| 1 | //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "HexagonISelDAGToDAG.h" |
| 10 | #include "HexagonISelLowering.h" |
| 11 | #include "llvm/ADT/BitVector.h" |
| 12 | #include "llvm/ADT/SetVector.h" |
| 13 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 14 | #include "llvm/IR/Intrinsics.h" |
| 15 | #include "llvm/IR/IntrinsicsHexagon.h" |
| 16 | #include "llvm/Support/Debug.h" |
| 17 | #include "llvm/Support/MathExtras.h" |
| 18 | |
| 19 | #include <algorithm> |
| 20 | #include <cmath> |
| 21 | #include <deque> |
| 22 | #include <functional> |
| 23 | #include <map> |
| 24 | #include <optional> |
| 25 | #include <set> |
| 26 | #include <unordered_map> |
| 27 | #include <utility> |
| 28 | #include <vector> |
| 29 | |
| 30 | #define DEBUG_TYPE "hexagon-isel" |
| 31 | using namespace llvm; |
| 32 | |
| 33 | namespace { |
| 34 | |
| 35 | // -------------------------------------------------------------------- |
| 36 | // Implementation of permutation networks. |
| 37 | |
| 38 | // Implementation of the node routing through butterfly networks: |
| 39 | // - Forward delta. |
| 40 | // - Reverse delta. |
| 41 | // - Benes. |
| 42 | // |
| 43 | // |
| 44 | // Forward delta network consists of log(N) steps, where N is the number |
| 45 | // of inputs. In each step, an input can stay in place, or it can get |
| 46 | // routed to another position[1]. The step after that consists of two |
| 47 | // networks, each half in size in terms of the number of nodes. In those |
| 48 | // terms, in the given step, an input can go to either the upper or the |
| 49 | // lower network in the next step. |
| 50 | // |
| 51 | // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both |
| 52 | // positions as long as there is no conflict. |
| 53 | |
| 54 | // Here's a delta network for 8 inputs, only the switching routes are |
| 55 | // shown: |
| 56 | // |
| 57 | // Steps: |
| 58 | // |- 1 ---------------|- 2 -----|- 3 -| |
| 59 | // |
| 60 | // Inp[0] *** *** *** *** Out[0] |
| 61 | // \ / \ / \ / |
| 62 | // \ / \ / X |
| 63 | // \ / \ / / \ |
| 64 | // Inp[1] *** \ / *** X *** *** Out[1] |
| 65 | // \ \ / / \ / \ / |
| 66 | // \ \ / / X X |
| 67 | // \ \ / / / \ / \ |
| 68 | // Inp[2] *** \ \ / / *** X *** *** Out[2] |
| 69 | // \ \ X / / / \ \ / |
| 70 | // \ \ / \ / / / \ X |
| 71 | // \ X X / / \ / \ |
| 72 | // Inp[3] *** \ / \ / \ / *** *** *** Out[3] |
| 73 | // \ X X X / |
| 74 | // \ / \ / \ / \ / |
| 75 | // X X X X |
| 76 | // / \ / \ / \ / \ |
| 77 | // / X X X \ |
| 78 | // Inp[4] *** / \ / \ / \ *** *** *** Out[4] |
| 79 | // / X X \ \ / \ / |
| 80 | // / / \ / \ \ \ / X |
| 81 | // / / X \ \ \ / / \ |
| 82 | // Inp[5] *** / / \ \ *** X *** *** Out[5] |
| 83 | // / / \ \ \ / \ / |
| 84 | // / / \ \ X X |
| 85 | // / / \ \ / \ / \ |
| 86 | // Inp[6] *** / \ *** X *** *** Out[6] |
| 87 | // / \ / \ \ / |
| 88 | // / \ / \ X |
| 89 | // / \ / \ / \ |
| 90 | // Inp[7] *** *** *** *** Out[7] |
| 91 | // |
| 92 | // |
| 93 | // Reverse delta network is same as delta network, with the steps in |
| 94 | // the opposite order. |
| 95 | // |
| 96 | // |
| 97 | // Benes network is a forward delta network immediately followed by |
| 98 | // a reverse delta network. |
| 99 | |
| 100 | enum class ColorKind { None, Red, Black }; |
| 101 | |
| 102 | // Graph coloring utility used to partition nodes into two groups: |
| 103 | // they will correspond to nodes routed to the upper and lower networks. |
| 104 | struct Coloring { |
| 105 | using Node = int; |
| 106 | using MapType = std::map<Node, ColorKind>; |
| 107 | static constexpr Node Ignore = Node(-1); |
| 108 | |
| 109 | Coloring(ArrayRef<Node> Ord) : Order(Ord) { |
| 110 | build(); |
| 111 | if (!color()) |
| 112 | Colors.clear(); |
| 113 | } |
| 114 | |
| 115 | const MapType &colors() const { |
| 116 | return Colors; |
| 117 | } |
| 118 | |
| 119 | ColorKind other(ColorKind Color) { |
| 120 | if (Color == ColorKind::None) |
| 121 | return ColorKind::Red; |
| 122 | return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; |
| 123 | } |
| 124 | |
| 125 | LLVM_DUMP_METHOD void dump() const; |
| 126 | |
| 127 | private: |
| 128 | ArrayRef<Node> Order; |
| 129 | MapType Colors; |
| 130 | std::set<Node> Needed; |
| 131 | |
| 132 | using NodeSet = std::set<Node>; |
| 133 | std::map<Node,NodeSet> Edges; |
| 134 | |
| 135 | Node conj(Node Pos) { |
| 136 | Node Num = Order.size(); |
| 137 | return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; |
| 138 | } |
| 139 | |
| 140 | ColorKind getColor(Node N) { |
| 141 | auto F = Colors.find(x: N); |
| 142 | return F != Colors.end() ? F->second : ColorKind::None; |
| 143 | } |
| 144 | |
| 145 | std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); |
| 146 | |
| 147 | void build(); |
| 148 | bool color(); |
| 149 | }; |
| 150 | } // namespace |
| 151 | |
| 152 | std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { |
| 153 | auto Color = ColorKind::None; |
| 154 | for (Node N : Nodes) { |
| 155 | ColorKind ColorN = getColor(N); |
| 156 | if (ColorN == ColorKind::None) |
| 157 | continue; |
| 158 | if (Color == ColorKind::None) |
| 159 | Color = ColorN; |
| 160 | else if (Color != ColorKind::None && Color != ColorN) |
| 161 | return { false, ColorKind::None }; |
| 162 | } |
| 163 | return { true, Color }; |
| 164 | } |
| 165 | |
| 166 | void Coloring::build() { |
| 167 | // Add Order[P] and Order[conj(P)] to Edges. |
| 168 | for (unsigned P = 0; P != Order.size(); ++P) { |
| 169 | Node I = Order[P]; |
| 170 | if (I != Ignore) { |
| 171 | Needed.insert(x: I); |
| 172 | Node PC = Order[conj(Pos: P)]; |
| 173 | if (PC != Ignore && PC != I) |
| 174 | Edges[I].insert(x: PC); |
| 175 | } |
| 176 | } |
| 177 | // Add I and conj(I) to Edges. |
| 178 | for (unsigned I = 0; I != Order.size(); ++I) { |
| 179 | if (!Needed.count(x: I)) |
| 180 | continue; |
| 181 | Node C = conj(Pos: I); |
| 182 | // This will create an entry in the edge table, even if I is not |
| 183 | // connected to any other node. This is necessary, because it still |
| 184 | // needs to be colored. |
| 185 | NodeSet &Is = Edges[I]; |
| 186 | if (Needed.count(x: C)) |
| 187 | Is.insert(x: C); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | bool Coloring::color() { |
| 192 | SetVector<Node> FirstQ; |
| 193 | auto Enqueue = [this,&FirstQ] (Node N) { |
| 194 | SetVector<Node> Q; |
| 195 | Q.insert(X: N); |
| 196 | for (unsigned I = 0; I != Q.size(); ++I) { |
| 197 | NodeSet &Ns = Edges[Q[I]]; |
| 198 | Q.insert_range(R&: Ns); |
| 199 | } |
| 200 | FirstQ.insert_range(R&: Q); |
| 201 | }; |
| 202 | for (Node N : Needed) |
| 203 | Enqueue(N); |
| 204 | |
| 205 | for (Node N : FirstQ) { |
| 206 | if (Colors.count(x: N)) |
| 207 | continue; |
| 208 | NodeSet &Ns = Edges[N]; |
| 209 | auto P = getUniqueColor(Nodes: Ns); |
| 210 | if (!P.first) |
| 211 | return false; |
| 212 | Colors[N] = other(Color: P.second); |
| 213 | } |
| 214 | |
| 215 | // First, color nodes that don't have any dups. |
| 216 | for (auto E : Edges) { |
| 217 | Node N = E.first; |
| 218 | if (!Needed.count(x: conj(Pos: N)) || Colors.count(x: N)) |
| 219 | continue; |
| 220 | auto P = getUniqueColor(Nodes: E.second); |
| 221 | if (!P.first) |
| 222 | return false; |
| 223 | Colors[N] = other(Color: P.second); |
| 224 | } |
| 225 | |
| 226 | // Now, nodes that are still uncolored. Since the graph can be modified |
| 227 | // in this step, create a work queue. |
| 228 | std::vector<Node> WorkQ; |
| 229 | for (auto E : Edges) { |
| 230 | Node N = E.first; |
| 231 | if (!Colors.count(x: N)) |
| 232 | WorkQ.push_back(x: N); |
| 233 | } |
| 234 | |
| 235 | for (Node N : WorkQ) { |
| 236 | NodeSet &Ns = Edges[N]; |
| 237 | auto P = getUniqueColor(Nodes: Ns); |
| 238 | if (P.first) { |
| 239 | Colors[N] = other(Color: P.second); |
| 240 | continue; |
| 241 | } |
| 242 | |
| 243 | // Coloring failed. Split this node. |
| 244 | Node C = conj(Pos: N); |
| 245 | ColorKind ColorN = other(Color: ColorKind::None); |
| 246 | ColorKind ColorC = other(Color: ColorN); |
| 247 | NodeSet &Cs = Edges[C]; |
| 248 | NodeSet CopyNs = Ns; |
| 249 | for (Node M : CopyNs) { |
| 250 | ColorKind ColorM = getColor(N: M); |
| 251 | if (ColorM == ColorC) { |
| 252 | // Connect M with C, disconnect M from N. |
| 253 | Cs.insert(x: M); |
| 254 | Edges[M].insert(x: C); |
| 255 | Ns.erase(x: M); |
| 256 | Edges[M].erase(x: N); |
| 257 | } |
| 258 | } |
| 259 | Colors[N] = ColorN; |
| 260 | Colors[C] = ColorC; |
| 261 | } |
| 262 | |
| 263 | // Explicitly assign "None" to all uncolored nodes. |
| 264 | for (unsigned I = 0; I != Order.size(); ++I) |
| 265 | Colors.try_emplace(k: I, args: ColorKind::None); |
| 266 | |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 271 | void Coloring::dump() const { |
| 272 | dbgs() << "{ Order: {" ; |
| 273 | for (Node P : Order) { |
| 274 | if (P != Ignore) |
| 275 | dbgs() << ' ' << P; |
| 276 | else |
| 277 | dbgs() << " -" ; |
| 278 | } |
| 279 | dbgs() << " }\n" ; |
| 280 | dbgs() << " Needed: {" ; |
| 281 | for (Node N : Needed) |
| 282 | dbgs() << ' ' << N; |
| 283 | dbgs() << " }\n" ; |
| 284 | |
| 285 | dbgs() << " Edges: {\n" ; |
| 286 | for (auto E : Edges) { |
| 287 | dbgs() << " " << E.first << " -> {" ; |
| 288 | for (auto N : E.second) |
| 289 | dbgs() << ' ' << N; |
| 290 | dbgs() << " }\n" ; |
| 291 | } |
| 292 | dbgs() << " }\n" ; |
| 293 | |
| 294 | auto ColorKindToName = [](ColorKind C) { |
| 295 | switch (C) { |
| 296 | case ColorKind::None: |
| 297 | return "None" ; |
| 298 | case ColorKind::Red: |
| 299 | return "Red" ; |
| 300 | case ColorKind::Black: |
| 301 | return "Black" ; |
| 302 | } |
| 303 | llvm_unreachable("all ColorKinds should be handled by the switch above" ); |
| 304 | }; |
| 305 | |
| 306 | dbgs() << " Colors: {\n" ; |
| 307 | for (auto C : Colors) |
| 308 | dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n" ; |
| 309 | dbgs() << " }\n}\n" ; |
| 310 | } |
| 311 | #endif |
| 312 | |
| 313 | namespace { |
| 314 | // Base class of for reordering networks. They don't strictly need to be |
| 315 | // permutations, as outputs with repeated occurrences of an input element |
| 316 | // are allowed. |
| 317 | struct PermNetwork { |
| 318 | using Controls = std::vector<uint8_t>; |
| 319 | using ElemType = int; |
| 320 | static constexpr ElemType Ignore = ElemType(-1); |
| 321 | |
| 322 | enum : uint8_t { |
| 323 | None, |
| 324 | Pass, |
| 325 | Switch |
| 326 | }; |
| 327 | enum : uint8_t { |
| 328 | Forward, |
| 329 | Reverse |
| 330 | }; |
| 331 | |
| 332 | PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { |
| 333 | Order.assign(first: Ord.data(), last: Ord.data()+Ord.size()); |
| 334 | Log = 0; |
| 335 | |
| 336 | unsigned S = Order.size(); |
| 337 | while (S >>= 1) |
| 338 | ++Log; |
| 339 | |
| 340 | Table.resize(new_size: Order.size()); |
| 341 | for (RowType &Row : Table) |
| 342 | Row.resize(new_size: Mult*Log, x: None); |
| 343 | } |
| 344 | |
| 345 | void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { |
| 346 | unsigned Size = Order.size(); |
| 347 | V.resize(new_size: Size); |
| 348 | for (unsigned I = 0; I != Size; ++I) { |
| 349 | unsigned W = 0; |
| 350 | for (unsigned L = 0; L != Log; ++L) { |
| 351 | unsigned C = ctl(Pos: I, Step: StartAt+L) == Switch; |
| 352 | if (Dir == Forward) |
| 353 | W |= C << (Log-1-L); |
| 354 | else |
| 355 | W |= C << L; |
| 356 | } |
| 357 | assert(isUInt<8>(W)); |
| 358 | V[I] = uint8_t(W); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | uint8_t ctl(ElemType Pos, unsigned Step) const { |
| 363 | return Table[Pos][Step]; |
| 364 | } |
| 365 | unsigned size() const { |
| 366 | return Order.size(); |
| 367 | } |
| 368 | unsigned steps() const { |
| 369 | return Log; |
| 370 | } |
| 371 | |
| 372 | protected: |
| 373 | unsigned Log; |
| 374 | std::vector<ElemType> Order; |
| 375 | using RowType = std::vector<uint8_t>; |
| 376 | std::vector<RowType> Table; |
| 377 | }; |
| 378 | |
| 379 | struct ForwardDeltaNetwork : public PermNetwork { |
| 380 | ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} |
| 381 | |
| 382 | bool run(Controls &V) { |
| 383 | if (!route(P: Order.data(), T: Table.data(), Size: size(), Step: 0)) |
| 384 | return false; |
| 385 | getControls(V, StartAt: 0, Dir: Forward); |
| 386 | return true; |
| 387 | } |
| 388 | |
| 389 | private: |
| 390 | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); |
| 391 | }; |
| 392 | |
| 393 | struct ReverseDeltaNetwork : public PermNetwork { |
| 394 | ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} |
| 395 | |
| 396 | bool run(Controls &V) { |
| 397 | if (!route(P: Order.data(), T: Table.data(), Size: size(), Step: 0)) |
| 398 | return false; |
| 399 | getControls(V, StartAt: 0, Dir: Reverse); |
| 400 | return true; |
| 401 | } |
| 402 | |
| 403 | private: |
| 404 | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); |
| 405 | }; |
| 406 | |
| 407 | struct BenesNetwork : public PermNetwork { |
| 408 | BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} |
| 409 | |
| 410 | bool run(Controls &F, Controls &R) { |
| 411 | if (!route(P: Order.data(), T: Table.data(), Size: size(), Step: 0)) |
| 412 | return false; |
| 413 | |
| 414 | getControls(V&: F, StartAt: 0, Dir: Forward); |
| 415 | getControls(V&: R, StartAt: Log, Dir: Reverse); |
| 416 | return true; |
| 417 | } |
| 418 | |
| 419 | private: |
| 420 | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); |
| 421 | }; |
| 422 | } // namespace |
| 423 | |
| 424 | bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, |
| 425 | unsigned Step) { |
| 426 | bool UseUp = false, UseDown = false; |
| 427 | ElemType Num = Size; |
| 428 | |
| 429 | // Cannot use coloring here, because coloring is used to determine |
| 430 | // the "big" switch, i.e. the one that changes halves, and in a forward |
| 431 | // network, a color can be simultaneously routed to both halves in the |
| 432 | // step we're working on. |
| 433 | for (ElemType J = 0; J != Num; ++J) { |
| 434 | ElemType I = P[J]; |
| 435 | // I is the position in the input, |
| 436 | // J is the position in the output. |
| 437 | if (I == Ignore) |
| 438 | continue; |
| 439 | uint8_t S; |
| 440 | if (I < Num/2) |
| 441 | S = (J < Num/2) ? Pass : Switch; |
| 442 | else |
| 443 | S = (J < Num/2) ? Switch : Pass; |
| 444 | |
| 445 | // U is the element in the table that needs to be updated. |
| 446 | ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); |
| 447 | if (U < Num/2) |
| 448 | UseUp = true; |
| 449 | else |
| 450 | UseDown = true; |
| 451 | if (T[U][Step] != S && T[U][Step] != None) |
| 452 | return false; |
| 453 | T[U][Step] = S; |
| 454 | } |
| 455 | |
| 456 | for (ElemType J = 0; J != Num; ++J) |
| 457 | if (P[J] != Ignore && P[J] >= Num/2) |
| 458 | P[J] -= Num/2; |
| 459 | |
| 460 | if (Step+1 < Log) { |
| 461 | if (UseUp && !route(P, T, Size: Size/2, Step: Step+1)) |
| 462 | return false; |
| 463 | if (UseDown && !route(P: P+Size/2, T: T+Size/2, Size: Size/2, Step: Step+1)) |
