1 | //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the Hexagon implementation of the TargetInstrInfo class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "HexagonInstrInfo.h" |
14 | #include "HexagonFrameLowering.h" |
15 | #include "HexagonHazardRecognizer.h" |
16 | #include "HexagonRegisterInfo.h" |
17 | #include "HexagonSubtarget.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/ADT/StringExtras.h" |
22 | #include "llvm/ADT/StringRef.h" |
23 | #include "llvm/CodeGen/DFAPacketizer.h" |
24 | #include "llvm/CodeGen/LiveIntervals.h" |
25 | #include "llvm/CodeGen/LivePhysRegs.h" |
26 | #include "llvm/CodeGen/MachineBasicBlock.h" |
27 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
28 | #include "llvm/CodeGen/MachineFrameInfo.h" |
29 | #include "llvm/CodeGen/MachineFunction.h" |
30 | #include "llvm/CodeGen/MachineInstr.h" |
31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
32 | #include "llvm/CodeGen/MachineInstrBundle.h" |
33 | #include "llvm/CodeGen/MachineMemOperand.h" |
34 | #include "llvm/CodeGen/MachineOperand.h" |
35 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
36 | #include "llvm/CodeGen/ScheduleDAG.h" |
37 | #include "llvm/CodeGen/TargetInstrInfo.h" |
38 | #include "llvm/CodeGen/TargetOpcodes.h" |
39 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
40 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
41 | #include "llvm/CodeGenTypes/MachineValueType.h" |
42 | #include "llvm/IR/DebugLoc.h" |
43 | #include "llvm/IR/GlobalVariable.h" |
44 | #include "llvm/MC/MCAsmInfo.h" |
45 | #include "llvm/MC/MCInstBuilder.h" |
46 | #include "llvm/MC/MCInstrDesc.h" |
47 | #include "llvm/MC/MCInstrItineraries.h" |
48 | #include "llvm/Support/BranchProbability.h" |
49 | #include "llvm/Support/CommandLine.h" |
50 | #include "llvm/Support/Debug.h" |
51 | #include "llvm/Support/ErrorHandling.h" |
52 | #include "llvm/Support/MathExtras.h" |
53 | #include "llvm/Support/raw_ostream.h" |
54 | #include "llvm/Target/TargetMachine.h" |
55 | #include <cassert> |
56 | #include <cctype> |
57 | #include <cstdint> |
58 | #include <cstring> |
59 | #include <iterator> |
60 | #include <optional> |
61 | #include <string> |
62 | #include <utility> |
63 | |
64 | using namespace llvm; |
65 | |
66 | #define DEBUG_TYPE "hexagon-instrinfo" |
67 | |
68 | #define GET_INSTRINFO_CTOR_DTOR |
69 | #define GET_INSTRMAP_INFO |
70 | #include "HexagonDepTimingClasses.h" |
71 | #include "HexagonGenDFAPacketizer.inc" |
72 | #include "HexagonGenInstrInfo.inc" |
73 | |
74 | cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm" , cl::Hidden, |
75 | cl::init(Val: false), cl::desc("Do not consider inline-asm a scheduling/" |
76 | "packetization boundary." )); |
77 | |
78 | static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction" , |
79 | cl::Hidden, cl::init(Val: true), cl::desc("Enable branch prediction" )); |
80 | |
81 | static cl::opt<bool> DisableNVSchedule( |
82 | "disable-hexagon-nv-schedule" , cl::Hidden, |
83 | cl::desc("Disable schedule adjustment for new value stores." )); |
84 | |
85 | static cl::opt<bool> EnableTimingClassLatency( |
86 | "enable-timing-class-latency" , cl::Hidden, cl::init(Val: false), |
87 | cl::desc("Enable timing class latency" )); |
88 | |
89 | static cl::opt<bool> EnableALUForwarding( |
90 | "enable-alu-forwarding" , cl::Hidden, cl::init(Val: true), |
91 | cl::desc("Enable vec alu forwarding" )); |
92 | |
93 | static cl::opt<bool> EnableACCForwarding( |
94 | "enable-acc-forwarding" , cl::Hidden, cl::init(Val: true), |
95 | cl::desc("Enable vec acc forwarding" )); |
96 | |
97 | static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large" , |
98 | cl::init(Val: true), cl::Hidden, |
99 | cl::desc("branch relax asm" )); |
100 | |
101 | static cl::opt<bool> |
102 | UseDFAHazardRec("dfa-hazard-rec" , cl::init(Val: true), cl::Hidden, |
103 | cl::desc("Use the DFA based hazard recognizer." )); |
104 | |
105 | /// Constants for Hexagon instructions. |
106 | const int Hexagon_MEMW_OFFSET_MAX = 4095; |
107 | const int Hexagon_MEMW_OFFSET_MIN = -4096; |
108 | const int Hexagon_MEMD_OFFSET_MAX = 8191; |
109 | const int Hexagon_MEMD_OFFSET_MIN = -8192; |
110 | const int Hexagon_MEMH_OFFSET_MAX = 2047; |
111 | const int Hexagon_MEMH_OFFSET_MIN = -2048; |
112 | const int Hexagon_MEMB_OFFSET_MAX = 1023; |
113 | const int Hexagon_MEMB_OFFSET_MIN = -1024; |
114 | const int Hexagon_ADDI_OFFSET_MAX = 32767; |
115 | const int Hexagon_ADDI_OFFSET_MIN = -32768; |
116 | |
117 | // Pin the vtable to this file. |
118 | void HexagonInstrInfo::anchor() {} |
119 | |
120 | HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) |
121 | : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), |
122 | Subtarget(ST) {} |
123 | |
124 | namespace llvm { |
125 | namespace HexagonFUnits { |
126 | bool isSlot0Only(unsigned units); |
127 | } |
128 | } |
129 | |
130 | static bool isIntRegForSubInst(Register Reg) { |
131 | return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || |
132 | (Reg >= Hexagon::R16 && Reg <= Hexagon::R23); |
133 | } |
134 | |
135 | static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI) { |
136 | return isIntRegForSubInst(Reg: HRI.getSubReg(Reg, Idx: Hexagon::isub_lo)) && |
137 | isIntRegForSubInst(Reg: HRI.getSubReg(Reg, Idx: Hexagon::isub_hi)); |
138 | } |
139 | |
140 | /// Calculate number of instructions excluding the debug instructions. |
141 | static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, |
142 | MachineBasicBlock::const_instr_iterator MIE) { |
143 | unsigned Count = 0; |
144 | for (; MIB != MIE; ++MIB) { |
145 | if (!MIB->isDebugInstr()) |
146 | ++Count; |
147 | } |
148 | return Count; |
149 | } |
150 | |
151 | // Check if the A2_tfrsi instruction is cheap or not. If the operand has |
152 | // to be constant-extendend it is not cheap since it occupies two slots |
153 | // in a packet. |
154 | bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { |
155 | // Enable the following steps only at Os/Oz |
156 | if (!(MI.getMF()->getFunction().hasOptSize())) |
157 | return MI.isAsCheapAsAMove(); |
158 | |
159 | if (MI.getOpcode() == Hexagon::A2_tfrsi) { |
160 | auto Op = MI.getOperand(i: 1); |
161 | // If the instruction has a global address as operand, it is not cheap |
162 | // since the operand will be constant extended. |
163 | if (Op.isGlobal()) |
164 | return false; |
165 | // If the instruction has an operand of size > 16bits, its will be |
166 | // const-extended and hence, it is not cheap. |
167 | if (Op.isImm()) { |
168 | int64_t Imm = Op.getImm(); |
169 | if (!isInt<16>(x: Imm)) |
170 | return false; |
171 | } |
172 | } |
173 | return MI.isAsCheapAsAMove(); |
174 | } |
175 | |
176 | // Do not sink floating point instructions that updates USR register. |
177 | // Example: |
178 | // feclearexcept |
179 | // F2_conv_w2sf |
180 | // fetestexcept |
181 | // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions. |
182 | // TODO: On some of these floating point instructions, USR is marked as Use. |
183 | // In reality, these instructions also Def the USR. If USR is marked as Def, |
184 | // some of the assumptions in assembler packetization are broken. |
185 | bool HexagonInstrInfo::shouldSink(const MachineInstr &MI) const { |
186 | // Assumption: A floating point instruction that reads the USR will write |
187 | // the USR as well. |
188 | if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Reg: Hexagon::USR)) |
189 | return false; |
190 | return true; |
191 | } |
192 | |
193 | /// Find the hardware loop instruction used to set-up the specified loop. |
194 | /// On Hexagon, we have two instructions used to set-up the hardware loop |
195 | /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions |
196 | /// to indicate the end of a loop. |
197 | MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB, |
198 | unsigned EndLoopOp, MachineBasicBlock *TargetBB, |
199 | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { |
200 | unsigned LOOPi; |
201 | unsigned LOOPr; |
202 | if (EndLoopOp == Hexagon::ENDLOOP0) { |
203 | LOOPi = Hexagon::J2_loop0i; |
204 | LOOPr = Hexagon::J2_loop0r; |
205 | } else { // EndLoopOp == Hexagon::EndLOOP1 |
206 | LOOPi = Hexagon::J2_loop1i; |
207 | LOOPr = Hexagon::J2_loop1r; |
208 | } |
209 | |
210 | // The loop set-up instruction will be in a predecessor block |
211 | for (MachineBasicBlock *PB : BB->predecessors()) { |
212 | // If this has been visited, already skip it. |
213 | if (!Visited.insert(Ptr: PB).second) |
214 | continue; |
215 | if (PB == BB) |
216 | continue; |
217 | for (MachineInstr &I : llvm::reverse(C: PB->instrs())) { |
218 | unsigned Opc = I.getOpcode(); |
219 | if (Opc == LOOPi || Opc == LOOPr) |
220 | return &I; |
221 | // We've reached a different loop, which means the loop01 has been |
222 | // removed. |
223 | if (Opc == EndLoopOp && I.getOperand(i: 0).getMBB() != TargetBB) |
224 | return nullptr; |
225 | } |
226 | // Check the predecessors for the LOOP instruction. |
227 | if (MachineInstr *Loop = findLoopInstr(BB: PB, EndLoopOp, TargetBB, Visited)) |
228 | return Loop; |
229 | } |
230 | return nullptr; |
231 | } |
232 | |
233 | /// Gather register def/uses from MI. |
234 | /// This treats possible (predicated) defs as actually happening ones |
235 | /// (conservatively). |
236 | static inline void parseOperands(const MachineInstr &MI, |
237 | SmallVectorImpl<Register> &Defs, SmallVectorImpl<Register> &Uses) { |
238 | Defs.clear(); |
239 | Uses.clear(); |
240 | |
241 | for (const MachineOperand &MO : MI.operands()) { |
242 | if (!MO.isReg()) |
243 | continue; |
244 | |
245 | Register Reg = MO.getReg(); |
246 | if (!Reg) |
247 | continue; |
248 | |
249 | if (MO.isUse()) |
250 | Uses.push_back(Elt: MO.getReg()); |
251 | |
252 | if (MO.isDef()) |
253 | Defs.push_back(Elt: MO.getReg()); |
254 | } |
255 | } |
256 | |
257 | // Position dependent, so check twice for swap. |
258 | static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) { |
259 | switch (Ga) { |
260 | case HexagonII::HSIG_None: |
261 | default: |
262 | return false; |
263 | case HexagonII::HSIG_L1: |
264 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); |
265 | case HexagonII::HSIG_L2: |
266 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
267 | Gb == HexagonII::HSIG_A); |
268 | case HexagonII::HSIG_S1: |
269 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
270 | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); |
271 | case HexagonII::HSIG_S2: |
272 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || |
273 | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || |
274 | Gb == HexagonII::HSIG_A); |
275 | case HexagonII::HSIG_A: |
276 | return (Gb == HexagonII::HSIG_A); |
277 | case HexagonII::HSIG_Compound: |
278 | return (Gb == HexagonII::HSIG_Compound); |
279 | } |
280 | return false; |
281 | } |
282 | |
283 | /// isLoadFromStackSlot - If the specified machine instruction is a direct |
284 | /// load from a stack slot, return the virtual or physical register number of |
285 | /// the destination along with the FrameIndex of the loaded stack slot. If |
286 | /// not, return 0. This predicate must return 0 if the instruction has |
287 | /// any side effects other than loading from the stack slot. |
288 | Register HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
289 | int &FrameIndex) const { |
290 | switch (MI.getOpcode()) { |
291 | default: |
292 | break; |
293 | case Hexagon::L2_loadri_io: |
294 | case Hexagon::L2_loadrd_io: |
295 | case Hexagon::V6_vL32b_ai: |
296 | case Hexagon::V6_vL32b_nt_ai: |
297 | case Hexagon::V6_vL32Ub_ai: |
298 | case Hexagon::LDriw_pred: |
299 | case Hexagon::LDriw_ctr: |
300 | case Hexagon::PS_vloadrq_ai: |
301 | case Hexagon::PS_vloadrw_ai: |
302 | case Hexagon::PS_vloadrw_nt_ai: { |
303 | const MachineOperand OpFI = MI.getOperand(i: 1); |
304 | if (!OpFI.isFI()) |
305 | return 0; |
306 | const MachineOperand OpOff = MI.getOperand(i: 2); |
307 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
308 | return 0; |
309 | FrameIndex = OpFI.getIndex(); |
310 | return MI.getOperand(i: 0).getReg(); |
311 | } |
312 | |
313 | case Hexagon::L2_ploadrit_io: |
314 | case Hexagon::L2_ploadrif_io: |
315 | case Hexagon::L2_ploadrdt_io: |
316 | case Hexagon::L2_ploadrdf_io: { |
317 | const MachineOperand OpFI = MI.getOperand(i: 2); |
318 | if (!OpFI.isFI()) |
319 | return 0; |
320 | const MachineOperand OpOff = MI.getOperand(i: 3); |
321 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
322 | return 0; |
323 | FrameIndex = OpFI.getIndex(); |
324 | return MI.getOperand(i: 0).getReg(); |
325 | } |
326 | } |
327 | |
328 | return 0; |
329 | } |
330 | |
331 | /// isStoreToStackSlot - If the specified machine instruction is a direct |
332 | /// store to a stack slot, return the virtual or physical register number of |
333 | /// the source reg along with the FrameIndex of the loaded stack slot. If |
334 | /// not, return 0. This predicate must return 0 if the instruction has |
335 | /// any side effects other than storing to the stack slot. |
336 | Register HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
337 | int &FrameIndex) const { |
338 | switch (MI.getOpcode()) { |
339 | default: |
340 | break; |
341 | case Hexagon::S2_storerb_io: |
342 | case Hexagon::S2_storerh_io: |
343 | case Hexagon::S2_storeri_io: |
344 | case Hexagon::S2_storerd_io: |
345 | case Hexagon::V6_vS32b_ai: |
346 | case Hexagon::V6_vS32Ub_ai: |
347 | case Hexagon::STriw_pred: |
348 | case Hexagon::STriw_ctr: |
349 | case Hexagon::PS_vstorerq_ai: |
350 | case Hexagon::PS_vstorerw_ai: { |
351 | const MachineOperand &OpFI = MI.getOperand(i: 0); |
352 | if (!OpFI.isFI()) |
353 | return 0; |
354 | const MachineOperand &OpOff = MI.getOperand(i: 1); |
355 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
356 | return 0; |
357 | FrameIndex = OpFI.getIndex(); |
358 | return MI.getOperand(i: 2).getReg(); |
359 | } |
360 | |
361 | case Hexagon::S2_pstorerbt_io: |
362 | case Hexagon::S2_pstorerbf_io: |
363 | case Hexagon::S2_pstorerht_io: |
364 | case Hexagon::S2_pstorerhf_io: |
365 | case Hexagon::S2_pstorerit_io: |
366 | case Hexagon::S2_pstorerif_io: |
367 | case Hexagon::S2_pstorerdt_io: |
368 | case Hexagon::S2_pstorerdf_io: { |
369 | const MachineOperand &OpFI = MI.getOperand(i: 1); |
370 | if (!OpFI.isFI()) |
371 | return 0; |
372 | const MachineOperand &OpOff = MI.getOperand(i: 2); |
373 | if (!OpOff.isImm() || OpOff.getImm() != 0) |
374 | return 0; |
375 | FrameIndex = OpFI.getIndex(); |
376 | return MI.getOperand(i: 3).getReg(); |
377 | } |
378 | } |
379 | |
380 | return 0; |
381 | } |
382 | |
383 | /// This function checks if the instruction or bundle of instructions |
384 | /// has load from stack slot and returns frameindex and machine memory |
385 | /// operand of that instruction if true. |
386 | bool HexagonInstrInfo::hasLoadFromStackSlot( |
387 | const MachineInstr &MI, |
388 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { |
389 | if (MI.isBundle()) { |
390 | const MachineBasicBlock *MBB = MI.getParent(); |
391 | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); |
392 | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) |
393 | if (TargetInstrInfo::hasLoadFromStackSlot(MI: *MII, Accesses)) |
394 | return true; |
395 | return false; |
396 | } |
397 | |
398 | return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses); |
399 | } |
400 | |
401 | /// This function checks if the instruction or bundle of instructions |
402 | /// has store to stack slot and returns frameindex and machine memory |
403 | /// operand of that instruction if true. |
404 | bool HexagonInstrInfo::hasStoreToStackSlot( |
405 | const MachineInstr &MI, |
406 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { |
407 | if (MI.isBundle()) { |
408 | const MachineBasicBlock *MBB = MI.getParent(); |
409 | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); |
410 | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) |
