| 1 | //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the Hexagon implementation of the TargetInstrInfo class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "HexagonInstrInfo.h" |
| 14 | #include "HexagonFrameLowering.h" |
| 15 | #include "HexagonHazardRecognizer.h" |
| 16 | #include "HexagonRegisterInfo.h" |
| 17 | #include "HexagonSubtarget.h" |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/SmallPtrSet.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/ADT/StringExtras.h" |
| 22 | #include "llvm/ADT/StringRef.h" |
| 23 | #include "llvm/CodeGen/DFAPacketizer.h" |
| 24 | #include "llvm/CodeGen/LiveIntervals.h" |
| 25 | #include "llvm/CodeGen/LivePhysRegs.h" |
| 26 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 27 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 28 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 29 | #include "llvm/CodeGen/MachineFunction.h" |
| 30 | #include "llvm/CodeGen/MachineInstr.h" |
| 31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 32 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 33 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 34 | #include "llvm/CodeGen/MachineOperand.h" |
| 35 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 36 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 37 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 38 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 39 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 40 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 41 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 42 | #include "llvm/IR/DebugLoc.h" |
| 43 | #include "llvm/IR/GlobalVariable.h" |
| 44 | #include "llvm/MC/MCAsmInfo.h" |
| 45 | #include "llvm/MC/MCInstBuilder.h" |
| 46 | #include "llvm/MC/MCInstrDesc.h" |
| 47 | #include "llvm/MC/MCInstrItineraries.h" |
| 48 | #include "llvm/Support/BranchProbability.h" |
| 49 | #include "llvm/Support/CommandLine.h" |
| 50 | #include "llvm/Support/Debug.h" |
| 51 | #include "llvm/Support/ErrorHandling.h" |
| 52 | #include "llvm/Support/MathExtras.h" |
| 53 | #include "llvm/Support/raw_ostream.h" |
| 54 | #include "llvm/Target/TargetMachine.h" |
| 55 | #include <cassert> |
| 56 | #include <cctype> |
| 57 | #include <cstdint> |
| 58 | #include <cstring> |
| 59 | #include <iterator> |
| 60 | #include <optional> |
| 61 | #include <string> |
| 62 | #include <utility> |
| 63 | |
| 64 | using namespace llvm; |
| 65 | |
| 66 | #define DEBUG_TYPE "hexagon-instrinfo" |
| 67 | |
| 68 | #define GET_INSTRINFO_CTOR_DTOR |
| 69 | #define GET_INSTRMAP_INFO |
| 70 | #include "HexagonDepTimingClasses.h" |
| 71 | #include "HexagonGenDFAPacketizer.inc" |
| 72 | #include "HexagonGenInstrInfo.inc" |
| 73 | |
| 74 | cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm" , cl::Hidden, |
| 75 | cl::init(Val: false), cl::desc("Do not consider inline-asm a scheduling/" |
| 76 | "packetization boundary." )); |
| 77 | |
| 78 | static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction" , |
| 79 | cl::Hidden, cl::init(Val: true), cl::desc("Enable branch prediction" )); |
| 80 | |
| 81 | static cl::opt<bool> DisableNVSchedule( |
| 82 | "disable-hexagon-nv-schedule" , cl::Hidden, |
| 83 | cl::desc("Disable schedule adjustment for new value stores." )); |
| 84 | |
| 85 | static cl::opt<bool> EnableTimingClassLatency( |
| 86 | "enable-timing-class-latency" , cl::Hidden, cl::init(Val: false), |
| 87 | cl::desc("Enable timing class latency" )); |
| 88 | |
| 89 | static cl::opt<bool> EnableALUForwarding( |
| 90 | "enable-alu-forwarding" , cl::Hidden, cl::init(Val: true), |
| 91 | cl::desc("Enable vec alu forwarding" )); |
| 92 | |
| 93 | static cl::opt<bool> EnableACCForwarding( |
| 94 | "enable-acc-forwarding" , cl::Hidden, cl::init(Val: true), |
| 95 | cl::desc("Enable vec acc forwarding" )); |
| 96 | |
| 97 | static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large" , |
| 98 | cl::init(Val: true), cl::Hidden, |
| 99 | cl::desc("branch relax asm" )); |
| 100 | |
| 101 | static cl::opt<bool> |
| 102 | UseDFAHazardRec("dfa-hazard-rec" , cl::init(Val: true), cl::Hidden, |
| 103 | cl::desc("Use the DFA based hazard recognizer." )); |
| 104 | |
| 105 | /// Constants for Hexagon instructions. |
| 106 | const int Hexagon_MEMW_OFFSET_MAX = 4095; |
| 107 | const int Hexagon_MEMW_OFFSET_MIN = -4096; |
| 108 | const int Hexagon_MEMD_OFFSET_MAX = 8191; |
| 109 | const int Hexagon_MEMD_OFFSET_MIN = -8192; |
| 110 | const int Hexagon_MEMH_OFFSET_MAX = 2047; |
| 111 | const int Hexagon_MEMH_OFFSET_MIN = -2048; |
| 112 | const int Hexagon_MEMB_OFFSET_MAX = 1023; |
| 113 | const int Hexagon_MEMB_OFFSET_MIN = -1024; |
| 114 | const int Hexagon_ADDI_OFFSET_MAX = 32767; |
| 115 | const int Hexagon_ADDI_OFFSET_MIN = -32768; |
| 116 | |
| 117 | // Pin the vtable to this file. |
| 118 | void HexagonInstrInfo::anchor() {} |
| 119 | |
| 120 | HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) |
| 121 | : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), |
| 122 | Subtarget(ST) {} |
| 123 | |
| 124 | namespace llvm { |
| 125 | namespace HexagonFUnits { |
| 126 | bool isSlot0Only(unsigned units); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | static bool isIntRegForSubInst(Register Reg) { |
| 131 | return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || |
| 132 | (Reg >= Hexagon::R16 && Reg <= Hexagon::R23); |
| 133 | } |
| 134 | |
| 135 | static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI) { |
| 136 | return isIntRegForSubInst(Reg: HRI.getSubReg(Reg, Idx: Hexagon::isub_lo)) && |
| 137 | isIntRegForSubInst(Reg: HRI.getSubReg(Reg, Idx: Hexagon::isub_hi)); |
| 138 | } |
| 139 | |
| 140 | /// Calculate number of instructions excluding the debug instructions. |
| 141 | static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, |
| 142 | MachineBasicBlock::const_instr_iterator MIE) { |
| 143 | unsigned Count = 0; |
| 144 | for (; MIB != MIE; ++MIB) { |
| 145 | if (!MIB->isDebugInstr()) |
| 146 | ++Count; |
| 147 | } |
| 148 | return Count; |
| 149 | } |
| 150 | |
| 151 | // Check if the A2_tfrsi instruction is cheap or not. If the operand has |
| 152 | // to be constant-extendend it is not cheap since it occupies two slots |
| 153 | // in a packet. |
| 154 | bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { |
| 155 | // Enable the following steps only at Os/Oz |
| 156 | if (!(MI.getMF()->getFunction().hasOptSize())) |
| 157 | return MI.isAsCheapAsAMove(); |
| 158 | |
| 159 | if (MI.getOpcode() == Hexagon::A2_tfrsi) { |
| 160 | auto Op = MI.getOperand(i: 1); |
| 161 | // If the instruction has a global address as operand, it is not cheap |
| 162 | // since the operand will be constant extended. |
| 163 | if (Op.isGlobal()) |
| 164 | return false; |
| 165 | // If the instruction has an operand of size > 16bits, its will be |
| 166 | // const-extended and hence, it is not cheap. |
| 167 | if (Op.isImm()) { |
| 168 | int64_t Imm = Op.getImm(); |
| 169 | if (!isInt<16>(x: Imm)) |
| 170 | return false; |
| 171 | } |
| 172 | } |
| 173 | return MI.isAsCheapAsAMove(); |
| 174 | } |
| 175 | |
| 176 | // Do not sink floating point instructions that updates USR register. |
| 177 | // Example: |
| 178 | // feclearexcept |
| 179 | // F2_conv_w2sf |
| 180 | // fetestexcept |
| 181 | // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions. |
| 182 | // TODO: On some of these floating point instructions, USR is marked as Use. |
| 183 | // In reality, these instructions also Def the USR. If USR is marked as Def, |
| 184 | // some of the assumptions in assembler packetization are broken. |
| 185 | bool HexagonInstrInfo::shouldSink(const MachineInstr &MI) const { |
| 186 | // Assumption: A floating point instruction that reads the USR will write |
| 187 | // the USR as well. |
| 188 | if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Reg: Hexagon::USR)) |
| 189 | return false; |
| 190 | return true; |
| 191 | } |
| 192 | |
| 193 | /// Find the hardware loop instruction used to set-up the specified loop. |
| 194 | /// On Hexagon, we have two instructions used to set-up the hardware loop |
| 195 | /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions |
| 196 | /// to indicate the end of a loop. |
| 197 | MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB, |
| 198 | unsigned EndLoopOp, MachineBasicBlock *TargetBB, |
| 199 | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { |
| 200 | unsigned LOOPi; |
| 201 | unsigned LOOPr; |
| 202 | if (EndLoopOp == Hexagon::ENDLOOP0) { |
| 203 | LOOPi = Hexagon::J2_loop0i; |
| 204 | LOOPr = Hexagon::J2_loop0r; |
| 205 | } else { // EndLoopOp == Hexagon::EndLOOP1 |
| 206 | LOOPi = Hexagon::J2_loop1i; |
| 207 | LOOPr = Hexagon::J2_loop1r; |
| 208 | } |
| 209 | |
| 210 | // The loop set-up instruction will be in a predecessor block |
| 211 | for (MachineBasicBlock *PB : BB->predecessors()) { |
| 212 | // If this has been visited, already skip it. |
| 213 | if (!Visited.insert(Ptr: PB).second) |
| 214 | continue; |
| 215 | if (PB == BB) |
| 216 | continue; |
| 217 | for (MachineInstr &I : llvm::reverse(C: PB->instrs())) { |
| 218 | unsigned Opc = I.getOpcode(); |
| 219 | if (Opc == LOOPi || Opc == LOOPr) |
| 220 | return &I; |
| 221 | // We've reached a different loop, which means the loop01 has been |
| 222 | // removed. |
| 223 | if (Opc == EndLoopOp && I.getOperand(i: 0).getMBB() != TargetBB) |
| 224 | return nullptr; |
| 225 | } |
| 226 | // Check the predecessors for the LOOP instruction. |
| 227 | if (MachineInstr *Loop = findLoopInstr(BB: PB, EndLoopOp, TargetBB, Visited)) |
| 228 | return Loop; |
| 229 | } |
| 230 | return nullptr; |
| 231 | } |
| 232 | |
| 233 | /// Gather register def/uses from MI. |
| 234 | /// This treats possible (predicated) defs as actually happening ones |
| 235 | /// (conservatively). |
| 236 | static inline void parseOperands(const MachineInstr &MI, |
| 237 | SmallVectorImpl<Register> &Defs, SmallVectorImpl<Register> &Uses) { |
| 238 | Defs.clear(); |
| 239 | Uses.clear(); |
| 240 | |
| 241 | for (const MachineOperand &MO : MI.operands()) { |
| 242 | if (!MO.isReg()) |
| 243 | continue; |
| 244 | |
| 245 | Register Reg = MO.getReg(); |
| 246 | if (!Reg) |
| 247 | continue; |
| 248 | |
| 249 | if (MO.isUse()) |
| 250 | Uses.push_back(Elt: MO.getReg()); |
| 251 | |
| 252 | if (MO.isDef()) |
| 253 | Defs.push_back(Elt: MO.getReg()); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // Position dependent, so check twice for swap. |
| 258 | static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) { |
| 259 | switch (Ga) { |
| 260 | case HexagonII::HSIG_None: |
| 261 | default: |
| 262 | return false; |
| 263 | case HexagonII::HSIG_L1: |
| 264 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); |
| 265 | case HexagonII::HSIG_L2: |
| 266 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
| 267 | Gb == HexagonII::HSIG_A); |
| 268 | case HexagonII::HSIG_S1: |
| 269 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
| 270 | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); |
| 271 | case HexagonII::HSIG_S2: |
| 272 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
| 273 | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || |
| 274 | Gb == HexagonII::HSIG_A); |
| 275 | case HexagonII::HSIG_A: |
| 276 | return (Gb == HexagonII::HSIG_A); |
| 277 | case HexagonII::HSIG_Compound: |
| 278 | return (Gb == HexagonII::HSIG_Compound); |
| 279 | } |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | /// isLoadFromStackSlot - If the specified machine instruction is a direct |
| 284 | /// load from a stack slot, return the virtual or physical register number of |
| 285 | /// the destination along with the FrameIndex of the loaded stack slot. If |
| 286 | /// not, return 0. This predicate must return 0 if the instruction has |
| 287 | /// any side effects other than loading from the stack slot. |
| 288 | Register HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| 289 | int &FrameIndex) const { |
| 290 | switch (MI.getOpcode()) { |
| 291 | default: |
| 292 | break; |
| 293 | case Hexagon::L2_loadri_io: |
| 294 | case Hexagon::L2_loadrd_io: |
| 295 | case Hexagon::V6_vL32b_ai: |
| 296 | case Hexagon::V6_vL32b_nt_ai: |
| 297 | case Hexagon::V6_vL32Ub_ai: |
| 298 | case Hexagon::LDriw_pred: |
| 299 | case Hexagon::LDriw_ctr: |
| 300 | case Hexagon::PS_vloadrq_ai: |
| 301 | case Hexagon::PS_vloadrw_ai: |
| 302 | case Hexagon::PS_vloadrw_nt_ai: { |
| 303 | const MachineOperand OpFI = MI.getOperand(i: 1); |
| 304 | if (!OpFI.isFI()) |
| 305 | return 0; |
| 306 | const MachineOperand OpOff = MI.getOperand(i: 2); |
| 307 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
| 308 | return 0; |
| 309 | FrameIndex = OpFI.getIndex(); |
| 310 | return MI.getOperand(i: 0).getReg(); |
| 311 | } |
| 312 | |
| 313 | case Hexagon::L2_ploadrit_io: |
| 314 | case Hexagon::L2_ploadrif_io: |
| 315 | case Hexagon::L2_ploadrdt_io: |
| 316 | case Hexagon::L2_ploadrdf_io: { |
| 317 | const MachineOperand OpFI = MI.getOperand(i: 2); |
| 318 | if (!OpFI.isFI()) |
| 319 | return 0; |
| 320 | const MachineOperand OpOff = MI.getOperand(i: 3); |
| 321 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
| 322 | return 0; |
| 323 | FrameIndex = OpFI.getIndex(); |
| 324 | return MI.getOperand(i: 0).getReg(); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | return 0; |
| 329 | } |
| 330 | |
| 331 | /// isStoreToStackSlot - If the specified machine instruction is a direct |
| 332 | /// store to a stack slot, return the virtual or physical register number of |
| 333 | /// the source reg along with the FrameIndex of the loaded stack slot. If |
| 334 | /// not, return 0. This predicate must return 0 if the instruction has |
| 335 | /// any side effects other than storing to the stack slot. |
| 336 | Register HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| 337 | int &FrameIndex) const { |
| 338 | switch (MI.getOpcode()) { |
| 339 | default: |
| 340 | break; |
| 341 | case Hexagon::S2_storerb_io: |
| 342 | case Hexagon::S2_storerh_io: |
| 343 | case Hexagon::S2_storeri_io: |
| 344 | case Hexagon::S2_storerd_io: |
| 345 | case Hexagon::V6_vS32b_ai: |
| 346 | case Hexagon::V6_vS32Ub_ai: |
| 347 | case Hexagon::STriw_pred: |
| 348 | case Hexagon::STriw_ctr: |
| 349 | case Hexagon::PS_vstorerq_ai: |
| 350 | case Hexagon::PS_vstorerw_ai: { |
| 351 | const MachineOperand &OpFI = MI.getOperand(i: 0); |
| 352 | if (!OpFI.isFI()) |
| 353 | return 0; |
| 354 | const MachineOperand &OpOff = MI.getOperand(i: 1); |
| 355 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
| 356 | return 0; |
| 357 | FrameIndex = OpFI.getIndex(); |
| 358 | return MI.getOperand(i: 2).getReg(); |
| 359 | } |
| 360 | |
| 361 | case Hexagon::S2_pstorerbt_io: |
| 362 | case Hexagon::S2_pstorerbf_io: |
| 363 | case Hexagon::S2_pstorerht_io: |
| 364 | case Hexagon::S2_pstorerhf_io: |
| 365 | case Hexagon::S2_pstorerit_io: |
| 366 | case Hexagon::S2_pstorerif_io: |
| 367 | case Hexagon::S2_pstorerdt_io: |
| 368 | case Hexagon::S2_pstorerdf_io: { |
| 369 | const MachineOperand &OpFI = MI.getOperand(i: 1); |
| 370 | if (!OpFI.isFI()) |
| 371 | return 0; |
| 372 | const MachineOperand &OpOff = MI.getOperand(i: 2); |
| 373 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
| 374 | return 0; |
| 375 | FrameIndex = OpFI.getIndex(); |
| 376 | return MI.getOperand(i: 3).getReg(); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | /// This function checks if the instruction or bundle of instructions |
| 384 | /// has load from stack slot and returns frameindex and machine memory |
| 385 | /// operand of that instruction if true. |
| 386 | bool HexagonInstrInfo::hasLoadFromStackSlot( |
| 387 | const MachineInstr &MI, |
| 388 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { |
| 389 | if (MI.isBundle()) { |
| 390 | const MachineBasicBlock *MBB = MI.getParent(); |
| 391 | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); |
| 392 | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) |
| 393 | if (TargetInstrInfo::hasLoadFromStackSlot(MI: *MII, Accesses)) |
| 394 | return true; |
| 395 | return false; |
| 396 | } |
| 397 | |
| 398 | return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses); |
| 399 | } |
| 400 | |
| 401 | /// This function checks if the instruction or bundle of instructions |
| 402 | /// has store to stack slot and returns frameindex and machine memory |
| 403 | /// operand of that instruction if true. |
| 404 | bool HexagonInstrInfo::hasStoreToStackSlot( |
| 405 | const MachineInstr &MI, |
| 406 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { |
| 407 | if (MI.isBundle()) { |
| 408 | const MachineBasicBlock *MBB = MI.getParent(); |
| 409 | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); |
| 410 | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) |
| 411 | if (TargetInstrInfo::hasStoreToStackSlot(MI: *MII, Accesses)) |
| 412 | return true; |
| 413 | return false; |
| 414 | } |
| 415 | |
| 416 | return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses); |
| 417 | } |
| 418 | |
| 419 | /// This function can analyze one/two way branching only and should (mostly) be |
| 420 | /// called by target independent side. |
| 421 | /// First entry is always the opcode of the branching instruction, except when |
| 422 | /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a |
| 423 | /// BB with only unconditional jump. Subsequent entries depend upon the opcode, |
| 424 | /// e.g. Jump_c p will have |
| 425 | /// Cond[0] = Jump_c |
| 426 | /// Cond[1] = p |
| 427 | /// HW-loop ENDLOOP: |
| 428 | /// Cond[0] = ENDLOOP |
| 429 | /// Cond[1] = MBB |
| 430 | /// New value jump: |
| 431 | /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode |
| 432 | /// Cond[1] = R |
| 433 | /// Cond[2] = Imm |
| 434 | bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| 435 | MachineBasicBlock *&TBB, |
| 436 | MachineBasicBlock *&FBB, |
| 437 | SmallVectorImpl<MachineOperand> &Cond, |
| 438 | bool AllowModify) const { |
| 439 | TBB = nullptr; |
| 440 | FBB = nullptr; |
| 441 | Cond.clear(); |
| 442 | |
| 443 | // If the block has no terminators, it just falls into the block after it. |
| 444 | MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
| 445 | if (I == MBB.instr_begin()) |
| 446 | return false; |
| 447 | |
| 448 | // A basic block may looks like this: |
| 449 | // |
| 450 | // [ insn |
| 451 | // EH_LABEL |
| 452 | // insn |
| 453 | // insn |
| 454 | // insn |
| 455 | // EH_LABEL |
| 456 | // insn ] |
| 457 | // |
| 458 | // It has two succs but does not have a terminator |
| 459 | // Don't know how to handle it. |
| 460 | do { |
| 461 | --I; |
| 462 | if (I->isEHLabel()) |
| 463 | // Don't analyze EH branches. |
| 464 | return true; |
| 465 | } while (I != MBB.instr_begin()); |
| 466 | |
| 467 | I = MBB.instr_end(); |
| 468 | --I; |
| 469 | |
| 470 | while (I->isDebugInstr()) { |
| 471 | if (I == MBB.instr_begin()) |
| 472 | return false; |
| 473 | --I; |
| 474 | } |
| 475 | |
| 476 | bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && |
| 477 | I->getOperand(i: 0).isMBB(); |
| 478 | // Delete the J2_jump if it's equivalent to a fall-through. |
| 479 | if (AllowModify && JumpToBlock && |
| 480 | MBB.isLayoutSuccessor(MBB: I->getOperand(i: 0).getMBB())) { |
| 481 | LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n" ;); |
| 482 | I->eraseFromParent(); |
| 483 | I = MBB.instr_end(); |
| 484 | if (I == MBB.instr_begin()) |
| 485 | return false; |
| 486 | --I; |
| 487 | } |
| 488 | if (!isUnpredicatedTerminator(MI: *I)) |
| 489 | return false; |
| 490 | |
| 491 | // Get the last instruction in the block. |
| 492 | MachineInstr *LastInst = &*I; |
| 493 | MachineInstr *SecondLastInst = nullptr; |
| 494 | // Find one more terminator if present. |
| 495 | while (true) { |
| 496 | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(MI: *I)) { |
| 497 | if (!SecondLastInst) |
| 498 | SecondLastInst = &*I; |
| 499 | else |
| 500 | // This is a third branch. |
| 501 | return true; |
| 502 | } |
| 503 | if (I == MBB.instr_begin()) |
| 504 | break; |
| 505 | --I; |
| 506 | } |
| 507 | |
| 508 | int LastOpcode = LastInst->getOpcode(); |
| 509 | int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; |
| 510 | // If the branch target is not a basic block, it could be a tail call. |
| 511 | // (It is, if the target is a function.) |
| 512 | if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(i: 0).isMBB()) |
| 513 | return true; |
| 514 | if (SecLastOpcode == Hexagon::J2_jump && |
| 515 | !SecondLastInst->getOperand(i: 0).isMBB()) |
| 516 | return true; |
| 517 | |
| 518 | bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(Opcode: LastOpcode); |
| 519 | bool LastOpcodeHasNVJump = isNewValueJump(MI: *LastInst); |
| 520 | |
| 521 | if (LastOpcodeHasJMP_c && !LastInst->getOperand(i: 1).isMBB()) |
| 522 | return true; |
| 523 | |
| 524 | // If there is only one terminator instruction, process it. |
| 525 | if (LastInst && !SecondLastInst) { |
| 526 | if (LastOpcode == Hexagon::J2_jump) { |
| 527 | TBB = LastInst->getOperand(i: 0).getMBB(); |
| 528 | return false; |
| 529 | } |
| 530 | if (isEndLoopN(Opcode: LastOpcode)) { |
| 531 | TBB = LastInst->getOperand(i: 0).getMBB(); |
| 532 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: LastInst->getOpcode())); |
| 533 | Cond.push_back(Elt: LastInst->getOperand(i: 0)); |
| 534 | return false; |
| 535 | } |
| 536 | if (LastOpcodeHasJMP_c) { |
| 537 | TBB = LastInst->getOperand(i: 1).getMBB(); |
| 538 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: LastInst->getOpcode())); |
| 539 | Cond.push_back(Elt: LastInst->getOperand(i: 0)); |
| 540 | return false; |
| 541 | } |
| 542 | // Only supporting rr/ri versions of new-value jumps. |
| 543 | if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { |
| 544 | TBB = LastInst->getOperand(i: 2).getMBB(); |
| 545 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: LastInst->getOpcode())); |
| 546 | Cond.push_back(Elt: LastInst->getOperand(i: 0)); |
| 547 | Cond.push_back(Elt: LastInst->getOperand(i: 1)); |
| 548 | return false; |
| 549 | } |
| 550 | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) |
| 551 | << " with one jump\n" ;); |
| 552 | // Otherwise, don't know what this is. |
| 553 | return true; |
| 554 | } |
| 555 | |
| 556 | bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(Opcode: SecLastOpcode); |
| 557 | bool SecLastOpcodeHasNVJump = isNewValueJump(MI: *SecondLastInst); |
| 558 | if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { |
| 559 | if (!SecondLastInst->getOperand(i: 1).isMBB()) |
| 560 | return true; |
| 561 | TBB = SecondLastInst->getOperand(i: 1).getMBB(); |
| 562 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: SecondLastInst->getOpcode())); |
| 563 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 0)); |
| 564 | FBB = LastInst->getOperand(i: 0).getMBB(); |
| 565 | return false; |
| 566 | } |
| 567 | |
| 568 | // Only supporting rr/ri versions of new-value jumps. |
| 569 | if (SecLastOpcodeHasNVJump && |
| 570 | (SecondLastInst->getNumExplicitOperands() == 3) && |
| 571 | (LastOpcode == Hexagon::J2_jump)) { |
| 572 | TBB = SecondLastInst->getOperand(i: 2).getMBB(); |
| 573 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: SecondLastInst->getOpcode())); |
| 574 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 0)); |
| 575 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 1)); |
| 576 | FBB = LastInst->getOperand(i: 0).getMBB(); |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | // If the block ends with two Hexagon:JMPs, handle it. The second one is not |
| 581 | // executed, so remove it. |
| 582 | if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { |
| 583 | TBB = SecondLastInst->getOperand(i: 0).getMBB(); |
| 584 | I = LastInst->getIterator(); |
| 585 | if (AllowModify) |
| 586 | I->eraseFromParent(); |
| 587 | return false; |
| 588 | } |
| 589 | |
| 590 | // If the block ends with an ENDLOOP, and J2_jump, handle it. |
| 591 | if (isEndLoopN(Opcode: SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { |
| 592 | TBB = SecondLastInst->getOperand(i: 0).getMBB(); |
| 593 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: SecondLastInst->getOpcode())); |
| 594 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 0)); |
| 595 | FBB = LastInst->getOperand(i: 0).getMBB(); |
| 596 | return false; |
| 597 | } |
| 598 | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) |
| 599 | << " with two jumps" ;); |
| 600 | // Otherwise, can't handle this. |
| 601 | return true; |
| 602 | } |
| 603 | |
| 604 | unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| 605 | int *BytesRemoved) const { |
| 606 | assert(!BytesRemoved && "code size not handled" ); |
| 607 | |
| 608 | LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB)); |
| 609 | MachineBasicBlock::iterator I = MBB.end(); |
| 610 | unsigned Count = 0; |
| 611 | while (I != MBB.begin()) { |
| 612 | --I; |
| 613 | if (I->isDebugInstr()) |
| 614 | continue; |
| 615 | // Only removing branches from end of MBB. |
| 616 | if (!I->isBranch()) |
| 617 | return Count; |
| 618 | if (Count && (I->getOpcode() == Hexagon::J2_jump)) |
| 619 | llvm_unreachable("Malformed basic block: unconditional branch not last" ); |
| 620 | MBB.erase(I: &MBB.back()); |
| 621 | I = MBB.end(); |
| 622 | ++Count; |
| 623 | } |
| 624 | return Count; |
| 625 | } |
| 626 | |
| 627 | unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| 628 | MachineBasicBlock *TBB, |
| 629 | MachineBasicBlock *FBB, |
| 630 | ArrayRef<MachineOperand> Cond, |
| 631 | const DebugLoc &DL, |
| 632 | int *BytesAdded) const { |
| 633 | unsigned BOpc = Hexagon::J2_jump; |
| 634 | unsigned BccOpc = Hexagon::J2_jumpt; |
| 635 | assert(validateBranchCond(Cond) && "Invalid branching condition" ); |
