| 1 | //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "HexagonISelLowering.h" |
| 10 | #include "HexagonRegisterInfo.h" |
| 11 | #include "HexagonSubtarget.h" |
| 12 | #include "llvm/ADT/SetVector.h" |
| 13 | #include "llvm/ADT/SmallVector.h" |
| 14 | #include "llvm/Analysis/MemoryLocation.h" |
| 15 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 16 | #include "llvm/CodeGen/MachineFunction.h" |
| 17 | #include "llvm/CodeGen/MachineInstr.h" |
| 18 | #include "llvm/CodeGen/MachineOperand.h" |
| 19 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 20 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 21 | #include "llvm/IR/IntrinsicsHexagon.h" |
| 22 | #include "llvm/Support/CommandLine.h" |
| 23 | |
| 24 | #include <algorithm> |
| 25 | #include <string> |
| 26 | #include <utility> |
| 27 | |
| 28 | using namespace llvm; |
| 29 | |
| 30 | static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen" , |
| 31 | cl::Hidden, cl::init(Val: 16), |
| 32 | cl::desc("Lower threshold (in bytes) for widening to HVX vectors" )); |
| 33 | |
| 34 | static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 }; |
| 35 | static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; |
| 36 | static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; |
| 37 | static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; |
| 38 | |
| 39 | static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) { |
| 40 | // For a float scalar type, return (exp-bits, exp-bias, fraction-bits) |
| 41 | MVT ElemTy = Ty.getScalarType(); |
| 42 | switch (ElemTy.SimpleTy) { |
| 43 | case MVT::f16: |
| 44 | return std::make_tuple(args: 5, args: 15, args: 10); |
| 45 | case MVT::f32: |
| 46 | return std::make_tuple(args: 8, args: 127, args: 23); |
| 47 | case MVT::f64: |
| 48 | return std::make_tuple(args: 11, args: 1023, args: 52); |
| 49 | default: |
| 50 | break; |
| 51 | } |
| 52 | llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str()); |
| 53 | } |
| 54 | |
| 55 | void |
| 56 | HexagonTargetLowering::initializeHVXLowering() { |
| 57 | if (Subtarget.useHVX64BOps()) { |
| 58 | addRegisterClass(VT: MVT::v64i8, RC: &Hexagon::HvxVRRegClass); |
| 59 | addRegisterClass(VT: MVT::v32i16, RC: &Hexagon::HvxVRRegClass); |
| 60 | addRegisterClass(VT: MVT::v16i32, RC: &Hexagon::HvxVRRegClass); |
| 61 | addRegisterClass(VT: MVT::v128i8, RC: &Hexagon::HvxWRRegClass); |
| 62 | addRegisterClass(VT: MVT::v64i16, RC: &Hexagon::HvxWRRegClass); |
| 63 | addRegisterClass(VT: MVT::v32i32, RC: &Hexagon::HvxWRRegClass); |
| 64 | // These "short" boolean vector types should be legal because |
| 65 | // they will appear as results of vector compares. If they were |
| 66 | // not legal, type legalization would try to make them legal |
| 67 | // and that would require using operations that do not use or |
| 68 | // produce such types. That, in turn, would imply using custom |
| 69 | // nodes, which would be unoptimizable by the DAG combiner. |
| 70 | // The idea is to rely on target-independent operations as much |
| 71 | // as possible. |
| 72 | addRegisterClass(VT: MVT::v16i1, RC: &Hexagon::HvxQRRegClass); |
| 73 | addRegisterClass(VT: MVT::v32i1, RC: &Hexagon::HvxQRRegClass); |
| 74 | addRegisterClass(VT: MVT::v64i1, RC: &Hexagon::HvxQRRegClass); |
| 75 | } else if (Subtarget.useHVX128BOps()) { |
| 76 | addRegisterClass(VT: MVT::v128i8, RC: &Hexagon::HvxVRRegClass); |
| 77 | addRegisterClass(VT: MVT::v64i16, RC: &Hexagon::HvxVRRegClass); |
| 78 | addRegisterClass(VT: MVT::v32i32, RC: &Hexagon::HvxVRRegClass); |
| 79 | addRegisterClass(VT: MVT::v256i8, RC: &Hexagon::HvxWRRegClass); |
| 80 | addRegisterClass(VT: MVT::v128i16, RC: &Hexagon::HvxWRRegClass); |
| 81 | addRegisterClass(VT: MVT::v64i32, RC: &Hexagon::HvxWRRegClass); |
| 82 | addRegisterClass(VT: MVT::v32i1, RC: &Hexagon::HvxQRRegClass); |
| 83 | addRegisterClass(VT: MVT::v64i1, RC: &Hexagon::HvxQRRegClass); |
| 84 | addRegisterClass(VT: MVT::v128i1, RC: &Hexagon::HvxQRRegClass); |
| 85 | if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { |
| 86 | addRegisterClass(VT: MVT::v32f32, RC: &Hexagon::HvxVRRegClass); |
| 87 | addRegisterClass(VT: MVT::v64f16, RC: &Hexagon::HvxVRRegClass); |
| 88 | addRegisterClass(VT: MVT::v64f32, RC: &Hexagon::HvxWRRegClass); |
| 89 | addRegisterClass(VT: MVT::v128f16, RC: &Hexagon::HvxWRRegClass); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | // Set up operation actions. |
| 94 | |
| 95 | bool Use64b = Subtarget.useHVX64BOps(); |
| 96 | ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128; |
| 97 | ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128; |
| 98 | MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8; |
| 99 | MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32; |
| 100 | MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; |
| 101 | |
| 102 | auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { |
| 103 | setOperationAction(Op: Opc, VT: FromTy, Action: Promote); |
| 104 | AddPromotedToType(Opc, OrigVT: FromTy, DestVT: ToTy); |
| 105 | }; |
| 106 | |
| 107 | // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32). |
| 108 | // Note: v16i1 -> i16 is handled in type legalization instead of op |
| 109 | // legalization. |
| 110 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i16, Action: Custom); |
| 111 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i32, Action: Custom); |
| 112 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i64, Action: Custom); |
| 113 | setOperationAction(Op: ISD::BITCAST, VT: MVT::v16i1, Action: Custom); |
| 114 | setOperationAction(Op: ISD::BITCAST, VT: MVT::v128i1, Action: Custom); |
| 115 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i128, Action: Custom); |
| 116 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: ByteV, Action: Legal); |
| 117 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: ByteW, Action: Legal); |
| 118 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::Other, Action: Custom); |
| 119 | |
| 120 | if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() && |
| 121 | Subtarget.useHVXFloatingPoint()) { |
| 122 | |
| 123 | static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 }; |
| 124 | static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 }; |
| 125 | |
| 126 | for (MVT T : FloatV) { |
| 127 | setOperationAction(Op: ISD::FADD, VT: T, Action: Legal); |
| 128 | setOperationAction(Op: ISD::FSUB, VT: T, Action: Legal); |
| 129 | setOperationAction(Op: ISD::FMUL, VT: T, Action: Legal); |
| 130 | setOperationAction(Op: ISD::FMINIMUMNUM, VT: T, Action: Legal); |
| 131 | setOperationAction(Op: ISD::FMAXIMUMNUM, VT: T, Action: Legal); |
| 132 | |
| 133 | setOperationAction(Op: ISD::INSERT_SUBVECTOR, VT: T, Action: Custom); |
| 134 | setOperationAction(Op: ISD::EXTRACT_SUBVECTOR, VT: T, Action: Custom); |
| 135 | |
| 136 | setOperationAction(Op: ISD::SPLAT_VECTOR, VT: T, Action: Legal); |
| 137 | setOperationAction(Op: ISD::SPLAT_VECTOR, VT: T, Action: Legal); |
| 138 | |
| 139 | setOperationAction(Op: ISD::MLOAD, VT: T, Action: Custom); |
| 140 | setOperationAction(Op: ISD::MSTORE, VT: T, Action: Custom); |
| 141 | // Custom-lower BUILD_VECTOR. The standard (target-independent) |
| 142 | // handling of it would convert it to a load, which is not always |
| 143 | // the optimal choice. |
| 144 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: T, Action: Custom); |
| 145 | } |
| 146 | |
| 147 | |
| 148 | // BUILD_VECTOR with f16 operands cannot be promoted without |
| 149 | // promoting the result, so lower the node to vsplat or constant pool |
| 150 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: MVT::f16, Action: Custom); |
| 151 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::f16, Action: Custom); |
| 152 | setOperationAction(Op: ISD::SPLAT_VECTOR, VT: MVT::f16, Action: Custom); |
| 153 | |
| 154 | // Vector shuffle is always promoted to ByteV and a bitcast to f16 is |
| 155 | // generated. |
| 156 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW); |
| 157 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f16, ByteV); |
| 158 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f32, ByteW); |
| 159 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v32f32, ByteV); |
| 160 | |
| 161 | for (MVT P : FloatW) { |
| 162 | setOperationAction(Op: ISD::LOAD, VT: P, Action: Custom); |
| 163 | setOperationAction(Op: ISD::STORE, VT: P, Action: Custom); |
| 164 | setOperationAction(Op: ISD::FADD, VT: P, Action: Custom); |
| 165 | setOperationAction(Op: ISD::FSUB, VT: P, Action: Custom); |
| 166 | setOperationAction(Op: ISD::FMUL, VT: P, Action: Custom); |
| 167 | setOperationAction(Op: ISD::FMINIMUMNUM, VT: P, Action: Custom); |
| 168 | setOperationAction(Op: ISD::FMAXIMUMNUM, VT: P, Action: Custom); |
| 169 | setOperationAction(Op: ISD::SETCC, VT: P, Action: Custom); |
| 170 | setOperationAction(Op: ISD::VSELECT, VT: P, Action: Custom); |
| 171 | |
| 172 | // Custom-lower BUILD_VECTOR. The standard (target-independent) |
| 173 | // handling of it would convert it to a load, which is not always |
| 174 | // the optimal choice. |
| 175 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: P, Action: Custom); |
| 176 | // Make concat-vectors custom to handle concats of more than 2 vectors. |
| 177 | setOperationAction(Op: ISD::CONCAT_VECTORS, VT: P, Action: Custom); |
| 178 | |
| 179 | setOperationAction(Op: ISD::MLOAD, VT: P, Action: Custom); |
| 180 | setOperationAction(Op: ISD::MSTORE, VT: P, Action: Custom); |
| 181 | } |
| 182 | |
| 183 | if (Subtarget.useHVXQFloatOps()) { |
| 184 | setOperationAction(Op: ISD::FP_EXTEND, VT: MVT::v64f32, Action: Custom); |
| 185 | setOperationAction(Op: ISD::FP_ROUND, VT: MVT::v64f16, Action: Legal); |
| 186 | } else if (Subtarget.useHVXIEEEFPOps()) { |
| 187 | setOperationAction(Op: ISD::FP_EXTEND, VT: MVT::v64f32, Action: Legal); |
| 188 | setOperationAction(Op: ISD::FP_ROUND, VT: MVT::v64f16, Action: Legal); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | for (MVT T : LegalV) { |
| 193 | setIndexedLoadAction(IdxModes: ISD::POST_INC, VT: T, Action: Legal); |
| 194 | setIndexedStoreAction(IdxModes: ISD::POST_INC, VT: T, Action: Legal); |
| 195 | |
| 196 | setOperationAction(Op: ISD::ABS, VT: T, Action: Legal); |
| 197 | setOperationAction(Op: ISD::AND, VT: T, Action: Legal); |
| 198 | setOperationAction(Op: ISD::OR, VT: T, Action: Legal); |
| 199 | setOperationAction(Op: ISD::XOR, VT: T, Action: Legal); |
| 200 | setOperationAction(Op: ISD::ADD, VT: T, Action: Legal); |
| 201 | setOperationAction(Op: ISD::SUB, VT: T, Action: Legal); |
| 202 | setOperationAction(Op: ISD::MUL, VT: T, Action: Legal); |
| 203 | setOperationAction(Op: ISD::CTPOP, VT: T, Action: Legal); |
| 204 | setOperationAction(Op: ISD::CTLZ, VT: T, Action: Legal); |
| 205 | setOperationAction(Op: ISD::SELECT, VT: T, Action: Legal); |
| 206 | setOperationAction(Op: ISD::SPLAT_VECTOR, VT: T, Action: Legal); |
| 207 | if (T != ByteV) { |
| 208 | setOperationAction(Op: ISD::SIGN_EXTEND_VECTOR_INREG, VT: T, Action: Legal); |
| 209 | setOperationAction(Op: ISD::ZERO_EXTEND_VECTOR_INREG, VT: T, Action: Legal); |
| 210 | setOperationAction(Op: ISD::BSWAP, VT: T, Action: Legal); |
| 211 | } |
| 212 | |
| 213 | setOperationAction(Op: ISD::SMIN, VT: T, Action: Legal); |
| 214 | setOperationAction(Op: ISD::SMAX, VT: T, Action: Legal); |
| 215 | if (T.getScalarType() != MVT::i32) { |
| 216 | setOperationAction(Op: ISD::UMIN, VT: T, Action: Legal); |
| 217 | setOperationAction(Op: ISD::UMAX, VT: T, Action: Legal); |
| 218 | } |
| 219 | |
| 220 | setOperationAction(Op: ISD::CTTZ, VT: T, Action: Custom); |
| 221 | setOperationAction(Op: ISD::LOAD, VT: T, Action: Custom); |
| 222 | setOperationAction(Op: ISD::MLOAD, VT: T, Action: Custom); |
| 223 | setOperationAction(Op: ISD::MSTORE, VT: T, Action: Custom); |
| 224 | if (T.getScalarType() != MVT::i32) { |
| 225 | setOperationAction(Op: ISD::MULHS, VT: T, Action: Legal); |
| 226 | setOperationAction(Op: ISD::MULHU, VT: T, Action: Legal); |
| 227 | } |
| 228 | |
| 229 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: T, Action: Custom); |
| 230 | // Make concat-vectors custom to handle concats of more than 2 vectors. |
| 231 | setOperationAction(Op: ISD::CONCAT_VECTORS, VT: T, Action: Custom); |
| 232 | setOperationAction(Op: ISD::INSERT_SUBVECTOR, VT: T, Action: Custom); |
| 233 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: T, Action: Custom); |
| 234 | setOperationAction(Op: ISD::EXTRACT_SUBVECTOR, VT: T, Action: Custom); |
| 235 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: T, Action: Custom); |
| 236 | setOperationAction(Op: ISD::ANY_EXTEND, VT: T, Action: Custom); |
| 237 | setOperationAction(Op: ISD::SIGN_EXTEND, VT: T, Action: Custom); |
| 238 | setOperationAction(Op: ISD::ZERO_EXTEND, VT: T, Action: Custom); |
| 239 | setOperationAction(Op: ISD::FSHL, VT: T, Action: Custom); |
| 240 | setOperationAction(Op: ISD::FSHR, VT: T, Action: Custom); |
| 241 | if (T != ByteV) { |
| 242 | setOperationAction(Op: ISD::ANY_EXTEND_VECTOR_INREG, VT: T, Action: Custom); |
| 243 | // HVX only has shifts of words and halfwords. |
| 244 | setOperationAction(Op: ISD::SRA, VT: T, Action: Custom); |
| 245 | setOperationAction(Op: ISD::SHL, VT: T, Action: Custom); |
| 246 | setOperationAction(Op: ISD::SRL, VT: T, Action: Custom); |
| 247 | |
| 248 | // Promote all shuffles to operate on vectors of bytes. |
| 249 | setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); |
| 250 | } |
| 251 | |
| 252 | if (Subtarget.useHVXFloatingPoint()) { |
| 253 | // Same action for both QFloat and IEEE. |
| 254 | setOperationAction(Op: ISD::SINT_TO_FP, VT: T, Action: Custom); |
| 255 | setOperationAction(Op: ISD::UINT_TO_FP, VT: T, Action: Custom); |
| 256 | setOperationAction(Op: ISD::FP_TO_SINT, VT: T, Action: Custom); |
| 257 | setOperationAction(Op: ISD::FP_TO_UINT, VT: T, Action: Custom); |
| 258 | } |
| 259 | |
| 260 | setCondCodeAction(CCs: ISD::SETNE, VT: T, Action: Expand); |
| 261 | setCondCodeAction(CCs: ISD::SETLE, VT: T, Action: Expand); |
| 262 | setCondCodeAction(CCs: ISD::SETGE, VT: T, Action: Expand); |
| 263 | setCondCodeAction(CCs: ISD::SETLT, VT: T, Action: Expand); |
| 264 | setCondCodeAction(CCs: ISD::SETULE, VT: T, Action: Expand); |
| 265 | setCondCodeAction(CCs: ISD::SETUGE, VT: T, Action: Expand); |
| 266 | setCondCodeAction(CCs: ISD::SETULT, VT: T, Action: Expand); |
| 267 | } |
| 268 | |
| 269 | for (MVT T : LegalW) { |
| 270 | // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- |
| 271 | // independent) handling of it would convert it to a load, which is |
| 272 | // not always the optimal choice. |
| 273 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: T, Action: Custom); |
| 274 | // Make concat-vectors custom to handle concats of more than 2 vectors. |
| 275 | setOperationAction(Op: ISD::CONCAT_VECTORS, VT: T, Action: Custom); |
| 276 | |
| 277 | // Custom-lower these operations for pairs. Expand them into a concat |
| 278 | // of the corresponding operations on individual vectors. |
| 279 | setOperationAction(Op: ISD::ANY_EXTEND, VT: T, Action: Custom); |
| 280 | setOperationAction(Op: ISD::SIGN_EXTEND, VT: T, Action: Custom); |
| 281 | setOperationAction(Op: ISD::ZERO_EXTEND, VT: T, Action: Custom); |
| 282 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: T, Action: Custom); |
| 283 | setOperationAction(Op: ISD::ANY_EXTEND_VECTOR_INREG, VT: T, Action: Custom); |
| 284 | setOperationAction(Op: ISD::SIGN_EXTEND_VECTOR_INREG, VT: T, Action: Legal); |
| 285 | setOperationAction(Op: ISD::ZERO_EXTEND_VECTOR_INREG, VT: T, Action: Legal); |
| 286 | setOperationAction(Op: ISD::SPLAT_VECTOR, VT: T, Action: Custom); |
| 287 | |
| 288 | setOperationAction(Op: ISD::LOAD, VT: T, Action: Custom); |
| 289 | setOperationAction(Op: ISD::STORE, VT: T, Action: Custom); |
| 290 | setOperationAction(Op: ISD::MLOAD, VT: T, Action: Custom); |
| 291 | setOperationAction(Op: ISD::MSTORE, VT: T, Action: Custom); |
| 292 | setOperationAction(Op: ISD::ABS, VT: T, Action: Custom); |
| 293 | setOperationAction(Op: ISD::CTLZ, VT: T, Action: Custom); |
| 294 | setOperationAction(Op: ISD::CTTZ, VT: T, Action: Custom); |
| 295 | setOperationAction(Op: ISD::CTPOP, VT: T, Action: Custom); |
| 296 | |
| 297 | setOperationAction(Op: ISD::ADD, VT: T, Action: Legal); |
| 298 | setOperationAction(Op: ISD::SUB, VT: T, Action: Legal); |
| 299 | setOperationAction(Op: ISD::MUL, VT: T, Action: Custom); |
| 300 | setOperationAction(Op: ISD::MULHS, VT: T, Action: Custom); |
| 301 | setOperationAction(Op: ISD::MULHU, VT: T, Action: Custom); |
| 302 | setOperationAction(Op: ISD::AND, VT: T, Action: Custom); |
| 303 | setOperationAction(Op: ISD::OR, VT: T, Action: Custom); |
| 304 | setOperationAction(Op: ISD::XOR, VT: T, Action: Custom); |
| 305 | setOperationAction(Op: ISD::SETCC, VT: T, Action: Custom); |
| 306 | setOperationAction(Op: ISD::VSELECT, VT: T, Action: Custom); |
| 307 | if (T != ByteW) { |
| 308 | setOperationAction(Op: ISD::SRA, VT: T, Action: Custom); |
| 309 | setOperationAction(Op: ISD::SHL, VT: T, Action: Custom); |
| 310 | setOperationAction(Op: ISD::SRL, VT: T, Action: Custom); |
| 311 | |
| 312 | // Promote all shuffles to operate on vectors of bytes. |
| 313 | setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); |
| 314 | } |
| 315 | setOperationAction(Op: ISD::FSHL, VT: T, Action: Custom); |
| 316 | setOperationAction(Op: ISD::FSHR, VT: T, Action: Custom); |
| 317 | |
| 318 | setOperationAction(Op: ISD::SMIN, VT: T, Action: Custom); |
| 319 | setOperationAction(Op: ISD::SMAX, VT: T, Action: Custom); |
| 320 | if (T.getScalarType() != MVT::i32) { |
| 321 | setOperationAction(Op: ISD::UMIN, VT: T, Action: Custom); |
| 322 | setOperationAction(Op: ISD::UMAX, VT: T, Action: Custom); |
| 323 | } |
| 324 | |
| 325 | if (Subtarget.useHVXFloatingPoint()) { |
| 326 | // Same action for both QFloat and IEEE. |
| 327 | setOperationAction(Op: ISD::SINT_TO_FP, VT: T, Action: Custom); |
| 328 | setOperationAction(Op: ISD::UINT_TO_FP, VT: T, Action: Custom); |
| 329 | setOperationAction(Op: ISD::FP_TO_SINT, VT: T, Action: Custom); |
| 330 | setOperationAction(Op: ISD::FP_TO_UINT, VT: T, Action: Custom); |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | // Legalize all of these to HexagonISD::[SU]MUL_LOHI. |
| 335 | setOperationAction(Op: ISD::MULHS, VT: WordV, Action: Custom); // -> _LOHI |
| 336 | setOperationAction(Op: ISD::MULHU, VT: WordV, Action: Custom); // -> _LOHI |
| 337 | setOperationAction(Op: ISD::SMUL_LOHI, VT: WordV, Action: Custom); |
| 338 | setOperationAction(Op: ISD::UMUL_LOHI, VT: WordV, Action: Custom); |
| 339 | |
| 340 | setCondCodeAction(CCs: ISD::SETNE, VT: MVT::v64f16, Action: Expand); |
| 341 | setCondCodeAction(CCs: ISD::SETLE, VT: MVT::v64f16, Action: Expand); |
| 342 | setCondCodeAction(CCs: ISD::SETGE, VT: MVT::v64f16, Action: Expand); |
| 343 | setCondCodeAction(CCs: ISD::SETLT, VT: MVT::v64f16, Action: Expand); |
| 344 | setCondCodeAction(CCs: ISD::SETONE, VT: MVT::v64f16, Action: Expand); |
| 345 | setCondCodeAction(CCs: ISD::SETOLE, VT: MVT::v64f16, Action: Expand); |
| 346 | setCondCodeAction(CCs: ISD::SETOGE, VT: MVT::v64f16, Action: Expand); |
| 347 | setCondCodeAction(CCs: ISD::SETOLT, VT: MVT::v64f16, Action: Expand); |
| 348 | setCondCodeAction(CCs: ISD::SETUNE, VT: MVT::v64f16, Action: Expand); |
| 349 | setCondCodeAction(CCs: ISD::SETULE, VT: MVT::v64f16, Action: Expand); |
| 350 | setCondCodeAction(CCs: ISD::SETUGE, VT: MVT::v64f16, Action: Expand); |
| 351 | setCondCodeAction(CCs: ISD::SETULT, VT: MVT::v64f16, Action: Expand); |
| 352 | |
| 353 | setCondCodeAction(CCs: ISD::SETNE, VT: MVT::v32f32, Action: Expand); |
| 354 | setCondCodeAction(CCs: ISD::SETLE, VT: MVT::v32f32, Action: Expand); |
| 355 | setCondCodeAction(CCs: ISD::SETGE, VT: MVT::v32f32, Action: Expand); |
| 356 | setCondCodeAction(CCs: ISD::SETLT, VT: MVT::v32f32, Action: Expand); |
| 357 | setCondCodeAction(CCs: ISD::SETONE, VT: MVT::v32f32, Action: Expand); |
| 358 | setCondCodeAction(CCs: ISD::SETOLE, VT: MVT::v32f32, Action: Expand); |
| 359 | setCondCodeAction(CCs: ISD::SETOGE, VT: MVT::v32f32, Action: Expand); |
| 360 | setCondCodeAction(CCs: ISD::SETOLT, VT: MVT::v32f32, Action: Expand); |
| 361 | setCondCodeAction(CCs: ISD::SETUNE, VT: MVT::v32f32, Action: Expand); |
| 362 | setCondCodeAction(CCs: ISD::SETULE, VT: MVT::v32f32, Action: Expand); |
| 363 | setCondCodeAction(CCs: ISD::SETUGE, VT: MVT::v32f32, Action: Expand); |
| 364 | setCondCodeAction(CCs: ISD::SETULT, VT: MVT::v32f32, Action: Expand); |
| 365 | |
| 366 | // Boolean vectors. |
| 367 | |
| 368 | for (MVT T : LegalW) { |
| 369 | // Boolean types for vector pairs will overlap with the boolean |
| 370 | // types for single vectors, e.g. |
| 371 | // v64i8 -> v64i1 (single) |
| 372 | // v64i16 -> v64i1 (pair) |
| 373 | // Set these actions first, and allow the single actions to overwrite |
| 374 | // any duplicates. |
| 375 | MVT BoolW = MVT::getVectorVT(VT: MVT::i1, NumElements: T.getVectorNumElements()); |
| 376 | setOperationAction(Op: ISD::SETCC, VT: BoolW, Action: Custom); |
| 377 | setOperationAction(Op: ISD::AND, VT: BoolW, Action: Custom); |
| 378 | setOperationAction(Op: ISD::OR, VT: BoolW, Action: Custom); |
| 379 | setOperationAction(Op: ISD::XOR, VT: BoolW, Action: Custom); |
| 380 | // Masked load/store takes a mask that may need splitting. |
| 381 | setOperationAction(Op: ISD::MLOAD, VT: BoolW, Action: Custom); |
| 382 | setOperationAction(Op: ISD::MSTORE, VT: BoolW, Action: Custom); |
| 383 | } |
| 384 | |
| 385 | for (MVT T : LegalV) { |
| 386 | MVT BoolV = MVT::getVectorVT(VT: MVT::i1, NumElements: T.getVectorNumElements()); |
| 387 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: BoolV, Action: Custom); |
| 388 | setOperationAction(Op: ISD::CONCAT_VECTORS, VT: BoolV, Action: Custom); |
| 389 | setOperationAction(Op: ISD::INSERT_SUBVECTOR, VT: BoolV, Action: Custom); |
| 390 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: BoolV, Action: Custom); |
| 391 | setOperationAction(Op: ISD::EXTRACT_SUBVECTOR, VT: BoolV, Action: Custom); |
| 392 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: BoolV, Action: Custom); |
| 393 | setOperationAction(Op: ISD::SELECT, VT: BoolV, Action: Custom); |
| 394 | setOperationAction(Op: ISD::AND, VT: BoolV, Action: Legal); |