| 464 | return false; |
| 465 | } |
| 466 | return true; |
| 467 | } |
| 468 | |
| 469 | bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, |
| 470 | unsigned Step) { |
| 471 | unsigned Pets = Log-1 - Step; |
| 472 | bool UseUp = false, UseDown = false; |
| 473 | ElemType Num = Size; |
| 474 | |
| 475 | // In this step half-switching occurs, so coloring can be used. |
| 476 | Coloring G({P,Size}); |
| 477 | const Coloring::MapType &M = G.colors(); |
| 478 | if (M.empty()) |
| 479 | return false; |
| 480 | |
| 481 | ColorKind ColorUp = ColorKind::None; |
| 482 | for (ElemType J = 0; J != Num; ++J) { |
| 483 | ElemType I = P[J]; |
| 484 | // I is the position in the input, |
| 485 | // J is the position in the output. |
| 486 | if (I == Ignore) |
| 487 | continue; |
| 488 | ColorKind C = M.at(k: I); |
| 489 | if (C == ColorKind::None) |
| 490 | continue; |
| 491 | // During "Step", inputs cannot switch halves, so if the "up" color |
| 492 | // is still unknown, make sure that it is selected in such a way that |
| 493 | // "I" will stay in the same half. |
| 494 | bool InpUp = I < Num/2; |
| 495 | if (ColorUp == ColorKind::None) |
| 496 | ColorUp = InpUp ? C : G.other(Color: C); |
| 497 | if ((C == ColorUp) != InpUp) { |
| 498 | // If I should go to a different half than where is it now, give up. |
| 499 | return false; |
| 500 | } |
| 501 | |
| 502 | uint8_t S; |
| 503 | if (InpUp) { |
| 504 | S = (J < Num/2) ? Pass : Switch; |
| 505 | UseUp = true; |
| 506 | } else { |
| 507 | S = (J < Num/2) ? Switch : Pass; |
| 508 | UseDown = true; |
| 509 | } |
| 510 | T[J][Pets] = S; |
| 511 | } |
| 512 | |
| 513 | // Reorder the working permutation according to the computed switch table |
| 514 | // for the last step (i.e. Pets). |
| 515 | for (ElemType J = 0, E = Size / 2; J != E; ++J) { |
| 516 | ElemType PJ = P[J]; // Current values of P[J] |
| 517 | ElemType PC = P[J+Size/2]; // and P[conj(J)] |
| 518 | ElemType QJ = PJ; // New values of P[J] |
| 519 | ElemType QC = PC; // and P[conj(J)] |
| 520 | if (T[J][Pets] == Switch) |
| 521 | QC = PJ; |
| 522 | if (T[J+Size/2][Pets] == Switch) |
| 523 | QJ = PC; |
| 524 | P[J] = QJ; |
| 525 | P[J+Size/2] = QC; |
| 526 | } |
| 527 | |
| 528 | for (ElemType J = 0; J != Num; ++J) |
| 529 | if (P[J] != Ignore && P[J] >= Num/2) |
| 530 | P[J] -= Num/2; |
| 531 | |
| 532 | if (Step+1 < Log) { |
| 533 | if (UseUp && !route(P, T, Size: Size/2, Step: Step+1)) |
| 534 | return false; |
| 535 | if (UseDown && !route(P: P+Size/2, T: T+Size/2, Size: Size/2, Step: Step+1)) |
| 536 | return false; |
| 537 | } |
| 538 | return true; |
| 539 | } |
| 540 | |
| 541 | bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, |
| 542 | unsigned Step) { |
| 543 | Coloring G({P,Size}); |
| 544 | const Coloring::MapType &M = G.colors(); |
| 545 | if (M.empty()) |
| 546 | return false; |
| 547 | ElemType Num = Size; |
| 548 | |
| 549 | unsigned Pets = 2*Log-1 - Step; |
| 550 | bool UseUp = false, UseDown = false; |
| 551 | |
| 552 | // Both assignments, i.e. Red->Up and Red->Down are valid, but they will |
| 553 | // result in different controls. Let's pick the one where the first |
| 554 | // control will be "Pass". |
| 555 | ColorKind ColorUp = ColorKind::None; |
| 556 | for (ElemType J = 0; J != Num; ++J) { |
| 557 | ElemType I = P[J]; |
| 558 | if (I == Ignore) |
| 559 | continue; |
| 560 | ColorKind C = M.at(k: I); |
| 561 | if (C == ColorKind::None) |
| 562 | continue; |
| 563 | if (ColorUp == ColorKind::None) { |
| 564 | ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; |
| 565 | } |
| 566 | unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; |
| 567 | if (C == ColorUp) { |
| 568 | if (I < Num/2) |
| 569 | T[I][Step] = Pass; |
| 570 | else |
| 571 | T[CI][Step] = Switch; |
| 572 | T[J][Pets] = (J < Num/2) ? Pass : Switch; |
| 573 | UseUp = true; |
| 574 | } else { // Down |
| 575 | if (I < Num/2) |
| 576 | T[CI][Step] = Switch; |
| 577 | else |
| 578 | T[I][Step] = Pass; |
| 579 | T[J][Pets] = (J < Num/2) ? Switch : Pass; |
| 580 | UseDown = true; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // Reorder the working permutation according to the computed switch table |
| 585 | // for the last step (i.e. Pets). |
| 586 | for (ElemType J = 0; J != Num/2; ++J) { |
| 587 | ElemType PJ = P[J]; // Current values of P[J] |
| 588 | ElemType PC = P[J+Num/2]; // and P[conj(J)] |
| 589 | ElemType QJ = PJ; // New values of P[J] |
| 590 | ElemType QC = PC; // and P[conj(J)] |
| 591 | if (T[J][Pets] == Switch) |
| 592 | QC = PJ; |
| 593 | if (T[J+Num/2][Pets] == Switch) |
| 594 | QJ = PC; |
| 595 | P[J] = QJ; |
| 596 | P[J+Num/2] = QC; |
| 597 | } |
| 598 | |
| 599 | for (ElemType J = 0; J != Num; ++J) |
| 600 | if (P[J] != Ignore && P[J] >= Num/2) |
| 601 | P[J] -= Num/2; |
| 602 | |
| 603 | if (Step+1 < Log) { |
| 604 | if (UseUp && !route(P, T, Size: Size/2, Step: Step+1)) |
| 605 | return false; |
| 606 | if (UseDown && !route(P: P+Size/2, T: T+Size/2, Size: Size/2, Step: Step+1)) |
| 607 | return false; |
| 608 | } |
| 609 | return true; |
| 610 | } |
| 611 | |
| 612 | // -------------------------------------------------------------------- |
| 613 | // Support for building selection results (output instructions that are |
| 614 | // parts of the final selection). |
| 615 | |
| 616 | namespace { |
| 617 | struct OpRef { |
| 618 | OpRef(SDValue V) : OpV(V) {} |
| 619 | bool isValue() const { return OpV.getNode() != nullptr; } |
| 620 | bool isValid() const { return isValue() || !(OpN & Invalid); } |
| 621 | bool isUndef() const { return OpN & Undef; } |
| 622 | static OpRef res(int N) { return OpRef(Whole | (N & Index)); } |
| 623 | static OpRef fail() { return OpRef(Invalid); } |
| 624 | |
| 625 | static OpRef lo(const OpRef &R) { |
| 626 | assert(!R.isValue()); |
| 627 | return OpRef(R.OpN & (Undef | Index | LoHalf)); |
| 628 | } |
| 629 | static OpRef hi(const OpRef &R) { |
| 630 | assert(!R.isValue()); |
| 631 | return OpRef(R.OpN & (Undef | Index | HiHalf)); |
| 632 | } |
| 633 | static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } |
| 634 | |
| 635 | // Direct value. |
| 636 | SDValue OpV = SDValue(); |
| 637 | |
| 638 | // Reference to the operand of the input node: |
| 639 | // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the |
| 640 | // operand index: |
| 641 | // If bit 30 is set, it's the high half of the operand. |
| 642 | // If bit 29 is set, it's the low half of the operand. |
| 643 | unsigned OpN = 0; |
| 644 | |
| 645 | enum : unsigned { |
| 646 | Invalid = 0x10000000, |
| 647 | LoHalf = 0x20000000, |
| 648 | HiHalf = 0x40000000, |
| 649 | Whole = LoHalf | HiHalf, |
| 650 | Undef = 0x80000000, |
| 651 | Index = 0x0FFFFFFF, // Mask of the index value. |
| 652 | IndexBits = 28, |
| 653 | }; |
| 654 | |
| 655 | LLVM_DUMP_METHOD |
| 656 | void print(raw_ostream &OS, const SelectionDAG &G) const; |
| 657 | |
| 658 | private: |
| 659 | OpRef(unsigned N) : OpN(N) {} |
| 660 | }; |
| 661 | |
| 662 | struct NodeTemplate { |
| 663 | NodeTemplate() = default; |
| 664 | unsigned Opc = 0; |
| 665 | MVT Ty = MVT::Other; |
| 666 | std::vector<OpRef> Ops; |
| 667 | |
| 668 | LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; |
| 669 | }; |
| 670 | |
| 671 | struct ResultStack { |
| 672 | ResultStack(SDNode *Inp) |
| 673 | : InpNode(Inp), InpTy(Inp->getValueType(ResNo: 0).getSimpleVT()) {} |
| 674 | SDNode *InpNode; |
| 675 | MVT InpTy; |
| 676 | unsigned push(const NodeTemplate &Res) { |
| 677 | List.push_back(x: Res); |
| 678 | return List.size()-1; |
| 679 | } |
| 680 | unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { |
| 681 | NodeTemplate Res; |
| 682 | Res.Opc = Opc; |
| 683 | Res.Ty = Ty; |
| 684 | Res.Ops = Ops; |
| 685 | return push(Res); |
| 686 | } |
| 687 | bool empty() const { return List.empty(); } |
| 688 | unsigned size() const { return List.size(); } |
| 689 | unsigned top() const { return size()-1; } |
| 690 | const NodeTemplate &operator[](unsigned I) const { return List[I]; } |
| 691 | unsigned reset(unsigned NewTop) { |
| 692 | List.resize(new_size: NewTop+1); |
| 693 | return NewTop; |
| 694 | } |
| 695 | |
| 696 | using BaseType = std::vector<NodeTemplate>; |
| 697 | BaseType::iterator begin() { return List.begin(); } |
| 698 | BaseType::iterator end() { return List.end(); } |
| 699 | BaseType::const_iterator begin() const { return List.begin(); } |
| 700 | BaseType::const_iterator end() const { return List.end(); } |
| 701 | |
| 702 | BaseType List; |
| 703 | |
| 704 | LLVM_DUMP_METHOD |
| 705 | void print(raw_ostream &OS, const SelectionDAG &G) const; |
| 706 | }; |
| 707 | } // namespace |
| 708 | |
| 709 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 710 | void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { |
| 711 | if (isValue()) { |
| 712 | OpV.getNode()->print(OS, &G); |
| 713 | return; |
| 714 | } |
| 715 | if (OpN & Invalid) { |
| 716 | OS << "invalid" ; |
| 717 | return; |
| 718 | } |
| 719 | if (OpN & Undef) { |
| 720 | OS << "undef" ; |
| 721 | return; |
| 722 | } |
| 723 | if ((OpN & Whole) != Whole) { |
| 724 | assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); |
| 725 | if (OpN & LoHalf) |
| 726 | OS << "lo " ; |
| 727 | else |
| 728 | OS << "hi " ; |
| 729 | } |
| 730 | OS << '#' << SignExtend32(OpN & Index, IndexBits); |
| 731 | } |
| 732 | |
| 733 | void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { |
| 734 | const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); |
| 735 | OS << format("%8s" , EVT(Ty).getEVTString().c_str()) << " " |
| 736 | << TII.getName(Opc); |
| 737 | bool Comma = false; |
| 738 | for (const auto &R : Ops) { |
| 739 | if (Comma) |
| 740 | OS << ','; |
| 741 | Comma = true; |
| 742 | OS << ' '; |
| 743 | R.print(OS, G); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { |
| 748 | OS << "Input node:\n" ; |
| 749 | #ifndef NDEBUG |
| 750 | InpNode->dumpr(&G); |
| 751 | #endif |
| 752 | OS << "Result templates:\n" ; |
| 753 | for (unsigned I = 0, E = List.size(); I != E; ++I) { |
| 754 | OS << '[' << I << "] " ; |
| 755 | List[I].print(OS, G); |
| 756 | OS << '\n'; |
| 757 | } |
| 758 | } |
| 759 | #endif |
| 760 | |
| 761 | namespace { |
| 762 | struct ShuffleMask { |
| 763 | ShuffleMask(ArrayRef<int> M) : Mask(M) { |
| 764 | for (int M : Mask) { |
| 765 | if (M == -1) |
| 766 | continue; |
| 767 | MinSrc = (MinSrc == -1) ? M : std::min(a: MinSrc, b: M); |
| 768 | MaxSrc = (MaxSrc == -1) ? M : std::max(a: MaxSrc, b: M); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | ArrayRef<int> Mask; |
| 773 | int MinSrc = -1, MaxSrc = -1; |
| 774 | |
| 775 | ShuffleMask lo() const { |
| 776 | size_t H = Mask.size()/2; |
| 777 | return ShuffleMask(Mask.take_front(N: H)); |
| 778 | } |
| 779 | ShuffleMask hi() const { |
| 780 | size_t H = Mask.size()/2; |
| 781 | return ShuffleMask(Mask.take_back(N: H)); |
| 782 | } |
| 783 | |
| 784 | void print(raw_ostream &OS) const { |
| 785 | OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {" ; |
| 786 | for (int M : Mask) |
| 787 | OS << ' ' << M; |
| 788 | OS << " }" ; |
| 789 | } |
| 790 | }; |
| 791 | |
| 792 | LLVM_ATTRIBUTE_UNUSED |
| 793 | raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) { |
| 794 | SM.print(OS); |
| 795 | return OS; |
| 796 | } |
| 797 | } // namespace |
| 798 | |
| 799 | namespace shuffles { |
| 800 | using MaskT = SmallVector<int, 128>; |
| 801 | // Vdd = vshuffvdd(Vu, Vv, Rt) |
| 802 | // Vdd = vdealvdd(Vu, Vv, Rt) |
| 803 | // Vd = vpack(Vu, Vv, Size, TakeOdd) |
| 804 | // Vd = vshuff(Vu, Vv, Size, TakeOdd) |
| 805 | // Vd = vdeal(Vu, Vv, Size, TakeOdd) |
| 806 | // Vd = vdealb4w(Vu, Vv) |
| 807 | |
| 808 | ArrayRef<int> lo(ArrayRef<int> Vuu) { return Vuu.take_front(N: Vuu.size() / 2); } |
| 809 | ArrayRef<int> hi(ArrayRef<int> Vuu) { return Vuu.take_back(N: Vuu.size() / 2); } |
| 810 | |
| 811 | MaskT vshuffvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { |
| 812 | int Len = Vu.size(); |
| 813 | MaskT Vdd(2 * Len); |
| 814 | std::copy(first: Vv.begin(), last: Vv.end(), result: Vdd.begin()); |
| 815 | std::copy(first: Vu.begin(), last: Vu.end(), result: Vdd.begin() + Len); |
| 816 | |
| 817 | auto Vd0 = MutableArrayRef<int>(Vdd).take_front(N: Len); |
| 818 | auto Vd1 = MutableArrayRef<int>(Vdd).take_back(N: Len); |
| 819 | |
| 820 | for (int Offset = 1; Offset < Len; Offset *= 2) { |
| 821 | if ((Rt & Offset) == 0) |
| 822 | continue; |
| 823 | for (int i = 0; i != Len; ++i) { |
| 824 | if ((i & Offset) == 0) |
| 825 | std::swap(a&: Vd1[i], b&: Vd0[i + Offset]); |
| 826 | } |
| 827 | } |
| 828 | return Vdd; |
| 829 | } |
| 830 | |
| 831 | MaskT vdealvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { |
| 832 | int Len = Vu.size(); |
| 833 | MaskT Vdd(2 * Len); |
| 834 | std::copy(first: Vv.begin(), last: Vv.end(), result: Vdd.begin()); |
| 835 | std::copy(first: Vu.begin(), last: Vu.end(), result: Vdd.begin() + Len); |
| 836 | |
| 837 | auto Vd0 = MutableArrayRef<int>(Vdd).take_front(N: Len); |
| 838 | auto Vd1 = MutableArrayRef<int>(Vdd).take_back(N: Len); |
| 839 | |
| 840 | for (int Offset = Len / 2; Offset > 0; Offset /= 2) { |
| 841 | if ((Rt & Offset) == 0) |
| 842 | continue; |
| 843 | for (int i = 0; i != Len; ++i) { |
| 844 | if ((i & Offset) == 0) |
| 845 | std::swap(a&: Vd1[i], b&: Vd0[i + Offset]); |
| 846 | } |
| 847 | } |
| 848 | return Vdd; |
| 849 | } |
| 850 | |
| 851 | MaskT vpack(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { |
| 852 | int Len = Vu.size(); |
| 853 | MaskT Vd(Len); |
| 854 | auto Odd = static_cast<int>(TakeOdd); |
| 855 | for (int i = 0, e = Len / (2 * Size); i != e; ++i) { |
| 856 | for (int b = 0; b != static_cast<int>(Size); ++b) { |
| 857 | // clang-format off |
| 858 | Vd[i * Size + b] = Vv[(2 * i + Odd) * Size + b]; |
| 859 | Vd[i * Size + b + Len / 2] = Vu[(2 * i + Odd) * Size + b]; |
| 860 | // clang-format on |
| 861 | } |
| 862 | } |
| 863 | return Vd; |
| 864 | } |
| 865 | |
| 866 | MaskT vshuff(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { |
| 867 | int Len = Vu.size(); |
| 868 | MaskT Vd(Len); |
| 869 | auto Odd = static_cast<int>(TakeOdd); |
| 870 | for (int i = 0, e = Len / (2 * Size); i != e; ++i) { |
| 871 | for (int b = 0; b != static_cast<int>(Size); ++b) { |
| 872 | Vd[(2 * i + 0) * Size + b] = Vv[(2 * i + Odd) * Size + b]; |
| 873 | Vd[(2 * i + 1) * Size + b] = Vu[(2 * i + Odd) * Size + b]; |
| 874 | } |
| 875 | } |
| 876 | return Vd; |
| 877 | } |
| 878 | |
| 879 | MaskT vdeal(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { |
| 880 | int Len = Vu.size(); |
| 881 | MaskT T = vdealvdd(Vu, Vv, Rt: Len - 2 * Size); |
| 882 | return vpack(Vu: hi(Vuu: T), Vv: lo(Vuu: T), Size, TakeOdd); |
| 883 | } |
| 884 | |
| 885 | MaskT vdealb4w(ArrayRef<int> Vu, ArrayRef<int> Vv) { |
| 886 | int Len = Vu.size(); |
| 887 | MaskT Vd(Len); |
| 888 | for (int i = 0, e = Len / 4; i != e; ++i) { |
| 889 | Vd[0 * (Len / 4) + i] = Vv[4 * i + 0]; |
