | #include "llvm/IR/DebugLoc.h" |
47 | #include "llvm/InitializePasses.h" |
48 | #include "llvm/Pass.h" |
49 | #include "llvm/Support/CommandLine.h" |
50 | #include "llvm/Support/Debug.h" |
51 | #include "llvm/Support/ErrorHandling.h" |
52 | #include "llvm/Support/MathExtras.h" |
53 | #include "llvm/Support/raw_ostream.h" |
54 | #include <cassert> |
55 | #include <cstdint> |
56 | #include <cstdlib> |
57 | #include <iterator> |
58 | #include <map> |
59 | #include <set> |
60 | #include <string> |
61 | #include <utility> |
62 | #include <vector> |
63 | |
64 | using namespace llvm; |
65 | |
66 | #define DEBUG_TYPE "hwloops" |
67 | |
68 | #ifndef NDEBUG |
69 | static cl::opt<int> HWLoopLimit("hexagon-max-hwloop" , cl::Hidden, cl::init(-1)); |
70 | |
71 | // Option to create preheader only for a specific function. |
72 | static cl::opt<std::string> PHFn("hexagon-hwloop-phfn" , cl::Hidden, |
73 | cl::init("" )); |
74 | #endif |
75 | |
76 | // Option to create a preheader if one doesn't exist. |
77 | static cl::opt<bool> ("hexagon-hwloop-preheader" , |
78 | cl::Hidden, cl::init(Val: true), |
79 | cl::desc("Add a preheader to a hardware loop if one doesn't exist" )); |
80 | |
81 | // Turn it off by default. If a preheader block is not created here, the |
82 | // software pipeliner may be unable to find a block suitable to serve as |
83 | // a preheader. In that case SWP will not run. |
84 | static cl::opt<bool> ("hwloop-spec-preheader" , cl::Hidden, |
85 | cl::desc("Allow speculation of preheader " |
86 | "instructions" )); |
87 | |
88 | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops" ); |
89 | |
90 | namespace { |
91 | |
92 | class CountValue; |
93 | |
94 | struct HexagonHardwareLoops : public MachineFunctionPass { |
95 | MachineLoopInfo *MLI; |
96 | MachineRegisterInfo *MRI; |
97 | MachineDominatorTree *MDT; |
98 | const HexagonInstrInfo *TII; |
99 | const HexagonRegisterInfo *TRI; |
100 | #ifndef NDEBUG |
101 | static int Counter; |
102 | #endif |
103 | |
104 | public: |
105 | static char ID; |
106 | |
107 | HexagonHardwareLoops() : MachineFunctionPass(ID) {} |
108 | |
109 | bool runOnMachineFunction(MachineFunction &MF) override; |
110 | |
111 | StringRef getPassName() const override { return "Hexagon Hardware Loops" ; } |
112 | |
113 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
114 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
115 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
116 | MachineFunctionPass::getAnalysisUsage(AU); |
117 | } |
118 | |
119 | private: |
120 | using LoopFeederMap = std::map<Register, MachineInstr *>; |
121 | |
122 | /// Kinds of comparisons in the compare instructions. |
123 | struct Comparison { |
124 | enum Kind { |
125 | EQ = 0x01, |
126 | NE = 0x02, |
127 | L = 0x04, |
128 | G = 0x08, |
129 | U = 0x40, |
130 | LTs = L, |
131 | LEs = L | EQ, |
132 | GTs = G, |
133 | GEs = G | EQ, |
134 | LTu = L | U, |
135 | LEu = L | EQ | U, |
136 | GTu = G | U, |
137 | GEu = G | EQ | U |
138 | }; |
139 | |
140 | static Kind getSwappedComparison(Kind Cmp) { |
141 | assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator" ); |
142 | if ((Cmp & L) || (Cmp & G)) |
143 | return (Kind)(Cmp ^ (L|G)); |
144 | return Cmp; |
145 | } |
146 | |
147 | static Kind getNegatedComparison(Kind Cmp) { |
148 | if ((Cmp & L) || (Cmp & G)) |
149 | return (Kind)((Cmp ^ (L | G)) ^ EQ); |
150 | if ((Cmp & NE) || (Cmp & EQ)) |
151 | return (Kind)(Cmp ^ (EQ | NE)); |
152 | return (Kind)0; |
153 | } |
154 | |
155 | static bool isSigned(Kind Cmp) { |
156 | return (Cmp & (L | G) && !(Cmp & U)); |
157 | } |
158 | |
159 | static bool isUnsigned(Kind Cmp) { |
160 | return (Cmp & U); |
161 | } |
162 | }; |
163 | |
164 | /// Find the register that contains the loop controlling |
165 | /// induction variable. |
166 | /// If successful, it will return true and set the \p Reg, \p IVBump |
167 | /// and \p IVOp arguments. Otherwise it will return false. |
168 | /// The returned induction register is the register R that follows the |
169 | /// following induction pattern: |
170 | /// loop: |
171 | /// R = phi ..., [ R.next, LatchBlock ] |
172 | /// R.next = R + #bump |
173 | /// if (R.next < #N) goto loop |
174 | /// IVBump is the immediate value added to R, and IVOp is the instruction |
175 | /// "R.next = R + #bump". |
176 | bool findInductionRegister(MachineLoop *L, Register &Reg, |
177 | int64_t &IVBump, MachineInstr *&IVOp) const; |
178 | |
179 | /// Return the comparison kind for the specified opcode. |
180 | Comparison::Kind getComparisonKind(unsigned CondOpc, |
181 | MachineOperand *InitialValue, |
182 | const MachineOperand *Endvalue, |
183 | int64_t IVBump) const; |
184 | |
185 | /// Analyze the statements in a loop to determine if the loop |
186 | /// has a computable trip count and, if so, return a value that represents |
187 | /// the trip count expression. |
188 | CountValue *getLoopTripCount(MachineLoop *L, |
189 | SmallVectorImpl<MachineInstr *> &OldInsts); |
190 | |
191 | /// Return the expression that represents the number of times |
192 | /// a loop iterates. The function takes the operands that represent the |
193 | /// loop start value, loop end value, and induction value. Based upon |
194 | /// these operands, the function attempts to compute the trip count. |
195 | /// If the trip count is not directly available (as an immediate value, |
196 | /// or a register), the function will attempt to insert computation of it |
197 | /// to the loop's preheader. |
198 | CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, |
199 | const MachineOperand *End, Register IVReg, |
200 | int64_t IVBump, Comparison::Kind Cmp) const; |
201 | |
202 | /// Return true if the instruction is not valid within a hardware |
203 | /// loop. |
204 | bool isInvalidLoopOperation(const MachineInstr *MI, |
205 | bool IsInnerHWLoop) const; |
206 | |
207 | /// Return true if the loop contains an instruction that inhibits |
208 | /// using the hardware loop. |
209 | bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; |
210 | |
211 | /// Given a loop, check if we can convert it to a hardware loop. |
212 | /// If so, then perform the conversion and return true. |
213 | bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); |
214 | |
215 | /// Return true if the instruction is now dead. |
216 | bool isDead(const MachineInstr *MI, |
217 | SmallVectorImpl<MachineInstr *> &DeadPhis) const; |
218 | |
219 | /// Remove the instruction if it is now dead. |
220 | void removeIfDead(MachineInstr *MI); |
221 | |
222 | /// Make sure that the "bump" instruction executes before the |
223 | /// compare. We need that for the IV fixup, so that the compare |
224 | /// instruction would not use a bumped value that has not yet been |
225 | /// defined. If the instructions are out of order, try to reorder them. |
226 | bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); |
227 | |
228 | /// Return true if MO and MI pair is visited only once. If visited |
229 | /// more than once, this indicates there is recursion. In such a case, |
230 | /// return false. |
231 | bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, |
232 | const MachineOperand *MO, |
233 | LoopFeederMap &LoopFeederPhi) const; |
234 | |
235 | /// Return true if the Phi may generate a value that may underflow, |
236 | /// or may wrap. |
237 | bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, |
238 | MachineBasicBlock *MBB, MachineLoop *L, |
239 | LoopFeederMap &LoopFeederPhi) const; |
240 | |
241 | /// Return true if the induction variable may underflow an unsigned |
242 | /// value in the first iteration. |
243 | bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, |
244 | const MachineOperand *EndVal, |
245 | MachineBasicBlock *MBB, MachineLoop *L, |
246 | LoopFeederMap &LoopFeederPhi) const; |
247 | |
248 | /// Check if the given operand has a compile-time known constant |
249 | /// value. Return true if yes, and false otherwise. When returning true, set |
250 | /// Val to the corresponding constant value. |
251 | bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; |
252 | |
253 | /// Check if the operand has a compile-time known constant value. |
254 | bool isImmediate(const MachineOperand &MO) const { |
255 | int64_t V; |
256 | return checkForImmediate(MO, Val&: V); |
257 | } |
258 | |
259 | /// Return the immediate for the specified operand. |
260 | int64_t getImmediate(const MachineOperand &MO) const { |
261 | int64_t V; |
262 | if (!checkForImmediate(MO, Val&: V)) |
263 | llvm_unreachable("Invalid operand" ); |
264 | return V; |
265 | } |
266 | |
267 | /// Reset the given machine operand to now refer to a new immediate |
268 | /// value. Assumes that the operand was already referencing an immediate |
269 | /// value, either directly, or via a register. |
270 | void setImmediate(MachineOperand &MO, int64_t Val); |
271 | |
272 | /// Fix the data flow of the induction variable. |
273 | /// The desired flow is: phi ---> bump -+-> comparison-in-latch. |
274 | /// | |
275 | /// +-> back to phi |
276 | /// where "bump" is the increment of the induction variable: |
277 | /// iv = iv + #const. |
278 | /// Due to some prior code transformations, the actual flow may look |
279 | /// like this: |
280 | /// phi -+-> bump ---> back to phi |
281 | /// | |
282 | /// +-> comparison-in-latch (against upper_bound-bump), |
283 | /// i.e. the comparison that controls the loop execution may be using |
284 | /// the value of the induction variable from before the increment. |
285 | /// |
286 | /// Return true if the loop's flow is the desired one (i.e. it's |
287 | /// either been fixed, or no fixing was necessary). |
288 | /// Otherwise, return false. This can happen if the induction variable |
289 | /// couldn't be identified, or if the value in the latch's comparison |
290 | /// cannot be adjusted to reflect the post-bump value. |
291 | bool fixupInductionVariable(MachineLoop *L); |
292 | |
293 | /// Given a loop, if it does not have a preheader, create one. |