411 | if (TargetInstrInfo::hasStoreToStackSlot(MI: *MII, Accesses)) |
412 | return true; |
413 | return false; |
414 | } |
415 | |
416 | return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses); |
417 | } |
418 | |
419 | /// This function can analyze one/two way branching only and should (mostly) be |
420 | /// called by target independent side. |
421 | /// First entry is always the opcode of the branching instruction, except when |
422 | /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a |
423 | /// BB with only unconditional jump. Subsequent entries depend upon the opcode, |
424 | /// e.g. Jump_c p will have |
425 | /// Cond[0] = Jump_c |
426 | /// Cond[1] = p |
427 | /// HW-loop ENDLOOP: |
428 | /// Cond[0] = ENDLOOP |
429 | /// Cond[1] = MBB |
430 | /// New value jump: |
431 | /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode |
432 | /// Cond[1] = R |
433 | /// Cond[2] = Imm |
434 | bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
435 | MachineBasicBlock *&TBB, |
436 | MachineBasicBlock *&FBB, |
437 | SmallVectorImpl<MachineOperand> &Cond, |
438 | bool AllowModify) const { |
439 | TBB = nullptr; |
440 | FBB = nullptr; |
441 | Cond.clear(); |
442 | |
443 | // If the block has no terminators, it just falls into the block after it. |
444 | MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
445 | if (I == MBB.instr_begin()) |
446 | return false; |
447 | |
448 | // A basic block may looks like this: |
449 | // |
450 | // [ insn |
451 | // EH_LABEL |
452 | // insn |
453 | // insn |
454 | // insn |
455 | // EH_LABEL |
456 | // insn ] |
457 | // |
458 | // It has two succs but does not have a terminator |
459 | // Don't know how to handle it. |
460 | do { |
461 | --I; |
462 | if (I->isEHLabel()) |
463 | // Don't analyze EH branches. |
464 | return true; |
465 | } while (I != MBB.instr_begin()); |
466 | |
467 | I = MBB.instr_end(); |
468 | --I; |
469 | |
470 | while (I->isDebugInstr()) { |
471 | if (I == MBB.instr_begin()) |
472 | return false; |
473 | --I; |
474 | } |
475 | |
476 | bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && |
477 | I->getOperand(i: 0).isMBB(); |
478 | // Delete the J2_jump if it's equivalent to a fall-through. |
479 | if (AllowModify && JumpToBlock && |
480 | MBB.isLayoutSuccessor(MBB: I->getOperand(i: 0).getMBB())) { |
481 | LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n" ;); |
482 | I->eraseFromParent(); |
483 | I = MBB.instr_end(); |
484 | if (I == MBB.instr_begin()) |
485 | return false; |
486 | --I; |
487 | } |
488 | if (!isUnpredicatedTerminator(MI: *I)) |
489 | return false; |
490 | |
491 | // Get the last instruction in the block. |
492 | MachineInstr *LastInst = &*I; |
493 | MachineInstr *SecondLastInst = nullptr; |
494 | // Find one more terminator if present. |
495 | while (true) { |
496 | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(MI: *I)) { |
497 | if (!SecondLastInst) |
498 | SecondLastInst = &*I; |
499 | else |
500 | // This is a third branch. |
501 | return true; |
502 | } |
503 | if (I == MBB.instr_begin()) |
504 | break; |
505 | --I; |
506 | } |
507 | |
508 | int LastOpcode = LastInst->getOpcode(); |
509 | int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; |
510 | // If the branch target is not a basic block, it could be a tail call. |
511 | // (It is, if the target is a function.) |
512 | if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(i: 0).isMBB()) |
513 | return true; |
514 | if (SecLastOpcode == Hexagon::J2_jump && |
515 | !SecondLastInst->getOperand(i: 0).isMBB()) |
516 | return true; |
517 | |
518 | bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(Opcode: LastOpcode); |
519 | bool LastOpcodeHasNVJump = isNewValueJump(MI: *LastInst); |
520 | |
521 | if (LastOpcodeHasJMP_c && !LastInst->getOperand(i: 1).isMBB()) |
522 | return true; |
523 | |
524 | // If there is only one terminator instruction, process it. |
525 | if (LastInst && !SecondLastInst) { |
526 | if (LastOpcode == Hexagon::J2_jump) { |
527 | TBB = LastInst->getOperand(i: 0).getMBB(); |
528 | return false; |
529 | } |
530 | if (isEndLoopN(Opcode: LastOpcode)) { |
531 | TBB = LastInst->getOperand(i: 0).getMBB(); |
532 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: LastInst->getOpcode())); |
533 | Cond.push_back(Elt: LastInst->getOperand(i: 0)); |
534 | return false; |
535 | } |
536 | if (LastOpcodeHasJMP_c) { |
537 | TBB = LastInst->getOperand(i: 1).getMBB(); |
538 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: LastInst->getOpcode())); |
539 | Cond.push_back(Elt: LastInst->getOperand(i: 0)); |
540 | return false; |
541 | } |
542 | // Only supporting rr/ri versions of new-value jumps. |
543 | if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { |
544 | TBB = LastInst->getOperand(i: 2).getMBB(); |
545 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: LastInst->getOpcode())); |
546 | Cond.push_back(Elt: LastInst->getOperand(i: 0)); |
547 | Cond.push_back(Elt: LastInst->getOperand(i: 1)); |
548 | return false; |
549 | } |
550 | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) |
551 | << " with one jump\n" ;); |
552 | // Otherwise, don't know what this is. |
553 | return true; |
554 | } |
555 | |
556 | bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(Opcode: SecLastOpcode); |
557 | bool SecLastOpcodeHasNVJump = isNewValueJump(MI: *SecondLastInst); |
558 | if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { |
559 | if (!SecondLastInst->getOperand(i: 1).isMBB()) |
560 | return true; |
561 | TBB = SecondLastInst->getOperand(i: 1).getMBB(); |
562 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: SecondLastInst->getOpcode())); |
563 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 0)); |
564 | FBB = LastInst->getOperand(i: 0).getMBB(); |
565 | return false; |
566 | } |
567 | |
568 | // Only supporting rr/ri versions of new-value jumps. |
569 | if (SecLastOpcodeHasNVJump && |
570 | (SecondLastInst->getNumExplicitOperands() == 3) && |
571 | (LastOpcode == Hexagon::J2_jump)) { |
572 | TBB = SecondLastInst->getOperand(i: 2).getMBB(); |
573 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: SecondLastInst->getOpcode())); |
574 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 0)); |
575 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 1)); |
576 | FBB = LastInst->getOperand(i: 0).getMBB(); |
577 | return false; |
578 | } |
579 | |
580 | // If the block ends with two Hexagon:JMPs, handle it. The second one is not |
581 | // executed, so remove it. |
582 | if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { |
583 | TBB = SecondLastInst->getOperand(i: 0).getMBB(); |
584 | I = LastInst->getIterator(); |
585 | if (AllowModify) |
586 | I->eraseFromParent(); |
587 | return false; |
588 | } |
589 | |
590 | // If the block ends with an ENDLOOP, and J2_jump, handle it. |
591 | if (isEndLoopN(Opcode: SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { |
592 | TBB = SecondLastInst->getOperand(i: 0).getMBB(); |
593 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: SecondLastInst->getOpcode())); |
594 | Cond.push_back(Elt: SecondLastInst->getOperand(i: 0)); |
595 | FBB = LastInst->getOperand(i: 0).getMBB(); |
596 | return false; |
597 | } |
598 | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB) |
599 | << " with two jumps" ;); |
600 | // Otherwise, can't handle this. |
601 | return true; |
602 | } |
603 | |
604 | unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB, |
605 | int *BytesRemoved) const { |
606 | assert(!BytesRemoved && "code size not handled" ); |
607 | |
608 | LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB)); |
609 | MachineBasicBlock::iterator I = MBB.end(); |
610 | unsigned Count = 0; |
611 | while (I != MBB.begin()) { |
612 | --I; |
613 | if (I->isDebugInstr()) |
614 | continue; |
615 | // Only removing branches from end of MBB. |
616 | if (!I->isBranch()) |
617 | return Count; |
618 | if (Count && (I->getOpcode() == Hexagon::J2_jump)) |
619 | llvm_unreachable("Malformed basic block: unconditional branch not last" ); |
620 | MBB.erase(I: &MBB.back()); |
621 | I = MBB.end(); |
622 | ++Count; |
623 | } |
624 | return Count; |
625 | } |
626 | |
627 | unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB, |
628 | MachineBasicBlock *TBB, |
629 | MachineBasicBlock *FBB, |
630 | ArrayRef<MachineOperand> Cond, |
631 | const DebugLoc &DL, |
632 | int *BytesAdded) const { |
633 | unsigned BOpc = Hexagon::J2_jump; |
634 | unsigned BccOpc = Hexagon::J2_jumpt; |
635 | assert(validateBranchCond(Cond) && "Invalid branching condition" ); |
636 | assert(TBB && "insertBranch must not be told to insert a fallthrough" ); |
637 | assert(!BytesAdded && "code size not handled" ); |
638 | |
639 | // Check if reverseBranchCondition has asked to reverse this branch |
640 | // If we want to reverse the branch an odd number of times, we want |
641 | // J2_jumpf. |
642 | if (!Cond.empty() && Cond[0].isImm()) |
643 | BccOpc = Cond[0].getImm(); |
644 | |
645 | if (!FBB) { |
646 | if (Cond.empty()) { |
647 | // Due to a bug in TailMerging/CFG Optimization, we need to add a |
648 | // special case handling of a predicated jump followed by an |
649 | // unconditional jump. If not, Tail Merging and CFG Optimization go |
650 | // into an infinite loop. |
651 | MachineBasicBlock *NewTBB, *NewFBB; |
652 | SmallVector<MachineOperand, 4> Cond; |
653 | auto Term = MBB.getFirstTerminator(); |
654 | if (Term != MBB.end() && isPredicated(MI: *Term) && |
655 | !analyzeBranch(MBB, TBB&: NewTBB, FBB&: NewFBB, Cond, AllowModify: false) && |
656 | MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) { |
657 | reverseBranchCondition(Cond); |
658 | removeBranch(MBB); |
659 | return insertBranch(MBB, TBB, FBB: nullptr, Cond, DL); |
660 | } |
661 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BOpc)).addMBB(MBB: TBB); |
662 | } else if (isEndLoopN(Opcode: Cond[0].getImm())) { |
663 | int EndLoopOp = Cond[0].getImm(); |
664 | assert(Cond[1].isMBB()); |
665 | // Since we're adding an ENDLOOP, there better be a LOOP instruction. |
666 | // Check for it, and change the BB target if needed. |
667 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; |
668 | MachineInstr *Loop = findLoopInstr(BB: TBB, EndLoopOp, TargetBB: Cond[1].getMBB(), |
669 | Visited&: VisitedBBs); |
670 | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP" ); |
671 | Loop->getOperand(i: 0).setMBB(TBB); |
672 | // Add the ENDLOOP after the finding the LOOP0. |
673 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: EndLoopOp)).addMBB(MBB: TBB); |
674 | } else if (isNewValueJump(Opcode: Cond[0].getImm())) { |
675 | assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump" ); |
676 | // New value jump |
677 | // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) |
678 | // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) |
679 | unsigned Flags1 = getUndefRegState(B: Cond[1].isUndef()); |
680 | LLVM_DEBUG(dbgs() << "\nInserting NVJump for " |
681 | << printMBBReference(MBB);); |
682 | if (Cond[2].isReg()) { |
683 | unsigned Flags2 = getUndefRegState(B: Cond[2].isUndef()); |
684 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: Cond[1].getReg(), flags: Flags1). |
685 | addReg(RegNo: Cond[2].getReg(), flags: Flags2).addMBB(MBB: TBB); |
686 | } else if(Cond[2].isImm()) { |
687 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: Cond[1].getReg(), flags: Flags1). |
688 | addImm(Val: Cond[2].getImm()).addMBB(MBB: TBB); |
689 | } else |
690 | llvm_unreachable("Invalid condition for branching" ); |
691 | } else { |
692 | assert((Cond.size() == 2) && "Malformed cond vector" ); |
693 | const MachineOperand &RO = Cond[1]; |
694 | unsigned Flags = getUndefRegState(B: RO.isUndef()); |
695 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: RO.getReg(), flags: Flags).addMBB(MBB: TBB); |
696 | } |
697 | return 1; |
698 | } |
699 | assert((!Cond.empty()) && |
700 | "Cond. cannot be empty when multiple branchings are required" ); |
701 | assert((!isNewValueJump(Cond[0].getImm())) && |
702 | "NV-jump cannot be inserted with another branch" ); |
703 | // Special case for hardware loops. The condition is a basic block. |
704 | if (isEndLoopN(Opcode: Cond[0].getImm())) { |
705 | int EndLoopOp = Cond[0].getImm(); |
706 | assert(Cond[1].isMBB()); |
707 | // Since we're adding an ENDLOOP, there better be a LOOP instruction. |
708 | // Check for it, and change the BB target if needed. |
709 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; |
710 | MachineInstr *Loop = findLoopInstr(BB: TBB, EndLoopOp, TargetBB: Cond[1].getMBB(), |
711 | Visited&: VisitedBBs); |
712 | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP" ); |
713 | Loop->getOperand(i: 0).setMBB(TBB); |
714 | // Add the ENDLOOP after the finding the LOOP0. |
715 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: EndLoopOp)).addMBB(MBB: TBB); |
716 | } else { |
717 | const MachineOperand &RO = Cond[1]; |
718 | unsigned Flags = getUndefRegState(B: RO.isUndef()); |
719 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BccOpc)).addReg(RegNo: RO.getReg(), flags: Flags).addMBB(MBB: TBB); |
720 | } |
721 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: BOpc)).addMBB(MBB: FBB); |
722 | |
723 | return 2; |
724 | } |
725 | |
726 | namespace { |
727 | class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { |
728 | MachineInstr *Loop, *EndLoop; |
729 | MachineFunction *MF; |
730 | const HexagonInstrInfo *TII; |
731 | int64_t TripCount; |
732 | Register LoopCount; |
733 | DebugLoc DL; |
734 | |
735 | public: |
736 | HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop) |
737 | : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()), |
738 | TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()), |
739 | DL(Loop->getDebugLoc()) { |
740 | // Inspect the Loop instruction up-front, as it may be deleted when we call |
741 | // createTripCountGreaterCondition. |
742 | TripCount = Loop->getOpcode() == Hexagon::J2_loop0r |
743 | ? -1 |
744 | : Loop->getOperand(i: 1).getImm(); |
745 | if (TripCount == -1) |
746 | LoopCount = Loop->getOperand(i: 1).getReg(); |
747 | } |
748 | |
749 | bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { |
750 | // Only ignore the terminator. |
751 | return MI == EndLoop; |
752 | } |
753 | |
754 | std::optional<bool> createTripCountGreaterCondition( |
755 | int TC, MachineBasicBlock &MBB, |
756 | SmallVectorImpl<MachineOperand> &Cond) override { |
757 | if (TripCount == -1) { |
758 | // Check if we're done with the loop. |
759 | Register Done = TII->createVR(MF, VT: MVT::i1); |
760 | MachineInstr *NewCmp = BuildMI(BB: &MBB, MIMD: DL, |
761 | MCID: TII->get(Opcode: Hexagon::C2_cmpgtui), DestReg: Done) |
762 | .addReg(RegNo: LoopCount) |
763 | .addImm(Val: TC); |
764 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: Hexagon::J2_jumpf)); |
765 | Cond.push_back(Elt: NewCmp->getOperand(i: 0)); |
766 | return {}; |
767 | } |
768 | |
769 | return TripCount > TC; |
770 | } |
771 | |
772 | void (MachineBasicBlock *) override { |
773 | NewPreheader->splice(Where: NewPreheader->getFirstTerminator(), Other: Loop->getParent(), |
774 | From: Loop); |
775 | } |
776 | |
777 | void adjustTripCount(int TripCountAdjust) override { |
778 | // If the loop trip count is a compile-time value, then just change the |
779 | // value. |
780 | if (Loop->getOpcode() == Hexagon::J2_loop0i || |
781 | Loop->getOpcode() == Hexagon::J2_loop1i) { |
782 | int64_t TripCount = Loop->getOperand(i: 1).getImm() + TripCountAdjust; |
783 | assert(TripCount > 0 && "Can't create an empty or negative loop!" ); |
784 | Loop->getOperand(i: 1).setImm(TripCount); |
785 | return; |
786 | } |
787 | |
788 | // The loop trip count is a run-time value. We generate code to subtract |
789 | // one from the trip count, and update the loop instruction. |
790 | Register LoopCount = Loop->getOperand(i: 1).getReg(); |
791 | Register NewLoopCount = TII->createVR(MF, VT: MVT::i32); |