| 890 | Vd[1 * (Len / 4) + i] = Vv[4 * i + 2]; |
| 891 | Vd[2 * (Len / 4) + i] = Vu[4 * i + 0]; |
| 892 | Vd[3 * (Len / 4) + i] = Vu[4 * i + 2]; |
| 893 | } |
| 894 | return Vd; |
| 895 | } |
| 896 | |
| 897 | template <typename ShuffFunc, typename... OptArgs> |
| 898 | auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT { |
| 899 | MaskT Vu(Length), Vv(Length); |
| 900 | std::iota(first: Vu.begin(), last: Vu.end(), value: Length); // High |
| 901 | std::iota(first: Vv.begin(), last: Vv.end(), value: 0); // Low |
| 902 | return S(Vu, Vv, args...); |
| 903 | } |
| 904 | |
| 905 | } // namespace shuffles |
| 906 | |
| 907 | // -------------------------------------------------------------------- |
| 908 | // The HvxSelector class. |
| 909 | |
| 910 | static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { |
| 911 | return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); |
| 912 | } |
| 913 | static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { |
| 914 | return G.getSubtarget<HexagonSubtarget>(); |
| 915 | } |
| 916 | |
| 917 | namespace llvm { |
| 918 | struct HvxSelector { |
| 919 | const HexagonTargetLowering &Lower; |
| 920 | HexagonDAGToDAGISel &ISel; |
| 921 | SelectionDAG &DAG; |
| 922 | const HexagonSubtarget &HST; |
| 923 | const unsigned HwLen; |
| 924 | |
| 925 | HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) |
| 926 | : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), |
| 927 | HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} |
| 928 | |
| 929 | MVT getSingleVT(MVT ElemTy) const { |
| 930 | assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates" ); |
| 931 | unsigned NumElems = HwLen / (ElemTy.getSizeInBits() / 8); |
| 932 | return MVT::getVectorVT(VT: ElemTy, NumElements: NumElems); |
| 933 | } |
| 934 | |
| 935 | MVT getPairVT(MVT ElemTy) const { |
| 936 | assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs. |
| 937 | unsigned NumElems = (2 * HwLen) / (ElemTy.getSizeInBits() / 8); |
| 938 | return MVT::getVectorVT(VT: ElemTy, NumElements: NumElems); |
| 939 | } |
| 940 | |
| 941 | MVT getBoolVT() const { |
| 942 | // Return HwLen x i1. |
| 943 | return MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 944 | } |
| 945 | |
| 946 | void selectExtractSubvector(SDNode *N); |
| 947 | void selectShuffle(SDNode *N); |
| 948 | void selectRor(SDNode *N); |
| 949 | void selectVAlign(SDNode *N); |
| 950 | |
| 951 | static SmallVector<uint32_t, 8> getPerfectCompletions(ShuffleMask SM, |
| 952 | unsigned Width); |
| 953 | static SmallVector<uint32_t, 8> completeToPerfect( |
| 954 | ArrayRef<uint32_t> Completions, unsigned Width); |
| 955 | static std::optional<int> rotationDistance(ShuffleMask SM, unsigned WrapAt); |
| 956 | |
| 957 | private: |
| 958 | void select(SDNode *ISelN); |
| 959 | void materialize(const ResultStack &Results); |
| 960 | |
| 961 | SDValue getConst32(int Val, const SDLoc &dl); |
| 962 | SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); |
| 963 | |
| 964 | enum : unsigned { |
| 965 | None, |
| 966 | PackMux, |
| 967 | }; |
| 968 | OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results); |
| 969 | OpRef funnels(OpRef Va, OpRef Vb, int Amount, ResultStack &Results); |
| 970 | |
| 971 | OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, |
| 972 | MutableArrayRef<int> NewMask, unsigned Options = None); |
| 973 | OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, |
| 974 | MutableArrayRef<int> NewMask); |
| 975 | OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
| 976 | ResultStack &Results); |
| 977 | OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
| 978 | ResultStack &Results); |
| 979 | |
| 980 | OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); |
| 981 | OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); |
| 982 | OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); |
| 983 | OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); |
| 984 | |
| 985 | OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); |
| 986 | OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); |
| 987 | OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); |
| 988 | OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); |
| 989 | |
| 990 | bool selectVectorConstants(SDNode *N); |
| 991 | bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, |
| 992 | SDValue Va, SDValue Vb, SDNode *N); |
| 993 | }; |
| 994 | } // namespace llvm |
| 995 | |
| 996 | static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, |
| 997 | MutableArrayRef<int> MaskR) { |
| 998 | unsigned VecLen = Mask.size(); |
| 999 | assert(MaskL.size() == VecLen && MaskR.size() == VecLen); |
| 1000 | for (unsigned I = 0; I != VecLen; ++I) { |
| 1001 | int M = Mask[I]; |
| 1002 | if (M < 0) { |
| 1003 | MaskL[I] = MaskR[I] = -1; |
| 1004 | } else if (unsigned(M) < VecLen) { |
| 1005 | MaskL[I] = M; |
| 1006 | MaskR[I] = -1; |
| 1007 | } else { |
| 1008 | MaskL[I] = -1; |
| 1009 | MaskR[I] = M-VecLen; |
| 1010 | } |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, |
| 1015 | unsigned MaxLen) { |
| 1016 | assert(A.size() > 0 && A.size() >= MaxLen); |
| 1017 | int F = A[0]; |
| 1018 | int E = F; |
| 1019 | for (unsigned I = 1; I != MaxLen; ++I) { |
| 1020 | if (A[I] - E != Inc) |
| 1021 | return { F, I }; |
| 1022 | E = A[I]; |
| 1023 | } |
| 1024 | return { F, MaxLen }; |
| 1025 | } |
| 1026 | |
| 1027 | static bool isUndef(ArrayRef<int> Mask) { |
| 1028 | for (int Idx : Mask) |
| 1029 | if (Idx != -1) |
| 1030 | return false; |
| 1031 | return true; |
| 1032 | } |
| 1033 | |
| 1034 | static bool isIdentity(ArrayRef<int> Mask) { |
| 1035 | for (int I = 0, E = Mask.size(); I != E; ++I) { |
| 1036 | int M = Mask[I]; |
| 1037 | if (M >= 0 && M != I) |
| 1038 | return false; |
| 1039 | } |
| 1040 | return true; |
| 1041 | } |
| 1042 | |
| 1043 | static bool isLowHalfOnly(ArrayRef<int> Mask) { |
| 1044 | int L = Mask.size(); |
| 1045 | assert(L % 2 == 0); |
| 1046 | // Check if the second half of the mask is all-undef. |
| 1047 | return llvm::all_of(Range: Mask.drop_front(N: L / 2), P: [](int M) { return M < 0; }); |
| 1048 | } |
| 1049 | |
| 1050 | static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM, |
| 1051 | unsigned SegLen) { |
| 1052 | assert(isPowerOf2_32(SegLen)); |
| 1053 | SmallVector<unsigned, 4> SegList; |
| 1054 | if (SM.MaxSrc == -1) |
| 1055 | return SegList; |
| 1056 | |
| 1057 | unsigned Shift = Log2_32(Value: SegLen); |
| 1058 | BitVector Segs(alignTo(Value: SM.MaxSrc + 1, Align: SegLen) >> Shift); |
| 1059 | |
| 1060 | for (int M : SM.Mask) { |
| 1061 | if (M >= 0) |
| 1062 | Segs.set(M >> Shift); |
| 1063 | } |
| 1064 | |
| 1065 | llvm::append_range(C&: SegList, R: Segs.set_bits()); |
| 1066 | return SegList; |
| 1067 | } |
| 1068 | |
| 1069 | static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM, |
| 1070 | unsigned SegLen) { |
| 1071 | // Calculate the layout of the output segments in terms of the input |
| 1072 | // segments. |
| 1073 | // For example [1,3,1,0] means that the output consists of 4 output |
| 1074 | // segments, where the first output segment has only elements of the |
| 1075 | // input segment at index 1. The next output segment only has elements |
| 1076 | // of the input segment 3, etc. |
| 1077 | // If an output segment only has undef elements, the value will be ~0u. |
| 1078 | // If an output segment has elements from more than one input segment, |
| 1079 | // the corresponding value will be ~1u. |
| 1080 | unsigned MaskLen = SM.Mask.size(); |
| 1081 | assert(MaskLen % SegLen == 0); |
| 1082 | SmallVector<unsigned, 4> Map(MaskLen / SegLen); |
| 1083 | |
| 1084 | for (int S = 0, E = Map.size(); S != E; ++S) { |
| 1085 | unsigned Idx = ~0u; |
| 1086 | for (int I = 0; I != static_cast<int>(SegLen); ++I) { |
| 1087 | int M = SM.Mask[S*SegLen + I]; |
| 1088 | if (M < 0) |
| 1089 | continue; |
| 1090 | unsigned G = M / SegLen; // Input segment of this element. |
| 1091 | if (Idx == ~0u) { |
| 1092 | Idx = G; |
| 1093 | } else if (Idx != G) { |
| 1094 | Idx = ~1u; |
| 1095 | break; |
| 1096 | } |
| 1097 | } |
| 1098 | Map[S] = Idx; |
| 1099 | } |
| 1100 | |
| 1101 | return Map; |
| 1102 | } |
| 1103 | |
| 1104 | static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap, |
| 1105 | unsigned SegLen, MutableArrayRef<int> PackedMask) { |
| 1106 | SmallVector<unsigned, 4> InvMap; |
| 1107 | for (int I = OutSegMap.size() - 1; I >= 0; --I) { |
| 1108 | unsigned S = OutSegMap[I]; |
| 1109 | assert(S != ~0u && "Unexpected undef" ); |
| 1110 | assert(S != ~1u && "Unexpected multi" ); |
| 1111 | if (InvMap.size() <= S) |
| 1112 | InvMap.resize(N: S+1); |
| 1113 | InvMap[S] = I; |
| 1114 | } |
| 1115 | |
| 1116 | unsigned Shift = Log2_32(Value: SegLen); |
| 1117 | for (int I = 0, E = Mask.size(); I != E; ++I) { |
| 1118 | int M = Mask[I]; |
| 1119 | if (M >= 0) { |
| 1120 | int OutIdx = InvMap[M >> Shift]; |
| 1121 | M = (M & (SegLen-1)) + SegLen*OutIdx; |
| 1122 | } |
| 1123 | PackedMask[I] = M; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | bool HvxSelector::selectVectorConstants(SDNode *N) { |
| 1128 | // Constant vectors are generated as loads from constant pools or as |
| 1129 | // splats of a constant value. Since they are generated during the |
| 1130 | // selection process, the main selection algorithm is not aware of them. |
| 1131 | // Select them directly here. |
| 1132 | SmallVector<SDNode*,4> Nodes; |
| 1133 | SetVector<SDNode*> WorkQ; |
| 1134 | |
| 1135 | // The DAG can change (due to CSE) during selection, so cache all the |
| 1136 | // unselected nodes first to avoid traversing a mutating DAG. |
| 1137 | WorkQ.insert(X: N); |
| 1138 | for (unsigned i = 0; i != WorkQ.size(); ++i) { |
| 1139 | SDNode *W = WorkQ[i]; |
| 1140 | if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL) |
| 1141 | Nodes.push_back(Elt: W); |
| 1142 | for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) |
| 1143 | WorkQ.insert(X: W->getOperand(Num: j).getNode()); |
| 1144 | } |
| 1145 | |
| 1146 | for (SDNode *L : Nodes) |
| 1147 | select(ISelN: L); |
| 1148 | |
| 1149 | return !Nodes.empty(); |
| 1150 | } |
| 1151 | |
| 1152 | void HvxSelector::materialize(const ResultStack &Results) { |
| 1153 | DEBUG_WITH_TYPE("isel" , { |
| 1154 | dbgs() << "Materializing\n" ; |
| 1155 | Results.print(dbgs(), DAG); |
| 1156 | }); |
| 1157 | if (Results.empty()) |
| 1158 | return; |
| 1159 | const SDLoc &dl(Results.InpNode); |
| 1160 | std::vector<SDValue> Output; |
| 1161 | |
| 1162 | for (unsigned I = 0, E = Results.size(); I != E; ++I) { |
| 1163 | const NodeTemplate &Node = Results[I]; |
| 1164 | std::vector<SDValue> Ops; |
| 1165 | for (const OpRef &R : Node.Ops) { |
| 1166 | assert(R.isValid()); |
| 1167 | if (R.isValue()) { |
| 1168 | Ops.push_back(x: R.OpV); |
| 1169 | continue; |
| 1170 | } |
| 1171 | if (R.OpN & OpRef::Undef) { |
| 1172 | MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); |
| 1173 | Ops.push_back(x: ISel.selectUndef(dl, ResTy: MVT(SVT))); |
| 1174 | continue; |
| 1175 | } |
| 1176 | // R is an index of a result. |
| 1177 | unsigned Part = R.OpN & OpRef::Whole; |
| 1178 | int Idx = SignExtend32(X: R.OpN & OpRef::Index, B: OpRef::IndexBits); |
| 1179 | if (Idx < 0) |
| 1180 | Idx += I; |
| 1181 | assert(Idx >= 0 && unsigned(Idx) < Output.size()); |
| 1182 | SDValue Op = Output[Idx]; |
| 1183 | MVT OpTy = Op.getValueType().getSimpleVT(); |
| 1184 | if (Part != OpRef::Whole) { |
| 1185 | assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); |
| 1186 | MVT HalfTy = MVT::getVectorVT(VT: OpTy.getVectorElementType(), |
| 1187 | NumElements: OpTy.getVectorNumElements()/2); |
| 1188 | unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo |
| 1189 | : Hexagon::vsub_hi; |
| 1190 | Op = DAG.getTargetExtractSubreg(SRIdx: Sub, DL: dl, VT: HalfTy, Operand: Op); |
| 1191 | } |
| 1192 | Ops.push_back(x: Op); |
| 1193 | } // for (Node : Results) |
| 1194 | |
| 1195 | assert(Node.Ty != MVT::Other); |
| 1196 | SDNode *ResN = (Node.Opc == TargetOpcode::COPY) |
| 1197 | ? Ops.front().getNode() |
| 1198 | : DAG.getMachineNode(Opcode: Node.Opc, dl, VT: Node.Ty, Ops); |
| 1199 | Output.push_back(x: SDValue(ResN, 0)); |
| 1200 | } |
| 1201 | |
| 1202 | SDNode *OutN = Output.back().getNode(); |
| 1203 | SDNode *InpN = Results.InpNode; |
| 1204 | DEBUG_WITH_TYPE("isel" , { |
| 1205 | dbgs() << "Generated node:\n" ; |
| 1206 | OutN->dumpr(&DAG); |
| 1207 | }); |
| 1208 | |
| 1209 | ISel.ReplaceNode(F: InpN, T: OutN); |
| 1210 | selectVectorConstants(N: OutN); |
| 1211 | DAG.RemoveDeadNodes(); |
| 1212 | } |
| 1213 | |
| 1214 | OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) { |
| 1215 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1216 | const SDLoc &dl(Results.InpNode); |
| 1217 | Results.push(Opc: TargetOpcode::REG_SEQUENCE, Ty: getPairVT(ElemTy: MVT::i8), Ops: { |
| 1218 | getConst32(Val: Hexagon::HvxWRRegClassID, dl), |
| 1219 | Lo, getConst32(Val: Hexagon::vsub_lo, dl), |
| 1220 | Hi, getConst32(Val: Hexagon::vsub_hi, dl), |
| 1221 | }); |
| 1222 | return OpRef::res(N: Results.top()); |
| 1223 | } |
| 1224 | |
| 1225 | OpRef HvxSelector::funnels(OpRef Va, OpRef Vb, int Amount, |
| 1226 | ResultStack &Results) { |
| 1227 | // Do a funnel shift towards the low end (shift right) by Amount bytes. |
| 1228 | // If Amount < 0, treat it as shift left, i.e. do a shift right by |
| 1229 | // Amount + HwLen. |
| 1230 | auto VecLen = static_cast<int>(HwLen); |
| 1231 | |
| 1232 | if (Amount == 0) |
| 1233 | return Va; |
| 1234 | if (Amount == VecLen) |
| 1235 | return Vb; |
| 1236 | |
| 1237 | MVT Ty = getSingleVT(ElemTy: MVT::i8); |
| 1238 | const SDLoc &dl(Results.InpNode); |
| 1239 | |
| 1240 | if (Amount < 0) |
| 1241 | Amount += VecLen; |
| 1242 | if (Amount > VecLen) { |
| 1243 | Amount -= VecLen; |
| 1244 | std::swap(a&: Va, b&: Vb); |
| 1245 | } |
| 1246 | |
| 1247 | if (isUInt<3>(x: Amount)) { |
| 1248 | SDValue A = getConst32(Val: Amount, dl); |
| 1249 | Results.push(Opc: Hexagon::V6_valignbi, Ty, Ops: {Vb, Va, A}); |
| 1250 | } else if (isUInt<3>(x: VecLen - Amount)) { |
| 1251 | SDValue A = getConst32(Val: VecLen - Amount, dl); |
| 1252 | Results.push(Opc: Hexagon::V6_vlalignbi, Ty, Ops: {Vb, Va, A}); |
| 1253 | } else { |
| 1254 | SDValue A = getConst32(Val: Amount, dl); |
| 1255 | Results.push(Opc: Hexagon::A2_tfrsi, Ty, Ops: {A}); |
| 1256 | Results.push(Opc: Hexagon::V6_valignb, Ty, Ops: {Vb, Va, OpRef::res(N: -1)}); |
| 1257 | } |
| 1258 | return OpRef::res(N: Results.top()); |
| 1259 | } |
| 1260 | |
| 1261 | // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb, |
| 1262 | // pack these halves into a single vector, and remap SM into NewMask to use |
| 1263 | // the new vector instead. |
| 1264 | OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, |
| 1265 | ResultStack &Results, MutableArrayRef<int> NewMask, |
| 1266 | unsigned Options) { |