| 395 | setOperationAction(Op: ISD::OR, VT: BoolV, Action: Legal); |
| 396 | setOperationAction(Op: ISD::XOR, VT: BoolV, Action: Legal); |
| 397 | } |
| 398 | |
| 399 | if (Use64b) { |
| 400 | for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) |
| 401 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: T, Action: Legal); |
| 402 | } else { |
| 403 | for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) |
| 404 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: T, Action: Legal); |
| 405 | } |
| 406 | |
| 407 | // Handle store widening for short vectors. |
| 408 | unsigned HwLen = Subtarget.getVectorLength(); |
| 409 | for (MVT ElemTy : Subtarget.getHVXElementTypes()) { |
| 410 | if (ElemTy == MVT::i1) |
| 411 | continue; |
| 412 | int ElemWidth = ElemTy.getFixedSizeInBits(); |
| 413 | int MaxElems = (8*HwLen) / ElemWidth; |
| 414 | for (int N = 2; N < MaxElems; N *= 2) { |
| 415 | MVT VecTy = MVT::getVectorVT(VT: ElemTy, NumElements: N); |
| 416 | auto Action = getPreferredVectorAction(VT: VecTy); |
| 417 | if (Action == TargetLoweringBase::TypeWidenVector) { |
| 418 | setOperationAction(Op: ISD::LOAD, VT: VecTy, Action: Custom); |
| 419 | setOperationAction(Op: ISD::STORE, VT: VecTy, Action: Custom); |
| 420 | setOperationAction(Op: ISD::SETCC, VT: VecTy, Action: Custom); |
| 421 | setOperationAction(Op: ISD::TRUNCATE, VT: VecTy, Action: Custom); |
| 422 | setOperationAction(Op: ISD::ANY_EXTEND, VT: VecTy, Action: Custom); |
| 423 | setOperationAction(Op: ISD::SIGN_EXTEND, VT: VecTy, Action: Custom); |
| 424 | setOperationAction(Op: ISD::ZERO_EXTEND, VT: VecTy, Action: Custom); |
| 425 | if (Subtarget.useHVXFloatingPoint()) { |
| 426 | setOperationAction(Op: ISD::FP_TO_SINT, VT: VecTy, Action: Custom); |
| 427 | setOperationAction(Op: ISD::FP_TO_UINT, VT: VecTy, Action: Custom); |
| 428 | setOperationAction(Op: ISD::SINT_TO_FP, VT: VecTy, Action: Custom); |
| 429 | setOperationAction(Op: ISD::UINT_TO_FP, VT: VecTy, Action: Custom); |
| 430 | } |
| 431 | |
| 432 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: N); |
| 433 | if (!isTypeLegal(VT: BoolTy)) |
| 434 | setOperationAction(Op: ISD::SETCC, VT: BoolTy, Action: Custom); |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT}); |
| 440 | } |
| 441 | |
| 442 | unsigned |
| 443 | HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const { |
| 444 | MVT ElemTy = VecTy.getVectorElementType(); |
| 445 | unsigned VecLen = VecTy.getVectorNumElements(); |
| 446 | unsigned HwLen = Subtarget.getVectorLength(); |
| 447 | |
| 448 | // Split vectors of i1 that exceed byte vector length. |
| 449 | if (ElemTy == MVT::i1 && VecLen > HwLen) |
| 450 | return TargetLoweringBase::TypeSplitVector; |
| 451 | |
| 452 | ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); |
| 453 | // For shorter vectors of i1, widen them if any of the corresponding |
| 454 | // vectors of integers needs to be widened. |
| 455 | if (ElemTy == MVT::i1) { |
| 456 | for (MVT T : Tys) { |
| 457 | assert(T != MVT::i1); |
| 458 | auto A = getPreferredHvxVectorAction(VecTy: MVT::getVectorVT(VT: T, NumElements: VecLen)); |
| 459 | if (A != ~0u) |
| 460 | return A; |
| 461 | } |
| 462 | return ~0u; |
| 463 | } |
| 464 | |
| 465 | // If the size of VecTy is at least half of the vector length, |
| 466 | // widen the vector. Note: the threshold was not selected in |
| 467 | // any scientific way. |
| 468 | if (llvm::is_contained(Range&: Tys, Element: ElemTy)) { |
| 469 | unsigned VecWidth = VecTy.getSizeInBits(); |
| 470 | unsigned HwWidth = 8*HwLen; |
| 471 | if (VecWidth > 2*HwWidth) |
| 472 | return TargetLoweringBase::TypeSplitVector; |
| 473 | |
| 474 | bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0; |
| 475 | if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth) |
| 476 | return TargetLoweringBase::TypeWidenVector; |
| 477 | if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) |
| 478 | return TargetLoweringBase::TypeWidenVector; |
| 479 | } |
| 480 | |
| 481 | // Defer to default. |
| 482 | return ~0u; |
| 483 | } |
| 484 | |
| 485 | unsigned |
| 486 | HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const { |
| 487 | unsigned Opc = Op.getOpcode(); |
| 488 | switch (Opc) { |
| 489 | case HexagonISD::SMUL_LOHI: |
| 490 | case HexagonISD::UMUL_LOHI: |
| 491 | case HexagonISD::USMUL_LOHI: |
| 492 | return TargetLoweringBase::Custom; |
| 493 | } |
| 494 | return TargetLoweringBase::Legal; |
| 495 | } |
| 496 | |
| 497 | SDValue |
| 498 | HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, |
| 499 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 500 | SmallVector<SDValue,4> IntOps; |
| 501 | IntOps.push_back(Elt: DAG.getConstant(Val: IntId, DL: dl, VT: MVT::i32)); |
| 502 | append_range(C&: IntOps, R&: Ops); |
| 503 | return DAG.getNode(Opcode: ISD::INTRINSIC_WO_CHAIN, DL: dl, VT: ResTy, Ops: IntOps); |
| 504 | } |
| 505 | |
| 506 | MVT |
| 507 | HexagonTargetLowering::typeJoin(const TypePair &Tys) const { |
| 508 | assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); |
| 509 | |
| 510 | MVT ElemTy = Tys.first.getVectorElementType(); |
| 511 | return MVT::getVectorVT(VT: ElemTy, NumElements: Tys.first.getVectorNumElements() + |
| 512 | Tys.second.getVectorNumElements()); |
| 513 | } |
| 514 | |
| 515 | HexagonTargetLowering::TypePair |
| 516 | HexagonTargetLowering::typeSplit(MVT VecTy) const { |
| 517 | assert(VecTy.isVector()); |
| 518 | unsigned NumElem = VecTy.getVectorNumElements(); |
| 519 | assert((NumElem % 2) == 0 && "Expecting even-sized vector type" ); |
| 520 | MVT HalfTy = MVT::getVectorVT(VT: VecTy.getVectorElementType(), NumElements: NumElem/2); |
| 521 | return { HalfTy, HalfTy }; |
| 522 | } |
| 523 | |
| 524 | MVT |
| 525 | HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { |
| 526 | MVT ElemTy = VecTy.getVectorElementType(); |
| 527 | MVT NewElemTy = MVT::getIntegerVT(BitWidth: ElemTy.getSizeInBits() * Factor); |
| 528 | return MVT::getVectorVT(VT: NewElemTy, NumElements: VecTy.getVectorNumElements()); |
| 529 | } |
| 530 | |
| 531 | MVT |
| 532 | HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { |
| 533 | MVT ElemTy = VecTy.getVectorElementType(); |
| 534 | MVT NewElemTy = MVT::getIntegerVT(BitWidth: ElemTy.getSizeInBits() / Factor); |
| 535 | return MVT::getVectorVT(VT: NewElemTy, NumElements: VecTy.getVectorNumElements()); |
| 536 | } |
| 537 | |
| 538 | SDValue |
| 539 | HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, |
| 540 | SelectionDAG &DAG) const { |
| 541 | if (ty(Op: Vec).getVectorElementType() == ElemTy) |
| 542 | return Vec; |
| 543 | MVT CastTy = tyVector(Ty: Vec.getValueType().getSimpleVT(), ElemTy); |
| 544 | return DAG.getBitcast(VT: CastTy, V: Vec); |
| 545 | } |
| 546 | |
| 547 | SDValue |
| 548 | HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, |
| 549 | SelectionDAG &DAG) const { |
| 550 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: typeJoin(Tys: ty(Ops)), |
| 551 | N1: Ops.first, N2: Ops.second); |
| 552 | } |
| 553 | |
| 554 | HexagonTargetLowering::VectorPair |
| 555 | HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, |
| 556 | SelectionDAG &DAG) const { |
| 557 | TypePair Tys = typeSplit(VecTy: ty(Op: Vec)); |
| 558 | if (Vec.getOpcode() == HexagonISD::QCAT) |
| 559 | return VectorPair(Vec.getOperand(i: 0), Vec.getOperand(i: 1)); |
| 560 | return DAG.SplitVector(N: Vec, DL: dl, LoVT: Tys.first, HiVT: Tys.second); |
| 561 | } |
| 562 | |
| 563 | bool |
| 564 | HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { |
| 565 | return Subtarget.isHVXVectorType(VecTy: Ty) && |
| 566 | Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); |
| 567 | } |
| 568 | |
| 569 | bool |
| 570 | HexagonTargetLowering::isHvxPairTy(MVT Ty) const { |
| 571 | return Subtarget.isHVXVectorType(VecTy: Ty) && |
| 572 | Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); |
| 573 | } |
| 574 | |
| 575 | bool |
| 576 | HexagonTargetLowering::isHvxBoolTy(MVT Ty) const { |
| 577 | return Subtarget.isHVXVectorType(VecTy: Ty, IncludeBool: true) && |
| 578 | Ty.getVectorElementType() == MVT::i1; |
| 579 | } |
| 580 | |
| 581 | bool HexagonTargetLowering::allowsHvxMemoryAccess( |
| 582 | MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { |
| 583 | // Bool vectors are excluded by default, but make it explicit to |
| 584 | // emphasize that bool vectors cannot be loaded or stored. |
| 585 | // Also, disallow double vector stores (to prevent unnecessary |
| 586 | // store widening in DAG combiner). |
| 587 | if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength()) |
| 588 | return false; |
| 589 | if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false)) |
| 590 | return false; |
| 591 | if (Fast) |
| 592 | *Fast = 1; |
| 593 | return true; |
| 594 | } |
| 595 | |
| 596 | bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses( |
| 597 | MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { |
| 598 | if (!Subtarget.isHVXVectorType(VecTy)) |
| 599 | return false; |
| 600 | // XXX Should this be false? vmemu are a bit slower than vmem. |
| 601 | if (Fast) |
| 602 | *Fast = 1; |
| 603 | return true; |
| 604 | } |
| 605 | |
| 606 | void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection( |
| 607 | MachineInstr &MI, SDNode *Node) const { |
| 608 | unsigned Opc = MI.getOpcode(); |
| 609 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 610 | MachineBasicBlock &MB = *MI.getParent(); |
| 611 | MachineFunction &MF = *MB.getParent(); |
| 612 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 613 | DebugLoc DL = MI.getDebugLoc(); |
| 614 | auto At = MI.getIterator(); |
| 615 | |
| 616 | switch (Opc) { |
| 617 | case Hexagon::PS_vsplatib: |
| 618 | if (Subtarget.useHVXV62Ops()) { |
| 619 | // SplatV = A2_tfrsi #imm |
| 620 | // OutV = V6_lvsplatb SplatV |
| 621 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 622 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::A2_tfrsi), DestReg: SplatV) |
| 623 | .add(MO: MI.getOperand(i: 1)); |
| 624 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 625 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplatb), DestReg: OutV) |
| 626 | .addReg(RegNo: SplatV); |
| 627 | } else { |
| 628 | // SplatV = A2_tfrsi #imm:#imm:#imm:#imm |
| 629 | // OutV = V6_lvsplatw SplatV |
| 630 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 631 | const MachineOperand &InpOp = MI.getOperand(i: 1); |
| 632 | assert(InpOp.isImm()); |
| 633 | uint32_t V = InpOp.getImm() & 0xFF; |
| 634 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::A2_tfrsi), DestReg: SplatV) |
| 635 | .addImm(Val: V << 24 | V << 16 | V << 8 | V); |
| 636 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 637 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplatw), DestReg: OutV).addReg(RegNo: SplatV); |
| 638 | } |
| 639 | MB.erase(I: At); |
| 640 | break; |
| 641 | case Hexagon::PS_vsplatrb: |
| 642 | if (Subtarget.useHVXV62Ops()) { |
| 643 | // OutV = V6_lvsplatb Inp |
| 644 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 645 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplatb), DestReg: OutV) |
| 646 | .add(MO: MI.getOperand(i: 1)); |
| 647 | } else { |
| 648 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 649 | const MachineOperand &InpOp = MI.getOperand(i: 1); |
| 650 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::S2_vsplatrb), DestReg: SplatV) |
| 651 | .addReg(RegNo: InpOp.getReg(), flags: 0, SubReg: InpOp.getSubReg()); |
| 652 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 653 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplatw), DestReg: OutV) |
| 654 | .addReg(RegNo: SplatV); |
| 655 | } |
| 656 | MB.erase(I: At); |
| 657 | break; |
| 658 | case Hexagon::PS_vsplatih: |
| 659 | if (Subtarget.useHVXV62Ops()) { |
| 660 | // SplatV = A2_tfrsi #imm |
| 661 | // OutV = V6_lvsplath SplatV |
| 662 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 663 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::A2_tfrsi), DestReg: SplatV) |
| 664 | .add(MO: MI.getOperand(i: 1)); |
| 665 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 666 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplath), DestReg: OutV) |
| 667 | .addReg(RegNo: SplatV); |
| 668 | } else { |
| 669 | // SplatV = A2_tfrsi #imm:#imm |
| 670 | // OutV = V6_lvsplatw SplatV |
| 671 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 672 | const MachineOperand &InpOp = MI.getOperand(i: 1); |
| 673 | assert(InpOp.isImm()); |
| 674 | uint32_t V = InpOp.getImm() & 0xFFFF; |
| 675 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::A2_tfrsi), DestReg: SplatV) |
| 676 | .addImm(Val: V << 16 | V); |
| 677 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 678 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplatw), DestReg: OutV).addReg(RegNo: SplatV); |
| 679 | } |
| 680 | MB.erase(I: At); |
| 681 | break; |
| 682 | case Hexagon::PS_vsplatrh: |
| 683 | if (Subtarget.useHVXV62Ops()) { |
| 684 | // OutV = V6_lvsplath Inp |
| 685 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 686 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplath), DestReg: OutV) |
| 687 | .add(MO: MI.getOperand(i: 1)); |
| 688 | } else { |
| 689 | // SplatV = A2_combine_ll Inp, Inp |
| 690 | // OutV = V6_lvsplatw SplatV |
| 691 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 692 | const MachineOperand &InpOp = MI.getOperand(i: 1); |
| 693 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::A2_combine_ll), DestReg: SplatV) |
| 694 | .addReg(RegNo: InpOp.getReg(), flags: 0, SubReg: InpOp.getSubReg()) |
| 695 | .addReg(RegNo: InpOp.getReg(), flags: 0, SubReg: InpOp.getSubReg()); |
| 696 | Register OutV = MI.getOperand(i: 0).getReg(); |
| 697 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::V6_lvsplatw), DestReg: OutV).addReg(RegNo: SplatV); |
| 698 | } |
| 699 | MB.erase(I: At); |
| 700 | break; |
| 701 | case Hexagon::PS_vsplatiw: |
| 702 | case Hexagon::PS_vsplatrw: |
| 703 | if (Opc == Hexagon::PS_vsplatiw) { |
| 704 | // SplatV = A2_tfrsi #imm |
| 705 | Register SplatV = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 706 | BuildMI(BB&: MB, I: At, MIMD: DL, MCID: TII.get(Opcode: Hexagon::A2_tfrsi), DestReg: SplatV) |
| 707 | .add(MO: MI.getOperand(i: 1)); |
| 708 | MI.getOperand(i: 1).ChangeToRegister(Reg: SplatV, isDef: false); |
| 709 | } |
| 710 | // OutV = V6_lvsplatw SplatV/Inp |
| 711 | MI.setDesc(TII.get(Opcode: Hexagon::V6_lvsplatw)); |
| 712 | break; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | SDValue |
| 717 | HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, |
| 718 | SelectionDAG &DAG) const { |
| 719 | if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) |
| 720 | ElemIdx = DAG.getBitcast(VT: MVT::i32, V: ElemIdx); |
| 721 | |
| 722 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 723 | if (ElemWidth == 8) |
| 724 | return ElemIdx; |
| 725 | |
| 726 | unsigned L = Log2_32(Value: ElemWidth/8); |
| 727 | const SDLoc &dl(ElemIdx); |
| 728 | return DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: MVT::i32, |
| 729 | Ops: {ElemIdx, DAG.getConstant(Val: L, DL: dl, VT: MVT::i32)}); |
| 730 | } |
| 731 | |
| 732 | SDValue |
| 733 | HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, |
| 734 | SelectionDAG &DAG) const { |
| 735 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 736 | assert(ElemWidth >= 8 && ElemWidth <= 32); |
| 737 | if (ElemWidth == 32) |
| 738 | return Idx; |
| 739 | |
| 740 | if (ty(Op: Idx) != MVT::i32) |
| 741 | Idx = DAG.getBitcast(VT: MVT::i32, V: Idx); |
| 742 | const SDLoc &dl(Idx); |
| 743 | SDValue Mask = DAG.getConstant(Val: 32/ElemWidth - 1, DL: dl, VT: MVT::i32); |
| 744 | SDValue SubIdx = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MVT::i32, Ops: {Idx, Mask}); |
| 745 | return SubIdx; |
| 746 | } |
| 747 | |
| 748 | SDValue |
| 749 | HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, |
| 750 | SDValue Op1, ArrayRef<int> Mask, |
| 751 | SelectionDAG &DAG) const { |
| 752 | MVT OpTy = ty(Op: Op0); |
| 753 | assert(OpTy == ty(Op1)); |
| 754 | |
| 755 | MVT ElemTy = OpTy.getVectorElementType(); |
| 756 | if (ElemTy == MVT::i8) |
| 757 | return DAG.getVectorShuffle(VT: OpTy, dl, N1: Op0, N2: Op1, Mask); |
| 758 | assert(ElemTy.getSizeInBits() >= 8); |
| 759 | |
| 760 | MVT ResTy = tyVector(Ty: OpTy, ElemTy: MVT::i8); |
| 761 | unsigned ElemSize = ElemTy.getSizeInBits() / 8; |
| 762 | |
| 763 | SmallVector<int,128> ByteMask; |
| 764 | for (int M : Mask) { |
| 765 | if (M < 0) { |
| 766 | for (unsigned I = 0; I != ElemSize; ++I) |
| 767 | ByteMask.push_back(Elt: -1); |
| 768 | } else { |
| 769 | int NewM = M*ElemSize; |
| 770 | for (unsigned I = 0; I != ElemSize; ++I) |
| 771 | ByteMask.push_back(Elt: NewM+I); |
| 772 | } |
| 773 | } |
| 774 | assert(ResTy.getVectorNumElements() == ByteMask.size()); |
| 775 | return DAG.getVectorShuffle(VT: ResTy, dl, N1: opCastElem(Vec: Op0, ElemTy: MVT::i8, DAG), |
| 776 | N2: opCastElem(Vec: Op1, ElemTy: MVT::i8, DAG), Mask: ByteMask); |
| 777 | } |
| 778 | |
| 779 | SDValue |
| 780 | HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, |
| 781 | const SDLoc &dl, MVT VecTy, |
| 782 | SelectionDAG &DAG) const { |
| 783 | unsigned VecLen = Values.size(); |
| 784 | MachineFunction &MF = DAG.getMachineFunction(); |
| 785 | MVT ElemTy = VecTy.getVectorElementType(); |
| 786 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 787 | unsigned HwLen = Subtarget.getVectorLength(); |
| 788 | |
| 789 | unsigned ElemSize = ElemWidth / 8; |
| 790 | assert(ElemSize*VecLen == HwLen); |
| 791 | SmallVector<SDValue,32> Words; |
| 792 | |
| 793 | if (VecTy.getVectorElementType() != MVT::i32 && |
| 794 | !(Subtarget.useHVXFloatingPoint() && |
| 795 | VecTy.getVectorElementType() == MVT::f32)) { |
| 796 | assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size" ); |
| 797 | unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; |
| 798 | MVT PartVT = MVT::getVectorVT(VT: VecTy.getVectorElementType(), NumElements: OpsPerWord); |
| 799 | for (unsigned i = 0; i != VecLen; i += OpsPerWord) { |
| 800 | SDValue W = buildVector32(Elem: Values.slice(N: i, M: OpsPerWord), dl, VecTy: PartVT, DAG); |
| 801 | Words.push_back(Elt: DAG.getBitcast(VT: MVT::i32, V: W)); |
| 802 | } |
| 803 | } else { |
| 804 | for (SDValue V : Values) |
| 805 | Words.push_back(Elt: DAG.getBitcast(VT: MVT::i32, V)); |
| 806 | } |
| 807 | auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) { |
| 808 | unsigned NumValues = Values.size(); |
| 809 | assert(NumValues > 0); |
| 810 | bool IsUndef = true; |
| 811 | for (unsigned i = 0; i != NumValues; ++i) { |
| 812 | if (Values[i].isUndef()) |
| 813 | continue; |
| 814 | IsUndef = false; |
| 815 | if (!SplatV.getNode()) |
| 816 | SplatV = Values[i]; |
| 817 | else if (SplatV != Values[i]) |
| 818 | return false; |
| 819 | } |
| 820 | if (IsUndef) |
| 821 | SplatV = Values[0]; |
| 822 | return true; |
| 823 | }; |
| 824 | |
| 825 | unsigned NumWords = Words.size(); |
| 826 | SDValue SplatV; |
| 827 | bool IsSplat = isSplat(Words, SplatV); |
| 828 | if (IsSplat && isUndef(Op: SplatV)) |
| 829 | return DAG.getUNDEF(VT: VecTy); |
| 830 | if (IsSplat) { |
| 831 | assert(SplatV.getNode()); |
| 832 | if (isNullConstant(V: SplatV)) |
| 833 | return getZero(dl, Ty: VecTy, DAG); |
| 834 | MVT WordTy = MVT::getVectorVT(VT: MVT::i32, NumElements: HwLen/4); |
| 835 | SDValue S = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: WordTy, Operand: SplatV); |
| 836 | return DAG.getBitcast(VT: VecTy, V: S); |
| 837 | } |
| 838 | |
| 839 | // Delay recognizing constant vectors until here, so that we can generate |
| 840 | // a vsplat. |
| 841 | SmallVector<ConstantInt*, 128> Consts(VecLen); |
| 842 | bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); |
| 843 | if (AllConst) { |
| 844 | ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), |
| 845 | (Constant**)Consts.end()); |
| 846 | Constant *CV = ConstantVector::get(V: Tmp); |
| 847 | Align Alignment(HwLen); |
| 848 | SDValue CP = |
| 849 | LowerConstantPool(Op: DAG.getConstantPool(C: CV, VT: VecTy, Align: Alignment), DAG); |
| 850 | return DAG.getLoad(VT: VecTy, dl, Chain: DAG.getEntryNode(), Ptr: CP, |
| 851 | PtrInfo: MachinePointerInfo::getConstantPool(MF), Alignment); |
| 852 | } |
| 853 | |
| 854 | // A special case is a situation where the vector is built entirely from |
| 855 | // elements extracted from another vector. This could be done via a shuffle |
| 856 | // more efficiently, but typically, the size of the source vector will not |
| 857 | // match the size of the vector being built (which precludes the use of a |
| 858 | // shuffle directly). |
| 859 | // This only handles a single source vector, and the vector being built |
| 860 | // should be of a sub-vector type of the source vector type. |
| 861 | auto = [this,&Values] (SDValue &SrcVec, |
| 862 | SmallVectorImpl<int> &SrcIdx) { |
| 863 | SDValue Vec; |
| 864 | for (SDValue V : Values) { |
| 865 | if (isUndef(Op: V)) { |
| 866 | SrcIdx.push_back(Elt: -1); |
| 867 | continue; |
| 868 | } |
| 869 | if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| 870 | return false; |
| 871 | // All extracts should come from the same vector. |
| 872 | SDValue T = V.getOperand(i: 0); |
| 873 | if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) |
| 874 | return false; |
| 875 | Vec = T; |
| 876 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: V.getOperand(i: 1)); |
| 877 | if (C == nullptr) |
| 878 | return false; |
| 879 | int I = C->getSExtValue(); |
| 880 | assert(I >= 0 && "Negative element index" ); |
| 881 | SrcIdx.push_back(Elt: I); |
| 882 | } |
| 883 | SrcVec = Vec; |
| 884 | return true; |
| 885 | }; |
| 886 | |
| 887 | SmallVector<int,128> ExtIdx; |
| 888 | SDValue ExtVec; |
| 889 | if (IsBuildFromExtracts(ExtVec, ExtIdx)) { |
| 890 | MVT ExtTy = ty(Op: ExtVec); |
| 891 | unsigned ExtLen = ExtTy.getVectorNumElements(); |
| 892 | if (ExtLen == VecLen || ExtLen == 2*VecLen) { |
| 893 | // Construct a new shuffle mask that will produce a vector with the same |
| 894 | // number of elements as the input vector, and such that the vector we |
| 895 | // want will be the initial subvector of it. |
| 896 | SmallVector<int,128> Mask; |
| 897 | BitVector Used(ExtLen); |
| 898 | |
| 899 | for (int M : ExtIdx) { |
| 900 | Mask.push_back(Elt: M); |
| 901 | if (M >= 0) |
| 902 | Used.set(M); |
| 903 | } |
| 904 | // Fill the rest of the mask with the unused elements of ExtVec in hopes |