792 | BuildMI(BB&: *Loop->getParent(), I: Loop, MIMD: Loop->getDebugLoc(), |
793 | MCID: TII->get(Opcode: Hexagon::A2_addi), DestReg: NewLoopCount) |
794 | .addReg(RegNo: LoopCount) |
795 | .addImm(Val: TripCountAdjust); |
796 | Loop->getOperand(i: 1).setReg(NewLoopCount); |
797 | } |
798 | |
799 | void disposed(LiveIntervals *LIS) override { |
800 | if (LIS) |
801 | LIS->RemoveMachineInstrFromMaps(MI&: *Loop); |
802 | Loop->eraseFromParent(); |
803 | } |
804 | }; |
805 | } // namespace |
806 | |
807 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> |
808 | HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { |
809 | // We really "analyze" only hardware loops right now. |
810 | MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); |
811 | |
812 | if (I != LoopBB->end() && isEndLoopN(Opcode: I->getOpcode())) { |
813 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; |
814 | MachineInstr *LoopInst = findLoopInstr( |
815 | BB: LoopBB, EndLoopOp: I->getOpcode(), TargetBB: I->getOperand(i: 0).getMBB(), Visited&: VisitedBBs); |
816 | if (LoopInst) |
817 | return std::make_unique<HexagonPipelinerLoopInfo>(args&: LoopInst, args: &*I); |
818 | } |
819 | return nullptr; |
820 | } |
821 | |
822 | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, |
823 | unsigned NumCycles, unsigned , |
824 | BranchProbability Probability) const { |
825 | return nonDbgBBSize(BB: &MBB) <= 3; |
826 | } |
827 | |
828 | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, |
829 | unsigned NumTCycles, unsigned , MachineBasicBlock &FMBB, |
830 | unsigned NumFCycles, unsigned , BranchProbability Probability) |
831 | const { |
832 | return nonDbgBBSize(BB: &TMBB) <= 3 && nonDbgBBSize(BB: &FMBB) <= 3; |
833 | } |
834 | |
835 | bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, |
836 | unsigned NumInstrs, BranchProbability Probability) const { |
837 | return NumInstrs <= 4; |
838 | } |
839 | |
840 | static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { |
841 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; |
842 | const MachineBasicBlock &B = *MI.getParent(); |
843 | Regs.addLiveIns(MBB: B); |
844 | auto E = MachineBasicBlock::const_iterator(MI.getIterator()); |
845 | for (auto I = B.begin(); I != E; ++I) { |
846 | Clobbers.clear(); |
847 | Regs.stepForward(MI: *I, Clobbers); |
848 | } |
849 | } |
850 | |
851 | static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { |
852 | const MachineBasicBlock &B = *MI.getParent(); |
853 | Regs.addLiveOuts(MBB: B); |
854 | auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse(); |
855 | for (auto I = B.rbegin(); I != E; ++I) |
856 | Regs.stepBackward(MI: *I); |
857 | } |
858 | |
859 | void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
860 | MachineBasicBlock::iterator I, |
861 | const DebugLoc &DL, Register DestReg, |
862 | Register SrcReg, bool KillSrc, |
863 | bool RenamableDest, |
864 | bool RenamableSrc) const { |
865 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
866 | unsigned KillFlag = getKillRegState(B: KillSrc); |
867 | |
868 | if (Hexagon::IntRegsRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
869 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfr), DestReg) |
870 | .addReg(RegNo: SrcReg, flags: KillFlag); |
871 | return; |
872 | } |
873 | if (Hexagon::DoubleRegsRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
874 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrp), DestReg) |
875 | .addReg(RegNo: SrcReg, flags: KillFlag); |
876 | return; |
877 | } |
878 | if (Hexagon::PredRegsRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
879 | // Map Pd = Ps to Pd = or(Ps, Ps). |
880 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_or), DestReg) |
881 | .addReg(RegNo: SrcReg).addReg(RegNo: SrcReg, flags: KillFlag); |
882 | return; |
883 | } |
884 | if (Hexagon::CtrRegsRegClass.contains(Reg: DestReg) && |
885 | Hexagon::IntRegsRegClass.contains(Reg: SrcReg)) { |
886 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrrcr), DestReg) |
887 | .addReg(RegNo: SrcReg, flags: KillFlag); |
888 | return; |
889 | } |
890 | if (Hexagon::IntRegsRegClass.contains(Reg: DestReg) && |
891 | Hexagon::CtrRegsRegClass.contains(Reg: SrcReg)) { |
892 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrcrr), DestReg) |
893 | .addReg(RegNo: SrcReg, flags: KillFlag); |
894 | return; |
895 | } |
896 | if (Hexagon::ModRegsRegClass.contains(Reg: DestReg) && |
897 | Hexagon::IntRegsRegClass.contains(Reg: SrcReg)) { |
898 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrrcr), DestReg) |
899 | .addReg(RegNo: SrcReg, flags: KillFlag); |
900 | return; |
901 | } |
902 | if (Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && |
903 | Hexagon::IntRegsRegClass.contains(Reg: DestReg)) { |
904 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_tfrpr), DestReg) |
905 | .addReg(RegNo: SrcReg, flags: KillFlag); |
906 | return; |
907 | } |
908 | if (Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
909 | Hexagon::PredRegsRegClass.contains(Reg: DestReg)) { |
910 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_tfrrp), DestReg) |
911 | .addReg(RegNo: SrcReg, flags: KillFlag); |
912 | return; |
913 | } |
914 | if (Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && |
915 | Hexagon::IntRegsRegClass.contains(Reg: DestReg)) { |
916 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::C2_tfrpr), DestReg) |
917 | .addReg(RegNo: SrcReg, flags: KillFlag); |
918 | return; |
919 | } |
920 | if (Hexagon::HvxVRRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
921 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vassign), DestReg). |
922 | addReg(RegNo: SrcReg, flags: KillFlag); |
923 | return; |
924 | } |
925 | if (Hexagon::HvxWRRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
926 | LivePhysRegs LiveAtMI(HRI); |
927 | getLiveInRegsAt(Regs&: LiveAtMI, MI: *I); |
928 | Register SrcLo = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo); |
929 | Register SrcHi = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi); |
930 | unsigned UndefLo = getUndefRegState(B: !LiveAtMI.contains(Reg: SrcLo)); |
931 | unsigned UndefHi = getUndefRegState(B: !LiveAtMI.contains(Reg: SrcHi)); |
932 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vcombine), DestReg) |
933 | .addReg(RegNo: SrcHi, flags: KillFlag | UndefHi) |
934 | .addReg(RegNo: SrcLo, flags: KillFlag | UndefLo); |
935 | return; |
936 | } |
937 | if (Hexagon::HvxQRRegClass.contains(Reg1: SrcReg, Reg2: DestReg)) { |
938 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::V6_pred_and), DestReg) |
939 | .addReg(RegNo: SrcReg) |
940 | .addReg(RegNo: SrcReg, flags: KillFlag); |
941 | return; |
942 | } |
943 | if (Hexagon::HvxQRRegClass.contains(Reg: SrcReg) && |
944 | Hexagon::HvxVRRegClass.contains(Reg: DestReg)) { |
945 | llvm_unreachable("Unimplemented pred to vec" ); |
946 | return; |
947 | } |
948 | if (Hexagon::HvxQRRegClass.contains(Reg: DestReg) && |
949 | Hexagon::HvxVRRegClass.contains(Reg: SrcReg)) { |
950 | llvm_unreachable("Unimplemented vec to pred" ); |
951 | return; |
952 | } |
953 | |
954 | #ifndef NDEBUG |
955 | // Show the invalid registers to ease debugging. |
956 | dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": " |
957 | << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n'; |
958 | #endif |
959 | llvm_unreachable("Unimplemented" ); |
960 | } |
961 | |
962 | void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
963 | MachineBasicBlock::iterator I, |
964 | Register SrcReg, bool isKill, int FI, |
965 | const TargetRegisterClass *RC, |
966 | const TargetRegisterInfo *TRI, |
967 | Register VReg, |
968 | MachineInstr::MIFlag Flags) const { |
969 | DebugLoc DL = MBB.findDebugLoc(MBBI: I); |
970 | MachineFunction &MF = *MBB.getParent(); |
971 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
972 | unsigned KillFlag = getKillRegState(B: isKill); |
973 | |
974 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
975 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), F: MachineMemOperand::MOStore, |
976 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
977 | |
978 | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { |
979 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::S2_storeri_io)) |
980 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
981 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
982 | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { |
983 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::S2_storerd_io)) |
984 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
985 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
986 | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { |
987 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::STriw_pred)) |
988 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
989 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
990 | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { |
991 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::STriw_ctr)) |
992 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
993 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
994 | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { |
995 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vstorerq_ai)) |
996 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
997 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
998 | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { |
999 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vstorerv_ai)) |
1000 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
1001 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
1002 | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { |
1003 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vstorerw_ai)) |
1004 | .addFrameIndex(Idx: FI).addImm(Val: 0) |
1005 | .addReg(RegNo: SrcReg, flags: KillFlag).addMemOperand(MMO); |
1006 | } else { |
1007 | llvm_unreachable("Unimplemented" ); |
1008 | } |
1009 | } |
1010 | |
1011 | void HexagonInstrInfo::loadRegFromStackSlot( |
1012 | MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, |
1013 | int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, |
1014 | Register VReg, MachineInstr::MIFlag Flags) const { |
1015 | DebugLoc DL = MBB.findDebugLoc(MBBI: I); |
1016 | MachineFunction &MF = *MBB.getParent(); |
1017 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
1018 | |
1019 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
1020 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), F: MachineMemOperand::MOLoad, |
1021 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
1022 | |
1023 | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { |
1024 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::L2_loadri_io), DestReg) |
1025 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1026 | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { |
1027 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::L2_loadrd_io), DestReg) |
1028 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1029 | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { |
1030 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::LDriw_pred), DestReg) |
1031 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1032 | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { |
1033 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::LDriw_ctr), DestReg) |
1034 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1035 | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { |
1036 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vloadrq_ai), DestReg) |
1037 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1038 | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { |
1039 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vloadrv_ai), DestReg) |
1040 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1041 | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { |
1042 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Hexagon::PS_vloadrw_ai), DestReg) |
1043 | .addFrameIndex(Idx: FI).addImm(Val: 0).addMemOperand(MMO); |
1044 | } else { |
1045 | llvm_unreachable("Can't store this register to stack slot" ); |
1046 | } |
1047 | } |
1048 | |
1049 | /// expandPostRAPseudo - This function is called for all pseudo instructions |
1050 | /// that remain after register allocation. Many pseudo instructions are |
1051 | /// created to help register allocation. This is the place to convert them |
1052 | /// into real instructions. The target can edit MI in place, or it can insert |
1053 | /// new instructions and erase MI. The function should return true if |
1054 | /// anything was changed. |
1055 | bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
1056 | MachineBasicBlock &MBB = *MI.getParent(); |
1057 | MachineFunction &MF = *MBB.getParent(); |
1058 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
1059 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
1060 | LivePhysRegs LiveIn(HRI), LiveOut(HRI); |
1061 | DebugLoc DL = MI.getDebugLoc(); |
1062 | unsigned Opc = MI.getOpcode(); |
1063 | |
1064 | auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) { |
1065 | Register Mx = MI.getOperand(i: MxOp).getReg(); |
1066 | Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1); |
1067 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrrcr), DestReg: CSx) |
1068 | .add(MO: MI.getOperand(i: (HasImm ? 5 : 4))); |
1069 | auto MIB = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Opc)).add(MO: MI.getOperand(i: 0)) |
1070 | .add(MO: MI.getOperand(i: 1)).add(MO: MI.getOperand(i: 2)).add(MO: MI.getOperand(i: 3)); |
1071 | if (HasImm) |
1072 | MIB.add(MO: MI.getOperand(i: 4)); |
1073 | MIB.addReg(RegNo: CSx, flags: RegState::Implicit); |
1074 | MBB.erase(I: MI); |
1075 | return true; |
1076 | }; |
1077 | |
1078 | auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) { |
1079 | if (MI.memoperands().empty()) |
1080 | return false; |
1081 | return all_of(Range: MI.memoperands(), P: [NeedAlign](const MachineMemOperand *MMO) { |
1082 | return MMO->getAlign() >= NeedAlign; |
1083 | }); |
1084 | }; |
1085 | |
1086 | switch (Opc) { |
1087 | case Hexagon::PS_call_instrprof_custom: { |
1088 | auto Op0 = MI.getOperand(i: 0); |
1089 | assert(Op0.isGlobal() && |
1090 | "First operand must be a global containing handler name." ); |
1091 | const GlobalValue *NameVar = Op0.getGlobal(); |
1092 | const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: NameVar); |
1093 | auto *Arr = cast<ConstantDataArray>(Val: GV->getInitializer()); |
1094 | StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); |
1095 | |
1096 | MachineOperand &Op1 = MI.getOperand(i: 1); |
1097 | // Set R0 with the imm value to be passed to the custom profiling handler. |
1098 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrsi), DestReg: Hexagon::R0) |
1099 | .addImm(Val: Op1.getImm()); |
1100 | // The call to the custom handler is being treated as a special one as the |
1101 | // callee is responsible for saving and restoring all the registers |
1102 | // (including caller saved registers) it needs to modify. This is |
1103 | // done to reduce the impact of instrumentation on the code being |
1104 | // instrumented/profiled. |
1105 | // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers |
1106 | // are in the Def list of the Hexagon::PS_call_instrprof_custom and |
1107 | // therefore will be handled appropriately duing register allocation. |
1108 | |
1109 | // TODO: It may be a good idea to add a separate pseudo instruction for |
1110 | // static relocation which doesn't need to reserve r14, r15 and r28. |
1111 | |
1112 | auto MIB = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::J2_call)) |
1113 | .addUse(RegNo: Hexagon::R0, Flags: RegState::Implicit|RegState::InternalRead) |
1114 | .addDef(RegNo: Hexagon::R29, Flags: RegState::ImplicitDefine) |
1115 | .addDef(RegNo: Hexagon::R30, Flags: RegState::ImplicitDefine) |