| 1267 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1268 | if (!Va.isValid() || !Vb.isValid()) |
| 1269 | return OpRef::fail(); |
| 1270 | |
| 1271 | if (Vb.isUndef()) { |
| 1272 | llvm::copy(Range&: SM.Mask, Out: NewMask.begin()); |
| 1273 | return Va; |
| 1274 | } |
| 1275 | if (Va.isUndef()) { |
| 1276 | llvm::copy(Range&: SM.Mask, Out: NewMask.begin()); |
| 1277 | ShuffleVectorSDNode::commuteMask(Mask: NewMask); |
| 1278 | return Vb; |
| 1279 | } |
| 1280 | |
| 1281 | MVT Ty = getSingleVT(ElemTy: MVT::i8); |
| 1282 | MVT PairTy = getPairVT(ElemTy: MVT::i8); |
| 1283 | OpRef Inp[2] = {Va, Vb}; |
| 1284 | unsigned VecLen = SM.Mask.size(); |
| 1285 | |
| 1286 | auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty, |
| 1287 | ResultStack &Results) { |
| 1288 | if (Amt == 0) |
| 1289 | return Lo; |
| 1290 | const SDLoc &dl(Results.InpNode); |
| 1291 | if (isUInt<3>(x: Amt) || isUInt<3>(x: HwLen - Amt)) { |
| 1292 | bool IsRight = isUInt<3>(x: Amt); // Right align. |
| 1293 | SDValue S = getConst32(Val: IsRight ? Amt : HwLen - Amt, dl); |
| 1294 | unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi; |
| 1295 | Results.push(Opc, Ty, Ops: {Hi, Lo, S}); |
| 1296 | return OpRef::res(N: Results.top()); |
| 1297 | } |
| 1298 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: Amt, dl)}); |
| 1299 | OpRef A = OpRef::res(N: Results.top()); |
| 1300 | Results.push(Opc: Hexagon::V6_valignb, Ty, Ops: {Hi, Lo, A}); |
| 1301 | return OpRef::res(N: Results.top()); |
| 1302 | }; |
| 1303 | |
| 1304 | // Segment is a vector half. |
| 1305 | unsigned SegLen = HwLen / 2; |
| 1306 | |
| 1307 | // Check if we can shuffle vector halves around to get the used elements |
| 1308 | // into a single vector. |
| 1309 | shuffles::MaskT MaskH(SM.Mask); |
| 1310 | SmallVector<unsigned, 4> SegList = getInputSegmentList(SM: SM.Mask, SegLen); |
| 1311 | unsigned SegCount = SegList.size(); |
| 1312 | SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM: SM.Mask, SegLen); |
| 1313 | |
| 1314 | if (SegList.empty()) |
| 1315 | return OpRef::undef(Ty); |
| 1316 | |
| 1317 | // NOTE: |
| 1318 | // In the following part of the function, where the segments are rearranged, |
| 1319 | // the shuffle mask SM can be of any length that is a multiple of a vector |
| 1320 | // (i.e. a multiple of 2*SegLen), and non-zero. |
| 1321 | // The output segment map is computed, and it may have any even number of |
| 1322 | // entries, but the rearrangement of input segments will be done based only |
| 1323 | // on the first two (non-undef) entries in the segment map. |
| 1324 | // For example, if the output map is 3, 1, 1, 3 (it can have at most two |
| 1325 | // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into |
| 1326 | // a single vector V = 3:1. The output mask will then be updated to use |
| 1327 | // seg(0,V), seg(1,V), seg(1,V), seg(0,V). |
| 1328 | // |
| 1329 | // Picking the segments based on the output map is an optimization. For |
| 1330 | // correctness it is only necessary that Seg0 and Seg1 are the two input |
| 1331 | // segments that are used in the output. |
| 1332 | |
| 1333 | unsigned Seg0 = ~0u, Seg1 = ~0u; |
| 1334 | for (unsigned X : SegMap) { |
| 1335 | if (X == ~0u) |
| 1336 | continue; |
| 1337 | if (Seg0 == ~0u) |
| 1338 | Seg0 = X; |
| 1339 | else if (Seg1 != ~0u) |
| 1340 | break; |
| 1341 | if (X == ~1u || X != Seg0) |
| 1342 | Seg1 = X; |
| 1343 | } |
| 1344 | |
| 1345 | if (SegCount == 1) { |
| 1346 | unsigned SrcOp = SegList[0] / 2; |
| 1347 | for (int I = 0; I != static_cast<int>(VecLen); ++I) { |
| 1348 | int M = SM.Mask[I]; |
| 1349 | if (M >= 0) { |
| 1350 | M -= SrcOp * HwLen; |
| 1351 | assert(M >= 0); |
| 1352 | } |
| 1353 | NewMask[I] = M; |
| 1354 | } |
| 1355 | return Inp[SrcOp]; |
| 1356 | } |
| 1357 | |
| 1358 | if (SegCount == 2) { |
| 1359 | // Seg0 should not be undef here: this would imply a SegList |
| 1360 | // with <= 1 elements, which was checked earlier. |
| 1361 | assert(Seg0 != ~0u); |
| 1362 | |
| 1363 | // If Seg0 or Seg1 are "multi-defined", pick them from the input |
| 1364 | // segment list instead. |
| 1365 | if (Seg0 == ~1u || Seg1 == ~1u) { |
| 1366 | if (Seg0 == Seg1) { |
| 1367 | Seg0 = SegList[0]; |
| 1368 | Seg1 = SegList[1]; |
| 1369 | } else if (Seg0 == ~1u) { |
| 1370 | Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1]; |
| 1371 | } else { |
| 1372 | assert(Seg1 == ~1u); |
| 1373 | Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1]; |
| 1374 | } |
| 1375 | } |
| 1376 | assert(Seg0 != ~1u && Seg1 != ~1u); |
| 1377 | |
| 1378 | assert(Seg0 != Seg1 && "Expecting different segments" ); |
| 1379 | const SDLoc &dl(Results.InpNode); |
| 1380 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: SegLen, dl)}); |
| 1381 | OpRef HL = OpRef::res(N: Results.top()); |
| 1382 | |
| 1383 | // Va = AB, Vb = CD |
| 1384 | |
| 1385 | if (Seg0 / 2 == Seg1 / 2) { |
| 1386 | // Same input vector. |
| 1387 | Va = Inp[Seg0 / 2]; |
| 1388 | if (Seg0 > Seg1) { |
| 1389 | // Swap halves. |
| 1390 | Results.push(Opc: Hexagon::V6_vror, Ty, Ops: {Inp[Seg0 / 2], HL}); |
| 1391 | Va = OpRef::res(N: Results.top()); |
| 1392 | } |
| 1393 | packSegmentMask(Mask: SM.Mask, OutSegMap: {Seg0, Seg1}, SegLen, PackedMask: MaskH); |
| 1394 | } else if (Seg0 % 2 == Seg1 % 2) { |
| 1395 | // Picking AC, BD, CA, or DB. |
| 1396 | // vshuff(CD,AB,HL) -> BD:AC |
| 1397 | // vshuff(AB,CD,HL) -> DB:CA |
| 1398 | auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(x&: Vb, y&: Va) // AC or BD |
| 1399 | : std::make_pair(x&: Va, y&: Vb); // CA or DB |
| 1400 | Results.push(Opc: Hexagon::V6_vshuffvdd, Ty: PairTy, Ops: {Vs.first, Vs.second, HL}); |
| 1401 | OpRef P = OpRef::res(N: Results.top()); |
| 1402 | Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(R: P) : OpRef::hi(R: P); |
| 1403 | packSegmentMask(Mask: SM.Mask, OutSegMap: {Seg0, Seg1}, SegLen, PackedMask: MaskH); |
| 1404 | } else { |
| 1405 | // Picking AD, BC, CB, or DA. |
| 1406 | if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) { |
| 1407 | // AD or BC: this can be done using vmux. |
| 1408 | // Q = V6_pred_scalar2 SegLen |
| 1409 | // V = V6_vmux Q, (Va, Vb) or (Vb, Va) |
| 1410 | Results.push(Opc: Hexagon::V6_pred_scalar2, Ty: getBoolVT(), Ops: {HL}); |
| 1411 | OpRef Qt = OpRef::res(N: Results.top()); |
| 1412 | auto Vs = (Seg0 == 0) ? std::make_pair(x&: Va, y&: Vb) // AD |
| 1413 | : std::make_pair(x&: Vb, y&: Va); // CB |
| 1414 | Results.push(Opc: Hexagon::V6_vmux, Ty, Ops: {Qt, Vs.first, Vs.second}); |
| 1415 | Va = OpRef::res(N: Results.top()); |
| 1416 | packSegmentMask(Mask: SM.Mask, OutSegMap: {Seg0, Seg1}, SegLen, PackedMask: MaskH); |
| 1417 | } else { |
| 1418 | // BC or DA: this could be done via valign by SegLen. |
| 1419 | // Do nothing here, because valign (if possible) will be generated |
| 1420 | // later on (make sure the Seg0 values are as expected). |
| 1421 | assert(Seg0 == 1 || Seg0 == 3); |
| 1422 | } |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va). |
| 1427 | // FIXME: maybe remove this? |
| 1428 | ShuffleMask SMH(MaskH); |
| 1429 | assert(SMH.Mask.size() == VecLen); |
| 1430 | shuffles::MaskT MaskA(SMH.Mask); |
| 1431 | |
| 1432 | if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) { |
| 1433 | // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb. |
| 1434 | shuffles::MaskT Swapped(SMH.Mask); |
| 1435 | ShuffleVectorSDNode::commuteMask(Mask: Swapped); |
| 1436 | ShuffleMask SW(Swapped); |
| 1437 | if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) { |
| 1438 | MaskA.assign(in_start: SW.Mask.begin(), in_end: SW.Mask.end()); |
| 1439 | std::swap(a&: Va, b&: Vb); |
| 1440 | } |
| 1441 | } |
| 1442 | ShuffleMask SMA(MaskA); |
| 1443 | assert(SMA.Mask.size() == VecLen); |
| 1444 | |
| 1445 | if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) { |
| 1446 | int ShiftR = SMA.MinSrc; |
| 1447 | if (ShiftR >= static_cast<int>(HwLen)) { |
| 1448 | Va = Vb; |
| 1449 | Vb = OpRef::undef(Ty); |
| 1450 | ShiftR -= HwLen; |
| 1451 | } |
| 1452 | OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results); |
| 1453 | |
| 1454 | for (int I = 0; I != static_cast<int>(VecLen); ++I) { |
| 1455 | int M = SMA.Mask[I]; |
| 1456 | if (M != -1) |
| 1457 | M -= SMA.MinSrc; |
| 1458 | NewMask[I] = M; |
| 1459 | } |
| 1460 | return RetVal; |
| 1461 | } |
| 1462 | |
| 1463 | // By here, packing by segment (half-vector) shuffling, and vector alignment |
| 1464 | // failed. Try vmux. |
| 1465 | // Note: since this is using the original mask, Va and Vb must not have been |
| 1466 | // modified. |
| 1467 | |
| 1468 | if (Options & PackMux) { |
| 1469 | // If elements picked from Va and Vb have all different (source) indexes |
| 1470 | // (relative to the start of the argument), do a mux, and update the mask. |
| 1471 | BitVector Picked(HwLen); |
| 1472 | SmallVector<uint8_t,128> MuxBytes(HwLen); |
| 1473 | bool CanMux = true; |
| 1474 | for (int I = 0; I != static_cast<int>(VecLen); ++I) { |
| 1475 | int M = SM.Mask[I]; |
| 1476 | if (M == -1) |
| 1477 | continue; |
| 1478 | if (M >= static_cast<int>(HwLen)) |
| 1479 | M -= HwLen; |
| 1480 | else |
| 1481 | MuxBytes[M] = 0xFF; |
| 1482 | if (Picked[M]) { |
| 1483 | CanMux = false; |
| 1484 | break; |
| 1485 | } |
| 1486 | NewMask[I] = M; |
| 1487 | } |
| 1488 | if (CanMux) |
| 1489 | return vmuxs(Bytes: MuxBytes, Va, Vb, Results); |
| 1490 | } |
| 1491 | return OpRef::fail(); |
| 1492 | } |
| 1493 | |
| 1494 | // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb, |
| 1495 | // pack these vectors into a pair, and remap SM into NewMask to use the |
| 1496 | // new pair instead. |
| 1497 | OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, |
| 1498 | ResultStack &Results, MutableArrayRef<int> NewMask) { |
| 1499 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1500 | SmallVector<unsigned, 4> SegList = getInputSegmentList(SM: SM.Mask, SegLen: HwLen); |
| 1501 | if (SegList.empty()) |
| 1502 | return OpRef::undef(Ty: getPairVT(ElemTy: MVT::i8)); |
| 1503 | |
| 1504 | // If more than two halves are used, bail. |
| 1505 | // TODO: be more aggressive here? |
| 1506 | unsigned SegCount = SegList.size(); |
| 1507 | if (SegCount > 2) |
| 1508 | return OpRef::fail(); |
| 1509 | |
| 1510 | MVT HalfTy = getSingleVT(ElemTy: MVT::i8); |
| 1511 | |
| 1512 | OpRef Inp[2] = { Va, Vb }; |
| 1513 | OpRef Out[2] = { OpRef::undef(Ty: HalfTy), OpRef::undef(Ty: HalfTy) }; |
| 1514 | |
| 1515 | // Really make sure we have at most 2 vectors used in the mask. |
| 1516 | assert(SegCount <= 2); |
| 1517 | |
| 1518 | for (int I = 0, E = SegList.size(); I != E; ++I) { |
| 1519 | unsigned S = SegList[I]; |
| 1520 | OpRef Op = Inp[S / 2]; |
| 1521 | Out[I] = (S & 1) ? OpRef::hi(R: Op) : OpRef::lo(R: Op); |
| 1522 | } |
| 1523 | |
| 1524 | // NOTE: Using SegList as the packing map here (not SegMap). This works, |
| 1525 | // because we're not concerned here about the order of the segments (i.e. |
| 1526 | // single vectors) in the output pair. Changing the order of vectors is |
| 1527 | // free (as opposed to changing the order of vector halves as in packs), |
| 1528 | // and so there is no extra cost added in case the order needs to be |
| 1529 | // changed later. |
| 1530 | packSegmentMask(Mask: SM.Mask, OutSegMap: SegList, SegLen: HwLen, PackedMask: NewMask); |
| 1531 | return concats(Lo: Out[0], Hi: Out[1], Results); |
| 1532 | } |
| 1533 | |
| 1534 | OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
| 1535 | ResultStack &Results) { |
| 1536 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1537 | MVT ByteTy = getSingleVT(ElemTy: MVT::i8); |
| 1538 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 1539 | const SDLoc &dl(Results.InpNode); |
| 1540 | SDValue B = getVectorConstant(Data: Bytes, dl); |
| 1541 | Results.push(Opc: Hexagon::V6_vd0, Ty: ByteTy, Ops: {}); |
| 1542 | Results.push(Opc: Hexagon::V6_veqb, Ty: BoolTy, Ops: {OpRef(B), OpRef::res(N: -1)}); |
| 1543 | Results.push(Opc: Hexagon::V6_vmux, Ty: ByteTy, Ops: {OpRef::res(N: -1), Vb, Va}); |
| 1544 | return OpRef::res(N: Results.top()); |
| 1545 | } |
| 1546 | |
| 1547 | OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
| 1548 | ResultStack &Results) { |
| 1549 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1550 | size_t S = Bytes.size() / 2; |
| 1551 | OpRef L = vmuxs(Bytes: Bytes.take_front(N: S), Va: OpRef::lo(R: Va), Vb: OpRef::lo(R: Vb), Results); |
| 1552 | OpRef H = vmuxs(Bytes: Bytes.drop_front(N: S), Va: OpRef::hi(R: Va), Vb: OpRef::hi(R: Vb), Results); |
| 1553 | return concats(Lo: L, Hi: H, Results); |
| 1554 | } |
| 1555 | |
| 1556 | OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
| 1557 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1558 | unsigned VecLen = SM.Mask.size(); |
| 1559 | assert(HwLen == VecLen); |
| 1560 | (void)VecLen; |
| 1561 | assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); |
| 1562 | |
| 1563 | if (isIdentity(Mask: SM.Mask)) |
| 1564 | return Va; |
| 1565 | if (isUndef(Mask: SM.Mask)) |
| 1566 | return OpRef::undef(Ty: getSingleVT(ElemTy: MVT::i8)); |
| 1567 | |
| 1568 | // First, check for rotations. |
| 1569 | if (auto Dist = rotationDistance(SM, WrapAt: VecLen)) { |
| 1570 | OpRef Rotate = funnels(Va, Vb: Va, Amount: *Dist, Results); |
| 1571 | if (Rotate.isValid()) |
| 1572 | return Rotate; |
| 1573 | } |
| 1574 | unsigned HalfLen = HwLen / 2; |
| 1575 | assert(isPowerOf2_32(HalfLen)); |
| 1576 | |
| 1577 | // Handle special case where the output is the same half of the input |
| 1578 | // repeated twice, i.e. if Va = AB, then handle the output of AA or BB. |
| 1579 | std::pair<int, unsigned> Strip1 = findStrip(A: SM.Mask, Inc: 1, MaxLen: HalfLen); |
| 1580 | if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) { |
| 1581 | std::pair<int, unsigned> Strip2 = |
| 1582 | findStrip(A: SM.Mask.drop_front(N: HalfLen), Inc: 1, MaxLen: HalfLen); |
| 1583 | if (Strip1 == Strip2) { |
| 1584 | const SDLoc &dl(Results.InpNode); |
| 1585 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: HalfLen, dl)}); |
| 1586 | Results.push(Opc: Hexagon::V6_vshuffvdd, Ty: getPairVT(ElemTy: MVT::i8), |
| 1587 | Ops: {Va, Va, OpRef::res(N: Results.top())}); |
| 1588 | OpRef S = OpRef::res(N: Results.top()); |
| 1589 | return (Strip1.first == 0) ? OpRef::lo(R: S) : OpRef::hi(R: S); |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | OpRef P = perfect(SM, Va, Results); |
| 1594 | if (P.isValid()) |
| 1595 | return P; |
| 1596 | return butterfly(SM, Va, Results); |
| 1597 | } |
| 1598 | |
| 1599 | OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, |
| 1600 | ResultStack &Results) { |
| 1601 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1602 | if (isUndef(Mask: SM.Mask)) |
| 1603 | return OpRef::undef(Ty: getSingleVT(ElemTy: MVT::i8)); |
| 1604 | |
| 1605 | OpRef C = contracting(SM, Va, Vb, Results); |
| 1606 | if (C.isValid()) |
| 1607 | return C; |
| 1608 | |
| 1609 | int VecLen = SM.Mask.size(); |