| 905 | // that it will result in a permutation of ExtVec's elements. It's still |
| 906 | // fine if it doesn't (e.g. if undefs are present, or elements are |
| 907 | // repeated), but permutations can always be done efficiently via vdelta |
| 908 | // and vrdelta. |
| 909 | for (unsigned I = 0; I != ExtLen; ++I) { |
| 910 | if (Mask.size() == ExtLen) |
| 911 | break; |
| 912 | if (!Used.test(Idx: I)) |
| 913 | Mask.push_back(Elt: I); |
| 914 | } |
| 915 | |
| 916 | SDValue S = DAG.getVectorShuffle(VT: ExtTy, dl, N1: ExtVec, |
| 917 | N2: DAG.getUNDEF(VT: ExtTy), Mask); |
| 918 | return ExtLen == VecLen ? S : LoHalf(V: S, DAG); |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | // Find most common element to initialize vector with. This is to avoid |
| 923 | // unnecessary vinsert/valign for cases where the same value is present |
| 924 | // many times. Creates a histogram of the vector's elements to find the |
| 925 | // most common element n. |
| 926 | assert(4*Words.size() == Subtarget.getVectorLength()); |
| 927 | int VecHist[32]; |
| 928 | int n = 0; |
| 929 | for (unsigned i = 0; i != NumWords; ++i) { |
| 930 | VecHist[i] = 0; |
| 931 | if (Words[i].isUndef()) |
| 932 | continue; |
| 933 | for (unsigned j = i; j != NumWords; ++j) |
| 934 | if (Words[i] == Words[j]) |
| 935 | VecHist[i]++; |
| 936 | |
| 937 | if (VecHist[i] > VecHist[n]) |
| 938 | n = i; |
| 939 | } |
| 940 | |
| 941 | SDValue HalfV = getZero(dl, Ty: VecTy, DAG); |
| 942 | if (VecHist[n] > 1) { |
| 943 | SDValue SplatV = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: VecTy, Operand: Words[n]); |
| 944 | HalfV = DAG.getNode(Opcode: HexagonISD::VALIGN, DL: dl, VT: VecTy, |
| 945 | Ops: {HalfV, SplatV, DAG.getConstant(Val: HwLen/2, DL: dl, VT: MVT::i32)}); |
| 946 | } |
| 947 | SDValue HalfV0 = HalfV; |
| 948 | SDValue HalfV1 = HalfV; |
| 949 | |
| 950 | // Construct two halves in parallel, then or them together. Rn and Rm count |
| 951 | // number of rotations needed before the next element. One last rotation is |
| 952 | // performed post-loop to position the last element. |
| 953 | int Rn = 0, Rm = 0; |
| 954 | SDValue Sn, Sm; |
| 955 | SDValue N = HalfV0; |
| 956 | SDValue M = HalfV1; |
| 957 | for (unsigned i = 0; i != NumWords/2; ++i) { |
| 958 | // Rotate by element count since last insertion. |
| 959 | if (Words[i] != Words[n] || VecHist[n] <= 1) { |
| 960 | Sn = DAG.getConstant(Val: Rn, DL: dl, VT: MVT::i32); |
| 961 | HalfV0 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {N, Sn}); |
| 962 | N = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: VecTy, |
| 963 | Ops: {HalfV0, Words[i]}); |
| 964 | Rn = 0; |
| 965 | } |
| 966 | if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) { |
| 967 | Sm = DAG.getConstant(Val: Rm, DL: dl, VT: MVT::i32); |
| 968 | HalfV1 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {M, Sm}); |
| 969 | M = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: VecTy, |
| 970 | Ops: {HalfV1, Words[i+NumWords/2]}); |
| 971 | Rm = 0; |
| 972 | } |
| 973 | Rn += 4; |
| 974 | Rm += 4; |
| 975 | } |
| 976 | // Perform last rotation. |
| 977 | Sn = DAG.getConstant(Val: Rn+HwLen/2, DL: dl, VT: MVT::i32); |
| 978 | Sm = DAG.getConstant(Val: Rm, DL: dl, VT: MVT::i32); |
| 979 | HalfV0 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {N, Sn}); |
| 980 | HalfV1 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {M, Sm}); |
| 981 | |
| 982 | SDValue T0 = DAG.getBitcast(VT: tyVector(Ty: VecTy, ElemTy: MVT::i32), V: HalfV0); |
| 983 | SDValue T1 = DAG.getBitcast(VT: tyVector(Ty: VecTy, ElemTy: MVT::i32), V: HalfV1); |
| 984 | |
| 985 | SDValue DstV = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ty(Op: T0), Ops: {T0, T1}); |
| 986 | |
| 987 | SDValue OutV = |
| 988 | DAG.getBitcast(VT: tyVector(Ty: ty(Op: DstV), ElemTy: VecTy.getVectorElementType()), V: DstV); |
| 989 | return OutV; |
| 990 | } |
| 991 | |
| 992 | SDValue |
| 993 | HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, |
| 994 | unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { |
| 995 | MVT PredTy = ty(Op: PredV); |
| 996 | unsigned HwLen = Subtarget.getVectorLength(); |
| 997 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 998 | |
| 999 | if (Subtarget.isHVXVectorType(VecTy: PredTy, IncludeBool: true)) { |
| 1000 | // Move the vector predicate SubV to a vector register, and scale it |
| 1001 | // down to match the representation (bytes per type element) that VecV |
| 1002 | // uses. The scaling down will pick every 2nd or 4th (every Scale-th |
| 1003 | // in general) element and put them at the front of the resulting |
| 1004 | // vector. This subvector will then be inserted into the Q2V of VecV. |
| 1005 | // To avoid having an operation that generates an illegal type (short |
| 1006 | // vector), generate a full size vector. |
| 1007 | // |
| 1008 | SDValue T = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: PredV); |
| 1009 | SmallVector<int,128> Mask(HwLen); |
| 1010 | // Scale = BitBytes(PredV) / Given BitBytes. |
| 1011 | unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); |
| 1012 | unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; |
| 1013 | |
| 1014 | for (unsigned i = 0; i != HwLen; ++i) { |
| 1015 | unsigned Num = i % Scale; |
| 1016 | unsigned Off = i / Scale; |
| 1017 | Mask[BlockLen*Num + Off] = i; |
| 1018 | } |
| 1019 | SDValue S = DAG.getVectorShuffle(VT: ByteTy, dl, N1: T, N2: DAG.getUNDEF(VT: ByteTy), Mask); |
| 1020 | if (!ZeroFill) |
| 1021 | return S; |
| 1022 | // Fill the bytes beyond BlockLen with 0s. |
| 1023 | // V6_pred_scalar2 cannot fill the entire predicate, so it only works |
| 1024 | // when BlockLen < HwLen. |
| 1025 | assert(BlockLen < HwLen && "vsetq(v1) prerequisite" ); |
| 1026 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 1027 | SDValue Q = getInstr(MachineOpc: Hexagon::V6_pred_scalar2, dl, Ty: BoolTy, |
| 1028 | Ops: {DAG.getConstant(Val: BlockLen, DL: dl, VT: MVT::i32)}, DAG); |
| 1029 | SDValue M = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: Q); |
| 1030 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ByteTy, N1: S, N2: M); |
| 1031 | } |
| 1032 | |
| 1033 | // Make sure that this is a valid scalar predicate. |
| 1034 | assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); |
| 1035 | |
| 1036 | unsigned Bytes = 8 / PredTy.getVectorNumElements(); |
| 1037 | SmallVector<SDValue,4> Words[2]; |
| 1038 | unsigned IdxW = 0; |
| 1039 | |
| 1040 | SDValue W0 = isUndef(Op: PredV) |
| 1041 | ? DAG.getUNDEF(VT: MVT::i64) |
| 1042 | : DAG.getNode(Opcode: HexagonISD::P2D, DL: dl, VT: MVT::i64, Operand: PredV); |
| 1043 | Words[IdxW].push_back(Elt: HiHalf(V: W0, DAG)); |
| 1044 | Words[IdxW].push_back(Elt: LoHalf(V: W0, DAG)); |
| 1045 | |
| 1046 | while (Bytes < BitBytes) { |
| 1047 | IdxW ^= 1; |
| 1048 | Words[IdxW].clear(); |
| 1049 | |
| 1050 | if (Bytes < 4) { |
| 1051 | for (const SDValue &W : Words[IdxW ^ 1]) { |
| 1052 | SDValue T = expandPredicate(Vec32: W, dl, DAG); |
| 1053 | Words[IdxW].push_back(Elt: HiHalf(V: T, DAG)); |
| 1054 | Words[IdxW].push_back(Elt: LoHalf(V: T, DAG)); |
| 1055 | } |
| 1056 | } else { |
| 1057 | for (const SDValue &W : Words[IdxW ^ 1]) { |
| 1058 | Words[IdxW].push_back(Elt: W); |
| 1059 | Words[IdxW].push_back(Elt: W); |
| 1060 | } |
| 1061 | } |
| 1062 | Bytes *= 2; |
| 1063 | } |
| 1064 | |
| 1065 | assert(Bytes == BitBytes); |
| 1066 | |
| 1067 | SDValue Vec = ZeroFill ? getZero(dl, Ty: ByteTy, DAG) : DAG.getUNDEF(VT: ByteTy); |
| 1068 | SDValue S4 = DAG.getConstant(Val: HwLen-4, DL: dl, VT: MVT::i32); |
| 1069 | for (const SDValue &W : Words[IdxW]) { |
| 1070 | Vec = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: Vec, N2: S4); |
| 1071 | Vec = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: ByteTy, N1: Vec, N2: W); |
| 1072 | } |
| 1073 | |
| 1074 | return Vec; |
| 1075 | } |
| 1076 | |
| 1077 | SDValue |
| 1078 | HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, |
| 1079 | const SDLoc &dl, MVT VecTy, |
| 1080 | SelectionDAG &DAG) const { |
| 1081 | // Construct a vector V of bytes, such that a comparison V >u 0 would |
| 1082 | // produce the required vector predicate. |
| 1083 | unsigned VecLen = Values.size(); |
| 1084 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1085 | assert(VecLen <= HwLen || VecLen == 8*HwLen); |
| 1086 | SmallVector<SDValue,128> Bytes; |
| 1087 | bool AllT = true, AllF = true; |
| 1088 | |
| 1089 | auto IsTrue = [] (SDValue V) { |
| 1090 | if (const auto *N = dyn_cast<ConstantSDNode>(Val: V.getNode())) |
| 1091 | return !N->isZero(); |
| 1092 | return false; |
| 1093 | }; |
| 1094 | auto IsFalse = [] (SDValue V) { |
| 1095 | if (const auto *N = dyn_cast<ConstantSDNode>(Val: V.getNode())) |
| 1096 | return N->isZero(); |
| 1097 | return false; |
| 1098 | }; |
| 1099 | |
| 1100 | if (VecLen <= HwLen) { |
| 1101 | // In the hardware, each bit of a vector predicate corresponds to a byte |
| 1102 | // of a vector register. Calculate how many bytes does a bit of VecTy |
| 1103 | // correspond to. |
| 1104 | assert(HwLen % VecLen == 0); |
| 1105 | unsigned BitBytes = HwLen / VecLen; |
| 1106 | for (SDValue V : Values) { |
| 1107 | AllT &= IsTrue(V); |
| 1108 | AllF &= IsFalse(V); |
| 1109 | |
| 1110 | SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(Op: V, DL: dl, VT: MVT::i8) |
| 1111 | : DAG.getUNDEF(VT: MVT::i8); |
| 1112 | for (unsigned B = 0; B != BitBytes; ++B) |
| 1113 | Bytes.push_back(Elt: Ext); |
| 1114 | } |
| 1115 | } else { |
| 1116 | // There are as many i1 values, as there are bits in a vector register. |
| 1117 | // Divide the values into groups of 8 and check that each group consists |
| 1118 | // of the same value (ignoring undefs). |
| 1119 | for (unsigned I = 0; I != VecLen; I += 8) { |
| 1120 | unsigned B = 0; |
| 1121 | // Find the first non-undef value in this group. |
| 1122 | for (; B != 8; ++B) { |
| 1123 | if (!Values[I+B].isUndef()) |
| 1124 | break; |
| 1125 | } |
| 1126 | SDValue F = Values[I+B]; |
| 1127 | AllT &= IsTrue(F); |
| 1128 | AllF &= IsFalse(F); |
| 1129 | |
| 1130 | SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(Op: F, DL: dl, VT: MVT::i8) |
| 1131 | : DAG.getUNDEF(VT: MVT::i8); |
| 1132 | Bytes.push_back(Elt: Ext); |
| 1133 | // Verify that the rest of values in the group are the same as the |
| 1134 | // first. |
| 1135 | for (; B != 8; ++B) |
| 1136 | assert(Values[I+B].isUndef() || Values[I+B] == F); |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | if (AllT) |
| 1141 | return DAG.getNode(Opcode: HexagonISD::QTRUE, DL: dl, VT: VecTy); |
| 1142 | if (AllF) |
| 1143 | return DAG.getNode(Opcode: HexagonISD::QFALSE, DL: dl, VT: VecTy); |
| 1144 | |
| 1145 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1146 | SDValue ByteVec = buildHvxVectorReg(Values: Bytes, dl, VecTy: ByteTy, DAG); |
| 1147 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: VecTy, Operand: ByteVec); |
| 1148 | } |
| 1149 | |
| 1150 | SDValue |
| 1151 | HexagonTargetLowering::(SDValue VecV, SDValue IdxV, |
| 1152 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 1153 | MVT ElemTy = ty(Op: VecV).getVectorElementType(); |
| 1154 | |
| 1155 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 1156 | assert(ElemWidth >= 8 && ElemWidth <= 32); |
| 1157 | (void)ElemWidth; |
| 1158 | |
| 1159 | SDValue ByteIdx = convertToByteIndex(ElemIdx: IdxV, ElemTy, DAG); |
| 1160 | SDValue ExWord = DAG.getNode(Opcode: HexagonISD::VEXTRACTW, DL: dl, VT: MVT::i32, |
| 1161 | Ops: {VecV, ByteIdx}); |
| 1162 | if (ElemTy == MVT::i32) |
| 1163 | return ExWord; |
| 1164 | |
| 1165 | // Have an extracted word, need to extract the smaller element out of it. |
| 1166 | // 1. Extract the bits of (the original) IdxV that correspond to the index |
| 1167 | // of the desired element in the 32-bit word. |
| 1168 | SDValue SubIdx = getIndexInWord32(Idx: IdxV, ElemTy, DAG); |
| 1169 | // 2. Extract the element from the word. |
| 1170 | SDValue ExVec = DAG.getBitcast(VT: tyVector(Ty: ty(Op: ExWord), ElemTy), V: ExWord); |
| 1171 | return extractVector(VecV: ExVec, IdxV: SubIdx, dl, ValTy: ElemTy, ResTy: MVT::i32, DAG); |
| 1172 | } |
| 1173 | |
| 1174 | SDValue |
| 1175 | HexagonTargetLowering::(SDValue VecV, SDValue IdxV, |
| 1176 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 1177 | // Implement other return types if necessary. |
| 1178 | assert(ResTy == MVT::i1); |
| 1179 | |
| 1180 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1181 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1182 | SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV); |
| 1183 | |
| 1184 | unsigned Scale = HwLen / ty(Op: VecV).getVectorNumElements(); |
| 1185 | SDValue ScV = DAG.getConstant(Val: Scale, DL: dl, VT: MVT::i32); |
| 1186 | IdxV = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MVT::i32, N1: IdxV, N2: ScV); |
| 1187 | |
| 1188 | SDValue ExtB = extractHvxElementReg(VecV: ByteVec, IdxV, dl, ResTy: MVT::i32, DAG); |
| 1189 | SDValue Zero = DAG.getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 1190 | return getInstr(MachineOpc: Hexagon::C2_cmpgtui, dl, Ty: MVT::i1, Ops: {ExtB, Zero}, DAG); |
| 1191 | } |
| 1192 | |
| 1193 | SDValue |
| 1194 | HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, |
| 1195 | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 1196 | MVT ElemTy = ty(Op: VecV).getVectorElementType(); |
| 1197 | |
| 1198 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 1199 | assert(ElemWidth >= 8 && ElemWidth <= 32); |
| 1200 | (void)ElemWidth; |
| 1201 | |
| 1202 | auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, |
| 1203 | SDValue ByteIdxV) { |
| 1204 | MVT VecTy = ty(Op: VecV); |
| 1205 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1206 | SDValue MaskV = |
| 1207 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MVT::i32, |
| 1208 | Ops: {ByteIdxV, DAG.getSignedConstant(Val: -4, DL: dl, VT: MVT::i32)}); |
| 1209 | SDValue RotV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {VecV, MaskV}); |
| 1210 | SDValue InsV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: VecTy, Ops: {RotV, ValV}); |
| 1211 | SDValue SubV = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, |
| 1212 | Ops: {DAG.getConstant(Val: HwLen, DL: dl, VT: MVT::i32), MaskV}); |
| 1213 | SDValue TorV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {InsV, SubV}); |
| 1214 | return TorV; |
| 1215 | }; |
| 1216 | |
| 1217 | SDValue ByteIdx = convertToByteIndex(ElemIdx: IdxV, ElemTy, DAG); |
| 1218 | if (ElemTy == MVT::i32) |
| 1219 | return InsertWord(VecV, ValV, ByteIdx); |
| 1220 | |
| 1221 | // If this is not inserting a 32-bit word, convert it into such a thing. |
| 1222 | // 1. Extract the existing word from the target vector. |
| 1223 | SDValue WordIdx = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: MVT::i32, |
| 1224 | Ops: {ByteIdx, DAG.getConstant(Val: 2, DL: dl, VT: MVT::i32)}); |
| 1225 | SDValue Ext = extractHvxElementReg(VecV: opCastElem(Vec: VecV, ElemTy: MVT::i32, DAG), IdxV: WordIdx, |
| 1226 | dl, ResTy: MVT::i32, DAG); |
| 1227 | |
| 1228 | // 2. Treating the extracted word as a 32-bit vector, insert the given |
| 1229 | // value into it. |
| 1230 | SDValue SubIdx = getIndexInWord32(Idx: IdxV, ElemTy, DAG); |
| 1231 | MVT SubVecTy = tyVector(Ty: ty(Op: Ext), ElemTy); |
| 1232 | SDValue Ins = insertVector(VecV: DAG.getBitcast(VT: SubVecTy, V: Ext), |
| 1233 | ValV, IdxV: SubIdx, dl, ValTy: ElemTy, DAG); |
| 1234 | |
| 1235 | // 3. Insert the 32-bit word back into the original vector. |
| 1236 | return InsertWord(VecV, Ins, ByteIdx); |
| 1237 | } |
| 1238 | |
| 1239 | SDValue |
| 1240 | HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, |
| 1241 | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 1242 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1243 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1244 | SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV); |
| 1245 | |
| 1246 | unsigned Scale = HwLen / ty(Op: VecV).getVectorNumElements(); |
| 1247 | SDValue ScV = DAG.getConstant(Val: Scale, DL: dl, VT: MVT::i32); |
| 1248 | IdxV = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MVT::i32, N1: IdxV, N2: ScV); |
| 1249 | ValV = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: MVT::i32, Operand: ValV); |
| 1250 | |
| 1251 | SDValue InsV = insertHvxElementReg(VecV: ByteVec, IdxV, ValV, dl, DAG); |
| 1252 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ty(Op: VecV), Operand: InsV); |
| 1253 | } |
| 1254 | |
| 1255 | SDValue |
| 1256 | HexagonTargetLowering::(SDValue OrigOp, SDValue VecV, |
| 1257 | SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 1258 | MVT VecTy = ty(Op: VecV); |
| 1259 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1260 | unsigned Idx = IdxV.getNode()->getAsZExtVal(); |
| 1261 | MVT ElemTy = VecTy.getVectorElementType(); |
| 1262 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 1263 | |
| 1264 | // If the source vector is a vector pair, get the single vector containing |
| 1265 | // the subvector of interest. The subvector will never overlap two single |
| 1266 | // vectors. |
| 1267 | if (isHvxPairTy(Ty: VecTy)) { |
| 1268 | unsigned SubIdx = Hexagon::vsub_lo; |
| 1269 | if (Idx * ElemWidth >= 8 * HwLen) { |
| 1270 | SubIdx = Hexagon::vsub_hi; |
| 1271 | Idx -= VecTy.getVectorNumElements() / 2; |
| 1272 | } |
| 1273 | |
| 1274 | VecTy = typeSplit(VecTy).first; |
| 1275 | VecV = DAG.getTargetExtractSubreg(SRIdx: SubIdx, DL: dl, VT: VecTy, Operand: VecV); |
| 1276 | if (VecTy == ResTy) |
| 1277 | return VecV; |
| 1278 | } |
| 1279 | |
| 1280 | // The only meaningful subvectors of a single HVX vector are those that |
| 1281 | // fit in a scalar register. |
| 1282 | assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); |
| 1283 | |
| 1284 | MVT WordTy = tyVector(Ty: VecTy, ElemTy: MVT::i32); |
| 1285 | SDValue WordVec = DAG.getBitcast(VT: WordTy, V: VecV); |
| 1286 | unsigned WordIdx = (Idx*ElemWidth) / 32; |
| 1287 | |
| 1288 | SDValue W0Idx = DAG.getConstant(Val: WordIdx, DL: dl, VT: MVT::i32); |
| 1289 | SDValue W0 = extractHvxElementReg(VecV: WordVec, IdxV: W0Idx, dl, ResTy: MVT::i32, DAG); |
| 1290 | if (ResTy.getSizeInBits() == 32) |
| 1291 | return DAG.getBitcast(VT: ResTy, V: W0); |
| 1292 | |
| 1293 | SDValue W1Idx = DAG.getConstant(Val: WordIdx+1, DL: dl, VT: MVT::i32); |
| 1294 | SDValue W1 = extractHvxElementReg(VecV: WordVec, IdxV: W1Idx, dl, ResTy: MVT::i32, DAG); |
| 1295 | SDValue WW = getCombine(Hi: W1, Lo: W0, dl, ResTy: MVT::i64, DAG); |
| 1296 | return DAG.getBitcast(VT: ResTy, V: WW); |
| 1297 | } |
| 1298 | |
| 1299 | SDValue |
| 1300 | HexagonTargetLowering::(SDValue VecV, SDValue IdxV, |
| 1301 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 1302 | MVT VecTy = ty(Op: VecV); |
| 1303 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1304 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1305 | SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV); |
| 1306 | // IdxV is required to be a constant. |
| 1307 | unsigned Idx = IdxV.getNode()->getAsZExtVal(); |
| 1308 | |
| 1309 | unsigned ResLen = ResTy.getVectorNumElements(); |
| 1310 | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); |
| 1311 | unsigned Offset = Idx * BitBytes; |
| 1312 | SDValue Undef = DAG.getUNDEF(VT: ByteTy); |
| 1313 | SmallVector<int,128> Mask; |
| 1314 | |
| 1315 | if (Subtarget.isHVXVectorType(VecTy: ResTy, IncludeBool: true)) { |
| 1316 | // Converting between two vector predicates. Since the result is shorter |
| 1317 | // than the source, it will correspond to a vector predicate with the |
| 1318 | // relevant bits replicated. The replication count is the ratio of the |
| 1319 | // source and target vector lengths. |
| 1320 | unsigned Rep = VecTy.getVectorNumElements() / ResLen; |
| 1321 | assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); |
| 1322 | for (unsigned i = 0; i != HwLen/Rep; ++i) { |
| 1323 | for (unsigned j = 0; j != Rep; ++j) |
| 1324 | Mask.push_back(Elt: i + Offset); |
| 1325 | } |
| 1326 | SDValue ShuffV = DAG.getVectorShuffle(VT: ByteTy, dl, N1: ByteVec, N2: Undef, Mask); |
| 1327 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ResTy, Operand: ShuffV); |
| 1328 | } |
| 1329 | |
| 1330 | // Converting between a vector predicate and a scalar predicate. In the |
| 1331 | // vector predicate, a group of BitBytes bits will correspond to a single |
| 1332 | // i1 element of the source vector type. Those bits will all have the same |
| 1333 | // value. The same will be true for ByteVec, where each byte corresponds |
| 1334 | // to a bit in the vector predicate. |
| 1335 | // The algorithm is to traverse the ByteVec, going over the i1 values from |
| 1336 | // the source vector, and generate the corresponding representation in an |
| 1337 | // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the |
| 1338 | // elements so that the interesting 8 bytes will be in the low end of the |
| 1339 | // vector. |
| 1340 | unsigned Rep = 8 / ResLen; |
| 1341 | // Make sure the output fill the entire vector register, so repeat the |
| 1342 | // 8-byte groups as many times as necessary. |
| 1343 | for (unsigned r = 0; r != HwLen/ResLen; ++r) { |
| 1344 | // This will generate the indexes of the 8 interesting bytes. |
| 1345 | for (unsigned i = 0; i != ResLen; ++i) { |
| 1346 | for (unsigned j = 0; j != Rep; ++j) |
| 1347 | Mask.push_back(Elt: Offset + i*BitBytes); |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | SDValue Zero = getZero(dl, Ty: MVT::i32, DAG); |
| 1352 | SDValue ShuffV = DAG.getVectorShuffle(VT: ByteTy, dl, N1: ByteVec, N2: Undef, Mask); |
| 1353 | // Combine the two low words from ShuffV into a v8i8, and byte-compare |
| 1354 | // them against 0. |
| 1355 | SDValue W0 = DAG.getNode(Opcode: HexagonISD::VEXTRACTW, DL: dl, VT: MVT::i32, Ops: {ShuffV, Zero}); |
| 1356 | SDValue W1 = DAG.getNode(Opcode: HexagonISD::VEXTRACTW, DL: dl, VT: MVT::i32, |
| 1357 | Ops: {ShuffV, DAG.getConstant(Val: 4, DL: dl, VT: MVT::i32)}); |
| 1358 | SDValue Vec64 = getCombine(Hi: W1, Lo: W0, dl, ResTy: MVT::v8i8, DAG); |
| 1359 | return getInstr(MachineOpc: Hexagon::A4_vcmpbgtui, dl, Ty: ResTy, |
| 1360 | Ops: {Vec64, DAG.getTargetConstant(Val: 0, DL: dl, VT: MVT::i32)}, DAG); |
| 1361 | } |
| 1362 | |
| 1363 | SDValue |
| 1364 | HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, |