294 | /// Return the block that is the preheader. |
295 | MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); |
296 | }; |
297 | |
298 | char HexagonHardwareLoops::ID = 0; |
299 | #ifndef NDEBUG |
300 | int HexagonHardwareLoops::Counter = 0; |
301 | #endif |
302 | |
303 | /// Abstraction for a trip count of a loop. A smaller version |
304 | /// of the MachineOperand class without the concerns of changing the |
305 | /// operand representation. |
306 | class CountValue { |
307 | public: |
308 | enum CountValueType { |
309 | CV_Register, |
310 | CV_Immediate |
311 | }; |
312 | |
313 | private: |
314 | CountValueType Kind; |
315 | union Values { |
316 | Values() : R{.Reg: Register(), .Sub: 0} {} |
317 | Values(const Values&) = default; |
318 | struct { |
319 | Register Reg; |
320 | unsigned Sub; |
321 | } R; |
322 | unsigned ImmVal; |
323 | } Contents; |
324 | |
325 | public: |
326 | explicit CountValue(CountValueType t, Register v, unsigned u = 0) { |
327 | Kind = t; |
328 | if (Kind == CV_Register) { |
329 | Contents.R.Reg = v; |
330 | Contents.R.Sub = u; |
331 | } else { |
332 | Contents.ImmVal = v; |
333 | } |
334 | } |
335 | |
336 | bool isReg() const { return Kind == CV_Register; } |
337 | bool isImm() const { return Kind == CV_Immediate; } |
338 | |
339 | Register getReg() const { |
340 | assert(isReg() && "Wrong CountValue accessor" ); |
341 | return Contents.R.Reg; |
342 | } |
343 | |
344 | unsigned getSubReg() const { |
345 | assert(isReg() && "Wrong CountValue accessor" ); |
346 | return Contents.R.Sub; |
347 | } |
348 | |
349 | unsigned getImm() const { |
350 | assert(isImm() && "Wrong CountValue accessor" ); |
351 | return Contents.ImmVal; |
352 | } |
353 | |
354 | void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { |
355 | if (isReg()) { OS << printReg(Reg: Contents.R.Reg, TRI, SubIdx: Contents.R.Sub); } |
356 | if (isImm()) { OS << Contents.ImmVal; } |
357 | } |
358 | }; |
359 | |
360 | } // end anonymous namespace |
361 | |
362 | INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops" , |
363 | "Hexagon Hardware Loops" , false, false) |
364 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
365 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
366 | INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops" , |
367 | "Hexagon Hardware Loops" , false, false) |
368 | |
369 | FunctionPass *llvm::createHexagonHardwareLoops() { |
370 | return new HexagonHardwareLoops(); |
371 | } |
372 | |
373 | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { |
374 | LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n" ); |
375 | if (skipFunction(F: MF.getFunction())) |
376 | return false; |
377 | |
378 | bool Changed = false; |
379 | |
380 | MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
381 | MRI = &MF.getRegInfo(); |
382 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
383 | const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); |
384 | TII = HST.getInstrInfo(); |
385 | TRI = HST.getRegisterInfo(); |
386 | |
387 | for (auto &L : *MLI) |
388 | if (L->isOutermost()) { |
389 | bool L0Used = false; |
390 | bool L1Used = false; |
391 | Changed |= convertToHardwareLoop(L, L0used&: L0Used, L1used&: L1Used); |
392 | } |
393 | |
394 | return Changed; |
395 | } |
396 | |
397 | bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, |
398 | Register &Reg, |
399 | int64_t &IVBump, |
400 | MachineInstr *&IVOp |
401 | ) const { |
402 | MachineBasicBlock * = L->getHeader(); |
403 | MachineBasicBlock * = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader); |
404 | MachineBasicBlock *Latch = L->getLoopLatch(); |
405 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
406 | if (!Header || !Preheader || !Latch || !ExitingBlock) |
407 | return false; |
408 | |
409 | // This pair represents an induction register together with an immediate |
410 | // value that will be added to it in each loop iteration. |
411 | using RegisterBump = std::pair<Register, int64_t>; |
412 | |
413 | // Mapping: R.next -> (R, bump), where R, R.next and bump are derived |
414 | // from an induction operation |
415 | // R.next = R + bump |
416 | // where bump is an immediate value. |
417 | using InductionMap = std::map<Register, RegisterBump>; |
418 | |
419 | InductionMap IndMap; |
420 | |
421 | using instr_iterator = MachineBasicBlock::instr_iterator; |
422 | |
423 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
424 | I != E && I->isPHI(); ++I) { |
425 | MachineInstr *Phi = &*I; |
426 | |
427 | // Have a PHI instruction. Get the operand that corresponds to the |
428 | // latch block, and see if is a result of an addition of form "reg+imm", |
429 | // where the "reg" is defined by the PHI node we are looking at. |
430 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
431 | if (Phi->getOperand(i: i+1).getMBB() != Latch) |
432 | continue; |
433 | |
434 | Register PhiOpReg = Phi->getOperand(i).getReg(); |
435 | MachineInstr *DI = MRI->getVRegDef(Reg: PhiOpReg); |
436 | |
437 | if (DI->getDesc().isAdd()) { |
438 | // If the register operand to the add is the PHI we're looking at, this |
439 | // meets the induction pattern. |
440 | Register IndReg = DI->getOperand(i: 1).getReg(); |
441 | MachineOperand &Opnd2 = DI->getOperand(i: 2); |
442 | int64_t V; |
443 | if (MRI->getVRegDef(Reg: IndReg) == Phi && checkForImmediate(MO: Opnd2, Val&: V)) { |
444 | Register UpdReg = DI->getOperand(i: 0).getReg(); |
445 | IndMap.insert(x: std::make_pair(x&: UpdReg, y: std::make_pair(x&: IndReg, y&: V))); |
446 | } |
447 | } |
448 | } // for (i) |
449 | } // for (instr) |
450 | |
451 | SmallVector<MachineOperand,2> Cond; |
452 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
453 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false); |
454 | if (NotAnalyzed) |
455 | return false; |
456 | |
457 | Register PredR; |
458 | unsigned PredPos, PredRegFlags; |
459 | if (!TII->getPredReg(Cond, PredReg&: PredR, PredRegPos&: PredPos, PredRegFlags)) |
460 | return false; |
461 | |
462 | MachineInstr *PredI = MRI->getVRegDef(Reg: PredR); |
463 | if (!PredI->isCompare()) |
464 | return false; |
465 | |
466 | Register CmpReg1, CmpReg2; |
467 | int64_t CmpImm = 0, CmpMask = 0; |
468 | bool CmpAnalyzed = |
469 | TII->analyzeCompare(MI: *PredI, SrcReg&: CmpReg1, SrcReg2&: CmpReg2, Mask&: CmpMask, Value&: CmpImm); |
470 | // Fail if the compare was not analyzed, or it's not comparing a register |
471 | // with an immediate value. Not checking the mask here, since we handle |
472 | // the individual compare opcodes (including A4_cmpb*) later on. |
473 | if (!CmpAnalyzed) |
474 | return false; |
475 | |
476 | // Exactly one of the input registers to the comparison should be among |
477 | // the induction registers. |
478 | InductionMap::iterator IndMapEnd = IndMap.end(); |
479 | InductionMap::iterator F = IndMapEnd; |
480 | if (CmpReg1 != 0) { |
481 | InductionMap::iterator F1 = IndMap.find(x: CmpReg1); |
482 | if (F1 != IndMapEnd) |
483 | F = F1; |
484 | } |
485 | if (CmpReg2 != 0) { |
486 | InductionMap::iterator F2 = IndMap.find(x: CmpReg2); |
487 | if (F2 != IndMapEnd) { |
488 | if (F != IndMapEnd) |
489 | return false; |
490 | F = F2; |
491 | } |
492 | } |
493 | if (F == IndMapEnd) |
494 | return false; |
495 | |
496 | Reg = F->second.first; |
497 | IVBump = F->second.second; |
498 | IVOp = MRI->getVRegDef(Reg: F->first); |
499 | return true; |
500 | } |
501 | |
502 | // Return the comparison kind for the specified opcode. |
503 | HexagonHardwareLoops::Comparison::Kind |
504 | HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, |
505 | MachineOperand *InitialValue, |
506 | const MachineOperand *EndValue, |
507 | int64_t IVBump) const { |
508 | Comparison::Kind Cmp = (Comparison::Kind)0; |
509 | switch (CondOpc) { |
510 | case Hexagon::C2_cmpeq: |
511 | case Hexagon::C2_cmpeqi: |
512 | case Hexagon::C2_cmpeqp: |
513 | Cmp = Comparison::EQ; |
514 | break; |
515 | case Hexagon::C4_cmpneq: |
516 | case Hexagon::C4_cmpneqi: |
517 | Cmp = Comparison::NE; |
518 | break; |
519 | case Hexagon::C2_cmplt: |
520 | Cmp = Comparison::LTs; |
521 | break; |
522 | case Hexagon::C2_cmpltu: |
523 | Cmp = Comparison::LTu; |
524 | break; |
525 | case Hexagon::C4_cmplte: |
526 | case Hexagon::C4_cmpltei: |
527 | Cmp = Comparison::LEs; |
528 | break; |
529 | case Hexagon::C4_cmplteu: |
530 | case Hexagon::C4_cmplteui: |
531 | Cmp = Comparison::LEu; |
532 | break; |
533 | case Hexagon::C2_cmpgt: |
534 | case Hexagon::C2_cmpgti: |
535 | case Hexagon::C2_cmpgtp: |
536 | Cmp = Comparison::GTs; |
537 | break; |
538 | case Hexagon::C2_cmpgtu: |
539 | case Hexagon::C2_cmpgtui: |
540 | case Hexagon::C2_cmpgtup: |
541 | Cmp = Comparison::GTu; |
542 | break; |
543 | case Hexagon::C2_cmpgei: |
544 | Cmp = Comparison::GEs; |
545 | break; |
546 | case Hexagon::C2_cmpgeui: |
547 | Cmp = Comparison::GEs; |
548 | break; |
549 | default: |
550 | return (Comparison::Kind)0; |
551 | } |
552 | return Cmp; |
553 | } |
554 | |
555 | /// Analyze the statements in a loop to determine if the loop has |
556 | /// a computable trip count and, if so, return a value that represents |
557 | /// the trip count expression. |
558 | /// |
559 | /// This function iterates over the phi nodes in the loop to check for |
560 | /// induction variable patterns that are used in the calculation for |
561 | /// the number of time the loop is executed. |
562 | CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, |
563 | SmallVectorImpl<MachineInstr *> &OldInsts) { |
564 | MachineBasicBlock *TopMBB = L->getTopBlock(); |
565 | MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); |
566 | assert(PI != TopMBB->pred_end() && |
567 | "Loop must have more than one incoming edge!" ); |
568 | MachineBasicBlock *Backedge = *PI++; |
569 | if (PI == TopMBB->pred_end()) // dead loop? |
570 | return nullptr; |
571 | MachineBasicBlock *Incoming = *PI++; |
572 | if (PI != TopMBB->pred_end()) // multiple backedges? |
573 | return nullptr; |
574 | |