| 636 | assert(TBB && "insertBranch must not be told to insert a fallthrough" ); |
| 637 | assert(!BytesAdded && "code size not handled" ); |
| 638 | |
| 639 | // Check if reverseBranchCondition has asked to reverse this branch |
| 640 | // If we want to reverse the branch an odd number of times, we want |
| 641 | // J2_jumpf. |
| 642 | if (!Cond.empty() && Cond[0].isImm()) |
| 643 | BccOpc = Cond[0].getImm(); |
| 644 | |
| 645 | if (!FBB) { |
| 646 | if (Cond.empty()) { |
| 647 | // Due to a bug in TailMerging/CFG Optimization, we need to add a |
| 648 | // special case handling of a predicated jump followed by an |
| 649 | // unconditional jump. If not, Tail Merging and CFG Optimization go |
| 650 | // into an infinite loop. |
| 651 | MachineBasicBlock *NewTBB, *NewFBB; |
| 652 | SmallVector<MachineOperand, 4> Cond; |
| 653 | auto Term = MBB.getFirstTerminator(); |
| 654 | if (Term != MBB.end() && isPredicated(MI: *Term) && |
| 655 | !analyzeBranch(MBB, TBB&: NewTBB, FBB&: NewFBB, Cond, AllowModify: false) && |
| 656 | MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) { |
| 657 | reverseBranchCondition(Cond); |
| 658 | removeBranch(MBB); |
| 659 | return insertBranch(MBB, TBB, FBB: nullptr, Cond, DL); |
| 660 | } |
| 661 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BOpc)).addMBB(MBB: TBB); |
| 662 | } else if (isEndLoopN(Opcode: Cond[0].getImm())) { |
| 663 | int EndLoopOp = Cond[0].getImm(); |
| 664 | assert(Cond[1].isMBB()); |
| 665 | // Since we're adding an ENDLOOP, there better be a LOOP instruction. |
| 666 | // Check for it, and change the BB target if needed. |
| 667 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; |
| 668 | MachineInstr *Loop = findLoopInstr(BB: TBB, EndLoopOp, TargetBB: Cond[1].getMBB(), |
| 669 | Visited&: VisitedBBs); |
| 670 | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP" ); |
| 671 | Loop->getOperand(i: 0).setMBB(TBB); |
| 672 | // Add the ENDLOOP after the finding the LOOP0. |
| 673 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: EndLoopOp)).addMBB(MBB: TBB); |
| 674 | } else if (isNewValueJump(Opcode: Cond[0].getImm())) { |
| 675 | assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump" ); |
| 676 | // New value jump |
| 677 | // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) |
| 678 | // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) |
| 679 | unsigned Flags1 = getUndefRegState(B: Cond[1].isUndef()); |
| 680 | LLVM_DEBUG(dbgs() << "\nInserting NVJump for " |
| 681 | << printMBBReference(MBB);); |
| 682 | if (Cond[2].isReg()) { |
| 683 | unsigned Flags2 = getUndefRegState(B: Cond[2].isUndef()); |
| 684 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: Cond[1].getReg(), flags: Flags1). |
| 685 | addReg(RegNo: Cond[2].getReg(), flags: Flags2).addMBB(MBB: TBB); |
| 686 | } else if(Cond[2].isImm()) { |
| 687 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: Cond[1].getReg(), flags: Flags1). |
| 688 | addImm(Val: Cond[2].getImm()).addMBB(MBB: TBB); |
| 689 | } else |
| 690 | llvm_unreachable("Invalid condition for branching" ); |
| 691 | } else { |
| 692 | assert((Cond.size() == 2) && "Malformed cond vector" ); |
| 693 | const MachineOperand &RO = Cond[1]; |
| 694 | unsigned Flags = getUndefRegState(B: RO.isUndef()); |
| 695 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: RO.getReg(), flags: Flags).addMBB(MBB: TBB); |
| 696 | } |
| 697 | return 1; |
| 698 | } |
| 699 | assert((!Cond.empty()) && |
| 700 | "Cond. cannot be empty when multiple branchings are required" ); |
| 701 | assert((!isNewValueJump(Cond[0].getImm())) && |
| 702 | "NV-jump cannot be inserted with another branch" ); |
| 703 | // Special case for hardware loops. The condition is a basic block. |
| 704 | if (isEndLoopN(Opcode: Cond[0].getImm())) { |
| 705 | int EndLoopOp = Cond[0].getImm(); |
| 706 | assert(Cond[1].isMBB()); |
| 707 | // Since we're adding an ENDLOOP, there better be a LOOP instruction. |
| 708 | // Check for it, and change the BB target if needed. |
| 709 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; |
| 710 | MachineInstr *Loop = findLoopInstr(BB: TBB, EndLoopOp, TargetBB: Cond[1].getMBB(), |
| 711 | Visited&: VisitedBBs); |
| 712 | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP" ); |
| 713 | Loop->getOperand(i: 0).setMBB(TBB); |
| 714 | // Add the ENDLOOP after the finding the LOOP0. |
| 715 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: EndLoopOp)).addMBB(MBB: TBB); |
| 716 | } else { |
| 717 | const MachineOperand &RO = Cond[1]; |
| 718 | unsigned Flags = getUndefRegState(B: RO.isUndef()); |
| 719 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: RO.getReg(), flags: Flags).addMBB(MBB: TBB); |
| 720 | } |
| 721 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BOpc)).addMBB(MBB: FBB); |
| 722 | |
| 723 | return 2; |
| 724 | } |
| 725 | |
| 726 | namespace { |
| 727 | class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { |
| 728 | MachineInstr *Loop, *EndLoop; |
| 729 | MachineFunction *MF; |
| 730 | const HexagonInstrInfo *TII; |
| 731 | int64_t TripCount; |
| 732 | Register LoopCount; |
| 733 | DebugLoc DL; |
| 734 | |
| 735 | public: |
| 736 | HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop) |
| 737 | : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()), |
| 738 | TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()), |
| 739 | DL(Loop->getDebugLoc()) { |
| 740 | // Inspect the Loop instruction up-front, as it may be deleted when we call |
| 741 | // createTripCountGreaterCondition. |
| 742 | TripCount = Loop->getOpcode() == Hexagon::J2_loop0r |
| 743 | ? -1 |
| 744 | : Loop->getOperand(i: 1).getImm(); |
| 745 | if (TripCount == -1) |
| 746 | LoopCount = Loop->getOperand(i: 1).getReg(); |
| 747 | } |
| 748 | |
| 749 | bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { |
| 750 | // Only ignore the terminator. |
| 751 | return MI == EndLoop; |
| 752 | } |
| 753 | |
| 754 | std::optional<bool> createTripCountGreaterCondition( |
| 755 | int TC, MachineBasicBlock &MBB, |
| 756 | SmallVectorImpl<MachineOperand> &Cond) override { |
| 757 | if (TripCount == -1) { |
| 758 | // Check if we're done with the loop. |
| 759 | Register Done = TII->createVR(MF, VT: MVT::i1); |
| 760 | MachineInstr *NewCmp = BuildMI(BB: &MBB, MIMD: DL, |
| 761 | MCID: TII->get(Opcode: Hexagon::C2_cmpgtui), DestReg: Done) |
| 762 | .addReg(RegNo: LoopCount) |
| 763 | .addImm(Val: TC); |
| 764 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: Hexagon::J2_jumpf)); |
| 765 | Cond.push_back(Elt: NewCmp->getOperand(i: 0)); |
| 766 | return {}; |
| 767 | } |
| 768 | |
| 769 | return TripCount > TC; |
| 770 | } |
| 771 | |
| 772 | void (MachineBasicBlock *) override { |
| 773 | NewPreheader->splice(Where: NewPreheader->getFirstTerminator(), Other: Loop->getParent(), |
| 774 | From: Loop); |
| 775 | } |
| 776 | |
| 777 | void adjustTripCount(int TripCountAdjust) override { |
| 778 | // If the loop trip count is a compile-time value, then just change the |
| 779 | // value. |
| 780 | if (Loop->getOpcode() == Hexagon::J2_loop0i || |
| 781 | Loop->getOpcode() == Hexagon::J2_loop1i) { |
| 782 | int64_t TripCount = Loop->getOperand(i: 1).getImm() + TripCountAdjust; |
| 783 | assert(TripCount > 0 && "Can't create an empty or negative loop!" ); |
| 784 | Loop->getOperand(i: 1).setImm(TripCount); |
| 785 | return; |
| 786 | } |
| 787 | |
| 788 | // The loop trip count is a run-time value. We generate code to subtract |
| 789 | // one from the trip count, and update the loop instruction. |
| 790 | Register LoopCount = Loop->getOperand(i: 1).getReg(); |
| 791 | Register NewLoopCount = TII->createVR(MF, VT: MVT::i32); |
| 792 | BuildMI(BB&: *Loop->getParent(), I: Loop, MIMD: Loop->getDebugLoc(), |
| 793 | MCID: TII->get(Opcode: Hexagon::A2_addi), DestReg: NewLoopCount) |
| 794 | .addReg(RegNo: LoopCount) |
| 795 | .addImm(Val: TripCountAdjust); |
| 796 | Loop->getOperand(i: 1).setReg(NewLoopCount); |
| 797 | } |
| 798 | |
| 799 | void disposed(LiveIntervals *LIS) override { |
| 800 | if (LIS) |
| 801 | LIS->RemoveMachineInstrFromMaps(MI&: *Loop); |
| 802 | Loop->eraseFromParent(); |
| 803 | } |
| 804 | }; |
| 805 | } // namespace |
| 806 | |
| 807 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> |
| 808 | HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { |
| 809 | // We really "analyze" only hardware loops right now. |
| 810 | MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); |
| 811 | |
| 812 | if (I != LoopBB->end() && isEndLoopN(Opcode: I->getOpcode())) { |
| 813 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; |
| 814 | MachineInstr *LoopInst = findLoopInstr( |
| 815 | BB: LoopBB, EndLoopOp: I->getOpcode(), TargetBB: I->getOperand(i: 0).getMBB(), Visited&: VisitedBBs); |
| 816 | if (LoopInst) |
| 817 | return std::make_unique<HexagonPipelinerLoopInfo>(args&: LoopInst, args: &*I); |
| 818 | } |
| 819 | return nullptr; |
| 820 | } |
| 821 | |
| 822 | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, |
| 823 | unsigned NumCycles, unsigned , |
| 824 | BranchProbability Probability) const { |
| 825 | return nonDbgBBSize(BB: &MBB) <= 3; |
| 826 | } |
| 827 | |
| 828 | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| 829 | unsigned NumTCycles, unsigned , MachineBasicBlock &FMBB, |
| 830 | unsigned NumFCycles, unsigned , BranchProbability Probability) |
| 831 | const { |
| 832 | return nonDbgBBSize(BB: &TMBB) <= 3 && nonDbgBBSize(BB: &FMBB) <= 3; |
| 833 | } |
| 834 | |
| 835 | bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, |
| 836 | unsigned NumInstrs, BranchProbability Probability) const { |
| 837 | return NumInstrs <= 4; |
| 838 | } |
| 839 | |
| 840 | static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { |
| 841 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; |
| 842 | const MachineBasicBlock &B = *MI.getParent(); |
| 843 | Regs.addLiveIns(MBB: B); |
| 844 | auto E = MachineBasicBlock::const_iterator(MI.getIterator()); |
| 845 | for (auto I = B.begin(); I != E; ++I) { |
| 846 | Clobbers.clear(); |
| 847 | Regs.stepForward(MI: *I, Clobbers); |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { |
| 852 | const MachineBasicBlock &B = *MI.getParent(); |
| 853 | Regs.addLiveOuts(MBB: B); |
| 854 | auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse(); |
| 855 | for (auto I = B.rbegin(); I != E; ++I) |
| 856 | Regs.stepBackward(MI: *I); |
| 857 | } |
| 858 | |
| 859 | void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| 860 | MachineBasicBlock::iterator I, |
| 861 | const DebugLoc &DL, Register DestReg, |
| 862 | Register SrcReg, bool KillSrc, |
| 863 | bool RenamableDest, |
| 864 | bool RenamableSrc) const { |
| 865 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 866 | unsigned KillFlag = getKillRegState(B: KillSrc); |
| 867 | |
| 868 | if (Hexagon::IntRegsRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
| 869 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfr), DestReg) |
| 870 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 871 | return; |
| 872 | } |
| 873 | if (Hexagon::DoubleRegsRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
| 874 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrp), DestReg) |
| 875 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 876 | return; |
| 877 | } |
| 878 | if (Hexagon::PredRegsRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
| 879 | // Map Pd = Ps to Pd = or(Ps, Ps). |
| 880 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_or), DestReg) |
| 881 | .addReg(RegNo: SrcReg).addReg(RegNo: SrcReg, flags: KillFlag); |
| 882 | return; |
| 883 | } |
| 884 | if (Hexagon::CtrRegsRegClass.contains(Reg: DestReg) && |
| 885 | Hexagon::IntRegsRegClass.contains(Reg: SrcReg)) { |
| 886 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrrcr), DestReg) |
| 887 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 888 | return; |
| 889 | } |
| 890 | if (Hexagon::IntRegsRegClass.contains(Reg: DestReg) && |
| 891 | Hexagon::CtrRegsRegClass.contains(Reg: SrcReg)) { |
| 892 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrcrr), DestReg) |
| 893 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 894 | return; |
| 895 | } |
| 896 | if (Hexagon::ModRegsRegClass.contains(Reg: DestReg) && |
| 897 | Hexagon::IntRegsRegClass.contains(Reg: SrcReg)) { |
| 898 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrrcr), DestReg) |
| 899 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 900 | return; |
| 901 | } |
| 902 | if (Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && |
| 903 | Hexagon::IntRegsRegClass.contains(Reg: DestReg)) { |
| 904 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_tfrpr), DestReg) |
| 905 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 906 | return; |
| 907 | } |
| 908 | if (Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
| 909 | Hexagon::PredRegsRegClass.contains(Reg: DestReg)) { |
| 910 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_tfrrp), DestReg) |
| 911 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 912 | return; |
| 913 | } |
| 914 | if (Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && |
| 915 | Hexagon::IntRegsRegClass.contains(Reg: DestReg)) { |
| 916 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_tfrpr), DestReg) |
| 917 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 918 | return; |
| 919 | } |
| 920 | if (Hexagon::HvxVRRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
| 921 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vassign), DestReg). |
| 922 | addReg(RegNo: SrcReg, flags: KillFlag); |
| 923 | return; |
| 924 | } |
| 925 | if (Hexagon::HvxWRRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
| 926 | LivePhysRegs LiveAtMI(HRI); |
| 927 | getLiveInRegsAt(Regs&: LiveAtMI, MI: *I); |
| 928 | Register SrcLo = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo); |
| 929 | Register SrcHi = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi); |
| 930 | unsigned UndefLo = getUndefRegState(B: !LiveAtMI.contains(Reg: SrcLo)); |
| 931 | unsigned UndefHi = getUndefRegState(B: !LiveAtMI.contains(Reg: SrcHi)); |
| 932 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vcombine), DestReg) |
| 933 | .addReg(RegNo: SrcHi, flags: KillFlag | UndefHi) |
| 934 | .addReg(RegNo: SrcLo, flags: KillFlag | UndefLo); |
| 935 | return; |
| 936 | } |
| 937 | if (Hexagon::HvxQRRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
| 938 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::V6_pred_and), DestReg) |
| 939 | .addReg(RegNo: SrcReg) |
| 940 | .addReg(RegNo: SrcReg, flags: KillFlag); |
| 941 | return; |
| 942 | } |
| 943 | if (Hexagon::HvxQRRegClass.contains(Reg: SrcReg) && |
| 944 | Hexagon::HvxVRRegClass.contains(Reg: DestReg)) { |
| 945 | llvm_unreachable("Unimplemented pred to vec" ); |
| 946 | return; |
| 947 | } |
| 948 | if (Hexagon::HvxQRRegClass.contains(Reg: DestReg) && |
| 949 | Hexagon::HvxVRRegClass.contains(Reg: SrcReg)) { |
| 950 | llvm_unreachable("Unimplemented vec to pred" ); |
| 951 | return; |
| 952 | } |
| 953 | |
| 954 | #ifndef NDEBUG |
| 955 | // Show the invalid registers to ease debugging. |
| 956 | dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": " |
| 957 | << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n'; |
| 958 | #endif |
| 959 | llvm_unreachable("Unimplemented" ); |
| 960 | } |
| 961 | |
| 962 | void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| 963 | MachineBasicBlock::iterator I, |
| 964 | Register SrcReg, bool isKill, int FI, |
| 965 | const TargetRegisterClass *RC, |
| 966 | const TargetRegisterInfo *TRI, |
| 967 | Register VReg, |
| 968 | MachineInstr::MIFlag Flags) const { |
| 969 | DebugLoc DL = MBB.findDebugLoc(MBBI: I); |
| 970 | MachineFunction &MF = *MBB.getParent(); |
| 971 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 972 | unsigned KillFlag = getKillRegState(B: isKill); |
| 973 | |
| 974 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 975 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), F: MachineMemOperand::MOStore, |
| 976 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
| 977 | |
| 978 | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { |
| 979 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::S2_storeri_io)) |
| 980 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 981 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 982 | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { |
| 983 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::S2_storerd_io)) |
| 984 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 985 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 986 | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { |
| 987 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::STriw_pred)) |
| 988 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 989 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 990 | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { |
| 991 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::STriw_ctr)) |
| 992 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 993 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 994 | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { |
| 995 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vstorerq_ai)) |
| 996 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 997 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 998 | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { |
| 999 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vstorerv_ai)) |
| 1000 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 1001 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 1002 | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { |
| 1003 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vstorerw_ai)) |
| 1004 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
| 1005 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
| 1006 | } else { |
| 1007 | llvm_unreachable("Unimplemented" ); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | void HexagonInstrInfo::loadRegFromStackSlot( |
| 1012 | MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, |
| 1013 | int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, |
| 1014 | Register VReg, MachineInstr::MIFlag Flags) const { |
| 1015 | DebugLoc DL = MBB.findDebugLoc(MBBI: I); |
| 1016 | MachineFunction &MF = *MBB.getParent(); |
| 1017 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1018 | |
| 1019 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 1020 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), F: MachineMemOperand::MOLoad, |
| 1021 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
| 1022 | |
| 1023 | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { |
| 1024 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::L2_loadri_io), DestReg) |
| 1025 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1026 | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { |
| 1027 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::L2_loadrd_io), DestReg) |
| 1028 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1029 | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { |
| 1030 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::LDriw_pred), DestReg) |
| 1031 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1032 | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { |
| 1033 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::LDriw_ctr), DestReg) |
| 1034 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1035 | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { |
| 1036 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vloadrq_ai), DestReg) |
| 1037 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1038 | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { |
| 1039 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vloadrv_ai), DestReg) |
| 1040 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1041 | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { |
| 1042 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vloadrw_ai), DestReg) |
| 1043 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
| 1044 | } else { |
| 1045 | llvm_unreachable("Can't store this register to stack slot" ); |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | /// expandPostRAPseudo - This function is called for all pseudo instructions |
| 1050 | /// that remain after register allocation. Many pseudo instructions are |
| 1051 | /// created to help register allocation. This is the place to convert them |
| 1052 | /// into real instructions. The target can edit MI in place, or it can insert |
| 1053 | /// new instructions and erase MI. The function should return true if |
| 1054 | /// anything was changed. |
| 1055 | bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| 1056 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1057 | MachineFunction &MF = *MBB.getParent(); |
| 1058 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1059 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 1060 | LivePhysRegs LiveIn(HRI), LiveOut(HRI); |
| 1061 | DebugLoc DL = MI.getDebugLoc(); |
| 1062 | unsigned Opc = MI.getOpcode(); |
| 1063 | |
| 1064 | auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) { |
| 1065 | Register Mx = MI.getOperand(i: MxOp).getReg(); |
| 1066 | Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1); |
| 1067 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrrcr), DestReg: CSx) |
| 1068 | .add(MO: MI.getOperand(i: (HasImm ? 5 : 4))); |
| 1069 | auto MIB = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Opc)).add(MO: MI.getOperand(i: 0)) |
| 1070 | .add(MO: MI.getOperand(i: 1)).add(MO: MI.getOperand(i: 2)).add(MO: MI.getOperand(i: 3)); |
| 1071 | if (HasImm) |
| 1072 | MIB.add(MO: MI.getOperand(i: 4)); |
| 1073 | MIB.addReg(RegNo: CSx, flags: RegState::Implicit); |
| 1074 | MBB.erase(I: MI); |
| 1075 | return true; |
| 1076 | }; |
| 1077 | |
| 1078 | auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) { |
| 1079 | if (MI.memoperands().empty()) |
| 1080 | return false; |
| 1081 | return all_of(Range: MI.memoperands(), P: [NeedAlign](const MachineMemOperand *MMO) { |
| 1082 | return MMO->getAlign() >= NeedAlign; |
| 1083 | }); |
| 1084 | }; |
| 1085 | |
| 1086 | switch (Opc) { |
| 1087 | case Hexagon::PS_call_instrprof_custom: { |
| 1088 | auto Op0 = MI.getOperand(i: 0); |
| 1089 | assert(Op0.isGlobal() && |
| 1090 | "First operand must be a global containing handler name." ); |
| 1091 | const GlobalValue *NameVar = Op0.getGlobal(); |
| 1092 | const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: NameVar); |
| 1093 | auto *Arr = cast<ConstantDataArray>(Val: GV->getInitializer()); |
| 1094 | StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); |
| 1095 | |
| 1096 | MachineOperand &Op1 = MI.getOperand(i: 1); |
| 1097 | // Set R0 with the imm value to be passed to the custom profiling handler. |
| 1098 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrsi), DestReg: Hexagon::R0) |
| 1099 | .addImm(Val: Op1.getImm()); |
| 1100 | // The call to the custom handler is being treated as a special one as the |
| 1101 | // callee is responsible for saving and restoring all the registers |
| 1102 | // (including caller saved registers) it needs to modify. This is |
| 1103 | // done to reduce the impact of instrumentation on the code being |
| 1104 | // instrumented/profiled. |
| 1105 | // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers |
| 1106 | // are in the Def list of the Hexagon::PS_call_instrprof_custom and |
| 1107 | // therefore will be handled appropriately duing register allocation. |
| 1108 | |
| 1109 | // TODO: It may be a good idea to add a separate pseudo instruction for |
| 1110 | // static relocation which doesn't need to reserve r14, r15 and r28. |
| 1111 | |
| 1112 | auto MIB = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::J2_call)) |
| 1113 | .addUse(RegNo: Hexagon::R0, Flags: RegState::Implicit|RegState::InternalRead) |
| 1114 | .addDef(RegNo: Hexagon::R29, Flags: RegState::ImplicitDefine) |
| 1115 | .addDef(RegNo: Hexagon::R30, Flags: RegState::ImplicitDefine) |
| 1116 | .addDef(RegNo: Hexagon::R14, Flags: RegState::ImplicitDefine) |
| 1117 | .addDef(RegNo: Hexagon::R15, Flags: RegState::ImplicitDefine) |
| 1118 | .addDef(RegNo: Hexagon::R28, Flags: RegState::ImplicitDefine); |
| 1119 | const char *cstr = MF.createExternalSymbolName(Name: NameStr); |
| 1120 | MIB.addExternalSymbol(FnName: cstr); |
| 1121 | MBB.erase(I: MI); |
| 1122 | return true; |
| 1123 | } |
| 1124 | case TargetOpcode::COPY: { |
| 1125 | MachineOperand &MD = MI.getOperand(i: 0); |
| 1126 | MachineOperand &MS = MI.getOperand(i: 1); |
| 1127 | MachineBasicBlock::iterator MBBI = MI.getIterator(); |
| 1128 | if (MD.getReg() != MS.getReg() && !MS.isUndef()) { |
| 1129 | copyPhysReg(MBB, I: MI, DL, DestReg: MD.getReg(), SrcReg: MS.getReg(), KillSrc: MS.isKill()); |
| 1130 | std::prev(x: MBBI)->copyImplicitOps(MF&: *MBB.getParent(), MI); |
| 1131 | } |
| 1132 | MBB.erase(I: MBBI); |
| 1133 | return true; |
| 1134 | } |
| 1135 | case Hexagon::PS_aligna: |
| 1136 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_andir), DestReg: MI.getOperand(i: 0).getReg()) |
| 1137 | .addReg(RegNo: HRI.getFrameRegister()) |
| 1138 | .addImm(Val: -MI.getOperand(i: 1).getImm()); |
| 1139 | MBB.erase(I: MI); |
| 1140 | return true; |
| 1141 | case Hexagon::V6_vassignp: { |
| 1142 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1143 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1144 | Register SrcLo = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo); |
| 1145 | Register SrcHi = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi); |
| 1146 | getLiveInRegsAt(Regs&: LiveIn, MI); |