| 1610 | shuffles::MaskT PackedMask(VecLen); |
| 1611 | OpRef P = packs(SM, Va, Vb, Results, NewMask: PackedMask); |
| 1612 | if (P.isValid()) |
| 1613 | return shuffs1(SM: ShuffleMask(PackedMask), Va: P, Results); |
| 1614 | |
| 1615 | // TODO: Before we split the mask, try perfect shuffle on concatenated |
| 1616 | // operands. |
| 1617 | |
| 1618 | shuffles::MaskT MaskL(VecLen), MaskR(VecLen); |
| 1619 | splitMask(Mask: SM.Mask, MaskL, MaskR); |
| 1620 | |
| 1621 | OpRef L = shuffs1(SM: ShuffleMask(MaskL), Va, Results); |
| 1622 | OpRef R = shuffs1(SM: ShuffleMask(MaskR), Va: Vb, Results); |
| 1623 | if (!L.isValid() || !R.isValid()) |
| 1624 | return OpRef::fail(); |
| 1625 | |
| 1626 | SmallVector<uint8_t, 128> Bytes(VecLen); |
| 1627 | for (int I = 0; I != VecLen; ++I) { |
| 1628 | if (MaskL[I] != -1) |
| 1629 | Bytes[I] = 0xFF; |
| 1630 | } |
| 1631 | return vmuxs(Bytes, Va: L, Vb: R, Results); |
| 1632 | } |
| 1633 | |
| 1634 | OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
| 1635 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1636 | int VecLen = SM.Mask.size(); |
| 1637 | |
| 1638 | if (isIdentity(Mask: SM.Mask)) |
| 1639 | return Va; |
| 1640 | if (isUndef(Mask: SM.Mask)) |
| 1641 | return OpRef::undef(Ty: getPairVT(ElemTy: MVT::i8)); |
| 1642 | |
| 1643 | shuffles::MaskT PackedMask(VecLen); |
| 1644 | OpRef P = packs(SM, Va: OpRef::lo(R: Va), Vb: OpRef::hi(R: Va), Results, NewMask: PackedMask); |
| 1645 | if (P.isValid()) { |
| 1646 | ShuffleMask PM(PackedMask); |
| 1647 | OpRef E = expanding(SM: PM, Va: P, Results); |
| 1648 | if (E.isValid()) |
| 1649 | return E; |
| 1650 | |
| 1651 | OpRef L = shuffs1(SM: PM.lo(), Va: P, Results); |
| 1652 | OpRef H = shuffs1(SM: PM.hi(), Va: P, Results); |
| 1653 | if (L.isValid() && H.isValid()) |
| 1654 | return concats(Lo: L, Hi: H, Results); |
| 1655 | } |
| 1656 | |
| 1657 | if (!isLowHalfOnly(Mask: SM.Mask)) { |
| 1658 | // Doing a perfect shuffle on a low-half mask (i.e. where the upper half |
| 1659 | // is all-undef) may produce a perfect shuffle that generates legitimate |
| 1660 | // upper half. This isn't wrong, but if the perfect shuffle was possible, |
| 1661 | // then there is a good chance that a shorter (contracting) code may be |
| 1662 | // used as well (e.g. V6_vshuffeb, etc). |
| 1663 | OpRef R = perfect(SM, Va, Results); |
| 1664 | if (R.isValid()) |
| 1665 | return R; |
| 1666 | // TODO commute the mask and try the opposite order of the halves. |
| 1667 | } |
| 1668 | |
| 1669 | OpRef L = shuffs2(SM: SM.lo(), Va: OpRef::lo(R: Va), Vb: OpRef::hi(R: Va), Results); |
| 1670 | OpRef H = shuffs2(SM: SM.hi(), Va: OpRef::lo(R: Va), Vb: OpRef::hi(R: Va), Results); |
| 1671 | if (L.isValid() && H.isValid()) |
| 1672 | return concats(Lo: L, Hi: H, Results); |
| 1673 | |
| 1674 | return OpRef::fail(); |
| 1675 | } |
| 1676 | |
| 1677 | OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, |
| 1678 | ResultStack &Results) { |
| 1679 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1680 | if (isUndef(Mask: SM.Mask)) |
| 1681 | return OpRef::undef(Ty: getPairVT(ElemTy: MVT::i8)); |
| 1682 | |
| 1683 | int VecLen = SM.Mask.size(); |
| 1684 | SmallVector<int,256> PackedMask(VecLen); |
| 1685 | OpRef P = packp(SM, Va, Vb, Results, NewMask: PackedMask); |
| 1686 | if (P.isValid()) |
| 1687 | return shuffp1(SM: ShuffleMask(PackedMask), Va: P, Results); |
| 1688 | |
| 1689 | SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); |
| 1690 | splitMask(Mask: SM.Mask, MaskL, MaskR); |
| 1691 | |
| 1692 | OpRef L = shuffp1(SM: ShuffleMask(MaskL), Va, Results); |
| 1693 | OpRef R = shuffp1(SM: ShuffleMask(MaskR), Va: Vb, Results); |
| 1694 | if (!L.isValid() || !R.isValid()) |
| 1695 | return OpRef::fail(); |
| 1696 | |
| 1697 | // Mux the results. |
| 1698 | SmallVector<uint8_t,256> Bytes(VecLen); |
| 1699 | for (int I = 0; I != VecLen; ++I) { |
| 1700 | if (MaskL[I] != -1) |
| 1701 | Bytes[I] = 0xFF; |
| 1702 | } |
| 1703 | return vmuxp(Bytes, Va: L, Vb: R, Results); |
| 1704 | } |
| 1705 | |
| 1706 | namespace { |
| 1707 | struct Deleter : public SelectionDAG::DAGNodeDeletedListener { |
| 1708 | template <typename T> |
| 1709 | Deleter(SelectionDAG &D, T &C) |
| 1710 | : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { |
| 1711 | C.erase(N); |
| 1712 | }) {} |
| 1713 | }; |
| 1714 | |
| 1715 | template <typename T> |
| 1716 | struct NullifyingVector : public T { |
| 1717 | DenseMap<SDNode*, SDNode**> Refs; |
| 1718 | NullifyingVector(T &&V) : T(V) { |
| 1719 | for (unsigned i = 0, e = T::size(); i != e; ++i) { |
| 1720 | SDNode *&N = T::operator[](i); |
| 1721 | Refs[N] = &N; |
| 1722 | } |
| 1723 | } |
| 1724 | void erase(SDNode *N) { |
| 1725 | auto F = Refs.find(Val: N); |
| 1726 | if (F != Refs.end()) |
| 1727 | *F->second = nullptr; |
| 1728 | } |
| 1729 | }; |
| 1730 | } |
| 1731 | |
| 1732 | void HvxSelector::select(SDNode *ISelN) { |
| 1733 | // What's important here is to select the right set of nodes. The main |
| 1734 | // selection algorithm loops over nodes in a topological order, i.e. users |
| 1735 | // are visited before their operands. |
| 1736 | // |
| 1737 | // It is an error to have an unselected node with a selected operand, and |
| 1738 | // there is an assertion in the main selector code to enforce that. |
| 1739 | // |
| 1740 | // Such a situation could occur if we selected a node, which is both a |
| 1741 | // subnode of ISelN, and a subnode of an unrelated (and yet unselected) |
| 1742 | // node in the DAG. |
| 1743 | assert(ISelN->getOpcode() == HexagonISD::ISEL); |
| 1744 | SDNode *N0 = ISelN->getOperand(Num: 0).getNode(); |
| 1745 | |
| 1746 | // There could have been nodes created (i.e. inserted into the DAG) |
| 1747 | // that are now dead. Remove them, in case they use any of the nodes |
| 1748 | // to select (and make them look shared). |
| 1749 | DAG.RemoveDeadNodes(); |
| 1750 | |
| 1751 | SetVector<SDNode *> SubNodes; |
| 1752 | |
| 1753 | if (!N0->isMachineOpcode()) { |
| 1754 | // Don't want to select N0 if it's shared with another node, except if |
| 1755 | // it's shared with other ISELs. |
| 1756 | auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; }; |
| 1757 | if (llvm::all_of(Range: N0->users(), P: IsISelN)) |
| 1758 | SubNodes.insert(X: N0); |
| 1759 | } |
| 1760 | if (SubNodes.empty()) { |
| 1761 | ISel.ReplaceNode(F: ISelN, T: N0); |
| 1762 | return; |
| 1763 | } |
| 1764 | |
| 1765 | // Need to manually select the nodes that are dominated by the ISEL. Other |
| 1766 | // nodes are reachable from the rest of the DAG, and so will be selected |
| 1767 | // by the DAG selection routine. |
| 1768 | SetVector<SDNode*> Dom, NonDom; |
| 1769 | Dom.insert(X: N0); |
| 1770 | |
| 1771 | auto IsDomRec = [&Dom, &NonDom] (SDNode *T, auto Rec) -> bool { |
| 1772 | if (Dom.count(key: T)) |
| 1773 | return true; |
| 1774 | if (T->use_empty() || NonDom.count(key: T)) |
| 1775 | return false; |
| 1776 | for (SDNode *U : T->users()) { |
| 1777 | // If T is reachable from a known non-dominated node, then T itself |
| 1778 | // is non-dominated. |
| 1779 | if (!Rec(U, Rec)) { |
| 1780 | NonDom.insert(X: T); |
| 1781 | return false; |
| 1782 | } |
| 1783 | } |
| 1784 | Dom.insert(X: T); |
| 1785 | return true; |
| 1786 | }; |
| 1787 | |
| 1788 | auto IsDom = [&IsDomRec] (SDNode *T) { return IsDomRec(T, IsDomRec); }; |
| 1789 | |
| 1790 | // Add the rest of nodes dominated by ISEL to SubNodes. |
| 1791 | for (unsigned I = 0; I != SubNodes.size(); ++I) { |
| 1792 | for (SDValue Op : SubNodes[I]->ops()) { |
| 1793 | SDNode *O = Op.getNode(); |
| 1794 | if (IsDom(O)) |
| 1795 | SubNodes.insert(X: O); |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | // Do a topological sort of nodes from Dom. |
| 1800 | SetVector<SDNode*> TmpQ; |
| 1801 | |
| 1802 | std::map<SDNode *, unsigned> OpCount; |
| 1803 | for (SDNode *T : Dom) { |
| 1804 | unsigned NumDomOps = llvm::count_if(Range: T->ops(), P: [&Dom](const SDUse &U) { |
| 1805 | return Dom.count(key: U.getNode()); |
| 1806 | }); |
| 1807 | |
| 1808 | OpCount.insert(x: {T, NumDomOps}); |
| 1809 | if (NumDomOps == 0) |
| 1810 | TmpQ.insert(X: T); |
| 1811 | } |
| 1812 | |
| 1813 | for (unsigned I = 0; I != TmpQ.size(); ++I) { |
| 1814 | SDNode *S = TmpQ[I]; |
| 1815 | for (SDNode *U : S->users()) { |
| 1816 | if (U == ISelN) |
| 1817 | continue; |
| 1818 | auto F = OpCount.find(x: U); |
| 1819 | assert(F != OpCount.end()); |
| 1820 | if (F->second > 0 && !--F->second) |
| 1821 | TmpQ.insert(X: F->first); |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | // Remove the marker. |
| 1826 | ISel.ReplaceNode(F: ISelN, T: N0); |
| 1827 | |
| 1828 | assert(SubNodes.size() == TmpQ.size()); |
| 1829 | NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); |
| 1830 | |
| 1831 | Deleter DUQ(DAG, Queue); |
| 1832 | for (SDNode *S : reverse(C&: Queue)) { |
| 1833 | if (S == nullptr) |
| 1834 | continue; |
| 1835 | DEBUG_WITH_TYPE("isel" , {dbgs() << "HVX selecting: " ; S->dump(&DAG);}); |
| 1836 | ISel.Select(N: S); |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, |
| 1841 | MVT ResTy, SDValue Va, SDValue Vb, |
| 1842 | SDNode *N) { |
| 1843 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 1844 | MVT ElemTy = ResTy.getVectorElementType(); |
| 1845 | assert(ElemTy == MVT::i8); |
| 1846 | unsigned VecLen = Mask.size(); |
| 1847 | bool HavePairs = (2*HwLen == VecLen); |
| 1848 | MVT SingleTy = getSingleVT(ElemTy: MVT::i8); |
| 1849 | |
| 1850 | // The prior attempts to handle this shuffle may have left a bunch of |
| 1851 | // dead nodes in the DAG (such as constants). These nodes will be added |
| 1852 | // at the end of DAG's node list, which at that point had already been |
| 1853 | // sorted topologically. In the main selection loop, the node list is |
| 1854 | // traversed backwards from the root node, which means that any new |
| 1855 | // nodes (from the end of the list) will not be visited. |
| 1856 | // Scalarization will replace the shuffle node with the scalarized |
| 1857 | // expression, and if that expression reused any if the leftoever (dead) |
| 1858 | // nodes, these nodes would not be selected (since the "local" selection |
| 1859 | // only visits nodes that are not in AllNodes). |
| 1860 | // To avoid this issue, remove all dead nodes from the DAG now. |
| 1861 | // DAG.RemoveDeadNodes(); |
| 1862 | |
| 1863 | SmallVector<SDValue,128> Ops; |
| 1864 | LLVMContext &Ctx = *DAG.getContext(); |
| 1865 | MVT LegalTy = Lower.getTypeToTransformTo(Context&: Ctx, VT: ElemTy).getSimpleVT(); |
| 1866 | for (int I : Mask) { |
| 1867 | if (I < 0) { |
| 1868 | Ops.push_back(Elt: ISel.selectUndef(dl, ResTy: LegalTy)); |
| 1869 | continue; |
| 1870 | } |
| 1871 | SDValue Vec; |
| 1872 | unsigned M = I; |
| 1873 | if (M < VecLen) { |
| 1874 | Vec = Va; |
| 1875 | } else { |
| 1876 | Vec = Vb; |
| 1877 | M -= VecLen; |
| 1878 | } |
| 1879 | if (HavePairs) { |
| 1880 | if (M < HwLen) { |
| 1881 | Vec = DAG.getTargetExtractSubreg(SRIdx: Hexagon::vsub_lo, DL: dl, VT: SingleTy, Operand: Vec); |
| 1882 | } else { |
| 1883 | Vec = DAG.getTargetExtractSubreg(SRIdx: Hexagon::vsub_hi, DL: dl, VT: SingleTy, Operand: Vec); |
| 1884 | M -= HwLen; |
| 1885 | } |
| 1886 | } |
| 1887 | SDValue Idx = DAG.getConstant(Val: M, DL: dl, VT: MVT::i32); |
| 1888 | SDValue Ex = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: LegalTy, Ops: {Vec, Idx}); |
| 1889 | SDValue L = Lower.LowerOperation(Op: Ex, DAG); |
| 1890 | assert(L.getNode()); |
| 1891 | Ops.push_back(Elt: L); |
| 1892 | } |
| 1893 | |
| 1894 | SDValue LV; |
| 1895 | if (2*HwLen == VecLen) { |
| 1896 | SDValue B0 = DAG.getBuildVector(VT: SingleTy, DL: dl, Ops: {Ops.data(), HwLen}); |
| 1897 | SDValue L0 = Lower.LowerOperation(Op: B0, DAG); |
| 1898 | SDValue B1 = DAG.getBuildVector(VT: SingleTy, DL: dl, Ops: {Ops.data()+HwLen, HwLen}); |
| 1899 | SDValue L1 = Lower.LowerOperation(Op: B1, DAG); |
| 1900 | // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) |
| 1901 | // functions may expect to be called only for illegal operations, so |
| 1902 | // make sure that they are not called for legal ones. Develop a better |
| 1903 | // mechanism for dealing with this. |
| 1904 | LV = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: ResTy, Ops: {L0, L1}); |
| 1905 | } else { |
| 1906 | SDValue BV = DAG.getBuildVector(VT: ResTy, DL: dl, Ops); |
| 1907 | LV = Lower.LowerOperation(Op: BV, DAG); |
| 1908 | } |
| 1909 | |
| 1910 | assert(!N->use_empty()); |
| 1911 | SDValue IS = DAG.getNode(Opcode: HexagonISD::ISEL, DL: dl, VT: ResTy, Operand: LV); |
| 1912 | ISel.ReplaceNode(F: N, T: IS.getNode()); |
| 1913 | select(ISelN: IS.getNode()); |
| 1914 | DAG.RemoveDeadNodes(); |
| 1915 | return true; |
| 1916 | } |
| 1917 | |
| 1918 | SmallVector<uint32_t, 8> HvxSelector::getPerfectCompletions(ShuffleMask SM, |
| 1919 | unsigned Width) { |
| 1920 | auto possibilities = [](ArrayRef<uint8_t> Bs, unsigned Width) -> uint32_t { |
| 1921 | unsigned Impossible = ~(1u << Width) + 1; |
| 1922 | for (unsigned I = 0, E = Bs.size(); I != E; ++I) { |
| 1923 | uint8_t B = Bs[I]; |
| 1924 | if (B == 0xff) |
| 1925 | continue; |
| 1926 | if (~Impossible == 0) |
| 1927 | break; |
| 1928 | for (unsigned Log = 0; Log != Width; ++Log) { |
| 1929 | if (Impossible & (1u << Log)) |
| 1930 | continue; |
| 1931 | unsigned Expected = (I >> Log) % 2; |
| 1932 | if (B != Expected) |
| 1933 | Impossible |= (1u << Log); |
| 1934 | } |
| 1935 | } |
| 1936 | return ~Impossible; |
| 1937 | }; |
| 1938 | |
| 1939 | SmallVector<uint32_t, 8> Worklist(Width); |
| 1940 | |
| 1941 | for (unsigned BitIdx = 0; BitIdx != Width; ++BitIdx) { |
| 1942 | SmallVector<uint8_t> BitValues(SM.Mask.size()); |
| 1943 | for (int i = 0, e = SM.Mask.size(); i != e; ++i) { |
| 1944 | int M = SM.Mask[i]; |
| 1945 | if (M < 0) |
| 1946 | BitValues[i] = 0xff; |
| 1947 | else |
| 1948 | BitValues[i] = (M & (1u << BitIdx)) != 0; |
| 1949 | } |
| 1950 | Worklist[BitIdx] = possibilities(BitValues, Width); |
| 1951 | } |
| 1952 | |
| 1953 | // If there is a word P in Worklist that matches multiple possibilities, |
| 1954 | // then if any other word Q matches any of the possibilities matched by P, |
| 1955 | // then Q matches all the possibilities matched by P. In fact, P == Q. |
| 1956 | // In other words, for each words P, Q, the sets of possibilities matched |
| 1957 | // by P and Q are either equal or disjoint (no partial overlap). |
| 1958 | // |
| 1959 | // Illustration: For 4-bit values there are 4 complete sequences: |
| 1960 | // a: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
| 1961 | // b: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 |
| 1962 | // c: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 |
| 1963 | // d: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 |
| 1964 | // |
| 1965 | // Words containing unknown bits that match two of the complete |
| 1966 | // sequences: |