575 | // Make sure there is one incoming and one backedge and determine which |
576 | // is which. |
577 | if (L->contains(BB: Incoming)) { |
578 | if (L->contains(BB: Backedge)) |
579 | return nullptr; |
580 | std::swap(a&: Incoming, b&: Backedge); |
581 | } else if (!L->contains(BB: Backedge)) |
582 | return nullptr; |
583 | |
584 | // Look for the cmp instruction to determine if we can get a useful trip |
585 | // count. The trip count can be either a register or an immediate. The |
586 | // location of the value depends upon the type (reg or imm). |
587 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
588 | if (!ExitingBlock) |
589 | return nullptr; |
590 | |
591 | Register IVReg = 0; |
592 | int64_t IVBump = 0; |
593 | MachineInstr *IVOp; |
594 | bool FoundIV = findInductionRegister(L, Reg&: IVReg, IVBump, IVOp); |
595 | if (!FoundIV) |
596 | return nullptr; |
597 | |
598 | MachineBasicBlock * = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader); |
599 | |
600 | MachineOperand *InitialValue = nullptr; |
601 | MachineInstr *IV_Phi = MRI->getVRegDef(Reg: IVReg); |
602 | MachineBasicBlock *Latch = L->getLoopLatch(); |
603 | for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { |
604 | MachineBasicBlock *MBB = IV_Phi->getOperand(i: i+1).getMBB(); |
605 | if (MBB == Preheader) |
606 | InitialValue = &IV_Phi->getOperand(i); |
607 | else if (MBB == Latch) |
608 | IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. |
609 | } |
610 | if (!InitialValue) |
611 | return nullptr; |
612 | |
613 | SmallVector<MachineOperand,2> Cond; |
614 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
615 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false); |
616 | if (NotAnalyzed) |
617 | return nullptr; |
618 | |
619 | MachineBasicBlock * = L->getHeader(); |
620 | // TB must be non-null. If FB is also non-null, one of them must be |
621 | // the header. Otherwise, branch to TB could be exiting the loop, and |
622 | // the fall through can go to the header. |
623 | assert (TB && "Exit block without a branch?" ); |
624 | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { |
625 | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; |
626 | SmallVector<MachineOperand,2> LCond; |
627 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *Latch, TBB&: LTB, FBB&: LFB, Cond&: LCond, AllowModify: false); |
628 | if (NotAnalyzed) |
629 | return nullptr; |
630 | if (TB == Latch) |
631 | TB = (LTB == Header) ? LTB : LFB; |
632 | else |
633 | FB = (LTB == Header) ? LTB: LFB; |
634 | } |
635 | assert ((!FB || TB == Header || FB == Header) && "Branches not to header?" ); |
636 | if (!TB || (FB && TB != Header && FB != Header)) |
637 | return nullptr; |
638 | |
639 | // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch |
640 | // to put imm(0), followed by P in the vector Cond. |
641 | // If TB is not the header, it means that the "not-taken" path must lead |
642 | // to the header. |
643 | bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); |
644 | Register PredReg; |
645 | unsigned PredPos, PredRegFlags; |
646 | if (!TII->getPredReg(Cond, PredReg, PredRegPos&: PredPos, PredRegFlags)) |
647 | return nullptr; |
648 | MachineInstr *CondI = MRI->getVRegDef(Reg: PredReg); |
649 | unsigned CondOpc = CondI->getOpcode(); |
650 | |
651 | Register CmpReg1, CmpReg2; |
652 | int64_t Mask = 0, ImmValue = 0; |
653 | bool AnalyzedCmp = |
654 | TII->analyzeCompare(MI: *CondI, SrcReg&: CmpReg1, SrcReg2&: CmpReg2, Mask, Value&: ImmValue); |
655 | if (!AnalyzedCmp) |
656 | return nullptr; |
657 | |
658 | // The comparison operator type determines how we compute the loop |
659 | // trip count. |
660 | OldInsts.push_back(Elt: CondI); |
661 | OldInsts.push_back(Elt: IVOp); |
662 | |
663 | // Sadly, the following code gets information based on the position |
664 | // of the operands in the compare instruction. This has to be done |
665 | // this way, because the comparisons check for a specific relationship |
666 | // between the operands (e.g. is-less-than), rather than to find out |
667 | // what relationship the operands are in (as on PPC). |
668 | Comparison::Kind Cmp; |
669 | bool isSwapped = false; |
670 | const MachineOperand &Op1 = CondI->getOperand(i: 1); |
671 | const MachineOperand &Op2 = CondI->getOperand(i: 2); |
672 | const MachineOperand *EndValue = nullptr; |
673 | |
674 | if (Op1.isReg()) { |
675 | if (Op2.isImm() || Op1.getReg() == IVReg) |
676 | EndValue = &Op2; |
677 | else { |
678 | EndValue = &Op1; |
679 | isSwapped = true; |
680 | } |
681 | } |
682 | |
683 | if (!EndValue) |
684 | return nullptr; |
685 | |
686 | Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); |
687 | if (!Cmp) |
688 | return nullptr; |
689 | if (Negated) |
690 | Cmp = Comparison::getNegatedComparison(Cmp); |
691 | if (isSwapped) |
692 | Cmp = Comparison::getSwappedComparison(Cmp); |
693 | |
694 | if (InitialValue->isReg()) { |
695 | Register R = InitialValue->getReg(); |
696 | MachineBasicBlock *DefBB = MRI->getVRegDef(Reg: R)->getParent(); |
697 | if (!MDT->properlyDominates(A: DefBB, B: Header)) { |
698 | int64_t V; |
699 | if (!checkForImmediate(MO: *InitialValue, Val&: V)) |
700 | return nullptr; |
701 | } |
702 | OldInsts.push_back(Elt: MRI->getVRegDef(Reg: R)); |
703 | } |
704 | if (EndValue->isReg()) { |
705 | Register R = EndValue->getReg(); |
706 | MachineBasicBlock *DefBB = MRI->getVRegDef(Reg: R)->getParent(); |
707 | if (!MDT->properlyDominates(A: DefBB, B: Header)) { |
708 | int64_t V; |
709 | if (!checkForImmediate(MO: *EndValue, Val&: V)) |
710 | return nullptr; |
711 | } |
712 | OldInsts.push_back(Elt: MRI->getVRegDef(Reg: R)); |
713 | } |
714 | |
715 | return computeCount(Loop: L, Start: InitialValue, End: EndValue, IVReg, IVBump, Cmp); |
716 | } |
717 | |
718 | /// Helper function that returns the expression that represents the |
719 | /// number of times a loop iterates. The function takes the operands that |
720 | /// represent the loop start value, loop end value, and induction value. |
721 | /// Based upon these operands, the function attempts to compute the trip count. |
722 | CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, |
723 | const MachineOperand *Start, |
724 | const MachineOperand *End, |
725 | Register IVReg, |
726 | int64_t IVBump, |
727 | Comparison::Kind Cmp) const { |
728 | LLVM_DEBUG(llvm::dbgs() << "Loop: " << *Loop << "\n" ); |
729 | LLVM_DEBUG(llvm::dbgs() << "Initial Value: " << *Start << "\n" ); |
730 | LLVM_DEBUG(llvm::dbgs() << "End Value: " << *End << "\n" ); |
731 | LLVM_DEBUG(llvm::dbgs() << "Inc/Dec Value: " << IVBump << "\n" ); |
732 | LLVM_DEBUG(llvm::dbgs() << "Comparison: " << Cmp << "\n" ); |
733 | // Cannot handle comparison EQ, i.e. while (A == B). |
734 | if (Cmp == Comparison::EQ) |
735 | return nullptr; |
736 | |
737 | // Check if either the start or end values are an assignment of an immediate. |
738 | // If so, use the immediate value rather than the register. |
739 | if (Start->isReg()) { |
740 | const MachineInstr *StartValInstr = MRI->getVRegDef(Reg: Start->getReg()); |
741 | if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || |
742 | StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) |
743 | Start = &StartValInstr->getOperand(i: 1); |
744 | } |
745 | if (End->isReg()) { |
746 | const MachineInstr *EndValInstr = MRI->getVRegDef(Reg: End->getReg()); |
747 | if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || |
748 | EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) |
749 | End = &EndValInstr->getOperand(i: 1); |
750 | } |
751 | |
752 | if (!Start->isReg() && !Start->isImm()) |
753 | return nullptr; |
754 | if (!End->isReg() && !End->isImm()) |
755 | return nullptr; |
756 | |
757 | bool CmpLess = Cmp & Comparison::L; |
758 | bool CmpGreater = Cmp & Comparison::G; |
759 | bool CmpHasEqual = Cmp & Comparison::EQ; |
760 | |
761 | // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. |
762 | if (CmpLess && IVBump < 0) |
763 | // Loop going while iv is "less" with the iv value going down. Must wrap. |
764 | return nullptr; |
765 | |
766 | if (CmpGreater && IVBump > 0) |
767 | // Loop going while iv is "greater" with the iv value going up. Must wrap. |
768 | return nullptr; |
769 | |
770 | // Phis that may feed into the loop. |
771 | LoopFeederMap LoopFeederPhi; |
772 | |
773 | // Check if the initial value may be zero and can be decremented in the first |
774 | // iteration. If the value is zero, the endloop instruction will not decrement |
775 | // the loop counter, so we shouldn't generate a hardware loop in this case. |
776 | if (loopCountMayWrapOrUnderFlow(InitVal: Start, EndVal: End, MBB: Loop->getLoopPreheader(), L: Loop, |
777 | LoopFeederPhi)) |
778 | return nullptr; |
779 | |
780 | if (Start->isImm() && End->isImm()) { |
781 | // Both, start and end are immediates. |
782 | int64_t StartV = Start->getImm(); |
783 | int64_t EndV = End->getImm(); |
784 | int64_t Dist = EndV - StartV; |
785 | if (Dist == 0) |
786 | return nullptr; |
787 | |
788 | bool Exact = (Dist % IVBump) == 0; |
789 | |
790 | if (Cmp == Comparison::NE) { |
791 | if (!Exact) |
792 | return nullptr; |
793 | if ((Dist < 0) ^ (IVBump < 0)) |
794 | return nullptr; |
795 | } |
796 | |
797 | // For comparisons that include the final value (i.e. include equality |
798 | // with the final value), we need to increase the distance by 1. |
799 | if (CmpHasEqual) |
800 | Dist = Dist > 0 ? Dist+1 : Dist-1; |
801 | |
802 | // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, |
803 | // CmpGreater should imply Dist < 0. These conditions could actually |
804 | // fail, for example, in unreachable code (which may still appear to be |
805 | // reachable in the CFG). |
806 | if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) |
807 | return nullptr; |
808 | |
809 | // "Normalized" distance, i.e. with the bump set to +-1. |
810 | int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump |
811 | : (-Dist + (-IVBump - 1)) / (-IVBump); |
812 | assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign." ); |