| 1147 | unsigned UndefLo = getUndefRegState(B: !LiveIn.contains(Reg: SrcLo)); |
| 1148 | unsigned UndefHi = getUndefRegState(B: !LiveIn.contains(Reg: SrcHi)); |
| 1149 | unsigned Kill = getKillRegState(B: MI.getOperand(i: 1).isKill()); |
| 1150 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vcombine), DestReg: DstReg) |
| 1151 | .addReg(RegNo: SrcHi, flags: UndefHi) |
| 1152 | .addReg(RegNo: SrcLo, flags: Kill | UndefLo); |
| 1153 | MBB.erase(I: MI); |
| 1154 | return true; |
| 1155 | } |
| 1156 | case Hexagon::V6_lo: { |
| 1157 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1158 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1159 | Register SrcSubLo = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo); |
| 1160 | copyPhysReg(MBB, I: MI, DL, DestReg: DstReg, SrcReg: SrcSubLo, KillSrc: MI.getOperand(i: 1).isKill()); |
| 1161 | MBB.erase(I: MI); |
| 1162 | MRI.clearKillFlags(Reg: SrcSubLo); |
| 1163 | return true; |
| 1164 | } |
| 1165 | case Hexagon::V6_hi: { |
| 1166 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1167 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1168 | Register SrcSubHi = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi); |
| 1169 | copyPhysReg(MBB, I: MI, DL, DestReg: DstReg, SrcReg: SrcSubHi, KillSrc: MI.getOperand(i: 1).isKill()); |
| 1170 | MBB.erase(I: MI); |
| 1171 | MRI.clearKillFlags(Reg: SrcSubHi); |
| 1172 | return true; |
| 1173 | } |
| 1174 | case Hexagon::PS_vloadrv_ai: { |
| 1175 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1176 | const MachineOperand &BaseOp = MI.getOperand(i: 1); |
| 1177 | assert(BaseOp.getSubReg() == 0); |
| 1178 | int Offset = MI.getOperand(i: 2).getImm(); |
| 1179 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
| 1180 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai |
| 1181 | : Hexagon::V6_vL32Ub_ai; |
| 1182 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc), DestReg: DstReg) |
| 1183 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
| 1184 | .addImm(Val: Offset) |
| 1185 | .cloneMemRefs(OtherMI: MI); |
| 1186 | MBB.erase(I: MI); |
| 1187 | return true; |
| 1188 | } |
| 1189 | case Hexagon::PS_vloadrw_ai: { |
| 1190 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1191 | const MachineOperand &BaseOp = MI.getOperand(i: 1); |
| 1192 | assert(BaseOp.getSubReg() == 0); |
| 1193 | int Offset = MI.getOperand(i: 2).getImm(); |
| 1194 | unsigned VecOffset = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
| 1195 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
| 1196 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai |
| 1197 | : Hexagon::V6_vL32Ub_ai; |
| 1198 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc), |
| 1199 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::vsub_lo)) |
| 1200 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp) & ~RegState::Kill) |
| 1201 | .addImm(Val: Offset) |
| 1202 | .cloneMemRefs(OtherMI: MI); |
| 1203 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc), |
| 1204 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::vsub_hi)) |
| 1205 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
| 1206 | .addImm(Val: Offset + VecOffset) |
| 1207 | .cloneMemRefs(OtherMI: MI); |
| 1208 | MBB.erase(I: MI); |
| 1209 | return true; |
| 1210 | } |
| 1211 | case Hexagon::PS_vstorerv_ai: { |
| 1212 | const MachineOperand &SrcOp = MI.getOperand(i: 2); |
| 1213 | assert(SrcOp.getSubReg() == 0); |
| 1214 | const MachineOperand &BaseOp = MI.getOperand(i: 0); |
| 1215 | assert(BaseOp.getSubReg() == 0); |
| 1216 | int Offset = MI.getOperand(i: 1).getImm(); |
| 1217 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
| 1218 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai |
| 1219 | : Hexagon::V6_vS32Ub_ai; |
| 1220 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc)) |
| 1221 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
| 1222 | .addImm(Val: Offset) |
| 1223 | .addReg(RegNo: SrcOp.getReg(), flags: getRegState(RegOp: SrcOp)) |
| 1224 | .cloneMemRefs(OtherMI: MI); |
| 1225 | MBB.erase(I: MI); |
| 1226 | return true; |
| 1227 | } |
| 1228 | case Hexagon::PS_vstorerw_ai: { |
| 1229 | Register SrcReg = MI.getOperand(i: 2).getReg(); |
| 1230 | const MachineOperand &BaseOp = MI.getOperand(i: 0); |
| 1231 | assert(BaseOp.getSubReg() == 0); |
| 1232 | int Offset = MI.getOperand(i: 1).getImm(); |
| 1233 | unsigned VecOffset = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
| 1234 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
| 1235 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai |
| 1236 | : Hexagon::V6_vS32Ub_ai; |
| 1237 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc)) |
| 1238 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp) & ~RegState::Kill) |
| 1239 | .addImm(Val: Offset) |
| 1240 | .addReg(RegNo: HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo)) |
| 1241 | .cloneMemRefs(OtherMI: MI); |
| 1242 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc)) |
| 1243 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
| 1244 | .addImm(Val: Offset + VecOffset) |
| 1245 | .addReg(RegNo: HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi)) |
| 1246 | .cloneMemRefs(OtherMI: MI); |
| 1247 | MBB.erase(I: MI); |
| 1248 | return true; |
| 1249 | } |
| 1250 | case Hexagon::PS_true: { |
| 1251 | Register Reg = MI.getOperand(i: 0).getReg(); |
| 1252 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::C2_orn), DestReg: Reg) |
| 1253 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 1254 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 1255 | MBB.erase(I: MI); |
| 1256 | return true; |
| 1257 | } |
| 1258 | case Hexagon::PS_false: { |
| 1259 | Register Reg = MI.getOperand(i: 0).getReg(); |
| 1260 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::C2_andn), DestReg: Reg) |
| 1261 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 1262 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 1263 | MBB.erase(I: MI); |
| 1264 | return true; |
| 1265 | } |
| 1266 | case Hexagon::PS_qtrue: { |
| 1267 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_veqw), DestReg: MI.getOperand(i: 0).getReg()) |
| 1268 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef) |
| 1269 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef); |
| 1270 | MBB.erase(I: MI); |
| 1271 | return true; |
| 1272 | } |
| 1273 | case Hexagon::PS_qfalse: { |
| 1274 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgtw), DestReg: MI.getOperand(i: 0).getReg()) |
| 1275 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef) |
| 1276 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef); |
| 1277 | MBB.erase(I: MI); |
| 1278 | return true; |
| 1279 | } |
| 1280 | case Hexagon::PS_vdd0: { |
| 1281 | Register Vd = MI.getOperand(i: 0).getReg(); |
| 1282 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vsubw_dv), DestReg: Vd) |
| 1283 | .addReg(RegNo: Vd, flags: RegState::Undef) |
| 1284 | .addReg(RegNo: Vd, flags: RegState::Undef); |
| 1285 | MBB.erase(I: MI); |
| 1286 | return true; |
| 1287 | } |
| 1288 | case Hexagon::PS_vmulw: { |
| 1289 | // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. |
| 1290 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1291 | Register Src1Reg = MI.getOperand(i: 1).getReg(); |
| 1292 | Register Src2Reg = MI.getOperand(i: 2).getReg(); |
| 1293 | Register Src1SubHi = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_hi); |
| 1294 | Register Src1SubLo = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_lo); |
| 1295 | Register Src2SubHi = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_hi); |
| 1296 | Register Src2SubLo = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_lo); |
| 1297 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_mpyi), |
| 1298 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_hi)) |
| 1299 | .addReg(RegNo: Src1SubHi) |
| 1300 | .addReg(RegNo: Src2SubHi); |
| 1301 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_mpyi), |
| 1302 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_lo)) |
| 1303 | .addReg(RegNo: Src1SubLo) |
| 1304 | .addReg(RegNo: Src2SubLo); |
| 1305 | MBB.erase(I: MI); |
| 1306 | MRI.clearKillFlags(Reg: Src1SubHi); |
| 1307 | MRI.clearKillFlags(Reg: Src1SubLo); |
| 1308 | MRI.clearKillFlags(Reg: Src2SubHi); |
| 1309 | MRI.clearKillFlags(Reg: Src2SubLo); |
| 1310 | return true; |
| 1311 | } |
| 1312 | case Hexagon::PS_vmulw_acc: { |
| 1313 | // Expand 64-bit vector multiply with addition into 2 scalar multiplies. |
| 1314 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1315 | Register Src1Reg = MI.getOperand(i: 1).getReg(); |
| 1316 | Register Src2Reg = MI.getOperand(i: 2).getReg(); |
| 1317 | Register Src3Reg = MI.getOperand(i: 3).getReg(); |
| 1318 | Register Src1SubHi = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_hi); |
| 1319 | Register Src1SubLo = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_lo); |
| 1320 | Register Src2SubHi = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_hi); |
| 1321 | Register Src2SubLo = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_lo); |
| 1322 | Register Src3SubHi = HRI.getSubReg(Reg: Src3Reg, Idx: Hexagon::isub_hi); |
| 1323 | Register Src3SubLo = HRI.getSubReg(Reg: Src3Reg, Idx: Hexagon::isub_lo); |
| 1324 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_maci), |
| 1325 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_hi)) |
| 1326 | .addReg(RegNo: Src1SubHi) |
| 1327 | .addReg(RegNo: Src2SubHi) |
| 1328 | .addReg(RegNo: Src3SubHi); |
| 1329 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_maci), |
| 1330 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_lo)) |
| 1331 | .addReg(RegNo: Src1SubLo) |
| 1332 | .addReg(RegNo: Src2SubLo) |
| 1333 | .addReg(RegNo: Src3SubLo); |
| 1334 | MBB.erase(I: MI); |
| 1335 | MRI.clearKillFlags(Reg: Src1SubHi); |
| 1336 | MRI.clearKillFlags(Reg: Src1SubLo); |
| 1337 | MRI.clearKillFlags(Reg: Src2SubHi); |
| 1338 | MRI.clearKillFlags(Reg: Src2SubLo); |
| 1339 | MRI.clearKillFlags(Reg: Src3SubHi); |
| 1340 | MRI.clearKillFlags(Reg: Src3SubLo); |
| 1341 | return true; |
| 1342 | } |
| 1343 | case Hexagon::PS_pselect: { |
| 1344 | const MachineOperand &Op0 = MI.getOperand(i: 0); |
| 1345 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
| 1346 | const MachineOperand &Op2 = MI.getOperand(i: 2); |
| 1347 | const MachineOperand &Op3 = MI.getOperand(i: 3); |
| 1348 | Register Rd = Op0.getReg(); |
| 1349 | Register Pu = Op1.getReg(); |
| 1350 | Register Rs = Op2.getReg(); |
| 1351 | Register Rt = Op3.getReg(); |
| 1352 | DebugLoc DL = MI.getDebugLoc(); |
| 1353 | unsigned K1 = getKillRegState(B: Op1.isKill()); |
| 1354 | unsigned K2 = getKillRegState(B: Op2.isKill()); |
| 1355 | unsigned K3 = getKillRegState(B: Op3.isKill()); |
| 1356 | if (Rd != Rs) |
| 1357 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrpt), DestReg: Rd) |
| 1358 | .addReg(RegNo: Pu, flags: (Rd == Rt) ? K1 : 0) |
| 1359 | .addReg(RegNo: Rs, flags: K2); |
| 1360 | if (Rd != Rt) |
| 1361 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrpf), DestReg: Rd) |
| 1362 | .addReg(RegNo: Pu, flags: K1) |
| 1363 | .addReg(RegNo: Rt, flags: K3); |
| 1364 | MBB.erase(I: MI); |
| 1365 | return true; |
| 1366 | } |
| 1367 | case Hexagon::PS_vselect: { |
| 1368 | const MachineOperand &Op0 = MI.getOperand(i: 0); |
| 1369 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
| 1370 | const MachineOperand &Op2 = MI.getOperand(i: 2); |
| 1371 | const MachineOperand &Op3 = MI.getOperand(i: 3); |
| 1372 | getLiveOutRegsAt(Regs&: LiveOut, MI); |
| 1373 | bool IsDestLive = !LiveOut.available(MRI, Reg: Op0.getReg()); |
| 1374 | Register PReg = Op1.getReg(); |
| 1375 | assert(Op1.getSubReg() == 0); |
| 1376 | unsigned PState = getRegState(RegOp: Op1); |
| 1377 | |
| 1378 | if (Op0.getReg() != Op2.getReg()) { |
| 1379 | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill |
| 1380 | : PState; |
| 1381 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vcmov)) |
| 1382 | .add(MO: Op0) |
| 1383 | .addReg(RegNo: PReg, flags: S) |
| 1384 | .add(MO: Op2); |
| 1385 | if (IsDestLive) |
| 1386 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
| 1387 | IsDestLive = true; |
| 1388 | } |
| 1389 | if (Op0.getReg() != Op3.getReg()) { |
| 1390 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vncmov)) |
| 1391 | .add(MO: Op0) |
| 1392 | .addReg(RegNo: PReg, flags: PState) |
| 1393 | .add(MO: Op3); |
| 1394 | if (IsDestLive) |
| 1395 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
| 1396 | } |
| 1397 | MBB.erase(I: MI); |
| 1398 | return true; |
| 1399 | } |
| 1400 | case Hexagon::PS_wselect: { |
| 1401 | MachineOperand &Op0 = MI.getOperand(i: 0); |
| 1402 | MachineOperand &Op1 = MI.getOperand(i: 1); |
| 1403 | MachineOperand &Op2 = MI.getOperand(i: 2); |
| 1404 | MachineOperand &Op3 = MI.getOperand(i: 3); |
| 1405 | getLiveOutRegsAt(Regs&: LiveOut, MI); |
| 1406 | bool IsDestLive = !LiveOut.available(MRI, Reg: Op0.getReg()); |
| 1407 | Register PReg = Op1.getReg(); |
| 1408 | assert(Op1.getSubReg() == 0); |
| 1409 | unsigned PState = getRegState(RegOp: Op1); |
| 1410 | |
| 1411 | if (Op0.getReg() != Op2.getReg()) { |
| 1412 | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill |
| 1413 | : PState; |
| 1414 | Register SrcLo = HRI.getSubReg(Reg: Op2.getReg(), Idx: Hexagon::vsub_lo); |
| 1415 | Register SrcHi = HRI.getSubReg(Reg: Op2.getReg(), Idx: Hexagon::vsub_hi); |
| 1416 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vccombine)) |
| 1417 | .add(MO: Op0) |
| 1418 | .addReg(RegNo: PReg, flags: S) |
| 1419 | .addReg(RegNo: SrcHi) |
| 1420 | .addReg(RegNo: SrcLo); |
| 1421 | if (IsDestLive) |
| 1422 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
| 1423 | IsDestLive = true; |
| 1424 | } |
| 1425 | if (Op0.getReg() != Op3.getReg()) { |
| 1426 | Register SrcLo = HRI.getSubReg(Reg: Op3.getReg(), Idx: Hexagon::vsub_lo); |
| 1427 | Register SrcHi = HRI.getSubReg(Reg: Op3.getReg(), Idx: Hexagon::vsub_hi); |
| 1428 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vnccombine)) |
| 1429 | .add(MO: Op0) |
| 1430 | .addReg(RegNo: PReg, flags: PState) |
| 1431 | .addReg(RegNo: SrcHi) |
| 1432 | .addReg(RegNo: SrcLo); |
| 1433 | if (IsDestLive) |
| 1434 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
| 1435 | } |
| 1436 | MBB.erase(I: MI); |
| 1437 | return true; |
| 1438 | } |
| 1439 | |
| 1440 | case Hexagon::PS_crash: { |
| 1441 | // Generate a misaligned load that is guaranteed to cause a crash. |
| 1442 | class CrashPseudoSourceValue : public PseudoSourceValue { |
| 1443 | public: |
| 1444 | CrashPseudoSourceValue(const TargetMachine &TM) |
| 1445 | : PseudoSourceValue(TargetCustom, TM) {} |
| 1446 | |
| 1447 | bool isConstant(const MachineFrameInfo *) const override { |
| 1448 | return false; |
| 1449 | } |
| 1450 | bool isAliased(const MachineFrameInfo *) const override { |
| 1451 | return false; |
| 1452 | } |
| 1453 | bool mayAlias(const MachineFrameInfo *) const override { |
| 1454 | return false; |
| 1455 | } |
| 1456 | void printCustom(raw_ostream &OS) const override { |
| 1457 | OS << "MisalignedCrash" ; |
| 1458 | } |
| 1459 | }; |
| 1460 | |
| 1461 | static const CrashPseudoSourceValue CrashPSV(MF.getTarget()); |
| 1462 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 1463 | PtrInfo: MachinePointerInfo(&CrashPSV), |
| 1464 | F: MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, Size: 8, |
| 1465 | BaseAlignment: Align(1)); |
| 1466 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::PS_loadrdabs), DestReg: Hexagon::D13) |
| 1467 | .addImm(Val: 0xBADC0FEE) // Misaligned load. |
| 1468 | .addMemOperand(MMO); |
| 1469 | MBB.erase(I: MI); |
| 1470 | return true; |
| 1471 | } |
| 1472 | |
| 1473 | case Hexagon::PS_tailcall_i: |
| 1474 | MI.setDesc(get(Opcode: Hexagon::J2_jump)); |
| 1475 | return true; |
| 1476 | case Hexagon::PS_tailcall_r: |
| 1477 | case Hexagon::PS_jmpret: |
| 1478 | MI.setDesc(get(Opcode: Hexagon::J2_jumpr)); |
| 1479 | return true; |
| 1480 | case Hexagon::PS_jmprett: |
| 1481 | MI.setDesc(get(Opcode: Hexagon::J2_jumprt)); |
| 1482 | return true; |
| 1483 | case Hexagon::PS_jmpretf: |
| 1484 | MI.setDesc(get(Opcode: Hexagon::J2_jumprf)); |
| 1485 | return true; |
| 1486 | case Hexagon::PS_jmprettnewpt: |
| 1487 | MI.setDesc(get(Opcode: Hexagon::J2_jumprtnewpt)); |
| 1488 | return true; |
| 1489 | case Hexagon::PS_jmpretfnewpt: |
| 1490 | MI.setDesc(get(Opcode: Hexagon::J2_jumprfnewpt)); |
| 1491 | return true; |
| 1492 | case Hexagon::PS_jmprettnew: |
| 1493 | MI.setDesc(get(Opcode: Hexagon::J2_jumprtnew)); |
| 1494 | return true; |
| 1495 | case Hexagon::PS_jmpretfnew: |
| 1496 | MI.setDesc(get(Opcode: Hexagon::J2_jumprfnew)); |
| 1497 | return true; |
| 1498 | |
| 1499 | case Hexagon::PS_loadrub_pci: |
| 1500 | return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4); |
| 1501 | case Hexagon::PS_loadrb_pci: |
| 1502 | return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4); |
| 1503 | case Hexagon::PS_loadruh_pci: |
| 1504 | return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4); |
| 1505 | case Hexagon::PS_loadrh_pci: |
| 1506 | return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4); |
| 1507 | case Hexagon::PS_loadri_pci: |
| 1508 | return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4); |
| 1509 | case Hexagon::PS_loadrd_pci: |
| 1510 | return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4); |
| 1511 | case Hexagon::PS_loadrub_pcr: |
| 1512 | return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3); |
| 1513 | case Hexagon::PS_loadrb_pcr: |
| 1514 | return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3); |
| 1515 | case Hexagon::PS_loadruh_pcr: |
| 1516 | return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3); |
| 1517 | case Hexagon::PS_loadrh_pcr: |
| 1518 | return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3); |
| 1519 | case Hexagon::PS_loadri_pcr: |
| 1520 | return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3); |
| 1521 | case Hexagon::PS_loadrd_pcr: |
| 1522 | return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3); |
| 1523 | case Hexagon::PS_storerb_pci: |
| 1524 | return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3); |
| 1525 | case Hexagon::PS_storerh_pci: |
| 1526 | return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3); |
| 1527 | case Hexagon::PS_storerf_pci: |
| 1528 | return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3); |
| 1529 | case Hexagon::PS_storeri_pci: |
| 1530 | return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3); |
| 1531 | case Hexagon::PS_storerd_pci: |
| 1532 | return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3); |
| 1533 | case Hexagon::PS_storerb_pcr: |
| 1534 | return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2); |
| 1535 | case Hexagon::PS_storerh_pcr: |
| 1536 | return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2); |
| 1537 | case Hexagon::PS_storerf_pcr: |
| 1538 | return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2); |
| 1539 | case Hexagon::PS_storeri_pcr: |
| 1540 | return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2); |
| 1541 | case Hexagon::PS_storerd_pcr: |
| 1542 | return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2); |
| 1543 | } |
| 1544 | |
| 1545 | return false; |
| 1546 | } |
| 1547 | |
| 1548 | MachineBasicBlock::instr_iterator |
| 1549 | HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const { |
| 1550 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1551 | const DebugLoc &DL = MI.getDebugLoc(); |
| 1552 | unsigned Opc = MI.getOpcode(); |
| 1553 | MachineBasicBlock::iterator First; |
| 1554 | |
| 1555 | switch (Opc) { |
| 1556 | case Hexagon::V6_vgathermh_pseudo: |
| 1557 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermh)) |
| 1558 | .add(MO: MI.getOperand(i: 2)) |
| 1559 | .add(MO: MI.getOperand(i: 3)) |
| 1560 | .add(MO: MI.getOperand(i: 4)); |
| 1561 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
| 1562 | .add(MO: MI.getOperand(i: 0)) |
| 1563 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
| 1564 | .addReg(RegNo: Hexagon::VTMP); |
| 1565 | MBB.erase(I: MI); |
| 1566 | return First.getInstrIterator(); |
| 1567 | |
| 1568 | case Hexagon::V6_vgathermw_pseudo: |
| 1569 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermw)) |
| 1570 | .add(MO: MI.getOperand(i: 2)) |
| 1571 | .add(MO: MI.getOperand(i: 3)) |
| 1572 | .add(MO: MI.getOperand(i: 4)); |
| 1573 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
| 1574 | .add(MO: MI.getOperand(i: 0)) |
| 1575 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
| 1576 | .addReg(RegNo: Hexagon::VTMP); |
| 1577 | MBB.erase(I: MI); |
| 1578 | return First.getInstrIterator(); |
| 1579 | |
| 1580 | case Hexagon::V6_vgathermhw_pseudo: |
| 1581 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermhw)) |
| 1582 | .add(MO: MI.getOperand(i: 2)) |
| 1583 | .add(MO: MI.getOperand(i: 3)) |
| 1584 | .add(MO: MI.getOperand(i: 4)); |
| 1585 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
| 1586 | .add(MO: MI.getOperand(i: 0)) |
| 1587 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
| 1588 | .addReg(RegNo: Hexagon::VTMP); |
| 1589 | MBB.erase(I: MI); |
| 1590 | return First.getInstrIterator(); |
| 1591 | |
| 1592 | case Hexagon::V6_vgathermhq_pseudo: |
| 1593 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermhq)) |
| 1594 | .add(MO: MI.getOperand(i: 2)) |
| 1595 | .add(MO: MI.getOperand(i: 3)) |
| 1596 | .add(MO: MI.getOperand(i: 4)) |
| 1597 | .add(MO: MI.getOperand(i: 5)); |
| 1598 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
| 1599 | .add(MO: MI.getOperand(i: 0)) |
| 1600 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
| 1601 | .addReg(RegNo: Hexagon::VTMP); |
| 1602 | MBB.erase(I: MI); |
| 1603 | return First.getInstrIterator(); |
| 1604 | |
| 1605 | case Hexagon::V6_vgathermwq_pseudo: |
| 1606 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermwq)) |
| 1607 | .add(MO: MI.getOperand(i: 2)) |
| 1608 | .add(MO: MI.getOperand(i: 3)) |
| 1609 | .add(MO: MI.getOperand(i: 4)) |
| 1610 | .add(MO: MI.getOperand(i: 5)); |
| 1611 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
| 1612 | .add(MO: MI.getOperand(i: 0)) |
| 1613 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
| 1614 | .addReg(RegNo: Hexagon::VTMP); |
| 1615 | MBB.erase(I: MI); |
| 1616 | return First.getInstrIterator(); |
| 1617 | |
| 1618 | case Hexagon::V6_vgathermhwq_pseudo: |
| 1619 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermhwq)) |
| 1620 | .add(MO: MI.getOperand(i: 2)) |
| 1621 | .add(MO: MI.getOperand(i: 3)) |
| 1622 | .add(MO: MI.getOperand(i: 4)) |
| 1623 | .add(MO: MI.getOperand(i: 5)); |
| 1624 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
| 1625 | .add(MO: MI.getOperand(i: 0)) |
| 1626 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
| 1627 | .addReg(RegNo: Hexagon::VTMP); |
| 1628 | MBB.erase(I: MI); |
| 1629 | return First.getInstrIterator(); |
| 1630 | } |
| 1631 | |
| 1632 | return MI.getIterator(); |
| 1633 | } |
| 1634 | |
| 1635 | // We indicate that we want to reverse the branch by |
| 1636 | // inserting the reversed branching opcode. |
| 1637 | bool HexagonInstrInfo::reverseBranchCondition( |
| 1638 | SmallVectorImpl<MachineOperand> &Cond) const { |
| 1639 | if (Cond.empty()) |
| 1640 | return true; |
| 1641 | assert(Cond[0].isImm() && "First entry in the cond vector not imm-val" ); |
| 1642 | unsigned opcode = Cond[0].getImm(); |
| 1643 | //unsigned temp; |
| 1644 | assert(get(opcode).isBranch() && "Should be a branching condition." ); |
| 1645 | if (isEndLoopN(Opcode: opcode)) |
| 1646 | return true; |
| 1647 | unsigned NewOpcode = getInvertedPredicatedOpcode(Opc: opcode); |
| 1648 | Cond[0].setImm(NewOpcode); |
| 1649 | return false; |
| 1650 | } |
| 1651 | |
| 1652 | void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| 1653 | MachineBasicBlock::iterator MI) const { |
| 1654 | DebugLoc DL; |
| 1655 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_nop)); |
| 1656 | } |
| 1657 | |
| 1658 | bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const { |
| 1659 | return getAddrMode(MI) == HexagonII::PostInc; |
| 1660 | } |
| 1661 | |
| 1662 | // Returns true if an instruction is predicated irrespective of the predicate |
| 1663 | // sense. For example, all of the following will return true. |
| 1664 | // if (p0) R1 = add(R2, R3) |
| 1665 | // if (!p0) R1 = add(R2, R3) |
| 1666 | // if (p0.new) R1 = add(R2, R3) |
| 1667 | // if (!p0.new) R1 = add(R2, R3) |
| 1668 | // Note: New-value stores are not included here as in the current |
| 1669 | // implementation, we don't need to check their predicate sense. |
| 1670 | bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const { |
| 1671 | const uint64_t F = MI.getDesc().TSFlags; |
| 1672 | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; |
| 1673 | } |
| 1674 | |
| 1675 | bool HexagonInstrInfo::PredicateInstruction( |
| 1676 | MachineInstr &MI, ArrayRef<MachineOperand> Cond) const { |
| 1677 | if (Cond.empty() || isNewValueJump(Opcode: Cond[0].getImm()) || |
| 1678 | isEndLoopN(Opcode: Cond[0].getImm())) { |
| 1679 | LLVM_DEBUG(dbgs() << "\nCannot predicate:" ; MI.dump();); |
| 1680 | return false; |
| 1681 | } |
| 1682 | int Opc = MI.getOpcode(); |
| 1683 | assert (isPredicable(MI) && "Expected predicable instruction" ); |
| 1684 | bool invertJump = predOpcodeHasNot(Cond); |
| 1685 | |
| 1686 | // We have to predicate MI "in place", i.e. after this function returns, |
| 1687 | // MI will need to be transformed into a predicated form. To avoid com- |
| 1688 | // plicated manipulations with the operands (handling tied operands, |
| 1689 | // etc.), build a new temporary instruction, then overwrite MI with it. |
| 1690 | |
| 1691 | MachineBasicBlock &B = *MI.getParent(); |