1116 | .addDef(RegNo: Hexagon::R14, Flags: RegState::ImplicitDefine) |
1117 | .addDef(RegNo: Hexagon::R15, Flags: RegState::ImplicitDefine) |
1118 | .addDef(RegNo: Hexagon::R28, Flags: RegState::ImplicitDefine); |
1119 | const char *cstr = MF.createExternalSymbolName(Name: NameStr); |
1120 | MIB.addExternalSymbol(FnName: cstr); |
1121 | MBB.erase(I: MI); |
1122 | return true; |
1123 | } |
1124 | case TargetOpcode::COPY: { |
1125 | MachineOperand &MD = MI.getOperand(i: 0); |
1126 | MachineOperand &MS = MI.getOperand(i: 1); |
1127 | MachineBasicBlock::iterator MBBI = MI.getIterator(); |
1128 | if (MD.getReg() != MS.getReg() && !MS.isUndef()) { |
1129 | copyPhysReg(MBB, I: MI, DL, DestReg: MD.getReg(), SrcReg: MS.getReg(), KillSrc: MS.isKill()); |
1130 | std::prev(x: MBBI)->copyImplicitOps(MF&: *MBB.getParent(), MI); |
1131 | } |
1132 | MBB.erase(I: MBBI); |
1133 | return true; |
1134 | } |
1135 | case Hexagon::PS_aligna: |
1136 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_andir), DestReg: MI.getOperand(i: 0).getReg()) |
1137 | .addReg(RegNo: HRI.getFrameRegister()) |
1138 | .addImm(Val: -MI.getOperand(i: 1).getImm()); |
1139 | MBB.erase(I: MI); |
1140 | return true; |
1141 | case Hexagon::V6_vassignp: { |
1142 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
1143 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1144 | Register SrcLo = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo); |
1145 | Register SrcHi = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi); |
1146 | getLiveInRegsAt(Regs&: LiveIn, MI); |
1147 | unsigned UndefLo = getUndefRegState(B: !LiveIn.contains(Reg: SrcLo)); |
1148 | unsigned UndefHi = getUndefRegState(B: !LiveIn.contains(Reg: SrcHi)); |
1149 | unsigned Kill = getKillRegState(B: MI.getOperand(i: 1).isKill()); |
1150 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vcombine), DestReg: DstReg) |
1151 | .addReg(RegNo: SrcHi, flags: UndefHi) |
1152 | .addReg(RegNo: SrcLo, flags: Kill | UndefLo); |
1153 | MBB.erase(I: MI); |
1154 | return true; |
1155 | } |
1156 | case Hexagon::V6_lo: { |
1157 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
1158 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1159 | Register SrcSubLo = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo); |
1160 | copyPhysReg(MBB, I: MI, DL, DestReg: DstReg, SrcReg: SrcSubLo, KillSrc: MI.getOperand(i: 1).isKill()); |
1161 | MBB.erase(I: MI); |
1162 | MRI.clearKillFlags(Reg: SrcSubLo); |
1163 | return true; |
1164 | } |
1165 | case Hexagon::V6_hi: { |
1166 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
1167 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1168 | Register SrcSubHi = HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi); |
1169 | copyPhysReg(MBB, I: MI, DL, DestReg: DstReg, SrcReg: SrcSubHi, KillSrc: MI.getOperand(i: 1).isKill()); |
1170 | MBB.erase(I: MI); |
1171 | MRI.clearKillFlags(Reg: SrcSubHi); |
1172 | return true; |
1173 | } |
1174 | case Hexagon::PS_vloadrv_ai: { |
1175 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1176 | const MachineOperand &BaseOp = MI.getOperand(i: 1); |
1177 | assert(BaseOp.getSubReg() == 0); |
1178 | int Offset = MI.getOperand(i: 2).getImm(); |
1179 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1180 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai |
1181 | : Hexagon::V6_vL32Ub_ai; |
1182 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc), DestReg: DstReg) |
1183 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
1184 | .addImm(Val: Offset) |
1185 | .cloneMemRefs(OtherMI: MI); |
1186 | MBB.erase(I: MI); |
1187 | return true; |
1188 | } |
1189 | case Hexagon::PS_vloadrw_ai: { |
1190 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1191 | const MachineOperand &BaseOp = MI.getOperand(i: 1); |
1192 | assert(BaseOp.getSubReg() == 0); |
1193 | int Offset = MI.getOperand(i: 2).getImm(); |
1194 | unsigned VecOffset = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
1195 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1196 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai |
1197 | : Hexagon::V6_vL32Ub_ai; |
1198 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc), |
1199 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::vsub_lo)) |
1200 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp) & ~RegState::Kill) |
1201 | .addImm(Val: Offset) |
1202 | .cloneMemRefs(OtherMI: MI); |
1203 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc), |
1204 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::vsub_hi)) |
1205 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
1206 | .addImm(Val: Offset + VecOffset) |
1207 | .cloneMemRefs(OtherMI: MI); |
1208 | MBB.erase(I: MI); |
1209 | return true; |
1210 | } |
1211 | case Hexagon::PS_vstorerv_ai: { |
1212 | const MachineOperand &SrcOp = MI.getOperand(i: 2); |
1213 | assert(SrcOp.getSubReg() == 0); |
1214 | const MachineOperand &BaseOp = MI.getOperand(i: 0); |
1215 | assert(BaseOp.getSubReg() == 0); |
1216 | int Offset = MI.getOperand(i: 1).getImm(); |
1217 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1218 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai |
1219 | : Hexagon::V6_vS32Ub_ai; |
1220 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc)) |
1221 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
1222 | .addImm(Val: Offset) |
1223 | .addReg(RegNo: SrcOp.getReg(), flags: getRegState(RegOp: SrcOp)) |
1224 | .cloneMemRefs(OtherMI: MI); |
1225 | MBB.erase(I: MI); |
1226 | return true; |
1227 | } |
1228 | case Hexagon::PS_vstorerw_ai: { |
1229 | Register SrcReg = MI.getOperand(i: 2).getReg(); |
1230 | const MachineOperand &BaseOp = MI.getOperand(i: 0); |
1231 | assert(BaseOp.getSubReg() == 0); |
1232 | int Offset = MI.getOperand(i: 1).getImm(); |
1233 | unsigned VecOffset = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
1234 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1235 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai |
1236 | : Hexagon::V6_vS32Ub_ai; |
1237 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc)) |
1238 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp) & ~RegState::Kill) |
1239 | .addImm(Val: Offset) |
1240 | .addReg(RegNo: HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_lo)) |
1241 | .cloneMemRefs(OtherMI: MI); |
1242 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: NewOpc)) |
1243 | .addReg(RegNo: BaseOp.getReg(), flags: getRegState(RegOp: BaseOp)) |
1244 | .addImm(Val: Offset + VecOffset) |
1245 | .addReg(RegNo: HRI.getSubReg(Reg: SrcReg, Idx: Hexagon::vsub_hi)) |
1246 | .cloneMemRefs(OtherMI: MI); |
1247 | MBB.erase(I: MI); |
1248 | return true; |
1249 | } |
1250 | case Hexagon::PS_true: { |
1251 | Register Reg = MI.getOperand(i: 0).getReg(); |
1252 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::C2_orn), DestReg: Reg) |
1253 | .addReg(RegNo: Reg, flags: RegState::Undef) |
1254 | .addReg(RegNo: Reg, flags: RegState::Undef); |
1255 | MBB.erase(I: MI); |
1256 | return true; |
1257 | } |
1258 | case Hexagon::PS_false: { |
1259 | Register Reg = MI.getOperand(i: 0).getReg(); |
1260 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::C2_andn), DestReg: Reg) |
1261 | .addReg(RegNo: Reg, flags: RegState::Undef) |
1262 | .addReg(RegNo: Reg, flags: RegState::Undef); |
1263 | MBB.erase(I: MI); |
1264 | return true; |
1265 | } |
1266 | case Hexagon::PS_qtrue: { |
1267 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_veqw), DestReg: MI.getOperand(i: 0).getReg()) |
1268 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef) |
1269 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef); |
1270 | MBB.erase(I: MI); |
1271 | return true; |
1272 | } |
1273 | case Hexagon::PS_qfalse: { |
1274 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgtw), DestReg: MI.getOperand(i: 0).getReg()) |
1275 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef) |
1276 | .addReg(RegNo: Hexagon::V0, flags: RegState::Undef); |
1277 | MBB.erase(I: MI); |
1278 | return true; |
1279 | } |
1280 | case Hexagon::PS_vdd0: { |
1281 | Register Vd = MI.getOperand(i: 0).getReg(); |
1282 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vsubw_dv), DestReg: Vd) |
1283 | .addReg(RegNo: Vd, flags: RegState::Undef) |
1284 | .addReg(RegNo: Vd, flags: RegState::Undef); |
1285 | MBB.erase(I: MI); |
1286 | return true; |
1287 | } |
1288 | case Hexagon::PS_vmulw: { |
1289 | // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. |
1290 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1291 | Register Src1Reg = MI.getOperand(i: 1).getReg(); |
1292 | Register Src2Reg = MI.getOperand(i: 2).getReg(); |
1293 | Register Src1SubHi = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_hi); |
1294 | Register Src1SubLo = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_lo); |
1295 | Register Src2SubHi = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_hi); |
1296 | Register Src2SubLo = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_lo); |
1297 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_mpyi), |
1298 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_hi)) |
1299 | .addReg(RegNo: Src1SubHi) |
1300 | .addReg(RegNo: Src2SubHi); |
1301 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_mpyi), |
1302 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_lo)) |
1303 | .addReg(RegNo: Src1SubLo) |
1304 | .addReg(RegNo: Src2SubLo); |
1305 | MBB.erase(I: MI); |
1306 | MRI.clearKillFlags(Reg: Src1SubHi); |
1307 | MRI.clearKillFlags(Reg: Src1SubLo); |
1308 | MRI.clearKillFlags(Reg: Src2SubHi); |
1309 | MRI.clearKillFlags(Reg: Src2SubLo); |
1310 | return true; |
1311 | } |
1312 | case Hexagon::PS_vmulw_acc: { |
1313 | // Expand 64-bit vector multiply with addition into 2 scalar multiplies. |
1314 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1315 | Register Src1Reg = MI.getOperand(i: 1).getReg(); |
1316 | Register Src2Reg = MI.getOperand(i: 2).getReg(); |
1317 | Register Src3Reg = MI.getOperand(i: 3).getReg(); |
1318 | Register Src1SubHi = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_hi); |
1319 | Register Src1SubLo = HRI.getSubReg(Reg: Src1Reg, Idx: Hexagon::isub_lo); |
1320 | Register Src2SubHi = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_hi); |
1321 | Register Src2SubLo = HRI.getSubReg(Reg: Src2Reg, Idx: Hexagon::isub_lo); |
1322 | Register Src3SubHi = HRI.getSubReg(Reg: Src3Reg, Idx: Hexagon::isub_hi); |
1323 | Register Src3SubLo = HRI.getSubReg(Reg: Src3Reg, Idx: Hexagon::isub_lo); |
1324 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_maci), |
1325 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_hi)) |
1326 | .addReg(RegNo: Src1SubHi) |
1327 | .addReg(RegNo: Src2SubHi) |
1328 | .addReg(RegNo: Src3SubHi); |
1329 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Hexagon::M2_maci), |
1330 | DestReg: HRI.getSubReg(Reg: DstReg, Idx: Hexagon::isub_lo)) |
1331 | .addReg(RegNo: Src1SubLo) |
1332 | .addReg(RegNo: Src2SubLo) |
1333 | .addReg(RegNo: Src3SubLo); |
1334 | MBB.erase(I: MI); |
1335 | MRI.clearKillFlags(Reg: Src1SubHi); |
1336 | MRI.clearKillFlags(Reg: Src1SubLo); |
1337 | MRI.clearKillFlags(Reg: Src2SubHi); |
1338 | MRI.clearKillFlags(Reg: Src2SubLo); |
1339 | MRI.clearKillFlags(Reg: Src3SubHi); |
1340 | MRI.clearKillFlags(Reg: Src3SubLo); |
1341 | return true; |
1342 | } |
1343 | case Hexagon::PS_pselect: { |
1344 | const MachineOperand &Op0 = MI.getOperand(i: 0); |
1345 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
1346 | const MachineOperand &Op2 = MI.getOperand(i: 2); |
1347 | const MachineOperand &Op3 = MI.getOperand(i: 3); |
1348 | Register Rd = Op0.getReg(); |
1349 | Register Pu = Op1.getReg(); |
1350 | Register Rs = Op2.getReg(); |
1351 | Register Rt = Op3.getReg(); |
1352 | DebugLoc DL = MI.getDebugLoc(); |
1353 | unsigned K1 = getKillRegState(B: Op1.isKill()); |
1354 | unsigned K2 = getKillRegState(B: Op2.isKill()); |
1355 | unsigned K3 = getKillRegState(B: Op3.isKill()); |
1356 | if (Rd != Rs) |
1357 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrpt), DestReg: Rd) |
1358 | .addReg(RegNo: Pu, flags: (Rd == Rt) ? K1 : 0) |
1359 | .addReg(RegNo: Rs, flags: K2); |
1360 | if (Rd != Rt) |
1361 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_tfrpf), DestReg: Rd) |
1362 | .addReg(RegNo: Pu, flags: K1) |
1363 | .addReg(RegNo: Rt, flags: K3); |
1364 | MBB.erase(I: MI); |
1365 | return true; |
1366 | } |
1367 | case Hexagon::PS_vselect: { |
1368 | const MachineOperand &Op0 = MI.getOperand(i: 0); |
1369 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
1370 | const MachineOperand &Op2 = MI.getOperand(i: 2); |
1371 | const MachineOperand &Op3 = MI.getOperand(i: 3); |
1372 | getLiveOutRegsAt(Regs&: LiveOut, MI); |
1373 | bool IsDestLive = !LiveOut.available(MRI, Reg: Op0.getReg()); |
1374 | Register PReg = Op1.getReg(); |
1375 | assert(Op1.getSubReg() == 0); |
1376 | unsigned PState = getRegState(RegOp: Op1); |
1377 | |
1378 | if (Op0.getReg() != Op2.getReg()) { |
1379 | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill |
1380 | : PState; |
1381 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vcmov)) |
1382 | .add(MO: Op0) |
1383 | .addReg(RegNo: PReg, flags: S) |
1384 | .add(MO: Op2); |
1385 | if (IsDestLive) |
1386 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
1387 | IsDestLive = true; |
1388 | } |
1389 | if (Op0.getReg() != Op3.getReg()) { |
1390 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vncmov)) |
1391 | .add(MO: Op0) |
1392 | .addReg(RegNo: PReg, flags: PState) |
1393 | .add(MO: Op3); |
1394 | if (IsDestLive) |
1395 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
1396 | } |
1397 | MBB.erase(I: MI); |
1398 | return true; |
1399 | } |
1400 | case Hexagon::PS_wselect: { |
1401 | MachineOperand &Op0 = MI.getOperand(i: 0); |
1402 | MachineOperand &Op1 = MI.getOperand(i: 1); |
1403 | MachineOperand &Op2 = MI.getOperand(i: 2); |
1404 | MachineOperand &Op3 = MI.getOperand(i: 3); |
1405 | getLiveOutRegsAt(Regs&: LiveOut, MI); |
1406 | bool IsDestLive = !LiveOut.available(MRI, Reg: Op0.getReg()); |
1407 | Register PReg = Op1.getReg(); |
1408 | assert(Op1.getSubReg() == 0); |
1409 | unsigned PState = getRegState(RegOp: Op1); |
1410 | |
1411 | if (Op0.getReg() != Op2.getReg()) { |
1412 | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill |
1413 | : PState; |
1414 | Register SrcLo = HRI.getSubReg(Reg: Op2.getReg(), Idx: Hexagon::vsub_lo); |
1415 | Register SrcHi = HRI.getSubReg(Reg: Op2.getReg(), Idx: Hexagon::vsub_hi); |
1416 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vccombine)) |
1417 | .add(MO: Op0) |
1418 | .addReg(RegNo: PReg, flags: S) |
1419 | .addReg(RegNo: SrcHi) |
1420 | .addReg(RegNo: SrcLo); |
1421 | if (IsDestLive) |
1422 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
1423 | IsDestLive = true; |
1424 | } |
1425 | if (Op0.getReg() != Op3.getReg()) { |
1426 | Register SrcLo = HRI.getSubReg(Reg: Op3.getReg(), Idx: Hexagon::vsub_lo); |
1427 | Register SrcHi = HRI.getSubReg(Reg: Op3.getReg(), Idx: Hexagon::vsub_hi); |
1428 | auto T = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vnccombine)) |
1429 | .add(MO: Op0) |
1430 | .addReg(RegNo: PReg, flags: PState) |
1431 | .addReg(RegNo: SrcHi) |
1432 | .addReg(RegNo: SrcLo); |
1433 | if (IsDestLive) |
1434 | T.addReg(RegNo: Op0.getReg(), flags: RegState::Implicit); |
1435 | } |
1436 | MBB.erase(I: MI); |
1437 | return true; |
1438 | } |
1439 | |
1440 | case Hexagon::PS_crash: { |
1441 | // Generate a misaligned load that is guaranteed to cause a crash. |
1442 | class CrashPseudoSourceValue : public PseudoSourceValue { |
1443 | public: |
1444 | CrashPseudoSourceValue(const TargetMachine &TM) |
1445 | : PseudoSourceValue(TargetCustom, TM) {} |
1446 | |
1447 | bool isConstant(const MachineFrameInfo *) const override { |
1448 | return false; |
1449 | } |
1450 | bool isAliased(const MachineFrameInfo *) const override { |
1451 | return false; |
1452 | } |
1453 | bool mayAlias(const MachineFrameInfo *) const override { |