| 1967 | // ab: 0 u u 1 0 u u 1 0 u u 1 0 u u 1 |
| 1968 | // ac: 0 u 0 u u 1 u 1 0 u 0 u u 1 u 1 |
| 1969 | // ad: 0 u 0 u 0 u 0 u u 1 u 1 u 1 u 1 |
| 1970 | // bc: 0 0 u u u u 1 1 0 0 u u u u 1 1 |
| 1971 | // bd: 0 0 u u 0 0 u u u u 1 1 u u 1 1 |
| 1972 | // cd: 0 0 0 0 u u u u u u u u 1 1 1 1 |
| 1973 | // |
| 1974 | // Proof of the claim above: |
| 1975 | // Let P be a word that matches s0 and s1. For that to happen, all known |
| 1976 | // bits in P must match s0 and s1 exactly. |
| 1977 | // Assume there is Q that matches s1. Note that since P and Q came from |
| 1978 | // the same shuffle mask, the positions of unknown bits in P and Q match |
| 1979 | // exactly, which makes the indices of known bits be exactly the same |
| 1980 | // between P and Q. Since P matches s0 and s1, the known bits of P much |
| 1981 | // match both s0 and s1. Also, since Q matches s1, the known bits in Q |
| 1982 | // are exactly the same as in s1, which means that they are exactly the |
| 1983 | // same as in P. This implies that P == Q. |
| 1984 | |
| 1985 | // There can be a situation where there are more entries with the same |
| 1986 | // bits set than there are set bits (e.g. value 9 occurring more than 2 |
| 1987 | // times). In such cases it will be impossible to complete this to a |
| 1988 | // perfect shuffle. |
| 1989 | SmallVector<uint32_t, 8> Sorted(Worklist); |
| 1990 | llvm::sort(Start: Sorted.begin(), End: Sorted.end()); |
| 1991 | |
| 1992 | for (unsigned I = 0, E = Sorted.size(); I != E;) { |
| 1993 | unsigned P = Sorted[I], Count = 1; |
| 1994 | while (++I != E && P == Sorted[I]) |
| 1995 | ++Count; |
| 1996 | if ((unsigned)llvm::popcount(Value: P) < Count) { |
| 1997 | // Reset all occurrences of P, if there are more occurrences of P |
| 1998 | // than there are bits in P. |
| 1999 | llvm::replace(Range&: Worklist, OldValue: P, NewValue: 0U); |
| 2000 | } |
| 2001 | } |
| 2002 | |
| 2003 | return Worklist; |
| 2004 | } |
| 2005 | |
| 2006 | SmallVector<uint32_t, 8> |
| 2007 | HvxSelector::completeToPerfect(ArrayRef<uint32_t> Completions, unsigned Width) { |
| 2008 | // Pick a completion if there are multiple possibilities. For now just |
| 2009 | // select any valid completion. |
| 2010 | SmallVector<uint32_t, 8> Comps(Completions); |
| 2011 | |
| 2012 | for (unsigned I = 0; I != Width; ++I) { |
| 2013 | uint32_t P = Comps[I]; |
| 2014 | assert(P != 0); |
| 2015 | if (isPowerOf2_32(Value: P)) |
| 2016 | continue; |
| 2017 | // T = least significant bit of P. |
| 2018 | uint32_t T = P ^ ((P - 1) & P); |
| 2019 | // Clear T in all remaining words matching P. |
| 2020 | for (unsigned J = I + 1; J != Width; ++J) { |
| 2021 | if (Comps[J] == P) |
| 2022 | Comps[J] ^= T; |
| 2023 | } |
| 2024 | Comps[I] = T; |
| 2025 | } |
| 2026 | |
| 2027 | #ifndef NDEBUG |
| 2028 | // Check that we have generated a valid completion. |
| 2029 | uint32_t OrAll = 0; |
| 2030 | for (uint32_t C : Comps) { |
| 2031 | assert(isPowerOf2_32(C)); |
| 2032 | OrAll |= C; |
| 2033 | } |
| 2034 | assert(OrAll == (1u << Width) -1); |
| 2035 | #endif |
| 2036 | |
| 2037 | return Comps; |
| 2038 | } |
| 2039 | |
| 2040 | std::optional<int> HvxSelector::rotationDistance(ShuffleMask SM, |
| 2041 | unsigned WrapAt) { |
| 2042 | std::optional<int> Dist; |
| 2043 | for (int I = 0, E = SM.Mask.size(); I != E; ++I) { |
| 2044 | int M = SM.Mask[I]; |
| 2045 | if (M < 0) |
| 2046 | continue; |
| 2047 | if (Dist) { |
| 2048 | if ((I + *Dist) % static_cast<int>(WrapAt) != M) |
| 2049 | return std::nullopt; |
| 2050 | } else { |
| 2051 | // Integer a%b operator assumes rounding towards zero by /, so it |
| 2052 | // "misbehaves" when a crosses 0 (the remainder also changes sign). |
| 2053 | // Add WrapAt in an attempt to keep I+Dist non-negative. |
| 2054 | Dist = M - I; |
| 2055 | if (Dist < 0) |
| 2056 | Dist = *Dist + WrapAt; |
| 2057 | } |
| 2058 | } |
| 2059 | return Dist; |
| 2060 | } |
| 2061 | |
| 2062 | OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, |
| 2063 | ResultStack &Results) { |
| 2064 | DEBUG_WITH_TYPE("isel" , { dbgs() << __func__ << '\n'; }); |
| 2065 | if (!Va.isValid() || !Vb.isValid()) |
| 2066 | return OpRef::fail(); |
| 2067 | |
| 2068 | // Contracting shuffles, i.e. instructions that always discard some bytes |
| 2069 | // from the operand vectors. |
| 2070 | // |
| 2071 | // Funnel shifts |
| 2072 | // V6_vshuff{e,o}b |
| 2073 | // V6_vshuf{e,o}h |
| 2074 | // V6_vdealb4w |
| 2075 | // V6_vpack{e,o}{b,h} |
| 2076 | |
| 2077 | int VecLen = SM.Mask.size(); |
| 2078 | |
| 2079 | // First, check for funnel shifts. |
| 2080 | if (auto Dist = rotationDistance(SM, WrapAt: 2 * VecLen)) { |
| 2081 | OpRef Funnel = funnels(Va, Vb, Amount: *Dist, Results); |
| 2082 | if (Funnel.isValid()) |
| 2083 | return Funnel; |
| 2084 | } |
| 2085 | |
| 2086 | MVT SingleTy = getSingleVT(ElemTy: MVT::i8); |
| 2087 | MVT PairTy = getPairVT(ElemTy: MVT::i8); |
| 2088 | |
| 2089 | auto same = [](ArrayRef<int> Mask1, ArrayRef<int> Mask2) -> bool { |
| 2090 | return Mask1 == Mask2; |
| 2091 | }; |
| 2092 | |
| 2093 | using PackConfig = std::pair<unsigned, bool>; |
| 2094 | PackConfig Packs[] = { |
| 2095 | {1, false}, // byte, even |
| 2096 | {1, true}, // byte, odd |
| 2097 | {2, false}, // half, even |
| 2098 | {2, true}, // half, odd |
| 2099 | }; |
| 2100 | |
| 2101 | { // Check vpack |
| 2102 | unsigned Opcodes[] = { |
| 2103 | Hexagon::V6_vpackeb, |
| 2104 | Hexagon::V6_vpackob, |
| 2105 | Hexagon::V6_vpackeh, |
| 2106 | Hexagon::V6_vpackoh, |
| 2107 | }; |
| 2108 | for (int i = 0, e = std::size(Opcodes); i != e; ++i) { |
| 2109 | auto [Size, Odd] = Packs[i]; |
| 2110 | if (same(SM.Mask, shuffles::mask(S: shuffles::vpack, Length: HwLen, args: Size, args: Odd))) { |
| 2111 | Results.push(Opc: Opcodes[i], Ty: SingleTy, Ops: {Vb, Va}); |
| 2112 | return OpRef::res(N: Results.top()); |
| 2113 | } |
| 2114 | } |
| 2115 | } |
| 2116 | |
| 2117 | { // Check vshuff |
| 2118 | unsigned Opcodes[] = { |
| 2119 | Hexagon::V6_vshuffeb, |
| 2120 | Hexagon::V6_vshuffob, |
| 2121 | Hexagon::V6_vshufeh, |
| 2122 | Hexagon::V6_vshufoh, |
| 2123 | }; |
| 2124 | for (int i = 0, e = std::size(Opcodes); i != e; ++i) { |
| 2125 | auto [Size, Odd] = Packs[i]; |
| 2126 | if (same(SM.Mask, shuffles::mask(S: shuffles::vshuff, Length: HwLen, args: Size, args: Odd))) { |
| 2127 | Results.push(Opc: Opcodes[i], Ty: SingleTy, Ops: {Vb, Va}); |
| 2128 | return OpRef::res(N: Results.top()); |
| 2129 | } |
| 2130 | } |
| 2131 | } |
| 2132 | |
| 2133 | { // Check vdeal |
| 2134 | // There is no "V6_vdealeb", etc, but the supposed behavior of vdealeb |
| 2135 | // is equivalent to "(V6_vpackeb (V6_vdealvdd Vu, Vv, -2))". Other such |
| 2136 | // variants of "deal" can be done similarly. |
| 2137 | unsigned Opcodes[] = { |
| 2138 | Hexagon::V6_vpackeb, |
| 2139 | Hexagon::V6_vpackob, |
| 2140 | Hexagon::V6_vpackeh, |
| 2141 | Hexagon::V6_vpackoh, |
| 2142 | }; |
| 2143 | const SDLoc &dl(Results.InpNode); |
| 2144 | |
| 2145 | for (int i = 0, e = std::size(Opcodes); i != e; ++i) { |
| 2146 | auto [Size, Odd] = Packs[i]; |
| 2147 | if (same(SM.Mask, shuffles::mask(S: shuffles::vdeal, Length: HwLen, args: Size, args: Odd))) { |
| 2148 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: -2 * Size, dl)}); |
| 2149 | Results.push(Opc: Hexagon::V6_vdealvdd, Ty: PairTy, Ops: {Vb, Va, OpRef::res(N: -1)}); |
| 2150 | auto vdeal = OpRef::res(N: Results.top()); |
| 2151 | Results.push(Opc: Opcodes[i], Ty: SingleTy, |
| 2152 | Ops: {OpRef::hi(R: vdeal), OpRef::lo(R: vdeal)}); |
| 2153 | return OpRef::res(N: Results.top()); |
| 2154 | } |
| 2155 | } |
| 2156 | } |
| 2157 | |
| 2158 | if (same(SM.Mask, shuffles::mask(S: shuffles::vdealb4w, Length: HwLen))) { |
| 2159 | Results.push(Opc: Hexagon::V6_vdealb4w, Ty: SingleTy, Ops: {Vb, Va}); |
| 2160 | return OpRef::res(N: Results.top()); |
| 2161 | } |
| 2162 | |
| 2163 | return OpRef::fail(); |
| 2164 | } |
| 2165 | |
| 2166 | OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
| 2167 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 2168 | // Expanding shuffles (using all elements and inserting into larger vector): |
| 2169 | // |
| 2170 | // V6_vunpacku{b,h} [*] |
| 2171 | // |
| 2172 | // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. |
| 2173 | // |
| 2174 | // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so |
| 2175 | // they are not shuffles. |
| 2176 | // |
| 2177 | // The argument is a single vector. |
| 2178 | |
| 2179 | int VecLen = SM.Mask.size(); |
| 2180 | assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type" ); |
| 2181 | |
| 2182 | std::pair<int,unsigned> Strip = findStrip(A: SM.Mask, Inc: 1, MaxLen: VecLen); |
| 2183 | |
| 2184 | // The patterns for the unpacks, in terms of the starting offsets of the |
| 2185 | // consecutive strips (L = length of the strip, N = VecLen): |
| 2186 | // |
| 2187 | // vunpacku: 0, -1, L, -1, 2L, -1 ... |
| 2188 | |
| 2189 | if (Strip.first != 0) |
| 2190 | return OpRef::fail(); |
| 2191 | |
| 2192 | // The vunpackus only handle byte and half-word. |
| 2193 | if (Strip.second != 1 && Strip.second != 2) |
| 2194 | return OpRef::fail(); |
| 2195 | |
| 2196 | int N = VecLen; |
| 2197 | int L = Strip.second; |
| 2198 | |
| 2199 | // First, check the non-ignored strips. |
| 2200 | for (int I = 2*L; I < N; I += 2*L) { |
| 2201 | auto S = findStrip(A: SM.Mask.drop_front(N: I), Inc: 1, MaxLen: N-I); |
| 2202 | if (S.second != unsigned(L)) |
| 2203 | return OpRef::fail(); |
| 2204 | if (2*S.first != I) |
| 2205 | return OpRef::fail(); |
| 2206 | } |
| 2207 | // Check the -1s. |
| 2208 | for (int I = L; I < N; I += 2*L) { |
| 2209 | auto S = findStrip(A: SM.Mask.drop_front(N: I), Inc: 0, MaxLen: N-I); |
| 2210 | if (S.first != -1 || S.second != unsigned(L)) |
| 2211 | return OpRef::fail(); |
| 2212 | } |
| 2213 | |
| 2214 | unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub |
| 2215 | : Hexagon::V6_vunpackuh; |
| 2216 | Results.push(Opc, Ty: getPairVT(ElemTy: MVT::i8), Ops: {Va}); |
| 2217 | return OpRef::res(N: Results.top()); |
| 2218 | } |
| 2219 | |
| 2220 | OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
| 2221 | DEBUG_WITH_TYPE("isel" , { dbgs() << __func__ << '\n'; }); |
| 2222 | // V6_vdeal{b,h} |
| 2223 | // V6_vshuff{b,h} |
| 2224 | |
| 2225 | // V6_vshufoe{b,h} those are equivalent to vshuffvdd(..,{1,2}) |
| 2226 | // V6_vshuffvdd (V6_vshuff) |
| 2227 | // V6_dealvdd (V6_vdeal) |
| 2228 | |
| 2229 | int VecLen = SM.Mask.size(); |
| 2230 | assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); |
| 2231 | unsigned LogLen = Log2_32(Value: VecLen); |
| 2232 | unsigned HwLog = Log2_32(Value: HwLen); |
| 2233 | // The result length must be the same as the length of a single vector, |
| 2234 | // or a vector pair. |
| 2235 | assert(LogLen == HwLog || LogLen == HwLog + 1); |
| 2236 | bool HavePairs = LogLen == HwLog + 1; |
| 2237 | |
| 2238 | SmallVector<unsigned, 8> Perm(LogLen); |
| 2239 | |
| 2240 | // Check if this could be a perfect shuffle, or a combination of perfect |
| 2241 | // shuffles. |
| 2242 | // |
| 2243 | // Consider this permutation (using hex digits to make the ASCII diagrams |
| 2244 | // easier to read): |
| 2245 | // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. |
| 2246 | // This is a "deal" operation: divide the input into two halves, and |
| 2247 | // create the output by picking elements by alternating between these two |
| 2248 | // halves: |
| 2249 | // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] |
| 2250 | // 8 9 A B C D E F |
| 2251 | // |
| 2252 | // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides |
| 2253 | // a somwehat different mechanism that could be used to perform shuffle/ |
| 2254 | // deal operations: a 2x2 transpose. |
| 2255 | // Consider the halves of inputs again, they can be interpreted as a 2x8 |
| 2256 | // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated |
| 2257 | // together. Now, when considering 2 elements at a time, it will be a 2x4 |
| 2258 | // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: |
| 2259 | // 01 23 45 67 |
| 2260 | // 89 AB CD EF |
| 2261 | // With groups of 4, this will become a single 2x2 matrix, and so on. |
| 2262 | // |
| 2263 | // The 2x2 transpose instruction works by transposing each of the 2x2 |
| 2264 | // matrices (or "sub-matrices"), given a specific group size. For example, |
| 2265 | // if the group size is 1 (i.e. each element is its own group), there |
| 2266 | // will be four transposes of the four 2x2 matrices that form the 2x8. |
| 2267 | // For example, with the inputs as above, the result will be: |
| 2268 | // 0 8 2 A 4 C 6 E |
| 2269 | // 1 9 3 B 5 D 7 F |
| 2270 | // Now, this result can be transposed again, but with the group size of 2: |
| 2271 | // 08 19 4C 5D |
| 2272 | // 2A 3B 6E 7F |
| 2273 | // If we then transpose that result, but with the group size of 4, we get: |
| 2274 | // 0819 2A3B |
| 2275 | // 4C5D 6E7F |
| 2276 | // If we concatenate these two rows, it will be |
| 2277 | // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F |
| 2278 | // which is the same as the "deal" [*] above. |
| 2279 | // |
| 2280 | // In general, a "deal" of individual elements is a series of 2x2 transposes, |
| 2281 | // with changing group size. HVX has two instructions: |
| 2282 | // Vdd = V6_vdealvdd Vu, Vv, Rt |
| 2283 | // Vdd = V6_shufvdd Vu, Vv, Rt |
| 2284 | // that perform exactly that. The register Rt controls which transposes are |
| 2285 | // going to happen: a bit at position n (counting from 0) indicates that a |
| 2286 | // transpose with a group size of 2^n will take place. If multiple bits are |
| 2287 | // set, multiple transposes will happen: vdealvdd will perform them starting |
| 2288 | // with the largest group size, vshuffvdd will do them in the reverse order. |
| 2289 | // |
| 2290 | // The main observation is that each 2x2 transpose corresponds to swapping |
| 2291 | // columns of bits in the binary representation of the values. |
| 2292 | // |
| 2293 | // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits |
| 2294 | // in a given column. The * denote the columns that will be swapped. |
| 2295 | // The transpose with the group size 2^n corresponds to swapping columns |
| 2296 | // 3 (the highest log) and log2(n): |
| 2297 | // |
| 2298 | // 3 2 1 0 0 2 1 3 0 2 3 1 |
| 2299 | // * * * * * * |
| 2300 | // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 2301 | // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 |
| 2302 | // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 |
| 2303 | // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 |
| 2304 | // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 |
| 2305 | // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 |
| 2306 | // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 |
| 2307 | // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 |