| 1692 | DebugLoc DL = MI.getDebugLoc(); |
| 1693 | unsigned PredOpc = getCondOpcode(Opc, sense: invertJump); |
| 1694 | MachineInstrBuilder T = BuildMI(BB&: B, I&: MI, MIMD: DL, MCID: get(Opcode: PredOpc)); |
| 1695 | unsigned NOp = 0, NumOps = MI.getNumOperands(); |
| 1696 | while (NOp < NumOps) { |
| 1697 | MachineOperand &Op = MI.getOperand(i: NOp); |
| 1698 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
| 1699 | break; |
| 1700 | T.add(MO: Op); |
| 1701 | NOp++; |
| 1702 | } |
| 1703 | |
| 1704 | Register PredReg; |
| 1705 | unsigned PredRegPos, PredRegFlags; |
| 1706 | bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); |
| 1707 | (void)GotPredReg; |
| 1708 | assert(GotPredReg); |
| 1709 | T.addReg(RegNo: PredReg, flags: PredRegFlags); |
| 1710 | while (NOp < NumOps) |
| 1711 | T.add(MO: MI.getOperand(i: NOp++)); |
| 1712 | |
| 1713 | MI.setDesc(get(Opcode: PredOpc)); |
| 1714 | while (unsigned n = MI.getNumOperands()) |
| 1715 | MI.removeOperand(OpNo: n-1); |
| 1716 | for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) |
| 1717 | MI.addOperand(Op: T->getOperand(i)); |
| 1718 | |
| 1719 | MachineBasicBlock::instr_iterator TI = T->getIterator(); |
| 1720 | B.erase(I: TI); |
| 1721 | |
| 1722 | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); |
| 1723 | MRI.clearKillFlags(Reg: PredReg); |
| 1724 | return true; |
| 1725 | } |
| 1726 | |
| 1727 | bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| 1728 | ArrayRef<MachineOperand> Pred2) const { |
| 1729 | // TODO: Fix this |
| 1730 | return false; |
| 1731 | } |
| 1732 | |
| 1733 | bool HexagonInstrInfo::ClobbersPredicate(MachineInstr &MI, |
| 1734 | std::vector<MachineOperand> &Pred, |
| 1735 | bool SkipDead) const { |
| 1736 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 1737 | |
| 1738 | for (const MachineOperand &MO : MI.operands()) { |
| 1739 | if (MO.isReg()) { |
| 1740 | if (!MO.isDef()) |
| 1741 | continue; |
| 1742 | const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(Reg: MO.getReg()); |
| 1743 | if (RC == &Hexagon::PredRegsRegClass) { |
| 1744 | Pred.push_back(x: MO); |
| 1745 | return true; |
| 1746 | } |
| 1747 | continue; |
| 1748 | } else if (MO.isRegMask()) { |
| 1749 | for (Register PR : Hexagon::PredRegsRegClass) { |
| 1750 | if (!MI.modifiesRegister(Reg: PR, TRI: &HRI)) |
| 1751 | continue; |
| 1752 | Pred.push_back(x: MO); |
| 1753 | return true; |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | return false; |
| 1758 | } |
| 1759 | |
| 1760 | bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const { |
| 1761 | if (!MI.getDesc().isPredicable()) |
| 1762 | return false; |
| 1763 | |
| 1764 | if (MI.isCall() || isTailCall(MI)) { |
| 1765 | if (!Subtarget.usePredicatedCalls()) |
| 1766 | return false; |
| 1767 | } |
| 1768 | |
| 1769 | // HVX loads are not predicable on v60, but are on v62. |
| 1770 | if (!Subtarget.hasV62Ops()) { |
| 1771 | switch (MI.getOpcode()) { |
| 1772 | case Hexagon::V6_vL32b_ai: |
| 1773 | case Hexagon::V6_vL32b_pi: |
| 1774 | case Hexagon::V6_vL32b_ppu: |
| 1775 | case Hexagon::V6_vL32b_cur_ai: |
| 1776 | case Hexagon::V6_vL32b_cur_pi: |
| 1777 | case Hexagon::V6_vL32b_cur_ppu: |
| 1778 | case Hexagon::V6_vL32b_nt_ai: |
| 1779 | case Hexagon::V6_vL32b_nt_pi: |
| 1780 | case Hexagon::V6_vL32b_nt_ppu: |
| 1781 | case Hexagon::V6_vL32b_tmp_ai: |
| 1782 | case Hexagon::V6_vL32b_tmp_pi: |
| 1783 | case Hexagon::V6_vL32b_tmp_ppu: |
| 1784 | case Hexagon::V6_vL32b_nt_cur_ai: |
| 1785 | case Hexagon::V6_vL32b_nt_cur_pi: |
| 1786 | case Hexagon::V6_vL32b_nt_cur_ppu: |
| 1787 | case Hexagon::V6_vL32b_nt_tmp_ai: |
| 1788 | case Hexagon::V6_vL32b_nt_tmp_pi: |
| 1789 | case Hexagon::V6_vL32b_nt_tmp_ppu: |
| 1790 | return false; |
| 1791 | } |
| 1792 | } |
| 1793 | return true; |
| 1794 | } |
| 1795 | |
| 1796 | bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| 1797 | const MachineBasicBlock *MBB, |
| 1798 | const MachineFunction &MF) const { |
| 1799 | // Debug info is never a scheduling boundary. It's necessary to be explicit |
| 1800 | // due to the special treatment of IT instructions below, otherwise a |
| 1801 | // dbg_value followed by an IT will result in the IT instruction being |
| 1802 | // considered a scheduling hazard, which is wrong. It should be the actual |
| 1803 | // instruction preceding the dbg_value instruction(s), just like it is |
| 1804 | // when debug info is not present. |
| 1805 | if (MI.isDebugInstr()) |
| 1806 | return false; |
| 1807 | |
| 1808 | // Throwing call is a boundary. |
| 1809 | if (MI.isCall()) { |
| 1810 | // Don't mess around with no return calls. |
| 1811 | if (doesNotReturn(CallMI: MI)) |
| 1812 | return true; |
| 1813 | // If any of the block's successors is a landing pad, this could be a |
| 1814 | // throwing call. |
| 1815 | for (auto *I : MBB->successors()) |
| 1816 | if (I->isEHPad()) |
| 1817 | return true; |
| 1818 | } |
| 1819 | |
| 1820 | // Terminators and labels can't be scheduled around. |
| 1821 | if (MI.getDesc().isTerminator() || MI.isPosition()) |
| 1822 | return true; |
| 1823 | |
| 1824 | // INLINEASM_BR can jump to another block |
| 1825 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
| 1826 | return true; |
| 1827 | |
| 1828 | if (MI.isInlineAsm() && !ScheduleInlineAsm) |
| 1829 | return true; |
| 1830 | |
| 1831 | return false; |
| 1832 | } |
| 1833 | |
| 1834 | /// Measure the specified inline asm to determine an approximation of its |
| 1835 | /// length. |
| 1836 | /// Comments (which run till the next SeparatorString or newline) do not |
| 1837 | /// count as an instruction. |
| 1838 | /// Any other non-whitespace text is considered an instruction, with |
| 1839 | /// multiple instructions separated by SeparatorString or newlines. |
| 1840 | /// Variable-length instructions are not handled here; this function |
| 1841 | /// may be overloaded in the target code to do that. |
| 1842 | /// Hexagon counts the number of ##'s and adjust for that many |
| 1843 | /// constant exenders. |
| 1844 | unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str, |
| 1845 | const MCAsmInfo &MAI, |
| 1846 | const TargetSubtargetInfo *STI) const { |
| 1847 | StringRef AStr(Str); |
| 1848 | // Count the number of instructions in the asm. |
| 1849 | bool atInsnStart = true; |
| 1850 | unsigned Length = 0; |
| 1851 | const unsigned MaxInstLength = MAI.getMaxInstLength(STI); |
| 1852 | for (; *Str; ++Str) { |
| 1853 | if (*Str == '\n' || strncmp(s1: Str, s2: MAI.getSeparatorString(), |
| 1854 | n: strlen(s: MAI.getSeparatorString())) == 0) |
| 1855 | atInsnStart = true; |
| 1856 | if (atInsnStart && !isSpace(C: static_cast<unsigned char>(*Str))) { |
| 1857 | Length += MaxInstLength; |
| 1858 | atInsnStart = false; |
| 1859 | } |
| 1860 | if (atInsnStart && strncmp(s1: Str, s2: MAI.getCommentString().data(), |
| 1861 | n: MAI.getCommentString().size()) == 0) |
| 1862 | atInsnStart = false; |
| 1863 | } |
| 1864 | |
| 1865 | // Add to size number of constant extenders seen * 4. |
| 1866 | StringRef Occ("##" ); |
| 1867 | Length += AStr.count(Str: Occ)*4; |
| 1868 | return Length; |
| 1869 | } |
| 1870 | |
| 1871 | ScheduleHazardRecognizer* |
| 1872 | HexagonInstrInfo::CreateTargetPostRAHazardRecognizer( |
| 1873 | const InstrItineraryData *II, const ScheduleDAG *DAG) const { |
| 1874 | if (UseDFAHazardRec) |
| 1875 | return new HexagonHazardRecognizer(II, this, Subtarget); |
| 1876 | return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); |
| 1877 | } |
| 1878 | |
| 1879 | /// For a comparison instruction, return the source registers in |
| 1880 | /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it |
| 1881 | /// compares against in CmpValue. Return true if the comparison instruction |
| 1882 | /// can be analyzed. |
| 1883 | bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| 1884 | Register &SrcReg2, int64_t &Mask, |
| 1885 | int64_t &Value) const { |
| 1886 | unsigned Opc = MI.getOpcode(); |
| 1887 | |
| 1888 | // Set mask and the first source register. |
| 1889 | switch (Opc) { |
| 1890 | case Hexagon::C2_cmpeq: |
| 1891 | case Hexagon::C2_cmpeqp: |
| 1892 | case Hexagon::C2_cmpgt: |
| 1893 | case Hexagon::C2_cmpgtp: |
| 1894 | case Hexagon::C2_cmpgtu: |
| 1895 | case Hexagon::C2_cmpgtup: |
| 1896 | case Hexagon::C4_cmpneq: |
| 1897 | case Hexagon::C4_cmplte: |
| 1898 | case Hexagon::C4_cmplteu: |
| 1899 | case Hexagon::C2_cmpeqi: |
| 1900 | case Hexagon::C2_cmpgti: |
| 1901 | case Hexagon::C2_cmpgtui: |
| 1902 | case Hexagon::C4_cmpneqi: |
| 1903 | case Hexagon::C4_cmplteui: |
| 1904 | case Hexagon::C4_cmpltei: |
| 1905 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 1906 | Mask = ~0; |
| 1907 | break; |
| 1908 | case Hexagon::A4_cmpbeq: |
| 1909 | case Hexagon::A4_cmpbgt: |
| 1910 | case Hexagon::A4_cmpbgtu: |
| 1911 | case Hexagon::A4_cmpbeqi: |
| 1912 | case Hexagon::A4_cmpbgti: |
| 1913 | case Hexagon::A4_cmpbgtui: |
| 1914 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 1915 | Mask = 0xFF; |
| 1916 | break; |
| 1917 | case Hexagon::A4_cmpheq: |
| 1918 | case Hexagon::A4_cmphgt: |
| 1919 | case Hexagon::A4_cmphgtu: |
| 1920 | case Hexagon::A4_cmpheqi: |
| 1921 | case Hexagon::A4_cmphgti: |
| 1922 | case Hexagon::A4_cmphgtui: |
| 1923 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 1924 | Mask = 0xFFFF; |
| 1925 | break; |
| 1926 | } |
| 1927 | |
| 1928 | // Set the value/second source register. |
| 1929 | switch (Opc) { |
| 1930 | case Hexagon::C2_cmpeq: |
| 1931 | case Hexagon::C2_cmpeqp: |
| 1932 | case Hexagon::C2_cmpgt: |
| 1933 | case Hexagon::C2_cmpgtp: |
| 1934 | case Hexagon::C2_cmpgtu: |
| 1935 | case Hexagon::C2_cmpgtup: |
| 1936 | case Hexagon::A4_cmpbeq: |
| 1937 | case Hexagon::A4_cmpbgt: |
| 1938 | case Hexagon::A4_cmpbgtu: |
| 1939 | case Hexagon::A4_cmpheq: |
| 1940 | case Hexagon::A4_cmphgt: |
| 1941 | case Hexagon::A4_cmphgtu: |
| 1942 | case Hexagon::C4_cmpneq: |
| 1943 | case Hexagon::C4_cmplte: |
| 1944 | case Hexagon::C4_cmplteu: |
| 1945 | SrcReg2 = MI.getOperand(i: 2).getReg(); |
| 1946 | Value = 0; |
| 1947 | return true; |
| 1948 | |
| 1949 | case Hexagon::C2_cmpeqi: |
| 1950 | case Hexagon::C2_cmpgtui: |
| 1951 | case Hexagon::C2_cmpgti: |
| 1952 | case Hexagon::C4_cmpneqi: |
| 1953 | case Hexagon::C4_cmplteui: |
| 1954 | case Hexagon::C4_cmpltei: |
| 1955 | case Hexagon::A4_cmpbeqi: |
| 1956 | case Hexagon::A4_cmpbgti: |
| 1957 | case Hexagon::A4_cmpbgtui: |
| 1958 | case Hexagon::A4_cmpheqi: |
| 1959 | case Hexagon::A4_cmphgti: |
| 1960 | case Hexagon::A4_cmphgtui: { |
| 1961 | SrcReg2 = 0; |
| 1962 | const MachineOperand &Op2 = MI.getOperand(i: 2); |
| 1963 | if (!Op2.isImm()) |
| 1964 | return false; |
| 1965 | Value = MI.getOperand(i: 2).getImm(); |
| 1966 | return true; |
| 1967 | } |
| 1968 | } |
| 1969 | |
| 1970 | return false; |
| 1971 | } |
| 1972 | |
| 1973 | unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| 1974 | const MachineInstr &MI, |
| 1975 | unsigned *PredCost) const { |
| 1976 | return getInstrTimingClassLatency(ItinData, MI); |
| 1977 | } |
| 1978 | |
| 1979 | DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( |
| 1980 | const TargetSubtargetInfo &STI) const { |
| 1981 | const InstrItineraryData *II = STI.getInstrItineraryData(); |
| 1982 | return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(IID: II); |
| 1983 | } |
| 1984 | |
| 1985 | // Inspired by this pair: |
| 1986 | // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0] |
| 1987 | // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1] |
| 1988 | // Currently AA considers the addresses in these instructions to be aliasing. |
| 1989 | bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint( |
| 1990 | const MachineInstr &MIa, const MachineInstr &MIb) const { |
| 1991 | if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
| 1992 | MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
| 1993 | return false; |
| 1994 | |
| 1995 | // Instructions that are pure loads, not loads and stores like memops are not |
| 1996 | // dependent. |
| 1997 | if (MIa.mayLoad() && !isMemOp(MI: MIa) && MIb.mayLoad() && !isMemOp(MI: MIb)) |
| 1998 | return true; |
| 1999 | |
| 2000 | // Get the base register in MIa. |
| 2001 | unsigned BasePosA, OffsetPosA; |
| 2002 | if (!getBaseAndOffsetPosition(MI: MIa, BasePos&: BasePosA, OffsetPos&: OffsetPosA)) |
| 2003 | return false; |
| 2004 | const MachineOperand &BaseA = MIa.getOperand(i: BasePosA); |
| 2005 | Register BaseRegA = BaseA.getReg(); |
| 2006 | unsigned BaseSubA = BaseA.getSubReg(); |
| 2007 | |
| 2008 | // Get the base register in MIb. |
| 2009 | unsigned BasePosB, OffsetPosB; |
| 2010 | if (!getBaseAndOffsetPosition(MI: MIb, BasePos&: BasePosB, OffsetPos&: OffsetPosB)) |
| 2011 | return false; |
| 2012 | const MachineOperand &BaseB = MIb.getOperand(i: BasePosB); |
| 2013 | Register BaseRegB = BaseB.getReg(); |
| 2014 | unsigned BaseSubB = BaseB.getSubReg(); |
| 2015 | |
| 2016 | if (BaseRegA != BaseRegB || BaseSubA != BaseSubB) |
| 2017 | return false; |
| 2018 | |
| 2019 | // Get the access sizes. |
| 2020 | unsigned SizeA = getMemAccessSize(MI: MIa); |
| 2021 | unsigned SizeB = getMemAccessSize(MI: MIb); |
| 2022 | |
| 2023 | // Get the offsets. Handle immediates only for now. |
| 2024 | const MachineOperand &OffA = MIa.getOperand(i: OffsetPosA); |
| 2025 | const MachineOperand &OffB = MIb.getOperand(i: OffsetPosB); |
| 2026 | if (!MIa.getOperand(i: OffsetPosA).isImm() || |
| 2027 | !MIb.getOperand(i: OffsetPosB).isImm()) |
| 2028 | return false; |
| 2029 | int OffsetA = isPostIncrement(MI: MIa) ? 0 : OffA.getImm(); |
| 2030 | int OffsetB = isPostIncrement(MI: MIb) ? 0 : OffB.getImm(); |
| 2031 | |
| 2032 | // This is a mem access with the same base register and known offsets from it. |
| 2033 | // Reason about it. |
| 2034 | if (OffsetA > OffsetB) { |
| 2035 | uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB); |
| 2036 | return SizeB <= OffDiff; |
| 2037 | } |
| 2038 | if (OffsetA < OffsetB) { |
| 2039 | uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA); |
| 2040 | return SizeA <= OffDiff; |
| 2041 | } |
| 2042 | |
| 2043 | return false; |
| 2044 | } |
| 2045 | |
| 2046 | /// If the instruction is an increment of a constant value, return the amount. |
| 2047 | bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI, |
| 2048 | int &Value) const { |
| 2049 | if (isPostIncrement(MI)) { |
| 2050 | unsigned BasePos = 0, OffsetPos = 0; |
| 2051 | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) |
| 2052 | return false; |
| 2053 | const MachineOperand &OffsetOp = MI.getOperand(i: OffsetPos); |
| 2054 | if (OffsetOp.isImm()) { |
| 2055 | Value = OffsetOp.getImm(); |
| 2056 | return true; |
| 2057 | } |
| 2058 | } else if (MI.getOpcode() == Hexagon::A2_addi) { |
| 2059 | const MachineOperand &AddOp = MI.getOperand(i: 2); |
| 2060 | if (AddOp.isImm()) { |
| 2061 | Value = AddOp.getImm(); |
| 2062 | return true; |
| 2063 | } |
| 2064 | } |
| 2065 | |
| 2066 | return false; |
| 2067 | } |
| 2068 | |
| 2069 | std::pair<unsigned, unsigned> |
| 2070 | HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| 2071 | return std::make_pair(x: TF & ~HexagonII::MO_Bitmasks, |
| 2072 | y: TF & HexagonII::MO_Bitmasks); |
| 2073 | } |
| 2074 | |
| 2075 | ArrayRef<std::pair<unsigned, const char*>> |
| 2076 | HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| 2077 | using namespace HexagonII; |
| 2078 | |
| 2079 | static const std::pair<unsigned, const char*> Flags[] = { |
| 2080 | {MO_PCREL, "hexagon-pcrel" }, |
| 2081 | {MO_GOT, "hexagon-got" }, |
| 2082 | {MO_LO16, "hexagon-lo16" }, |
| 2083 | {MO_HI16, "hexagon-hi16" }, |
| 2084 | {MO_GPREL, "hexagon-gprel" }, |
| 2085 | {MO_GDGOT, "hexagon-gdgot" }, |
| 2086 | {MO_GDPLT, "hexagon-gdplt" }, |
| 2087 | {MO_IE, "hexagon-ie" }, |
| 2088 | {MO_IEGOT, "hexagon-iegot" }, |
| 2089 | {MO_TPREL, "hexagon-tprel" } |
| 2090 | }; |
| 2091 | return ArrayRef(Flags); |
| 2092 | } |
| 2093 | |
| 2094 | ArrayRef<std::pair<unsigned, const char*>> |
| 2095 | HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { |
| 2096 | using namespace HexagonII; |
| 2097 | |
| 2098 | static const std::pair<unsigned, const char*> Flags[] = { |
| 2099 | {HMOTF_ConstExtended, "hexagon-ext" } |
| 2100 | }; |
| 2101 | return ArrayRef(Flags); |
| 2102 | } |
| 2103 | |
| 2104 | Register HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const { |
| 2105 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 2106 | const TargetRegisterClass *TRC; |
| 2107 | if (VT == MVT::i1) { |
| 2108 | TRC = &Hexagon::PredRegsRegClass; |
| 2109 | } else if (VT == MVT::i32 || VT == MVT::f32) { |
| 2110 | TRC = &Hexagon::IntRegsRegClass; |
| 2111 | } else if (VT == MVT::i64 || VT == MVT::f64) { |
| 2112 | TRC = &Hexagon::DoubleRegsRegClass; |
| 2113 | } else { |
| 2114 | llvm_unreachable("Cannot handle this register class" ); |
| 2115 | } |
| 2116 | |
| 2117 | Register NewReg = MRI.createVirtualRegister(RegClass: TRC); |
| 2118 | return NewReg; |
| 2119 | } |
| 2120 | |
| 2121 | bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const { |
| 2122 | return (getAddrMode(MI) == HexagonII::AbsoluteSet); |
| 2123 | } |
| 2124 | |
| 2125 | bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const { |
| 2126 | const uint64_t F = MI.getDesc().TSFlags; |
| 2127 | return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); |
| 2128 | } |
| 2129 | |
| 2130 | bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const { |
| 2131 | return getAddrMode(MI) == HexagonII::BaseImmOffset; |
| 2132 | } |
| 2133 | |
| 2134 | bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const { |
| 2135 | return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() && |
| 2136 | !MI.getDesc().mayStore() && |
| 2137 | MI.getDesc().getOpcode() != Hexagon::S2_allocframe && |
| 2138 | MI.getDesc().getOpcode() != Hexagon::L2_deallocframe && |
| 2139 | !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall(); |
| 2140 | } |
| 2141 | |
| 2142 | // Return true if the instruction is a compound branch instruction. |
| 2143 | bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const { |
| 2144 | return getType(MI) == HexagonII::TypeCJ && MI.isBranch(); |
| 2145 | } |
| 2146 | |
| 2147 | // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle |
| 2148 | // isFPImm and later getFPImm as well. |
| 2149 | bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const { |
| 2150 | const uint64_t F = MI.getDesc().TSFlags; |
| 2151 | unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; |
| 2152 | if (isExtended) // Instruction must be extended. |
| 2153 | return true; |
| 2154 | |
| 2155 | unsigned isExtendable = |
| 2156 | (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; |
| 2157 | if (!isExtendable) |
| 2158 | return false; |
| 2159 | |
| 2160 | if (MI.isCall()) |
| 2161 | return false; |
| 2162 | |
| 2163 | short ExtOpNum = getCExtOpNum(MI); |
| 2164 | const MachineOperand &MO = MI.getOperand(i: ExtOpNum); |
| 2165 | // Use MO operand flags to determine if MO |
| 2166 | // has the HMOTF_ConstExtended flag set. |
| 2167 | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) |
| 2168 | return true; |
| 2169 | // If this is a Machine BB address we are talking about, and it is |
| 2170 | // not marked as extended, say so. |
| 2171 | if (MO.isMBB()) |
| 2172 | return false; |
| 2173 | |
| 2174 | // We could be using an instruction with an extendable immediate and shoehorn |
| 2175 | // a global address into it. If it is a global address it will be constant |
| 2176 | // extended. We do this for COMBINE. |
| 2177 | if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || |
| 2178 | MO.isJTI() || MO.isCPI() || MO.isFPImm()) |
| 2179 | return true; |
| 2180 | |
| 2181 | // If the extendable operand is not 'Immediate' type, the instruction should |
| 2182 | // have 'isExtended' flag set. |
| 2183 | assert(MO.isImm() && "Extendable operand must be Immediate type" ); |
| 2184 | |
| 2185 | int64_t Value = MO.getImm(); |
| 2186 | if ((F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask) { |
| 2187 | int32_t SValue = Value; |
| 2188 | int32_t MinValue = getMinValue(MI); |
| 2189 | int32_t MaxValue = getMaxValue(MI); |
| 2190 | return SValue < MinValue || SValue > MaxValue; |
| 2191 | } |
| 2192 | uint32_t UValue = Value; |
| 2193 | uint32_t MinValue = getMinValue(MI); |
| 2194 | uint32_t MaxValue = getMaxValue(MI); |
| 2195 | return UValue < MinValue || UValue > MaxValue; |
| 2196 | } |
| 2197 | |
| 2198 | bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const { |
| 2199 | switch (MI.getOpcode()) { |
| 2200 | case Hexagon::L4_return: |
| 2201 | case Hexagon::L4_return_t: |
| 2202 | case Hexagon::L4_return_f: |
| 2203 | case Hexagon::L4_return_tnew_pnt: |
| 2204 | case Hexagon::L4_return_fnew_pnt: |
| 2205 | case Hexagon::L4_return_tnew_pt: |
| 2206 | case Hexagon::L4_return_fnew_pt: |
| 2207 | return true; |
| 2208 | } |
| 2209 | return false; |
| 2210 | } |
| 2211 | |
| 2212 | // Return true when ConsMI uses a register defined by ProdMI. |
| 2213 | bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI, |
| 2214 | const MachineInstr &ConsMI) const { |
| 2215 | if (!ProdMI.getDesc().getNumDefs()) |
| 2216 | return false; |
| 2217 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 2218 | |
| 2219 | SmallVector<Register, 4> DefsA; |
| 2220 | SmallVector<Register, 4> DefsB; |
| 2221 | SmallVector<Register, 8> UsesA; |
| 2222 | SmallVector<Register, 8> UsesB; |
| 2223 | |
| 2224 | parseOperands(MI: ProdMI, Defs&: DefsA, Uses&: UsesA); |
| 2225 | parseOperands(MI: ConsMI, Defs&: DefsB, Uses&: UsesB); |
| 2226 | |
| 2227 | for (auto &RegA : DefsA) |
| 2228 | for (auto &RegB : UsesB) { |
| 2229 | // True data dependency. |
| 2230 | if (RegA == RegB) |
| 2231 | return true; |
| 2232 | |
| 2233 | if (RegA.isPhysical() && llvm::is_contained(Range: HRI.subregs(Reg: RegA), Element: RegB)) |
| 2234 | return true; |
| 2235 | |
| 2236 | if (RegB.isPhysical() && llvm::is_contained(Range: HRI.subregs(Reg: RegB), Element: RegA)) |
| 2237 | return true; |
| 2238 | } |
| 2239 | |
| 2240 | return false; |
| 2241 | } |
| 2242 | |
| 2243 | // Returns true if the instruction is already a .cur. |
| 2244 | bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const { |
| 2245 | switch (MI.getOpcode()) { |
| 2246 | case Hexagon::V6_vL32b_cur_pi: |
| 2247 | case Hexagon::V6_vL32b_cur_ai: |
| 2248 | return true; |
| 2249 | } |
| 2250 | return false; |
| 2251 | } |
| 2252 | |
| 2253 | // Returns true, if any one of the operands is a dot new |
| 2254 | // insn, whether it is predicated dot new or register dot new. |
| 2255 | bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const { |
| 2256 | if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))) |
| 2257 | return true; |
| 2258 | |
| 2259 | return false; |
| 2260 | } |
| 2261 | |
| 2262 | /// Symmetrical. See if these two instructions are fit for duplex pair. |
| 2263 | bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa, |
| 2264 | const MachineInstr &MIb) const { |
| 2265 | HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MI: MIa); |
| 2266 | HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MI: MIb); |
| 2267 | return (isDuplexPairMatch(Ga: MIaG, Gb: MIbG) || isDuplexPairMatch(Ga: MIbG, Gb: MIaG)); |
| 2268 | } |
| 2269 | |
| 2270 | bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const { |
| 2271 | return (Opcode == Hexagon::ENDLOOP0 || |
| 2272 | Opcode == Hexagon::ENDLOOP1); |
| 2273 | } |
| 2274 | |
| 2275 | bool HexagonInstrInfo::isExpr(unsigned OpType) const { |
| 2276 | switch(OpType) { |
| 2277 | case MachineOperand::MO_MachineBasicBlock: |
| 2278 | case MachineOperand::MO_GlobalAddress: |
| 2279 | case MachineOperand::MO_ExternalSymbol: |
| 2280 | case MachineOperand::MO_JumpTableIndex: |
| 2281 | case MachineOperand::MO_ConstantPoolIndex: |
| 2282 | case MachineOperand::MO_BlockAddress: |
| 2283 | return true; |
| 2284 | default: |
| 2285 | return false; |
| 2286 | } |
| 2287 | } |
| 2288 | |
| 2289 | bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const { |
| 2290 | const MCInstrDesc &MID = MI.getDesc(); |
| 2291 | const uint64_t F = MID.TSFlags; |
| 2292 | if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) |
| 2293 | return true; |
| 2294 | |
| 2295 | // TODO: This is largely obsolete now. Will need to be removed |
| 2296 | // in consecutive patches. |
| 2297 | switch (MI.getOpcode()) { |
| 2298 | // PS_fi and PS_fia remain special cases. |
| 2299 | case Hexagon::PS_fi: |
| 2300 | case Hexagon::PS_fia: |
| 2301 | return true; |
| 2302 | default: |
| 2303 | return false; |
| 2304 | } |
| 2305 | return false; |
| 2306 | } |
| 2307 | |
| 2308 | // This returns true in two cases: |
| 2309 | // - The OP code itself indicates that this is an extended instruction. |
| 2310 | // - One of MOs has been marked with HMOTF_ConstExtended flag. |
| 2311 | bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const { |
| 2312 | // First check if this is permanently extended op code. |
| 2313 | const uint64_t F = MI.getDesc().TSFlags; |
| 2314 | if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) |
| 2315 | return true; |
| 2316 | // Use MO operand flags to determine if one of MI's operands |
| 2317 | // has HMOTF_ConstExtended flag set. |
| 2318 | for (const MachineOperand &MO : MI.operands()) |
| 2319 | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) |
| 2320 | return true; |
| 2321 | return false; |
| 2322 | } |
| 2323 | |
| 2324 | bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const { |
| 2325 | unsigned Opcode = MI.getOpcode(); |
| 2326 | const uint64_t F = get(Opcode).TSFlags; |
| 2327 | return (F >> HexagonII::FPPos) & HexagonII::FPMask; |
| 2328 | } |
| 2329 | |
| 2330 | // No V60 HVX VMEM with A_INDIRECT. |