1454 | return false; |
1455 | } |
1456 | void printCustom(raw_ostream &OS) const override { |
1457 | OS << "MisalignedCrash" ; |
1458 | } |
1459 | }; |
1460 | |
1461 | static const CrashPseudoSourceValue CrashPSV(MF.getTarget()); |
1462 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
1463 | PtrInfo: MachinePointerInfo(&CrashPSV), |
1464 | F: MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, Size: 8, |
1465 | BaseAlignment: Align(1)); |
1466 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::PS_loadrdabs), DestReg: Hexagon::D13) |
1467 | .addImm(Val: 0xBADC0FEE) // Misaligned load. |
1468 | .addMemOperand(MMO); |
1469 | MBB.erase(I: MI); |
1470 | return true; |
1471 | } |
1472 | |
1473 | case Hexagon::PS_tailcall_i: |
1474 | MI.setDesc(get(Opcode: Hexagon::J2_jump)); |
1475 | return true; |
1476 | case Hexagon::PS_tailcall_r: |
1477 | case Hexagon::PS_jmpret: |
1478 | MI.setDesc(get(Opcode: Hexagon::J2_jumpr)); |
1479 | return true; |
1480 | case Hexagon::PS_jmprett: |
1481 | MI.setDesc(get(Opcode: Hexagon::J2_jumprt)); |
1482 | return true; |
1483 | case Hexagon::PS_jmpretf: |
1484 | MI.setDesc(get(Opcode: Hexagon::J2_jumprf)); |
1485 | return true; |
1486 | case Hexagon::PS_jmprettnewpt: |
1487 | MI.setDesc(get(Opcode: Hexagon::J2_jumprtnewpt)); |
1488 | return true; |
1489 | case Hexagon::PS_jmpretfnewpt: |
1490 | MI.setDesc(get(Opcode: Hexagon::J2_jumprfnewpt)); |
1491 | return true; |
1492 | case Hexagon::PS_jmprettnew: |
1493 | MI.setDesc(get(Opcode: Hexagon::J2_jumprtnew)); |
1494 | return true; |
1495 | case Hexagon::PS_jmpretfnew: |
1496 | MI.setDesc(get(Opcode: Hexagon::J2_jumprfnew)); |
1497 | return true; |
1498 | |
1499 | case Hexagon::PS_loadrub_pci: |
1500 | return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4); |
1501 | case Hexagon::PS_loadrb_pci: |
1502 | return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4); |
1503 | case Hexagon::PS_loadruh_pci: |
1504 | return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4); |
1505 | case Hexagon::PS_loadrh_pci: |
1506 | return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4); |
1507 | case Hexagon::PS_loadri_pci: |
1508 | return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4); |
1509 | case Hexagon::PS_loadrd_pci: |
1510 | return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4); |
1511 | case Hexagon::PS_loadrub_pcr: |
1512 | return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3); |
1513 | case Hexagon::PS_loadrb_pcr: |
1514 | return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3); |
1515 | case Hexagon::PS_loadruh_pcr: |
1516 | return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3); |
1517 | case Hexagon::PS_loadrh_pcr: |
1518 | return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3); |
1519 | case Hexagon::PS_loadri_pcr: |
1520 | return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3); |
1521 | case Hexagon::PS_loadrd_pcr: |
1522 | return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3); |
1523 | case Hexagon::PS_storerb_pci: |
1524 | return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3); |
1525 | case Hexagon::PS_storerh_pci: |
1526 | return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3); |
1527 | case Hexagon::PS_storerf_pci: |
1528 | return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3); |
1529 | case Hexagon::PS_storeri_pci: |
1530 | return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3); |
1531 | case Hexagon::PS_storerd_pci: |
1532 | return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3); |
1533 | case Hexagon::PS_storerb_pcr: |
1534 | return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2); |
1535 | case Hexagon::PS_storerh_pcr: |
1536 | return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2); |
1537 | case Hexagon::PS_storerf_pcr: |
1538 | return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2); |
1539 | case Hexagon::PS_storeri_pcr: |
1540 | return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2); |
1541 | case Hexagon::PS_storerd_pcr: |
1542 | return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2); |
1543 | } |
1544 | |
1545 | return false; |
1546 | } |
1547 | |
1548 | MachineBasicBlock::instr_iterator |
1549 | HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const { |
1550 | MachineBasicBlock &MBB = *MI.getParent(); |
1551 | const DebugLoc &DL = MI.getDebugLoc(); |
1552 | unsigned Opc = MI.getOpcode(); |
1553 | MachineBasicBlock::iterator First; |
1554 | |
1555 | switch (Opc) { |
1556 | case Hexagon::V6_vgathermh_pseudo: |
1557 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermh)) |
1558 | .add(MO: MI.getOperand(i: 2)) |
1559 | .add(MO: MI.getOperand(i: 3)) |
1560 | .add(MO: MI.getOperand(i: 4)); |
1561 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
1562 | .add(MO: MI.getOperand(i: 0)) |
1563 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
1564 | .addReg(RegNo: Hexagon::VTMP); |
1565 | MBB.erase(I: MI); |
1566 | return First.getInstrIterator(); |
1567 | |
1568 | case Hexagon::V6_vgathermw_pseudo: |
1569 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermw)) |
1570 | .add(MO: MI.getOperand(i: 2)) |
1571 | .add(MO: MI.getOperand(i: 3)) |
1572 | .add(MO: MI.getOperand(i: 4)); |
1573 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
1574 | .add(MO: MI.getOperand(i: 0)) |
1575 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
1576 | .addReg(RegNo: Hexagon::VTMP); |
1577 | MBB.erase(I: MI); |
1578 | return First.getInstrIterator(); |
1579 | |
1580 | case Hexagon::V6_vgathermhw_pseudo: |
1581 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermhw)) |
1582 | .add(MO: MI.getOperand(i: 2)) |
1583 | .add(MO: MI.getOperand(i: 3)) |
1584 | .add(MO: MI.getOperand(i: 4)); |
1585 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
1586 | .add(MO: MI.getOperand(i: 0)) |
1587 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
1588 | .addReg(RegNo: Hexagon::VTMP); |
1589 | MBB.erase(I: MI); |
1590 | return First.getInstrIterator(); |
1591 | |
1592 | case Hexagon::V6_vgathermhq_pseudo: |
1593 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermhq)) |
1594 | .add(MO: MI.getOperand(i: 2)) |
1595 | .add(MO: MI.getOperand(i: 3)) |
1596 | .add(MO: MI.getOperand(i: 4)) |
1597 | .add(MO: MI.getOperand(i: 5)); |
1598 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
1599 | .add(MO: MI.getOperand(i: 0)) |
1600 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
1601 | .addReg(RegNo: Hexagon::VTMP); |
1602 | MBB.erase(I: MI); |
1603 | return First.getInstrIterator(); |
1604 | |
1605 | case Hexagon::V6_vgathermwq_pseudo: |
1606 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermwq)) |
1607 | .add(MO: MI.getOperand(i: 2)) |
1608 | .add(MO: MI.getOperand(i: 3)) |
1609 | .add(MO: MI.getOperand(i: 4)) |
1610 | .add(MO: MI.getOperand(i: 5)); |
1611 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
1612 | .add(MO: MI.getOperand(i: 0)) |
1613 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
1614 | .addReg(RegNo: Hexagon::VTMP); |
1615 | MBB.erase(I: MI); |
1616 | return First.getInstrIterator(); |
1617 | |
1618 | case Hexagon::V6_vgathermhwq_pseudo: |
1619 | First = BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vgathermhwq)) |
1620 | .add(MO: MI.getOperand(i: 2)) |
1621 | .add(MO: MI.getOperand(i: 3)) |
1622 | .add(MO: MI.getOperand(i: 4)) |
1623 | .add(MO: MI.getOperand(i: 5)); |
1624 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: Hexagon::V6_vS32b_new_ai)) |
1625 | .add(MO: MI.getOperand(i: 0)) |
1626 | .addImm(Val: MI.getOperand(i: 1).getImm()) |
1627 | .addReg(RegNo: Hexagon::VTMP); |
1628 | MBB.erase(I: MI); |
1629 | return First.getInstrIterator(); |
1630 | } |
1631 | |
1632 | return MI.getIterator(); |
1633 | } |
1634 | |
1635 | // We indicate that we want to reverse the branch by |
1636 | // inserting the reversed branching opcode. |
1637 | bool HexagonInstrInfo::reverseBranchCondition( |
1638 | SmallVectorImpl<MachineOperand> &Cond) const { |
1639 | if (Cond.empty()) |
1640 | return true; |
1641 | assert(Cond[0].isImm() && "First entry in the cond vector not imm-val" ); |
1642 | unsigned opcode = Cond[0].getImm(); |
1643 | //unsigned temp; |
1644 | assert(get(opcode).isBranch() && "Should be a branching condition." ); |
1645 | if (isEndLoopN(Opcode: opcode)) |
1646 | return true; |
1647 | unsigned NewOpcode = getInvertedPredicatedOpcode(Opc: opcode); |
1648 | Cond[0].setImm(NewOpcode); |
1649 | return false; |
1650 | } |
1651 | |
1652 | void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB, |
1653 | MachineBasicBlock::iterator MI) const { |
1654 | DebugLoc DL; |
1655 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode: Hexagon::A2_nop)); |
1656 | } |
1657 | |
1658 | bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const { |
1659 | return getAddrMode(MI) == HexagonII::PostInc; |
1660 | } |
1661 | |
1662 | // Returns true if an instruction is predicated irrespective of the predicate |
1663 | // sense. For example, all of the following will return true. |
1664 | // if (p0) R1 = add(R2, R3) |
1665 | // if (!p0) R1 = add(R2, R3) |
1666 | // if (p0.new) R1 = add(R2, R3) |
1667 | // if (!p0.new) R1 = add(R2, R3) |
1668 | // Note: New-value stores are not included here as in the current |
1669 | // implementation, we don't need to check their predicate sense. |
1670 | bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const { |
1671 | const uint64_t F = MI.getDesc().TSFlags; |
1672 | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; |
1673 | } |
1674 | |
1675 | bool HexagonInstrInfo::PredicateInstruction( |
1676 | MachineInstr &MI, ArrayRef<MachineOperand> Cond) const { |
1677 | if (Cond.empty() || isNewValueJump(Opcode: Cond[0].getImm()) || |
1678 | isEndLoopN(Opcode: Cond[0].getImm())) { |
1679 | LLVM_DEBUG(dbgs() << "\nCannot predicate:" ; MI.dump();); |
1680 | return false; |
1681 | } |
1682 | int Opc = MI.getOpcode(); |
1683 | assert (isPredicable(MI) && "Expected predicable instruction" ); |
1684 | bool invertJump = predOpcodeHasNot(Cond); |
1685 | |
1686 | // We have to predicate MI "in place", i.e. after this function returns, |
1687 | // MI will need to be transformed into a predicated form. To avoid com- |
1688 | // plicated manipulations with the operands (handling tied operands, |
1689 | // etc.), build a new temporary instruction, then overwrite MI with it. |
1690 | |
1691 | MachineBasicBlock &B = *MI.getParent(); |
1692 | DebugLoc DL = MI.getDebugLoc(); |
1693 | unsigned PredOpc = getCondOpcode(Opc, sense: invertJump); |
1694 | MachineInstrBuilder T = BuildMI(BB&: B, I&: MI, MIMD: DL, MCID: get(Opcode: PredOpc)); |
1695 | unsigned NOp = 0, NumOps = MI.getNumOperands(); |
1696 | while (NOp < NumOps) { |
1697 | MachineOperand &Op = MI.getOperand(i: NOp); |
1698 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
1699 | break; |
1700 | T.add(MO: Op); |
1701 | NOp++; |
1702 | } |
1703 | |
1704 | Register PredReg; |
1705 | unsigned PredRegPos, PredRegFlags; |
1706 | bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); |
1707 | (void)GotPredReg; |
1708 | assert(GotPredReg); |
1709 | T.addReg(RegNo: PredReg, flags: PredRegFlags); |
1710 | while (NOp < NumOps) |
1711 | T.add(MO: MI.getOperand(i: NOp++)); |
1712 | |
1713 | MI.setDesc(get(Opcode: PredOpc)); |
1714 | while (unsigned n = MI.getNumOperands()) |
1715 | MI.removeOperand(OpNo: n-1); |
1716 | for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) |
1717 | MI.addOperand(Op: T->getOperand(i)); |
1718 | |
1719 | MachineBasicBlock::instr_iterator TI = T->getIterator(); |
1720 | B.erase(I: TI); |
1721 | |
1722 | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); |
1723 | MRI.clearKillFlags(Reg: PredReg); |
1724 | return true; |
1725 | } |
1726 | |
1727 | bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
1728 | ArrayRef<MachineOperand> Pred2) const { |
1729 | // TODO: Fix this |
1730 | return false; |
1731 | } |
1732 | |
1733 | bool HexagonInstrInfo::ClobbersPredicate(MachineInstr &MI, |
1734 | std::vector<MachineOperand> &Pred, |
1735 | bool SkipDead) const { |
1736 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
1737 | |
1738 | for (const MachineOperand &MO : MI.operands()) { |
1739 | if (MO.isReg()) { |
1740 | if (!MO.isDef()) |
1741 | continue; |
1742 | const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(Reg: MO.getReg()); |
1743 | if (RC == &Hexagon::PredRegsRegClass) { |
1744 | Pred.push_back(x: MO); |
1745 | return true; |
1746 | } |
1747 | continue; |
1748 | } else if (MO.isRegMask()) { |
1749 | for (Register PR : Hexagon::PredRegsRegClass) { |
1750 | if (!MI.modifiesRegister(Reg: PR, TRI: &HRI)) |
1751 | continue; |
1752 | Pred.push_back(x: MO); |
1753 | return true; |
1754 | } |
1755 | } |
1756 | } |
1757 | return false; |
1758 | } |
1759 | |
1760 | bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const { |
1761 | if (!MI.getDesc().isPredicable()) |
1762 | return false; |
1763 | |
1764 | if (MI.isCall() || isTailCall(MI)) { |
1765 | if (!Subtarget.usePredicatedCalls()) |
1766 | return false; |
1767 | } |
1768 | |
1769 | // HVX loads are not predicable on v60, but are on v62. |
1770 | if (!Subtarget.hasV62Ops()) { |
1771 | switch (MI.getOpcode()) { |
1772 | case Hexagon::V6_vL32b_ai: |
1773 | case Hexagon::V6_vL32b_pi: |
1774 | case Hexagon::V6_vL32b_ppu: |
1775 | case Hexagon::V6_vL32b_cur_ai: |
1776 | case Hexagon::V6_vL32b_cur_pi: |
1777 | case Hexagon::V6_vL32b_cur_ppu: |
1778 | case Hexagon::V6_vL32b_nt_ai: |
1779 | case Hexagon::V6_vL32b_nt_pi: |
1780 | case Hexagon::V6_vL32b_nt_ppu: |
1781 | case Hexagon::V6_vL32b_tmp_ai: |
1782 | case Hexagon::V6_vL32b_tmp_pi: |
1783 | case Hexagon::V6_vL32b_tmp_ppu: |
1784 | case Hexagon::V6_vL32b_nt_cur_ai: |
1785 | case Hexagon::V6_vL32b_nt_cur_pi: |
1786 | case Hexagon::V6_vL32b_nt_cur_ppu: |
1787 | case Hexagon::V6_vL32b_nt_tmp_ai: |
1788 | case Hexagon::V6_vL32b_nt_tmp_pi: |
1789 | case Hexagon::V6_vL32b_nt_tmp_ppu: |
1790 | return false; |
1791 | } |
1792 | } |
1793 | return true; |
1794 | } |
1795 | |
1796 | bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
1797 | const MachineBasicBlock *MBB, |
1798 | const MachineFunction &MF) const { |
1799 | // Debug info is never a scheduling boundary. It's necessary to be explicit |
1800 | // due to the special treatment of IT instructions below, otherwise a |
1801 | // dbg_value followed by an IT will result in the IT instruction being |
1802 | // considered a scheduling hazard, which is wrong. It should be the actual |
1803 | // instruction preceding the dbg_value instruction(s), just like it is |
1804 | // when debug info is not present. |
1805 | if (MI.isDebugInstr()) |
1806 | return false; |
1807 | |
1808 | // Throwing call is a boundary. |
1809 | if (MI.isCall()) { |
1810 | // Don't mess around with no return calls. |
1811 | if (doesNotReturn(CallMI: MI)) |
1812 | return true; |
1813 | // If any of the block's successors is a landing pad, this could be a |
1814 | // throwing call. |
1815 | for (auto *I : MBB->successors()) |
1816 | if (I->isEHPad()) |
1817 | return true; |
1818 | } |
1819 | |
1820 | // Terminators and labels can't be scheduled around. |
1821 | if (MI.getDesc().isTerminator() || MI.isPosition()) |
1822 | return true; |
1823 | |
1824 | // INLINEASM_BR can jump to another block |
1825 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
1826 | return true; |
1827 | |
1828 | if (MI.isInlineAsm() && !ScheduleInlineAsm) |
1829 | return true; |
1830 | |
1831 | return false; |
1832 | } |
1833 | |
1834 | /// Measure the specified inline asm to determine an approximation of its |
1835 | /// length. |
1836 | /// Comments (which run till the next SeparatorString or newline) do not |
1837 | /// count as an instruction. |
1838 | /// Any other non-whitespace text is considered an instruction, with |
1839 | /// multiple instructions separated by SeparatorString or newlines. |