| 1365 | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 1366 | MVT VecTy = ty(Op: VecV); |
| 1367 | MVT SubTy = ty(Op: SubV); |
| 1368 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1369 | MVT ElemTy = VecTy.getVectorElementType(); |
| 1370 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 1371 | |
| 1372 | bool IsPair = isHvxPairTy(Ty: VecTy); |
| 1373 | MVT SingleTy = MVT::getVectorVT(VT: ElemTy, NumElements: (8*HwLen)/ElemWidth); |
| 1374 | // The two single vectors that VecV consists of, if it's a pair. |
| 1375 | SDValue V0, V1; |
| 1376 | SDValue SingleV = VecV; |
| 1377 | SDValue PickHi; |
| 1378 | |
| 1379 | if (IsPair) { |
| 1380 | V0 = LoHalf(V: VecV, DAG); |
| 1381 | V1 = HiHalf(V: VecV, DAG); |
| 1382 | |
| 1383 | SDValue HalfV = DAG.getConstant(Val: SingleTy.getVectorNumElements(), |
| 1384 | DL: dl, VT: MVT::i32); |
| 1385 | PickHi = DAG.getSetCC(DL: dl, VT: MVT::i1, LHS: IdxV, RHS: HalfV, Cond: ISD::SETUGT); |
| 1386 | if (isHvxSingleTy(Ty: SubTy)) { |
| 1387 | if (const auto *CN = dyn_cast<const ConstantSDNode>(Val: IdxV.getNode())) { |
| 1388 | unsigned Idx = CN->getZExtValue(); |
| 1389 | assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); |
| 1390 | unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; |
| 1391 | return DAG.getTargetInsertSubreg(SRIdx: SubIdx, DL: dl, VT: VecTy, Operand: VecV, Subreg: SubV); |
| 1392 | } |
| 1393 | // If IdxV is not a constant, generate the two variants: with the |
| 1394 | // SubV as the high and as the low subregister, and select the right |
| 1395 | // pair based on the IdxV. |
| 1396 | SDValue InLo = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {SubV, V1}); |
| 1397 | SDValue InHi = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {V0, SubV}); |
| 1398 | return DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: VecTy, N1: PickHi, N2: InHi, N3: InLo); |
| 1399 | } |
| 1400 | // The subvector being inserted must be entirely contained in one of |
| 1401 | // the vectors V0 or V1. Set SingleV to the correct one, and update |
| 1402 | // IdxV to be the index relative to the beginning of that vector. |
| 1403 | SDValue S = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, N1: IdxV, N2: HalfV); |
| 1404 | IdxV = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: MVT::i32, N1: PickHi, N2: S, N3: IdxV); |
| 1405 | SingleV = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: SingleTy, N1: PickHi, N2: V1, N3: V0); |
| 1406 | } |
| 1407 | |
| 1408 | // The only meaningful subvectors of a single HVX vector are those that |
| 1409 | // fit in a scalar register. |
| 1410 | assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); |
| 1411 | // Convert IdxV to be index in bytes. |
| 1412 | auto *IdxN = dyn_cast<ConstantSDNode>(Val: IdxV.getNode()); |
| 1413 | if (!IdxN || !IdxN->isZero()) { |
| 1414 | IdxV = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MVT::i32, N1: IdxV, |
| 1415 | N2: DAG.getConstant(Val: ElemWidth/8, DL: dl, VT: MVT::i32)); |
| 1416 | SingleV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: SingleTy, N1: SingleV, N2: IdxV); |
| 1417 | } |
| 1418 | // When inserting a single word, the rotation back to the original position |
| 1419 | // would be by HwLen-Idx, but if two words are inserted, it will need to be |
| 1420 | // by (HwLen-4)-Idx. |
| 1421 | unsigned RolBase = HwLen; |
| 1422 | if (SubTy.getSizeInBits() == 32) { |
| 1423 | SDValue V = DAG.getBitcast(VT: MVT::i32, V: SubV); |
| 1424 | SingleV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: SingleTy, N1: SingleV, N2: V); |
| 1425 | } else { |
| 1426 | SDValue V = DAG.getBitcast(VT: MVT::i64, V: SubV); |
| 1427 | SDValue R0 = LoHalf(V, DAG); |
| 1428 | SDValue R1 = HiHalf(V, DAG); |
| 1429 | SingleV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: SingleTy, N1: SingleV, N2: R0); |
| 1430 | SingleV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: SingleTy, N1: SingleV, |
| 1431 | N2: DAG.getConstant(Val: 4, DL: dl, VT: MVT::i32)); |
| 1432 | SingleV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: SingleTy, N1: SingleV, N2: R1); |
| 1433 | RolBase = HwLen-4; |
| 1434 | } |
| 1435 | // If the vector wasn't ror'ed, don't ror it back. |
| 1436 | if (RolBase != 4 || !IdxN || !IdxN->isZero()) { |
| 1437 | SDValue RolV = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, |
| 1438 | N1: DAG.getConstant(Val: RolBase, DL: dl, VT: MVT::i32), N2: IdxV); |
| 1439 | SingleV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: SingleTy, N1: SingleV, N2: RolV); |
| 1440 | } |
| 1441 | |
| 1442 | if (IsPair) { |
| 1443 | SDValue InLo = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {SingleV, V1}); |
| 1444 | SDValue InHi = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {V0, SingleV}); |
| 1445 | return DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: VecTy, N1: PickHi, N2: InHi, N3: InLo); |
| 1446 | } |
| 1447 | return SingleV; |
| 1448 | } |
| 1449 | |
| 1450 | SDValue |
| 1451 | HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, |
| 1452 | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 1453 | MVT VecTy = ty(Op: VecV); |
| 1454 | MVT SubTy = ty(Op: SubV); |
| 1455 | assert(Subtarget.isHVXVectorType(VecTy, true)); |
| 1456 | // VecV is an HVX vector predicate. SubV may be either an HVX vector |
| 1457 | // predicate as well, or it can be a scalar predicate. |
| 1458 | |
| 1459 | unsigned VecLen = VecTy.getVectorNumElements(); |
| 1460 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1461 | assert(HwLen % VecLen == 0 && "Unexpected vector type" ); |
| 1462 | |
| 1463 | unsigned Scale = VecLen / SubTy.getVectorNumElements(); |
| 1464 | unsigned BitBytes = HwLen / VecLen; |
| 1465 | unsigned BlockLen = HwLen / Scale; |
| 1466 | |
| 1467 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1468 | SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV); |
| 1469 | SDValue ByteSub = createHvxPrefixPred(PredV: SubV, dl, BitBytes, ZeroFill: false, DAG); |
| 1470 | SDValue ByteIdx; |
| 1471 | |
| 1472 | auto *IdxN = dyn_cast<ConstantSDNode>(Val: IdxV.getNode()); |
| 1473 | if (!IdxN || !IdxN->isZero()) { |
| 1474 | ByteIdx = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MVT::i32, N1: IdxV, |
| 1475 | N2: DAG.getConstant(Val: BitBytes, DL: dl, VT: MVT::i32)); |
| 1476 | ByteVec = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: ByteVec, N2: ByteIdx); |
| 1477 | } |
| 1478 | |
| 1479 | // ByteVec is the target vector VecV rotated in such a way that the |
| 1480 | // subvector should be inserted at index 0. Generate a predicate mask |
| 1481 | // and use vmux to do the insertion. |
| 1482 | assert(BlockLen < HwLen && "vsetq(v1) prerequisite" ); |
| 1483 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 1484 | SDValue Q = getInstr(MachineOpc: Hexagon::V6_pred_scalar2, dl, Ty: BoolTy, |
| 1485 | Ops: {DAG.getConstant(Val: BlockLen, DL: dl, VT: MVT::i32)}, DAG); |
| 1486 | ByteVec = getInstr(MachineOpc: Hexagon::V6_vmux, dl, Ty: ByteTy, Ops: {Q, ByteSub, ByteVec}, DAG); |
| 1487 | // Rotate ByteVec back, and convert to a vector predicate. |
| 1488 | if (!IdxN || !IdxN->isZero()) { |
| 1489 | SDValue HwLenV = DAG.getConstant(Val: HwLen, DL: dl, VT: MVT::i32); |
| 1490 | SDValue ByteXdi = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, N1: HwLenV, N2: ByteIdx); |
| 1491 | ByteVec = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: ByteVec, N2: ByteXdi); |
| 1492 | } |
| 1493 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: VecTy, Operand: ByteVec); |
| 1494 | } |
| 1495 | |
| 1496 | SDValue |
| 1497 | HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, |
| 1498 | MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { |
| 1499 | // Sign- and any-extending of a vector predicate to a vector register is |
| 1500 | // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and |
| 1501 | // a vector of 1s (where the 1s are of type matching the vector type). |
| 1502 | assert(Subtarget.isHVXVectorType(ResTy)); |
| 1503 | if (!ZeroExt) |
| 1504 | return DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ResTy, Operand: VecV); |
| 1505 | |
| 1506 | assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); |
| 1507 | SDValue True = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: ResTy, |
| 1508 | Operand: DAG.getConstant(Val: 1, DL: dl, VT: MVT::i32)); |
| 1509 | SDValue False = getZero(dl, Ty: ResTy, DAG); |
| 1510 | return DAG.getSelect(DL: dl, VT: ResTy, Cond: VecV, LHS: True, RHS: False); |
| 1511 | } |
| 1512 | |
| 1513 | SDValue |
| 1514 | HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl, |
| 1515 | MVT ResTy, SelectionDAG &DAG) const { |
| 1516 | // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1] |
| 1517 | // (i.e. the entire predicate register) to bits [0..HwLen-1] of a |
| 1518 | // vector register. The remaining bits of the vector register are |
| 1519 | // unspecified. |
| 1520 | |
| 1521 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1522 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1523 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1524 | MVT PredTy = ty(Op: VecQ); |
| 1525 | unsigned PredLen = PredTy.getVectorNumElements(); |
| 1526 | assert(HwLen % PredLen == 0); |
| 1527 | MVT VecTy = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: 8*HwLen/PredLen), NumElements: PredLen); |
| 1528 | |
| 1529 | Type *Int8Ty = Type::getInt8Ty(C&: *DAG.getContext()); |
| 1530 | SmallVector<Constant*, 128> Tmp; |
| 1531 | // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,... |
| 1532 | // These are bytes with the LSB rotated left with respect to their index. |
| 1533 | for (unsigned i = 0; i != HwLen/8; ++i) { |
| 1534 | for (unsigned j = 0; j != 8; ++j) |
| 1535 | Tmp.push_back(Elt: ConstantInt::get(Ty: Int8Ty, V: 1ull << j)); |
| 1536 | } |
| 1537 | Constant *CV = ConstantVector::get(V: Tmp); |
| 1538 | Align Alignment(HwLen); |
| 1539 | SDValue CP = |
| 1540 | LowerConstantPool(Op: DAG.getConstantPool(C: CV, VT: ByteTy, Align: Alignment), DAG); |
| 1541 | SDValue Bytes = |
| 1542 | DAG.getLoad(VT: ByteTy, dl, Chain: DAG.getEntryNode(), Ptr: CP, |
| 1543 | PtrInfo: MachinePointerInfo::getConstantPool(MF), Alignment); |
| 1544 | |
| 1545 | // Select the bytes that correspond to true bits in the vector predicate. |
| 1546 | SDValue Sel = DAG.getSelect(DL: dl, VT: VecTy, Cond: VecQ, LHS: DAG.getBitcast(VT: VecTy, V: Bytes), |
| 1547 | RHS: getZero(dl, Ty: VecTy, DAG)); |
| 1548 | // Calculate the OR of all bytes in each group of 8. That will compress |
| 1549 | // all the individual bits into a single byte. |
| 1550 | // First, OR groups of 4, via vrmpy with 0x01010101. |
| 1551 | SDValue All1 = |
| 1552 | DAG.getSplatBuildVector(VT: MVT::v4i8, DL: dl, Op: DAG.getConstant(Val: 1, DL: dl, VT: MVT::i32)); |
| 1553 | SDValue Vrmpy = getInstr(MachineOpc: Hexagon::V6_vrmpyub, dl, Ty: ByteTy, Ops: {Sel, All1}, DAG); |
| 1554 | // Then rotate the accumulated vector by 4 bytes, and do the final OR. |
| 1555 | SDValue Rot = getInstr(MachineOpc: Hexagon::V6_valignbi, dl, Ty: ByteTy, |
| 1556 | Ops: {Vrmpy, Vrmpy, DAG.getTargetConstant(Val: 4, DL: dl, VT: MVT::i32)}, DAG); |
| 1557 | SDValue Vor = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ByteTy, Ops: {Vrmpy, Rot}); |
| 1558 | |
| 1559 | // Pick every 8th byte and coalesce them at the beginning of the output. |
| 1560 | // For symmetry, coalesce every 1+8th byte after that, then every 2+8th |
| 1561 | // byte and so on. |
| 1562 | SmallVector<int,128> Mask; |
| 1563 | for (unsigned i = 0; i != HwLen; ++i) |
| 1564 | Mask.push_back(Elt: (8*i) % HwLen + i/(HwLen/8)); |
| 1565 | SDValue Collect = |
| 1566 | DAG.getVectorShuffle(VT: ByteTy, dl, N1: Vor, N2: DAG.getUNDEF(VT: ByteTy), Mask); |
| 1567 | return DAG.getBitcast(VT: ResTy, V: Collect); |
| 1568 | } |
| 1569 | |
| 1570 | SDValue |
| 1571 | HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, |
| 1572 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 1573 | // Take a vector and resize the element type to match the given type. |
| 1574 | MVT InpTy = ty(Op: VecV); |
| 1575 | if (InpTy == ResTy) |
| 1576 | return VecV; |
| 1577 | |
| 1578 | unsigned InpWidth = InpTy.getSizeInBits(); |
| 1579 | unsigned ResWidth = ResTy.getSizeInBits(); |
| 1580 | |
| 1581 | if (InpTy.isFloatingPoint()) { |
| 1582 | return InpWidth < ResWidth |
| 1583 | ? DAG.getNode(Opcode: ISD::FP_EXTEND, DL: dl, VT: ResTy, Operand: VecV) |
| 1584 | : DAG.getNode(Opcode: ISD::FP_ROUND, DL: dl, VT: ResTy, N1: VecV, |
| 1585 | N2: DAG.getTargetConstant(Val: 0, DL: dl, VT: MVT::i32)); |
| 1586 | } |
| 1587 | |
| 1588 | assert(InpTy.isInteger()); |
| 1589 | |
| 1590 | if (InpWidth < ResWidth) { |
| 1591 | unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 1592 | return DAG.getNode(Opcode: ExtOpc, DL: dl, VT: ResTy, Operand: VecV); |
| 1593 | } else { |
| 1594 | unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT; |
| 1595 | return DAG.getNode(Opcode: NarOpc, DL: dl, VT: ResTy, N1: VecV, N2: DAG.getValueType(ResTy)); |
| 1596 | } |
| 1597 | } |
| 1598 | |
| 1599 | SDValue |
| 1600 | HexagonTargetLowering::(SDValue Vec, MVT SubTy, unsigned SubIdx, |
| 1601 | SelectionDAG &DAG) const { |
| 1602 | assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0); |
| 1603 | |
| 1604 | const SDLoc &dl(Vec); |
| 1605 | unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements(); |
| 1606 | return DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: SubTy, |
| 1607 | Ops: {Vec, DAG.getConstant(Val: ElemIdx, DL: dl, VT: MVT::i32)}); |
| 1608 | } |
| 1609 | |
| 1610 | SDValue |
| 1611 | HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) |
| 1612 | const { |
| 1613 | const SDLoc &dl(Op); |
| 1614 | MVT VecTy = ty(Op); |
| 1615 | |
| 1616 | unsigned Size = Op.getNumOperands(); |
| 1617 | SmallVector<SDValue,128> Ops; |
| 1618 | for (unsigned i = 0; i != Size; ++i) |
| 1619 | Ops.push_back(Elt: Op.getOperand(i)); |
| 1620 | |
| 1621 | if (VecTy.getVectorElementType() == MVT::i1) |
| 1622 | return buildHvxVectorPred(Values: Ops, dl, VecTy, DAG); |
| 1623 | |
| 1624 | // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is |
| 1625 | // not a legal type, just bitcast the node to use i16 |
| 1626 | // types and bitcast the result back to f16 |
| 1627 | if (VecTy.getVectorElementType() == MVT::f16) { |
| 1628 | SmallVector<SDValue,64> NewOps; |
| 1629 | for (unsigned i = 0; i != Size; i++) |
| 1630 | NewOps.push_back(Elt: DAG.getBitcast(VT: MVT::i16, V: Ops[i])); |
| 1631 | |
| 1632 | SDValue T0 = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: dl, |
| 1633 | VT: tyVector(Ty: VecTy, ElemTy: MVT::i16), Ops: NewOps); |
| 1634 | return DAG.getBitcast(VT: tyVector(Ty: VecTy, ElemTy: MVT::f16), V: T0); |
| 1635 | } |
| 1636 | |
| 1637 | // First, split the BUILD_VECTOR for vector pairs. We could generate |
| 1638 | // some pairs directly (via splat), but splats should be generated |
| 1639 | // by the combiner prior to getting here. |
| 1640 | if (VecTy.getSizeInBits() == 16 * Subtarget.getVectorLength()) { |
| 1641 | ArrayRef<SDValue> A(Ops); |
| 1642 | MVT SingleTy = typeSplit(VecTy).first; |
| 1643 | SDValue V0 = buildHvxVectorReg(Values: A.take_front(N: Size / 2), dl, VecTy: SingleTy, DAG); |
| 1644 | SDValue V1 = buildHvxVectorReg(Values: A.drop_front(N: Size / 2), dl, VecTy: SingleTy, DAG); |
| 1645 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, N1: V0, N2: V1); |
| 1646 | } |
| 1647 | |
| 1648 | return buildHvxVectorReg(Values: Ops, dl, VecTy, DAG); |
| 1649 | } |
| 1650 | |
| 1651 | SDValue |
| 1652 | HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) |
| 1653 | const { |
| 1654 | const SDLoc &dl(Op); |
| 1655 | MVT VecTy = ty(Op); |
| 1656 | MVT ArgTy = ty(Op: Op.getOperand(i: 0)); |
| 1657 | |
| 1658 | if (ArgTy == MVT::f16) { |
| 1659 | MVT SplatTy = MVT::getVectorVT(VT: MVT::i16, NumElements: VecTy.getVectorNumElements()); |
| 1660 | SDValue ToInt16 = DAG.getBitcast(VT: MVT::i16, V: Op.getOperand(i: 0)); |
| 1661 | SDValue ToInt32 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: MVT::i32, Operand: ToInt16); |
| 1662 | SDValue Splat = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: SplatTy, Operand: ToInt32); |
| 1663 | return DAG.getBitcast(VT: VecTy, V: Splat); |
| 1664 | } |
| 1665 | |
| 1666 | return SDValue(); |
| 1667 | } |
| 1668 | |
| 1669 | SDValue |
| 1670 | HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) |
| 1671 | const { |
| 1672 | // Vector concatenation of two integer (non-bool) vectors does not need |
| 1673 | // special lowering. Custom-lower concats of bool vectors and expand |
| 1674 | // concats of more than 2 vectors. |
| 1675 | MVT VecTy = ty(Op); |
| 1676 | const SDLoc &dl(Op); |
| 1677 | unsigned NumOp = Op.getNumOperands(); |
| 1678 | if (VecTy.getVectorElementType() != MVT::i1) { |
| 1679 | if (NumOp == 2) |
| 1680 | return Op; |
| 1681 | // Expand the other cases into a build-vector. |
| 1682 | SmallVector<SDValue,8> Elems; |
| 1683 | for (SDValue V : Op.getNode()->ops()) |
| 1684 | DAG.ExtractVectorElements(Op: V, Args&: Elems); |
| 1685 | // A vector of i16 will be broken up into a build_vector of i16's. |
| 1686 | // This is a problem, since at the time of operation legalization, |
| 1687 | // all operations are expected to be type-legalized, and i16 is not |
| 1688 | // a legal type. If any of the extracted elements is not of a valid |
| 1689 | // type, sign-extend it to a valid one. |
| 1690 | for (unsigned i = 0, e = Elems.size(); i != e; ++i) { |
| 1691 | SDValue V = Elems[i]; |
| 1692 | MVT Ty = ty(Op: V); |
| 1693 | if (!isTypeLegal(VT: Ty)) { |
| 1694 | MVT NTy = typeLegalize(Ty, DAG); |
| 1695 | if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| 1696 | Elems[i] = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: NTy, |
| 1697 | N1: DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: NTy, |
| 1698 | N1: V.getOperand(i: 0), N2: V.getOperand(i: 1)), |
| 1699 | N2: DAG.getValueType(Ty)); |
| 1700 | continue; |
| 1701 | } |
| 1702 | // A few less complicated cases. |
| 1703 | switch (V.getOpcode()) { |
| 1704 | case ISD::Constant: |
| 1705 | Elems[i] = DAG.getSExtOrTrunc(Op: V, DL: dl, VT: NTy); |
| 1706 | break; |
| 1707 | case ISD::UNDEF: |
| 1708 | Elems[i] = DAG.getUNDEF(VT: NTy); |
| 1709 | break; |
| 1710 | case ISD::TRUNCATE: |
| 1711 | Elems[i] = V.getOperand(i: 0); |
| 1712 | break; |
| 1713 | default: |
| 1714 | llvm_unreachable("Unexpected vector element" ); |
| 1715 | } |
| 1716 | } |
| 1717 | } |
| 1718 | return DAG.getBuildVector(VT: VecTy, DL: dl, Ops: Elems); |
| 1719 | } |
| 1720 | |
| 1721 | assert(VecTy.getVectorElementType() == MVT::i1); |
| 1722 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1723 | assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); |
| 1724 | |
| 1725 | SDValue Op0 = Op.getOperand(i: 0); |
| 1726 | |
| 1727 | // If the operands are HVX types (i.e. not scalar predicates), then |
| 1728 | // defer the concatenation, and create QCAT instead. |
| 1729 | if (Subtarget.isHVXVectorType(VecTy: ty(Op: Op0), IncludeBool: true)) { |
| 1730 | if (NumOp == 2) |
| 1731 | return DAG.getNode(Opcode: HexagonISD::QCAT, DL: dl, VT: VecTy, N1: Op0, N2: Op.getOperand(i: 1)); |
| 1732 | |
| 1733 | ArrayRef<SDUse> U(Op.getNode()->ops()); |
| 1734 | SmallVector<SDValue, 4> SV(U); |
| 1735 | ArrayRef<SDValue> Ops(SV); |
| 1736 | |
| 1737 | MVT HalfTy = typeSplit(VecTy).first; |
| 1738 | SDValue V0 = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: HalfTy, |
| 1739 | Ops: Ops.take_front(N: NumOp/2)); |
| 1740 | SDValue V1 = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: HalfTy, |
| 1741 | Ops: Ops.take_back(N: NumOp/2)); |
| 1742 | return DAG.getNode(Opcode: HexagonISD::QCAT, DL: dl, VT: VecTy, N1: V0, N2: V1); |
| 1743 | } |
| 1744 | |
| 1745 | // Count how many bytes (in a vector register) each bit in VecTy |
| 1746 | // corresponds to. |
| 1747 | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); |
| 1748 | |
| 1749 | SmallVector<SDValue,8> Prefixes; |
| 1750 | for (SDValue V : Op.getNode()->op_values()) { |
| 1751 | SDValue P = createHvxPrefixPred(PredV: V, dl, BitBytes, ZeroFill: true, DAG); |
| 1752 | Prefixes.push_back(Elt: P); |
| 1753 | } |
| 1754 | |
| 1755 | unsigned InpLen = ty(Op: Op.getOperand(i: 0)).getVectorNumElements(); |
| 1756 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 1757 | SDValue S = DAG.getConstant(Val: HwLen - InpLen*BitBytes, DL: dl, VT: MVT::i32); |
| 1758 | SDValue Res = getZero(dl, Ty: ByteTy, DAG); |
| 1759 | for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { |
| 1760 | Res = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: Res, N2: S); |
| 1761 | Res = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ByteTy, N1: Res, N2: Prefixes[e-i-1]); |
| 1762 | } |
| 1763 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: VecTy, Operand: Res); |
| 1764 | } |
| 1765 | |
| 1766 | SDValue |
| 1767 | HexagonTargetLowering::(SDValue Op, SelectionDAG &DAG) |
| 1768 | const { |
| 1769 | // Change the type of the extracted element to i32. |
| 1770 | SDValue VecV = Op.getOperand(i: 0); |
| 1771 | MVT ElemTy = ty(Op: VecV).getVectorElementType(); |
| 1772 | const SDLoc &dl(Op); |
| 1773 | SDValue IdxV = Op.getOperand(i: 1); |
| 1774 | if (ElemTy == MVT::i1) |
| 1775 | return extractHvxElementPred(VecV, IdxV, dl, ResTy: ty(Op), DAG); |
| 1776 | |
| 1777 | return extractHvxElementReg(VecV, IdxV, dl, ResTy: ty(Op), DAG); |
| 1778 | } |
| 1779 | |
| 1780 | SDValue |
| 1781 | HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) |
| 1782 | const { |
| 1783 | const SDLoc &dl(Op); |
| 1784 | MVT VecTy = ty(Op); |
| 1785 | SDValue VecV = Op.getOperand(i: 0); |
| 1786 | SDValue ValV = Op.getOperand(i: 1); |
| 1787 | SDValue IdxV = Op.getOperand(i: 2); |
| 1788 | MVT ElemTy = ty(Op: VecV).getVectorElementType(); |
| 1789 | if (ElemTy == MVT::i1) |
| 1790 | return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); |
| 1791 | |
| 1792 | if (ElemTy == MVT::f16) { |
| 1793 | SDValue T0 = DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: dl, |
| 1794 | VT: tyVector(Ty: VecTy, ElemTy: MVT::i16), |
| 1795 | N1: DAG.getBitcast(VT: tyVector(Ty: VecTy, ElemTy: MVT::i16), V: VecV), |
| 1796 | N2: DAG.getBitcast(VT: MVT::i16, V: ValV), N3: IdxV); |
| 1797 | return DAG.getBitcast(VT: tyVector(Ty: VecTy, ElemTy: MVT::f16), V: T0); |
| 1798 | } |
| 1799 | |