| 2331 | bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I, |
| 2332 | const MachineInstr &J) const { |
| 2333 | if (!isHVXVec(MI: I)) |
| 2334 | return false; |
| 2335 | if (!I.mayLoad() && !I.mayStore()) |
| 2336 | return false; |
| 2337 | return J.isIndirectBranch() || isIndirectCall(MI: J) || isIndirectL4Return(MI: J); |
| 2338 | } |
| 2339 | |
| 2340 | bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const { |
| 2341 | switch (MI.getOpcode()) { |
| 2342 | case Hexagon::J2_callr: |
| 2343 | case Hexagon::J2_callrf: |
| 2344 | case Hexagon::J2_callrt: |
| 2345 | case Hexagon::PS_call_nr: |
| 2346 | return true; |
| 2347 | } |
| 2348 | return false; |
| 2349 | } |
| 2350 | |
| 2351 | bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const { |
| 2352 | switch (MI.getOpcode()) { |
| 2353 | case Hexagon::L4_return: |
| 2354 | case Hexagon::L4_return_t: |
| 2355 | case Hexagon::L4_return_f: |
| 2356 | case Hexagon::L4_return_fnew_pnt: |
| 2357 | case Hexagon::L4_return_fnew_pt: |
| 2358 | case Hexagon::L4_return_tnew_pnt: |
| 2359 | case Hexagon::L4_return_tnew_pt: |
| 2360 | return true; |
| 2361 | } |
| 2362 | return false; |
| 2363 | } |
| 2364 | |
| 2365 | bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const { |
| 2366 | switch (MI.getOpcode()) { |
| 2367 | case Hexagon::J2_jumpr: |
| 2368 | case Hexagon::J2_jumprt: |
| 2369 | case Hexagon::J2_jumprf: |
| 2370 | case Hexagon::J2_jumprtnewpt: |
| 2371 | case Hexagon::J2_jumprfnewpt: |
| 2372 | case Hexagon::J2_jumprtnew: |
| 2373 | case Hexagon::J2_jumprfnew: |
| 2374 | return true; |
| 2375 | } |
| 2376 | return false; |
| 2377 | } |
| 2378 | |
| 2379 | // Return true if a given MI can accommodate given offset. |
| 2380 | // Use abs estimate as oppose to the exact number. |
| 2381 | // TODO: This will need to be changed to use MC level |
| 2382 | // definition of instruction extendable field size. |
| 2383 | bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI, |
| 2384 | unsigned offset) const { |
| 2385 | // This selection of jump instructions matches to that what |
| 2386 | // analyzeBranch can parse, plus NVJ. |
| 2387 | if (isNewValueJump(MI)) // r9:2 |
| 2388 | return isInt<11>(x: offset); |
| 2389 | |
| 2390 | switch (MI.getOpcode()) { |
| 2391 | // Still missing Jump to address condition on register value. |
| 2392 | default: |
| 2393 | return false; |
| 2394 | case Hexagon::J2_jump: // bits<24> dst; // r22:2 |
| 2395 | case Hexagon::J2_call: |
| 2396 | case Hexagon::PS_call_nr: |
| 2397 | return isInt<24>(x: offset); |
| 2398 | case Hexagon::J2_jumpt: //bits<17> dst; // r15:2 |
| 2399 | case Hexagon::J2_jumpf: |
| 2400 | case Hexagon::J2_jumptnew: |
| 2401 | case Hexagon::J2_jumptnewpt: |
| 2402 | case Hexagon::J2_jumpfnew: |
| 2403 | case Hexagon::J2_jumpfnewpt: |
| 2404 | case Hexagon::J2_callt: |
| 2405 | case Hexagon::J2_callf: |
| 2406 | return isInt<17>(x: offset); |
| 2407 | case Hexagon::J2_loop0i: |
| 2408 | case Hexagon::J2_loop0iext: |
| 2409 | case Hexagon::J2_loop0r: |
| 2410 | case Hexagon::J2_loop0rext: |
| 2411 | case Hexagon::J2_loop1i: |
| 2412 | case Hexagon::J2_loop1iext: |
| 2413 | case Hexagon::J2_loop1r: |
| 2414 | case Hexagon::J2_loop1rext: |
| 2415 | return isInt<9>(x: offset); |
| 2416 | // TODO: Add all the compound branches here. Can we do this in Relation model? |
| 2417 | case Hexagon::J4_cmpeqi_tp0_jump_nt: |
| 2418 | case Hexagon::J4_cmpeqi_tp1_jump_nt: |
| 2419 | case Hexagon::J4_cmpeqn1_tp0_jump_nt: |
| 2420 | case Hexagon::J4_cmpeqn1_tp1_jump_nt: |
| 2421 | return isInt<11>(x: offset); |
| 2422 | } |
| 2423 | } |
| 2424 | |
| 2425 | bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const { |
| 2426 | // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply |
| 2427 | // resource, but all operands can be received late like an ALU instruction. |
| 2428 | return getType(MI) == HexagonII::TypeCVI_VX_LATE; |
| 2429 | } |
| 2430 | |
| 2431 | bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const { |
| 2432 | unsigned Opcode = MI.getOpcode(); |
| 2433 | return Opcode == Hexagon::J2_loop0i || |
| 2434 | Opcode == Hexagon::J2_loop0r || |
| 2435 | Opcode == Hexagon::J2_loop0iext || |
| 2436 | Opcode == Hexagon::J2_loop0rext || |
| 2437 | Opcode == Hexagon::J2_loop1i || |
| 2438 | Opcode == Hexagon::J2_loop1r || |
| 2439 | Opcode == Hexagon::J2_loop1iext || |
| 2440 | Opcode == Hexagon::J2_loop1rext; |
| 2441 | } |
| 2442 | |
| 2443 | bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const { |
| 2444 | switch (MI.getOpcode()) { |
| 2445 | default: return false; |
| 2446 | case Hexagon::L4_iadd_memopw_io: |
| 2447 | case Hexagon::L4_isub_memopw_io: |
| 2448 | case Hexagon::L4_add_memopw_io: |
| 2449 | case Hexagon::L4_sub_memopw_io: |
| 2450 | case Hexagon::L4_and_memopw_io: |
| 2451 | case Hexagon::L4_or_memopw_io: |
| 2452 | case Hexagon::L4_iadd_memoph_io: |
| 2453 | case Hexagon::L4_isub_memoph_io: |
| 2454 | case Hexagon::L4_add_memoph_io: |
| 2455 | case Hexagon::L4_sub_memoph_io: |
| 2456 | case Hexagon::L4_and_memoph_io: |
| 2457 | case Hexagon::L4_or_memoph_io: |
| 2458 | case Hexagon::L4_iadd_memopb_io: |
| 2459 | case Hexagon::L4_isub_memopb_io: |
| 2460 | case Hexagon::L4_add_memopb_io: |
| 2461 | case Hexagon::L4_sub_memopb_io: |
| 2462 | case Hexagon::L4_and_memopb_io: |
| 2463 | case Hexagon::L4_or_memopb_io: |
| 2464 | case Hexagon::L4_ior_memopb_io: |
| 2465 | case Hexagon::L4_ior_memoph_io: |
| 2466 | case Hexagon::L4_ior_memopw_io: |
| 2467 | case Hexagon::L4_iand_memopb_io: |
| 2468 | case Hexagon::L4_iand_memoph_io: |
| 2469 | case Hexagon::L4_iand_memopw_io: |
| 2470 | return true; |
| 2471 | } |
| 2472 | return false; |
| 2473 | } |
| 2474 | |
| 2475 | bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const { |
| 2476 | const uint64_t F = MI.getDesc().TSFlags; |
| 2477 | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; |
| 2478 | } |
| 2479 | |
| 2480 | bool HexagonInstrInfo::isNewValue(unsigned Opcode) const { |
| 2481 | const uint64_t F = get(Opcode).TSFlags; |
| 2482 | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; |
| 2483 | } |
| 2484 | |
| 2485 | bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const { |
| 2486 | return isNewValueJump(MI) || isNewValueStore(MI); |
| 2487 | } |
| 2488 | |
| 2489 | bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const { |
| 2490 | return isNewValue(MI) && MI.isBranch(); |
| 2491 | } |
| 2492 | |
| 2493 | bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const { |
| 2494 | return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); |
| 2495 | } |
| 2496 | |
| 2497 | bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const { |
| 2498 | const uint64_t F = MI.getDesc().TSFlags; |
| 2499 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; |
| 2500 | } |
| 2501 | |
| 2502 | bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { |
| 2503 | const uint64_t F = get(Opcode).TSFlags; |
| 2504 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; |
| 2505 | } |
| 2506 | |
| 2507 | // Returns true if a particular operand is extendable for an instruction. |
| 2508 | bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI, |
| 2509 | unsigned OperandNum) const { |
| 2510 | const uint64_t F = MI.getDesc().TSFlags; |
| 2511 | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) |
| 2512 | == OperandNum; |
| 2513 | } |
| 2514 | |
| 2515 | bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const { |
| 2516 | const uint64_t F = MI.getDesc().TSFlags; |
| 2517 | assert(isPredicated(MI)); |
| 2518 | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; |
| 2519 | } |
| 2520 | |
| 2521 | bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { |
| 2522 | const uint64_t F = get(Opcode).TSFlags; |
| 2523 | assert(isPredicated(Opcode)); |
| 2524 | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; |
| 2525 | } |
| 2526 | |
| 2527 | bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const { |
| 2528 | const uint64_t F = MI.getDesc().TSFlags; |
| 2529 | return !((F >> HexagonII::PredicatedFalsePos) & |
| 2530 | HexagonII::PredicatedFalseMask); |
| 2531 | } |
| 2532 | |
| 2533 | bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { |
| 2534 | const uint64_t F = get(Opcode).TSFlags; |
| 2535 | // Make sure that the instruction is predicated. |
| 2536 | assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); |
| 2537 | return !((F >> HexagonII::PredicatedFalsePos) & |
| 2538 | HexagonII::PredicatedFalseMask); |
| 2539 | } |
| 2540 | |
| 2541 | bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { |
| 2542 | const uint64_t F = get(Opcode).TSFlags; |
| 2543 | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; |
| 2544 | } |
| 2545 | |
| 2546 | bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const { |
| 2547 | const uint64_t F = get(Opcode).TSFlags; |
| 2548 | return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask; |
| 2549 | } |
| 2550 | |
| 2551 | bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const { |
| 2552 | const uint64_t F = get(Opcode).TSFlags; |
| 2553 | assert(get(Opcode).isBranch() && |
| 2554 | (isPredicatedNew(Opcode) || isNewValue(Opcode))); |
| 2555 | return (F >> HexagonII::TakenPos) & HexagonII::TakenMask; |
| 2556 | } |
| 2557 | |
| 2558 | bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const { |
| 2559 | return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 || |
| 2560 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT || |
| 2561 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC || |
| 2562 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC; |
| 2563 | } |
| 2564 | |
| 2565 | bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const { |
| 2566 | switch (MI.getOpcode()) { |
| 2567 | // Byte |
| 2568 | case Hexagon::L2_loadrb_io: |
| 2569 | case Hexagon::L4_loadrb_ur: |
| 2570 | case Hexagon::L4_loadrb_ap: |
| 2571 | case Hexagon::L2_loadrb_pr: |
| 2572 | case Hexagon::L2_loadrb_pbr: |
| 2573 | case Hexagon::L2_loadrb_pi: |
| 2574 | case Hexagon::L2_loadrb_pci: |
| 2575 | case Hexagon::L2_loadrb_pcr: |
| 2576 | case Hexagon::L2_loadbsw2_io: |
| 2577 | case Hexagon::L4_loadbsw2_ur: |
| 2578 | case Hexagon::L4_loadbsw2_ap: |
| 2579 | case Hexagon::L2_loadbsw2_pr: |
| 2580 | case Hexagon::L2_loadbsw2_pbr: |
| 2581 | case Hexagon::L2_loadbsw2_pi: |
| 2582 | case Hexagon::L2_loadbsw2_pci: |
| 2583 | case Hexagon::L2_loadbsw2_pcr: |
| 2584 | case Hexagon::L2_loadbsw4_io: |
| 2585 | case Hexagon::L4_loadbsw4_ur: |
| 2586 | case Hexagon::L4_loadbsw4_ap: |
| 2587 | case Hexagon::L2_loadbsw4_pr: |
| 2588 | case Hexagon::L2_loadbsw4_pbr: |
| 2589 | case Hexagon::L2_loadbsw4_pi: |
| 2590 | case Hexagon::L2_loadbsw4_pci: |
| 2591 | case Hexagon::L2_loadbsw4_pcr: |
| 2592 | case Hexagon::L4_loadrb_rr: |
| 2593 | case Hexagon::L2_ploadrbt_io: |
| 2594 | case Hexagon::L2_ploadrbt_pi: |
| 2595 | case Hexagon::L2_ploadrbf_io: |
| 2596 | case Hexagon::L2_ploadrbf_pi: |
| 2597 | case Hexagon::L2_ploadrbtnew_io: |
| 2598 | case Hexagon::L2_ploadrbfnew_io: |
| 2599 | case Hexagon::L4_ploadrbt_rr: |
| 2600 | case Hexagon::L4_ploadrbf_rr: |
| 2601 | case Hexagon::L4_ploadrbtnew_rr: |
| 2602 | case Hexagon::L4_ploadrbfnew_rr: |
| 2603 | case Hexagon::L2_ploadrbtnew_pi: |
| 2604 | case Hexagon::L2_ploadrbfnew_pi: |
| 2605 | case Hexagon::L4_ploadrbt_abs: |
| 2606 | case Hexagon::L4_ploadrbf_abs: |
| 2607 | case Hexagon::L4_ploadrbtnew_abs: |
| 2608 | case Hexagon::L4_ploadrbfnew_abs: |
| 2609 | case Hexagon::L2_loadrbgp: |
| 2610 | // Half |
| 2611 | case Hexagon::L2_loadrh_io: |
| 2612 | case Hexagon::L4_loadrh_ur: |
| 2613 | case Hexagon::L4_loadrh_ap: |
| 2614 | case Hexagon::L2_loadrh_pr: |
| 2615 | case Hexagon::L2_loadrh_pbr: |
| 2616 | case Hexagon::L2_loadrh_pi: |
| 2617 | case Hexagon::L2_loadrh_pci: |
| 2618 | case Hexagon::L2_loadrh_pcr: |
| 2619 | case Hexagon::L4_loadrh_rr: |
| 2620 | case Hexagon::L2_ploadrht_io: |
| 2621 | case Hexagon::L2_ploadrht_pi: |
| 2622 | case Hexagon::L2_ploadrhf_io: |
| 2623 | case Hexagon::L2_ploadrhf_pi: |
| 2624 | case Hexagon::L2_ploadrhtnew_io: |
| 2625 | case Hexagon::L2_ploadrhfnew_io: |
| 2626 | case Hexagon::L4_ploadrht_rr: |
| 2627 | case Hexagon::L4_ploadrhf_rr: |
| 2628 | case Hexagon::L4_ploadrhtnew_rr: |
| 2629 | case Hexagon::L4_ploadrhfnew_rr: |
| 2630 | case Hexagon::L2_ploadrhtnew_pi: |
| 2631 | case Hexagon::L2_ploadrhfnew_pi: |
| 2632 | case Hexagon::L4_ploadrht_abs: |
| 2633 | case Hexagon::L4_ploadrhf_abs: |
| 2634 | case Hexagon::L4_ploadrhtnew_abs: |
| 2635 | case Hexagon::L4_ploadrhfnew_abs: |
| 2636 | case Hexagon::L2_loadrhgp: |
| 2637 | return true; |
| 2638 | default: |
| 2639 | return false; |
| 2640 | } |
| 2641 | } |
| 2642 | |
| 2643 | bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const { |
| 2644 | const uint64_t F = MI.getDesc().TSFlags; |
| 2645 | return (F >> HexagonII::SoloPos) & HexagonII::SoloMask; |
| 2646 | } |
| 2647 | |
| 2648 | bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const { |
| 2649 | switch (MI.getOpcode()) { |
| 2650 | case Hexagon::STriw_pred: |
| 2651 | case Hexagon::LDriw_pred: |
| 2652 | return true; |
| 2653 | default: |
| 2654 | return false; |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const { |
| 2659 | if (!MI.isBranch()) |
| 2660 | return false; |
| 2661 | |
| 2662 | for (auto &Op : MI.operands()) |
| 2663 | if (Op.isGlobal() || Op.isSymbol()) |
| 2664 | return true; |
| 2665 | return false; |
| 2666 | } |
| 2667 | |
| 2668 | // Returns true when SU has a timing class TC1. |
| 2669 | bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const { |
| 2670 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
| 2671 | return is_TC1(SchedClass); |
| 2672 | } |
| 2673 | |
| 2674 | bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const { |
| 2675 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
| 2676 | return is_TC2(SchedClass); |
| 2677 | } |
| 2678 | |
| 2679 | bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const { |
| 2680 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
| 2681 | return is_TC2early(SchedClass); |
| 2682 | } |
| 2683 | |
| 2684 | bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const { |
| 2685 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
| 2686 | return is_TC4x(SchedClass); |
| 2687 | } |
| 2688 | |
| 2689 | // Schedule this ASAP. |
| 2690 | bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1, |
| 2691 | const MachineInstr &MI2) const { |
| 2692 | if (mayBeCurLoad(MI: MI1)) { |
| 2693 | // if (result of SU is used in Next) return true; |
| 2694 | Register DstReg = MI1.getOperand(i: 0).getReg(); |
| 2695 | int N = MI2.getNumOperands(); |
| 2696 | for (int I = 0; I < N; I++) |
| 2697 | if (MI2.getOperand(i: I).isReg() && DstReg == MI2.getOperand(i: I).getReg()) |
| 2698 | return true; |
| 2699 | } |
| 2700 | if (mayBeNewStore(MI: MI2)) |
| 2701 | if (MI2.getOpcode() == Hexagon::V6_vS32b_pi) |
| 2702 | if (MI1.getOperand(i: 0).isReg() && MI2.getOperand(i: 3).isReg() && |
| 2703 | MI1.getOperand(i: 0).getReg() == MI2.getOperand(i: 3).getReg()) |
| 2704 | return true; |
| 2705 | return false; |
| 2706 | } |
| 2707 | |
| 2708 | bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const { |
| 2709 | const uint64_t V = getType(MI); |
| 2710 | return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; |
| 2711 | } |
| 2712 | |
| 2713 | // Check if the Offset is a valid auto-inc imm by Load/Store Type. |
| 2714 | bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const { |
| 2715 | int Size = VT.getSizeInBits() / 8; |
| 2716 | if (Offset % Size != 0) |
| 2717 | return false; |
| 2718 | int Count = Offset / Size; |
| 2719 | |
| 2720 | switch (VT.getSimpleVT().SimpleTy) { |
| 2721 | // For scalars the auto-inc is s4 |
| 2722 | case MVT::i8: |
| 2723 | case MVT::i16: |
| 2724 | case MVT::i32: |
| 2725 | case MVT::i64: |
| 2726 | case MVT::f32: |
| 2727 | case MVT::f64: |
| 2728 | case MVT::v2i16: |
| 2729 | case MVT::v2i32: |
| 2730 | case MVT::v4i8: |
| 2731 | case MVT::v4i16: |
| 2732 | case MVT::v8i8: |
| 2733 | return isInt<4>(x: Count); |
| 2734 | // For HVX vectors the auto-inc is s3 |
| 2735 | case MVT::v64i8: |
| 2736 | case MVT::v32i16: |
| 2737 | case MVT::v16i32: |
| 2738 | case MVT::v8i64: |
| 2739 | case MVT::v128i8: |
| 2740 | case MVT::v64i16: |
| 2741 | case MVT::v32i32: |
| 2742 | case MVT::v16i64: |
| 2743 | return isInt<3>(x: Count); |
| 2744 | default: |
| 2745 | break; |
| 2746 | } |
| 2747 | |
| 2748 | llvm_unreachable("Not an valid type!" ); |
| 2749 | } |
| 2750 | |
| 2751 | bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, |
| 2752 | const TargetRegisterInfo *TRI, bool Extend) const { |
| 2753 | // This function is to check whether the "Offset" is in the correct range of |
| 2754 | // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is |
| 2755 | // inserted to calculate the final address. Due to this reason, the function |
| 2756 | // assumes that the "Offset" has correct alignment. |
| 2757 | // We used to assert if the offset was not properly aligned, however, |
| 2758 | // there are cases where a misaligned pointer recast can cause this |
| 2759 | // problem, and we need to allow for it. The front end warns of such |
| 2760 | // misaligns with respect to load size. |
| 2761 | switch (Opcode) { |
| 2762 | case Hexagon::PS_vstorerq_ai: |
| 2763 | case Hexagon::PS_vstorerv_ai: |
| 2764 | case Hexagon::PS_vstorerw_ai: |
| 2765 | case Hexagon::PS_vstorerw_nt_ai: |
| 2766 | case Hexagon::PS_vloadrq_ai: |
| 2767 | case Hexagon::PS_vloadrv_ai: |
| 2768 | case Hexagon::PS_vloadrw_ai: |
| 2769 | case Hexagon::PS_vloadrw_nt_ai: |
| 2770 | case Hexagon::V6_vL32b_ai: |
| 2771 | case Hexagon::V6_vS32b_ai: |
| 2772 | case Hexagon::V6_vS32b_pred_ai: |
| 2773 | case Hexagon::V6_vS32b_npred_ai: |
| 2774 | case Hexagon::V6_vS32b_qpred_ai: |
| 2775 | case Hexagon::V6_vS32b_nqpred_ai: |
| 2776 | case Hexagon::V6_vS32b_new_ai: |
| 2777 | case Hexagon::V6_vS32b_new_pred_ai: |
| 2778 | case Hexagon::V6_vS32b_new_npred_ai: |
| 2779 | case Hexagon::V6_vS32b_nt_pred_ai: |
| 2780 | case Hexagon::V6_vS32b_nt_npred_ai: |
| 2781 | case Hexagon::V6_vS32b_nt_new_ai: |
| 2782 | case Hexagon::V6_vS32b_nt_new_pred_ai: |
| 2783 | case Hexagon::V6_vS32b_nt_new_npred_ai: |
| 2784 | case Hexagon::V6_vS32b_nt_qpred_ai: |
| 2785 | case Hexagon::V6_vS32b_nt_nqpred_ai: |
| 2786 | case Hexagon::V6_vL32b_nt_ai: |
| 2787 | case Hexagon::V6_vS32b_nt_ai: |
| 2788 | case Hexagon::V6_vL32Ub_ai: |
| 2789 | case Hexagon::V6_vS32Ub_ai: |
| 2790 | case Hexagon::V6_vL32b_cur_ai: |
| 2791 | case Hexagon::V6_vL32b_tmp_ai: |
| 2792 | case Hexagon::V6_vL32b_pred_ai: |
| 2793 | case Hexagon::V6_vL32b_npred_ai: |
| 2794 | case Hexagon::V6_vL32b_cur_pred_ai: |
| 2795 | case Hexagon::V6_vL32b_cur_npred_ai: |
| 2796 | case Hexagon::V6_vL32b_tmp_pred_ai: |
| 2797 | case Hexagon::V6_vL32b_tmp_npred_ai: |
| 2798 | case Hexagon::V6_vL32b_nt_cur_ai: |
| 2799 | case Hexagon::V6_vL32b_nt_tmp_ai: |
| 2800 | case Hexagon::V6_vL32b_nt_pred_ai: |
| 2801 | case Hexagon::V6_vL32b_nt_npred_ai: |
| 2802 | case Hexagon::V6_vL32b_nt_cur_pred_ai: |
| 2803 | case Hexagon::V6_vL32b_nt_cur_npred_ai: |
| 2804 | case Hexagon::V6_vL32b_nt_tmp_pred_ai: |
| 2805 | case Hexagon::V6_vL32b_nt_tmp_npred_ai: |
| 2806 | case Hexagon::V6_vgathermh_pseudo: |
| 2807 | case Hexagon::V6_vgathermw_pseudo: |
| 2808 | case Hexagon::V6_vgathermhw_pseudo: |
| 2809 | case Hexagon::V6_vgathermhq_pseudo: |
| 2810 | case Hexagon::V6_vgathermwq_pseudo: |
| 2811 | case Hexagon::V6_vgathermhwq_pseudo: { |
| 2812 | unsigned VectorSize = TRI->getSpillSize(RC: Hexagon::HvxVRRegClass); |
| 2813 | assert(isPowerOf2_32(VectorSize)); |
| 2814 | if (Offset & (VectorSize-1)) |
| 2815 | return false; |
| 2816 | return isInt<4>(x: Offset >> Log2_32(Value: VectorSize)); |
| 2817 | } |
| 2818 | |
| 2819 | case Hexagon::J2_loop0i: |
| 2820 | case Hexagon::J2_loop1i: |
| 2821 | return isUInt<10>(x: Offset); |
| 2822 | |
| 2823 | case Hexagon::S4_storeirb_io: |
| 2824 | case Hexagon::S4_storeirbt_io: |
| 2825 | case Hexagon::S4_storeirbf_io: |
| 2826 | return isUInt<6>(x: Offset); |
| 2827 | |
| 2828 | case Hexagon::S4_storeirh_io: |
| 2829 | case Hexagon::S4_storeirht_io: |
| 2830 | case Hexagon::S4_storeirhf_io: |
| 2831 | return isShiftedUInt<6,1>(x: Offset); |
| 2832 | |
| 2833 | case Hexagon::S4_storeiri_io: |
| 2834 | case Hexagon::S4_storeirit_io: |
| 2835 | case Hexagon::S4_storeirif_io: |
| 2836 | return isShiftedUInt<6,2>(x: Offset); |
| 2837 | // Handle these two compare instructions that are not extendable. |
| 2838 | case Hexagon::A4_cmpbeqi: |
| 2839 | return isUInt<8>(x: Offset); |
| 2840 | case Hexagon::A4_cmpbgti: |
| 2841 | return isInt<8>(x: Offset); |
| 2842 | } |
| 2843 | |
| 2844 | if (Extend) |
| 2845 | return true; |
| 2846 | |
| 2847 | switch (Opcode) { |
| 2848 | case Hexagon::L2_loadri_io: |
| 2849 | case Hexagon::S2_storeri_io: |
| 2850 | return (Offset >= Hexagon_MEMW_OFFSET_MIN) && |
| 2851 | (Offset <= Hexagon_MEMW_OFFSET_MAX); |
| 2852 | |
| 2853 | case Hexagon::L2_loadrd_io: |
| 2854 | case Hexagon::S2_storerd_io: |
| 2855 | return (Offset >= Hexagon_MEMD_OFFSET_MIN) && |
| 2856 | (Offset <= Hexagon_MEMD_OFFSET_MAX); |
| 2857 | |
| 2858 | case Hexagon::L2_loadrh_io: |
| 2859 | case Hexagon::L2_loadruh_io: |
| 2860 | case Hexagon::S2_storerh_io: |
| 2861 | case Hexagon::S2_storerf_io: |
| 2862 | return (Offset >= Hexagon_MEMH_OFFSET_MIN) && |
| 2863 | (Offset <= Hexagon_MEMH_OFFSET_MAX); |
| 2864 | |
| 2865 | case Hexagon::L2_loadrb_io: |
| 2866 | case Hexagon::L2_loadrub_io: |
| 2867 | case Hexagon::S2_storerb_io: |
| 2868 | return (Offset >= Hexagon_MEMB_OFFSET_MIN) && |
| 2869 | (Offset <= Hexagon_MEMB_OFFSET_MAX); |
| 2870 | |
| 2871 | case Hexagon::A2_addi: |
| 2872 | return (Offset >= Hexagon_ADDI_OFFSET_MIN) && |
| 2873 | (Offset <= Hexagon_ADDI_OFFSET_MAX); |
| 2874 | |
| 2875 | case Hexagon::L4_iadd_memopw_io: |
| 2876 | case Hexagon::L4_isub_memopw_io: |
| 2877 | case Hexagon::L4_add_memopw_io: |
| 2878 | case Hexagon::L4_sub_memopw_io: |
| 2879 | case Hexagon::L4_iand_memopw_io: |
| 2880 | case Hexagon::L4_ior_memopw_io: |
| 2881 | case Hexagon::L4_and_memopw_io: |
| 2882 | case Hexagon::L4_or_memopw_io: |
| 2883 | return (0 <= Offset && Offset <= 255); |
| 2884 | |
| 2885 | case Hexagon::L4_iadd_memoph_io: |
| 2886 | case Hexagon::L4_isub_memoph_io: |
| 2887 | case Hexagon::L4_add_memoph_io: |
| 2888 | case Hexagon::L4_sub_memoph_io: |
| 2889 | case Hexagon::L4_iand_memoph_io: |
| 2890 | case Hexagon::L4_ior_memoph_io: |
| 2891 | case Hexagon::L4_and_memoph_io: |
| 2892 | case Hexagon::L4_or_memoph_io: |
| 2893 | return (0 <= Offset && Offset <= 127); |
| 2894 | |
| 2895 | case Hexagon::L4_iadd_memopb_io: |
| 2896 | case Hexagon::L4_isub_memopb_io: |
| 2897 | case Hexagon::L4_add_memopb_io: |
| 2898 | case Hexagon::L4_sub_memopb_io: |
| 2899 | case Hexagon::L4_iand_memopb_io: |
| 2900 | case Hexagon::L4_ior_memopb_io: |
| 2901 | case Hexagon::L4_and_memopb_io: |
| 2902 | case Hexagon::L4_or_memopb_io: |
| 2903 | return (0 <= Offset && Offset <= 63); |
| 2904 | |
| 2905 | // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of |
| 2906 | // any size. Later pass knows how to handle it. |
| 2907 | case Hexagon::STriw_pred: |
| 2908 | case Hexagon::LDriw_pred: |
| 2909 | case Hexagon::STriw_ctr: |
| 2910 | case Hexagon::LDriw_ctr: |
| 2911 | return true; |
| 2912 | |
| 2913 | case Hexagon::PS_fi: |
| 2914 | case Hexagon::PS_fia: |
| 2915 | case Hexagon::INLINEASM: |
| 2916 | return true; |
| 2917 | |
| 2918 | case Hexagon::L2_ploadrbt_io: |
| 2919 | case Hexagon::L2_ploadrbf_io: |
| 2920 | case Hexagon::L2_ploadrubt_io: |
| 2921 | case Hexagon::L2_ploadrubf_io: |
| 2922 | case Hexagon::S2_pstorerbt_io: |
| 2923 | case Hexagon::S2_pstorerbf_io: |
| 2924 | return isUInt<6>(x: Offset); |
| 2925 | |
| 2926 | case Hexagon::L2_ploadrht_io: |
| 2927 | case Hexagon::L2_ploadrhf_io: |
| 2928 | case Hexagon::L2_ploadruht_io: |
| 2929 | case Hexagon::L2_ploadruhf_io: |
| 2930 | case Hexagon::S2_pstorerht_io: |
| 2931 | case Hexagon::S2_pstorerhf_io: |
| 2932 | return isShiftedUInt<6,1>(x: Offset); |
| 2933 | |
| 2934 | case Hexagon::L2_ploadrit_io: |
| 2935 | case Hexagon::L2_ploadrif_io: |
| 2936 | case Hexagon::S2_pstorerit_io: |
| 2937 | case Hexagon::S2_pstorerif_io: |
| 2938 | return isShiftedUInt<6,2>(x: Offset); |
| 2939 | |
| 2940 | case Hexagon::L2_ploadrdt_io: |
| 2941 | case Hexagon::L2_ploadrdf_io: |
| 2942 | case Hexagon::S2_pstorerdt_io: |
| 2943 | case Hexagon::S2_pstorerdf_io: |
| 2944 | return isShiftedUInt<6,3>(x: Offset); |
| 2945 | |
| 2946 | case Hexagon::L2_loadbsw2_io: |
| 2947 | case Hexagon::L2_loadbzw2_io: |
| 2948 | return isShiftedInt<11,1>(x: Offset); |
| 2949 | |
| 2950 | case Hexagon::L2_loadbsw4_io: |
| 2951 | case Hexagon::L2_loadbzw4_io: |
| 2952 | return isShiftedInt<11,2>(x: Offset); |
| 2953 | } // switch |
| 2954 | |
| 2955 | dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode) |
| 2956 | << ")\n" ; |
| 2957 | llvm_unreachable("No offset range is defined for this opcode. " |
| 2958 | "Please define it in the above switch statement!" ); |
| 2959 | } |
| 2960 | |
| 2961 | bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const { |
| 2962 | return isHVXVec(MI) && isAccumulator(MI); |
| 2963 | } |
| 2964 | |
| 2965 | bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const { |
| 2966 | const uint64_t F = get(Opcode: MI.getOpcode()).TSFlags; |
| 2967 | const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask); |
| 2968 | return |
| 2969 | V == HexagonII::TypeCVI_VA || |
| 2970 | V == HexagonII::TypeCVI_VA_DV; |
| 2971 | } |
| 2972 | |
| 2973 | bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI, |
| 2974 | const MachineInstr &ConsMI) const { |