1840 | /// Variable-length instructions are not handled here; this function |
1841 | /// may be overloaded in the target code to do that. |
1842 | /// Hexagon counts the number of ##'s and adjust for that many |
1843 | /// constant exenders. |
1844 | unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str, |
1845 | const MCAsmInfo &MAI, |
1846 | const TargetSubtargetInfo *STI) const { |
1847 | StringRef AStr(Str); |
1848 | // Count the number of instructions in the asm. |
1849 | bool atInsnStart = true; |
1850 | unsigned Length = 0; |
1851 | const unsigned MaxInstLength = MAI.getMaxInstLength(STI); |
1852 | for (; *Str; ++Str) { |
1853 | if (*Str == '\n' || strncmp(s1: Str, s2: MAI.getSeparatorString(), |
1854 | n: strlen(s: MAI.getSeparatorString())) == 0) |
1855 | atInsnStart = true; |
1856 | if (atInsnStart && !isSpace(C: static_cast<unsigned char>(*Str))) { |
1857 | Length += MaxInstLength; |
1858 | atInsnStart = false; |
1859 | } |
1860 | if (atInsnStart && strncmp(s1: Str, s2: MAI.getCommentString().data(), |
1861 | n: MAI.getCommentString().size()) == 0) |
1862 | atInsnStart = false; |
1863 | } |
1864 | |
1865 | // Add to size number of constant extenders seen * 4. |
1866 | StringRef Occ("##" ); |
1867 | Length += AStr.count(Str: Occ)*4; |
1868 | return Length; |
1869 | } |
1870 | |
1871 | ScheduleHazardRecognizer* |
1872 | HexagonInstrInfo::CreateTargetPostRAHazardRecognizer( |
1873 | const InstrItineraryData *II, const ScheduleDAG *DAG) const { |
1874 | if (UseDFAHazardRec) |
1875 | return new HexagonHazardRecognizer(II, this, Subtarget); |
1876 | return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); |
1877 | } |
1878 | |
1879 | /// For a comparison instruction, return the source registers in |
1880 | /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it |
1881 | /// compares against in CmpValue. Return true if the comparison instruction |
1882 | /// can be analyzed. |
1883 | bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
1884 | Register &SrcReg2, int64_t &Mask, |
1885 | int64_t &Value) const { |
1886 | unsigned Opc = MI.getOpcode(); |
1887 | |
1888 | // Set mask and the first source register. |
1889 | switch (Opc) { |
1890 | case Hexagon::C2_cmpeq: |
1891 | case Hexagon::C2_cmpeqp: |
1892 | case Hexagon::C2_cmpgt: |
1893 | case Hexagon::C2_cmpgtp: |
1894 | case Hexagon::C2_cmpgtu: |
1895 | case Hexagon::C2_cmpgtup: |
1896 | case Hexagon::C4_cmpneq: |
1897 | case Hexagon::C4_cmplte: |
1898 | case Hexagon::C4_cmplteu: |
1899 | case Hexagon::C2_cmpeqi: |
1900 | case Hexagon::C2_cmpgti: |
1901 | case Hexagon::C2_cmpgtui: |
1902 | case Hexagon::C4_cmpneqi: |
1903 | case Hexagon::C4_cmplteui: |
1904 | case Hexagon::C4_cmpltei: |
1905 | SrcReg = MI.getOperand(i: 1).getReg(); |
1906 | Mask = ~0; |
1907 | break; |
1908 | case Hexagon::A4_cmpbeq: |
1909 | case Hexagon::A4_cmpbgt: |
1910 | case Hexagon::A4_cmpbgtu: |
1911 | case Hexagon::A4_cmpbeqi: |
1912 | case Hexagon::A4_cmpbgti: |
1913 | case Hexagon::A4_cmpbgtui: |
1914 | SrcReg = MI.getOperand(i: 1).getReg(); |
1915 | Mask = 0xFF; |
1916 | break; |
1917 | case Hexagon::A4_cmpheq: |
1918 | case Hexagon::A4_cmphgt: |
1919 | case Hexagon::A4_cmphgtu: |
1920 | case Hexagon::A4_cmpheqi: |
1921 | case Hexagon::A4_cmphgti: |
1922 | case Hexagon::A4_cmphgtui: |
1923 | SrcReg = MI.getOperand(i: 1).getReg(); |
1924 | Mask = 0xFFFF; |
1925 | break; |
1926 | } |
1927 | |
1928 | // Set the value/second source register. |
1929 | switch (Opc) { |
1930 | case Hexagon::C2_cmpeq: |
1931 | case Hexagon::C2_cmpeqp: |
1932 | case Hexagon::C2_cmpgt: |
1933 | case Hexagon::C2_cmpgtp: |
1934 | case Hexagon::C2_cmpgtu: |
1935 | case Hexagon::C2_cmpgtup: |
1936 | case Hexagon::A4_cmpbeq: |
1937 | case Hexagon::A4_cmpbgt: |
1938 | case Hexagon::A4_cmpbgtu: |
1939 | case Hexagon::A4_cmpheq: |
1940 | case Hexagon::A4_cmphgt: |
1941 | case Hexagon::A4_cmphgtu: |
1942 | case Hexagon::C4_cmpneq: |
1943 | case Hexagon::C4_cmplte: |
1944 | case Hexagon::C4_cmplteu: |
1945 | SrcReg2 = MI.getOperand(i: 2).getReg(); |
1946 | Value = 0; |
1947 | return true; |
1948 | |
1949 | case Hexagon::C2_cmpeqi: |
1950 | case Hexagon::C2_cmpgtui: |
1951 | case Hexagon::C2_cmpgti: |
1952 | case Hexagon::C4_cmpneqi: |
1953 | case Hexagon::C4_cmplteui: |
1954 | case Hexagon::C4_cmpltei: |
1955 | case Hexagon::A4_cmpbeqi: |
1956 | case Hexagon::A4_cmpbgti: |
1957 | case Hexagon::A4_cmpbgtui: |
1958 | case Hexagon::A4_cmpheqi: |
1959 | case Hexagon::A4_cmphgti: |
1960 | case Hexagon::A4_cmphgtui: { |
1961 | SrcReg2 = 0; |
1962 | const MachineOperand &Op2 = MI.getOperand(i: 2); |
1963 | if (!Op2.isImm()) |
1964 | return false; |
1965 | Value = MI.getOperand(i: 2).getImm(); |
1966 | return true; |
1967 | } |
1968 | } |
1969 | |
1970 | return false; |
1971 | } |
1972 | |
1973 | unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
1974 | const MachineInstr &MI, |
1975 | unsigned *PredCost) const { |
1976 | return getInstrTimingClassLatency(ItinData, MI); |
1977 | } |
1978 | |
1979 | DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( |
1980 | const TargetSubtargetInfo &STI) const { |
1981 | const InstrItineraryData *II = STI.getInstrItineraryData(); |
1982 | return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(IID: II); |
1983 | } |
1984 | |
1985 | // Inspired by this pair: |
1986 | // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0] |
1987 | // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1] |
1988 | // Currently AA considers the addresses in these instructions to be aliasing. |
1989 | bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint( |
1990 | const MachineInstr &MIa, const MachineInstr &MIb) const { |
1991 | if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
1992 | MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
1993 | return false; |
1994 | |
1995 | // Instructions that are pure loads, not loads and stores like memops are not |
1996 | // dependent. |
1997 | if (MIa.mayLoad() && !isMemOp(MI: MIa) && MIb.mayLoad() && !isMemOp(MI: MIb)) |
1998 | return true; |
1999 | |
2000 | // Get the base register in MIa. |
2001 | unsigned BasePosA, OffsetPosA; |
2002 | if (!getBaseAndOffsetPosition(MI: MIa, BasePos&: BasePosA, OffsetPos&: OffsetPosA)) |
2003 | return false; |
2004 | const MachineOperand &BaseA = MIa.getOperand(i: BasePosA); |
2005 | Register BaseRegA = BaseA.getReg(); |
2006 | unsigned BaseSubA = BaseA.getSubReg(); |
2007 | |
2008 | // Get the base register in MIb. |
2009 | unsigned BasePosB, OffsetPosB; |
2010 | if (!getBaseAndOffsetPosition(MI: MIb, BasePos&: BasePosB, OffsetPos&: OffsetPosB)) |
2011 | return false; |
2012 | const MachineOperand &BaseB = MIb.getOperand(i: BasePosB); |
2013 | Register BaseRegB = BaseB.getReg(); |
2014 | unsigned BaseSubB = BaseB.getSubReg(); |
2015 | |
2016 | if (BaseRegA != BaseRegB || BaseSubA != BaseSubB) |
2017 | return false; |
2018 | |
2019 | // Get the access sizes. |
2020 | unsigned SizeA = getMemAccessSize(MI: MIa); |
2021 | unsigned SizeB = getMemAccessSize(MI: MIb); |
2022 | |
2023 | // Get the offsets. Handle immediates only for now. |
2024 | const MachineOperand &OffA = MIa.getOperand(i: OffsetPosA); |
2025 | const MachineOperand &OffB = MIb.getOperand(i: OffsetPosB); |
2026 | if (!MIa.getOperand(i: OffsetPosA).isImm() || |
2027 | !MIb.getOperand(i: OffsetPosB).isImm()) |
2028 | return false; |
2029 | int OffsetA = isPostIncrement(MI: MIa) ? 0 : OffA.getImm(); |
2030 | int OffsetB = isPostIncrement(MI: MIb) ? 0 : OffB.getImm(); |
2031 | |
2032 | // This is a mem access with the same base register and known offsets from it. |
2033 | // Reason about it. |
2034 | if (OffsetA > OffsetB) { |
2035 | uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB); |
2036 | return SizeB <= OffDiff; |
2037 | } |
2038 | if (OffsetA < OffsetB) { |
2039 | uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA); |
2040 | return SizeA <= OffDiff; |
2041 | } |
2042 | |
2043 | return false; |
2044 | } |
2045 | |
2046 | /// If the instruction is an increment of a constant value, return the amount. |
2047 | bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI, |
2048 | int &Value) const { |
2049 | if (isPostIncrement(MI)) { |
2050 | unsigned BasePos = 0, OffsetPos = 0; |
2051 | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) |
2052 | return false; |
2053 | const MachineOperand &OffsetOp = MI.getOperand(i: OffsetPos); |
2054 | if (OffsetOp.isImm()) { |
2055 | Value = OffsetOp.getImm(); |
2056 | return true; |
2057 | } |
2058 | } else if (MI.getOpcode() == Hexagon::A2_addi) { |
2059 | const MachineOperand &AddOp = MI.getOperand(i: 2); |
2060 | if (AddOp.isImm()) { |
2061 | Value = AddOp.getImm(); |
2062 | return true; |
2063 | } |
2064 | } |
2065 | |
2066 | return false; |
2067 | } |
2068 | |
2069 | std::pair<unsigned, unsigned> |
2070 | HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
2071 | return std::make_pair(x: TF & ~HexagonII::MO_Bitmasks, |
2072 | y: TF & HexagonII::MO_Bitmasks); |
2073 | } |
2074 | |
2075 | ArrayRef<std::pair<unsigned, const char*>> |
2076 | HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
2077 | using namespace HexagonII; |
2078 | |
2079 | static const std::pair<unsigned, const char*> Flags[] = { |
2080 | {MO_PCREL, "hexagon-pcrel" }, |
2081 | {MO_GOT, "hexagon-got" }, |
2082 | {MO_LO16, "hexagon-lo16" }, |
2083 | {MO_HI16, "hexagon-hi16" }, |
2084 | {MO_GPREL, "hexagon-gprel" }, |
2085 | {MO_GDGOT, "hexagon-gdgot" }, |
2086 | {MO_GDPLT, "hexagon-gdplt" }, |
2087 | {MO_IE, "hexagon-ie" }, |
2088 | {MO_IEGOT, "hexagon-iegot" }, |
2089 | {MO_TPREL, "hexagon-tprel" } |
2090 | }; |
2091 | return ArrayRef(Flags); |
2092 | } |
2093 | |
2094 | ArrayRef<std::pair<unsigned, const char*>> |
2095 | HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { |
2096 | using namespace HexagonII; |
2097 | |
2098 | static const std::pair<unsigned, const char*> Flags[] = { |
2099 | {HMOTF_ConstExtended, "hexagon-ext" } |
2100 | }; |
2101 | return ArrayRef(Flags); |
2102 | } |
2103 | |
2104 | Register HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const { |
2105 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
2106 | const TargetRegisterClass *TRC; |
2107 | if (VT == MVT::i1) { |
2108 | TRC = &Hexagon::PredRegsRegClass; |
2109 | } else if (VT == MVT::i32 || VT == MVT::f32) { |
2110 | TRC = &Hexagon::IntRegsRegClass; |
2111 | } else if (VT == MVT::i64 || VT == MVT::f64) { |
2112 | TRC = &Hexagon::DoubleRegsRegClass; |
2113 | } else { |
2114 | llvm_unreachable("Cannot handle this register class" ); |
2115 | } |
2116 | |
2117 | Register NewReg = MRI.createVirtualRegister(RegClass: TRC); |
2118 | return NewReg; |
2119 | } |
2120 | |
2121 | bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const { |
2122 | return (getAddrMode(MI) == HexagonII::AbsoluteSet); |
2123 | } |
2124 | |
2125 | bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const { |
2126 | const uint64_t F = MI.getDesc().TSFlags; |
2127 | return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); |
2128 | } |
2129 | |
2130 | bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const { |
2131 | return getAddrMode(MI) == HexagonII::BaseImmOffset; |
2132 | } |
2133 | |
2134 | bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const { |
2135 | return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() && |
2136 | !MI.getDesc().mayStore() && |
2137 | MI.getDesc().getOpcode() != Hexagon::S2_allocframe && |
2138 | MI.getDesc().getOpcode() != Hexagon::L2_deallocframe && |
2139 | !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall(); |
2140 | } |
2141 | |
2142 | // Return true if the instruction is a compound branch instruction. |
2143 | bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const { |
2144 | return getType(MI) == HexagonII::TypeCJ && MI.isBranch(); |
2145 | } |
2146 | |
2147 | // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle |
2148 | // isFPImm and later getFPImm as well. |
2149 | bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const { |
2150 | const uint64_t F = MI.getDesc().TSFlags; |
2151 | unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; |
2152 | if (isExtended) // Instruction must be extended. |
2153 | return true; |
2154 | |
2155 | unsigned isExtendable = |
2156 | (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; |
2157 | if (!isExtendable) |
2158 | return false; |
2159 | |
2160 | if (MI.isCall()) |
2161 | return false; |
2162 | |
2163 | short ExtOpNum = getCExtOpNum(MI); |
2164 | const MachineOperand &MO = MI.getOperand(i: ExtOpNum); |
2165 | // Use MO operand flags to determine if MO |
2166 | // has the HMOTF_ConstExtended flag set. |
2167 | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) |
2168 | return true; |
2169 | // If this is a Machine BB address we are talking about, and it is |
2170 | // not marked as extended, say so. |
2171 | if (MO.isMBB()) |
2172 | return false; |
2173 | |
2174 | // We could be using an instruction with an extendable immediate and shoehorn |
2175 | // a global address into it. If it is a global address it will be constant |
2176 | // extended. We do this for COMBINE. |
2177 | if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || |
2178 | MO.isJTI() || MO.isCPI() || MO.isFPImm()) |
2179 | return true; |
2180 | |
2181 | // If the extendable operand is not 'Immediate' type, the instruction should |
2182 | // have 'isExtended' flag set. |
2183 | assert(MO.isImm() && "Extendable operand must be Immediate type" ); |
2184 | |
2185 | int64_t Value = MO.getImm(); |
2186 | if ((F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask) { |
2187 | int32_t SValue = Value; |
2188 | int32_t MinValue = getMinValue(MI); |
2189 | int32_t MaxValue = getMaxValue(MI); |
2190 | return SValue < MinValue || SValue > MaxValue; |
2191 | } |
2192 | uint32_t UValue = Value; |
2193 | uint32_t MinValue = getMinValue(MI); |
2194 | uint32_t MaxValue = getMaxValue(MI); |
2195 | return UValue < MinValue || UValue > MaxValue; |
2196 | } |
2197 | |
2198 | bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const { |
2199 | switch (MI.getOpcode()) { |
2200 | case Hexagon::L4_return: |
2201 | case Hexagon::L4_return_t: |
2202 | case Hexagon::L4_return_f: |
2203 | case Hexagon::L4_return_tnew_pnt: |
2204 | case Hexagon::L4_return_fnew_pnt: |
2205 | case Hexagon::L4_return_tnew_pt: |
2206 | case Hexagon::L4_return_fnew_pt: |
2207 | return true; |
2208 | } |
2209 | return false; |
2210 | } |
2211 | |
2212 | // Return true when ConsMI uses a register defined by ProdMI. |
2213 | bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI, |
2214 | const MachineInstr &ConsMI) const { |
2215 | if (!ProdMI.getDesc().getNumDefs()) |
2216 | return false; |
2217 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
2218 | |
2219 | SmallVector<Register, 4> DefsA; |
2220 | SmallVector<Register, 4> DefsB; |
2221 | SmallVector<Register, 8> UsesA; |
2222 | SmallVector<Register, 8> UsesB; |
2223 | |
2224 | parseOperands(MI: ProdMI, Defs&: DefsA, Uses&: UsesA); |
2225 | parseOperands(MI: ConsMI, Defs&: DefsB, Uses&: UsesB); |
2226 | |
2227 | for (auto &RegA : DefsA) |
2228 | for (auto &RegB : UsesB) { |
2229 | // True data dependency. |
2230 | if (RegA == RegB) |
2231 | return true; |
2232 | |
2233 | if (RegA.isPhysical() && llvm::is_contained(Range: HRI.subregs(Reg: RegA), Element: RegB)) |
2234 | return true; |
2235 | |
2236 | if (RegB.isPhysical() && llvm::is_contained(Range: HRI.subregs(Reg: RegB), Element: RegA)) |
2237 | return true; |
2238 | } |
2239 | |
2240 | return false; |
2241 | } |
2242 | |
2243 | // Returns true if the instruction is already a .cur. |
2244 | bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const { |
2245 | switch (MI.getOpcode()) { |
2246 | case Hexagon::V6_vL32b_cur_pi: |
2247 | case Hexagon::V6_vL32b_cur_ai: |
2248 | return true; |
2249 | } |
2250 | return false; |
2251 | } |
2252 | |
2253 | // Returns true, if any one of the operands is a dot new |