813 | |
814 | uint64_t Count = Dist1; |
815 | |
816 | if (Count > 0xFFFFFFFFULL) |
817 | return nullptr; |
818 | |
819 | return new CountValue(CountValue::CV_Immediate, Count); |
820 | } |
821 | |
822 | // A general case: Start and End are some values, but the actual |
823 | // iteration count may not be available. If it is not, insert |
824 | // a computation of it into the preheader. |
825 | |
826 | // If the induction variable bump is not a power of 2, quit. |
827 | // Otherwise we'd need a general integer division. |
828 | if (!isPowerOf2_64(Value: std::abs(i: IVBump))) |
829 | return nullptr; |
830 | |
831 | MachineBasicBlock *PH = MLI->findLoopPreheader(L: Loop, SpeculativePreheader: SpecPreheader); |
832 | assert (PH && "Should have a preheader by now" ); |
833 | MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); |
834 | DebugLoc DL; |
835 | if (InsertPos != PH->end()) |
836 | DL = InsertPos->getDebugLoc(); |
837 | |
838 | // If Start is an immediate and End is a register, the trip count |
839 | // will be "reg - imm". Hexagon's "subtract immediate" instruction |
840 | // is actually "reg + -imm". |
841 | |
842 | // If the loop IV is going downwards, i.e. if the bump is negative, |
843 | // then the iteration count (computed as End-Start) will need to be |
844 | // negated. To avoid the negation, just swap Start and End. |
845 | if (IVBump < 0) { |
846 | std::swap(a&: Start, b&: End); |
847 | IVBump = -IVBump; |
848 | std::swap(a&: CmpLess, b&: CmpGreater); |
849 | } |
850 | // Cmp may now have a wrong direction, e.g. LEs may now be GEs. |
851 | // Signedness, and "including equality" are preserved. |
852 | |
853 | bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) |
854 | bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) |
855 | |
856 | int64_t StartV = 0, EndV = 0; |
857 | if (Start->isImm()) |
858 | StartV = Start->getImm(); |
859 | if (End->isImm()) |
860 | EndV = End->getImm(); |
861 | |
862 | int64_t AdjV = 0; |
863 | // To compute the iteration count, we would need this computation: |
864 | // Count = (End - Start + (IVBump-1)) / IVBump |
865 | // or, when CmpHasEqual: |
866 | // Count = (End - Start + (IVBump-1)+1) / IVBump |
867 | // The "IVBump-1" part is the adjustment (AdjV). We can avoid |
868 | // generating an instruction specifically to add it if we can adjust |
869 | // the immediate values for Start or End. |
870 | |
871 | if (CmpHasEqual) { |
872 | // Need to add 1 to the total iteration count. |
873 | if (Start->isImm()) |
874 | StartV--; |
875 | else if (End->isImm()) |
876 | EndV++; |
877 | else |
878 | AdjV += 1; |
879 | } |
880 | |
881 | if (Cmp != Comparison::NE) { |
882 | if (Start->isImm()) |
883 | StartV -= (IVBump-1); |
884 | else if (End->isImm()) |
885 | EndV += (IVBump-1); |
886 | else |
887 | AdjV += (IVBump-1); |
888 | } |
889 | |
890 | Register R = 0; |
891 | unsigned SR = 0; |
892 | if (Start->isReg()) { |
893 | R = Start->getReg(); |
894 | SR = Start->getSubReg(); |
895 | } else { |
896 | R = End->getReg(); |
897 | SR = End->getSubReg(); |
898 | } |
899 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: R); |
900 | // Hardware loops cannot handle 64-bit registers. If it's a double |
901 | // register, it has to have a subregister. |
902 | if (!SR && RC == &Hexagon::DoubleRegsRegClass) |
903 | return nullptr; |
904 | const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; |
905 | |
906 | // Compute DistR (register with the distance between Start and End). |
907 | Register DistR; |
908 | unsigned DistSR; |
909 | |
910 | // Avoid special case, where the start value is an imm(0). |
911 | if (Start->isImm() && StartV == 0) { |
912 | DistR = End->getReg(); |
913 | DistSR = End->getSubReg(); |
914 | } else { |
915 | const MCInstrDesc &SubD = RegToReg ? TII->get(Opcode: Hexagon::A2_sub) : |
916 | (RegToImm ? TII->get(Opcode: Hexagon::A2_subri) : |
917 | TII->get(Opcode: Hexagon::A2_addi)); |
918 | if (RegToReg || RegToImm) { |
919 | Register SubR = MRI->createVirtualRegister(RegClass: IntRC); |
920 | MachineInstrBuilder SubIB = |
921 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: SubD, DestReg: SubR); |
922 | |
923 | if (RegToReg) |
924 | SubIB.addReg(RegNo: End->getReg(), flags: 0, SubReg: End->getSubReg()) |
925 | .addReg(RegNo: Start->getReg(), flags: 0, SubReg: Start->getSubReg()); |
926 | else |
927 | SubIB.addImm(Val: EndV) |
928 | .addReg(RegNo: Start->getReg(), flags: 0, SubReg: Start->getSubReg()); |
929 | DistR = SubR; |
930 | } else { |
931 | // If the loop has been unrolled, we should use the original loop count |
932 | // instead of recalculating the value. This will avoid additional |
933 | // 'Add' instruction. |
934 | const MachineInstr *EndValInstr = MRI->getVRegDef(Reg: End->getReg()); |
935 | if (EndValInstr->getOpcode() == Hexagon::A2_addi && |
936 | EndValInstr->getOperand(i: 1).getSubReg() == 0 && |
937 | EndValInstr->getOperand(i: 2).getImm() == StartV) { |
938 | DistR = EndValInstr->getOperand(i: 1).getReg(); |
939 | } else { |
940 | Register SubR = MRI->createVirtualRegister(RegClass: IntRC); |
941 | MachineInstrBuilder SubIB = |
942 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: SubD, DestReg: SubR); |
943 | SubIB.addReg(RegNo: End->getReg(), flags: 0, SubReg: End->getSubReg()) |
944 | .addImm(Val: -StartV); |
945 | DistR = SubR; |
946 | } |
947 | } |
948 | DistSR = 0; |
949 | } |
950 | |
951 | // From DistR, compute AdjR (register with the adjusted distance). |
952 | Register AdjR; |
953 | unsigned AdjSR; |
954 | |
955 | if (AdjV == 0) { |
956 | AdjR = DistR; |
957 | AdjSR = DistSR; |
958 | } else { |
959 | // Generate CountR = ADD DistR, AdjVal |
960 | Register AddR = MRI->createVirtualRegister(RegClass: IntRC); |
961 | MCInstrDesc const &AddD = TII->get(Opcode: Hexagon::A2_addi); |
962 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: AddD, DestReg: AddR) |
963 | .addReg(RegNo: DistR, flags: 0, SubReg: DistSR) |
964 | .addImm(Val: AdjV); |
965 | |
966 | AdjR = AddR; |
967 | AdjSR = 0; |
968 | } |
969 | |
970 | // From AdjR, compute CountR (register with the final count). |
971 | Register CountR; |
972 | unsigned CountSR; |
973 | |
974 | if (IVBump == 1) { |
975 | CountR = AdjR; |
976 | CountSR = AdjSR; |
977 | } else { |
978 | // The IV bump is a power of two. Log_2(IV bump) is the shift amount. |
979 | unsigned Shift = Log2_32(Value: IVBump); |
980 | |
981 | // Generate NormR = LSR DistR, Shift. |
982 | Register LsrR = MRI->createVirtualRegister(RegClass: IntRC); |
983 | const MCInstrDesc &LsrD = TII->get(Opcode: Hexagon::S2_lsr_i_r); |
984 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: LsrD, DestReg: LsrR) |
985 | .addReg(RegNo: AdjR, flags: 0, SubReg: AdjSR) |
986 | .addImm(Val: Shift); |
987 | |
988 | CountR = LsrR; |
989 | CountSR = 0; |
990 | } |
991 | |
992 | const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass; |
993 | Register MuxR = CountR; |
994 | unsigned MuxSR = CountSR; |
995 | // For the loop count to be valid unsigned number, CmpLess should imply |
996 | // Dist >= 0. Similarly, CmpGreater should imply Dist < 0. We can skip the |
997 | // check if the initial distance is zero and the comparison is LTu || LTEu. |
998 | if (!(Start->isImm() && StartV == 0 && Comparison::isUnsigned(Cmp) && |
999 | CmpLess) && |
1000 | (CmpLess || CmpGreater)) { |
1001 | // Generate: |
1002 | // DistCheck = CMP_GT DistR, 0 --> CmpLess |
1003 | // DistCheck = CMP_GT DistR, -1 --> CmpGreater |
1004 | Register DistCheckR = MRI->createVirtualRegister(RegClass: PredRC); |
1005 | const MCInstrDesc &DistCheckD = TII->get(Opcode: Hexagon::C2_cmpgti); |
1006 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: DistCheckD, DestReg: DistCheckR) |
1007 | .addReg(RegNo: DistR, flags: 0, SubReg: DistSR) |
1008 | .addImm(Val: (CmpLess) ? 0 : -1); |
1009 | |
1010 | // Generate: |
1011 | // MUXR = MUX DistCheck, CountR, 1 --> CmpLess |
1012 | // MUXR = MUX DistCheck, 1, CountR --> CmpGreater |
1013 | MuxR = MRI->createVirtualRegister(RegClass: IntRC); |
1014 | if (CmpLess) { |
1015 | const MCInstrDesc &MuxD = TII->get(Opcode: Hexagon::C2_muxir); |
1016 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: MuxD, DestReg: MuxR) |
1017 | .addReg(RegNo: DistCheckR) |
1018 | .addReg(RegNo: CountR, flags: 0, SubReg: CountSR) |
1019 | .addImm(Val: 1); |
1020 | } else { |
1021 | const MCInstrDesc &MuxD = TII->get(Opcode: Hexagon::C2_muxri); |
1022 | BuildMI(BB&: *PH, I: InsertPos, MIMD: DL, MCID: MuxD, DestReg: MuxR) |
1023 | .addReg(RegNo: DistCheckR) |
1024 | .addImm(Val: 1) |
1025 | .addReg(RegNo: CountR, flags: 0, SubReg: CountSR); |
1026 | } |
1027 | MuxSR = 0; |
1028 | } |
1029 | |
1030 | return new CountValue(CountValue::CV_Register, MuxR, MuxSR); |
1031 | } |
1032 | |
1033 | /// Return true if the operation is invalid within hardware loop. |
1034 | bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, |
1035 | bool IsInnerHWLoop) const { |
1036 | // Call is not allowed because the callee may use a hardware loop except for |
1037 | // the case when the call never returns. |
1038 | if (MI->getDesc().isCall()) |
1039 | return !TII->doesNotReturn(CallMI: *MI); |
1040 | |
1041 | // Check if the instruction defines a hardware loop register. |
1042 | using namespace Hexagon; |
1043 | |
1044 | static const Register Regs01[] = { LC0, SA0, LC1, SA1 }; |
1045 | static const Register Regs1[] = { LC1, SA1 }; |
1046 | auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1); |
1047 | for (Register R : CheckRegs) |
1048 | if (MI->modifiesRegister(Reg: R, TRI)) |
1049 | return true; |
1050 | |
1051 | return false; |
1052 | } |
1053 | |
1054 | /// Return true if the loop contains an instruction that inhibits |
1055 | /// the use of the hardware loop instruction. |
1056 | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, |
1057 | bool IsInnerHWLoop) const { |
1058 | LLVM_DEBUG(dbgs() << "\nhw_loop head, " |
1059 | << printMBBReference(**L->block_begin())); |