| 2975 | if (EnableACCForwarding && isVecAcc(MI: ProdMI) && isVecAcc(MI: ConsMI)) |
| 2976 | return true; |
| 2977 | |
| 2978 | if (EnableALUForwarding && (isVecALU(MI: ConsMI) || isLateSourceInstr(MI: ConsMI))) |
| 2979 | return true; |
| 2980 | |
| 2981 | if (mayBeNewStore(MI: ConsMI)) |
| 2982 | return true; |
| 2983 | |
| 2984 | return false; |
| 2985 | } |
| 2986 | |
| 2987 | bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const { |
| 2988 | switch (MI.getOpcode()) { |
| 2989 | // Byte |
| 2990 | case Hexagon::L2_loadrub_io: |
| 2991 | case Hexagon::L4_loadrub_ur: |
| 2992 | case Hexagon::L4_loadrub_ap: |
| 2993 | case Hexagon::L2_loadrub_pr: |
| 2994 | case Hexagon::L2_loadrub_pbr: |
| 2995 | case Hexagon::L2_loadrub_pi: |
| 2996 | case Hexagon::L2_loadrub_pci: |
| 2997 | case Hexagon::L2_loadrub_pcr: |
| 2998 | case Hexagon::L2_loadbzw2_io: |
| 2999 | case Hexagon::L4_loadbzw2_ur: |
| 3000 | case Hexagon::L4_loadbzw2_ap: |
| 3001 | case Hexagon::L2_loadbzw2_pr: |
| 3002 | case Hexagon::L2_loadbzw2_pbr: |
| 3003 | case Hexagon::L2_loadbzw2_pi: |
| 3004 | case Hexagon::L2_loadbzw2_pci: |
| 3005 | case Hexagon::L2_loadbzw2_pcr: |
| 3006 | case Hexagon::L2_loadbzw4_io: |
| 3007 | case Hexagon::L4_loadbzw4_ur: |
| 3008 | case Hexagon::L4_loadbzw4_ap: |
| 3009 | case Hexagon::L2_loadbzw4_pr: |
| 3010 | case Hexagon::L2_loadbzw4_pbr: |
| 3011 | case Hexagon::L2_loadbzw4_pi: |
| 3012 | case Hexagon::L2_loadbzw4_pci: |
| 3013 | case Hexagon::L2_loadbzw4_pcr: |
| 3014 | case Hexagon::L4_loadrub_rr: |
| 3015 | case Hexagon::L2_ploadrubt_io: |
| 3016 | case Hexagon::L2_ploadrubt_pi: |
| 3017 | case Hexagon::L2_ploadrubf_io: |
| 3018 | case Hexagon::L2_ploadrubf_pi: |
| 3019 | case Hexagon::L2_ploadrubtnew_io: |
| 3020 | case Hexagon::L2_ploadrubfnew_io: |
| 3021 | case Hexagon::L4_ploadrubt_rr: |
| 3022 | case Hexagon::L4_ploadrubf_rr: |
| 3023 | case Hexagon::L4_ploadrubtnew_rr: |
| 3024 | case Hexagon::L4_ploadrubfnew_rr: |
| 3025 | case Hexagon::L2_ploadrubtnew_pi: |
| 3026 | case Hexagon::L2_ploadrubfnew_pi: |
| 3027 | case Hexagon::L4_ploadrubt_abs: |
| 3028 | case Hexagon::L4_ploadrubf_abs: |
| 3029 | case Hexagon::L4_ploadrubtnew_abs: |
| 3030 | case Hexagon::L4_ploadrubfnew_abs: |
| 3031 | case Hexagon::L2_loadrubgp: |
| 3032 | // Half |
| 3033 | case Hexagon::L2_loadruh_io: |
| 3034 | case Hexagon::L4_loadruh_ur: |
| 3035 | case Hexagon::L4_loadruh_ap: |
| 3036 | case Hexagon::L2_loadruh_pr: |
| 3037 | case Hexagon::L2_loadruh_pbr: |
| 3038 | case Hexagon::L2_loadruh_pi: |
| 3039 | case Hexagon::L2_loadruh_pci: |
| 3040 | case Hexagon::L2_loadruh_pcr: |
| 3041 | case Hexagon::L4_loadruh_rr: |
| 3042 | case Hexagon::L2_ploadruht_io: |
| 3043 | case Hexagon::L2_ploadruht_pi: |
| 3044 | case Hexagon::L2_ploadruhf_io: |
| 3045 | case Hexagon::L2_ploadruhf_pi: |
| 3046 | case Hexagon::L2_ploadruhtnew_io: |
| 3047 | case Hexagon::L2_ploadruhfnew_io: |
| 3048 | case Hexagon::L4_ploadruht_rr: |
| 3049 | case Hexagon::L4_ploadruhf_rr: |
| 3050 | case Hexagon::L4_ploadruhtnew_rr: |
| 3051 | case Hexagon::L4_ploadruhfnew_rr: |
| 3052 | case Hexagon::L2_ploadruhtnew_pi: |
| 3053 | case Hexagon::L2_ploadruhfnew_pi: |
| 3054 | case Hexagon::L4_ploadruht_abs: |
| 3055 | case Hexagon::L4_ploadruhf_abs: |
| 3056 | case Hexagon::L4_ploadruhtnew_abs: |
| 3057 | case Hexagon::L4_ploadruhfnew_abs: |
| 3058 | case Hexagon::L2_loadruhgp: |
| 3059 | return true; |
| 3060 | default: |
| 3061 | return false; |
| 3062 | } |
| 3063 | } |
| 3064 | |
| 3065 | // Add latency to instruction. |
| 3066 | bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1, |
| 3067 | const MachineInstr &MI2) const { |
| 3068 | if (isHVXVec(MI: MI1) && isHVXVec(MI: MI2)) |
| 3069 | if (!isVecUsableNextPacket(ProdMI: MI1, ConsMI: MI2)) |
| 3070 | return true; |
| 3071 | return false; |
| 3072 | } |
| 3073 | |
| 3074 | /// Get the base register and byte offset of a load/store instr. |
| 3075 | bool HexagonInstrInfo::getMemOperandsWithOffsetWidth( |
| 3076 | const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, |
| 3077 | int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, |
| 3078 | const TargetRegisterInfo *TRI) const { |
| 3079 | OffsetIsScalable = false; |
| 3080 | const MachineOperand *BaseOp = getBaseAndOffset(MI: LdSt, Offset, AccessSize&: Width); |
| 3081 | if (!BaseOp || !BaseOp->isReg()) |
| 3082 | return false; |
| 3083 | BaseOps.push_back(Elt: BaseOp); |
| 3084 | return true; |
| 3085 | } |
| 3086 | |
| 3087 | /// Can these instructions execute at the same time in a bundle. |
| 3088 | bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First, |
| 3089 | const MachineInstr &Second) const { |
| 3090 | if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) { |
| 3091 | const MachineOperand &Op = Second.getOperand(i: 0); |
| 3092 | if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29) |
| 3093 | return true; |
| 3094 | } |
| 3095 | if (DisableNVSchedule) |
| 3096 | return false; |
| 3097 | if (mayBeNewStore(MI: Second)) { |
| 3098 | // Make sure the definition of the first instruction is the value being |
| 3099 | // stored. |
| 3100 | const MachineOperand &Stored = |
| 3101 | Second.getOperand(i: Second.getNumOperands() - 1); |
| 3102 | if (!Stored.isReg()) |
| 3103 | return false; |
| 3104 | for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) { |
| 3105 | const MachineOperand &Op = First.getOperand(i); |
| 3106 | if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg()) |
| 3107 | return true; |
| 3108 | } |
| 3109 | } |
| 3110 | return false; |
| 3111 | } |
| 3112 | |
| 3113 | bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const { |
| 3114 | unsigned Opc = CallMI.getOpcode(); |
| 3115 | return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr; |
| 3116 | } |
| 3117 | |
| 3118 | bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const { |
| 3119 | for (auto &I : *B) |
| 3120 | if (I.isEHLabel()) |
| 3121 | return true; |
| 3122 | return false; |
| 3123 | } |
| 3124 | |
| 3125 | // Returns true if an instruction can be converted into a non-extended |
| 3126 | // equivalent instruction. |
| 3127 | bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const { |
| 3128 | short NonExtOpcode; |
| 3129 | // Check if the instruction has a register form that uses register in place |
| 3130 | // of the extended operand, if so return that as the non-extended form. |
| 3131 | if (Hexagon::getRegForm(Opcode: MI.getOpcode()) >= 0) |
| 3132 | return true; |
| 3133 | |
| 3134 | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { |
| 3135 | // Check addressing mode and retrieve non-ext equivalent instruction. |
| 3136 | |
| 3137 | switch (getAddrMode(MI)) { |
| 3138 | case HexagonII::Absolute: |
| 3139 | // Load/store with absolute addressing mode can be converted into |
| 3140 | // base+offset mode. |
| 3141 | NonExtOpcode = Hexagon::changeAddrMode_abs_io(Opcode: MI.getOpcode()); |
| 3142 | break; |
| 3143 | case HexagonII::BaseImmOffset: |
| 3144 | // Load/store with base+offset addressing mode can be converted into |
| 3145 | // base+register offset addressing mode. However left shift operand should |
| 3146 | // be set to 0. |
| 3147 | NonExtOpcode = Hexagon::changeAddrMode_io_rr(Opcode: MI.getOpcode()); |
| 3148 | break; |
| 3149 | case HexagonII::BaseLongOffset: |
| 3150 | NonExtOpcode = Hexagon::changeAddrMode_ur_rr(Opcode: MI.getOpcode()); |
| 3151 | break; |
| 3152 | default: |
| 3153 | return false; |
| 3154 | } |
| 3155 | if (NonExtOpcode < 0) |
| 3156 | return false; |
| 3157 | return true; |
| 3158 | } |
| 3159 | return false; |
| 3160 | } |
| 3161 | |
| 3162 | bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const { |
| 3163 | return Hexagon::getRealHWInstr(Opcode: MI.getOpcode(), |
| 3164 | inInstrType: Hexagon::InstrType_Pseudo) >= 0; |
| 3165 | } |
| 3166 | |
| 3167 | bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B) |
| 3168 | const { |
| 3169 | MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); |
| 3170 | while (I != E) { |
| 3171 | if (I->isBarrier()) |
| 3172 | return true; |
| 3173 | ++I; |
| 3174 | } |
| 3175 | return false; |
| 3176 | } |
| 3177 | |
| 3178 | // Returns true, if a LD insn can be promoted to a cur load. |
| 3179 | bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const { |
| 3180 | const uint64_t F = MI.getDesc().TSFlags; |
| 3181 | return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) && |
| 3182 | Subtarget.hasV60Ops(); |
| 3183 | } |
| 3184 | |
| 3185 | // Returns true, if a ST insn can be promoted to a new-value store. |
| 3186 | bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const { |
| 3187 | if (MI.mayStore() && !Subtarget.useNewValueStores()) |
| 3188 | return false; |
| 3189 | |
| 3190 | const uint64_t F = MI.getDesc().TSFlags; |
| 3191 | return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask; |
| 3192 | } |
| 3193 | |
| 3194 | bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI, |
| 3195 | const MachineInstr &ConsMI) const { |
| 3196 | // There is no stall when ProdMI is not a V60 vector. |
| 3197 | if (!isHVXVec(MI: ProdMI)) |
| 3198 | return false; |
| 3199 | |
| 3200 | // There is no stall when ProdMI and ConsMI are not dependent. |
| 3201 | if (!isDependent(ProdMI, ConsMI)) |
| 3202 | return false; |
| 3203 | |
| 3204 | // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI |
| 3205 | // are scheduled in consecutive packets. |
| 3206 | if (isVecUsableNextPacket(ProdMI, ConsMI)) |
| 3207 | return false; |
| 3208 | |
| 3209 | return true; |
| 3210 | } |
| 3211 | |
| 3212 | bool HexagonInstrInfo::producesStall(const MachineInstr &MI, |
| 3213 | MachineBasicBlock::const_instr_iterator BII) const { |
| 3214 | // There is no stall when I is not a V60 vector. |
| 3215 | if (!isHVXVec(MI)) |
| 3216 | return false; |
| 3217 | |
| 3218 | MachineBasicBlock::const_instr_iterator MII = BII; |
| 3219 | MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end(); |
| 3220 | |
| 3221 | if (!MII->isBundle()) |
| 3222 | return producesStall(ProdMI: *MII, ConsMI: MI); |
| 3223 | |
| 3224 | for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) { |
| 3225 | const MachineInstr &J = *MII; |
| 3226 | if (producesStall(ProdMI: J, ConsMI: MI)) |
| 3227 | return true; |
| 3228 | } |
| 3229 | return false; |
| 3230 | } |
| 3231 | |
| 3232 | bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI, |
| 3233 | Register PredReg) const { |
| 3234 | for (const MachineOperand &MO : MI.operands()) { |
| 3235 | // Predicate register must be explicitly defined. |
| 3236 | if (MO.isRegMask() && MO.clobbersPhysReg(PhysReg: PredReg)) |
| 3237 | return false; |
| 3238 | if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg)) |
| 3239 | return false; |
| 3240 | } |
| 3241 | |
| 3242 | // Instruction that produce late predicate cannot be used as sources of |
| 3243 | // dot-new. |
| 3244 | switch (MI.getOpcode()) { |
| 3245 | case Hexagon::A4_addp_c: |
| 3246 | case Hexagon::A4_subp_c: |
| 3247 | case Hexagon::A4_tlbmatch: |
| 3248 | case Hexagon::A5_ACS: |
| 3249 | case Hexagon::F2_sfinvsqrta: |
| 3250 | case Hexagon::F2_sfrecipa: |
| 3251 | case Hexagon::J2_endloop0: |
| 3252 | case Hexagon::J2_endloop01: |
| 3253 | case Hexagon::J2_ploop1si: |
| 3254 | case Hexagon::J2_ploop1sr: |
| 3255 | case Hexagon::J2_ploop2si: |
| 3256 | case Hexagon::J2_ploop2sr: |
| 3257 | case Hexagon::J2_ploop3si: |
| 3258 | case Hexagon::J2_ploop3sr: |
| 3259 | case Hexagon::S2_cabacdecbin: |
| 3260 | case Hexagon::S2_storew_locked: |
| 3261 | case Hexagon::S4_stored_locked: |
| 3262 | return false; |
| 3263 | } |
| 3264 | return true; |
| 3265 | } |
| 3266 | |
| 3267 | bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const { |
| 3268 | return Opcode == Hexagon::J2_jumpt || |
| 3269 | Opcode == Hexagon::J2_jumptpt || |
| 3270 | Opcode == Hexagon::J2_jumpf || |
| 3271 | Opcode == Hexagon::J2_jumpfpt || |
| 3272 | Opcode == Hexagon::J2_jumptnew || |
| 3273 | Opcode == Hexagon::J2_jumpfnew || |
| 3274 | Opcode == Hexagon::J2_jumptnewpt || |
| 3275 | Opcode == Hexagon::J2_jumpfnewpt; |
| 3276 | } |
| 3277 | |
| 3278 | bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const { |
| 3279 | if (Cond.empty() || !isPredicated(Opcode: Cond[0].getImm())) |
| 3280 | return false; |
| 3281 | return !isPredicatedTrue(Opcode: Cond[0].getImm()); |
| 3282 | } |
| 3283 | |
| 3284 | unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const { |
| 3285 | const uint64_t F = MI.getDesc().TSFlags; |
| 3286 | return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; |
| 3287 | } |
| 3288 | |
| 3289 | // Returns the base register in a memory access (load/store). The offset is |
| 3290 | // returned in Offset and the access size is returned in AccessSize. |
| 3291 | // If the base operand has a subregister or the offset field does not contain |
| 3292 | // an immediate value, return nullptr. |
| 3293 | MachineOperand * |
| 3294 | HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, |
| 3295 | LocationSize &AccessSize) const { |
| 3296 | // Return if it is not a base+offset type instruction or a MemOp. |
| 3297 | if (getAddrMode(MI) != HexagonII::BaseImmOffset && |
| 3298 | getAddrMode(MI) != HexagonII::BaseLongOffset && !isMemOp(MI) && |
| 3299 | !isPostIncrement(MI)) |
| 3300 | return nullptr; |
| 3301 | |
| 3302 | AccessSize = LocationSize::precise(Value: getMemAccessSize(MI)); |
| 3303 | |
| 3304 | unsigned BasePos = 0, OffsetPos = 0; |
| 3305 | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) |
| 3306 | return nullptr; |
| 3307 | |
| 3308 | // Post increment updates its EA after the mem access, |
| 3309 | // so we need to treat its offset as zero. |
| 3310 | if (isPostIncrement(MI)) { |
| 3311 | Offset = 0; |
| 3312 | } else { |
| 3313 | const MachineOperand &OffsetOp = MI.getOperand(i: OffsetPos); |
| 3314 | if (!OffsetOp.isImm()) |
| 3315 | return nullptr; |
| 3316 | Offset = OffsetOp.getImm(); |
| 3317 | } |
| 3318 | |
| 3319 | const MachineOperand &BaseOp = MI.getOperand(i: BasePos); |
| 3320 | if (BaseOp.getSubReg() != 0) |
| 3321 | return nullptr; |
| 3322 | return &const_cast<MachineOperand&>(BaseOp); |
| 3323 | } |
| 3324 | |
| 3325 | /// Return the position of the base and offset operands for this instruction. |
| 3326 | bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI, |
| 3327 | unsigned &BasePos, unsigned &OffsetPos) const { |
| 3328 | if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI)) |
| 3329 | return false; |
| 3330 | |
| 3331 | // Deal with memops first. |
| 3332 | if (isMemOp(MI)) { |
| 3333 | BasePos = 0; |
| 3334 | OffsetPos = 1; |
| 3335 | } else if (MI.mayStore()) { |
| 3336 | BasePos = 0; |
| 3337 | OffsetPos = 1; |
| 3338 | } else if (MI.mayLoad()) { |
| 3339 | BasePos = 1; |
| 3340 | OffsetPos = 2; |
| 3341 | } else |
| 3342 | return false; |
| 3343 | |
| 3344 | if (isPredicated(MI)) { |
| 3345 | BasePos++; |
| 3346 | OffsetPos++; |
| 3347 | } |
| 3348 | if (isPostIncrement(MI)) { |
| 3349 | BasePos++; |
| 3350 | OffsetPos++; |
| 3351 | } |
| 3352 | |
| 3353 | if (!MI.getOperand(i: BasePos).isReg() || !MI.getOperand(i: OffsetPos).isImm()) |
| 3354 | return false; |
| 3355 | |
| 3356 | return true; |
| 3357 | } |
| 3358 | |
| 3359 | // Inserts branching instructions in reverse order of their occurrence. |
| 3360 | // e.g. jump_t t1 (i1) |
| 3361 | // jump t2 (i2) |
| 3362 | // Jumpers = {i2, i1} |
| 3363 | SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs( |
| 3364 | MachineBasicBlock& MBB) const { |
| 3365 | SmallVector<MachineInstr*, 2> Jumpers; |
| 3366 | // If the block has no terminators, it just falls into the block after it. |
| 3367 | MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
| 3368 | if (I == MBB.instr_begin()) |
| 3369 | return Jumpers; |
| 3370 | |
| 3371 | // A basic block may looks like this: |
| 3372 | // |
| 3373 | // [ insn |
| 3374 | // EH_LABEL |
| 3375 | // insn |
| 3376 | // insn |
| 3377 | // insn |
| 3378 | // EH_LABEL |
| 3379 | // insn ] |
| 3380 | // |
| 3381 | // It has two succs but does not have a terminator |
| 3382 | // Don't know how to handle it. |
| 3383 | do { |
| 3384 | --I; |
| 3385 | if (I->isEHLabel()) |
| 3386 | return Jumpers; |
| 3387 | } while (I != MBB.instr_begin()); |
| 3388 | |
| 3389 | I = MBB.instr_end(); |
| 3390 | --I; |
| 3391 | |
| 3392 | while (I->isDebugInstr()) { |
| 3393 | if (I == MBB.instr_begin()) |
| 3394 | return Jumpers; |
| 3395 | --I; |
| 3396 | } |
| 3397 | if (!isUnpredicatedTerminator(MI: *I)) |
| 3398 | return Jumpers; |
| 3399 | |
| 3400 | // Get the last instruction in the block. |
| 3401 | MachineInstr *LastInst = &*I; |
| 3402 | Jumpers.push_back(Elt: LastInst); |
| 3403 | MachineInstr *SecondLastInst = nullptr; |
| 3404 | // Find one more terminator if present. |
| 3405 | do { |
| 3406 | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(MI: *I)) { |
| 3407 | if (!SecondLastInst) { |
| 3408 | SecondLastInst = &*I; |
| 3409 | Jumpers.push_back(Elt: SecondLastInst); |
| 3410 | } else // This is a third branch. |
| 3411 | return Jumpers; |
| 3412 | } |
| 3413 | if (I == MBB.instr_begin()) |
| 3414 | break; |
| 3415 | --I; |
| 3416 | } while (true); |
| 3417 | return Jumpers; |
| 3418 | } |
| 3419 | |
| 3420 | // Returns Operand Index for the constant extended instruction. |
| 3421 | unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const { |
| 3422 | const uint64_t F = MI.getDesc().TSFlags; |
| 3423 | return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask; |
| 3424 | } |
| 3425 | |
| 3426 | // See if instruction could potentially be a duplex candidate. |
| 3427 | // If so, return its group. Zero otherwise. |
| 3428 | HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup( |
| 3429 | const MachineInstr &MI) const { |
| 3430 | Register DstReg, SrcReg, Src1Reg, Src2Reg; |
| 3431 | |
| 3432 | switch (MI.getOpcode()) { |
| 3433 | default: |
| 3434 | return HexagonII::HCG_None; |
| 3435 | // |
| 3436 | // Compound pairs. |
| 3437 | // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2" |
| 3438 | // "Rd16=#U6 ; jump #r9:2" |
| 3439 | // "Rd16=Rs16 ; jump #r9:2" |
| 3440 | // |
| 3441 | case Hexagon::C2_cmpeq: |
| 3442 | case Hexagon::C2_cmpgt: |
| 3443 | case Hexagon::C2_cmpgtu: |
| 3444 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3445 | Src1Reg = MI.getOperand(i: 1).getReg(); |
| 3446 | Src2Reg = MI.getOperand(i: 2).getReg(); |
| 3447 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
| 3448 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && |
| 3449 | isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg)) |
| 3450 | return HexagonII::HCG_A; |
| 3451 | break; |
| 3452 | case Hexagon::C2_cmpeqi: |
| 3453 | case Hexagon::C2_cmpgti: |
| 3454 | case Hexagon::C2_cmpgtui: |
| 3455 | // P0 = cmp.eq(Rs,#u2) |
| 3456 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3457 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 3458 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
| 3459 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && |
| 3460 | isIntRegForSubInst(Reg: SrcReg) && MI.getOperand(i: 2).isImm() && |
| 3461 | ((isUInt<5>(x: MI.getOperand(i: 2).getImm())) || |
| 3462 | (MI.getOperand(i: 2).getImm() == -1))) |
| 3463 | return HexagonII::HCG_A; |
| 3464 | break; |
| 3465 | case Hexagon::A2_tfr: |
| 3466 | // Rd = Rs |
| 3467 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3468 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 3469 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg)) |
| 3470 | return HexagonII::HCG_A; |
| 3471 | break; |
| 3472 | case Hexagon::A2_tfrsi: |
| 3473 | // Rd = #u6 |
| 3474 | // Do not test for #u6 size since the const is getting extended |
| 3475 | // regardless and compound could be formed. |
| 3476 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3477 | if (isIntRegForSubInst(Reg: DstReg)) |
| 3478 | return HexagonII::HCG_A; |
| 3479 | break; |
| 3480 | case Hexagon::S2_tstbit_i: |
| 3481 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3482 | Src1Reg = MI.getOperand(i: 1).getReg(); |
| 3483 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
| 3484 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && |
| 3485 | MI.getOperand(i: 2).isImm() && |
| 3486 | isIntRegForSubInst(Reg: Src1Reg) && (MI.getOperand(i: 2).getImm() == 0)) |
| 3487 | return HexagonII::HCG_A; |
| 3488 | break; |
| 3489 | // The fact that .new form is used pretty much guarantees |
| 3490 | // that predicate register will match. Nevertheless, |
| 3491 | // there could be some false positives without additional |
| 3492 | // checking. |
| 3493 | case Hexagon::J2_jumptnew: |
| 3494 | case Hexagon::J2_jumpfnew: |
| 3495 | case Hexagon::J2_jumptnewpt: |
| 3496 | case Hexagon::J2_jumpfnewpt: |
| 3497 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 3498 | if (Hexagon::PredRegsRegClass.contains(Reg: Src1Reg) && |
| 3499 | (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg)) |
| 3500 | return HexagonII::HCG_B; |
| 3501 | break; |
| 3502 | // Transfer and jump: |
| 3503 | // Rd=#U6 ; jump #r9:2 |
| 3504 | // Rd=Rs ; jump #r9:2 |
| 3505 | // Do not test for jump range here. |
| 3506 | case Hexagon::J2_jump: |
| 3507 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: |
| 3508 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: |
| 3509 | return HexagonII::HCG_C; |
| 3510 | } |
| 3511 | |
| 3512 | return HexagonII::HCG_None; |
| 3513 | } |
| 3514 | |
| 3515 | // Returns -1 when there is no opcode found. |
| 3516 | unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA, |
| 3517 | const MachineInstr &GB) const { |
| 3518 | assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A); |
| 3519 | assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B); |
| 3520 | if ((GA.getOpcode() != Hexagon::C2_cmpeqi) || |
| 3521 | (GB.getOpcode() != Hexagon::J2_jumptnew)) |
| 3522 | return -1u; |
| 3523 | Register DestReg = GA.getOperand(i: 0).getReg(); |
| 3524 | if (!GB.readsRegister(Reg: DestReg, /*TRI=*/nullptr)) |
| 3525 | return -1u; |
| 3526 | if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1) |
| 3527 | return -1u; |
| 3528 | // The value compared against must be either u5 or -1. |
| 3529 | const MachineOperand &CmpOp = GA.getOperand(i: 2); |
| 3530 | if (!CmpOp.isImm()) |
| 3531 | return -1u; |
| 3532 | int V = CmpOp.getImm(); |
| 3533 | if (V == -1) |
| 3534 | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt |
| 3535 | : Hexagon::J4_cmpeqn1_tp1_jump_nt; |
| 3536 | if (!isUInt<5>(x: V)) |
| 3537 | return -1u; |
| 3538 | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt |
| 3539 | : Hexagon::J4_cmpeqi_tp1_jump_nt; |
| 3540 | } |
| 3541 | |
| 3542 | // Returns -1 if there is no opcode found. |
| 3543 | int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI, |
| 3544 | bool ForBigCore) const { |
| 3545 | // Static table to switch the opcodes across Tiny Core and Big Core. |
| 3546 | // dup_ opcodes are Big core opcodes. |
| 3547 | // NOTE: There are special instructions that need to handled later. |
| 3548 | // L4_return* instructions, they will only occupy SLOT0 (on big core too). |
| 3549 | // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2. |
| 3550 | // The compiler need to base the root instruction to L6_return_map_to_raw |
| 3551 | // which can go any slot. |
| 3552 | static const std::map<unsigned, unsigned> DupMap = { |
| 3553 | {Hexagon::A2_add, Hexagon::dup_A2_add}, |
| 3554 | {Hexagon::A2_addi, Hexagon::dup_A2_addi}, |
| 3555 | {Hexagon::A2_andir, Hexagon::dup_A2_andir}, |
| 3556 | {Hexagon::A2_combineii, Hexagon::dup_A2_combineii}, |
| 3557 | {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb}, |
| 3558 | {Hexagon::A2_sxth, Hexagon::dup_A2_sxth}, |
| 3559 | {Hexagon::A2_tfr, Hexagon::dup_A2_tfr}, |
| 3560 | {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi}, |
| 3561 | {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb}, |
| 3562 | {Hexagon::A2_zxth, Hexagon::dup_A2_zxth}, |
| 3563 | {Hexagon::A4_combineii, Hexagon::dup_A4_combineii}, |
| 3564 | {Hexagon::A4_combineir, Hexagon::dup_A4_combineir}, |
| 3565 | {Hexagon::A4_combineri, Hexagon::dup_A4_combineri}, |
| 3566 | {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif}, |
| 3567 | {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit}, |
| 3568 | {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif}, |
| 3569 | {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit}, |
| 3570 | {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi}, |
| 3571 | {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe}, |
| 3572 | {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io}, |
| 3573 | {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io}, |
| 3574 | {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io}, |
| 3575 | {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io}, |
| 3576 | {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io}, |
| 3577 | {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io}, |
| 3578 | {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe}, |
| 3579 | {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io}, |
| 3580 | {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io}, |
| 3581 | {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io}, |
| 3582 | {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io}, |
| 3583 | {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io}, |
| 3584 | {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io}, |
| 3585 | }; |
| 3586 | unsigned OpNum = MI.getOpcode(); |
| 3587 | // Conversion to Big core. |
| 3588 | if (ForBigCore) { |
| 3589 | auto Iter = DupMap.find(x: OpNum); |
| 3590 | if (Iter != DupMap.end()) |
| 3591 | return Iter->second; |
| 3592 | } else { // Conversion to Tiny core. |
| 3593 | for (const auto &Iter : DupMap) |
| 3594 | if (Iter.second == OpNum) |