2254 | // insn, whether it is predicated dot new or register dot new. |
2255 | bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const { |
2256 | if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))) |
2257 | return true; |
2258 | |
2259 | return false; |
2260 | } |
2261 | |
2262 | /// Symmetrical. See if these two instructions are fit for duplex pair. |
2263 | bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa, |
2264 | const MachineInstr &MIb) const { |
2265 | HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MI: MIa); |
2266 | HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MI: MIb); |
2267 | return (isDuplexPairMatch(Ga: MIaG, Gb: MIbG) || isDuplexPairMatch(Ga: MIbG, Gb: MIaG)); |
2268 | } |
2269 | |
2270 | bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const { |
2271 | return (Opcode == Hexagon::ENDLOOP0 || |
2272 | Opcode == Hexagon::ENDLOOP1); |
2273 | } |
2274 | |
2275 | bool HexagonInstrInfo::isExpr(unsigned OpType) const { |
2276 | switch(OpType) { |
2277 | case MachineOperand::MO_MachineBasicBlock: |
2278 | case MachineOperand::MO_GlobalAddress: |
2279 | case MachineOperand::MO_ExternalSymbol: |
2280 | case MachineOperand::MO_JumpTableIndex: |
2281 | case MachineOperand::MO_ConstantPoolIndex: |
2282 | case MachineOperand::MO_BlockAddress: |
2283 | return true; |
2284 | default: |
2285 | return false; |
2286 | } |
2287 | } |
2288 | |
2289 | bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const { |
2290 | const MCInstrDesc &MID = MI.getDesc(); |
2291 | const uint64_t F = MID.TSFlags; |
2292 | if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) |
2293 | return true; |
2294 | |
2295 | // TODO: This is largely obsolete now. Will need to be removed |
2296 | // in consecutive patches. |
2297 | switch (MI.getOpcode()) { |
2298 | // PS_fi and PS_fia remain special cases. |
2299 | case Hexagon::PS_fi: |
2300 | case Hexagon::PS_fia: |
2301 | return true; |
2302 | default: |
2303 | return false; |
2304 | } |
2305 | return false; |
2306 | } |
2307 | |
2308 | // This returns true in two cases: |
2309 | // - The OP code itself indicates that this is an extended instruction. |
2310 | // - One of MOs has been marked with HMOTF_ConstExtended flag. |
2311 | bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const { |
2312 | // First check if this is permanently extended op code. |
2313 | const uint64_t F = MI.getDesc().TSFlags; |
2314 | if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) |
2315 | return true; |
2316 | // Use MO operand flags to determine if one of MI's operands |
2317 | // has HMOTF_ConstExtended flag set. |
2318 | for (const MachineOperand &MO : MI.operands()) |
2319 | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) |
2320 | return true; |
2321 | return false; |
2322 | } |
2323 | |
2324 | bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const { |
2325 | unsigned Opcode = MI.getOpcode(); |
2326 | const uint64_t F = get(Opcode).TSFlags; |
2327 | return (F >> HexagonII::FPPos) & HexagonII::FPMask; |
2328 | } |
2329 | |
2330 | // No V60 HVX VMEM with A_INDIRECT. |
2331 | bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I, |
2332 | const MachineInstr &J) const { |
2333 | if (!isHVXVec(MI: I)) |
2334 | return false; |
2335 | if (!I.mayLoad() && !I.mayStore()) |
2336 | return false; |
2337 | return J.isIndirectBranch() || isIndirectCall(MI: J) || isIndirectL4Return(MI: J); |
2338 | } |
2339 | |
2340 | bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const { |
2341 | switch (MI.getOpcode()) { |
2342 | case Hexagon::J2_callr: |
2343 | case Hexagon::J2_callrf: |
2344 | case Hexagon::J2_callrt: |
2345 | case Hexagon::PS_call_nr: |
2346 | return true; |
2347 | } |
2348 | return false; |
2349 | } |
2350 | |
2351 | bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const { |
2352 | switch (MI.getOpcode()) { |
2353 | case Hexagon::L4_return: |
2354 | case Hexagon::L4_return_t: |
2355 | case Hexagon::L4_return_f: |
2356 | case Hexagon::L4_return_fnew_pnt: |
2357 | case Hexagon::L4_return_fnew_pt: |
2358 | case Hexagon::L4_return_tnew_pnt: |
2359 | case Hexagon::L4_return_tnew_pt: |
2360 | return true; |
2361 | } |
2362 | return false; |
2363 | } |
2364 | |
2365 | bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const { |
2366 | switch (MI.getOpcode()) { |
2367 | case Hexagon::J2_jumpr: |
2368 | case Hexagon::J2_jumprt: |
2369 | case Hexagon::J2_jumprf: |
2370 | case Hexagon::J2_jumprtnewpt: |
2371 | case Hexagon::J2_jumprfnewpt: |
2372 | case Hexagon::J2_jumprtnew: |
2373 | case Hexagon::J2_jumprfnew: |
2374 | return true; |
2375 | } |
2376 | return false; |
2377 | } |
2378 | |
2379 | // Return true if a given MI can accommodate given offset. |
2380 | // Use abs estimate as oppose to the exact number. |
2381 | // TODO: This will need to be changed to use MC level |
2382 | // definition of instruction extendable field size. |
2383 | bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI, |
2384 | unsigned offset) const { |
2385 | // This selection of jump instructions matches to that what |
2386 | // analyzeBranch can parse, plus NVJ. |
2387 | if (isNewValueJump(MI)) // r9:2 |
2388 | return isInt<11>(x: offset); |
2389 | |
2390 | switch (MI.getOpcode()) { |
2391 | // Still missing Jump to address condition on register value. |
2392 | default: |
2393 | return false; |
2394 | case Hexagon::J2_jump: // bits<24> dst; // r22:2 |
2395 | case Hexagon::J2_call: |
2396 | case Hexagon::PS_call_nr: |
2397 | return isInt<24>(x: offset); |
2398 | case Hexagon::J2_jumpt: //bits<17> dst; // r15:2 |
2399 | case Hexagon::J2_jumpf: |
2400 | case Hexagon::J2_jumptnew: |
2401 | case Hexagon::J2_jumptnewpt: |
2402 | case Hexagon::J2_jumpfnew: |
2403 | case Hexagon::J2_jumpfnewpt: |
2404 | case Hexagon::J2_callt: |
2405 | case Hexagon::J2_callf: |
2406 | return isInt<17>(x: offset); |
2407 | case Hexagon::J2_loop0i: |
2408 | case Hexagon::J2_loop0iext: |
2409 | case Hexagon::J2_loop0r: |
2410 | case Hexagon::J2_loop0rext: |
2411 | case Hexagon::J2_loop1i: |
2412 | case Hexagon::J2_loop1iext: |
2413 | case Hexagon::J2_loop1r: |
2414 | case Hexagon::J2_loop1rext: |
2415 | return isInt<9>(x: offset); |
2416 | // TODO: Add all the compound branches here. Can we do this in Relation model? |
2417 | case Hexagon::J4_cmpeqi_tp0_jump_nt: |
2418 | case Hexagon::J4_cmpeqi_tp1_jump_nt: |
2419 | case Hexagon::J4_cmpeqn1_tp0_jump_nt: |
2420 | case Hexagon::J4_cmpeqn1_tp1_jump_nt: |
2421 | return isInt<11>(x: offset); |
2422 | } |
2423 | } |
2424 | |
2425 | bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const { |
2426 | // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply |
2427 | // resource, but all operands can be received late like an ALU instruction. |
2428 | return getType(MI) == HexagonII::TypeCVI_VX_LATE; |
2429 | } |
2430 | |
2431 | bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const { |
2432 | unsigned Opcode = MI.getOpcode(); |
2433 | return Opcode == Hexagon::J2_loop0i || |
2434 | Opcode == Hexagon::J2_loop0r || |
2435 | Opcode == Hexagon::J2_loop0iext || |
2436 | Opcode == Hexagon::J2_loop0rext || |
2437 | Opcode == Hexagon::J2_loop1i || |
2438 | Opcode == Hexagon::J2_loop1r || |
2439 | Opcode == Hexagon::J2_loop1iext || |
2440 | Opcode == Hexagon::J2_loop1rext; |
2441 | } |
2442 | |
2443 | bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const { |
2444 | switch (MI.getOpcode()) { |
2445 | default: return false; |
2446 | case Hexagon::L4_iadd_memopw_io: |
2447 | case Hexagon::L4_isub_memopw_io: |
2448 | case Hexagon::L4_add_memopw_io: |
2449 | case Hexagon::L4_sub_memopw_io: |
2450 | case Hexagon::L4_and_memopw_io: |
2451 | case Hexagon::L4_or_memopw_io: |
2452 | case Hexagon::L4_iadd_memoph_io: |
2453 | case Hexagon::L4_isub_memoph_io: |
2454 | case Hexagon::L4_add_memoph_io: |
2455 | case Hexagon::L4_sub_memoph_io: |
2456 | case Hexagon::L4_and_memoph_io: |
2457 | case Hexagon::L4_or_memoph_io: |
2458 | case Hexagon::L4_iadd_memopb_io: |
2459 | case Hexagon::L4_isub_memopb_io: |
2460 | case Hexagon::L4_add_memopb_io: |
2461 | case Hexagon::L4_sub_memopb_io: |
2462 | case Hexagon::L4_and_memopb_io: |
2463 | case Hexagon::L4_or_memopb_io: |
2464 | case Hexagon::L4_ior_memopb_io: |
2465 | case Hexagon::L4_ior_memoph_io: |
2466 | case Hexagon::L4_ior_memopw_io: |
2467 | case Hexagon::L4_iand_memopb_io: |
2468 | case Hexagon::L4_iand_memoph_io: |
2469 | case Hexagon::L4_iand_memopw_io: |
2470 | return true; |
2471 | } |
2472 | return false; |
2473 | } |
2474 | |
2475 | bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const { |
2476 | const uint64_t F = MI.getDesc().TSFlags; |
2477 | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; |
2478 | } |
2479 | |
2480 | bool HexagonInstrInfo::isNewValue(unsigned Opcode) const { |
2481 | const uint64_t F = get(Opcode).TSFlags; |
2482 | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; |
2483 | } |
2484 | |
2485 | bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const { |
2486 | return isNewValueJump(MI) || isNewValueStore(MI); |
2487 | } |
2488 | |
2489 | bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const { |
2490 | return isNewValue(MI) && MI.isBranch(); |
2491 | } |
2492 | |
2493 | bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const { |
2494 | return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); |
2495 | } |
2496 | |
2497 | bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const { |
2498 | const uint64_t F = MI.getDesc().TSFlags; |
2499 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; |
2500 | } |
2501 | |
2502 | bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { |
2503 | const uint64_t F = get(Opcode).TSFlags; |
2504 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; |
2505 | } |
2506 | |
2507 | // Returns true if a particular operand is extendable for an instruction. |
2508 | bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI, |
2509 | unsigned OperandNum) const { |
2510 | const uint64_t F = MI.getDesc().TSFlags; |
2511 | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) |
2512 | == OperandNum; |
2513 | } |
2514 | |
2515 | bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const { |
2516 | const uint64_t F = MI.getDesc().TSFlags; |
2517 | assert(isPredicated(MI)); |
2518 | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; |
2519 | } |
2520 | |
2521 | bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { |
2522 | const uint64_t F = get(Opcode).TSFlags; |
2523 | assert(isPredicated(Opcode)); |
2524 | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; |
2525 | } |
2526 | |
2527 | bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const { |
2528 | const uint64_t F = MI.getDesc().TSFlags; |
2529 | return !((F >> HexagonII::PredicatedFalsePos) & |
2530 | HexagonII::PredicatedFalseMask); |
2531 | } |
2532 | |
2533 | bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { |
2534 | const uint64_t F = get(Opcode).TSFlags; |
2535 | // Make sure that the instruction is predicated. |
2536 | assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); |
2537 | return !((F >> HexagonII::PredicatedFalsePos) & |
2538 | HexagonII::PredicatedFalseMask); |
2539 | } |
2540 | |
2541 | bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { |
2542 | const uint64_t F = get(Opcode).TSFlags; |
2543 | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; |
2544 | } |
2545 | |
2546 | bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const { |
2547 | const uint64_t F = get(Opcode).TSFlags; |
2548 | return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask; |
2549 | } |
2550 | |
2551 | bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const { |
2552 | const uint64_t F = get(Opcode).TSFlags; |
2553 | assert(get(Opcode).isBranch() && |
2554 | (isPredicatedNew(Opcode) || isNewValue(Opcode))); |
2555 | return (F >> HexagonII::TakenPos) & HexagonII::TakenMask; |
2556 | } |
2557 | |
2558 | bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const { |
2559 | return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 || |
2560 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT || |
2561 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC || |
2562 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC; |
2563 | } |
2564 | |
2565 | bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const { |
2566 | switch (MI.getOpcode()) { |
2567 | // Byte |
2568 | case Hexagon::L2_loadrb_io: |
2569 | case Hexagon::L4_loadrb_ur: |
2570 | case Hexagon::L4_loadrb_ap: |
2571 | case Hexagon::L2_loadrb_pr: |
2572 | case Hexagon::L2_loadrb_pbr: |
2573 | case Hexagon::L2_loadrb_pi: |
2574 | case Hexagon::L2_loadrb_pci: |
2575 | case Hexagon::L2_loadrb_pcr: |
2576 | case Hexagon::L2_loadbsw2_io: |
2577 | case Hexagon::L4_loadbsw2_ur: |
2578 | case Hexagon::L4_loadbsw2_ap: |
2579 | case Hexagon::L2_loadbsw2_pr: |
2580 | case Hexagon::L2_loadbsw2_pbr: |
2581 | case Hexagon::L2_loadbsw2_pi: |
2582 | case Hexagon::L2_loadbsw2_pci: |
2583 | case Hexagon::L2_loadbsw2_pcr: |
2584 | case Hexagon::L2_loadbsw4_io: |
2585 | case Hexagon::L4_loadbsw4_ur: |
2586 | case Hexagon::L4_loadbsw4_ap: |
2587 | case Hexagon::L2_loadbsw4_pr: |
2588 | case Hexagon::L2_loadbsw4_pbr: |
2589 | case Hexagon::L2_loadbsw4_pi: |
2590 | case Hexagon::L2_loadbsw4_pci: |
2591 | case Hexagon::L2_loadbsw4_pcr: |
2592 | case Hexagon::L4_loadrb_rr: |
2593 | case Hexagon::L2_ploadrbt_io: |
2594 | case Hexagon::L2_ploadrbt_pi: |
2595 | case Hexagon::L2_ploadrbf_io: |
2596 | case Hexagon::L2_ploadrbf_pi: |
2597 | case Hexagon::L2_ploadrbtnew_io: |
2598 | case Hexagon::L2_ploadrbfnew_io: |
2599 | case Hexagon::L4_ploadrbt_rr: |
2600 | case Hexagon::L4_ploadrbf_rr: |
2601 | case Hexagon::L4_ploadrbtnew_rr: |
2602 | case Hexagon::L4_ploadrbfnew_rr: |
2603 | case Hexagon::L2_ploadrbtnew_pi: |
2604 | case Hexagon::L2_ploadrbfnew_pi: |
2605 | case Hexagon::L4_ploadrbt_abs: |
2606 | case Hexagon::L4_ploadrbf_abs: |
2607 | case Hexagon::L4_ploadrbtnew_abs: |
2608 | case Hexagon::L4_ploadrbfnew_abs: |
2609 | case Hexagon::L2_loadrbgp: |
2610 | // Half |
2611 | case Hexagon::L2_loadrh_io: |
2612 | case Hexagon::L4_loadrh_ur: |
2613 | case Hexagon::L4_loadrh_ap: |
2614 | case Hexagon::L2_loadrh_pr: |
2615 | case Hexagon::L2_loadrh_pbr: |
2616 | case Hexagon::L2_loadrh_pi: |
2617 | case Hexagon::L2_loadrh_pci: |
2618 | case Hexagon::L2_loadrh_pcr: |
2619 | case Hexagon::L4_loadrh_rr: |
2620 | case Hexagon::L2_ploadrht_io: |
2621 | case Hexagon::L2_ploadrht_pi: |
2622 | case Hexagon::L2_ploadrhf_io: |
2623 | case Hexagon::L2_ploadrhf_pi: |
2624 | case Hexagon::L2_ploadrhtnew_io: |
2625 | case Hexagon::L2_ploadrhfnew_io: |
2626 | case Hexagon::L4_ploadrht_rr: |
2627 | case Hexagon::L4_ploadrhf_rr: |
2628 | case Hexagon::L4_ploadrhtnew_rr: |
2629 | case Hexagon::L4_ploadrhfnew_rr: |
2630 | case Hexagon::L2_ploadrhtnew_pi: |
2631 | case Hexagon::L2_ploadrhfnew_pi: |
2632 | case Hexagon::L4_ploadrht_abs: |
2633 | case Hexagon::L4_ploadrhf_abs: |
2634 | case Hexagon::L4_ploadrhtnew_abs: |
2635 | case Hexagon::L4_ploadrhfnew_abs: |
2636 | case Hexagon::L2_loadrhgp: |
2637 | return true; |
2638 | default: |
2639 | return false; |
2640 | } |
2641 | } |
2642 | |
2643 | bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const { |
2644 | const uint64_t F = MI.getDesc().TSFlags; |
2645 | return (F >> HexagonII::SoloPos) & HexagonII::SoloMask; |
2646 | } |
2647 | |
2648 | bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const { |
2649 | switch (MI.getOpcode()) { |
2650 | case Hexagon::STriw_pred: |
2651 | case Hexagon::LDriw_pred: |
2652 | return true; |
2653 | default: |
2654 | return false; |
2655 | } |
2656 | } |
2657 | |
2658 | bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const { |
2659 | if (!MI.isBranch()) |
2660 | return false; |
2661 | |
2662 | for (auto &Op : MI.operands()) |
2663 | if (Op.isGlobal() || Op.isSymbol()) |
2664 | return true; |
2665 | return false; |