| 2308 | // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 |
| 2309 | // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 |
| 2310 | // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 |
| 2311 | // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 |
| 2312 | // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 |
| 2313 | // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 |
| 2314 | // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 |
| 2315 | // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 |
| 2316 | |
| 2317 | // There is one special case that is not a perfect shuffle, but can be |
| 2318 | // turned into one easily: when the shuffle operates on a vector pair, |
| 2319 | // but the two vectors in the pair are swapped. The code that identifies |
| 2320 | // perfect shuffles will reject it, unless the order is reversed. |
| 2321 | shuffles::MaskT MaskStorage(SM.Mask); |
| 2322 | bool InvertedPair = false; |
| 2323 | if (HavePairs && SM.Mask[0] >= int(HwLen)) { |
| 2324 | for (int i = 0, e = SM.Mask.size(); i != e; ++i) { |
| 2325 | int M = SM.Mask[i]; |
| 2326 | MaskStorage[i] = M >= int(HwLen) ? M - HwLen : M + HwLen; |
| 2327 | } |
| 2328 | InvertedPair = true; |
| 2329 | SM = ShuffleMask(MaskStorage); |
| 2330 | } |
| 2331 | |
| 2332 | auto Comps = getPerfectCompletions(SM, Width: LogLen); |
| 2333 | if (llvm::is_contained(Range&: Comps, Element: 0)) |
| 2334 | return OpRef::fail(); |
| 2335 | |
| 2336 | auto Pick = completeToPerfect(Completions: Comps, Width: LogLen); |
| 2337 | for (unsigned I = 0; I != LogLen; ++I) |
| 2338 | Perm[I] = Log2_32(Value: Pick[I]); |
| 2339 | |
| 2340 | // Once we have Perm, represent it as cycles. Denote the maximum log2 |
| 2341 | // (equal to log2(VecLen)-1) as M. The cycle containing M can then be |
| 2342 | // written as (M a1 a2 a3 ... an). That cycle can be broken up into |
| 2343 | // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition |
| 2344 | // order being from left to right. Any (contiguous) segment where the |
| 2345 | // values ai, ai+1...aj are either all increasing or all decreasing, |
| 2346 | // can be implemented via a single vshuffvdd/vdealvdd respectively. |
| 2347 | // |
| 2348 | // If there is a cycle (a1 a2 ... an) that does not involve M, it can |
| 2349 | // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can |
| 2350 | // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure |
| 2351 | // can be used to generate a sequence of vshuffvdd/vdealvdd. |
| 2352 | // |
| 2353 | // Example: |
| 2354 | // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written |
| 2355 | // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply |
| 2356 | // (4 0 1)(4 0)(4 2 3)(4 2). |
| 2357 | // It can then be expanded into swaps as |
| 2358 | // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), |
| 2359 | // and broken up into "increasing" segments as |
| 2360 | // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. |
| 2361 | // This is equivalent to |
| 2362 | // (4 0 1)(4 0 2 3)(4 2), |
| 2363 | // which can be implemented as 3 vshufvdd instructions. |
| 2364 | |
| 2365 | using CycleType = SmallVector<unsigned, 8>; |
| 2366 | std::set<CycleType> Cycles; |
| 2367 | std::set<unsigned> All; |
| 2368 | |
| 2369 | for (unsigned I : Perm) |
| 2370 | All.insert(x: I); |
| 2371 | |
| 2372 | // If the cycle contains LogLen-1, move it to the front of the cycle. |
| 2373 | // Otherwise, return the cycle unchanged. |
| 2374 | auto canonicalize = [LogLen](const CycleType &C) -> CycleType { |
| 2375 | unsigned LogPos, N = C.size(); |
| 2376 | for (LogPos = 0; LogPos != N; ++LogPos) |
| 2377 | if (C[LogPos] == LogLen - 1) |
| 2378 | break; |
| 2379 | if (LogPos == N) |
| 2380 | return C; |
| 2381 | |
| 2382 | CycleType NewC(C.begin() + LogPos, C.end()); |
| 2383 | NewC.append(in_start: C.begin(), in_end: C.begin() + LogPos); |
| 2384 | return NewC; |
| 2385 | }; |
| 2386 | |
| 2387 | auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { |
| 2388 | // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), |
| 2389 | // for bytes zero is included, for halfwords is not. |
| 2390 | if (Cs.size() != 1) |
| 2391 | return 0u; |
| 2392 | const CycleType &C = *Cs.begin(); |
| 2393 | if (C[0] != Len - 1) |
| 2394 | return 0u; |
| 2395 | int D = Len - C.size(); |
| 2396 | if (D != 0 && D != 1) |
| 2397 | return 0u; |
| 2398 | |
| 2399 | bool IsDeal = true, IsShuff = true; |
| 2400 | for (unsigned I = 1; I != Len - D; ++I) { |
| 2401 | if (C[I] != Len - 1 - I) |
| 2402 | IsDeal = false; |
| 2403 | if (C[I] != I - (1 - D)) // I-1, I |
| 2404 | IsShuff = false; |
| 2405 | } |
| 2406 | // At most one, IsDeal or IsShuff, can be non-zero. |
| 2407 | assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); |
| 2408 | static unsigned Deals[] = {Hexagon::V6_vdealb, Hexagon::V6_vdealh}; |
| 2409 | static unsigned Shufs[] = {Hexagon::V6_vshuffb, Hexagon::V6_vshuffh}; |
| 2410 | return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); |
| 2411 | }; |
| 2412 | |
| 2413 | while (!All.empty()) { |
| 2414 | unsigned A = *All.begin(); |
| 2415 | All.erase(x: A); |
| 2416 | CycleType C; |
| 2417 | C.push_back(Elt: A); |
| 2418 | for (unsigned B = Perm[A]; B != A; B = Perm[B]) { |
| 2419 | C.push_back(Elt: B); |
| 2420 | All.erase(x: B); |
| 2421 | } |
| 2422 | if (C.size() <= 1) |
| 2423 | continue; |
| 2424 | Cycles.insert(x: canonicalize(C)); |
| 2425 | } |
| 2426 | |
| 2427 | MVT SingleTy = getSingleVT(ElemTy: MVT::i8); |
| 2428 | MVT PairTy = getPairVT(ElemTy: MVT::i8); |
| 2429 | |
| 2430 | // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. |
| 2431 | if (unsigned(VecLen) == HwLen) { |
| 2432 | if (unsigned SingleOpc = pfs(Cycles, LogLen)) { |
| 2433 | Results.push(Opc: SingleOpc, Ty: SingleTy, Ops: {Va}); |
| 2434 | return OpRef::res(N: Results.top()); |
| 2435 | } |
| 2436 | } |
| 2437 | |
| 2438 | // From the cycles, construct the sequence of values that will |
| 2439 | // then form the control values for vdealvdd/vshuffvdd, i.e. |
| 2440 | // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5 |
| 2441 | // This essentially strips the M value from the cycles where |
| 2442 | // it's present, and performs the insertion of M (then stripping) |
| 2443 | // for cycles without M (as described in an earlier comment). |
| 2444 | SmallVector<unsigned, 8> SwapElems; |
| 2445 | // When the input is extended (i.e. single vector becomes a pair), |
| 2446 | // this is done by using an "undef" vector as the second input. |
| 2447 | // However, then we get |
| 2448 | // input 1: GOODBITS |
| 2449 | // input 2: ........ |
| 2450 | // but we need |
| 2451 | // input 1: ....BITS |
| 2452 | // input 2: ....GOOD |
| 2453 | // Then at the end, this needs to be undone. To accomplish this, |
| 2454 | // artificially add "LogLen-1" at both ends of the sequence. |
| 2455 | if (!HavePairs) |
| 2456 | SwapElems.push_back(Elt: LogLen - 1); |
| 2457 | for (const CycleType &C : Cycles) { |
| 2458 | // Do the transformation: (a1..an) -> (M a1..an)(M a1). |
| 2459 | unsigned First = (C[0] == LogLen - 1) ? 1 : 0; |
| 2460 | SwapElems.append(in_start: C.begin() + First, in_end: C.end()); |
| 2461 | if (First == 0) |
| 2462 | SwapElems.push_back(Elt: C[0]); |
| 2463 | } |
| 2464 | if (!HavePairs) |
| 2465 | SwapElems.push_back(Elt: LogLen - 1); |
| 2466 | |
| 2467 | const SDLoc &dl(Results.InpNode); |
| 2468 | OpRef Arg = HavePairs ? Va : concats(Lo: Va, Hi: OpRef::undef(Ty: SingleTy), Results); |
| 2469 | if (InvertedPair) |
| 2470 | Arg = concats(Lo: OpRef::hi(R: Arg), Hi: OpRef::lo(R: Arg), Results); |
| 2471 | |
| 2472 | for (unsigned I = 0, E = SwapElems.size(); I != E;) { |
| 2473 | bool IsInc = I == E - 1 || SwapElems[I] < SwapElems[I + 1]; |
| 2474 | unsigned S = (1u << SwapElems[I]); |
| 2475 | if (I < E - 1) { |
| 2476 | while (++I < E - 1 && IsInc == (SwapElems[I] < SwapElems[I + 1])) |
| 2477 | S |= 1u << SwapElems[I]; |
| 2478 | // The above loop will not add a bit for the final SwapElems[I+1], |
| 2479 | // so add it here. |
| 2480 | S |= 1u << SwapElems[I]; |
| 2481 | } |
| 2482 | ++I; |
| 2483 | |
| 2484 | NodeTemplate Res; |
| 2485 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: S, dl)}); |
| 2486 | Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; |
| 2487 | Res.Ty = PairTy; |
| 2488 | Res.Ops = {OpRef::hi(R: Arg), OpRef::lo(R: Arg), OpRef::res(N: -1)}; |
| 2489 | Results.push(Res); |
| 2490 | Arg = OpRef::res(N: Results.top()); |
| 2491 | } |
| 2492 | |
| 2493 | return HavePairs ? Arg : OpRef::lo(R: Arg); |
| 2494 | } |
| 2495 | |
| 2496 | OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
| 2497 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
| 2498 | // Butterfly shuffles. |
| 2499 | // |
| 2500 | // V6_vdelta |
| 2501 | // V6_vrdelta |
| 2502 | // V6_vror |
| 2503 | |
| 2504 | // The assumption here is that all elements picked by Mask are in the |
| 2505 | // first operand to the vector_shuffle. This assumption is enforced |
| 2506 | // by the caller. |
| 2507 | |
| 2508 | MVT ResTy = getSingleVT(ElemTy: MVT::i8); |
| 2509 | PermNetwork::Controls FC, RC; |
| 2510 | const SDLoc &dl(Results.InpNode); |
| 2511 | int VecLen = SM.Mask.size(); |
| 2512 | |
| 2513 | for (int M : SM.Mask) { |
| 2514 | if (M != -1 && M >= VecLen) |
| 2515 | return OpRef::fail(); |
| 2516 | } |
| 2517 | |
| 2518 | // Try the deltas/benes for both single vectors and vector pairs. |
| 2519 | ForwardDeltaNetwork FN(SM.Mask); |
| 2520 | if (FN.run(V&: FC)) { |
| 2521 | SDValue Ctl = getVectorConstant(Data: FC, dl); |
| 2522 | Results.push(Opc: Hexagon::V6_vdelta, Ty: ResTy, Ops: {Va, OpRef(Ctl)}); |
| 2523 | return OpRef::res(N: Results.top()); |
| 2524 | } |
| 2525 | |
| 2526 | // Try reverse delta. |
| 2527 | ReverseDeltaNetwork RN(SM.Mask); |
| 2528 | if (RN.run(V&: RC)) { |
| 2529 | SDValue Ctl = getVectorConstant(Data: RC, dl); |
| 2530 | Results.push(Opc: Hexagon::V6_vrdelta, Ty: ResTy, Ops: {Va, OpRef(Ctl)}); |
| 2531 | return OpRef::res(N: Results.top()); |
| 2532 | } |
| 2533 | |
| 2534 | // Do Benes. |
| 2535 | BenesNetwork BN(SM.Mask); |
| 2536 | if (BN.run(F&: FC, R&: RC)) { |
| 2537 | SDValue CtlF = getVectorConstant(Data: FC, dl); |
| 2538 | SDValue CtlR = getVectorConstant(Data: RC, dl); |
| 2539 | Results.push(Opc: Hexagon::V6_vdelta, Ty: ResTy, Ops: {Va, OpRef(CtlF)}); |
| 2540 | Results.push(Opc: Hexagon::V6_vrdelta, Ty: ResTy, |
| 2541 | Ops: {OpRef::res(N: -1), OpRef(CtlR)}); |
| 2542 | return OpRef::res(N: Results.top()); |
| 2543 | } |
| 2544 | |
| 2545 | return OpRef::fail(); |
| 2546 | } |
| 2547 | |
| 2548 | SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) { |
| 2549 | return DAG.getTargetConstant(Val, DL: dl, VT: MVT::i32); |
| 2550 | } |
| 2551 | |
| 2552 | SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, |
| 2553 | const SDLoc &dl) { |
| 2554 | SmallVector<SDValue, 128> Elems; |
| 2555 | for (uint8_t C : Data) |
| 2556 | Elems.push_back(Elt: DAG.getConstant(Val: C, DL: dl, VT: MVT::i8)); |
| 2557 | MVT VecTy = MVT::getVectorVT(VT: MVT::i8, NumElements: Data.size()); |
| 2558 | SDValue BV = DAG.getBuildVector(VT: VecTy, DL: dl, Ops: Elems); |
| 2559 | SDValue LV = Lower.LowerOperation(Op: BV, DAG); |
| 2560 | DAG.RemoveDeadNode(N: BV.getNode()); |
| 2561 | return DAG.getNode(Opcode: HexagonISD::ISEL, DL: dl, VT: VecTy, Operand: LV); |
| 2562 | } |
| 2563 | |
| 2564 | void HvxSelector::(SDNode *N) { |
| 2565 | SDValue Inp = N->getOperand(Num: 0); |
| 2566 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 2567 | unsigned Idx = N->getConstantOperandVal(Num: 1); |
| 2568 | |
| 2569 | [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); |
| 2570 | [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); |
| 2571 | assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); |
| 2572 | assert(2 * ResLen == InpTy.getVectorNumElements()); |
| 2573 | assert(Idx == 0 || Idx == ResLen); |
| 2574 | |
| 2575 | unsigned SubReg = Idx == 0 ? Hexagon::vsub_lo : Hexagon::vsub_hi; |
| 2576 | SDValue Ext = DAG.getTargetExtractSubreg(SRIdx: SubReg, DL: SDLoc(N), VT: ResTy, Operand: Inp); |
| 2577 | |
| 2578 | ISel.ReplaceNode(F: N, T: Ext.getNode()); |
| 2579 | } |
| 2580 | |
| 2581 | void HvxSelector::selectShuffle(SDNode *N) { |
| 2582 | DEBUG_WITH_TYPE("isel" , { |
| 2583 | dbgs() << "Starting " << __func__ << " on node:\n" ; |
| 2584 | N->dump(&DAG); |
| 2585 | }); |
| 2586 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 2587 | // Assume that vector shuffles operate on vectors of bytes. |
| 2588 | assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); |
| 2589 | |
| 2590 | auto *SN = cast<ShuffleVectorSDNode>(Val: N); |
| 2591 | std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); |
| 2592 | // This shouldn't really be necessary. Is it? |
| 2593 | for (int &Idx : Mask) |
| 2594 | if (Idx != -1 && Idx < 0) |
| 2595 | Idx = -1; |
| 2596 | |
| 2597 | unsigned VecLen = Mask.size(); |
| 2598 | bool HavePairs = (2*HwLen == VecLen); |
| 2599 | assert(ResTy.getSizeInBits() / 8 == VecLen); |
| 2600 | |
| 2601 | // Vd = vector_shuffle Va, Vb, Mask |
| 2602 | // |
| 2603 | |
| 2604 | bool UseLeft = false, UseRight = false; |
| 2605 | for (unsigned I = 0; I != VecLen; ++I) { |
| 2606 | if (Mask[I] == -1) |
| 2607 | continue; |
| 2608 | unsigned Idx = Mask[I]; |
| 2609 | assert(Idx < 2*VecLen); |
| 2610 | if (Idx < VecLen) |
| 2611 | UseLeft = true; |
| 2612 | else |
| 2613 | UseRight = true; |
| 2614 | } |
| 2615 | |
| 2616 | DEBUG_WITH_TYPE("isel" , { |
| 2617 | dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" |
| 2618 | << UseLeft << " UseRight=" << UseRight << " HavePairs=" |
| 2619 | << HavePairs << '\n'; |
| 2620 | }); |
| 2621 | // If the mask is all -1's, generate "undef". |
| 2622 | if (!UseLeft && !UseRight) { |
| 2623 | ISel.ReplaceNode(F: N, T: ISel.selectUndef(dl: SDLoc(SN), ResTy).getNode()); |
| 2624 | return; |
| 2625 | } |
| 2626 | |
| 2627 | SDValue Vec0 = N->getOperand(Num: 0); |
| 2628 | SDValue Vec1 = N->getOperand(Num: 1); |
| 2629 | assert(Vec0.getValueType() == ResTy && Vec1.getValueType() == ResTy); |
| 2630 | |
| 2631 | ResultStack Results(SN); |
| 2632 | OpRef Va = OpRef::undef(Ty: ResTy); |
| 2633 | OpRef Vb = OpRef::undef(Ty: ResTy); |
| 2634 | |
| 2635 | if (!Vec0.isUndef()) { |
| 2636 | Results.push(Opc: TargetOpcode::COPY, Ty: ResTy, Ops: {Vec0}); |
| 2637 | Va = OpRef::OpRef::res(N: Results.top()); |
| 2638 | } |
| 2639 | if (!Vec1.isUndef()) { |
| 2640 | Results.push(Opc: TargetOpcode::COPY, Ty: ResTy, Ops: {Vec1}); |
| 2641 | Vb = OpRef::res(N: Results.top()); |
| 2642 | } |
| 2643 | |
| 2644 | OpRef Res = !HavePairs ? shuffs2(SM: ShuffleMask(Mask), Va, Vb, Results) |
| 2645 | : shuffp2(SM: ShuffleMask(Mask), Va, Vb, Results); |
| 2646 | |
| 2647 | bool Done = Res.isValid(); |
| 2648 | if (Done) { |
| 2649 | // Make sure that Res is on the stack before materializing. |
| 2650 | Results.push(Opc: TargetOpcode::COPY, Ty: ResTy, Ops: {Res}); |