| 3595 | return Iter.first; |
| 3596 | } |
| 3597 | return -1; |
| 3598 | } |
| 3599 | |
| 3600 | int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { |
| 3601 | enum Hexagon::PredSense inPredSense; |
| 3602 | inPredSense = invertPredicate ? Hexagon::PredSense_false : |
| 3603 | Hexagon::PredSense_true; |
| 3604 | int CondOpcode = Hexagon::getPredOpcode(Opcode: Opc, inPredSense); |
| 3605 | if (CondOpcode >= 0) // Valid Conditional opcode/instruction |
| 3606 | return CondOpcode; |
| 3607 | |
| 3608 | llvm_unreachable("Unexpected predicable instruction" ); |
| 3609 | } |
| 3610 | |
| 3611 | // Return the cur value instruction for a given store. |
| 3612 | int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const { |
| 3613 | switch (MI.getOpcode()) { |
| 3614 | default: llvm_unreachable("Unknown .cur type" ); |
| 3615 | case Hexagon::V6_vL32b_pi: |
| 3616 | return Hexagon::V6_vL32b_cur_pi; |
| 3617 | case Hexagon::V6_vL32b_ai: |
| 3618 | return Hexagon::V6_vL32b_cur_ai; |
| 3619 | case Hexagon::V6_vL32b_nt_pi: |
| 3620 | return Hexagon::V6_vL32b_nt_cur_pi; |
| 3621 | case Hexagon::V6_vL32b_nt_ai: |
| 3622 | return Hexagon::V6_vL32b_nt_cur_ai; |
| 3623 | case Hexagon::V6_vL32b_ppu: |
| 3624 | return Hexagon::V6_vL32b_cur_ppu; |
| 3625 | case Hexagon::V6_vL32b_nt_ppu: |
| 3626 | return Hexagon::V6_vL32b_nt_cur_ppu; |
| 3627 | } |
| 3628 | return 0; |
| 3629 | } |
| 3630 | |
| 3631 | // Return the regular version of the .cur instruction. |
| 3632 | int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const { |
| 3633 | switch (MI.getOpcode()) { |
| 3634 | default: llvm_unreachable("Unknown .cur type" ); |
| 3635 | case Hexagon::V6_vL32b_cur_pi: |
| 3636 | return Hexagon::V6_vL32b_pi; |
| 3637 | case Hexagon::V6_vL32b_cur_ai: |
| 3638 | return Hexagon::V6_vL32b_ai; |
| 3639 | case Hexagon::V6_vL32b_nt_cur_pi: |
| 3640 | return Hexagon::V6_vL32b_nt_pi; |
| 3641 | case Hexagon::V6_vL32b_nt_cur_ai: |
| 3642 | return Hexagon::V6_vL32b_nt_ai; |
| 3643 | case Hexagon::V6_vL32b_cur_ppu: |
| 3644 | return Hexagon::V6_vL32b_ppu; |
| 3645 | case Hexagon::V6_vL32b_nt_cur_ppu: |
| 3646 | return Hexagon::V6_vL32b_nt_ppu; |
| 3647 | } |
| 3648 | return 0; |
| 3649 | } |
| 3650 | |
| 3651 | // The diagram below shows the steps involved in the conversion of a predicated |
| 3652 | // store instruction to its .new predicated new-value form. |
| 3653 | // |
| 3654 | // Note: It doesn't include conditional new-value stores as they can't be |
| 3655 | // converted to .new predicate. |
| 3656 | // |
| 3657 | // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] |
| 3658 | // ^ ^ |
| 3659 | // / \ (not OK. it will cause new-value store to be |
| 3660 | // / X conditional on p0.new while R2 producer is |
| 3661 | // / \ on p0) |
| 3662 | // / \. |
| 3663 | // p.new store p.old NV store |
| 3664 | // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] |
| 3665 | // ^ ^ |
| 3666 | // \ / |
| 3667 | // \ / |
| 3668 | // \ / |
| 3669 | // p.old store |
| 3670 | // [if (p0)memw(R0+#0)=R2] |
| 3671 | // |
| 3672 | // The following set of instructions further explains the scenario where |
| 3673 | // conditional new-value store becomes invalid when promoted to .new predicate |
| 3674 | // form. |
| 3675 | // |
| 3676 | // { 1) if (p0) r0 = add(r1, r2) |
| 3677 | // 2) p0 = cmp.eq(r3, #0) } |
| 3678 | // |
| 3679 | // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with |
| 3680 | // the first two instructions because in instr 1, r0 is conditional on old value |
| 3681 | // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which |
| 3682 | // is not valid for new-value stores. |
| 3683 | // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded |
| 3684 | // from the "Conditional Store" list. Because a predicated new value store |
| 3685 | // would NOT be promoted to a double dot new store. See diagram below: |
| 3686 | // This function returns yes for those stores that are predicated but not |
| 3687 | // yet promoted to predicate dot new instructions. |
| 3688 | // |
| 3689 | // +---------------------+ |
| 3690 | // /-----| if (p0) memw(..)=r0 |---------\~ |
| 3691 | // || +---------------------+ || |
| 3692 | // promote || /\ /\ || promote |
| 3693 | // || /||\ /||\ || |
| 3694 | // \||/ demote || \||/ |
| 3695 | // \/ || || \/ |
| 3696 | // +-------------------------+ || +-------------------------+ |
| 3697 | // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | |
| 3698 | // +-------------------------+ || +-------------------------+ |
| 3699 | // || || || |
| 3700 | // || demote \||/ |
| 3701 | // promote || \/ NOT possible |
| 3702 | // || || /\~ |
| 3703 | // \||/ || /||\~ |
| 3704 | // \/ || || |
| 3705 | // +-----------------------------+ |
| 3706 | // | if (p0.new) memw(..)=r0.new | |
| 3707 | // +-----------------------------+ |
| 3708 | // Double Dot New Store |
| 3709 | // |
| 3710 | // Returns the most basic instruction for the .new predicated instructions and |
| 3711 | // new-value stores. |
| 3712 | // For example, all of the following instructions will be converted back to the |
| 3713 | // same instruction: |
| 3714 | // 1) if (p0.new) memw(R0+#0) = R1.new ---> |
| 3715 | // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 |
| 3716 | // 3) if (p0.new) memw(R0+#0) = R1 ---> |
| 3717 | // |
| 3718 | // To understand the translation of instruction 1 to its original form, consider |
| 3719 | // a packet with 3 instructions. |
| 3720 | // { p0 = cmp.eq(R0,R1) |
| 3721 | // if (p0.new) R2 = add(R3, R4) |
| 3722 | // R5 = add (R3, R1) |
| 3723 | // } |
| 3724 | // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet |
| 3725 | // |
| 3726 | // This instruction can be part of the previous packet only if both p0 and R2 |
| 3727 | // are promoted to .new values. This promotion happens in steps, first |
| 3728 | // predicate register is promoted to .new and in the next iteration R2 is |
| 3729 | // promoted. Therefore, in case of dependence check failure (due to R5) during |
| 3730 | // next iteration, it should be converted back to its most basic form. |
| 3731 | |
| 3732 | // Return the new value instruction for a given store. |
| 3733 | int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const { |
| 3734 | int NVOpcode = Hexagon::getNewValueOpcode(Opcode: MI.getOpcode()); |
| 3735 | if (NVOpcode >= 0) // Valid new-value store instruction. |
| 3736 | return NVOpcode; |
| 3737 | |
| 3738 | switch (MI.getOpcode()) { |
| 3739 | default: |
| 3740 | report_fatal_error(reason: Twine("Unknown .new type: " ) + |
| 3741 | std::to_string(val: MI.getOpcode())); |
| 3742 | case Hexagon::S4_storerb_ur: |
| 3743 | return Hexagon::S4_storerbnew_ur; |
| 3744 | |
| 3745 | case Hexagon::S2_storerb_pci: |
| 3746 | return Hexagon::S2_storerb_pci; |
| 3747 | |
| 3748 | case Hexagon::S2_storeri_pci: |
| 3749 | return Hexagon::S2_storeri_pci; |
| 3750 | |
| 3751 | case Hexagon::S2_storerh_pci: |
| 3752 | return Hexagon::S2_storerh_pci; |
| 3753 | |
| 3754 | case Hexagon::S2_storerd_pci: |
| 3755 | return Hexagon::S2_storerd_pci; |
| 3756 | |
| 3757 | case Hexagon::S2_storerf_pci: |
| 3758 | return Hexagon::S2_storerf_pci; |
| 3759 | |
| 3760 | case Hexagon::V6_vS32b_ai: |
| 3761 | return Hexagon::V6_vS32b_new_ai; |
| 3762 | |
| 3763 | case Hexagon::V6_vS32b_pi: |
| 3764 | return Hexagon::V6_vS32b_new_pi; |
| 3765 | } |
| 3766 | return 0; |
| 3767 | } |
| 3768 | |
| 3769 | // Returns the opcode to use when converting MI, which is a conditional jump, |
| 3770 | // into a conditional instruction which uses the .new value of the predicate. |
| 3771 | // We also use branch probabilities to add a hint to the jump. |
| 3772 | // If MBPI is null, all edges will be treated as equally likely for the |
| 3773 | // purposes of establishing a predication hint. |
| 3774 | int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI, |
| 3775 | const MachineBranchProbabilityInfo *MBPI) const { |
| 3776 | // We assume that block can have at most two successors. |
| 3777 | const MachineBasicBlock *Src = MI.getParent(); |
| 3778 | const MachineOperand &BrTarget = MI.getOperand(i: 1); |
| 3779 | bool Taken = false; |
| 3780 | const BranchProbability OneHalf(1, 2); |
| 3781 | |
| 3782 | auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src, |
| 3783 | const MachineBasicBlock *Dst) { |
| 3784 | if (MBPI) |
| 3785 | return MBPI->getEdgeProbability(Src, Dst); |
| 3786 | return BranchProbability(1, Src->succ_size()); |
| 3787 | }; |
| 3788 | |
| 3789 | if (BrTarget.isMBB()) { |
| 3790 | const MachineBasicBlock *Dst = BrTarget.getMBB(); |
| 3791 | Taken = getEdgeProbability(Src, Dst) >= OneHalf; |
| 3792 | } else { |
| 3793 | // The branch target is not a basic block (most likely a function). |
| 3794 | // Since BPI only gives probabilities for targets that are basic blocks, |
| 3795 | // try to identify another target of this branch (potentially a fall- |
| 3796 | // -through) and check the probability of that target. |
| 3797 | // |
| 3798 | // The only handled branch combinations are: |
| 3799 | // - one conditional branch, |
| 3800 | // - one conditional branch followed by one unconditional branch. |
| 3801 | // Otherwise, assume not-taken. |
| 3802 | assert(MI.isConditionalBranch()); |
| 3803 | const MachineBasicBlock &B = *MI.getParent(); |
| 3804 | bool SawCond = false, Bad = false; |
| 3805 | for (const MachineInstr &I : B) { |
| 3806 | if (!I.isBranch()) |
| 3807 | continue; |
| 3808 | if (I.isConditionalBranch()) { |
| 3809 | SawCond = true; |
| 3810 | if (&I != &MI) { |
| 3811 | Bad = true; |
| 3812 | break; |
| 3813 | } |
| 3814 | } |
| 3815 | if (I.isUnconditionalBranch() && !SawCond) { |
| 3816 | Bad = true; |
| 3817 | break; |
| 3818 | } |
| 3819 | } |
| 3820 | if (!Bad) { |
| 3821 | MachineBasicBlock::const_instr_iterator It(MI); |
| 3822 | MachineBasicBlock::const_instr_iterator NextIt = std::next(x: It); |
| 3823 | if (NextIt == B.instr_end()) { |
| 3824 | // If this branch is the last, look for the fall-through block. |
| 3825 | for (const MachineBasicBlock *SB : B.successors()) { |
| 3826 | if (!B.isLayoutSuccessor(MBB: SB)) |
| 3827 | continue; |
| 3828 | Taken = getEdgeProbability(Src, SB) < OneHalf; |
| 3829 | break; |
| 3830 | } |
| 3831 | } else { |
| 3832 | assert(NextIt->isUnconditionalBranch()); |
| 3833 | // Find the first MBB operand and assume it's the target. |
| 3834 | const MachineBasicBlock *BT = nullptr; |
| 3835 | for (const MachineOperand &Op : NextIt->operands()) { |
| 3836 | if (!Op.isMBB()) |
| 3837 | continue; |
| 3838 | BT = Op.getMBB(); |
| 3839 | break; |
| 3840 | } |
| 3841 | Taken = BT && getEdgeProbability(Src, BT) < OneHalf; |
| 3842 | } |
| 3843 | } // if (!Bad) |
| 3844 | } |
| 3845 | |
| 3846 | // The Taken flag should be set to something reasonable by this point. |
| 3847 | |
| 3848 | switch (MI.getOpcode()) { |
| 3849 | case Hexagon::J2_jumpt: |
| 3850 | return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; |
| 3851 | case Hexagon::J2_jumpf: |
| 3852 | return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; |
| 3853 | |
| 3854 | default: |
| 3855 | llvm_unreachable("Unexpected jump instruction." ); |
| 3856 | } |
| 3857 | } |
| 3858 | |
| 3859 | // Return .new predicate version for an instruction. |
| 3860 | int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI, |
| 3861 | const MachineBranchProbabilityInfo *MBPI) const { |
| 3862 | switch (MI.getOpcode()) { |
| 3863 | // Conditional Jumps |
| 3864 | case Hexagon::J2_jumpt: |
| 3865 | case Hexagon::J2_jumpf: |
| 3866 | return getDotNewPredJumpOp(MI, MBPI); |
| 3867 | } |
| 3868 | |
| 3869 | int NewOpcode = Hexagon::getPredNewOpcode(Opcode: MI.getOpcode()); |
| 3870 | if (NewOpcode >= 0) |
| 3871 | return NewOpcode; |
| 3872 | return 0; |
| 3873 | } |
| 3874 | |
| 3875 | int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const { |
| 3876 | int NewOp = MI.getOpcode(); |
| 3877 | if (isPredicated(Opcode: NewOp) && isPredicatedNew(Opcode: NewOp)) { // Get predicate old form |
| 3878 | NewOp = Hexagon::getPredOldOpcode(Opcode: NewOp); |
| 3879 | // All Hexagon architectures have prediction bits on dot-new branches, |
| 3880 | // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure |
| 3881 | // to pick the right opcode when converting back to dot-old. |
| 3882 | if (!Subtarget.hasFeature(Feature: Hexagon::ArchV60)) { |
| 3883 | switch (NewOp) { |
| 3884 | case Hexagon::J2_jumptpt: |
| 3885 | NewOp = Hexagon::J2_jumpt; |
| 3886 | break; |
| 3887 | case Hexagon::J2_jumpfpt: |
| 3888 | NewOp = Hexagon::J2_jumpf; |
| 3889 | break; |
| 3890 | case Hexagon::J2_jumprtpt: |
| 3891 | NewOp = Hexagon::J2_jumprt; |
| 3892 | break; |
| 3893 | case Hexagon::J2_jumprfpt: |
| 3894 | NewOp = Hexagon::J2_jumprf; |
| 3895 | break; |
| 3896 | } |
| 3897 | } |
| 3898 | assert(NewOp >= 0 && |
| 3899 | "Couldn't change predicate new instruction to its old form." ); |
| 3900 | } |
| 3901 | |
| 3902 | if (isNewValueStore(Opcode: NewOp)) { // Convert into non-new-value format |
| 3903 | NewOp = Hexagon::getNonNVStore(Opcode: NewOp); |
| 3904 | assert(NewOp >= 0 && "Couldn't change new-value store to its old form." ); |
| 3905 | } |
| 3906 | |
| 3907 | if (Subtarget.hasV60Ops()) |
| 3908 | return NewOp; |
| 3909 | |
| 3910 | // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps. |
| 3911 | switch (NewOp) { |
| 3912 | case Hexagon::J2_jumpfpt: |
| 3913 | return Hexagon::J2_jumpf; |
| 3914 | case Hexagon::J2_jumptpt: |
| 3915 | return Hexagon::J2_jumpt; |
| 3916 | case Hexagon::J2_jumprfpt: |
| 3917 | return Hexagon::J2_jumprf; |
| 3918 | case Hexagon::J2_jumprtpt: |
| 3919 | return Hexagon::J2_jumprt; |
| 3920 | } |
| 3921 | return NewOp; |
| 3922 | } |
| 3923 | |
| 3924 | // See if instruction could potentially be a duplex candidate. |
| 3925 | // If so, return its group. Zero otherwise. |
| 3926 | HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup( |
| 3927 | const MachineInstr &MI) const { |
| 3928 | Register DstReg, SrcReg, Src1Reg, Src2Reg; |
| 3929 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 3930 | |
| 3931 | switch (MI.getOpcode()) { |
| 3932 | default: |
| 3933 | return HexagonII::HSIG_None; |
| 3934 | // |
| 3935 | // Group L1: |
| 3936 | // |
| 3937 | // Rd = memw(Rs+#u4:2) |
| 3938 | // Rd = memub(Rs+#u4:0) |
| 3939 | case Hexagon::L2_loadri_io: |
| 3940 | case Hexagon::dup_L2_loadri_io: |
| 3941 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3942 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 3943 | // Special case this one from Group L2. |
| 3944 | // Rd = memw(r29+#u5:2) |
| 3945 | if (isIntRegForSubInst(Reg: DstReg)) { |
| 3946 | if (Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
| 3947 | HRI.getStackRegister() == SrcReg && |
| 3948 | MI.getOperand(i: 2).isImm() && |
| 3949 | isShiftedUInt<5,2>(x: MI.getOperand(i: 2).getImm())) |
| 3950 | return HexagonII::HSIG_L2; |
| 3951 | // Rd = memw(Rs+#u4:2) |
| 3952 | if (isIntRegForSubInst(Reg: SrcReg) && |
| 3953 | (MI.getOperand(i: 2).isImm() && |
| 3954 | isShiftedUInt<4,2>(x: MI.getOperand(i: 2).getImm()))) |
| 3955 | return HexagonII::HSIG_L1; |
| 3956 | } |
| 3957 | break; |
| 3958 | case Hexagon::L2_loadrub_io: |
| 3959 | case Hexagon::dup_L2_loadrub_io: |
| 3960 | // Rd = memub(Rs+#u4:0) |
| 3961 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3962 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 3963 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
| 3964 | MI.getOperand(i: 2).isImm() && isUInt<4>(x: MI.getOperand(i: 2).getImm())) |
| 3965 | return HexagonII::HSIG_L1; |
| 3966 | break; |
| 3967 | // |
| 3968 | // Group L2: |
| 3969 | // |
| 3970 | // Rd = memh/memuh(Rs+#u3:1) |
| 3971 | // Rd = memb(Rs+#u3:0) |
| 3972 | // Rd = memw(r29+#u5:2) - Handled above. |
| 3973 | // Rdd = memd(r29+#u5:3) |
| 3974 | // deallocframe |
| 3975 | // [if ([!]p0[.new])] dealloc_return |
| 3976 | // [if ([!]p0[.new])] jumpr r31 |
| 3977 | case Hexagon::L2_loadrh_io: |
| 3978 | case Hexagon::L2_loadruh_io: |
| 3979 | case Hexagon::dup_L2_loadrh_io: |
| 3980 | case Hexagon::dup_L2_loadruh_io: |
| 3981 | // Rd = memh/memuh(Rs+#u3:1) |
| 3982 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3983 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 3984 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
| 3985 | MI.getOperand(i: 2).isImm() && |
| 3986 | isShiftedUInt<3,1>(x: MI.getOperand(i: 2).getImm())) |
| 3987 | return HexagonII::HSIG_L2; |
| 3988 | break; |
| 3989 | case Hexagon::L2_loadrb_io: |
| 3990 | case Hexagon::dup_L2_loadrb_io: |
| 3991 | // Rd = memb(Rs+#u3:0) |
| 3992 | DstReg = MI.getOperand(i: 0).getReg(); |
| 3993 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 3994 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
| 3995 | MI.getOperand(i: 2).isImm() && |
| 3996 | isUInt<3>(x: MI.getOperand(i: 2).getImm())) |
| 3997 | return HexagonII::HSIG_L2; |
| 3998 | break; |
| 3999 | case Hexagon::L2_loadrd_io: |
| 4000 | case Hexagon::dup_L2_loadrd_io: |
| 4001 | // Rdd = memd(r29+#u5:3) |
| 4002 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4003 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4004 | if (isDblRegForSubInst(Reg: DstReg, HRI) && |
| 4005 | Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
| 4006 | HRI.getStackRegister() == SrcReg && |
| 4007 | MI.getOperand(i: 2).isImm() && |
| 4008 | isShiftedUInt<5,3>(x: MI.getOperand(i: 2).getImm())) |
| 4009 | return HexagonII::HSIG_L2; |
| 4010 | break; |
| 4011 | // dealloc_return is not documented in Hexagon Manual, but marked |
| 4012 | // with A_SUBINSN attribute in iset_v4classic.py. |
| 4013 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: |
| 4014 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: |
| 4015 | case Hexagon::L4_return: |
| 4016 | case Hexagon::L2_deallocframe: |
| 4017 | case Hexagon::dup_L2_deallocframe: |
| 4018 | return HexagonII::HSIG_L2; |
| 4019 | case Hexagon::EH_RETURN_JMPR: |
| 4020 | case Hexagon::PS_jmpret: |
| 4021 | case Hexagon::SL2_jumpr31: |
| 4022 | // jumpr r31 |
| 4023 | // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0 |
| 4024 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4025 | if (Hexagon::IntRegsRegClass.contains(Reg: DstReg) && (Hexagon::R31 == DstReg)) |
| 4026 | return HexagonII::HSIG_L2; |
| 4027 | break; |
| 4028 | case Hexagon::PS_jmprett: |
| 4029 | case Hexagon::PS_jmpretf: |
| 4030 | case Hexagon::PS_jmprettnewpt: |
| 4031 | case Hexagon::PS_jmpretfnewpt: |
| 4032 | case Hexagon::PS_jmprettnew: |
| 4033 | case Hexagon::PS_jmpretfnew: |
| 4034 | case Hexagon::SL2_jumpr31_t: |
| 4035 | case Hexagon::SL2_jumpr31_f: |
| 4036 | case Hexagon::SL2_jumpr31_tnew: |
| 4037 | case Hexagon::SL2_jumpr31_fnew: |
| 4038 | DstReg = MI.getOperand(i: 1).getReg(); |
| 4039 | SrcReg = MI.getOperand(i: 0).getReg(); |
| 4040 | // [if ([!]p0[.new])] jumpr r31 |
| 4041 | if ((Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && |
| 4042 | (Hexagon::P0 == SrcReg)) && |
| 4043 | (Hexagon::IntRegsRegClass.contains(Reg: DstReg) && (Hexagon::R31 == DstReg))) |
| 4044 | return HexagonII::HSIG_L2; |
| 4045 | break; |
| 4046 | case Hexagon::L4_return_t: |
| 4047 | case Hexagon::L4_return_f: |
| 4048 | case Hexagon::L4_return_tnew_pnt: |
| 4049 | case Hexagon::L4_return_fnew_pnt: |
| 4050 | case Hexagon::L4_return_tnew_pt: |
| 4051 | case Hexagon::L4_return_fnew_pt: |
| 4052 | // [if ([!]p0[.new])] dealloc_return |
| 4053 | SrcReg = MI.getOperand(i: 0).getReg(); |
| 4054 | if (Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && (Hexagon::P0 == SrcReg)) |
| 4055 | return HexagonII::HSIG_L2; |
| 4056 | break; |
| 4057 | // |
| 4058 | // Group S1: |
| 4059 | // |
| 4060 | // memw(Rs+#u4:2) = Rt |
| 4061 | // memb(Rs+#u4:0) = Rt |
| 4062 | case Hexagon::S2_storeri_io: |
| 4063 | case Hexagon::dup_S2_storeri_io: |
| 4064 | // Special case this one from Group S2. |
| 4065 | // memw(r29+#u5:2) = Rt |
| 4066 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 4067 | Src2Reg = MI.getOperand(i: 2).getReg(); |
| 4068 | if (Hexagon::IntRegsRegClass.contains(Reg: Src1Reg) && |
| 4069 | isIntRegForSubInst(Reg: Src2Reg) && |
| 4070 | HRI.getStackRegister() == Src1Reg && MI.getOperand(i: 1).isImm() && |
| 4071 | isShiftedUInt<5,2>(x: MI.getOperand(i: 1).getImm())) |
| 4072 | return HexagonII::HSIG_S2; |
| 4073 | // memw(Rs+#u4:2) = Rt |
| 4074 | if (isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg) && |
| 4075 | MI.getOperand(i: 1).isImm() && |
| 4076 | isShiftedUInt<4,2>(x: MI.getOperand(i: 1).getImm())) |
| 4077 | return HexagonII::HSIG_S1; |
| 4078 | break; |
| 4079 | case Hexagon::S2_storerb_io: |
| 4080 | case Hexagon::dup_S2_storerb_io: |
| 4081 | // memb(Rs+#u4:0) = Rt |
| 4082 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 4083 | Src2Reg = MI.getOperand(i: 2).getReg(); |
| 4084 | if (isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg) && |
| 4085 | MI.getOperand(i: 1).isImm() && isUInt<4>(x: MI.getOperand(i: 1).getImm())) |
| 4086 | return HexagonII::HSIG_S1; |
| 4087 | break; |
| 4088 | // |
| 4089 | // Group S2: |
| 4090 | // |
| 4091 | // memh(Rs+#u3:1) = Rt |
| 4092 | // memw(r29+#u5:2) = Rt |
| 4093 | // memd(r29+#s6:3) = Rtt |
| 4094 | // memw(Rs+#u4:2) = #U1 |
| 4095 | // memb(Rs+#u4) = #U1 |
| 4096 | // allocframe(#u5:3) |
| 4097 | case Hexagon::S2_storerh_io: |
| 4098 | case Hexagon::dup_S2_storerh_io: |
| 4099 | // memh(Rs+#u3:1) = Rt |
| 4100 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 4101 | Src2Reg = MI.getOperand(i: 2).getReg(); |
| 4102 | if (isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg) && |
| 4103 | MI.getOperand(i: 1).isImm() && |
| 4104 | isShiftedUInt<3,1>(x: MI.getOperand(i: 1).getImm())) |
| 4105 | return HexagonII::HSIG_S1; |
| 4106 | break; |
| 4107 | case Hexagon::S2_storerd_io: |
| 4108 | case Hexagon::dup_S2_storerd_io: |
| 4109 | // memd(r29+#s6:3) = Rtt |
| 4110 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 4111 | Src2Reg = MI.getOperand(i: 2).getReg(); |
| 4112 | if (isDblRegForSubInst(Reg: Src2Reg, HRI) && |
| 4113 | Hexagon::IntRegsRegClass.contains(Reg: Src1Reg) && |
| 4114 | HRI.getStackRegister() == Src1Reg && MI.getOperand(i: 1).isImm() && |
| 4115 | isShiftedInt<6,3>(x: MI.getOperand(i: 1).getImm())) |
| 4116 | return HexagonII::HSIG_S2; |
| 4117 | break; |
| 4118 | case Hexagon::S4_storeiri_io: |
| 4119 | case Hexagon::dup_S4_storeiri_io: |
| 4120 | // memw(Rs+#u4:2) = #U1 |
| 4121 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 4122 | if (isIntRegForSubInst(Reg: Src1Reg) && MI.getOperand(i: 1).isImm() && |
| 4123 | isShiftedUInt<4,2>(x: MI.getOperand(i: 1).getImm()) && |
| 4124 | MI.getOperand(i: 2).isImm() && isUInt<1>(x: MI.getOperand(i: 2).getImm())) |
| 4125 | return HexagonII::HSIG_S2; |
| 4126 | break; |
| 4127 | case Hexagon::S4_storeirb_io: |
| 4128 | case Hexagon::dup_S4_storeirb_io: |
| 4129 | // memb(Rs+#u4) = #U1 |
| 4130 | Src1Reg = MI.getOperand(i: 0).getReg(); |
| 4131 | if (isIntRegForSubInst(Reg: Src1Reg) && |
| 4132 | MI.getOperand(i: 1).isImm() && isUInt<4>(x: MI.getOperand(i: 1).getImm()) && |
| 4133 | MI.getOperand(i: 2).isImm() && isUInt<1>(x: MI.getOperand(i: 2).getImm())) |
| 4134 | return HexagonII::HSIG_S2; |
| 4135 | break; |
| 4136 | case Hexagon::S2_allocframe: |
| 4137 | case Hexagon::dup_S2_allocframe: |
| 4138 | if (MI.getOperand(i: 2).isImm() && |
| 4139 | isShiftedUInt<5,3>(x: MI.getOperand(i: 2).getImm())) |
| 4140 | return HexagonII::HSIG_S1; |
| 4141 | break; |
| 4142 | // |
| 4143 | // Group A: |
| 4144 | // |
| 4145 | // Rx = add(Rx,#s7) |
| 4146 | // Rd = Rs |
| 4147 | // Rd = #u6 |
| 4148 | // Rd = #-1 |
| 4149 | // if ([!]P0[.new]) Rd = #0 |
| 4150 | // Rd = add(r29,#u6:2) |
| 4151 | // Rx = add(Rx,Rs) |
| 4152 | // P0 = cmp.eq(Rs,#u2) |
| 4153 | // Rdd = combine(#0,Rs) |
| 4154 | // Rdd = combine(Rs,#0) |
| 4155 | // Rdd = combine(#u2,#U2) |
| 4156 | // Rd = add(Rs,#1) |
| 4157 | // Rd = add(Rs,#-1) |
| 4158 | // Rd = sxth/sxtb/zxtb/zxth(Rs) |
| 4159 | // Rd = and(Rs,#1) |
| 4160 | case Hexagon::A2_addi: |
| 4161 | case Hexagon::dup_A2_addi: |
| 4162 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4163 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4164 | if (isIntRegForSubInst(Reg: DstReg)) { |
| 4165 | // Rd = add(r29,#u6:2) |
| 4166 | if (Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
| 4167 | HRI.getStackRegister() == SrcReg && MI.getOperand(i: 2).isImm() && |
| 4168 | isShiftedUInt<6,2>(x: MI.getOperand(i: 2).getImm())) |
| 4169 | return HexagonII::HSIG_A; |
| 4170 | // Rx = add(Rx,#s7) |
| 4171 | if ((DstReg == SrcReg) && MI.getOperand(i: 2).isImm() && |
| 4172 | isInt<7>(x: MI.getOperand(i: 2).getImm())) |
| 4173 | return HexagonII::HSIG_A; |
| 4174 | // Rd = add(Rs,#1) |
| 4175 | // Rd = add(Rs,#-1) |
| 4176 | if (isIntRegForSubInst(Reg: SrcReg) && MI.getOperand(i: 2).isImm() && |
| 4177 | ((MI.getOperand(i: 2).getImm() == 1) || |
| 4178 | (MI.getOperand(i: 2).getImm() == -1))) |
| 4179 | return HexagonII::HSIG_A; |
| 4180 | } |
| 4181 | break; |
| 4182 | case Hexagon::A2_add: |
| 4183 | case Hexagon::dup_A2_add: |
| 4184 | // Rx = add(Rx,Rs) |
| 4185 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4186 | Src1Reg = MI.getOperand(i: 1).getReg(); |
| 4187 | Src2Reg = MI.getOperand(i: 2).getReg(); |
| 4188 | if (isIntRegForSubInst(Reg: DstReg) && (DstReg == Src1Reg) && |
| 4189 | isIntRegForSubInst(Reg: Src2Reg)) |
| 4190 | return HexagonII::HSIG_A; |
| 4191 | break; |
| 4192 | case Hexagon::A2_andir: |
| 4193 | case Hexagon::dup_A2_andir: |
| 4194 | // Same as zxtb. |
| 4195 | // Rd16=and(Rs16,#255) |
| 4196 | // Rd16=and(Rs16,#1) |
| 4197 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4198 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4199 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