| 1800 | return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); |
| 1801 | } |
| 1802 | |
| 1803 | SDValue |
| 1804 | HexagonTargetLowering::(SDValue Op, SelectionDAG &DAG) |
| 1805 | const { |
| 1806 | SDValue SrcV = Op.getOperand(i: 0); |
| 1807 | MVT SrcTy = ty(Op: SrcV); |
| 1808 | MVT DstTy = ty(Op); |
| 1809 | SDValue IdxV = Op.getOperand(i: 1); |
| 1810 | unsigned Idx = IdxV.getNode()->getAsZExtVal(); |
| 1811 | assert(Idx % DstTy.getVectorNumElements() == 0); |
| 1812 | (void)Idx; |
| 1813 | const SDLoc &dl(Op); |
| 1814 | |
| 1815 | MVT ElemTy = SrcTy.getVectorElementType(); |
| 1816 | if (ElemTy == MVT::i1) |
| 1817 | return extractHvxSubvectorPred(VecV: SrcV, IdxV, dl, ResTy: DstTy, DAG); |
| 1818 | |
| 1819 | return extractHvxSubvectorReg(OrigOp: Op, VecV: SrcV, IdxV, dl, ResTy: DstTy, DAG); |
| 1820 | } |
| 1821 | |
| 1822 | SDValue |
| 1823 | HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) |
| 1824 | const { |
| 1825 | // Idx does not need to be a constant. |
| 1826 | SDValue VecV = Op.getOperand(i: 0); |
| 1827 | SDValue ValV = Op.getOperand(i: 1); |
| 1828 | SDValue IdxV = Op.getOperand(i: 2); |
| 1829 | |
| 1830 | const SDLoc &dl(Op); |
| 1831 | MVT VecTy = ty(Op: VecV); |
| 1832 | MVT ElemTy = VecTy.getVectorElementType(); |
| 1833 | if (ElemTy == MVT::i1) |
| 1834 | return insertHvxSubvectorPred(VecV, SubV: ValV, IdxV, dl, DAG); |
| 1835 | |
| 1836 | return insertHvxSubvectorReg(VecV, SubV: ValV, IdxV, dl, DAG); |
| 1837 | } |
| 1838 | |
| 1839 | SDValue |
| 1840 | HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { |
| 1841 | // Lower any-extends of boolean vectors to sign-extends, since they |
| 1842 | // translate directly to Q2V. Zero-extending could also be done equally |
| 1843 | // fast, but Q2V is used/recognized in more places. |
| 1844 | // For all other vectors, use zero-extend. |
| 1845 | MVT ResTy = ty(Op); |
| 1846 | SDValue InpV = Op.getOperand(i: 0); |
| 1847 | MVT ElemTy = ty(Op: InpV).getVectorElementType(); |
| 1848 | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(VecTy: ResTy)) |
| 1849 | return LowerHvxSignExt(Op, DAG); |
| 1850 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SDLoc(Op), VT: ResTy, Operand: InpV); |
| 1851 | } |
| 1852 | |
| 1853 | SDValue |
| 1854 | HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { |
| 1855 | MVT ResTy = ty(Op); |
| 1856 | SDValue InpV = Op.getOperand(i: 0); |
| 1857 | MVT ElemTy = ty(Op: InpV).getVectorElementType(); |
| 1858 | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(VecTy: ResTy)) |
| 1859 | return extendHvxVectorPred(VecV: InpV, dl: SDLoc(Op), ResTy: ty(Op), ZeroExt: false, DAG); |
| 1860 | return Op; |
| 1861 | } |
| 1862 | |
| 1863 | SDValue |
| 1864 | HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { |
| 1865 | MVT ResTy = ty(Op); |
| 1866 | SDValue InpV = Op.getOperand(i: 0); |
| 1867 | MVT ElemTy = ty(Op: InpV).getVectorElementType(); |
| 1868 | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(VecTy: ResTy)) |
| 1869 | return extendHvxVectorPred(VecV: InpV, dl: SDLoc(Op), ResTy: ty(Op), ZeroExt: true, DAG); |
| 1870 | return Op; |
| 1871 | } |
| 1872 | |
| 1873 | SDValue |
| 1874 | HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { |
| 1875 | // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): |
| 1876 | // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) |
| 1877 | const SDLoc &dl(Op); |
| 1878 | MVT ResTy = ty(Op); |
| 1879 | SDValue InpV = Op.getOperand(i: 0); |
| 1880 | assert(ResTy == ty(InpV)); |
| 1881 | |
| 1882 | // Calculate the vectors of 1 and bitwidth(x). |
| 1883 | MVT ElemTy = ty(Op: InpV).getVectorElementType(); |
| 1884 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 1885 | |
| 1886 | SDValue Vec1 = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: ResTy, |
| 1887 | Operand: DAG.getConstant(Val: 1, DL: dl, VT: MVT::i32)); |
| 1888 | SDValue VecW = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: ResTy, |
| 1889 | Operand: DAG.getConstant(Val: ElemWidth, DL: dl, VT: MVT::i32)); |
| 1890 | SDValue VecN1 = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: ResTy, |
| 1891 | Operand: DAG.getAllOnesConstant(DL: dl, VT: MVT::i32)); |
| 1892 | |
| 1893 | // Do not use DAG.getNOT, because that would create BUILD_VECTOR with |
| 1894 | // a BITCAST. Here we can skip the BITCAST (so we don't have to handle |
| 1895 | // it separately in custom combine or selection). |
| 1896 | SDValue A = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ResTy, |
| 1897 | Ops: {DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {InpV, VecN1}), |
| 1898 | DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {InpV, Vec1})}); |
| 1899 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, |
| 1900 | Ops: {VecW, DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT: ResTy, Operand: A)}); |
| 1901 | } |
| 1902 | |
| 1903 | SDValue |
| 1904 | HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { |
| 1905 | const SDLoc &dl(Op); |
| 1906 | MVT ResTy = ty(Op); |
| 1907 | assert(ResTy.getVectorElementType() == MVT::i32); |
| 1908 | |
| 1909 | SDValue Vs = Op.getOperand(i: 0); |
| 1910 | SDValue Vt = Op.getOperand(i: 1); |
| 1911 | |
| 1912 | SDVTList ResTys = DAG.getVTList(VT1: ResTy, VT2: ResTy); |
| 1913 | unsigned Opc = Op.getOpcode(); |
| 1914 | |
| 1915 | // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI. |
| 1916 | if (Opc == ISD::MULHU) |
| 1917 | return DAG.getNode(Opcode: HexagonISD::UMUL_LOHI, DL: dl, VTList: ResTys, Ops: {Vs, Vt}).getValue(R: 1); |
| 1918 | if (Opc == ISD::MULHS) |
| 1919 | return DAG.getNode(Opcode: HexagonISD::SMUL_LOHI, DL: dl, VTList: ResTys, Ops: {Vs, Vt}).getValue(R: 1); |
| 1920 | |
| 1921 | #ifndef NDEBUG |
| 1922 | Op.dump(&DAG); |
| 1923 | #endif |
| 1924 | llvm_unreachable("Unexpected mulh operation" ); |
| 1925 | } |
| 1926 | |
| 1927 | SDValue |
| 1928 | HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const { |
| 1929 | const SDLoc &dl(Op); |
| 1930 | unsigned Opc = Op.getOpcode(); |
| 1931 | SDValue Vu = Op.getOperand(i: 0); |
| 1932 | SDValue Vv = Op.getOperand(i: 1); |
| 1933 | |
| 1934 | // If the HI part is not used, convert it to a regular MUL. |
| 1935 | if (auto HiVal = Op.getValue(R: 1); HiVal.use_empty()) { |
| 1936 | // Need to preserve the types and the number of values. |
| 1937 | SDValue Hi = DAG.getUNDEF(VT: ty(Op: HiVal)); |
| 1938 | SDValue Lo = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: ty(Op), Ops: {Vu, Vv}); |
| 1939 | return DAG.getMergeValues(Ops: {Lo, Hi}, dl); |
| 1940 | } |
| 1941 | |
| 1942 | bool SignedVu = Opc == HexagonISD::SMUL_LOHI; |
| 1943 | bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI; |
| 1944 | |
| 1945 | // Legal on HVX v62+, but lower it here because patterns can't handle multi- |
| 1946 | // valued nodes. |
| 1947 | if (Subtarget.useHVXV62Ops()) |
| 1948 | return emitHvxMulLoHiV62(A: Vu, SignedA: SignedVu, B: Vv, SignedB: SignedVv, dl, DAG); |
| 1949 | |
| 1950 | if (Opc == HexagonISD::SMUL_LOHI) { |
| 1951 | // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI, |
| 1952 | // for other signedness LOHI is cheaper. |
| 1953 | if (auto LoVal = Op.getValue(R: 0); LoVal.use_empty()) { |
| 1954 | SDValue Hi = emitHvxMulHsV60(A: Vu, B: Vv, dl, DAG); |
| 1955 | SDValue Lo = DAG.getUNDEF(VT: ty(Op: LoVal)); |
| 1956 | return DAG.getMergeValues(Ops: {Lo, Hi}, dl); |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | return emitHvxMulLoHiV60(A: Vu, SignedA: SignedVu, B: Vv, SignedB: SignedVv, dl, DAG); |
| 1961 | } |
| 1962 | |
| 1963 | SDValue |
| 1964 | HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const { |
| 1965 | SDValue Val = Op.getOperand(i: 0); |
| 1966 | MVT ResTy = ty(Op); |
| 1967 | MVT ValTy = ty(Op: Val); |
| 1968 | const SDLoc &dl(Op); |
| 1969 | |
| 1970 | if (isHvxBoolTy(Ty: ValTy) && ResTy.isScalarInteger()) { |
| 1971 | unsigned HwLen = Subtarget.getVectorLength(); |
| 1972 | MVT WordTy = MVT::getVectorVT(VT: MVT::i32, NumElements: HwLen/4); |
| 1973 | SDValue VQ = compressHvxPred(VecQ: Val, dl, ResTy: WordTy, DAG); |
| 1974 | unsigned BitWidth = ResTy.getSizeInBits(); |
| 1975 | |
| 1976 | if (BitWidth < 64) { |
| 1977 | SDValue W0 = extractHvxElementReg(VecV: VQ, IdxV: DAG.getConstant(Val: 0, DL: dl, VT: MVT::i32), |
| 1978 | dl, ResTy: MVT::i32, DAG); |
| 1979 | if (BitWidth == 32) |
| 1980 | return W0; |
| 1981 | assert(BitWidth < 32u); |
| 1982 | return DAG.getZExtOrTrunc(Op: W0, DL: dl, VT: ResTy); |
| 1983 | } |
| 1984 | |
| 1985 | // The result is >= 64 bits. The only options are 64 or 128. |
| 1986 | assert(BitWidth == 64 || BitWidth == 128); |
| 1987 | SmallVector<SDValue,4> Words; |
| 1988 | for (unsigned i = 0; i != BitWidth/32; ++i) { |
| 1989 | SDValue W = extractHvxElementReg( |
| 1990 | VecV: VQ, IdxV: DAG.getConstant(Val: i, DL: dl, VT: MVT::i32), dl, ResTy: MVT::i32, DAG); |
| 1991 | Words.push_back(Elt: W); |
| 1992 | } |
| 1993 | SmallVector<SDValue,2> Combines; |
| 1994 | assert(Words.size() % 2 == 0); |
| 1995 | for (unsigned i = 0, e = Words.size(); i < e; i += 2) { |
| 1996 | SDValue C = getCombine(Hi: Words[i+1], Lo: Words[i], dl, ResTy: MVT::i64, DAG); |
| 1997 | Combines.push_back(Elt: C); |
| 1998 | } |
| 1999 | |
| 2000 | if (BitWidth == 64) |
| 2001 | return Combines[0]; |
| 2002 | |
| 2003 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT: ResTy, Ops: Combines); |
| 2004 | } |
| 2005 | if (isHvxBoolTy(Ty: ResTy) && ValTy.isScalarInteger()) { |
| 2006 | // Handle bitcast from i128 -> v128i1 and i64 -> v64i1. |
| 2007 | unsigned BitWidth = ValTy.getSizeInBits(); |
| 2008 | unsigned HwLen = Subtarget.getVectorLength(); |
| 2009 | assert(BitWidth == HwLen); |
| 2010 | |
| 2011 | MVT ValAsVecTy = MVT::getVectorVT(VT: MVT::i8, NumElements: BitWidth / 8); |
| 2012 | SDValue ValAsVec = DAG.getBitcast(VT: ValAsVecTy, V: Val); |
| 2013 | // Splat each byte of Val 8 times. |
| 2014 | // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8] |
| 2015 | // where b0, b1,..., b15 are least to most significant bytes of I. |
| 2016 | SmallVector<SDValue, 128> Bytes; |
| 2017 | // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,... |
| 2018 | // These are bytes with the LSB rotated left with respect to their index. |
| 2019 | SmallVector<SDValue, 128> Tmp; |
| 2020 | for (unsigned I = 0; I != HwLen / 8; ++I) { |
| 2021 | SDValue Idx = DAG.getConstant(Val: I, DL: dl, VT: MVT::i32); |
| 2022 | SDValue Byte = |
| 2023 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: MVT::i8, N1: ValAsVec, N2: Idx); |
| 2024 | for (unsigned J = 0; J != 8; ++J) { |
| 2025 | Bytes.push_back(Elt: Byte); |
| 2026 | Tmp.push_back(Elt: DAG.getConstant(Val: 1ull << J, DL: dl, VT: MVT::i8)); |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | MVT ConstantVecTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 2031 | SDValue ConstantVec = DAG.getBuildVector(VT: ConstantVecTy, DL: dl, Ops: Tmp); |
| 2032 | SDValue I2V = buildHvxVectorReg(Values: Bytes, dl, VecTy: ConstantVecTy, DAG); |
| 2033 | |
| 2034 | // Each Byte in the I2V will be set iff corresponding bit is set in Val. |
| 2035 | I2V = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ConstantVecTy, Ops: {I2V, ConstantVec}); |
| 2036 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ResTy, Operand: I2V); |
| 2037 | } |
| 2038 | |
| 2039 | return Op; |
| 2040 | } |
| 2041 | |
| 2042 | SDValue |
| 2043 | HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { |
| 2044 | // Sign- and zero-extends are legal. |
| 2045 | assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); |
| 2046 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND_VECTOR_INREG, DL: SDLoc(Op), VT: ty(Op), |
| 2047 | Operand: Op.getOperand(i: 0)); |
| 2048 | } |
| 2049 | |
| 2050 | SDValue |
| 2051 | HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const { |
| 2052 | MVT ResTy = ty(Op); |
| 2053 | if (ResTy.getVectorElementType() != MVT::i1) |
| 2054 | return Op; |
| 2055 | |
| 2056 | const SDLoc &dl(Op); |
| 2057 | unsigned HwLen = Subtarget.getVectorLength(); |
| 2058 | unsigned VecLen = ResTy.getVectorNumElements(); |
| 2059 | assert(HwLen % VecLen == 0); |
| 2060 | unsigned ElemSize = HwLen / VecLen; |
| 2061 | |
| 2062 | MVT VecTy = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: ElemSize * 8), NumElements: VecLen); |
| 2063 | SDValue S = |
| 2064 | DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: VecTy, N1: Op.getOperand(i: 0), |
| 2065 | N2: DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: VecTy, Operand: Op.getOperand(i: 1)), |
| 2066 | N3: DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: VecTy, Operand: Op.getOperand(i: 2))); |
| 2067 | return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ResTy, Operand: S); |
| 2068 | } |
| 2069 | |
| 2070 | SDValue |
| 2071 | HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { |
| 2072 | if (SDValue S = getVectorShiftByInt(Op, DAG)) |
| 2073 | return S; |
| 2074 | return Op; |
| 2075 | } |
| 2076 | |
| 2077 | SDValue |
| 2078 | HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op, |
| 2079 | SelectionDAG &DAG) const { |
| 2080 | unsigned Opc = Op.getOpcode(); |
| 2081 | assert(Opc == ISD::FSHL || Opc == ISD::FSHR); |
| 2082 | |
| 2083 | // Make sure the shift amount is within the range of the bitwidth |
| 2084 | // of the element type. |
| 2085 | SDValue A = Op.getOperand(i: 0); |
| 2086 | SDValue B = Op.getOperand(i: 1); |
| 2087 | SDValue S = Op.getOperand(i: 2); |
| 2088 | |
| 2089 | MVT InpTy = ty(Op: A); |
| 2090 | MVT ElemTy = InpTy.getVectorElementType(); |
| 2091 | |
| 2092 | const SDLoc &dl(Op); |
| 2093 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 2094 | bool IsLeft = Opc == ISD::FSHL; |
| 2095 | |
| 2096 | // The expansion into regular shifts produces worse code for i8 and for |
| 2097 | // right shift of i32 on v65+. |
| 2098 | bool UseShifts = ElemTy != MVT::i8; |
| 2099 | if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32) |
| 2100 | UseShifts = false; |
| 2101 | |
| 2102 | if (SDValue SplatV = getSplatValue(Op: S, DAG); SplatV && UseShifts) { |
| 2103 | // If this is a funnel shift by a scalar, lower it into regular shifts. |
| 2104 | SDValue Mask = DAG.getConstant(Val: ElemWidth - 1, DL: dl, VT: MVT::i32); |
| 2105 | SDValue ModS = |
| 2106 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MVT::i32, |
| 2107 | Ops: {DAG.getZExtOrTrunc(Op: SplatV, DL: dl, VT: MVT::i32), Mask}); |
| 2108 | SDValue NegS = |
| 2109 | DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, |
| 2110 | Ops: {DAG.getConstant(Val: ElemWidth, DL: dl, VT: MVT::i32), ModS}); |
| 2111 | SDValue IsZero = |
| 2112 | DAG.getSetCC(DL: dl, VT: MVT::i1, LHS: ModS, RHS: getZero(dl, Ty: MVT::i32, DAG), Cond: ISD::SETEQ); |
| 2113 | // FSHL A, B => A << | B >>n |
| 2114 | // FSHR A, B => A <<n | B >> |
| 2115 | SDValue Part1 = |
| 2116 | DAG.getNode(Opcode: HexagonISD::VASL, DL: dl, VT: InpTy, Ops: {A, IsLeft ? ModS : NegS}); |
| 2117 | SDValue Part2 = |
| 2118 | DAG.getNode(Opcode: HexagonISD::VLSR, DL: dl, VT: InpTy, Ops: {B, IsLeft ? NegS : ModS}); |
| 2119 | SDValue Or = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: InpTy, Ops: {Part1, Part2}); |
| 2120 | // If the shift amount was 0, pick A or B, depending on the direction. |
| 2121 | // The opposite shift will also be by 0, so the "Or" will be incorrect. |
| 2122 | return DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: InpTy, Ops: {IsZero, (IsLeft ? A : B), Or}); |
| 2123 | } |
| 2124 | |
| 2125 | SDValue Mask = DAG.getSplatBuildVector( |
| 2126 | VT: InpTy, DL: dl, Op: DAG.getConstant(Val: ElemWidth - 1, DL: dl, VT: ElemTy)); |
| 2127 | |
| 2128 | unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR; |
| 2129 | return DAG.getNode(Opcode: MOpc, DL: dl, VT: ty(Op), |
| 2130 | Ops: {A, B, DAG.getNode(Opcode: ISD::AND, DL: dl, VT: InpTy, Ops: {S, Mask})}); |
| 2131 | } |
| 2132 | |
| 2133 | SDValue |
| 2134 | HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const { |
| 2135 | const SDLoc &dl(Op); |
| 2136 | unsigned IntNo = Op.getConstantOperandVal(i: 0); |
| 2137 | SmallVector<SDValue> Ops(Op->ops()); |
| 2138 | |
| 2139 | auto Swap = [&](SDValue P) { |
| 2140 | return DAG.getMergeValues(Ops: {P.getValue(R: 1), P.getValue(R: 0)}, dl); |
| 2141 | }; |
| 2142 | |
| 2143 | switch (IntNo) { |
| 2144 | case Intrinsic::hexagon_V6_pred_typecast: |
| 2145 | case Intrinsic::hexagon_V6_pred_typecast_128B: { |
| 2146 | MVT ResTy = ty(Op), InpTy = ty(Op: Ops[1]); |
| 2147 | if (isHvxBoolTy(Ty: ResTy) && isHvxBoolTy(Ty: InpTy)) { |
| 2148 | if (ResTy == InpTy) |
| 2149 | return Ops[1]; |
| 2150 | return DAG.getNode(Opcode: HexagonISD::TYPECAST, DL: dl, VT: ResTy, Operand: Ops[1]); |
| 2151 | } |
| 2152 | break; |
| 2153 | } |
| 2154 | case Intrinsic::hexagon_V6_vmpyss_parts: |
| 2155 | case Intrinsic::hexagon_V6_vmpyss_parts_128B: |
| 2156 | return Swap(DAG.getNode(Opcode: HexagonISD::SMUL_LOHI, DL: dl, VTList: Op->getVTList(), |
| 2157 | Ops: {Ops[1], Ops[2]})); |
| 2158 | case Intrinsic::hexagon_V6_vmpyuu_parts: |
| 2159 | case Intrinsic::hexagon_V6_vmpyuu_parts_128B: |
| 2160 | return Swap(DAG.getNode(Opcode: HexagonISD::UMUL_LOHI, DL: dl, VTList: Op->getVTList(), |
| 2161 | Ops: {Ops[1], Ops[2]})); |
| 2162 | case Intrinsic::hexagon_V6_vmpyus_parts: |
| 2163 | case Intrinsic::hexagon_V6_vmpyus_parts_128B: { |
| 2164 | return Swap(DAG.getNode(Opcode: HexagonISD::USMUL_LOHI, DL: dl, VTList: Op->getVTList(), |
| 2165 | Ops: {Ops[1], Ops[2]})); |
| 2166 | } |
| 2167 | } // switch |
| 2168 | |
| 2169 | return Op; |
| 2170 | } |
| 2171 | |
| 2172 | SDValue |
| 2173 | HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const { |
| 2174 | const SDLoc &dl(Op); |
| 2175 | unsigned HwLen = Subtarget.getVectorLength(); |
| 2176 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2177 | auto *MaskN = cast<MaskedLoadStoreSDNode>(Val: Op.getNode()); |
| 2178 | SDValue Mask = MaskN->getMask(); |
| 2179 | SDValue Chain = MaskN->getChain(); |
| 2180 | SDValue Base = MaskN->getBasePtr(); |
| 2181 | auto *MemOp = MF.getMachineMemOperand(MMO: MaskN->getMemOperand(), Offset: 0, Size: HwLen); |
| 2182 | |
| 2183 | unsigned Opc = Op->getOpcode(); |
| 2184 | assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE); |
| 2185 | |
| 2186 | if (Opc == ISD::MLOAD) { |
| 2187 | MVT ValTy = ty(Op); |
| 2188 | SDValue Load = DAG.getLoad(VT: ValTy, dl, Chain, Ptr: Base, MMO: MemOp); |
| 2189 | SDValue Thru = cast<MaskedLoadSDNode>(Val: MaskN)->getPassThru(); |
| 2190 | if (isUndef(Op: Thru)) |
| 2191 | return Load; |
| 2192 | SDValue VSel = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ValTy, N1: Mask, N2: Load, N3: Thru); |
| 2193 | return DAG.getMergeValues(Ops: {VSel, Load.getValue(R: 1)}, dl); |
| 2194 | } |
| 2195 | |
| 2196 | // MSTORE |
| 2197 | // HVX only has aligned masked stores. |
| 2198 | |
| 2199 | // TODO: Fold negations of the mask into the store. |
| 2200 | unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai; |
| 2201 | SDValue Value = cast<MaskedStoreSDNode>(Val: MaskN)->getValue(); |
| 2202 | SDValue Offset0 = DAG.getTargetConstant(Val: 0, DL: dl, VT: ty(Op: Base)); |
| 2203 | |
| 2204 | if (MaskN->getAlign().value() % HwLen == 0) { |
| 2205 | SDValue Store = getInstr(MachineOpc: StoreOpc, dl, Ty: MVT::Other, |
| 2206 | Ops: {Mask, Base, Offset0, Value, Chain}, DAG); |
| 2207 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Store.getNode()), NewMemRefs: {MemOp}); |
| 2208 | return Store; |
| 2209 | } |
| 2210 | |
| 2211 | // Unaligned case. |
| 2212 | auto StoreAlign = [&](SDValue V, SDValue A) { |
| 2213 | SDValue Z = getZero(dl, Ty: ty(Op: V), DAG); |
| 2214 | // TODO: use funnel shifts? |
| 2215 | // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the |
| 2216 | // upper half. |
| 2217 | SDValue LoV = getInstr(MachineOpc: Hexagon::V6_vlalignb, dl, Ty: ty(Op: V), Ops: {V, Z, A}, DAG); |
| 2218 | SDValue HiV = getInstr(MachineOpc: Hexagon::V6_vlalignb, dl, Ty: ty(Op: V), Ops: {Z, V, A}, DAG); |
| 2219 | return std::make_pair(x&: LoV, y&: HiV); |
| 2220 | }; |
| 2221 | |
| 2222 | MVT ByteTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 2223 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 2224 | SDValue MaskV = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: Mask); |
| 2225 | VectorPair Tmp = StoreAlign(MaskV, Base); |
| 2226 | VectorPair MaskU = {DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: BoolTy, Operand: Tmp.first), |
| 2227 | DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: BoolTy, Operand: Tmp.second)}; |
| 2228 | VectorPair ValueU = StoreAlign(Value, Base); |
| 2229 | |
| 2230 | SDValue Offset1 = DAG.getTargetConstant(Val: HwLen, DL: dl, VT: MVT::i32); |
| 2231 | SDValue StoreLo = |
| 2232 | getInstr(MachineOpc: StoreOpc, dl, Ty: MVT::Other, |
| 2233 | Ops: {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG); |
| 2234 | SDValue StoreHi = |
| 2235 | getInstr(MachineOpc: StoreOpc, dl, Ty: MVT::Other, |
| 2236 | Ops: {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG); |
| 2237 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: StoreLo.getNode()), NewMemRefs: {MemOp}); |
| 2238 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: StoreHi.getNode()), NewMemRefs: {MemOp}); |
| 2239 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: {StoreLo, StoreHi}); |
| 2240 | } |
| 2241 | |
| 2242 | SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op, |
| 2243 | SelectionDAG &DAG) const { |
| 2244 | // This conversion only applies to QFloat. IEEE extension from f16 to f32 |
| 2245 | // is legal (done via a pattern). |
| 2246 | assert(Subtarget.useHVXQFloatOps()); |
| 2247 | |
| 2248 | assert(Op->getOpcode() == ISD::FP_EXTEND); |
| 2249 | |
| 2250 | MVT VecTy = ty(Op); |
| 2251 | MVT ArgTy = ty(Op: Op.getOperand(i: 0)); |
| 2252 | const SDLoc &dl(Op); |
| 2253 | assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16); |
| 2254 | |
| 2255 | SDValue F16Vec = Op.getOperand(i: 0); |
| 2256 | |
| 2257 | APFloat FloatVal = APFloat(1.0f); |
| 2258 | bool Ignored; |
| 2259 | FloatVal.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, losesInfo: &Ignored); |
| 2260 | SDValue Fp16Ones = DAG.getConstantFP(Val: FloatVal, DL: dl, VT: ArgTy); |
| 2261 | SDValue VmpyVec = |
| 2262 | getInstr(MachineOpc: Hexagon::V6_vmpy_qf32_hf, dl, Ty: VecTy, Ops: {F16Vec, Fp16Ones}, DAG); |
| 2263 | |
| 2264 | MVT HalfTy = typeSplit(VecTy).first; |