1060 | for (MachineBasicBlock *MBB : L->getBlocks()) { |
1061 | for (const MachineInstr &MI : *MBB) { |
1062 | if (isInvalidLoopOperation(MI: &MI, IsInnerHWLoop)) { |
1063 | LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:" ; |
1064 | MI.dump();); |
1065 | return true; |
1066 | } |
1067 | } |
1068 | } |
1069 | return false; |
1070 | } |
1071 | |
1072 | /// Returns true if the instruction is dead. This was essentially |
1073 | /// copied from DeadMachineInstructionElim::isDead, but with special cases |
1074 | /// for inline asm, physical registers and instructions with side effects |
1075 | /// removed. |
1076 | bool HexagonHardwareLoops::isDead(const MachineInstr *MI, |
1077 | SmallVectorImpl<MachineInstr *> &DeadPhis) const { |
1078 | // Examine each operand. |
1079 | for (const MachineOperand &MO : MI->operands()) { |
1080 | if (!MO.isReg() || !MO.isDef()) |
1081 | continue; |
1082 | |
1083 | Register Reg = MO.getReg(); |
1084 | if (MRI->use_nodbg_empty(RegNo: Reg)) |
1085 | continue; |
1086 | |
1087 | using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; |
1088 | |
1089 | // This instruction has users, but if the only user is the phi node for the |
1090 | // parent block, and the only use of that phi node is this instruction, then |
1091 | // this instruction is dead: both it (and the phi node) can be removed. |
1092 | use_nodbg_iterator I = MRI->use_nodbg_begin(RegNo: Reg); |
1093 | use_nodbg_iterator End = MRI->use_nodbg_end(); |
1094 | if (std::next(x: I) != End || !I->getParent()->isPHI()) |
1095 | return false; |
1096 | |
1097 | MachineInstr *OnePhi = I->getParent(); |
1098 | for (const MachineOperand &OPO : OnePhi->operands()) { |
1099 | if (!OPO.isReg() || !OPO.isDef()) |
1100 | continue; |
1101 | |
1102 | Register OPReg = OPO.getReg(); |
1103 | use_nodbg_iterator nextJ; |
1104 | for (use_nodbg_iterator J = MRI->use_nodbg_begin(RegNo: OPReg); |
1105 | J != End; J = nextJ) { |
1106 | nextJ = std::next(x: J); |
1107 | MachineOperand &Use = *J; |
1108 | MachineInstr *UseMI = Use.getParent(); |
1109 | |
1110 | // If the phi node has a user that is not MI, bail. |
1111 | if (MI != UseMI) |
1112 | return false; |
1113 | } |
1114 | } |
1115 | DeadPhis.push_back(Elt: OnePhi); |
1116 | } |
1117 | |
1118 | // If there are no defs with uses, the instruction is dead. |
1119 | return true; |
1120 | } |
1121 | |
1122 | void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { |
1123 | // This procedure was essentially copied from DeadMachineInstructionElim. |
1124 | |
1125 | SmallVector<MachineInstr*, 1> DeadPhis; |
1126 | if (isDead(MI, DeadPhis)) { |
1127 | LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); |
1128 | |
1129 | // It is possible that some DBG_VALUE instructions refer to this |
1130 | // instruction. Examine each def operand for such references; |
1131 | // if found, mark the DBG_VALUE as undef (but don't delete it). |
1132 | for (const MachineOperand &MO : MI->operands()) { |
1133 | if (!MO.isReg() || !MO.isDef()) |
1134 | continue; |
1135 | Register Reg = MO.getReg(); |
1136 | // We use make_early_inc_range here because setReg below invalidates the |
1137 | // iterator. |
1138 | for (MachineOperand &MO : |
1139 | llvm::make_early_inc_range(Range: MRI->use_operands(Reg))) { |
1140 | MachineInstr *UseMI = MO.getParent(); |
1141 | if (UseMI == MI) |
1142 | continue; |
1143 | if (MO.isDebug()) |
1144 | MO.setReg(0U); |
1145 | } |
1146 | } |
1147 | |
1148 | MI->eraseFromParent(); |
1149 | for (unsigned i = 0; i < DeadPhis.size(); ++i) |
1150 | DeadPhis[i]->eraseFromParent(); |
1151 | } |
1152 | } |
1153 | |
1154 | /// Check if the loop is a candidate for converting to a hardware |
1155 | /// loop. If so, then perform the transformation. |
1156 | /// |
1157 | /// This function works on innermost loops first. A loop can be converted |
1158 | /// if it is a counting loop; either a register value or an immediate. |
1159 | /// |
1160 | /// The code makes several assumptions about the representation of the loop |
1161 | /// in llvm. |
1162 | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, |
1163 | bool &RecL0used, |
1164 | bool &RecL1used) { |
1165 | // This is just to confirm basic correctness. |
1166 | assert(L->getHeader() && "Loop without a header?" ); |
1167 | |
1168 | bool Changed = false; |
1169 | bool L0Used = false; |
1170 | bool L1Used = false; |
1171 | |
1172 | // Process nested loops first. |
1173 | for (MachineLoop *I : *L) { |
1174 | Changed |= convertToHardwareLoop(L: I, RecL0used, RecL1used); |
1175 | L0Used |= RecL0used; |
1176 | L1Used |= RecL1used; |
1177 | } |
1178 | |
1179 | // If a nested loop has been converted, then we can't convert this loop. |
1180 | if (Changed && L0Used && L1Used) |
1181 | return Changed; |
1182 | |
1183 | unsigned LOOP_i; |
1184 | unsigned LOOP_r; |
1185 | unsigned ENDLOOP; |
1186 | |
1187 | // Flag used to track loopN instruction: |
1188 | // 1 - Hardware loop is being generated for the inner most loop. |
1189 | // 0 - Hardware loop is being generated for the outer loop. |
1190 | unsigned IsInnerHWLoop = 1; |
1191 | |
1192 | if (L0Used) { |
1193 | LOOP_i = Hexagon::J2_loop1i; |
1194 | LOOP_r = Hexagon::J2_loop1r; |
1195 | ENDLOOP = Hexagon::ENDLOOP1; |
1196 | IsInnerHWLoop = 0; |
1197 | } else { |
1198 | LOOP_i = Hexagon::J2_loop0i; |
1199 | LOOP_r = Hexagon::J2_loop0r; |
1200 | ENDLOOP = Hexagon::ENDLOOP0; |
1201 | } |
1202 | |
1203 | #ifndef NDEBUG |
1204 | // Stop trying after reaching the limit (if any). |
1205 | int Limit = HWLoopLimit; |
1206 | if (Limit >= 0) { |
1207 | if (Counter >= HWLoopLimit) |
1208 | return false; |
1209 | Counter++; |
1210 | } |
1211 | #endif |
1212 | |
1213 | // Does the loop contain any invalid instructions? |
1214 | if (containsInvalidInstruction(L, IsInnerHWLoop)) |
1215 | return false; |
1216 | |
1217 | MachineBasicBlock *LastMBB = L->findLoopControlBlock(); |
1218 | // Don't generate hw loop if the loop has more than one exit. |
1219 | if (!LastMBB) |
1220 | return false; |
1221 | |
1222 | MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); |
1223 | if (LastI == LastMBB->end()) |
1224 | return false; |
1225 | |
1226 | // Is the induction variable bump feeding the latch condition? |
1227 | if (!fixupInductionVariable(L)) |
1228 | return false; |
1229 | |
1230 | // Ensure the loop has a preheader: the loop instruction will be |
1231 | // placed there. |
1232 | MachineBasicBlock * = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader); |
1233 | if (!Preheader) { |
1234 | Preheader = createPreheaderForLoop(L); |
1235 | if (!Preheader) |
1236 | return false; |
1237 | } |
1238 | |
1239 | MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); |
1240 | |
1241 | SmallVector<MachineInstr*, 2> OldInsts; |
1242 | // Are we able to determine the trip count for the loop? |
1243 | CountValue *TripCount = getLoopTripCount(L, OldInsts); |
1244 | if (!TripCount) |
1245 | return false; |
1246 | |
1247 | // Is the trip count available in the preheader? |
1248 | if (TripCount->isReg()) { |
1249 | // There will be a use of the register inserted into the preheader, |
1250 | // so make sure that the register is actually defined at that point. |
1251 | MachineInstr *TCDef = MRI->getVRegDef(Reg: TripCount->getReg()); |
1252 | MachineBasicBlock *BBDef = TCDef->getParent(); |
1253 | if (!MDT->dominates(A: BBDef, B: Preheader)) |
1254 | return false; |
1255 | } |
1256 | |
1257 | // Determine the loop start. |
1258 | MachineBasicBlock *TopBlock = L->getTopBlock(); |
1259 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
1260 | MachineBasicBlock *LoopStart = nullptr; |
1261 | if (ExitingBlock != L->getLoopLatch()) { |
1262 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
1263 | SmallVector<MachineOperand, 2> Cond; |
1264 | |
1265 | if (TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false)) |
1266 | return false; |
1267 | |
1268 | if (L->contains(BB: TB)) |
1269 | LoopStart = TB; |
1270 | else if (L->contains(BB: FB)) |
1271 | LoopStart = FB; |
1272 | else |
1273 | return false; |
1274 | } |
1275 | else |
1276 | LoopStart = TopBlock; |
1277 | |
1278 | // Convert the loop to a hardware loop. |
1279 | LLVM_DEBUG(dbgs() << "Change to hardware loop at " ; L->dump()); |
1280 | DebugLoc DL; |
1281 | if (InsertPos != Preheader->end()) |
1282 | DL = InsertPos->getDebugLoc(); |
1283 | |
1284 | if (TripCount->isReg()) { |
1285 | // Create a copy of the loop count register. |
1286 | Register CountReg = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1287 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: CountReg) |
1288 | .addReg(RegNo: TripCount->getReg(), flags: 0, SubReg: TripCount->getSubReg()); |
1289 | // Add the Loop instruction to the beginning of the loop. |
1290 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: LOOP_r)).addMBB(MBB: LoopStart) |
1291 | .addReg(RegNo: CountReg); |
1292 | } else { |
1293 | assert(TripCount->isImm() && "Expecting immediate value for trip count" ); |
1294 | // Add the Loop immediate instruction to the beginning of the loop, |
1295 | // if the immediate fits in the instructions. Otherwise, we need to |
1296 | // create a new virtual register. |
1297 | int64_t CountImm = TripCount->getImm(); |
1298 | if (!TII->isValidOffset(Opcode: LOOP_i, Offset: CountImm, TRI)) { |
1299 | Register CountReg = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1300 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: Hexagon::A2_tfrsi), DestReg: CountReg) |
1301 | .addImm(Val: CountImm); |
1302 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: LOOP_r)) |
1303 | .addMBB(MBB: LoopStart).addReg(RegNo: CountReg); |
1304 | } else |
1305 | BuildMI(BB&: *Preheader, I: InsertPos, MIMD: DL, MCID: TII->get(Opcode: LOOP_i)) |
1306 | .addMBB(MBB: LoopStart).addImm(Val: CountImm); |
1307 | } |
1308 | |
1309 | // Make sure the loop start always has a reference in the CFG. |
1310 | LoopStart->setMachineBlockAddressTaken(); |
1311 | |
1312 | // Replace the loop branch with an endloop instruction. |