| 4200 | MI.getOperand(i: 2).isImm() && |
| 4201 | ((MI.getOperand(i: 2).getImm() == 1) || |
| 4202 | (MI.getOperand(i: 2).getImm() == 255))) |
| 4203 | return HexagonII::HSIG_A; |
| 4204 | break; |
| 4205 | case Hexagon::A2_tfr: |
| 4206 | case Hexagon::dup_A2_tfr: |
| 4207 | // Rd = Rs |
| 4208 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4209 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4210 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg)) |
| 4211 | return HexagonII::HSIG_A; |
| 4212 | break; |
| 4213 | case Hexagon::A2_tfrsi: |
| 4214 | case Hexagon::dup_A2_tfrsi: |
| 4215 | // Rd = #u6 |
| 4216 | // Do not test for #u6 size since the const is getting extended |
| 4217 | // regardless and compound could be formed. |
| 4218 | // Rd = #-1 |
| 4219 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4220 | if (isIntRegForSubInst(Reg: DstReg)) |
| 4221 | return HexagonII::HSIG_A; |
| 4222 | break; |
| 4223 | case Hexagon::C2_cmoveit: |
| 4224 | case Hexagon::C2_cmovenewit: |
| 4225 | case Hexagon::C2_cmoveif: |
| 4226 | case Hexagon::C2_cmovenewif: |
| 4227 | case Hexagon::dup_C2_cmoveit: |
| 4228 | case Hexagon::dup_C2_cmovenewit: |
| 4229 | case Hexagon::dup_C2_cmoveif: |
| 4230 | case Hexagon::dup_C2_cmovenewif: |
| 4231 | // if ([!]P0[.new]) Rd = #0 |
| 4232 | // Actual form: |
| 4233 | // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; |
| 4234 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4235 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4236 | if (isIntRegForSubInst(Reg: DstReg) && |
| 4237 | Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && Hexagon::P0 == SrcReg && |
| 4238 | MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 0) |
| 4239 | return HexagonII::HSIG_A; |
| 4240 | break; |
| 4241 | case Hexagon::C2_cmpeqi: |
| 4242 | case Hexagon::dup_C2_cmpeqi: |
| 4243 | // P0 = cmp.eq(Rs,#u2) |
| 4244 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4245 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4246 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
| 4247 | Hexagon::P0 == DstReg && isIntRegForSubInst(Reg: SrcReg) && |
| 4248 | MI.getOperand(i: 2).isImm() && isUInt<2>(x: MI.getOperand(i: 2).getImm())) |
| 4249 | return HexagonII::HSIG_A; |
| 4250 | break; |
| 4251 | case Hexagon::A2_combineii: |
| 4252 | case Hexagon::A4_combineii: |
| 4253 | case Hexagon::dup_A2_combineii: |
| 4254 | case Hexagon::dup_A4_combineii: |
| 4255 | // Rdd = combine(#u2,#U2) |
| 4256 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4257 | if (isDblRegForSubInst(Reg: DstReg, HRI) && |
| 4258 | ((MI.getOperand(i: 1).isImm() && isUInt<2>(x: MI.getOperand(i: 1).getImm())) || |
| 4259 | (MI.getOperand(i: 1).isGlobal() && |
| 4260 | isUInt<2>(x: MI.getOperand(i: 1).getOffset()))) && |
| 4261 | ((MI.getOperand(i: 2).isImm() && isUInt<2>(x: MI.getOperand(i: 2).getImm())) || |
| 4262 | (MI.getOperand(i: 2).isGlobal() && |
| 4263 | isUInt<2>(x: MI.getOperand(i: 2).getOffset())))) |
| 4264 | return HexagonII::HSIG_A; |
| 4265 | break; |
| 4266 | case Hexagon::A4_combineri: |
| 4267 | case Hexagon::dup_A4_combineri: |
| 4268 | // Rdd = combine(Rs,#0) |
| 4269 | // Rdd = combine(Rs,#0) |
| 4270 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4271 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4272 | if (isDblRegForSubInst(Reg: DstReg, HRI) && isIntRegForSubInst(Reg: SrcReg) && |
| 4273 | ((MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 0) || |
| 4274 | (MI.getOperand(i: 2).isGlobal() && MI.getOperand(i: 2).getOffset() == 0))) |
| 4275 | return HexagonII::HSIG_A; |
| 4276 | break; |
| 4277 | case Hexagon::A4_combineir: |
| 4278 | case Hexagon::dup_A4_combineir: |
| 4279 | // Rdd = combine(#0,Rs) |
| 4280 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4281 | SrcReg = MI.getOperand(i: 2).getReg(); |
| 4282 | if (isDblRegForSubInst(Reg: DstReg, HRI) && isIntRegForSubInst(Reg: SrcReg) && |
| 4283 | ((MI.getOperand(i: 1).isImm() && MI.getOperand(i: 1).getImm() == 0) || |
| 4284 | (MI.getOperand(i: 1).isGlobal() && MI.getOperand(i: 1).getOffset() == 0))) |
| 4285 | return HexagonII::HSIG_A; |
| 4286 | break; |
| 4287 | case Hexagon::A2_sxtb: |
| 4288 | case Hexagon::A2_sxth: |
| 4289 | case Hexagon::A2_zxtb: |
| 4290 | case Hexagon::A2_zxth: |
| 4291 | case Hexagon::dup_A2_sxtb: |
| 4292 | case Hexagon::dup_A2_sxth: |
| 4293 | case Hexagon::dup_A2_zxtb: |
| 4294 | case Hexagon::dup_A2_zxth: |
| 4295 | // Rd = sxth/sxtb/zxtb/zxth(Rs) |
| 4296 | DstReg = MI.getOperand(i: 0).getReg(); |
| 4297 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4298 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg)) |
| 4299 | return HexagonII::HSIG_A; |
| 4300 | break; |
| 4301 | } |
| 4302 | |
| 4303 | return HexagonII::HSIG_None; |
| 4304 | } |
| 4305 | |
| 4306 | short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const { |
| 4307 | return Hexagon::getRealHWInstr(Opcode: MI.getOpcode(), inInstrType: Hexagon::InstrType_Real); |
| 4308 | } |
| 4309 | |
| 4310 | unsigned HexagonInstrInfo::getInstrTimingClassLatency( |
| 4311 | const InstrItineraryData *ItinData, const MachineInstr &MI) const { |
| 4312 | // Default to one cycle for no itinerary. However, an "empty" itinerary may |
| 4313 | // still have a MinLatency property, which getStageLatency checks. |
| 4314 | if (!ItinData) |
| 4315 | return getInstrLatency(ItinData, MI); |
| 4316 | |
| 4317 | if (MI.isTransient()) |
| 4318 | return 0; |
| 4319 | return ItinData->getStageLatency(ItinClassIndx: MI.getDesc().getSchedClass()); |
| 4320 | } |
| 4321 | |
| 4322 | /// getOperandLatency - Compute and return the use operand latency of a given |
| 4323 | /// pair of def and use. |
| 4324 | /// In most cases, the static scheduling itinerary was enough to determine the |
| 4325 | /// operand latency. But it may not be possible for instructions with variable |
| 4326 | /// number of defs / uses. |
| 4327 | /// |
| 4328 | /// This is a raw interface to the itinerary that may be directly overridden by |
| 4329 | /// a target. Use computeOperandLatency to get the best estimate of latency. |
| 4330 | std::optional<unsigned> HexagonInstrInfo::getOperandLatency( |
| 4331 | const InstrItineraryData *ItinData, const MachineInstr &DefMI, |
| 4332 | unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { |
| 4333 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 4334 | |
| 4335 | // Get DefIdx and UseIdx for super registers. |
| 4336 | const MachineOperand &DefMO = DefMI.getOperand(i: DefIdx); |
| 4337 | |
| 4338 | if (DefMO.isReg() && DefMO.getReg().isPhysical()) { |
| 4339 | if (DefMO.isImplicit()) { |
| 4340 | for (MCPhysReg SR : HRI.superregs(Reg: DefMO.getReg())) { |
| 4341 | int Idx = DefMI.findRegisterDefOperandIdx(Reg: SR, TRI: &HRI, isDead: false, Overlap: false); |
| 4342 | if (Idx != -1) { |
| 4343 | DefIdx = Idx; |
| 4344 | break; |
| 4345 | } |
| 4346 | } |
| 4347 | } |
| 4348 | |
| 4349 | const MachineOperand &UseMO = UseMI.getOperand(i: UseIdx); |
| 4350 | if (UseMO.isImplicit()) { |
| 4351 | for (MCPhysReg SR : HRI.superregs(Reg: UseMO.getReg())) { |
| 4352 | int Idx = UseMI.findRegisterUseOperandIdx(Reg: SR, TRI: &HRI, isKill: false); |
| 4353 | if (Idx != -1) { |
| 4354 | UseIdx = Idx; |
| 4355 | break; |
| 4356 | } |
| 4357 | } |
| 4358 | } |
| 4359 | } |
| 4360 | |
| 4361 | std::optional<unsigned> Latency = TargetInstrInfo::getOperandLatency( |
| 4362 | ItinData, DefMI, DefIdx, UseMI, UseIdx); |
| 4363 | if (Latency == 0) |
| 4364 | // We should never have 0 cycle latency between two instructions unless |
| 4365 | // they can be packetized together. However, this decision can't be made |
| 4366 | // here. |
| 4367 | Latency = 1; |
| 4368 | return Latency; |
| 4369 | } |
| 4370 | |
| 4371 | // inverts the predication logic. |
| 4372 | // p -> NotP |
| 4373 | // NotP -> P |
| 4374 | bool HexagonInstrInfo::getInvertedPredSense( |
| 4375 | SmallVectorImpl<MachineOperand> &Cond) const { |
| 4376 | if (Cond.empty()) |
| 4377 | return false; |
| 4378 | unsigned Opc = getInvertedPredicatedOpcode(Opc: Cond[0].getImm()); |
| 4379 | Cond[0].setImm(Opc); |
| 4380 | return true; |
| 4381 | } |
| 4382 | |
| 4383 | unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { |
| 4384 | int InvPredOpcode; |
| 4385 | InvPredOpcode = isPredicatedTrue(Opcode: Opc) ? Hexagon::getFalsePredOpcode(Opcode: Opc) |
| 4386 | : Hexagon::getTruePredOpcode(Opcode: Opc); |
| 4387 | if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. |
| 4388 | return InvPredOpcode; |
| 4389 | |
| 4390 | llvm_unreachable("Unexpected predicated instruction" ); |
| 4391 | } |
| 4392 | |
| 4393 | // Returns the max value that doesn't need to be extended. |
| 4394 | int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const { |
| 4395 | const uint64_t F = MI.getDesc().TSFlags; |
| 4396 | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) |
| 4397 | & HexagonII::ExtentSignedMask; |
| 4398 | unsigned bits = (F >> HexagonII::ExtentBitsPos) |
| 4399 | & HexagonII::ExtentBitsMask; |
| 4400 | |
| 4401 | if (isSigned) // if value is signed |
| 4402 | return ~(-1U << (bits - 1)); |
| 4403 | else |
| 4404 | return ~(-1U << bits); |
| 4405 | } |
| 4406 | |
| 4407 | |
| 4408 | bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const { |
| 4409 | switch (MI.getOpcode()) { |
| 4410 | case Hexagon::L2_loadrbgp: |
| 4411 | case Hexagon::L2_loadrdgp: |
| 4412 | case Hexagon::L2_loadrhgp: |
| 4413 | case Hexagon::L2_loadrigp: |
| 4414 | case Hexagon::L2_loadrubgp: |
| 4415 | case Hexagon::L2_loadruhgp: |
| 4416 | case Hexagon::S2_storerbgp: |
| 4417 | case Hexagon::S2_storerbnewgp: |
| 4418 | case Hexagon::S2_storerhgp: |
| 4419 | case Hexagon::S2_storerhnewgp: |
| 4420 | case Hexagon::S2_storerigp: |
| 4421 | case Hexagon::S2_storerinewgp: |
| 4422 | case Hexagon::S2_storerdgp: |
| 4423 | case Hexagon::S2_storerfgp: |
| 4424 | return true; |
| 4425 | } |
| 4426 | const uint64_t F = MI.getDesc().TSFlags; |
| 4427 | unsigned addrMode = |
| 4428 | ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); |
| 4429 | // Disallow any base+offset instruction. The assembler does not yet reorder |
| 4430 | // based up any zero offset instruction. |
| 4431 | return (addrMode == HexagonII::BaseRegOffset || |
| 4432 | addrMode == HexagonII::BaseImmOffset || |
| 4433 | addrMode == HexagonII::BaseLongOffset); |
| 4434 | } |
| 4435 | |
| 4436 | bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const { |
| 4437 | // Workaround for the Global Scheduler. Sometimes, it creates |
| 4438 | // A4_ext as a Pseudo instruction and calls this function to see if |
| 4439 | // it can be added to an existing bundle. Since the instruction doesn't |
| 4440 | // belong to any BB yet, we can't use getUnits API. |
| 4441 | if (MI.getOpcode() == Hexagon::A4_ext) |
| 4442 | return false; |
| 4443 | |
| 4444 | unsigned FuncUnits = getUnits(MI); |
| 4445 | return HexagonFUnits::isSlot0Only(units: FuncUnits); |
| 4446 | } |
| 4447 | |
| 4448 | bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const { |
| 4449 | const uint64_t F = MI.getDesc().TSFlags; |
| 4450 | return ((F >> HexagonII::RestrictNoSlot1StorePos) & |
| 4451 | HexagonII::RestrictNoSlot1StoreMask); |
| 4452 | } |
| 4453 | |
| 4454 | void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, |
| 4455 | bool ToBigInstrs) const { |
| 4456 | int Opcode = -1; |
| 4457 | if (ToBigInstrs) { // To BigCore Instr. |
| 4458 | // Check if the instruction can form a Duplex. |
| 4459 | if (getDuplexCandidateGroup(MI: *MII)) |
| 4460 | // Get the opcode marked "dup_*" tag. |
| 4461 | Opcode = getDuplexOpcode(MI: *MII, ForBigCore: ToBigInstrs); |
| 4462 | } else // To TinyCore Instr. |
| 4463 | Opcode = getDuplexOpcode(MI: *MII, ForBigCore: ToBigInstrs); |
| 4464 | |
| 4465 | // Change the opcode of the instruction. |
| 4466 | if (Opcode >= 0) |
| 4467 | MII->setDesc(get(Opcode)); |
| 4468 | } |
| 4469 | |
| 4470 | // This function is used to translate instructions to facilitate generating |
| 4471 | // Duplexes on TinyCore. |
| 4472 | void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF, |
| 4473 | bool ToBigInstrs) const { |
| 4474 | for (auto &MB : MF) |
| 4475 | for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(), |
| 4476 | End = MB.instr_end(); |
| 4477 | Instr != End; ++Instr) |
| 4478 | changeDuplexOpcode(MII: Instr, ToBigInstrs); |
| 4479 | } |
| 4480 | |
| 4481 | // This is a specialized form of above function. |
| 4482 | void HexagonInstrInfo::translateInstrsForDup( |
| 4483 | MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const { |
| 4484 | MachineBasicBlock *MBB = MII->getParent(); |
| 4485 | while ((MII != MBB->instr_end()) && MII->isInsideBundle()) { |
| 4486 | changeDuplexOpcode(MII, ToBigInstrs); |
| 4487 | ++MII; |
| 4488 | } |
| 4489 | } |
| 4490 | |
| 4491 | unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const { |
| 4492 | using namespace HexagonII; |
| 4493 | |
| 4494 | const uint64_t F = MI.getDesc().TSFlags; |
| 4495 | unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask; |
| 4496 | unsigned Size = getMemAccessSizeInBytes(S: MemAccessSize(S)); |
| 4497 | if (Size != 0) |
| 4498 | return Size; |
| 4499 | // Y2_dcfetchbo is special |
| 4500 | if (MI.getOpcode() == Hexagon::Y2_dcfetchbo) |
| 4501 | return HexagonII::DoubleWordAccess; |
| 4502 | |
| 4503 | // Handle vector access sizes. |
| 4504 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
| 4505 | switch (S) { |
| 4506 | case HexagonII::HVXVectorAccess: |
| 4507 | return HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
| 4508 | default: |
| 4509 | llvm_unreachable("Unexpected instruction" ); |
| 4510 | } |
| 4511 | } |
| 4512 | |
| 4513 | // Returns the min value that doesn't need to be extended. |
| 4514 | int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const { |
| 4515 | const uint64_t F = MI.getDesc().TSFlags; |
| 4516 | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) |
| 4517 | & HexagonII::ExtentSignedMask; |
| 4518 | unsigned bits = (F >> HexagonII::ExtentBitsPos) |
| 4519 | & HexagonII::ExtentBitsMask; |
| 4520 | |
| 4521 | if (isSigned) // if value is signed |
| 4522 | return -1U << (bits - 1); |
| 4523 | else |
| 4524 | return 0; |
| 4525 | } |
| 4526 | |
| 4527 | // Returns opcode of the non-extended equivalent instruction. |
| 4528 | short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const { |
| 4529 | // Check if the instruction has a register form that uses register in place |
| 4530 | // of the extended operand, if so return that as the non-extended form. |
| 4531 | short NonExtOpcode = Hexagon::getRegForm(Opcode: MI.getOpcode()); |
| 4532 | if (NonExtOpcode >= 0) |
| 4533 | return NonExtOpcode; |
| 4534 | |
| 4535 | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { |
| 4536 | // Check addressing mode and retrieve non-ext equivalent instruction. |
| 4537 | switch (getAddrMode(MI)) { |
| 4538 | case HexagonII::Absolute: |
| 4539 | return Hexagon::changeAddrMode_abs_io(Opcode: MI.getOpcode()); |
| 4540 | case HexagonII::BaseImmOffset: |
| 4541 | return Hexagon::changeAddrMode_io_rr(Opcode: MI.getOpcode()); |
| 4542 | case HexagonII::BaseLongOffset: |
| 4543 | return Hexagon::changeAddrMode_ur_rr(Opcode: MI.getOpcode()); |
| 4544 | |
| 4545 | default: |
| 4546 | return -1; |
| 4547 | } |
| 4548 | } |
| 4549 | return -1; |
| 4550 | } |
| 4551 | |
| 4552 | bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond, |
| 4553 | Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { |
| 4554 | if (Cond.empty()) |
| 4555 | return false; |
| 4556 | assert(Cond.size() == 2); |
| 4557 | if (isNewValueJump(Opcode: Cond[0].getImm()) || Cond[1].isMBB()) { |
| 4558 | LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop" ); |
| 4559 | return false; |
| 4560 | } |
| 4561 | PredReg = Cond[1].getReg(); |
| 4562 | PredRegPos = 1; |
| 4563 | // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef |
| 4564 | PredRegFlags = 0; |
| 4565 | if (Cond[1].isImplicit()) |
| 4566 | PredRegFlags = RegState::Implicit; |
| 4567 | if (Cond[1].isUndef()) |
| 4568 | PredRegFlags |= RegState::Undef; |
| 4569 | return true; |
| 4570 | } |
| 4571 | |
| 4572 | short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const { |
| 4573 | return Hexagon::getRealHWInstr(Opcode: MI.getOpcode(), inInstrType: Hexagon::InstrType_Pseudo); |
| 4574 | } |
| 4575 | |
| 4576 | short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const { |
| 4577 | return Hexagon::getRegForm(Opcode: MI.getOpcode()); |
| 4578 | } |
| 4579 | |
| 4580 | // Return the number of bytes required to encode the instruction. |
| 4581 | // Hexagon instructions are fixed length, 4 bytes, unless they |
| 4582 | // use a constant extender, which requires another 4 bytes. |
| 4583 | // For debug instructions and prolog labels, return 0. |
| 4584 | unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const { |
| 4585 | if (MI.isDebugInstr() || MI.isPosition()) |
| 4586 | return 0; |
| 4587 | |
| 4588 | unsigned Size = MI.getDesc().getSize(); |
| 4589 | if (!Size) |
| 4590 | // Assume the default insn size in case it cannot be determined |
| 4591 | // for whatever reason. |
| 4592 | Size = HEXAGON_INSTR_SIZE; |
| 4593 | |
| 4594 | if (isConstExtended(MI) || isExtended(MI)) |
| 4595 | Size += HEXAGON_INSTR_SIZE; |
| 4596 | |
| 4597 | // Try and compute number of instructions in asm. |
| 4598 | if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) { |
| 4599 | const MachineBasicBlock &MBB = *MI.getParent(); |
| 4600 | const MachineFunction *MF = MBB.getParent(); |
| 4601 | const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
| 4602 | |
| 4603 | // Count the number of register definitions to find the asm string. |
| 4604 | unsigned NumDefs = 0; |
| 4605 | for (; MI.getOperand(i: NumDefs).isReg() && MI.getOperand(i: NumDefs).isDef(); |
| 4606 | ++NumDefs) |
| 4607 | assert(NumDefs != MI.getNumOperands()-2 && "No asm string?" ); |
| 4608 | |
| 4609 | assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?" ); |
| 4610 | // Disassemble the AsmStr and approximate number of instructions. |
| 4611 | const char *AsmStr = MI.getOperand(i: NumDefs).getSymbolName(); |
| 4612 | Size = getInlineAsmLength(Str: AsmStr, MAI: *MAI); |
| 4613 | } |
| 4614 | |
| 4615 | return Size; |
| 4616 | } |
| 4617 | |
| 4618 | uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const { |
| 4619 | const uint64_t F = MI.getDesc().TSFlags; |
| 4620 | return (F >> HexagonII::TypePos) & HexagonII::TypeMask; |
| 4621 | } |
| 4622 | |
| 4623 | InstrStage::FuncUnits HexagonInstrInfo::getUnits(const MachineInstr &MI) const { |
| 4624 | const InstrItineraryData &II = *Subtarget.getInstrItineraryData(); |
| 4625 | const InstrStage &IS = *II.beginStage(ItinClassIndx: MI.getDesc().getSchedClass()); |
| 4626 | |
| 4627 | return IS.getUnits(); |
| 4628 | } |
| 4629 | |
| 4630 | // Calculate size of the basic block without debug instructions. |
| 4631 | unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const { |
| 4632 | return nonDbgMICount(MIB: BB->instr_begin(), MIE: BB->instr_end()); |
| 4633 | } |
| 4634 | |
| 4635 | unsigned HexagonInstrInfo::nonDbgBundleSize( |
| 4636 | MachineBasicBlock::const_iterator BundleHead) const { |
| 4637 | assert(BundleHead->isBundle() && "Not a bundle header" ); |
| 4638 | auto MII = BundleHead.getInstrIterator(); |
| 4639 | // Skip the bundle header. |
| 4640 | return nonDbgMICount(MIB: ++MII, MIE: getBundleEnd(I: BundleHead.getInstrIterator())); |
| 4641 | } |
| 4642 | |
| 4643 | /// immediateExtend - Changes the instruction in place to one using an immediate |
| 4644 | /// extender. |
| 4645 | void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const { |
| 4646 | assert((isExtendable(MI)||isConstExtended(MI)) && |
| 4647 | "Instruction must be extendable" ); |
| 4648 | // Find which operand is extendable. |
| 4649 | short ExtOpNum = getCExtOpNum(MI); |
| 4650 | MachineOperand &MO = MI.getOperand(i: ExtOpNum); |
| 4651 | // This needs to be something we understand. |
| 4652 | assert((MO.isMBB() || MO.isImm()) && |
| 4653 | "Branch with unknown extendable field type" ); |
| 4654 | // Mark given operand as extended. |
| 4655 | MO.addTargetFlag(F: HexagonII::HMOTF_ConstExtended); |
| 4656 | } |
| 4657 | |
| 4658 | bool HexagonInstrInfo::invertAndChangeJumpTarget( |
| 4659 | MachineInstr &MI, MachineBasicBlock *NewTarget) const { |
| 4660 | LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to " |
| 4661 | << printMBBReference(*NewTarget); |
| 4662 | MI.dump();); |
| 4663 | assert(MI.isBranch()); |
| 4664 | unsigned NewOpcode = getInvertedPredicatedOpcode(Opc: MI.getOpcode()); |
| 4665 | int TargetPos = MI.getNumOperands() - 1; |
| 4666 | // In general branch target is the last operand, |
| 4667 | // but some implicit defs added at the end might change it. |
| 4668 | while ((TargetPos > -1) && !MI.getOperand(i: TargetPos).isMBB()) |
| 4669 | --TargetPos; |
| 4670 | assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB()); |
| 4671 | MI.getOperand(i: TargetPos).setMBB(NewTarget); |
| 4672 | if (EnableBranchPrediction && isPredicatedNew(MI)) { |
| 4673 | NewOpcode = reversePrediction(Opcode: NewOpcode); |
| 4674 | } |
| 4675 | MI.setDesc(get(Opcode: NewOpcode)); |
| 4676 | return true; |
| 4677 | } |
| 4678 | |
| 4679 | void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const { |
| 4680 | /* +++ The code below is used to generate complete set of Hexagon Insn +++ */ |
| 4681 | MachineFunction::iterator A = MF.begin(); |
| 4682 | MachineBasicBlock &B = *A; |
| 4683 | MachineBasicBlock::iterator I = B.begin(); |
| 4684 | DebugLoc DL = I->getDebugLoc(); |
| 4685 | MachineInstr *NewMI; |
| 4686 | |
| 4687 | for (unsigned insn = TargetOpcode::GENERIC_OP_END+1; |
| 4688 | insn < Hexagon::INSTRUCTION_LIST_END; ++insn) { |
| 4689 | NewMI = BuildMI(BB&: B, I, MIMD: DL, MCID: get(Opcode: insn)); |
| 4690 | LLVM_DEBUG(dbgs() << "\n" |
| 4691 | << getName(NewMI->getOpcode()) |
| 4692 | << " Class: " << NewMI->getDesc().getSchedClass()); |
| 4693 | NewMI->eraseFromParent(); |
| 4694 | } |
| 4695 | /* --- The code above is used to generate complete set of Hexagon Insn --- */ |
| 4696 | } |
| 4697 | |
| 4698 | // inverts the predication logic. |
| 4699 | // p -> NotP |
| 4700 | // NotP -> P |
| 4701 | bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const { |
| 4702 | LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:" ; MI.dump()); |
| 4703 | MI.setDesc(get(Opcode: getInvertedPredicatedOpcode(Opc: MI.getOpcode()))); |
| 4704 | return true; |
| 4705 | } |
| 4706 | |
| 4707 | // Reverse the branch prediction. |
| 4708 | unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const { |
| 4709 | int PredRevOpcode = -1; |
| 4710 | if (isPredictedTaken(Opcode)) |
| 4711 | PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode); |
| 4712 | else |
| 4713 | PredRevOpcode = Hexagon::takenBranchPrediction(Opcode); |
| 4714 | assert(PredRevOpcode > 0); |
| 4715 | return PredRevOpcode; |
| 4716 | } |
| 4717 | |
| 4718 | // TODO: Add more rigorous validation. |
| 4719 | bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond) |
| 4720 | const { |
| 4721 | return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1)); |
| 4722 | } |
| 4723 | |
| 4724 | void HexagonInstrInfo:: |
| 4725 | setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const { |
| 4726 | assert(MIB->isBundle()); |
| 4727 | MachineOperand &Operand = MIB->getOperand(i: 0); |
| 4728 | if (Operand.isImm()) |
| 4729 | Operand.setImm(Operand.getImm() | memShufDisabledMask); |
| 4730 | else |
| 4731 | MIB->addOperand(Op: MachineOperand::CreateImm(Val: memShufDisabledMask)); |
| 4732 | } |
| 4733 | |
| 4734 | bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const { |
| 4735 | assert(MIB.isBundle()); |
| 4736 | const MachineOperand &Operand = MIB.getOperand(i: 0); |
| 4737 | return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0); |
| 4738 | } |
| 4739 | |
| 4740 | // Addressing mode relations. |
| 4741 | short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const { |
| 4742 | return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opcode: Opc) : Opc; |
| 4743 | } |
| 4744 | |
| 4745 | short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const { |
| 4746 | return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opcode: Opc) : Opc; |
| 4747 | } |
| 4748 | |
| 4749 | short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const { |
| 4750 | return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opcode: Opc) : Opc; |
| 4751 | } |
| 4752 | |
| 4753 | short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const { |
| 4754 | return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opcode: Opc) : Opc; |
| 4755 | } |
| 4756 | |
| 4757 | short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const { |
| 4758 | return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opcode: Opc) : Opc; |
| 4759 | } |
| 4760 | |
| 4761 | short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const { |
| 4762 | return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opcode: Opc) : Opc; |
| 4763 | } |
| 4764 | |
| 4765 | short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const { |
| 4766 | return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opcode: Opc) : Opc; |
| 4767 | } |
| 4768 | |
| 4769 | short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const { |
| 4770 | return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opcode: Opc) : Opc; |
| 4771 | } |
| 4772 | |
| 4773 | MCInst HexagonInstrInfo::getNop() const { |
| 4774 | static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop); |
| 4775 | |
| 4776 | return MCInstBuilder(Hexagon::BUNDLE) |
| 4777 | .addImm(Val: 0) |
| 4778 | .addInst(Val: &Nop); |
| 4779 | } |
| 4780 | |