| 2265 | VectorPair Pair = opSplit(Vec: VmpyVec, dl, DAG); |
| 2266 | SDValue LoVec = |
| 2267 | getInstr(MachineOpc: Hexagon::V6_vconv_sf_qf32, dl, Ty: HalfTy, Ops: {Pair.first}, DAG); |
| 2268 | SDValue HiVec = |
| 2269 | getInstr(MachineOpc: Hexagon::V6_vconv_sf_qf32, dl, Ty: HalfTy, Ops: {Pair.second}, DAG); |
| 2270 | |
| 2271 | SDValue ShuffVec = |
| 2272 | getInstr(MachineOpc: Hexagon::V6_vshuffvdd, dl, Ty: VecTy, |
| 2273 | Ops: {HiVec, LoVec, DAG.getSignedConstant(Val: -4, DL: dl, VT: MVT::i32)}, DAG); |
| 2274 | |
| 2275 | return ShuffVec; |
| 2276 | } |
| 2277 | |
| 2278 | SDValue |
| 2279 | HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { |
| 2280 | // Catch invalid conversion ops (just in case). |
| 2281 | assert(Op.getOpcode() == ISD::FP_TO_SINT || |
| 2282 | Op.getOpcode() == ISD::FP_TO_UINT); |
| 2283 | |
| 2284 | MVT ResTy = ty(Op); |
| 2285 | MVT FpTy = ty(Op: Op.getOperand(i: 0)).getVectorElementType(); |
| 2286 | MVT IntTy = ResTy.getVectorElementType(); |
| 2287 | |
| 2288 | if (Subtarget.useHVXIEEEFPOps()) { |
| 2289 | // There are only conversions from f16. |
| 2290 | if (FpTy == MVT::f16) { |
| 2291 | // Other int types aren't legal in HVX, so we shouldn't see them here. |
| 2292 | assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); |
| 2293 | // Conversions to i8 and i16 are legal. |
| 2294 | if (IntTy == MVT::i8 || IntTy == MVT::i16) |
| 2295 | return Op; |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) |
| 2300 | return EqualizeFpIntConversion(Op, DAG); |
| 2301 | |
| 2302 | return ExpandHvxFpToInt(Op, DAG); |
| 2303 | } |
| 2304 | |
| 2305 | SDValue |
| 2306 | HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { |
| 2307 | // Catch invalid conversion ops (just in case). |
| 2308 | assert(Op.getOpcode() == ISD::SINT_TO_FP || |
| 2309 | Op.getOpcode() == ISD::UINT_TO_FP); |
| 2310 | |
| 2311 | MVT ResTy = ty(Op); |
| 2312 | MVT IntTy = ty(Op: Op.getOperand(i: 0)).getVectorElementType(); |
| 2313 | MVT FpTy = ResTy.getVectorElementType(); |
| 2314 | |
| 2315 | if (Subtarget.useHVXIEEEFPOps()) { |
| 2316 | // There are only conversions to f16. |
| 2317 | if (FpTy == MVT::f16) { |
| 2318 | // Other int types aren't legal in HVX, so we shouldn't see them here. |
| 2319 | assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); |
| 2320 | // i8, i16 -> f16 is legal. |
| 2321 | if (IntTy == MVT::i8 || IntTy == MVT::i16) |
| 2322 | return Op; |
| 2323 | } |
| 2324 | } |
| 2325 | |
| 2326 | if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) |
| 2327 | return EqualizeFpIntConversion(Op, DAG); |
| 2328 | |
| 2329 | return ExpandHvxIntToFp(Op, DAG); |
| 2330 | } |
| 2331 | |
| 2332 | HexagonTargetLowering::TypePair |
| 2333 | HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const { |
| 2334 | // Compare the widths of elements of the two types, and extend the narrower |
| 2335 | // type to match the with of the wider type. For vector types, apply this |
| 2336 | // to the element type. |
| 2337 | assert(Ty0.isVector() == Ty1.isVector()); |
| 2338 | |
| 2339 | MVT ElemTy0 = Ty0.getScalarType(); |
| 2340 | MVT ElemTy1 = Ty1.getScalarType(); |
| 2341 | |
| 2342 | unsigned Width0 = ElemTy0.getSizeInBits(); |
| 2343 | unsigned Width1 = ElemTy1.getSizeInBits(); |
| 2344 | unsigned MaxWidth = std::max(a: Width0, b: Width1); |
| 2345 | |
| 2346 | auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) { |
| 2347 | if (ScalarTy.isInteger()) |
| 2348 | return MVT::getIntegerVT(BitWidth: Width); |
| 2349 | assert(ScalarTy.isFloatingPoint()); |
| 2350 | return MVT::getFloatingPointVT(BitWidth: Width); |
| 2351 | }; |
| 2352 | |
| 2353 | MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth); |
| 2354 | MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth); |
| 2355 | |
| 2356 | if (!Ty0.isVector()) { |
| 2357 | // Both types are scalars. |
| 2358 | return {WideETy0, WideETy1}; |
| 2359 | } |
| 2360 | |
| 2361 | // Vector types. |
| 2362 | unsigned NumElem = Ty0.getVectorNumElements(); |
| 2363 | assert(NumElem == Ty1.getVectorNumElements()); |
| 2364 | |
| 2365 | return {MVT::getVectorVT(VT: WideETy0, NumElements: NumElem), |
| 2366 | MVT::getVectorVT(VT: WideETy1, NumElements: NumElem)}; |
| 2367 | } |
| 2368 | |
| 2369 | HexagonTargetLowering::TypePair |
| 2370 | HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const { |
| 2371 | // Compare the numbers of elements of two vector types, and widen the |
| 2372 | // narrower one to match the number of elements in the wider one. |
| 2373 | assert(Ty0.isVector() && Ty1.isVector()); |
| 2374 | |
| 2375 | unsigned Len0 = Ty0.getVectorNumElements(); |
| 2376 | unsigned Len1 = Ty1.getVectorNumElements(); |
| 2377 | if (Len0 == Len1) |
| 2378 | return {Ty0, Ty1}; |
| 2379 | |
| 2380 | unsigned MaxLen = std::max(a: Len0, b: Len1); |
| 2381 | return {MVT::getVectorVT(VT: Ty0.getVectorElementType(), NumElements: MaxLen), |
| 2382 | MVT::getVectorVT(VT: Ty1.getVectorElementType(), NumElements: MaxLen)}; |
| 2383 | } |
| 2384 | |
| 2385 | MVT |
| 2386 | HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const { |
| 2387 | EVT LegalTy = getTypeToTransformTo(Context&: *DAG.getContext(), VT: Ty); |
| 2388 | assert(LegalTy.isSimple()); |
| 2389 | return LegalTy.getSimpleVT(); |
| 2390 | } |
| 2391 | |
| 2392 | MVT |
| 2393 | HexagonTargetLowering::typeWidenToHvx(MVT Ty) const { |
| 2394 | unsigned HwWidth = 8 * Subtarget.getVectorLength(); |
| 2395 | assert(Ty.getSizeInBits() <= HwWidth); |
| 2396 | if (Ty.getSizeInBits() == HwWidth) |
| 2397 | return Ty; |
| 2398 | |
| 2399 | MVT ElemTy = Ty.getScalarType(); |
| 2400 | return MVT::getVectorVT(VT: ElemTy, NumElements: HwWidth / ElemTy.getSizeInBits()); |
| 2401 | } |
| 2402 | |
| 2403 | HexagonTargetLowering::VectorPair |
| 2404 | HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B, |
| 2405 | const SDLoc &dl, bool Signed, SelectionDAG &DAG) const { |
| 2406 | // Compute A+B, return {A+B, O}, where O = vector predicate indicating |
| 2407 | // whether an overflow has occurred. |
| 2408 | MVT ResTy = ty(Op: A); |
| 2409 | assert(ResTy == ty(B)); |
| 2410 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, NumElements: ResTy.getVectorNumElements()); |
| 2411 | |
| 2412 | if (!Signed) { |
| 2413 | // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't |
| 2414 | // save any instructions. |
| 2415 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ResTy, Ops: {A, B}); |
| 2416 | SDValue Ovf = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Add, RHS: A, Cond: ISD::SETULT); |
| 2417 | return {Add, Ovf}; |
| 2418 | } |
| 2419 | |
| 2420 | // Signed overflow has happened, if: |
| 2421 | // (A, B have the same sign) and (A+B has a different sign from either) |
| 2422 | // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit |
| 2423 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ResTy, Ops: {A, B}); |
| 2424 | SDValue NotA = |
| 2425 | DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {A, DAG.getAllOnesConstant(DL: dl, VT: ResTy)}); |
| 2426 | SDValue Xor0 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {NotA, B}); |
| 2427 | SDValue Xor1 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {Add, B}); |
| 2428 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ResTy, Ops: {Xor0, Xor1}); |
| 2429 | SDValue MSB = |
| 2430 | DAG.getSetCC(DL: dl, VT: PredTy, LHS: And, RHS: getZero(dl, Ty: ResTy, DAG), Cond: ISD::SETLT); |
| 2431 | return {Add, MSB}; |
| 2432 | } |
| 2433 | |
| 2434 | HexagonTargetLowering::VectorPair |
| 2435 | HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt, |
| 2436 | bool Signed, SelectionDAG &DAG) const { |
| 2437 | // Shift Val right by Amt bits, round the result to the nearest integer, |
| 2438 | // tie-break by rounding halves to even integer. |
| 2439 | |
| 2440 | const SDLoc &dl(Val); |
| 2441 | MVT ValTy = ty(Op: Val); |
| 2442 | |
| 2443 | // This should also work for signed integers. |
| 2444 | // |
| 2445 | // uint tmp0 = inp + ((1 << (Amt-1)) - 1); |
| 2446 | // bool ovf = (inp > tmp0); |
| 2447 | // uint rup = inp & (1 << (Amt+1)); |
| 2448 | // |
| 2449 | // uint tmp1 = inp >> (Amt-1); // tmp1 == tmp2 iff |
| 2450 | // uint tmp2 = tmp0 >> (Amt-1); // the Amt-1 lower bits were all 0 |
| 2451 | // uint tmp3 = tmp2 + rup; |
| 2452 | // uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1; |
| 2453 | unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits(); |
| 2454 | MVT ElemTy = MVT::getIntegerVT(BitWidth: ElemWidth); |
| 2455 | MVT IntTy = tyVector(Ty: ValTy, ElemTy); |
| 2456 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, NumElements: IntTy.getVectorNumElements()); |
| 2457 | unsigned ShRight = Signed ? ISD::SRA : ISD::SRL; |
| 2458 | |
| 2459 | SDValue Inp = DAG.getBitcast(VT: IntTy, V: Val); |
| 2460 | SDValue LowBits = DAG.getConstant(Val: (1ull << (Amt - 1)) - 1, DL: dl, VT: IntTy); |
| 2461 | |
| 2462 | SDValue AmtP1 = DAG.getConstant(Val: 1ull << Amt, DL: dl, VT: IntTy); |
| 2463 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntTy, Ops: {Inp, AmtP1}); |
| 2464 | SDValue Zero = getZero(dl, Ty: IntTy, DAG); |
| 2465 | SDValue Bit = DAG.getSetCC(DL: dl, VT: PredTy, LHS: And, RHS: Zero, Cond: ISD::SETNE); |
| 2466 | SDValue Rup = DAG.getZExtOrTrunc(Op: Bit, DL: dl, VT: IntTy); |
| 2467 | auto [Tmp0, Ovf] = emitHvxAddWithOverflow(A: Inp, B: LowBits, dl, Signed, DAG); |
| 2468 | |
| 2469 | SDValue AmtM1 = DAG.getConstant(Val: Amt - 1, DL: dl, VT: IntTy); |
| 2470 | SDValue Tmp1 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, N1: Inp, N2: AmtM1); |
| 2471 | SDValue Tmp2 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, N1: Tmp0, N2: AmtM1); |
| 2472 | SDValue Tmp3 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: IntTy, N1: Tmp2, N2: Rup); |
| 2473 | |
| 2474 | SDValue Eq = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Tmp1, RHS: Tmp2, Cond: ISD::SETEQ); |
| 2475 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: IntTy); |
| 2476 | SDValue Tmp4 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, Ops: {Tmp2, One}); |
| 2477 | SDValue Tmp5 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, Ops: {Tmp3, One}); |
| 2478 | SDValue Mux = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: IntTy, Ops: {Eq, Tmp5, Tmp4}); |
| 2479 | return {Mux, Ovf}; |
| 2480 | } |
| 2481 | |
| 2482 | SDValue |
| 2483 | HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, |
| 2484 | SelectionDAG &DAG) const { |
| 2485 | MVT VecTy = ty(Op: A); |
| 2486 | MVT PairTy = typeJoin(Tys: {VecTy, VecTy}); |
| 2487 | assert(VecTy.getVectorElementType() == MVT::i32); |
| 2488 | |
| 2489 | SDValue S16 = DAG.getConstant(Val: 16, DL: dl, VT: MVT::i32); |
| 2490 | |
| 2491 | // mulhs(A,B) = |
| 2492 | // = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32 |
| 2493 | // = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16 |
| 2494 | // + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32 |
| 2495 | // = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32 |
| 2496 | // The low half of Lo(A)*Lo(B) will be discarded (it's not added to |
| 2497 | // anything, so it cannot produce any carry over to higher bits), |
| 2498 | // so everything in [] can be shifted by 16 without loss of precision. |
| 2499 | // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16 |
| 2500 | // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16 |
| 2501 | // The final additions need to make sure to properly maintain any carry- |
| 2502 | // out bits. |
| 2503 | // |
| 2504 | // Hi(B) Lo(B) |
| 2505 | // Hi(A) Lo(A) |
| 2506 | // -------------- |
| 2507 | // Lo(B)*Lo(A) | T0 = V6_vmpyewuh(B,A) does this, |
| 2508 | // Hi(B)*Lo(A) | + dropping the low 16 bits |
| 2509 | // Hi(A)*Lo(B) | T2 |
| 2510 | // Hi(B)*Hi(A) |
| 2511 | |
| 2512 | SDValue T0 = getInstr(MachineOpc: Hexagon::V6_vmpyewuh, dl, Ty: VecTy, Ops: {B, A}, DAG); |
| 2513 | // T1 = get Hi(A) into low halves. |
| 2514 | SDValue T1 = getInstr(MachineOpc: Hexagon::V6_vasrw, dl, Ty: VecTy, Ops: {A, S16}, DAG); |
| 2515 | // P0 = interleaved T1.h*B.uh (full precision product) |
| 2516 | SDValue P0 = getInstr(MachineOpc: Hexagon::V6_vmpyhus, dl, Ty: PairTy, Ops: {T1, B}, DAG); |
| 2517 | // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B) |
| 2518 | SDValue T2 = LoHalf(V: P0, DAG); |
| 2519 | // We need to add T0+T2, recording the carry-out, which will be 1<<16 |
| 2520 | // added to the final sum. |
| 2521 | // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves |
| 2522 | SDValue P1 = getInstr(MachineOpc: Hexagon::V6_vadduhw, dl, Ty: PairTy, Ops: {T0, T2}, DAG); |
| 2523 | // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves |
| 2524 | SDValue P2 = getInstr(MachineOpc: Hexagon::V6_vaddhw, dl, Ty: PairTy, Ops: {T0, T2}, DAG); |
| 2525 | // T3 = full-precision(T0+T2) >> 16 |
| 2526 | // The low halves are added-unsigned, the high ones are added-signed. |
| 2527 | SDValue T3 = getInstr(MachineOpc: Hexagon::V6_vasrw_acc, dl, Ty: VecTy, |
| 2528 | Ops: {HiHalf(V: P2, DAG), LoHalf(V: P1, DAG), S16}, DAG); |
| 2529 | SDValue T4 = getInstr(MachineOpc: Hexagon::V6_vasrw, dl, Ty: VecTy, Ops: {B, S16}, DAG); |
| 2530 | // P3 = interleaved Hi(B)*Hi(A) (full precision), |
| 2531 | // which is now Lo(T1)*Lo(T4), so we want to keep the even product. |
| 2532 | SDValue P3 = getInstr(MachineOpc: Hexagon::V6_vmpyhv, dl, Ty: PairTy, Ops: {T1, T4}, DAG); |
| 2533 | SDValue T5 = LoHalf(V: P3, DAG); |
| 2534 | // Add: |
| 2535 | SDValue T6 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: VecTy, Ops: {T3, T5}); |
| 2536 | return T6; |
| 2537 | } |
| 2538 | |
| 2539 | SDValue |
| 2540 | HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, |
| 2541 | bool SignedB, const SDLoc &dl, |
| 2542 | SelectionDAG &DAG) const { |
| 2543 | MVT VecTy = ty(Op: A); |
| 2544 | MVT PairTy = typeJoin(Tys: {VecTy, VecTy}); |
| 2545 | assert(VecTy.getVectorElementType() == MVT::i32); |
| 2546 | |
| 2547 | SDValue S16 = DAG.getConstant(Val: 16, DL: dl, VT: MVT::i32); |
| 2548 | |
| 2549 | if (SignedA && !SignedB) { |
| 2550 | // Make A:unsigned, B:signed. |
| 2551 | std::swap(a&: A, b&: B); |
| 2552 | std::swap(a&: SignedA, b&: SignedB); |
| 2553 | } |
| 2554 | |
| 2555 | // Do halfword-wise multiplications for unsigned*unsigned product, then |
| 2556 | // add corrections for signed and unsigned*signed. |
| 2557 | |
| 2558 | SDValue Lo, Hi; |
| 2559 | |
| 2560 | // P0:lo = (uu) products of low halves of A and B, |
| 2561 | // P0:hi = (uu) products of high halves. |
| 2562 | SDValue P0 = getInstr(MachineOpc: Hexagon::V6_vmpyuhv, dl, Ty: PairTy, Ops: {A, B}, DAG); |
| 2563 | |
| 2564 | // Swap low/high halves in B |
| 2565 | SDValue T0 = getInstr(MachineOpc: Hexagon::V6_lvsplatw, dl, Ty: VecTy, |
| 2566 | Ops: {DAG.getConstant(Val: 0x02020202, DL: dl, VT: MVT::i32)}, DAG); |
| 2567 | SDValue T1 = getInstr(MachineOpc: Hexagon::V6_vdelta, dl, Ty: VecTy, Ops: {B, T0}, DAG); |
| 2568 | // P1 = products of even/odd halfwords. |
| 2569 | // P1:lo = (uu) products of even(A.uh) * odd(B.uh) |
| 2570 | // P1:hi = (uu) products of odd(A.uh) * even(B.uh) |
| 2571 | SDValue P1 = getInstr(MachineOpc: Hexagon::V6_vmpyuhv, dl, Ty: PairTy, Ops: {A, T1}, DAG); |
| 2572 | |
| 2573 | // P2:lo = low halves of P1:lo + P1:hi, |
| 2574 | // P2:hi = high halves of P1:lo + P1:hi. |
| 2575 | SDValue P2 = getInstr(MachineOpc: Hexagon::V6_vadduhw, dl, Ty: PairTy, |
| 2576 | Ops: {HiHalf(V: P1, DAG), LoHalf(V: P1, DAG)}, DAG); |
| 2577 | // Still need to add the high halves of P0:lo to P2:lo |
| 2578 | SDValue T2 = |
| 2579 | getInstr(MachineOpc: Hexagon::V6_vlsrw, dl, Ty: VecTy, Ops: {LoHalf(V: P0, DAG), S16}, DAG); |
| 2580 | SDValue T3 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: VecTy, Ops: {LoHalf(V: P2, DAG), T2}); |
| 2581 | |
| 2582 | // The high halves of T3 will contribute to the HI part of LOHI. |
| 2583 | SDValue T4 = getInstr(MachineOpc: Hexagon::V6_vasrw_acc, dl, Ty: VecTy, |
| 2584 | Ops: {HiHalf(V: P2, DAG), T3, S16}, DAG); |
| 2585 | |
| 2586 | // The low halves of P2 need to be added to high halves of the LO part. |
| 2587 | Lo = getInstr(MachineOpc: Hexagon::V6_vaslw_acc, dl, Ty: VecTy, |
| 2588 | Ops: {LoHalf(V: P0, DAG), LoHalf(V: P2, DAG), S16}, DAG); |
| 2589 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: VecTy, Ops: {HiHalf(V: P0, DAG), T4}); |
| 2590 | |
| 2591 | if (SignedA) { |
| 2592 | assert(SignedB && "Signed A and unsigned B should have been inverted" ); |
| 2593 | |
| 2594 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, NumElements: VecTy.getVectorNumElements()); |
| 2595 | SDValue Zero = getZero(dl, Ty: VecTy, DAG); |
| 2596 | SDValue Q0 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: A, RHS: Zero, Cond: ISD::SETLT); |
| 2597 | SDValue Q1 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: B, RHS: Zero, Cond: ISD::SETLT); |
| 2598 | SDValue X0 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: VecTy, Ops: {Q0, B, Zero}); |
| 2599 | SDValue X1 = getInstr(MachineOpc: Hexagon::V6_vaddwq, dl, Ty: VecTy, Ops: {Q1, X0, A}, DAG); |
| 2600 | Hi = getInstr(MachineOpc: Hexagon::V6_vsubw, dl, Ty: VecTy, Ops: {Hi, X1}, DAG); |
| 2601 | } else if (SignedB) { |
| 2602 | // Same correction as for mulhus: |
| 2603 | // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0) |
| 2604 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, NumElements: VecTy.getVectorNumElements()); |
| 2605 | SDValue Zero = getZero(dl, Ty: VecTy, DAG); |
| 2606 | SDValue Q1 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: B, RHS: Zero, Cond: ISD::SETLT); |
| 2607 | Hi = getInstr(MachineOpc: Hexagon::V6_vsubwq, dl, Ty: VecTy, Ops: {Q1, Hi, A}, DAG); |
| 2608 | } else { |
| 2609 | assert(!SignedA && !SignedB); |
| 2610 | } |
| 2611 | |
| 2612 | return DAG.getMergeValues(Ops: {Lo, Hi}, dl); |
| 2613 | } |
| 2614 | |
| 2615 | SDValue |
| 2616 | HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA, |
| 2617 | SDValue B, bool SignedB, |
| 2618 | const SDLoc &dl, |
| 2619 | SelectionDAG &DAG) const { |
| 2620 | MVT VecTy = ty(Op: A); |
| 2621 | MVT PairTy = typeJoin(Tys: {VecTy, VecTy}); |
| 2622 | assert(VecTy.getVectorElementType() == MVT::i32); |
| 2623 | |
| 2624 | if (SignedA && !SignedB) { |
| 2625 | // Make A:unsigned, B:signed. |
| 2626 | std::swap(a&: A, b&: B); |
| 2627 | std::swap(a&: SignedA, b&: SignedB); |
| 2628 | } |
| 2629 | |
| 2630 | // Do S*S first, then make corrections for U*S or U*U if needed. |
| 2631 | SDValue P0 = getInstr(MachineOpc: Hexagon::V6_vmpyewuh_64, dl, Ty: PairTy, Ops: {A, B}, DAG); |
| 2632 | SDValue P1 = |
| 2633 | getInstr(MachineOpc: Hexagon::V6_vmpyowh_64_acc, dl, Ty: PairTy, Ops: {P0, A, B}, DAG); |
| 2634 | SDValue Lo = LoHalf(V: P1, DAG); |
| 2635 | SDValue Hi = HiHalf(V: P1, DAG); |
| 2636 | |
| 2637 | if (!SignedB) { |
| 2638 | assert(!SignedA && "Signed A and unsigned B should have been inverted" ); |
| 2639 | SDValue Zero = getZero(dl, Ty: VecTy, DAG); |
| 2640 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, NumElements: VecTy.getVectorNumElements()); |
| 2641 | |
| 2642 | // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0). |
| 2643 | // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)), |
| 2644 | // (V6_vaddw (HiHalf (Muls64O $A, $B)), |
| 2645 | // (V6_vaddwq (V6_vgtw (V6_vd0), $B), |
| 2646 | // (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B), |
| 2647 | // $A))>; |
| 2648 | SDValue Q0 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: A, RHS: Zero, Cond: ISD::SETLT); |
| 2649 | SDValue Q1 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: B, RHS: Zero, Cond: ISD::SETLT); |
| 2650 | SDValue T0 = getInstr(MachineOpc: Hexagon::V6_vandvqv, dl, Ty: VecTy, Ops: {Q0, B}, DAG); |
| 2651 | SDValue T1 = getInstr(MachineOpc: Hexagon::V6_vaddwq, dl, Ty: VecTy, Ops: {Q1, T0, A}, DAG); |
| 2652 | Hi = getInstr(MachineOpc: Hexagon::V6_vaddw, dl, Ty: VecTy, Ops: {Hi, T1}, DAG); |
| 2653 | } else if (!SignedA) { |
| 2654 | SDValue Zero = getZero(dl, Ty: VecTy, DAG); |
| 2655 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, NumElements: VecTy.getVectorNumElements()); |
| 2656 | |
| 2657 | // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0). |
| 2658 | // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)), |
| 2659 | // (V6_vaddwq (V6_vgtw (V6_vd0), $A), |
| 2660 | // (HiHalf (Muls64O $A, $B)), |
| 2661 | // $B)>; |
| 2662 | SDValue Q0 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: A, RHS: Zero, Cond: ISD::SETLT); |
| 2663 | Hi = getInstr(MachineOpc: Hexagon::V6_vaddwq, dl, Ty: VecTy, Ops: {Q0, Hi, B}, DAG); |
| 2664 | } |
| 2665 | |
| 2666 | return DAG.getMergeValues(Ops: {Lo, Hi}, dl); |
| 2667 | } |
| 2668 | |
| 2669 | SDValue |
| 2670 | HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) |
| 2671 | const { |
| 2672 | // Rewrite conversion between integer and floating-point in such a way that |
| 2673 | // the integer type is extended/narrowed to match the bitwidth of the |
| 2674 | // floating-point type, combined with additional integer-integer extensions |
| 2675 | // or narrowings to match the original input/result types. |
| 2676 | // E.g. f32 -> i8 ==> f32 -> i32 -> i8 |
| 2677 | // |
| 2678 | // The input/result types are not required to be legal, but if they are |
| 2679 | // legal, this function should not introduce illegal types. |
| 2680 | |
| 2681 | unsigned Opc = Op.getOpcode(); |
| 2682 | assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || |
| 2683 | Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); |
| 2684 | |
| 2685 | SDValue Inp = Op.getOperand(i: 0); |
| 2686 | MVT InpTy = ty(Op: Inp); |
| 2687 | MVT ResTy = ty(Op); |
| 2688 | |
| 2689 | if (InpTy == ResTy) |
| 2690 | return Op; |
| 2691 | |
| 2692 | const SDLoc &dl(Op); |
| 2693 | bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP; |
| 2694 | |
| 2695 | auto [WInpTy, WResTy] = typeExtendToWider(Ty0: InpTy, Ty1: ResTy); |
| 2696 | SDValue WInp = resizeToWidth(VecV: Inp, ResTy: WInpTy, Signed, dl, DAG); |
| 2697 | SDValue Conv = DAG.getNode(Opcode: Opc, DL: dl, VT: WResTy, Operand: WInp); |
| 2698 | SDValue Res = resizeToWidth(VecV: Conv, ResTy, Signed, dl, DAG); |
| 2699 | return Res; |
| 2700 | } |
| 2701 | |
| 2702 | SDValue |
| 2703 | HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { |
| 2704 | unsigned Opc = Op.getOpcode(); |
| 2705 | assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT); |
| 2706 | |