1313 | DebugLoc LastIDL = LastI->getDebugLoc(); |
1314 | BuildMI(BB&: *LastMBB, I: LastI, MIMD: LastIDL, MCID: TII->get(Opcode: ENDLOOP)).addMBB(MBB: LoopStart); |
1315 | |
1316 | // The loop ends with either: |
1317 | // - a conditional branch followed by an unconditional branch, or |
1318 | // - a conditional branch to the loop start. |
1319 | if (LastI->getOpcode() == Hexagon::J2_jumpt || |
1320 | LastI->getOpcode() == Hexagon::J2_jumpf) { |
1321 | // Delete one and change/add an uncond. branch to out of the loop. |
1322 | MachineBasicBlock *BranchTarget = LastI->getOperand(i: 1).getMBB(); |
1323 | LastI = LastMBB->erase(I: LastI); |
1324 | if (!L->contains(BB: BranchTarget)) { |
1325 | if (LastI != LastMBB->end()) |
1326 | LastI = LastMBB->erase(I: LastI); |
1327 | SmallVector<MachineOperand, 0> Cond; |
1328 | TII->insertBranch(MBB&: *LastMBB, TBB: BranchTarget, FBB: nullptr, Cond, DL: LastIDL); |
1329 | } |
1330 | } else { |
1331 | // Conditional branch to loop start; just delete it. |
1332 | LastMBB->erase(I: LastI); |
1333 | } |
1334 | delete TripCount; |
1335 | |
1336 | // The induction operation and the comparison may now be |
1337 | // unneeded. If these are unneeded, then remove them. |
1338 | for (unsigned i = 0; i < OldInsts.size(); ++i) |
1339 | removeIfDead(MI: OldInsts[i]); |
1340 | |
1341 | ++NumHWLoops; |
1342 | |
1343 | // Set RecL1used and RecL0used only after hardware loop has been |
1344 | // successfully generated. Doing it earlier can cause wrong loop instruction |
1345 | // to be used. |
1346 | if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. |
1347 | RecL1used = true; |
1348 | else |
1349 | RecL0used = true; |
1350 | |
1351 | return true; |
1352 | } |
1353 | |
1354 | bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, |
1355 | MachineInstr *CmpI) { |
1356 | assert (BumpI != CmpI && "Bump and compare in the same instruction?" ); |
1357 | |
1358 | MachineBasicBlock *BB = BumpI->getParent(); |
1359 | if (CmpI->getParent() != BB) |
1360 | return false; |
1361 | |
1362 | using instr_iterator = MachineBasicBlock::instr_iterator; |
1363 | |
1364 | // Check if things are in order to begin with. |
1365 | for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) |
1366 | if (&*I == CmpI) |
1367 | return true; |
1368 | |
1369 | // Out of order. |
1370 | Register PredR = CmpI->getOperand(i: 0).getReg(); |
1371 | bool FoundBump = false; |
1372 | instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(x: CmpIt); |
1373 | for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { |
1374 | MachineInstr *In = &*I; |
1375 | for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { |
1376 | MachineOperand &MO = In->getOperand(i); |
1377 | if (MO.isReg() && MO.isUse()) { |
1378 | if (MO.getReg() == PredR) // Found an intervening use of PredR. |
1379 | return false; |
1380 | } |
1381 | } |
1382 | |
1383 | if (In == BumpI) { |
1384 | BB->splice(Where: ++BumpI->getIterator(), Other: BB, From: CmpI->getIterator()); |
1385 | FoundBump = true; |
1386 | break; |
1387 | } |
1388 | } |
1389 | assert (FoundBump && "Cannot determine instruction order" ); |
1390 | return FoundBump; |
1391 | } |
1392 | |
1393 | /// This function is required to break recursion. Visiting phis in a loop may |
1394 | /// result in recursion during compilation. We break the recursion by making |
1395 | /// sure that we visit a MachineOperand and its definition in a |
1396 | /// MachineInstruction only once. If we attempt to visit more than once, then |
1397 | /// there is recursion, and will return false. |
1398 | bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, |
1399 | MachineInstr *MI, |
1400 | const MachineOperand *MO, |
1401 | LoopFeederMap &LoopFeederPhi) const { |
1402 | if (LoopFeederPhi.find(x: MO->getReg()) == LoopFeederPhi.end()) { |
1403 | LLVM_DEBUG(dbgs() << "\nhw_loop head, " |
1404 | << printMBBReference(**L->block_begin())); |
1405 | // Ignore all BBs that form Loop. |
1406 | if (llvm::is_contained(Range: L->getBlocks(), Element: A)) |
1407 | return false; |
1408 | MachineInstr *Def = MRI->getVRegDef(Reg: MO->getReg()); |
1409 | LoopFeederPhi.insert(x: std::make_pair(x: MO->getReg(), y&: Def)); |
1410 | return true; |
1411 | } else |
1412 | // Already visited node. |
1413 | return false; |
1414 | } |
1415 | |
1416 | /// Return true if a Phi may generate a value that can underflow. |
1417 | /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. |
1418 | bool HexagonHardwareLoops::phiMayWrapOrUnderflow( |
1419 | MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, |
1420 | MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { |
1421 | assert(Phi->isPHI() && "Expecting a Phi." ); |
1422 | // Walk through each Phi, and its used operands. Make sure that |
1423 | // if there is recursion in Phi, we won't generate hardware loops. |
1424 | for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) |
1425 | if (isLoopFeeder(L, A: MBB, MI: Phi, MO: &(Phi->getOperand(i)), LoopFeederPhi)) |
1426 | if (loopCountMayWrapOrUnderFlow(InitVal: &(Phi->getOperand(i)), EndVal, |
1427 | MBB: Phi->getParent(), L, LoopFeederPhi)) |
1428 | return true; |
1429 | return false; |
1430 | } |
1431 | |
1432 | /// Return true if the induction variable can underflow in the first iteration. |
1433 | /// An example, is an initial unsigned value that is 0 and is decrement in the |
1434 | /// first itertion of a do-while loop. In this case, we cannot generate a |
1435 | /// hardware loop because the endloop instruction does not decrement the loop |
1436 | /// counter if it is <= 1. We only need to perform this analysis if the |
1437 | /// initial value is a register. |
1438 | /// |
1439 | /// This function assumes the initial value may underflow unless proven |
1440 | /// otherwise. If the type is signed, then we don't care because signed |
1441 | /// underflow is undefined. We attempt to prove the initial value is not |
1442 | /// zero by performing a crude analysis of the loop counter. This function |
1443 | /// checks if the initial value is used in any comparison prior to the loop |
1444 | /// and, if so, assumes the comparison is a range check. This is inexact, |
1445 | /// but will catch the simple cases. |
1446 | bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( |
1447 | const MachineOperand *InitVal, const MachineOperand *EndVal, |
1448 | MachineBasicBlock *MBB, MachineLoop *L, |
1449 | LoopFeederMap &LoopFeederPhi) const { |
1450 | // Only check register values since they are unknown. |
1451 | if (!InitVal->isReg()) |
1452 | return false; |
1453 | |
1454 | if (!EndVal->isImm()) |
1455 | return false; |
1456 | |
1457 | // A register value that is assigned an immediate is a known value, and it |
1458 | // won't underflow in the first iteration. |
1459 | int64_t Imm; |
1460 | if (checkForImmediate(MO: *InitVal, Val&: Imm)) |
1461 | return (EndVal->getImm() == Imm); |
1462 | |
1463 | Register Reg = InitVal->getReg(); |
1464 | |
1465 | // We don't know the value of a physical register. |
1466 | if (!Reg.isVirtual()) |
1467 | return true; |
1468 | |
1469 | MachineInstr *Def = MRI->getVRegDef(Reg); |
1470 | if (!Def) |
1471 | return true; |
1472 | |
1473 | // If the initial value is a Phi or copy and the operands may not underflow, |
1474 | // then the definition cannot be underflow either. |
1475 | if (Def->isPHI() && !phiMayWrapOrUnderflow(Phi: Def, EndVal, MBB: Def->getParent(), |
1476 | L, LoopFeederPhi)) |
1477 | return false; |
1478 | if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(InitVal: &(Def->getOperand(i: 1)), |
1479 | EndVal, MBB: Def->getParent(), |
1480 | L, LoopFeederPhi)) |
1481 | return false; |
1482 | |
1483 | // Iterate over the uses of the initial value. If the initial value is used |
1484 | // in a compare, then we assume this is a range check that ensures the loop |
1485 | // doesn't underflow. This is not an exact test and should be improved. |
1486 | for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(RegNo: Reg), |
1487 | E = MRI->use_instr_nodbg_end(); I != E; ++I) { |
1488 | MachineInstr *MI = &*I; |
1489 | Register CmpReg1, CmpReg2; |
1490 | int64_t CmpMask = 0, CmpValue = 0; |
1491 | |
1492 | if (!TII->analyzeCompare(MI: *MI, SrcReg&: CmpReg1, SrcReg2&: CmpReg2, Mask&: CmpMask, Value&: CmpValue)) |
1493 | continue; |
1494 | |
1495 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
1496 | SmallVector<MachineOperand, 2> Cond; |
1497 | if (TII->analyzeBranch(MBB&: *MI->getParent(), TBB, FBB, Cond, AllowModify: false)) |
1498 | continue; |
1499 | |
1500 | Comparison::Kind Cmp = |
1501 | getComparisonKind(CondOpc: MI->getOpcode(), InitialValue: nullptr, EndValue: nullptr, IVBump: 0); |
1502 | if (Cmp == 0) |
1503 | continue; |
1504 | if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) |
1505 | Cmp = Comparison::getNegatedComparison(Cmp); |
1506 | if (CmpReg2 != 0 && CmpReg2 == Reg) |
1507 | Cmp = Comparison::getSwappedComparison(Cmp); |
1508 | |
1509 | // Signed underflow is undefined. |
1510 | if (Comparison::isSigned(Cmp)) |
1511 | return false; |
1512 | |
1513 | // Check if there is a comparison of the initial value. If the initial value |
1514 | // is greater than or not equal to another value, then assume this is a |
1515 | // range check. |
1516 | if ((Cmp & Comparison::G) || Cmp == Comparison::NE) |
1517 | return false; |
1518 | } |
1519 | |
1520 | // OK - this is a hack that needs to be improved. We really need to analyze |
1521 | // the instructions performed on the initial value. This works on the simplest |
1522 | // cases only. |
1523 | if (!Def->isCopy() && !Def->isPHI()) |
1524 | return false; |
1525 | |
1526 | return true; |
1527 | } |
1528 | |
1529 | bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, |
1530 | int64_t &Val) const { |
1531 | if (MO.isImm()) { |
1532 | Val = MO.getImm(); |
1533 | return true; |
1534 | } |
1535 | if (!MO.isReg()) |
1536 | return false; |
1537 | |
1538 | // MO is a register. Check whether it is defined as an immediate value, |