| 2651 | materialize(Results); |
| 2652 | } else { |
| 2653 | Done = scalarizeShuffle(Mask, dl: SDLoc(N), ResTy, Va: Vec0, Vb: Vec1, N); |
| 2654 | } |
| 2655 | |
| 2656 | if (!Done) { |
| 2657 | #ifndef NDEBUG |
| 2658 | dbgs() << "Unhandled shuffle:\n" ; |
| 2659 | SN->dumpr(&DAG); |
| 2660 | #endif |
| 2661 | llvm_unreachable("Failed to select vector shuffle" ); |
| 2662 | } |
| 2663 | } |
| 2664 | |
| 2665 | void HvxSelector::selectRor(SDNode *N) { |
| 2666 | // If this is a rotation by less than 8, use V6_valignbi. |
| 2667 | MVT Ty = N->getValueType(ResNo: 0).getSimpleVT(); |
| 2668 | const SDLoc &dl(N); |
| 2669 | SDValue VecV = N->getOperand(Num: 0); |
| 2670 | SDValue RotV = N->getOperand(Num: 1); |
| 2671 | SDNode *NewN = nullptr; |
| 2672 | |
| 2673 | if (auto *CN = dyn_cast<ConstantSDNode>(Val: RotV.getNode())) { |
| 2674 | unsigned S = CN->getZExtValue() % HST.getVectorLength(); |
| 2675 | if (S == 0) { |
| 2676 | NewN = VecV.getNode(); |
| 2677 | } else if (isUInt<3>(x: S)) { |
| 2678 | NewN = DAG.getMachineNode(Opcode: Hexagon::V6_valignbi, dl, VT: Ty, |
| 2679 | Ops: {VecV, VecV, getConst32(Val: S, dl)}); |
| 2680 | } |
| 2681 | } |
| 2682 | |
| 2683 | if (!NewN) |
| 2684 | NewN = DAG.getMachineNode(Opcode: Hexagon::V6_vror, dl, VT: Ty, Ops: {VecV, RotV}); |
| 2685 | |
| 2686 | ISel.ReplaceNode(F: N, T: NewN); |
| 2687 | } |
| 2688 | |
| 2689 | void HvxSelector::selectVAlign(SDNode *N) { |
| 2690 | SDValue Vv = N->getOperand(Num: 0); |
| 2691 | SDValue Vu = N->getOperand(Num: 1); |
| 2692 | SDValue Rt = N->getOperand(Num: 2); |
| 2693 | SDNode *NewN = DAG.getMachineNode(Opcode: Hexagon::V6_valignb, dl: SDLoc(N), |
| 2694 | VT: N->getValueType(ResNo: 0), Ops: {Vv, Vu, Rt}); |
| 2695 | ISel.ReplaceNode(F: N, T: NewN); |
| 2696 | DAG.RemoveDeadNode(N); |
| 2697 | } |
| 2698 | |
| 2699 | void HexagonDAGToDAGISel::PreprocessHvxISelDAG() { |
| 2700 | auto getNodes = [this]() -> std::vector<SDNode *> { |
| 2701 | std::vector<SDNode *> T; |
| 2702 | T.reserve(n: CurDAG->allnodes_size()); |
| 2703 | for (SDNode &N : CurDAG->allnodes()) |
| 2704 | T.push_back(x: &N); |
| 2705 | return T; |
| 2706 | }; |
| 2707 | |
| 2708 | ppHvxShuffleOfShuffle(Nodes: getNodes()); |
| 2709 | } |
| 2710 | |
| 2711 | template <> struct std::hash<SDValue> { |
| 2712 | std::size_t operator()(SDValue V) const { |
| 2713 | return std::hash<const void *>()(V.getNode()) + |
| 2714 | std::hash<unsigned>()(V.getResNo()); |
| 2715 | }; |
| 2716 | }; |
| 2717 | |
| 2718 | void HexagonDAGToDAGISel::ppHvxShuffleOfShuffle(std::vector<SDNode *> &&Nodes) { |
| 2719 | // Motivating case: |
| 2720 | // t10: v64i32 = ... |
| 2721 | // t46: v128i8 = vector_shuffle<...> t44, t45 |
| 2722 | // t48: v128i8 = vector_shuffle<...> t44, t45 |
| 2723 | // t42: v128i8 = vector_shuffle<...> t46, t48 |
| 2724 | // t12: v32i32 = extract_subvector t10, Constant:i32<0> |
| 2725 | // t44: v128i8 = bitcast t12 |
| 2726 | // t15: v32i32 = extract_subvector t10, Constant:i32<32> |
| 2727 | // t45: v128i8 = bitcast t15 |
| 2728 | SelectionDAG &DAG = *CurDAG; |
| 2729 | unsigned HwLen = HST->getVectorLength(); |
| 2730 | |
| 2731 | struct SubVectorInfo { |
| 2732 | SubVectorInfo(SDValue S, unsigned H) : Src(S), HalfIdx(H) {} |
| 2733 | SDValue Src; |
| 2734 | unsigned HalfIdx; |
| 2735 | }; |
| 2736 | |
| 2737 | using MapType = std::unordered_map<SDValue, unsigned>; |
| 2738 | |
| 2739 | auto getMaskElt = [&](unsigned Idx, ShuffleVectorSDNode *Shuff0, |
| 2740 | ShuffleVectorSDNode *Shuff1, |
| 2741 | const MapType &OpMap) -> int { |
| 2742 | // Treat Shuff0 and Shuff1 as operands to another vector shuffle, and |
| 2743 | // Idx as a (non-undef) element of the top level shuffle's mask, that |
| 2744 | // is, index into concat(Shuff0, Shuff1). |
| 2745 | // Assuming that Shuff0 and Shuff1 both operate on subvectors of the |
| 2746 | // same source vector (as described by OpMap), return the index of |
| 2747 | // that source vector corresponding to Idx. |
| 2748 | ShuffleVectorSDNode *OpShuff = Idx < HwLen ? Shuff0 : Shuff1; |
| 2749 | if (Idx >= HwLen) |
| 2750 | Idx -= HwLen; |
| 2751 | |
| 2752 | // Get the mask index that M points at in the corresponding operand. |
| 2753 | int MaybeN = OpShuff->getMaskElt(Idx); |
| 2754 | if (MaybeN < 0) |
| 2755 | return -1; |
| 2756 | |
| 2757 | auto N = static_cast<unsigned>(MaybeN); |
| 2758 | unsigned SrcBase = N < HwLen ? OpMap.at(k: OpShuff->getOperand(Num: 0)) |
| 2759 | : OpMap.at(k: OpShuff->getOperand(Num: 1)); |
| 2760 | if (N >= HwLen) |
| 2761 | N -= HwLen; |
| 2762 | |
| 2763 | return N + SrcBase; |
| 2764 | }; |
| 2765 | |
| 2766 | auto fold3 = [&](SDValue TopShuff, SDValue Inp, MapType &&OpMap) -> SDValue { |
| 2767 | // Fold all 3 shuffles into a single one. |
| 2768 | auto *This = cast<ShuffleVectorSDNode>(Val&: TopShuff); |
| 2769 | auto *S0 = cast<ShuffleVectorSDNode>(Val: TopShuff.getOperand(i: 0)); |
| 2770 | auto *S1 = cast<ShuffleVectorSDNode>(Val: TopShuff.getOperand(i: 1)); |
| 2771 | ArrayRef<int> TopMask = This->getMask(); |
| 2772 | // This should be guaranteed by type checks in the caller, and the fact |
| 2773 | // that all shuffles should have been promoted to operate on MVT::i8. |
| 2774 | assert(TopMask.size() == S0->getMask().size() && |
| 2775 | TopMask.size() == S1->getMask().size()); |
| 2776 | assert(TopMask.size() == HwLen); |
| 2777 | |
| 2778 | SmallVector<int, 256> FoldedMask(2 * HwLen); |
| 2779 | for (unsigned I = 0; I != HwLen; ++I) { |
| 2780 | int MaybeM = TopMask[I]; |
| 2781 | if (MaybeM >= 0) { |
| 2782 | FoldedMask[I] = |
| 2783 | getMaskElt(static_cast<unsigned>(MaybeM), S0, S1, OpMap); |
| 2784 | } else { |
| 2785 | FoldedMask[I] = -1; |
| 2786 | } |
| 2787 | } |
| 2788 | // The second half of the result will be all-undef. |
| 2789 | std::fill(first: FoldedMask.begin() + HwLen, last: FoldedMask.end(), value: -1); |
| 2790 | |
| 2791 | // Return |
| 2792 | // FoldedShuffle = (Shuffle Inp, undef, FoldedMask) |
| 2793 | // (LoHalf FoldedShuffle) |
| 2794 | const SDLoc &dl(TopShuff); |
| 2795 | MVT SingleTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 2796 | MVT PairTy = MVT::getVectorVT(VT: MVT::i8, NumElements: 2 * HwLen); |
| 2797 | SDValue FoldedShuff = |
| 2798 | DAG.getVectorShuffle(VT: PairTy, dl, N1: DAG.getBitcast(VT: PairTy, V: Inp), |
| 2799 | N2: DAG.getUNDEF(VT: PairTy), Mask: FoldedMask); |
| 2800 | return DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: SingleTy, N1: FoldedShuff, |
| 2801 | N2: DAG.getConstant(Val: 0, DL: dl, VT: MVT::i32)); |
| 2802 | }; |
| 2803 | |
| 2804 | auto getSourceInfo = [](SDValue V) -> std::optional<SubVectorInfo> { |
| 2805 | while (V.getOpcode() == ISD::BITCAST) |
| 2806 | V = V.getOperand(i: 0); |
| 2807 | if (V.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| 2808 | return std::nullopt; |
| 2809 | return SubVectorInfo(V.getOperand(i: 0), |
| 2810 | !cast<ConstantSDNode>(Val: V.getOperand(i: 1))->isZero()); |
| 2811 | }; |
| 2812 | |
| 2813 | for (SDNode *N : Nodes) { |
| 2814 | if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| 2815 | continue; |
| 2816 | EVT ResTy = N->getValueType(ResNo: 0); |
| 2817 | if (ResTy.getVectorElementType() != MVT::i8) |
| 2818 | continue; |
| 2819 | if (ResTy.getVectorNumElements() != HwLen) |
| 2820 | continue; |
| 2821 | |
| 2822 | SDValue V0 = N->getOperand(Num: 0); |
| 2823 | SDValue V1 = N->getOperand(Num: 1); |
| 2824 | if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) |
| 2825 | continue; |
| 2826 | if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) |
| 2827 | continue; |
| 2828 | if (V0.getValueType() != ResTy || V1.getValueType() != ResTy) |
| 2829 | continue; |
| 2830 | |
| 2831 | // Check if all operands of the two operand shuffles are extract_subvectors |
| 2832 | // from the same vector pair. |
| 2833 | auto V0A = getSourceInfo(V0.getOperand(i: 0)); |
| 2834 | if (!V0A.has_value()) |
| 2835 | continue; |
| 2836 | auto V0B = getSourceInfo(V0.getOperand(i: 1)); |
| 2837 | if (!V0B.has_value() || V0B->Src != V0A->Src) |
| 2838 | continue; |
| 2839 | auto V1A = getSourceInfo(V1.getOperand(i: 0)); |
| 2840 | if (!V1A.has_value() || V1A->Src != V0A->Src) |
| 2841 | continue; |
| 2842 | auto V1B = getSourceInfo(V1.getOperand(i: 1)); |
| 2843 | if (!V1B.has_value() || V1B->Src != V0A->Src) |
| 2844 | continue; |
| 2845 | |
| 2846 | // The source must be a pair. This should be guaranteed here, |
| 2847 | // but check just in case. |
| 2848 | assert(V0A->Src.getValueType().getSizeInBits() == 16 * HwLen); |
| 2849 | |
| 2850 | MapType OpMap = { |
| 2851 | {V0.getOperand(i: 0), V0A->HalfIdx * HwLen}, |
| 2852 | {V0.getOperand(i: 1), V0B->HalfIdx * HwLen}, |
| 2853 | {V1.getOperand(i: 0), V1A->HalfIdx * HwLen}, |
| 2854 | {V1.getOperand(i: 1), V1B->HalfIdx * HwLen}, |
| 2855 | }; |
| 2856 | SDValue NewS = fold3(SDValue(N, 0), V0A->Src, std::move(OpMap)); |
| 2857 | ReplaceNode(F: N, T: NewS.getNode()); |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | void HexagonDAGToDAGISel::(SDNode *N) { |
| 2862 | HvxSelector(*this, *CurDAG).selectExtractSubvector(N); |
| 2863 | } |
| 2864 | |
| 2865 | void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { |
| 2866 | HvxSelector(*this, *CurDAG).selectShuffle(N); |
| 2867 | } |
| 2868 | |
| 2869 | void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { |
| 2870 | HvxSelector(*this, *CurDAG).selectRor(N); |
| 2871 | } |
| 2872 | |
| 2873 | void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { |
| 2874 | HvxSelector(*this, *CurDAG).selectVAlign(N); |
| 2875 | } |
| 2876 | |
| 2877 | void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { |
| 2878 | const SDLoc &dl(N); |
| 2879 | SDValue Chain = N->getOperand(Num: 0); |
| 2880 | SDValue Address = N->getOperand(Num: 2); |
| 2881 | SDValue Predicate = N->getOperand(Num: 3); |
| 2882 | SDValue Base = N->getOperand(Num: 4); |
| 2883 | SDValue Modifier = N->getOperand(Num: 5); |
| 2884 | SDValue Offset = N->getOperand(Num: 6); |
| 2885 | SDValue ImmOperand = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 2886 | |
| 2887 | unsigned Opcode; |
| 2888 | unsigned IntNo = N->getConstantOperandVal(Num: 1); |
| 2889 | switch (IntNo) { |
| 2890 | default: |
| 2891 | llvm_unreachable("Unexpected HVX gather intrinsic." ); |
| 2892 | case Intrinsic::hexagon_V6_vgathermhq: |
| 2893 | case Intrinsic::hexagon_V6_vgathermhq_128B: |
| 2894 | Opcode = Hexagon::V6_vgathermhq_pseudo; |
| 2895 | break; |
| 2896 | case Intrinsic::hexagon_V6_vgathermwq: |
| 2897 | case Intrinsic::hexagon_V6_vgathermwq_128B: |
| 2898 | Opcode = Hexagon::V6_vgathermwq_pseudo; |
| 2899 | break; |
| 2900 | case Intrinsic::hexagon_V6_vgathermhwq: |
| 2901 | case Intrinsic::hexagon_V6_vgathermhwq_128B: |
| 2902 | Opcode = Hexagon::V6_vgathermhwq_pseudo; |
| 2903 | break; |
| 2904 | } |
| 2905 | |
| 2906 | SDVTList VTs = CurDAG->getVTList(VT: MVT::Other); |
| 2907 | SDValue Ops[] = { Address, ImmOperand, |
| 2908 | Predicate, Base, Modifier, Offset, Chain }; |
| 2909 | SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
| 2910 | |
| 2911 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 2912 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Result), NewMemRefs: {MemOp}); |
| 2913 | |
| 2914 | ReplaceNode(F: N, T: Result); |
| 2915 | } |
| 2916 | |
| 2917 | void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { |
| 2918 | const SDLoc &dl(N); |
| 2919 | SDValue Chain = N->getOperand(Num: 0); |
| 2920 | SDValue Address = N->getOperand(Num: 2); |
| 2921 | SDValue Base = N->getOperand(Num: 3); |
| 2922 | SDValue Modifier = N->getOperand(Num: 4); |
| 2923 | SDValue Offset = N->getOperand(Num: 5); |
| 2924 | SDValue ImmOperand = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 2925 | |
| 2926 | unsigned Opcode; |
| 2927 | unsigned IntNo = N->getConstantOperandVal(Num: 1); |
| 2928 | switch (IntNo) { |
| 2929 | default: |
| 2930 | llvm_unreachable("Unexpected HVX gather intrinsic." ); |
| 2931 | case Intrinsic::hexagon_V6_vgathermh: |
| 2932 | case Intrinsic::hexagon_V6_vgathermh_128B: |
| 2933 | Opcode = Hexagon::V6_vgathermh_pseudo; |
| 2934 | break; |
| 2935 | case Intrinsic::hexagon_V6_vgathermw: |
| 2936 | case Intrinsic::hexagon_V6_vgathermw_128B: |
| 2937 | Opcode = Hexagon::V6_vgathermw_pseudo; |
| 2938 | break; |
| 2939 | case Intrinsic::hexagon_V6_vgathermhw: |
| 2940 | case Intrinsic::hexagon_V6_vgathermhw_128B: |
| 2941 | Opcode = Hexagon::V6_vgathermhw_pseudo; |
| 2942 | break; |
| 2943 | } |
| 2944 | |
| 2945 | SDVTList VTs = CurDAG->getVTList(VT: MVT::Other); |
| 2946 | SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain }; |
| 2947 | SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
| 2948 | |
| 2949 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 2950 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Result), NewMemRefs: {MemOp}); |
| 2951 | |
| 2952 | ReplaceNode(F: N, T: Result); |
| 2953 | } |
| 2954 | |
| 2955 | void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { |
| 2956 | unsigned IID = N->getConstantOperandVal(Num: 0); |
| 2957 | SDNode *Result; |
| 2958 | switch (IID) { |
| 2959 | case Intrinsic::hexagon_V6_vaddcarry: { |
| 2960 | std::array<SDValue, 3> Ops = { |
| 2961 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
| 2962 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v16i32, VT2: MVT::v64i1); |
| 2963 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vaddcarry, dl: SDLoc(N), VTs, Ops); |
| 2964 | break; |
| 2965 | } |
| 2966 | case Intrinsic::hexagon_V6_vaddcarry_128B: { |
| 2967 | std::array<SDValue, 3> Ops = { |
| 2968 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
| 2969 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v32i32, VT2: MVT::v128i1); |
| 2970 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vaddcarry, dl: SDLoc(N), VTs, Ops); |
| 2971 | break; |
| 2972 | } |
| 2973 | case Intrinsic::hexagon_V6_vsubcarry: { |
| 2974 | std::array<SDValue, 3> Ops = { |
| 2975 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
| 2976 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v16i32, VT2: MVT::v64i1); |
| 2977 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vsubcarry, dl: SDLoc(N), VTs, Ops); |
| 2978 | break; |
| 2979 | } |
| 2980 | case Intrinsic::hexagon_V6_vsubcarry_128B: { |
| 2981 | std::array<SDValue, 3> Ops = { |
| 2982 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
| 2983 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v32i32, VT2: MVT::v128i1); |
| 2984 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vsubcarry, dl: SDLoc(N), VTs, Ops); |
| 2985 | break; |
| 2986 | } |
| 2987 | default: |
| 2988 | llvm_unreachable("Unexpected HVX dual output intrinsic." ); |
| 2989 | } |
| 2990 | ReplaceUses(F: N, T: Result); |
| 2991 | ReplaceUses(F: SDValue(N, 0), T: SDValue(Result, 0)); |
| 2992 | ReplaceUses(F: SDValue(N, 1), T: SDValue(Result, 1)); |
| 2993 | CurDAG->RemoveDeadNode(N); |
| 2994 | } |
| 2995 | |