| 2707 | const SDLoc &dl(Op); |
| 2708 | SDValue Op0 = Op.getOperand(i: 0); |
| 2709 | MVT InpTy = ty(Op: Op0); |
| 2710 | MVT ResTy = ty(Op); |
| 2711 | assert(InpTy.changeTypeToInteger() == ResTy); |
| 2712 | |
| 2713 | // int32_t conv_f32_to_i32(uint32_t inp) { |
| 2714 | // // s | exp8 | frac23 |
| 2715 | // |
| 2716 | // int neg = (int32_t)inp < 0; |
| 2717 | // |
| 2718 | // // "expm1" is the actual exponent minus 1: instead of "bias", subtract |
| 2719 | // // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will |
| 2720 | // // produce a large positive "expm1", which will result in max u/int. |
| 2721 | // // In all IEEE formats, bias is the largest positive number that can be |
| 2722 | // // represented in bias-width bits (i.e. 011..1). |
| 2723 | // int32_t expm1 = (inp << 1) - 0x80000000; |
| 2724 | // expm1 >>= 24; |
| 2725 | // |
| 2726 | // // Always insert the "implicit 1". Subnormal numbers will become 0 |
| 2727 | // // regardless. |
| 2728 | // uint32_t frac = (inp << 8) | 0x80000000; |
| 2729 | // |
| 2730 | // // "frac" is the fraction part represented as Q1.31. If it was |
| 2731 | // // interpreted as uint32_t, it would be the fraction part multiplied |
| 2732 | // // by 2^31. |
| 2733 | // |
| 2734 | // // Calculate the amount of right shift, since shifting further to the |
| 2735 | // // left would lose significant bits. Limit it to 32, because we want |
| 2736 | // // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift |
| 2737 | // // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift |
| 2738 | // // left by 31). "rsh" can be negative. |
| 2739 | // int32_t rsh = min(31 - (expm1 + 1), 32); |
| 2740 | // |
| 2741 | // frac >>= rsh; // rsh == 32 will produce 0 |
| 2742 | // |
| 2743 | // // Everything up to this point is the same for conversion to signed |
| 2744 | // // unsigned integer. |
| 2745 | // |
| 2746 | // if (neg) // Only for signed int |
| 2747 | // frac = -frac; // |
| 2748 | // if (rsh <= 0 && neg) // bound = neg ? 0x80000000 : 0x7fffffff |
| 2749 | // frac = 0x80000000; // frac = rsh <= 0 ? bound : frac |
| 2750 | // if (rsh <= 0 && !neg) // |
| 2751 | // frac = 0x7fffffff; // |
| 2752 | // |
| 2753 | // if (neg) // Only for unsigned int |
| 2754 | // frac = 0; // |
| 2755 | // if (rsh < 0 && !neg) // frac = rsh < 0 ? 0x7fffffff : frac; |
| 2756 | // frac = 0x7fffffff; // frac = neg ? 0 : frac; |
| 2757 | // |
| 2758 | // return frac; |
| 2759 | // } |
| 2760 | |
| 2761 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, EC: ResTy.getVectorElementCount()); |
| 2762 | |
| 2763 | // Zero = V6_vd0(); |
| 2764 | // Neg = V6_vgtw(Zero, Inp); |
| 2765 | // One = V6_lvsplatw(1); |
| 2766 | // M80 = V6_lvsplatw(0x80000000); |
| 2767 | // Exp00 = V6_vaslwv(Inp, One); |
| 2768 | // Exp01 = V6_vsubw(Exp00, M80); |
| 2769 | // ExpM1 = V6_vasrw(Exp01, 24); |
| 2770 | // Frc00 = V6_vaslw(Inp, 8); |
| 2771 | // Frc01 = V6_vor(Frc00, M80); |
| 2772 | // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1); |
| 2773 | // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32)); |
| 2774 | // Frc02 = V6_vlsrwv(Frc01, Rsh01); |
| 2775 | |
| 2776 | // if signed int: |
| 2777 | // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff)) |
| 2778 | // Pos = V6_vgtw(Rsh01, Zero); |
| 2779 | // Frc13 = V6_vsubw(Zero, Frc02); |
| 2780 | // Frc14 = V6_vmux(Neg, Frc13, Frc02); |
| 2781 | // Int = V6_vmux(Pos, Frc14, Bnd); |
| 2782 | // |
| 2783 | // if unsigned int: |
| 2784 | // Rsn = V6_vgtw(Zero, Rsh01) |
| 2785 | // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02) |
| 2786 | // Int = V6_vmux(Neg, Zero, Frc23) |
| 2787 | |
| 2788 | auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(Ty: InpTy); |
| 2789 | unsigned ElemWidth = 1 + ExpWidth + FracWidth; |
| 2790 | assert((1ull << (ExpWidth - 1)) == (1 + ExpBias)); |
| 2791 | |
| 2792 | SDValue Inp = DAG.getBitcast(VT: ResTy, V: Op0); |
| 2793 | SDValue Zero = getZero(dl, Ty: ResTy, DAG); |
| 2794 | SDValue Neg = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Inp, RHS: Zero, Cond: ISD::SETLT); |
| 2795 | SDValue M80 = DAG.getConstant(Val: 1ull << (ElemWidth - 1), DL: dl, VT: ResTy); |
| 2796 | SDValue M7F = DAG.getConstant(Val: (1ull << (ElemWidth - 1)) - 1, DL: dl, VT: ResTy); |
| 2797 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: ResTy); |
| 2798 | SDValue Exp00 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: ResTy, Ops: {Inp, One}); |
| 2799 | SDValue Exp01 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {Exp00, M80}); |
| 2800 | SDValue MNE = DAG.getConstant(Val: ElemWidth - ExpWidth, DL: dl, VT: ResTy); |
| 2801 | SDValue ExpM1 = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: ResTy, Ops: {Exp01, MNE}); |
| 2802 | |
| 2803 | SDValue ExpW = DAG.getConstant(Val: ExpWidth, DL: dl, VT: ResTy); |
| 2804 | SDValue Frc00 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: ResTy, Ops: {Inp, ExpW}); |
| 2805 | SDValue Frc01 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ResTy, Ops: {Frc00, M80}); |
| 2806 | |
| 2807 | SDValue MN2 = DAG.getConstant(Val: ElemWidth - 2, DL: dl, VT: ResTy); |
| 2808 | SDValue Rsh00 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {MN2, ExpM1}); |
| 2809 | SDValue MW = DAG.getConstant(Val: ElemWidth, DL: dl, VT: ResTy); |
| 2810 | SDValue Rsh01 = DAG.getNode(Opcode: ISD::SMIN, DL: dl, VT: ResTy, Ops: {Rsh00, MW}); |
| 2811 | SDValue Frc02 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ResTy, Ops: {Frc01, Rsh01}); |
| 2812 | |
| 2813 | SDValue Int; |
| 2814 | |
| 2815 | if (Opc == ISD::FP_TO_SINT) { |
| 2816 | SDValue Bnd = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, Ops: {Neg, M80, M7F}); |
| 2817 | SDValue Pos = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Rsh01, RHS: Zero, Cond: ISD::SETGT); |
| 2818 | SDValue Frc13 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {Zero, Frc02}); |
| 2819 | SDValue Frc14 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, Ops: {Neg, Frc13, Frc02}); |
| 2820 | Int = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, Ops: {Pos, Frc14, Bnd}); |
| 2821 | } else { |
| 2822 | assert(Opc == ISD::FP_TO_UINT); |
| 2823 | SDValue Rsn = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Rsh01, RHS: Zero, Cond: ISD::SETLT); |
| 2824 | SDValue Frc23 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, N1: Rsn, N2: M7F, N3: Frc02); |
| 2825 | Int = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, N1: Neg, N2: Zero, N3: Frc23); |
| 2826 | } |
| 2827 | |
| 2828 | return Int; |
| 2829 | } |
| 2830 | |
| 2831 | SDValue |
| 2832 | HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { |
| 2833 | unsigned Opc = Op.getOpcode(); |
| 2834 | assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); |
| 2835 | |
| 2836 | const SDLoc &dl(Op); |
| 2837 | SDValue Op0 = Op.getOperand(i: 0); |
| 2838 | MVT InpTy = ty(Op: Op0); |
| 2839 | MVT ResTy = ty(Op); |
| 2840 | assert(ResTy.changeTypeToInteger() == InpTy); |
| 2841 | |
| 2842 | // uint32_t vnoc1_rnd(int32_t w) { |
| 2843 | // int32_t iszero = w == 0; |
| 2844 | // int32_t isneg = w < 0; |
| 2845 | // uint32_t u = __builtin_HEXAGON_A2_abs(w); |
| 2846 | // |
| 2847 | // uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1; |
| 2848 | // uint32_t frac0 = (uint64_t)u << norm_left; |
| 2849 | // |
| 2850 | // // Rounding: |
| 2851 | // uint32_t frac1 = frac0 + ((1 << 8) - 1); |
| 2852 | // uint32_t renorm = (frac0 > frac1); |
| 2853 | // uint32_t rup = (int)(frac0 << 22) < 0; |
| 2854 | // |
| 2855 | // uint32_t frac2 = frac0 >> 8; |
| 2856 | // uint32_t frac3 = frac1 >> 8; |
| 2857 | // uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1; |
| 2858 | // |
| 2859 | // int32_t exp = 32 - norm_left + renorm + 127; |
| 2860 | // exp <<= 23; |
| 2861 | // |
| 2862 | // uint32_t sign = 0x80000000 * isneg; |
| 2863 | // uint32_t f = sign | exp | frac; |
| 2864 | // return iszero ? 0 : f; |
| 2865 | // } |
| 2866 | |
| 2867 | MVT PredTy = MVT::getVectorVT(VT: MVT::i1, EC: InpTy.getVectorElementCount()); |
| 2868 | bool Signed = Opc == ISD::SINT_TO_FP; |
| 2869 | |
| 2870 | auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(Ty: ResTy); |
| 2871 | unsigned ElemWidth = 1 + ExpWidth + FracWidth; |
| 2872 | |
| 2873 | SDValue Zero = getZero(dl, Ty: InpTy, DAG); |
| 2874 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: InpTy); |
| 2875 | SDValue IsZero = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Op0, RHS: Zero, Cond: ISD::SETEQ); |
| 2876 | SDValue Abs = Signed ? DAG.getNode(Opcode: ISD::ABS, DL: dl, VT: InpTy, Operand: Op0) : Op0; |
| 2877 | SDValue Clz = DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT: InpTy, Operand: Abs); |
| 2878 | SDValue NLeft = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: InpTy, Ops: {Clz, One}); |
| 2879 | SDValue Frac0 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: InpTy, Ops: {Abs, NLeft}); |
| 2880 | |
| 2881 | auto [Frac, Ovf] = emitHvxShiftRightRnd(Val: Frac0, Amt: ExpWidth + 1, Signed: false, DAG); |
| 2882 | if (Signed) { |
| 2883 | SDValue IsNeg = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Op0, RHS: Zero, Cond: ISD::SETLT); |
| 2884 | SDValue M80 = DAG.getConstant(Val: 1ull << (ElemWidth - 1), DL: dl, VT: InpTy); |
| 2885 | SDValue Sign = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: InpTy, Ops: {IsNeg, M80, Zero}); |
| 2886 | Frac = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: InpTy, Ops: {Sign, Frac}); |
| 2887 | } |
| 2888 | |
| 2889 | SDValue Rnrm = DAG.getZExtOrTrunc(Op: Ovf, DL: dl, VT: InpTy); |
| 2890 | SDValue Exp0 = DAG.getConstant(Val: ElemWidth + ExpBias, DL: dl, VT: InpTy); |
| 2891 | SDValue Exp1 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: InpTy, Ops: {Rnrm, Exp0}); |
| 2892 | SDValue Exp2 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: InpTy, Ops: {Exp1, NLeft}); |
| 2893 | SDValue Exp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: InpTy, |
| 2894 | Ops: {Exp2, DAG.getConstant(Val: FracWidth, DL: dl, VT: InpTy)}); |
| 2895 | SDValue Flt0 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: InpTy, Ops: {Frac, Exp3}); |
| 2896 | SDValue Flt1 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: InpTy, Ops: {IsZero, Zero, Flt0}); |
| 2897 | SDValue Flt = DAG.getBitcast(VT: ResTy, V: Flt1); |
| 2898 | |
| 2899 | return Flt; |
| 2900 | } |
| 2901 | |
| 2902 | SDValue |
| 2903 | HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const { |
| 2904 | unsigned Opc = Op.getOpcode(); |
| 2905 | unsigned TLOpc; |
| 2906 | switch (Opc) { |
| 2907 | case ISD::ANY_EXTEND: |
| 2908 | case ISD::SIGN_EXTEND: |
| 2909 | case ISD::ZERO_EXTEND: |
| 2910 | TLOpc = HexagonISD::TL_EXTEND; |
| 2911 | break; |
| 2912 | case ISD::TRUNCATE: |
| 2913 | TLOpc = HexagonISD::TL_TRUNCATE; |
| 2914 | break; |
| 2915 | #ifndef NDEBUG |
| 2916 | Op.dump(&DAG); |
| 2917 | #endif |
| 2918 | llvm_unreachable("Unexpected operator" ); |
| 2919 | } |
| 2920 | |
| 2921 | const SDLoc &dl(Op); |
| 2922 | return DAG.getNode(Opcode: TLOpc, DL: dl, VT: ty(Op), N1: Op.getOperand(i: 0), |
| 2923 | N2: DAG.getUNDEF(VT: MVT::i128), // illegal type |
| 2924 | N3: DAG.getConstant(Val: Opc, DL: dl, VT: MVT::i32)); |
| 2925 | } |
| 2926 | |
| 2927 | SDValue |
| 2928 | HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const { |
| 2929 | assert(Op.getOpcode() == HexagonISD::TL_EXTEND || |
| 2930 | Op.getOpcode() == HexagonISD::TL_TRUNCATE); |
| 2931 | unsigned Opc = Op.getConstantOperandVal(i: 2); |
| 2932 | return DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT: ty(Op), Operand: Op.getOperand(i: 0)); |
| 2933 | } |
| 2934 | |
| 2935 | HexagonTargetLowering::VectorPair |
| 2936 | HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const { |
| 2937 | assert(!Op.isMachineOpcode()); |
| 2938 | SmallVector<SDValue, 2> OpsL, OpsH; |
| 2939 | const SDLoc &dl(Op); |
| 2940 | |
| 2941 | auto SplitVTNode = [&DAG, this](const VTSDNode *N) { |
| 2942 | MVT Ty = typeSplit(VecTy: N->getVT().getSimpleVT()).first; |
| 2943 | SDValue TV = DAG.getValueType(Ty); |
| 2944 | return std::make_pair(x&: TV, y&: TV); |
| 2945 | }; |
| 2946 | |
| 2947 | for (SDValue A : Op.getNode()->ops()) { |
| 2948 | auto [Lo, Hi] = |
| 2949 | ty(Op: A).isVector() ? opSplit(Vec: A, dl, DAG) : std::make_pair(x&: A, y&: A); |
| 2950 | // Special case for type operand. |
| 2951 | switch (Op.getOpcode()) { |
| 2952 | case ISD::SIGN_EXTEND_INREG: |
| 2953 | case HexagonISD::SSAT: |
| 2954 | case HexagonISD::USAT: |
| 2955 | if (const auto *N = dyn_cast<const VTSDNode>(Val: A.getNode())) |
| 2956 | std::tie(args&: Lo, args&: Hi) = SplitVTNode(N); |
| 2957 | break; |
| 2958 | } |
| 2959 | OpsL.push_back(Elt: Lo); |
| 2960 | OpsH.push_back(Elt: Hi); |
| 2961 | } |
| 2962 | |
| 2963 | MVT ResTy = ty(Op); |
| 2964 | MVT HalfTy = typeSplit(VecTy: ResTy).first; |
| 2965 | SDValue L = DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT: HalfTy, Ops: OpsL); |
| 2966 | SDValue H = DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT: HalfTy, Ops: OpsH); |
| 2967 | return {L, H}; |
| 2968 | } |
| 2969 | |
| 2970 | SDValue |
| 2971 | HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { |
| 2972 | auto *MemN = cast<MemSDNode>(Val: Op.getNode()); |
| 2973 | |
| 2974 | MVT MemTy = MemN->getMemoryVT().getSimpleVT(); |
| 2975 | if (!isHvxPairTy(Ty: MemTy)) |
| 2976 | return Op; |
| 2977 | |
| 2978 | const SDLoc &dl(Op); |
| 2979 | unsigned HwLen = Subtarget.getVectorLength(); |
| 2980 | MVT SingleTy = typeSplit(VecTy: MemTy).first; |
| 2981 | SDValue Chain = MemN->getChain(); |
| 2982 | SDValue Base0 = MemN->getBasePtr(); |
| 2983 | SDValue Base1 = |
| 2984 | DAG.getMemBasePlusOffset(Base: Base0, Offset: TypeSize::getFixed(ExactSize: HwLen), DL: dl); |
| 2985 | unsigned MemOpc = MemN->getOpcode(); |
| 2986 | |
| 2987 | MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; |
| 2988 | if (MachineMemOperand *MMO = MemN->getMemOperand()) { |
| 2989 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2990 | uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE) |
| 2991 | ? (uint64_t)MemoryLocation::UnknownSize |
| 2992 | : HwLen; |
| 2993 | MOp0 = MF.getMachineMemOperand(MMO, Offset: 0, Size: MemSize); |
| 2994 | MOp1 = MF.getMachineMemOperand(MMO, Offset: HwLen, Size: MemSize); |
| 2995 | } |
| 2996 | |
| 2997 | if (MemOpc == ISD::LOAD) { |
| 2998 | assert(cast<LoadSDNode>(Op)->isUnindexed()); |
| 2999 | SDValue Load0 = DAG.getLoad(VT: SingleTy, dl, Chain, Ptr: Base0, MMO: MOp0); |
| 3000 | SDValue Load1 = DAG.getLoad(VT: SingleTy, dl, Chain, Ptr: Base1, MMO: MOp1); |
| 3001 | return DAG.getMergeValues( |
| 3002 | Ops: { DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: MemTy, N1: Load0, N2: Load1), |
| 3003 | DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, |
| 3004 | N1: Load0.getValue(R: 1), N2: Load1.getValue(R: 1)) }, dl); |
| 3005 | } |
| 3006 | if (MemOpc == ISD::STORE) { |
| 3007 | assert(cast<StoreSDNode>(Op)->isUnindexed()); |
| 3008 | VectorPair Vals = opSplit(Vec: cast<StoreSDNode>(Val&: Op)->getValue(), dl, DAG); |
| 3009 | SDValue Store0 = DAG.getStore(Chain, dl, Val: Vals.first, Ptr: Base0, MMO: MOp0); |
| 3010 | SDValue Store1 = DAG.getStore(Chain, dl, Val: Vals.second, Ptr: Base1, MMO: MOp1); |
| 3011 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Store0, N2: Store1); |
| 3012 | } |
| 3013 | |
| 3014 | assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE); |
| 3015 | |
| 3016 | auto MaskN = cast<MaskedLoadStoreSDNode>(Val&: Op); |
| 3017 | assert(MaskN->isUnindexed()); |
| 3018 | VectorPair Masks = opSplit(Vec: MaskN->getMask(), dl, DAG); |
| 3019 | SDValue Offset = DAG.getUNDEF(VT: MVT::i32); |
| 3020 | |
| 3021 | if (MemOpc == ISD::MLOAD) { |
| 3022 | VectorPair Thru = |
| 3023 | opSplit(Vec: cast<MaskedLoadSDNode>(Val&: Op)->getPassThru(), dl, DAG); |
| 3024 | SDValue MLoad0 = |
| 3025 | DAG.getMaskedLoad(VT: SingleTy, dl, Chain, Base: Base0, Offset, Mask: Masks.first, |
| 3026 | Src0: Thru.first, MemVT: SingleTy, MMO: MOp0, AM: ISD::UNINDEXED, |
| 3027 | ISD::NON_EXTLOAD, IsExpanding: false); |
| 3028 | SDValue MLoad1 = |
| 3029 | DAG.getMaskedLoad(VT: SingleTy, dl, Chain, Base: Base1, Offset, Mask: Masks.second, |
| 3030 | Src0: Thru.second, MemVT: SingleTy, MMO: MOp1, AM: ISD::UNINDEXED, |
| 3031 | ISD::NON_EXTLOAD, IsExpanding: false); |
| 3032 | return DAG.getMergeValues( |
| 3033 | Ops: { DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: MemTy, N1: MLoad0, N2: MLoad1), |
| 3034 | DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, |
| 3035 | N1: MLoad0.getValue(R: 1), N2: MLoad1.getValue(R: 1)) }, dl); |
| 3036 | } |
| 3037 | if (MemOpc == ISD::MSTORE) { |
| 3038 | VectorPair Vals = opSplit(Vec: cast<MaskedStoreSDNode>(Val&: Op)->getValue(), dl, DAG); |
| 3039 | SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Val: Vals.first, Base: Base0, Offset, |
| 3040 | Mask: Masks.first, MemVT: SingleTy, MMO: MOp0, |
| 3041 | AM: ISD::UNINDEXED, IsTruncating: false, IsCompressing: false); |
| 3042 | SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Val: Vals.second, Base: Base1, Offset, |
| 3043 | Mask: Masks.second, MemVT: SingleTy, MMO: MOp1, |
| 3044 | AM: ISD::UNINDEXED, IsTruncating: false, IsCompressing: false); |
| 3045 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: MStore0, N2: MStore1); |
| 3046 | } |
| 3047 | |
| 3048 | std::string Name = "Unexpected operation: " + Op->getOperationName(G: &DAG); |
| 3049 | llvm_unreachable(Name.c_str()); |
| 3050 | } |
| 3051 | |
| 3052 | SDValue |
| 3053 | HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const { |
| 3054 | const SDLoc &dl(Op); |
| 3055 | auto *LoadN = cast<LoadSDNode>(Val: Op.getNode()); |
| 3056 | assert(LoadN->isUnindexed() && "Not widening indexed loads yet" ); |
| 3057 | assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && |
| 3058 | "Not widening loads of i1 yet" ); |
| 3059 | |
| 3060 | SDValue Chain = LoadN->getChain(); |
| 3061 | SDValue Base = LoadN->getBasePtr(); |
| 3062 | SDValue Offset = DAG.getUNDEF(VT: MVT::i32); |
| 3063 | |
| 3064 | MVT ResTy = ty(Op); |
| 3065 | unsigned HwLen = Subtarget.getVectorLength(); |
| 3066 | unsigned ResLen = ResTy.getStoreSize(); |
| 3067 | assert(ResLen < HwLen && "vsetq(v1) prerequisite" ); |
| 3068 | |
| 3069 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 3070 | SDValue Mask = getInstr(MachineOpc: Hexagon::V6_pred_scalar2, dl, Ty: BoolTy, |
| 3071 | Ops: {DAG.getConstant(Val: ResLen, DL: dl, VT: MVT::i32)}, DAG); |
| 3072 | |
| 3073 | MVT LoadTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
| 3074 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3075 | auto *MemOp = MF.getMachineMemOperand(MMO: LoadN->getMemOperand(), Offset: 0, Size: HwLen); |
| 3076 | |
| 3077 | SDValue Load = DAG.getMaskedLoad(VT: LoadTy, dl, Chain, Base, Offset, Mask, |
| 3078 | Src0: DAG.getUNDEF(VT: LoadTy), MemVT: LoadTy, MMO: MemOp, |
| 3079 | AM: ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding: false); |
| 3080 | SDValue Value = opCastElem(Vec: Load, ElemTy: ResTy.getVectorElementType(), DAG); |
| 3081 | return DAG.getMergeValues(Ops: {Value, Load.getValue(R: 1)}, dl); |
| 3082 | } |
| 3083 | |
| 3084 | SDValue |
| 3085 | HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const { |
| 3086 | const SDLoc &dl(Op); |
| 3087 | auto *StoreN = cast<StoreSDNode>(Val: Op.getNode()); |
| 3088 | assert(StoreN->isUnindexed() && "Not widening indexed stores yet" ); |
| 3089 | assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && |
| 3090 | "Not widening stores of i1 yet" ); |
| 3091 | |
| 3092 | SDValue Chain = StoreN->getChain(); |
| 3093 | SDValue Base = StoreN->getBasePtr(); |
| 3094 | SDValue Offset = DAG.getUNDEF(VT: MVT::i32); |
| 3095 | |
| 3096 | SDValue Value = opCastElem(Vec: StoreN->getValue(), ElemTy: MVT::i8, DAG); |
| 3097 | MVT ValueTy = ty(Op: Value); |
| 3098 | unsigned ValueLen = ValueTy.getVectorNumElements(); |
| 3099 | unsigned HwLen = Subtarget.getVectorLength(); |
| 3100 | assert(isPowerOf2_32(ValueLen)); |
| 3101 | |
| 3102 | for (unsigned Len = ValueLen; Len < HwLen; ) { |
| 3103 | Value = opJoin(Ops: {Value, DAG.getUNDEF(VT: ty(Op: Value))}, dl, DAG); |
| 3104 | Len = ty(Op: Value).getVectorNumElements(); // This is Len *= 2 |
| 3105 | } |
| 3106 | assert(ty(Value).getVectorNumElements() == HwLen); // Paranoia |
| 3107 | |
| 3108 | assert(ValueLen < HwLen && "vsetq(v1) prerequisite" ); |
| 3109 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
| 3110 | SDValue Mask = getInstr(MachineOpc: Hexagon::V6_pred_scalar2, dl, Ty: BoolTy, |
| 3111 | Ops: {DAG.getConstant(Val: ValueLen, DL: dl, VT: MVT::i32)}, DAG); |
| 3112 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3113 | auto *MemOp = MF.getMachineMemOperand(MMO: StoreN->getMemOperand(), Offset: 0, Size: HwLen); |
| 3114 | return DAG.getMaskedStore(Chain, dl, Val: Value, Base, Offset, Mask, MemVT: ty(Op: Value), |
| 3115 | MMO: MemOp, AM: ISD::UNINDEXED, IsTruncating: false, IsCompressing: false); |
| 3116 | } |
| 3117 | |
| 3118 | SDValue |
| 3119 | HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const { |
| 3120 | const SDLoc &dl(Op); |
| 3121 | SDValue Op0 = Op.getOperand(i: 0), Op1 = Op.getOperand(i: 1); |
| 3122 | MVT ElemTy = ty(Op: Op0).getVectorElementType(); |
| 3123 | unsigned HwLen = Subtarget.getVectorLength(); |
| 3124 | |
| 3125 | unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits(); |
| 3126 | assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen); |
| 3127 | MVT WideOpTy = MVT::getVectorVT(VT: ElemTy, NumElements: WideOpLen); |
| 3128 | if (!Subtarget.isHVXVectorType(VecTy: WideOpTy, IncludeBool: true)) |
| 3129 | return SDValue(); |
| 3130 | |
| 3131 | SDValue WideOp0 = appendUndef(Val: Op0, ResTy: WideOpTy, DAG); |
| 3132 | SDValue WideOp1 = appendUndef(Val: Op1, ResTy: WideOpTy, DAG); |
| 3133 | EVT ResTy = |
| 3134 | getSetCCResultType(DAG.getDataLayout(), C&: *DAG.getContext(), VT: WideOpTy); |
| 3135 | SDValue SetCC = DAG.getNode(Opcode: ISD::SETCC, DL: dl, VT: ResTy, |
| 3136 | Ops: {WideOp0, WideOp1, Op.getOperand(i: 2)}); |
| 3137 | |
| 3138 | EVT RetTy = typeLegalize(Ty: ty(Op), DAG); |
| 3139 | return DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: RetTy, |
| 3140 | Ops: {SetCC, getZero(dl, Ty: MVT::i32, DAG)}); |
| 3141 | } |
| 3142 | |
| 3143 | SDValue |
| 3144 | HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { |
| 3145 | unsigned Opc = Op.getOpcode(); |
| 3146 | bool IsPairOp = isHvxPairTy(Ty: ty(Op)) || |
| 3147 | llvm::any_of(Range: Op.getNode()->ops(), P: [this] (SDValue V) { |
| 3148 | return isHvxPairTy(Ty: ty(Op: V)); |
| 3149 | }); |
| 3150 | |
| 3151 | if (IsPairOp) { |
| 3152 | switch (Opc) { |
| 3153 | default: |
| 3154 | break; |
| 3155 | case ISD::LOAD: |
| 3156 | case ISD::STORE: |
| 3157 | case ISD::MLOAD: |
| 3158 | case ISD::MSTORE: |
| 3159 | return SplitHvxMemOp(Op, DAG); |
| 3160 | case ISD::SINT_TO_FP: |
| 3161 | case ISD::UINT_TO_FP: |
| 3162 | case ISD::FP_TO_SINT: |
| 3163 | case ISD::FP_TO_UINT: |
| 3164 | if (ty(Op).getSizeInBits() == ty(Op: Op.getOperand(i: 0)).getSizeInBits()) |
| 3165 | return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG); |
| 3166 | break; |
| 3167 | case ISD::ABS: |
| 3168 | case ISD::CTPOP: |
| 3169 | case ISD::CTLZ: |
| 3170 | case ISD::CTTZ: |
| 3171 | case ISD::MUL: |
| 3172 | case ISD::FADD: |
| 3173 | case ISD::FSUB: |
| 3174 | case ISD::FMUL: |
| 3175 | case ISD::FMINIMUMNUM: |
| 3176 | case ISD::FMAXIMUMNUM: |
| 3177 | case ISD::MULHS: |
| 3178 | case ISD::MULHU: |
| 3179 | case ISD::AND: |
| 3180 | case ISD::OR: |
| 3181 | case ISD::XOR: |
| 3182 | case ISD::SRA: |
| 3183 | case ISD::SHL: |
| 3184 | case ISD::SRL: |
| 3185 | case ISD::FSHL: |
| 3186 | case ISD::FSHR: |
| 3187 | case ISD::SMIN: |
| 3188 | case ISD::SMAX: |
| 3189 | case ISD::UMIN: |
| 3190 | case ISD::UMAX: |
| 3191 | case ISD::SETCC: |
| 3192 | case ISD::VSELECT: |
| 3193 | case ISD::SIGN_EXTEND_INREG: |
| 3194 | case ISD::SPLAT_VECTOR: |
| 3195 | return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG); |
| 3196 | case ISD::SIGN_EXTEND: |
| 3197 | case ISD::ZERO_EXTEND: |
| 3198 | // In general, sign- and zero-extends can't be split and still |
| 3199 | // be legal. The only exception is extending bool vectors. |
| 3200 | if (ty(Op: Op.getOperand(i: 0)).getVectorElementType() == MVT::i1) |
| 3201 | return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG); |
| 3202 | break; |
| 3203 | } |
| 3204 | } |
| 3205 | |
| 3206 | switch (Opc) { |
| 3207 | default: |
| 3208 | break; |
| 3209 | case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG); |
| 3210 | case ISD::SPLAT_VECTOR: return LowerHvxSplatVector(Op, DAG); |
| 3211 | case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG); |
| 3212 | case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG); |
| 3213 | case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG); |
| 3214 | case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG); |
| 3215 | case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG); |
| 3216 | case ISD::BITCAST: return LowerHvxBitcast(Op, DAG); |
| 3217 | case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG); |
| 3218 | case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG); |
| 3219 | case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG); |
| 3220 | case ISD::CTTZ: return LowerHvxCttz(Op, DAG); |
| 3221 | case ISD::SELECT: return LowerHvxSelect(Op, DAG); |
| 3222 | case ISD::SRA: |
| 3223 | case ISD::SHL: |
| 3224 | case ISD::SRL: return LowerHvxShift(Op, DAG); |
| 3225 | case ISD::FSHL: |
| 3226 | case ISD::FSHR: return LowerHvxFunnelShift(Op, DAG); |
| 3227 | case ISD::MULHS: |
| 3228 | case ISD::MULHU: return LowerHvxMulh(Op, DAG); |
| 3229 | case ISD::SMUL_LOHI: |
| 3230 | case ISD::UMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); |
| 3231 | case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); |
| 3232 | case ISD::SETCC: |
| 3233 | case ISD::INTRINSIC_VOID: return Op; |
| 3234 | case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG); |
| 3235 | case ISD::MLOAD: |
| 3236 | case ISD::MSTORE: return LowerHvxMaskedOp(Op, DAG); |
| 3237 | // Unaligned loads will be handled by the default lowering. |
| 3238 | case ISD::LOAD: return SDValue(); |
| 3239 | case ISD::FP_EXTEND: return LowerHvxFpExtend(Op, DAG); |
| 3240 | case ISD::FP_TO_SINT: |
| 3241 | case ISD::FP_TO_UINT: return LowerHvxFpToInt(Op, DAG); |
| 3242 | case ISD::SINT_TO_FP: |
| 3243 | case ISD::UINT_TO_FP: return LowerHvxIntToFp(Op, DAG); |
| 3244 | |
| 3245 | // Special nodes: |
| 3246 | case HexagonISD::SMUL_LOHI: |
| 3247 | case HexagonISD::UMUL_LOHI: |
| 3248 | case HexagonISD::USMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); |
| 3249 | } |
| 3250 | #ifndef NDEBUG |
| 3251 | Op.dumpr(&DAG); |
| 3252 | #endif |
| 3253 | llvm_unreachable("Unhandled HVX operation" ); |
| 3254 | } |
| 3255 | |
| 3256 | SDValue |
| 3257 | HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) |
| 3258 | const { |
| 3259 | // Rewrite the extension/truncation/saturation op into steps where each |
| 3260 | // step changes the type widths by a factor of 2. |
| 3261 | // E.g. i8 -> i16 remains unchanged, but i8 -> i32 ==> i8 -> i16 -> i32. |
| 3262 | // |
| 3263 | // Some of the vector types in Op may not be legal. |
| 3264 | |
| 3265 | unsigned Opc = Op.getOpcode(); |
| 3266 | switch (Opc) { |
| 3267 | case HexagonISD::SSAT: |
| 3268 | case HexagonISD::USAT: |
| 3269 | case HexagonISD::TL_EXTEND: |
| 3270 | case HexagonISD::TL_TRUNCATE: |
| 3271 | break; |
| 3272 | case ISD::ANY_EXTEND: |
| 3273 | case ISD::ZERO_EXTEND: |
| 3274 | case ISD::SIGN_EXTEND: |
| 3275 | case ISD::TRUNCATE: |
| 3276 | llvm_unreachable("ISD:: ops will be auto-folded" ); |
| 3277 | break; |
| 3278 | #ifndef NDEBUG |
| 3279 | Op.dump(&DAG); |
| 3280 | #endif |
| 3281 | llvm_unreachable("Unexpected operation" ); |
| 3282 | } |
| 3283 | |
| 3284 | SDValue Inp = Op.getOperand(i: 0); |
| 3285 | MVT InpTy = ty(Op: Inp); |
| 3286 | MVT ResTy = ty(Op); |
| 3287 | |
| 3288 | unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits(); |
| 3289 | unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits(); |
| 3290 | assert(InpWidth != ResWidth); |
| 3291 | |
| 3292 | if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth) |
| 3293 | return Op; |
| 3294 | |
| 3295 | const SDLoc &dl(Op); |
| 3296 | unsigned NumElems = InpTy.getVectorNumElements(); |
| 3297 | assert(NumElems == ResTy.getVectorNumElements()); |
| 3298 | |
| 3299 | auto repeatOp = [&](unsigned NewWidth, SDValue Arg) { |
| 3300 | MVT Ty = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: NewWidth), NumElements: NumElems); |
| 3301 | switch (Opc) { |
| 3302 | case HexagonISD::SSAT: |
| 3303 | case HexagonISD::USAT: |
| 3304 | return DAG.getNode(Opcode: Opc, DL: dl, VT: Ty, Ops: {Arg, DAG.getValueType(Ty)}); |
| 3305 | case HexagonISD::TL_EXTEND: |
| 3306 | case HexagonISD::TL_TRUNCATE: |
| 3307 | return DAG.getNode(Opcode: Opc, DL: dl, VT: Ty, Ops: {Arg, Op.getOperand(i: 1), Op.getOperand(i: 2)}); |
| 3308 | default: |
| 3309 | llvm_unreachable("Unexpected opcode" ); |
| 3310 | } |
| 3311 | }; |
| 3312 | |
| 3313 | SDValue S = Inp; |
| 3314 | if (InpWidth < ResWidth) { |
| 3315 | assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)); |
| 3316 | while (InpWidth * 2 <= ResWidth) |
| 3317 | S = repeatOp(InpWidth *= 2, S); |
| 3318 | } else { |
| 3319 | // InpWidth > ResWidth |
| 3320 | assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)); |
| 3321 | while (InpWidth / 2 >= ResWidth) |
| 3322 | S = repeatOp(InpWidth /= 2, S); |
| 3323 | } |
| 3324 | return S; |
| 3325 | } |
| 3326 | |
| 3327 | SDValue |
| 3328 | HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const { |
| 3329 | SDValue Inp0 = Op.getOperand(i: 0); |
| 3330 | MVT InpTy = ty(Op: Inp0); |
| 3331 | MVT ResTy = ty(Op); |
| 3332 | unsigned InpWidth = InpTy.getSizeInBits(); |
| 3333 | unsigned ResWidth = ResTy.getSizeInBits(); |
| 3334 | unsigned Opc = Op.getOpcode(); |
| 3335 | |
| 3336 | if (shouldWidenToHvx(Ty: InpTy, DAG) || shouldWidenToHvx(Ty: ResTy, DAG)) { |
| 3337 | // First, make sure that the narrower type is widened to HVX. |
| 3338 | // This may cause the result to be wider than what the legalizer |
| 3339 | // expects, so insert EXTRACT_SUBVECTOR to bring it back to the |
| 3340 | // desired type. |
| 3341 | auto [WInpTy, WResTy] = |
| 3342 | InpWidth < ResWidth ? typeWidenToWider(Ty0: typeWidenToHvx(Ty: InpTy), Ty1: ResTy) |
| 3343 | : typeWidenToWider(Ty0: InpTy, Ty1: typeWidenToHvx(Ty: ResTy)); |
| 3344 | SDValue W = appendUndef(Val: Inp0, ResTy: WInpTy, DAG); |
| 3345 | SDValue S; |
| 3346 | if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) { |
| 3347 | S = DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT: WResTy, N1: W, N2: Op.getOperand(i: 1), |
| 3348 | N3: Op.getOperand(i: 2)); |
| 3349 | } else { |
| 3350 | S = DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT: WResTy, N1: W, N2: DAG.getValueType(WResTy)); |
| 3351 | } |
| 3352 | SDValue T = ExpandHvxResizeIntoSteps(Op: S, DAG); |
| 3353 | return extractSubvector(Vec: T, SubTy: typeLegalize(Ty: ResTy, DAG), SubIdx: 0, DAG); |
| 3354 | } else if (shouldSplitToHvx(Ty: InpWidth < ResWidth ? ResTy : InpTy, DAG)) { |
| 3355 | return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG); |
| 3356 | } else { |
| 3357 | assert(isTypeLegal(InpTy) && isTypeLegal(ResTy)); |
| 3358 | return RemoveTLWrapper(Op, DAG); |
| 3359 | } |
| 3360 | llvm_unreachable("Unexpected situation" ); |
| 3361 | } |
| 3362 | |
| 3363 | void |
| 3364 | HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N, |
| 3365 | SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| 3366 | unsigned Opc = N->getOpcode(); |
| 3367 | SDValue Op(N, 0); |
| 3368 | SDValue Inp0; // Optional first argument. |
| 3369 | if (N->getNumOperands() > 0) |
| 3370 | Inp0 = Op.getOperand(i: 0); |
| 3371 | |
| 3372 | switch (Opc) { |
| 3373 | case ISD::ANY_EXTEND: |
| 3374 | case ISD::SIGN_EXTEND: |
| 3375 | case ISD::ZERO_EXTEND: |
| 3376 | case ISD::TRUNCATE: |
| 3377 | if (Subtarget.isHVXElementType(Ty: ty(Op)) && |
| 3378 | Subtarget.isHVXElementType(Ty: ty(Op: Inp0))) { |
| 3379 | Results.push_back(Elt: CreateTLWrapper(Op, DAG)); |
| 3380 | } |
| 3381 | break; |
| 3382 | case ISD::SETCC: |
| 3383 | if (shouldWidenToHvx(Ty: ty(Op: Inp0), DAG)) { |
| 3384 | if (SDValue T = WidenHvxSetCC(Op, DAG)) |
| 3385 | Results.push_back(Elt: T); |
| 3386 | } |
| 3387 | break; |
| 3388 | case ISD::STORE: { |
| 3389 | if (shouldWidenToHvx(Ty: ty(Op: cast<StoreSDNode>(Val: N)->getValue()), DAG)) { |
| 3390 | SDValue Store = WidenHvxStore(Op, DAG); |
| 3391 | Results.push_back(Elt: Store); |
| 3392 | } |
| 3393 | break; |
| 3394 | } |
| 3395 | case ISD::MLOAD: |
| 3396 | if (isHvxPairTy(Ty: ty(Op))) { |
| 3397 | SDValue S = SplitHvxMemOp(Op, DAG); |
| 3398 | assert(S->getOpcode() == ISD::MERGE_VALUES); |
| 3399 | Results.push_back(Elt: S.getOperand(i: 0)); |
| 3400 | Results.push_back(Elt: S.getOperand(i: 1)); |
| 3401 | } |
| 3402 | break; |
| 3403 | case ISD::MSTORE: |
| 3404 | if (isHvxPairTy(Ty: ty(Op: Op->getOperand(Num: 1)))) { // Stored value |
| 3405 | SDValue S = SplitHvxMemOp(Op, DAG); |
| 3406 | Results.push_back(Elt: S); |
| 3407 | } |
| 3408 | break; |
| 3409 | case ISD::SINT_TO_FP: |
| 3410 | case ISD::UINT_TO_FP: |
| 3411 | case ISD::FP_TO_SINT: |
| 3412 | case ISD::FP_TO_UINT: |
| 3413 | if (ty(Op).getSizeInBits() != ty(Op: Inp0).getSizeInBits()) { |
| 3414 | SDValue T = EqualizeFpIntConversion(Op, DAG); |
| 3415 | Results.push_back(Elt: T); |
| 3416 | } |
| 3417 | break; |
| 3418 | case HexagonISD::SSAT: |
| 3419 | case HexagonISD::USAT: |
| 3420 | case HexagonISD::TL_EXTEND: |
| 3421 | case HexagonISD::TL_TRUNCATE: |
| 3422 | Results.push_back(Elt: LegalizeHvxResize(Op, DAG)); |
| 3423 | break; |
| 3424 | default: |
| 3425 | break; |
| 3426 | } |
| 3427 | } |
| 3428 | |
| 3429 | void |
| 3430 | HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N, |
| 3431 | SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| 3432 | unsigned Opc = N->getOpcode(); |
| 3433 | SDValue Op(N, 0); |
| 3434 | SDValue Inp0; // Optional first argument. |
| 3435 | if (N->getNumOperands() > 0) |
| 3436 | Inp0 = Op.getOperand(i: 0); |
| 3437 | |
| 3438 | switch (Opc) { |
| 3439 | case ISD::ANY_EXTEND: |
| 3440 | case ISD::SIGN_EXTEND: |
| 3441 | case ISD::ZERO_EXTEND: |
| 3442 | case ISD::TRUNCATE: |
| 3443 | if (Subtarget.isHVXElementType(Ty: ty(Op)) && |
| 3444 | Subtarget.isHVXElementType(Ty: ty(Op: Inp0))) { |
| 3445 | Results.push_back(Elt: CreateTLWrapper(Op, DAG)); |
| 3446 | } |
| 3447 | break; |
| 3448 | case ISD::SETCC: |
| 3449 | if (shouldWidenToHvx(Ty: ty(Op), DAG)) { |
| 3450 | if (SDValue T = WidenHvxSetCC(Op, DAG)) |
| 3451 | Results.push_back(Elt: T); |
| 3452 | } |
| 3453 | break; |
| 3454 | case ISD::LOAD: { |
| 3455 | if (shouldWidenToHvx(Ty: ty(Op), DAG)) { |
| 3456 | SDValue Load = WidenHvxLoad(Op, DAG); |
| 3457 | assert(Load->getOpcode() == ISD::MERGE_VALUES); |
| 3458 | Results.push_back(Elt: Load.getOperand(i: 0)); |
| 3459 | Results.push_back(Elt: Load.getOperand(i: 1)); |
| 3460 | } |
| 3461 | break; |
| 3462 | } |
| 3463 | case ISD::BITCAST: |
| 3464 | if (isHvxBoolTy(Ty: ty(Op: Inp0))) { |
| 3465 | SDValue C = LowerHvxBitcast(Op, DAG); |
| 3466 | Results.push_back(Elt: C); |
| 3467 | } |
| 3468 | break; |
| 3469 | case ISD::FP_TO_SINT: |
| 3470 | case ISD::FP_TO_UINT: |
| 3471 | if (ty(Op).getSizeInBits() != ty(Op: Inp0).getSizeInBits()) { |
| 3472 | SDValue T = EqualizeFpIntConversion(Op, DAG); |
| 3473 | Results.push_back(Elt: T); |
| 3474 | } |
| 3475 | break; |
| 3476 | case HexagonISD::SSAT: |
| 3477 | case HexagonISD::USAT: |
| 3478 | case HexagonISD::TL_EXTEND: |
| 3479 | case HexagonISD::TL_TRUNCATE: |
| 3480 | Results.push_back(Elt: LegalizeHvxResize(Op, DAG)); |
| 3481 | break; |
| 3482 | default: |
| 3483 | break; |
| 3484 | } |
| 3485 | } |
| 3486 | |
| 3487 | SDValue |
| 3488 | HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op, |
| 3489 | DAGCombinerInfo &DCI) const { |
| 3490 | // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB |
| 3491 | // to extract-subvector (shuffle V, pick even, pick odd) |
| 3492 | |
| 3493 | assert(Op.getOpcode() == ISD::TRUNCATE); |
| 3494 | SelectionDAG &DAG = DCI.DAG; |
| 3495 | const SDLoc &dl(Op); |
| 3496 | |
| 3497 | if (Op.getOperand(i: 0).getOpcode() == ISD::BITCAST) |
| 3498 | return SDValue(); |
| 3499 | SDValue Cast = Op.getOperand(i: 0); |
| 3500 | SDValue Src = Cast.getOperand(i: 0); |
| 3501 | |
| 3502 | EVT TruncTy = Op.getValueType(); |
| 3503 | EVT CastTy = Cast.getValueType(); |
| 3504 | EVT SrcTy = Src.getValueType(); |
| 3505 | if (SrcTy.isSimple()) |
| 3506 | return SDValue(); |
| 3507 | if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType()) |
| 3508 | return SDValue(); |
| 3509 | unsigned SrcLen = SrcTy.getVectorNumElements(); |
| 3510 | unsigned CastLen = CastTy.getVectorNumElements(); |
| 3511 | if (2 * CastLen != SrcLen) |
| 3512 | return SDValue(); |
| 3513 | |
| 3514 | SmallVector<int, 128> Mask(SrcLen); |
| 3515 | for (int i = 0; i != static_cast<int>(CastLen); ++i) { |
| 3516 | Mask[i] = 2 * i; |
| 3517 | Mask[i + CastLen] = 2 * i + 1; |
| 3518 | } |
| 3519 | SDValue Deal = |
| 3520 | DAG.getVectorShuffle(VT: SrcTy, dl, N1: Src, N2: DAG.getUNDEF(VT: SrcTy), Mask); |
| 3521 | return opSplit(Vec: Deal, dl, DAG).first; |
| 3522 | } |
| 3523 | |
| 3524 | SDValue |
| 3525 | HexagonTargetLowering::combineConcatVectorsBeforeLegal( |
| 3526 | SDValue Op, DAGCombinerInfo &DCI) const { |
| 3527 | // Fold |
| 3528 | // concat (shuffle x, y, m1), (shuffle x, y, m2) |
| 3529 | // into |
| 3530 | // shuffle (concat x, y), undef, m3 |
| 3531 | if (Op.getNumOperands() != 2) |
| 3532 | return SDValue(); |
| 3533 | |
| 3534 | SelectionDAG &DAG = DCI.DAG; |
| 3535 | const SDLoc &dl(Op); |
| 3536 | SDValue V0 = Op.getOperand(i: 0); |
| 3537 | SDValue V1 = Op.getOperand(i: 1); |
| 3538 | |
| 3539 | if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) |
| 3540 | return SDValue(); |
| 3541 | if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) |
| 3542 | return SDValue(); |
| 3543 | |
| 3544 | SetVector<SDValue> Order; |
| 3545 | Order.insert(X: V0.getOperand(i: 0)); |
| 3546 | Order.insert(X: V0.getOperand(i: 1)); |
| 3547 | Order.insert(X: V1.getOperand(i: 0)); |
| 3548 | Order.insert(X: V1.getOperand(i: 1)); |
| 3549 | |
| 3550 | if (Order.size() > 2) |
| 3551 | return SDValue(); |
| 3552 | |
| 3553 | // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the |
| 3554 | // result must be the same. |
| 3555 | EVT InpTy = V0.getValueType(); |
| 3556 | assert(InpTy.isVector()); |
| 3557 | unsigned InpLen = InpTy.getVectorNumElements(); |
| 3558 | |
| 3559 | SmallVector<int, 128> LongMask; |
| 3560 | auto AppendToMask = [&](SDValue Shuffle) { |
| 3561 | auto *SV = cast<ShuffleVectorSDNode>(Val: Shuffle.getNode()); |
| 3562 | ArrayRef<int> Mask = SV->getMask(); |
| 3563 | SDValue X = Shuffle.getOperand(i: 0); |
| 3564 | SDValue Y = Shuffle.getOperand(i: 1); |
| 3565 | for (int M : Mask) { |
| 3566 | if (M == -1) { |
| 3567 | LongMask.push_back(Elt: M); |
| 3568 | continue; |
| 3569 | } |
| 3570 | SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y; |
| 3571 | if (static_cast<unsigned>(M) >= InpLen) |
| 3572 | M -= InpLen; |
| 3573 | |
| 3574 | int OutOffset = Order[0] == Src ? 0 : InpLen; |
| 3575 | LongMask.push_back(Elt: M + OutOffset); |
| 3576 | } |
| 3577 | }; |
| 3578 | |
| 3579 | AppendToMask(V0); |
| 3580 | AppendToMask(V1); |
| 3581 | |
| 3582 | SDValue C0 = Order.front(); |
| 3583 | SDValue C1 = Order.back(); // Can be same as front |
| 3584 | EVT LongTy = InpTy.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 3585 | |
| 3586 | SDValue Cat = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: LongTy, Ops: {C0, C1}); |
| 3587 | return DAG.getVectorShuffle(VT: LongTy, dl, N1: Cat, N2: DAG.getUNDEF(VT: LongTy), Mask: LongMask); |
| 3588 | } |
| 3589 | |
| 3590 | SDValue |
| 3591 | HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) |
| 3592 | const { |
| 3593 | const SDLoc &dl(N); |
| 3594 | SelectionDAG &DAG = DCI.DAG; |
| 3595 | SDValue Op(N, 0); |
| 3596 | unsigned Opc = Op.getOpcode(); |
| 3597 | |
| 3598 | SmallVector<SDValue, 4> Ops(N->ops()); |
| 3599 | |
| 3600 | if (Opc == ISD::TRUNCATE) |
| 3601 | return combineTruncateBeforeLegal(Op, DCI); |
| 3602 | if (Opc == ISD::CONCAT_VECTORS) |
| 3603 | return combineConcatVectorsBeforeLegal(Op, DCI); |
| 3604 | |
| 3605 | if (DCI.isBeforeLegalizeOps()) |
| 3606 | return SDValue(); |
| 3607 | |
| 3608 | switch (Opc) { |
| 3609 | case ISD::VSELECT: { |
| 3610 | // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) |
| 3611 | SDValue Cond = Ops[0]; |
| 3612 | if (Cond->getOpcode() == ISD::XOR) { |
| 3613 | SDValue C0 = Cond.getOperand(i: 0), C1 = Cond.getOperand(i: 1); |
| 3614 | if (C1->getOpcode() == HexagonISD::QTRUE) |
| 3615 | return DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ty(Op), N1: C0, N2: Ops[2], N3: Ops[1]); |
| 3616 | } |
| 3617 | break; |
| 3618 | } |
| 3619 | case HexagonISD::V2Q: |
| 3620 | if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) { |
| 3621 | if (const auto *C = dyn_cast<ConstantSDNode>(Val: Ops[0].getOperand(i: 0))) |
| 3622 | return C->isZero() ? DAG.getNode(Opcode: HexagonISD::QFALSE, DL: dl, VT: ty(Op)) |
| 3623 | : DAG.getNode(Opcode: HexagonISD::QTRUE, DL: dl, VT: ty(Op)); |
| 3624 | } |
| 3625 | break; |
| 3626 | case HexagonISD::Q2V: |
| 3627 | if (Ops[0].getOpcode() == HexagonISD::QTRUE) |
| 3628 | return DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: ty(Op), |
| 3629 | Operand: DAG.getAllOnesConstant(DL: dl, VT: MVT::i32)); |
| 3630 | if (Ops[0].getOpcode() == HexagonISD::QFALSE) |
| 3631 | return getZero(dl, Ty: ty(Op), DAG); |
| 3632 | break; |
| 3633 | case HexagonISD::VINSERTW0: |
| 3634 | if (isUndef(Op: Ops[1])) |
| 3635 | return Ops[0]; |
| 3636 | break; |
| 3637 | case HexagonISD::VROR: { |
| 3638 | if (Ops[0].getOpcode() == HexagonISD::VROR) { |
| 3639 | SDValue Vec = Ops[0].getOperand(i: 0); |
| 3640 | SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(i: 1); |
| 3641 | SDValue Rot = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ty(Op: Rot0), Ops: {Rot0, Rot1}); |
| 3642 | return DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ty(Op), Ops: {Vec, Rot}); |
| 3643 | } |
| 3644 | break; |
| 3645 | } |
| 3646 | } |
| 3647 | |
| 3648 | return SDValue(); |
| 3649 | } |
| 3650 | |
| 3651 | bool |
| 3652 | HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const { |
| 3653 | if (Subtarget.isHVXVectorType(VecTy: Ty, IncludeBool: true)) |
| 3654 | return false; |
| 3655 | auto Action = getPreferredHvxVectorAction(VecTy: Ty); |
| 3656 | if (Action == TargetLoweringBase::TypeSplitVector) |
| 3657 | return Subtarget.isHVXVectorType(VecTy: typeLegalize(Ty, DAG), IncludeBool: true); |
| 3658 | return false; |
| 3659 | } |
| 3660 | |
| 3661 | bool |
| 3662 | HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const { |
| 3663 | if (Subtarget.isHVXVectorType(VecTy: Ty, IncludeBool: true)) |
| 3664 | return false; |
| 3665 | auto Action = getPreferredHvxVectorAction(VecTy: Ty); |
| 3666 | if (Action == TargetLoweringBase::TypeWidenVector) |
| 3667 | return Subtarget.isHVXVectorType(VecTy: typeLegalize(Ty, DAG), IncludeBool: true); |
| 3668 | return false; |
| 3669 | } |
| 3670 | |
| 3671 | bool |
| 3672 | HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const { |
| 3673 | if (!Subtarget.useHVXOps()) |
| 3674 | return false; |
| 3675 | // If the type of any result, or any operand type are HVX vector types, |
| 3676 | // this is an HVX operation. |
| 3677 | auto IsHvxTy = [this](EVT Ty) { |
| 3678 | return Ty.isSimple() && Subtarget.isHVXVectorType(VecTy: Ty.getSimpleVT(), IncludeBool: true); |
| 3679 | }; |
| 3680 | auto IsHvxOp = [this](SDValue Op) { |
| 3681 | return Op.getValueType().isSimple() && |
| 3682 | Subtarget.isHVXVectorType(VecTy: ty(Op), IncludeBool: true); |
| 3683 | }; |
| 3684 | if (llvm::any_of(Range: N->values(), P: IsHvxTy) || llvm::any_of(Range: N->ops(), P: IsHvxOp)) |
| 3685 | return true; |
| 3686 | |
| 3687 | // Check if this could be an HVX operation after type widening. |
| 3688 | auto IsWidenedToHvx = [this, &DAG](SDValue Op) { |
| 3689 | if (!Op.getValueType().isSimple()) |
| 3690 | return false; |
| 3691 | MVT ValTy = ty(Op); |
| 3692 | return ValTy.isVector() && shouldWidenToHvx(Ty: ValTy, DAG); |
| 3693 | }; |
| 3694 | |
| 3695 | for (int i = 0, e = N->getNumValues(); i != e; ++i) { |
| 3696 | if (IsWidenedToHvx(SDValue(N, i))) |
| 3697 | return true; |
| 3698 | } |
| 3699 | return llvm::any_of(Range: N->ops(), P: IsWidenedToHvx); |
| 3700 | } |
| 3701 | |