1539 | // and if so, get the value of it in TV. That value will then need to be |
1540 | // processed to handle potential subregisters in MO. |
1541 | int64_t TV; |
1542 | |
1543 | Register R = MO.getReg(); |
1544 | if (!R.isVirtual()) |
1545 | return false; |
1546 | MachineInstr *DI = MRI->getVRegDef(Reg: R); |
1547 | unsigned DOpc = DI->getOpcode(); |
1548 | switch (DOpc) { |
1549 | case TargetOpcode::COPY: |
1550 | case Hexagon::A2_tfrsi: |
1551 | case Hexagon::A2_tfrpi: |
1552 | case Hexagon::CONST32: |
1553 | case Hexagon::CONST64: |
1554 | // Call recursively to avoid an extra check whether operand(1) is |
1555 | // indeed an immediate (it could be a global address, for example), |
1556 | // plus we can handle COPY at the same time. |
1557 | if (!checkForImmediate(MO: DI->getOperand(i: 1), Val&: TV)) |
1558 | return false; |
1559 | break; |
1560 | case Hexagon::A2_combineii: |
1561 | case Hexagon::A4_combineir: |
1562 | case Hexagon::A4_combineii: |
1563 | case Hexagon::A4_combineri: |
1564 | case Hexagon::A2_combinew: { |
1565 | const MachineOperand &S1 = DI->getOperand(i: 1); |
1566 | const MachineOperand &S2 = DI->getOperand(i: 2); |
1567 | int64_t V1, V2; |
1568 | if (!checkForImmediate(MO: S1, Val&: V1) || !checkForImmediate(MO: S2, Val&: V2)) |
1569 | return false; |
1570 | TV = V2 | (static_cast<uint64_t>(V1) << 32); |
1571 | break; |
1572 | } |
1573 | case TargetOpcode::REG_SEQUENCE: { |
1574 | const MachineOperand &S1 = DI->getOperand(i: 1); |
1575 | const MachineOperand &S3 = DI->getOperand(i: 3); |
1576 | int64_t V1, V3; |
1577 | if (!checkForImmediate(MO: S1, Val&: V1) || !checkForImmediate(MO: S3, Val&: V3)) |
1578 | return false; |
1579 | unsigned Sub2 = DI->getOperand(i: 2).getImm(); |
1580 | unsigned Sub4 = DI->getOperand(i: 4).getImm(); |
1581 | if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) |
1582 | TV = V1 | (V3 << 32); |
1583 | else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) |
1584 | TV = V3 | (V1 << 32); |
1585 | else |
1586 | llvm_unreachable("Unexpected form of REG_SEQUENCE" ); |
1587 | break; |
1588 | } |
1589 | |
1590 | default: |
1591 | return false; |
1592 | } |
1593 | |
1594 | // By now, we should have successfully obtained the immediate value defining |
1595 | // the register referenced in MO. Handle a potential use of a subregister. |
1596 | switch (MO.getSubReg()) { |
1597 | case Hexagon::isub_lo: |
1598 | Val = TV & 0xFFFFFFFFULL; |
1599 | break; |
1600 | case Hexagon::isub_hi: |
1601 | Val = (TV >> 32) & 0xFFFFFFFFULL; |
1602 | break; |
1603 | default: |
1604 | Val = TV; |
1605 | break; |
1606 | } |
1607 | return true; |
1608 | } |
1609 | |
1610 | void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { |
1611 | if (MO.isImm()) { |
1612 | MO.setImm(Val); |
1613 | return; |
1614 | } |
1615 | |
1616 | assert(MO.isReg()); |
1617 | Register R = MO.getReg(); |
1618 | MachineInstr *DI = MRI->getVRegDef(Reg: R); |
1619 | |
1620 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: R); |
1621 | Register NewR = MRI->createVirtualRegister(RegClass: RC); |
1622 | MachineBasicBlock &B = *DI->getParent(); |
1623 | DebugLoc DL = DI->getDebugLoc(); |
1624 | BuildMI(BB&: B, I: DI, MIMD: DL, MCID: TII->get(Opcode: DI->getOpcode()), DestReg: NewR).addImm(Val); |
1625 | MO.setReg(NewR); |
1626 | } |
1627 | |
1628 | bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { |
1629 | MachineBasicBlock * = L->getHeader(); |
1630 | MachineBasicBlock *Latch = L->getLoopLatch(); |
1631 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
1632 | |
1633 | if (!(Header && Latch && ExitingBlock)) |
1634 | return false; |
1635 | |
1636 | // These data structures follow the same concept as the corresponding |
1637 | // ones in findInductionRegister (where some comments are). |
1638 | using RegisterBump = std::pair<Register, int64_t>; |
1639 | using RegisterInduction = std::pair<Register, RegisterBump>; |
1640 | using RegisterInductionSet = std::set<RegisterInduction>; |
1641 | |
1642 | // Register candidates for induction variables, with their associated bumps. |
1643 | RegisterInductionSet IndRegs; |
1644 | |
1645 | // Look for induction patterns: |
1646 | // %1 = PHI ..., [ latch, %2 ] |
1647 | // %2 = ADD %1, imm |
1648 | using instr_iterator = MachineBasicBlock::instr_iterator; |
1649 | |
1650 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
1651 | I != E && I->isPHI(); ++I) { |
1652 | MachineInstr *Phi = &*I; |
1653 | |
1654 | // Have a PHI instruction. |
1655 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
1656 | if (Phi->getOperand(i: i+1).getMBB() != Latch) |
1657 | continue; |
1658 | |
1659 | Register PhiReg = Phi->getOperand(i).getReg(); |
1660 | MachineInstr *DI = MRI->getVRegDef(Reg: PhiReg); |
1661 | |
1662 | if (DI->getDesc().isAdd()) { |
1663 | // If the register operand to the add/sub is the PHI we are looking |
1664 | // at, this meets the induction pattern. |
1665 | Register IndReg = DI->getOperand(i: 1).getReg(); |
1666 | MachineOperand &Opnd2 = DI->getOperand(i: 2); |
1667 | int64_t V; |
1668 | if (MRI->getVRegDef(Reg: IndReg) == Phi && checkForImmediate(MO: Opnd2, Val&: V)) { |
1669 | Register UpdReg = DI->getOperand(i: 0).getReg(); |
1670 | IndRegs.insert(x: std::make_pair(x&: UpdReg, y: std::make_pair(x&: IndReg, y&: V))); |
1671 | } |
1672 | } |
1673 | } // for (i) |
1674 | } // for (instr) |
1675 | |
1676 | if (IndRegs.empty()) |
1677 | return false; |
1678 | |
1679 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
1680 | SmallVector<MachineOperand,2> Cond; |
1681 | // analyzeBranch returns true if it fails to analyze branch. |
1682 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond, AllowModify: false); |
1683 | if (NotAnalyzed || Cond.empty()) |
1684 | return false; |
1685 | |
1686 | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { |
1687 | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; |
1688 | SmallVector<MachineOperand,2> LCond; |
1689 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *Latch, TBB&: LTB, FBB&: LFB, Cond&: LCond, AllowModify: false); |
1690 | if (NotAnalyzed) |
1691 | return false; |
1692 | |
1693 | // Since latch is not the exiting block, the latch branch should be an |
1694 | // unconditional branch to the loop header. |
1695 | if (TB == Latch) |
1696 | TB = (LTB == Header) ? LTB : LFB; |
1697 | else |
1698 | FB = (LTB == Header) ? LTB : LFB; |
1699 | } |
1700 | if (TB != Header) { |
1701 | if (FB != Header) { |
1702 | // The latch/exit block does not go back to the header. |
1703 | return false; |
1704 | } |
1705 | // FB is the header (i.e., uncond. jump to branch header) |
1706 | // In this case, the LoopBody -> TB should not be a back edge otherwise |
1707 | // it could result in an infinite loop after conversion to hw_loop. |
1708 | // This case can happen when the Latch has two jumps like this: |
1709 | // Jmp_c OuterLoopHeader <-- TB |
1710 | // Jmp InnerLoopHeader <-- FB |
1711 | if (MDT->dominates(A: TB, B: FB)) |
1712 | return false; |
1713 | } |
1714 | |
1715 | // Expecting a predicate register as a condition. It won't be a hardware |
1716 | // predicate register at this point yet, just a vreg. |
1717 | // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) |
1718 | // into Cond, followed by the predicate register. For non-negated branches |
1719 | // it's just the register. |
1720 | unsigned CSz = Cond.size(); |
1721 | if (CSz != 1 && CSz != 2) |
1722 | return false; |
1723 | |
1724 | if (!Cond[CSz-1].isReg()) |
1725 | return false; |
1726 | |
1727 | Register P = Cond[CSz - 1].getReg(); |
1728 | MachineInstr *PredDef = MRI->getVRegDef(Reg: P); |
1729 | |
1730 | if (!PredDef->isCompare()) |
1731 | return false; |
1732 | |
1733 | SmallSet<Register,2> CmpRegs; |
1734 | MachineOperand *CmpImmOp = nullptr; |
1735 | |
1736 | // Go over all operands to the compare and look for immediate and register |
1737 | // operands. Assume that if the compare has a single register use and a |
1738 | // single immediate operand, then the register is being compared with the |
1739 | // immediate value. |
1740 | for (MachineOperand &MO : PredDef->operands()) { |
1741 | if (MO.isReg()) { |
1742 | // Skip all implicit references. In one case there was: |
1743 | // %140 = FCMPUGT32_rr %138, %139, implicit %usr |
1744 | if (MO.isImplicit()) |
1745 | continue; |
1746 | if (MO.isUse()) { |
1747 | if (!isImmediate(MO)) { |
1748 | CmpRegs.insert(V: MO.getReg()); |
1749 | continue; |
1750 | } |
1751 | // Consider the register to be the "immediate" operand. |
1752 | if (CmpImmOp) |
1753 | return false; |
1754 | CmpImmOp = &MO; |
1755 | } |
1756 | } else if (MO.isImm()) { |
1757 | if (CmpImmOp) // A second immediate argument? Confusing. Bail out. |
1758 | return false; |
1759 | CmpImmOp = &MO; |
1760 | } |
1761 | } |
1762 | |
1763 | if (CmpRegs.empty()) |
1764 | return false; |
1765 | |
1766 | // Check if the compared register follows the order we want. Fix if needed. |
1767 | for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); |
1768 | I != E; ++I) { |
1769 | // This is a success. If the register used in the comparison is one that |
1770 | // we have identified as a bumped (updated) induction register, there is |
1771 | // nothing to do. |
1772 | if (CmpRegs.count(V: I->first)) |
1773 | return true; |
1774 | |
1775 | // Otherwise, if the register being compared comes out of a PHI node, |
1776 | // and has been recognized as following the induction pattern, and is |
1777 | // compared against an immediate, we can fix it. |
1778 | const RegisterBump &RB = I->second; |
1779 | if (CmpRegs.count(V: RB.first)) { |
1780 | if (!CmpImmOp) { |
1781 | // If both operands to the compare instruction are registers, see if |
1782 | // it can be changed to use induction register as one of the operands. |
1783 | MachineInstr *IndI = nullptr; |
1784 | MachineInstr *nonIndI = nullptr; |
1785 | MachineOperand *IndMO = nullptr; |
1786 | MachineOperand *nonIndMO = nullptr; |
1787 | |
1788 | for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { |
1789 | MachineOperand &MO = PredDef->getOperand(i); |
1790 | if (MO.isReg() && MO.getReg() == RB.first) { |
1791 | LLVM_DEBUG(dbgs() << "\n DefMI(" << i |
1792 | << ") = " << *(MRI->getVRegDef(I->first))); |
1793 | if (IndI) |
1794 | return false; |
1795 | |
1796 | IndI = MRI->getVRegDef(Reg: I->first); |
1797 | IndMO = &MO; |
1798 | } else if (MO.isReg()) { |
1799 | LLVM_DEBUG(dbgs() << "\n DefMI(" << i |
1800 | << ") = " << *(MRI->getVRegDef(MO.getReg()))); |
1801 | if (nonIndI) |
1802 | return false; |
1803 | |
1804 | nonIndI = MRI->getVRegDef(Reg: MO.getReg()); |
1805 | nonIndMO = &MO; |
1806 | } |
1807 | } |
1808 | if (IndI && nonIndI && |
1809 | nonIndI->getOpcode() == Hexagon::A2_addi && |
1810 | nonIndI->getOperand(i: 2).isImm() && |
1811 | nonIndI->getOperand(i: 2).getImm() == - RB.second) { |
1812 | bool Order = orderBumpCompare(BumpI: IndI, CmpI: PredDef); |
1813 | if (Order) { |
1814 | IndMO->setReg(I->first); |
1815 | nonIndMO->setReg(nonIndI->getOperand(i: 1).getReg()); |
1816 | return true; |
1817 | } |
1818 | } |
1819 | return false; |
1820 | } |
1821 | |
1822 | // It is not valid to do this transformation on an unsigned comparison |
1823 | // because it may underflow. |
1824 | Comparison::Kind Cmp = |
1825 | getComparisonKind(CondOpc: PredDef->getOpcode(), InitialValue: nullptr, EndValue: nullptr, IVBump: 0); |
1826 | if (!Cmp || Comparison::isUnsigned(Cmp)) |
1827 | return false; |
1828 | |
1829 | // If the register is being compared against an immediate, try changing |
1830 | // the compare instruction to use induction register and adjust the |
1831 | // immediate operand. |
1832 | int64_t CmpImm = getImmediate(MO: *CmpImmOp); |
1833 | int64_t V = RB.second; |
1834 | // Handle Overflow (64-bit). |
1835 | if (((V > 0) && (CmpImm > INT64_MAX - V)) || |
1836 | ((V < 0) && (CmpImm < INT64_MIN - V))) |
1837 | return false; |
1838 | CmpImm += V; |
1839 | // Most comparisons of register against an immediate value allow |
1840 | // the immediate to be constant-extended. There are some exceptions |
1841 | // though. Make sure the new combination will work. |
1842 | if (CmpImmOp->isImm() && !TII->isExtendable(MI: *PredDef) && |
1843 | !TII->isValidOffset(Opcode: PredDef->getOpcode(), Offset: CmpImm, TRI, Extend: false)) |
1844 | return false; |
1845 | |
1846 | // Make sure that the compare happens after the bump. Otherwise, |
1847 | // after the fixup, the compare would use a yet-undefined register. |
1848 | MachineInstr *BumpI = MRI->getVRegDef(Reg: I->first); |
1849 | bool Order = orderBumpCompare(BumpI, CmpI: PredDef); |
1850 | if (!Order) |
1851 | return false; |
1852 | |
1853 | // Finally, fix the compare instruction. |
1854 | setImmediate(MO&: *CmpImmOp, Val: CmpImm); |
1855 | for (MachineOperand &MO : PredDef->operands()) { |
1856 | if (MO.isReg() && MO.getReg() == RB.first) { |
1857 | MO.setReg(I->first); |
1858 | return true; |
1859 | } |
1860 | } |
1861 | } |
1862 | } |
1863 | |
1864 | return false; |
1865 | } |
1866 | |
1867 | /// createPreheaderForLoop - Create a preheader for a given loop. |
1868 | MachineBasicBlock *HexagonHardwareLoops::( |
1869 | MachineLoop *L) { |
1870 | if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpeculativePreheader: SpecPreheader)) |
1871 | return TmpPH; |
1872 | if (!HWCreatePreheader) |
1873 | return nullptr; |
1874 | |
1875 | MachineBasicBlock * = L->getHeader(); |
1876 | MachineBasicBlock *Latch = L->getLoopLatch(); |
1877 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); |
1878 | MachineFunction *MF = Header->getParent(); |
1879 | DebugLoc DL; |
1880 | |
1881 | #ifndef NDEBUG |
1882 | if ((!PHFn.empty()) && (PHFn != MF->getName())) |
1883 | return nullptr; |
1884 | #endif |
1885 | |
1886 | if (!Latch || !ExitingBlock || Header->hasAddressTaken()) |
1887 | return nullptr; |
1888 | |
1889 | using instr_iterator = MachineBasicBlock::instr_iterator; |
1890 | |
1891 | // Verify that all existing predecessors have analyzable branches |
1892 | // (or no branches at all). |
1893 | using MBBVector = std::vector<MachineBasicBlock *>; |
1894 | |
1895 | MBBVector Preds(Header->pred_begin(), Header->pred_end()); |
1896 | SmallVector<MachineOperand,2> Tmp1; |
1897 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
1898 | |
1899 | if (TII->analyzeBranch(MBB&: *ExitingBlock, TBB&: TB, FBB&: FB, Cond&: Tmp1, AllowModify: false)) |
1900 | return nullptr; |
1901 | |
1902 | for (MachineBasicBlock *PB : Preds) { |
1903 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *PB, TBB&: TB, FBB&: FB, Cond&: Tmp1, AllowModify: false); |
1904 | if (NotAnalyzed) |
1905 | return nullptr; |
1906 | } |
1907 | |
1908 | MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); |
1909 | MF->insert(MBBI: Header->getIterator(), MBB: NewPH); |
1910 | |
1911 | if (Header->pred_size() > 2) { |
1912 | // Ensure that the header has only two predecessors: the preheader and |
1913 | // the loop latch. Any additional predecessors of the header should |
1914 | // join at the newly created preheader. Inspect all PHI nodes from the |
1915 | // header and create appropriate corresponding PHI nodes in the preheader. |
1916 | |
1917 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
1918 | I != E && I->isPHI(); ++I) { |
1919 | MachineInstr *PN = &*I; |
1920 | |
1921 | const MCInstrDesc &PD = TII->get(Opcode: TargetOpcode::PHI); |
1922 | MachineInstr *NewPN = MF->CreateMachineInstr(MCID: PD, DL); |
1923 | NewPH->insert(I: NewPH->end(), MI: NewPN); |
1924 | |
1925 | Register PR = PN->getOperand(i: 0).getReg(); |
1926 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: PR); |
1927 | Register NewPR = MRI->createVirtualRegister(RegClass: RC); |
1928 | NewPN->addOperand(Op: MachineOperand::CreateReg(Reg: NewPR, isDef: true)); |
1929 | |
1930 | // Copy all non-latch operands of a header's PHI node to the newly |
1931 | // created PHI node in the preheader. |
1932 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
1933 | Register PredR = PN->getOperand(i).getReg(); |
1934 | unsigned PredRSub = PN->getOperand(i).getSubReg(); |
1935 | MachineBasicBlock *PredB = PN->getOperand(i: i+1).getMBB(); |
1936 | if (PredB == Latch) |
1937 | continue; |
1938 | |
1939 | MachineOperand MO = MachineOperand::CreateReg(Reg: PredR, isDef: false); |
1940 | MO.setSubReg(PredRSub); |
1941 | NewPN->addOperand(Op: MO); |
1942 | NewPN->addOperand(Op: MachineOperand::CreateMBB(MBB: PredB)); |
1943 | } |
1944 | |
1945 | // Remove copied operands from the old PHI node and add the value |
1946 | // coming from the preheader's PHI. |
1947 | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { |
1948 | MachineBasicBlock *PredB = PN->getOperand(i: i+1).getMBB(); |
1949 | if (PredB != Latch) { |
1950 | PN->removeOperand(OpNo: i+1); |
1951 | PN->removeOperand(OpNo: i); |
1952 | } |
1953 | } |
1954 | PN->addOperand(Op: MachineOperand::CreateReg(Reg: NewPR, isDef: false)); |
1955 | PN->addOperand(Op: MachineOperand::CreateMBB(MBB: NewPH)); |
1956 | } |
1957 | } else { |
1958 | assert(Header->pred_size() == 2); |
1959 | |
1960 | // The header has only two predecessors, but the non-latch predecessor |
1961 | // is not a preheader (e.g. it has other successors, etc.) |
1962 | // In such a case we don't need any extra PHI nodes in the new preheader, |
1963 | // all we need is to adjust existing PHIs in the header to now refer to |
1964 | // the new preheader. |
1965 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
1966 | I != E && I->isPHI(); ++I) { |
1967 | MachineInstr *PN = &*I; |
1968 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
1969 | MachineOperand &MO = PN->getOperand(i: i+1); |
1970 | if (MO.getMBB() != Latch) |
1971 | MO.setMBB(NewPH); |
1972 | } |
1973 | } |
1974 | } |
1975 | |
1976 | // "Reroute" the CFG edges to link in the new preheader. |
1977 | // If any of the predecessors falls through to the header, insert a branch |
1978 | // to the new preheader in that place. |
1979 | SmallVector<MachineOperand,1> Tmp2; |
1980 | SmallVector<MachineOperand,1> EmptyCond; |
1981 | |
1982 | TB = FB = nullptr; |
1983 | |
1984 | for (MachineBasicBlock *PB : Preds) { |
1985 | if (PB != Latch) { |
1986 | Tmp2.clear(); |
1987 | bool NotAnalyzed = TII->analyzeBranch(MBB&: *PB, TBB&: TB, FBB&: FB, Cond&: Tmp2, AllowModify: false); |
1988 | (void)NotAnalyzed; // suppress compiler warning |
1989 | assert (!NotAnalyzed && "Should be analyzable!" ); |
1990 | if (TB != Header && (Tmp2.empty() || FB != Header)) |
1991 | TII->insertBranch(MBB&: *PB, TBB: NewPH, FBB: nullptr, Cond: EmptyCond, DL); |
1992 | PB->ReplaceUsesOfBlockWith(Old: Header, New: NewPH); |
1993 | } |
1994 | } |
1995 | |
1996 | // It can happen that the latch block will fall through into the header. |
1997 | // Insert an unconditional branch to the header. |
1998 | TB = FB = nullptr; |
1999 | bool LatchNotAnalyzed = TII->analyzeBranch(MBB&: *Latch, TBB&: TB, FBB&: FB, Cond&: Tmp2, AllowModify: false); |
2000 | (void)LatchNotAnalyzed; // suppress compiler warning |
2001 | assert (!LatchNotAnalyzed && "Should be analyzable!" ); |
2002 | if (!TB && !FB) |
2003 | TII->insertBranch(MBB&: *Latch, TBB: Header, FBB: nullptr, Cond: EmptyCond, DL); |
2004 | |
2005 | // Finally, the branch from the preheader to the header. |
2006 | TII->insertBranch(MBB&: *NewPH, TBB: Header, FBB: nullptr, Cond: EmptyCond, DL); |
2007 | NewPH->addSuccessor(Succ: Header); |
2008 | |
2009 | MachineLoop *ParentLoop = L->getParentLoop(); |
2010 | if (ParentLoop) |
2011 | ParentLoop->addBasicBlockToLoop(NewBB: NewPH, LI&: *MLI); |
2012 | |
2013 | // Update the dominator information with the new preheader. |
2014 | if (MDT) { |
2015 | if (MachineDomTreeNode *HN = MDT->getNode(BB: Header)) { |
2016 | if (MachineDomTreeNode *DHN = HN->getIDom()) { |
2017 | MDT->addNewBlock(BB: NewPH, DomBB: DHN->getBlock()); |
2018 | MDT->changeImmediateDominator(BB: Header, NewBB: NewPH); |
2019 | } |
2020 | } |
2021 | } |
2022 | |
2023 | return NewPH; |
2024 | } |
2025 | |