2666 | } |
2667 | |
2668 | // Returns true when SU has a timing class TC1. |
2669 | bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const { |
2670 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
2671 | return is_TC1(SchedClass); |
2672 | } |
2673 | |
2674 | bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const { |
2675 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
2676 | return is_TC2(SchedClass); |
2677 | } |
2678 | |
2679 | bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const { |
2680 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
2681 | return is_TC2early(SchedClass); |
2682 | } |
2683 | |
2684 | bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const { |
2685 | unsigned SchedClass = MI.getDesc().getSchedClass(); |
2686 | return is_TC4x(SchedClass); |
2687 | } |
2688 | |
2689 | // Schedule this ASAP. |
2690 | bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1, |
2691 | const MachineInstr &MI2) const { |
2692 | if (mayBeCurLoad(MI: MI1)) { |
2693 | // if (result of SU is used in Next) return true; |
2694 | Register DstReg = MI1.getOperand(i: 0).getReg(); |
2695 | int N = MI2.getNumOperands(); |
2696 | for (int I = 0; I < N; I++) |
2697 | if (MI2.getOperand(i: I).isReg() && DstReg == MI2.getOperand(i: I).getReg()) |
2698 | return true; |
2699 | } |
2700 | if (mayBeNewStore(MI: MI2)) |
2701 | if (MI2.getOpcode() == Hexagon::V6_vS32b_pi) |
2702 | if (MI1.getOperand(i: 0).isReg() && MI2.getOperand(i: 3).isReg() && |
2703 | MI1.getOperand(i: 0).getReg() == MI2.getOperand(i: 3).getReg()) |
2704 | return true; |
2705 | return false; |
2706 | } |
2707 | |
2708 | bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const { |
2709 | const uint64_t V = getType(MI); |
2710 | return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; |
2711 | } |
2712 | |
2713 | // Check if the Offset is a valid auto-inc imm by Load/Store Type. |
2714 | bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const { |
2715 | int Size = VT.getSizeInBits() / 8; |
2716 | if (Offset % Size != 0) |
2717 | return false; |
2718 | int Count = Offset / Size; |
2719 | |
2720 | switch (VT.getSimpleVT().SimpleTy) { |
2721 | // For scalars the auto-inc is s4 |
2722 | case MVT::i8: |
2723 | case MVT::i16: |
2724 | case MVT::i32: |
2725 | case MVT::i64: |
2726 | case MVT::f32: |
2727 | case MVT::f64: |
2728 | case MVT::v2i16: |
2729 | case MVT::v2i32: |
2730 | case MVT::v4i8: |
2731 | case MVT::v4i16: |
2732 | case MVT::v8i8: |
2733 | return isInt<4>(x: Count); |
2734 | // For HVX vectors the auto-inc is s3 |
2735 | case MVT::v64i8: |
2736 | case MVT::v32i16: |
2737 | case MVT::v16i32: |
2738 | case MVT::v8i64: |
2739 | case MVT::v128i8: |
2740 | case MVT::v64i16: |
2741 | case MVT::v32i32: |
2742 | case MVT::v16i64: |
2743 | return isInt<3>(x: Count); |
2744 | default: |
2745 | break; |
2746 | } |
2747 | |
2748 | llvm_unreachable("Not an valid type!" ); |
2749 | } |
2750 | |
2751 | bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, |
2752 | const TargetRegisterInfo *TRI, bool Extend) const { |
2753 | // This function is to check whether the "Offset" is in the correct range of |
2754 | // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is |
2755 | // inserted to calculate the final address. Due to this reason, the function |
2756 | // assumes that the "Offset" has correct alignment. |
2757 | // We used to assert if the offset was not properly aligned, however, |
2758 | // there are cases where a misaligned pointer recast can cause this |
2759 | // problem, and we need to allow for it. The front end warns of such |
2760 | // misaligns with respect to load size. |
2761 | switch (Opcode) { |
2762 | case Hexagon::PS_vstorerq_ai: |
2763 | case Hexagon::PS_vstorerv_ai: |
2764 | case Hexagon::PS_vstorerw_ai: |
2765 | case Hexagon::PS_vstorerw_nt_ai: |
2766 | case Hexagon::PS_vloadrq_ai: |
2767 | case Hexagon::PS_vloadrv_ai: |
2768 | case Hexagon::PS_vloadrw_ai: |
2769 | case Hexagon::PS_vloadrw_nt_ai: |
2770 | case Hexagon::V6_vL32b_ai: |
2771 | case Hexagon::V6_vS32b_ai: |
2772 | case Hexagon::V6_vS32b_pred_ai: |
2773 | case Hexagon::V6_vS32b_npred_ai: |
2774 | case Hexagon::V6_vS32b_qpred_ai: |
2775 | case Hexagon::V6_vS32b_nqpred_ai: |
2776 | case Hexagon::V6_vS32b_new_ai: |
2777 | case Hexagon::V6_vS32b_new_pred_ai: |
2778 | case Hexagon::V6_vS32b_new_npred_ai: |
2779 | case Hexagon::V6_vS32b_nt_pred_ai: |
2780 | case Hexagon::V6_vS32b_nt_npred_ai: |
2781 | case Hexagon::V6_vS32b_nt_new_ai: |
2782 | case Hexagon::V6_vS32b_nt_new_pred_ai: |
2783 | case Hexagon::V6_vS32b_nt_new_npred_ai: |
2784 | case Hexagon::V6_vS32b_nt_qpred_ai: |
2785 | case Hexagon::V6_vS32b_nt_nqpred_ai: |
2786 | case Hexagon::V6_vL32b_nt_ai: |
2787 | case Hexagon::V6_vS32b_nt_ai: |
2788 | case Hexagon::V6_vL32Ub_ai: |
2789 | case Hexagon::V6_vS32Ub_ai: |
2790 | case Hexagon::V6_vL32b_cur_ai: |
2791 | case Hexagon::V6_vL32b_tmp_ai: |
2792 | case Hexagon::V6_vL32b_pred_ai: |
2793 | case Hexagon::V6_vL32b_npred_ai: |
2794 | case Hexagon::V6_vL32b_cur_pred_ai: |
2795 | case Hexagon::V6_vL32b_cur_npred_ai: |
2796 | case Hexagon::V6_vL32b_tmp_pred_ai: |
2797 | case Hexagon::V6_vL32b_tmp_npred_ai: |
2798 | case Hexagon::V6_vL32b_nt_cur_ai: |
2799 | case Hexagon::V6_vL32b_nt_tmp_ai: |
2800 | case Hexagon::V6_vL32b_nt_pred_ai: |
2801 | case Hexagon::V6_vL32b_nt_npred_ai: |
2802 | case Hexagon::V6_vL32b_nt_cur_pred_ai: |
2803 | case Hexagon::V6_vL32b_nt_cur_npred_ai: |
2804 | case Hexagon::V6_vL32b_nt_tmp_pred_ai: |
2805 | case Hexagon::V6_vL32b_nt_tmp_npred_ai: |
2806 | case Hexagon::V6_vgathermh_pseudo: |
2807 | case Hexagon::V6_vgathermw_pseudo: |
2808 | case Hexagon::V6_vgathermhw_pseudo: |
2809 | case Hexagon::V6_vgathermhq_pseudo: |
2810 | case Hexagon::V6_vgathermwq_pseudo: |
2811 | case Hexagon::V6_vgathermhwq_pseudo: { |
2812 | unsigned VectorSize = TRI->getSpillSize(RC: Hexagon::HvxVRRegClass); |
2813 | assert(isPowerOf2_32(VectorSize)); |
2814 | if (Offset & (VectorSize-1)) |
2815 | return false; |
2816 | return isInt<4>(x: Offset >> Log2_32(Value: VectorSize)); |
2817 | } |
2818 | |
2819 | case Hexagon::J2_loop0i: |
2820 | case Hexagon::J2_loop1i: |
2821 | return isUInt<10>(x: Offset); |
2822 | |
2823 | case Hexagon::S4_storeirb_io: |
2824 | case Hexagon::S4_storeirbt_io: |
2825 | case Hexagon::S4_storeirbf_io: |
2826 | return isUInt<6>(x: Offset); |
2827 | |
2828 | case Hexagon::S4_storeirh_io: |
2829 | case Hexagon::S4_storeirht_io: |
2830 | case Hexagon::S4_storeirhf_io: |
2831 | return isShiftedUInt<6,1>(x: Offset); |
2832 | |
2833 | case Hexagon::S4_storeiri_io: |
2834 | case Hexagon::S4_storeirit_io: |
2835 | case Hexagon::S4_storeirif_io: |
2836 | return isShiftedUInt<6,2>(x: Offset); |
2837 | // Handle these two compare instructions that are not extendable. |
2838 | case Hexagon::A4_cmpbeqi: |
2839 | return isUInt<8>(x: Offset); |
2840 | case Hexagon::A4_cmpbgti: |
2841 | return isInt<8>(x: Offset); |
2842 | } |
2843 | |
2844 | if (Extend) |
2845 | return true; |
2846 | |
2847 | switch (Opcode) { |
2848 | case Hexagon::L2_loadri_io: |
2849 | case Hexagon::S2_storeri_io: |
2850 | return (Offset >= Hexagon_MEMW_OFFSET_MIN) && |
2851 | (Offset <= Hexagon_MEMW_OFFSET_MAX); |
2852 | |
2853 | case Hexagon::L2_loadrd_io: |
2854 | case Hexagon::S2_storerd_io: |
2855 | return (Offset >= Hexagon_MEMD_OFFSET_MIN) && |
2856 | (Offset <= Hexagon_MEMD_OFFSET_MAX); |
2857 | |
2858 | case Hexagon::L2_loadrh_io: |
2859 | case Hexagon::L2_loadruh_io: |
2860 | case Hexagon::S2_storerh_io: |
2861 | case Hexagon::S2_storerf_io: |
2862 | return (Offset >= Hexagon_MEMH_OFFSET_MIN) && |
2863 | (Offset <= Hexagon_MEMH_OFFSET_MAX); |
2864 | |
2865 | case Hexagon::L2_loadrb_io: |
2866 | case Hexagon::L2_loadrub_io: |
2867 | case Hexagon::S2_storerb_io: |
2868 | return (Offset >= Hexagon_MEMB_OFFSET_MIN) && |
2869 | (Offset <= Hexagon_MEMB_OFFSET_MAX); |
2870 | |
2871 | case Hexagon::A2_addi: |
2872 | return (Offset >= Hexagon_ADDI_OFFSET_MIN) && |
2873 | (Offset <= Hexagon_ADDI_OFFSET_MAX); |
2874 | |
2875 | case Hexagon::L4_iadd_memopw_io: |
2876 | case Hexagon::L4_isub_memopw_io: |
2877 | case Hexagon::L4_add_memopw_io: |
2878 | case Hexagon::L4_sub_memopw_io: |
2879 | case Hexagon::L4_iand_memopw_io: |
2880 | case Hexagon::L4_ior_memopw_io: |
2881 | case Hexagon::L4_and_memopw_io: |
2882 | case Hexagon::L4_or_memopw_io: |
2883 | return (0 <= Offset && Offset <= 255); |
2884 | |
2885 | case Hexagon::L4_iadd_memoph_io: |
2886 | case Hexagon::L4_isub_memoph_io: |
2887 | case Hexagon::L4_add_memoph_io: |
2888 | case Hexagon::L4_sub_memoph_io: |
2889 | case Hexagon::L4_iand_memoph_io: |
2890 | case Hexagon::L4_ior_memoph_io: |
2891 | case Hexagon::L4_and_memoph_io: |
2892 | case Hexagon::L4_or_memoph_io: |
2893 | return (0 <= Offset && Offset <= 127); |
2894 | |
2895 | case Hexagon::L4_iadd_memopb_io: |
2896 | case Hexagon::L4_isub_memopb_io: |
2897 | case Hexagon::L4_add_memopb_io: |
2898 | case Hexagon::L4_sub_memopb_io: |
2899 | case Hexagon::L4_iand_memopb_io: |
2900 | case Hexagon::L4_ior_memopb_io: |
2901 | case Hexagon::L4_and_memopb_io: |
2902 | case Hexagon::L4_or_memopb_io: |
2903 | return (0 <= Offset && Offset <= 63); |
2904 | |
2905 | // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of |
2906 | // any size. Later pass knows how to handle it. |
2907 | case Hexagon::STriw_pred: |
2908 | case Hexagon::LDriw_pred: |
2909 | case Hexagon::STriw_ctr: |
2910 | case Hexagon::LDriw_ctr: |
2911 | return true; |
2912 | |
2913 | case Hexagon::PS_fi: |
2914 | case Hexagon::PS_fia: |
2915 | case Hexagon::INLINEASM: |
2916 | return true; |
2917 | |
2918 | case Hexagon::L2_ploadrbt_io: |
2919 | case Hexagon::L2_ploadrbf_io: |
2920 | case Hexagon::L2_ploadrubt_io: |
2921 | case Hexagon::L2_ploadrubf_io: |
2922 | case Hexagon::S2_pstorerbt_io: |
2923 | case Hexagon::S2_pstorerbf_io: |
2924 | return isUInt<6>(x: Offset); |
2925 | |
2926 | case Hexagon::L2_ploadrht_io: |
2927 | case Hexagon::L2_ploadrhf_io: |
2928 | case Hexagon::L2_ploadruht_io: |
2929 | case Hexagon::L2_ploadruhf_io: |
2930 | case Hexagon::S2_pstorerht_io: |
2931 | case Hexagon::S2_pstorerhf_io: |
2932 | return isShiftedUInt<6,1>(x: Offset); |
2933 | |
2934 | case Hexagon::L2_ploadrit_io: |
2935 | case Hexagon::L2_ploadrif_io: |
2936 | case Hexagon::S2_pstorerit_io: |
2937 | case Hexagon::S2_pstorerif_io: |
2938 | return isShiftedUInt<6,2>(x: Offset); |
2939 | |
2940 | case Hexagon::L2_ploadrdt_io: |
2941 | case Hexagon::L2_ploadrdf_io: |
2942 | case Hexagon::S2_pstorerdt_io: |
2943 | case Hexagon::S2_pstorerdf_io: |
2944 | return isShiftedUInt<6,3>(x: Offset); |
2945 | |
2946 | case Hexagon::L2_loadbsw2_io: |
2947 | case Hexagon::L2_loadbzw2_io: |
2948 | return isShiftedInt<11,1>(x: Offset); |
2949 | |
2950 | case Hexagon::L2_loadbsw4_io: |
2951 | case Hexagon::L2_loadbzw4_io: |
2952 | return isShiftedInt<11,2>(x: Offset); |
2953 | } // switch |
2954 | |
2955 | dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode) |
2956 | << ")\n" ; |
2957 | llvm_unreachable("No offset range is defined for this opcode. " |
2958 | "Please define it in the above switch statement!" ); |
2959 | } |
2960 | |
2961 | bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const { |
2962 | return isHVXVec(MI) && isAccumulator(MI); |
2963 | } |
2964 | |
2965 | bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const { |
2966 | const uint64_t F = get(Opcode: MI.getOpcode()).TSFlags; |
2967 | const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask); |
2968 | return |
2969 | V == HexagonII::TypeCVI_VA || |
2970 | V == HexagonII::TypeCVI_VA_DV; |
2971 | } |
2972 | |
2973 | bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI, |
2974 | const MachineInstr &ConsMI) const { |
2975 | if (EnableACCForwarding && isVecAcc(MI: ProdMI) && isVecAcc(MI: ConsMI)) |
2976 | return true; |
2977 | |
2978 | if (EnableALUForwarding && (isVecALU(MI: ConsMI) || isLateSourceInstr(MI: ConsMI))) |
2979 | return true; |
2980 | |
2981 | if (mayBeNewStore(MI: ConsMI)) |
2982 | return true; |
2983 | |
2984 | return false; |
2985 | } |
2986 | |
2987 | bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const { |
2988 | switch (MI.getOpcode()) { |
2989 | // Byte |
2990 | case Hexagon::L2_loadrub_io: |
2991 | case Hexagon::L4_loadrub_ur: |
2992 | case Hexagon::L4_loadrub_ap: |
2993 | case Hexagon::L2_loadrub_pr: |
2994 | case Hexagon::L2_loadrub_pbr: |
2995 | case Hexagon::L2_loadrub_pi: |
2996 | case Hexagon::L2_loadrub_pci: |
2997 | case Hexagon::L2_loadrub_pcr: |
2998 | case Hexagon::L2_loadbzw2_io: |
2999 | case Hexagon::L4_loadbzw2_ur: |
3000 | case Hexagon::L4_loadbzw2_ap: |
3001 | case Hexagon::L2_loadbzw2_pr: |
3002 | case Hexagon::L2_loadbzw2_pbr: |
3003 | case Hexagon::L2_loadbzw2_pi: |
3004 | case Hexagon::L2_loadbzw2_pci: |
3005 | case Hexagon::L2_loadbzw2_pcr: |
3006 | case Hexagon::L2_loadbzw4_io: |
3007 | case Hexagon::L4_loadbzw4_ur: |
3008 | case Hexagon::L4_loadbzw4_ap: |
3009 | case Hexagon::L2_loadbzw4_pr: |
3010 | case Hexagon::L2_loadbzw4_pbr: |
3011 | case Hexagon::L2_loadbzw4_pi: |
3012 | case Hexagon::L2_loadbzw4_pci: |
3013 | case Hexagon::L2_loadbzw4_pcr: |
3014 | case Hexagon::L4_loadrub_rr: |
3015 | case Hexagon::L2_ploadrubt_io: |
3016 | case Hexagon::L2_ploadrubt_pi: |
3017 | case Hexagon::L2_ploadrubf_io: |
3018 | case Hexagon::L2_ploadrubf_pi: |
3019 | case Hexagon::L2_ploadrubtnew_io: |
3020 | case Hexagon::L2_ploadrubfnew_io: |
3021 | case Hexagon::L4_ploadrubt_rr: |
3022 | case Hexagon::L4_ploadrubf_rr: |
3023 | case Hexagon::L4_ploadrubtnew_rr: |
3024 | case Hexagon::L4_ploadrubfnew_rr: |
3025 | case Hexagon::L2_ploadrubtnew_pi: |
3026 | case Hexagon::L2_ploadrubfnew_pi: |
3027 | case Hexagon::L4_ploadrubt_abs: |
3028 | case Hexagon::L4_ploadrubf_abs: |
3029 | case Hexagon::L4_ploadrubtnew_abs: |
3030 | case Hexagon::L4_ploadrubfnew_abs: |
3031 | case Hexagon::L2_loadrubgp: |
3032 | // Half |
3033 | case Hexagon::L2_loadruh_io: |
3034 | case Hexagon::L4_loadruh_ur: |
3035 | case Hexagon::L4_loadruh_ap: |
3036 | case Hexagon::L2_loadruh_pr: |
3037 | case Hexagon::L2_loadruh_pbr: |
3038 | case Hexagon::L2_loadruh_pi: |
3039 | case Hexagon::L2_loadruh_pci: |
3040 | case Hexagon::L2_loadruh_pcr: |
3041 | case Hexagon::L4_loadruh_rr: |
3042 | case Hexagon::L2_ploadruht_io: |
3043 | case Hexagon::L2_ploadruht_pi: |
3044 | case Hexagon::L2_ploadruhf_io: |
3045 | case Hexagon::L2_ploadruhf_pi: |
3046 | case Hexagon::L2_ploadruhtnew_io: |
3047 | case Hexagon::L2_ploadruhfnew_io: |
3048 | case Hexagon::L4_ploadruht_rr: |
3049 | case Hexagon::L4_ploadruhf_rr: |
3050 | case Hexagon::L4_ploadruhtnew_rr: |
3051 | case Hexagon::L4_ploadruhfnew_rr: |
3052 | case Hexagon::L2_ploadruhtnew_pi: |
3053 | case Hexagon::L2_ploadruhfnew_pi: |
3054 | case Hexagon::L4_ploadruht_abs: |
3055 | case Hexagon::L4_ploadruhf_abs: |
3056 | case Hexagon::L4_ploadruhtnew_abs: |
3057 | case Hexagon::L4_ploadruhfnew_abs: |
3058 | case Hexagon::L2_loadruhgp: |
3059 | return true; |
3060 | default: |
3061 | return false; |
3062 | } |
3063 | } |
3064 | |
3065 | // Add latency to instruction. |
3066 | bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1, |
3067 | const MachineInstr &MI2) const { |
3068 | if (isHVXVec(MI: MI1) && isHVXVec(MI: MI2)) |
3069 | if (!isVecUsableNextPacket(ProdMI: MI1, ConsMI: MI2)) |
3070 | return true; |
3071 | return false; |
3072 | } |
3073 | |
3074 | /// Get the base register and byte offset of a load/store instr. |
3075 | bool HexagonInstrInfo::getMemOperandsWithOffsetWidth( |
3076 | const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, |
3077 | int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, |
3078 | const TargetRegisterInfo *TRI) const { |
3079 | OffsetIsScalable = false; |
3080 | const MachineOperand *BaseOp = getBaseAndOffset(MI: LdSt, Offset, AccessSize&: Width); |
3081 | if (!BaseOp || !BaseOp->isReg()) |
3082 | return false; |
3083 | BaseOps.push_back(Elt: BaseOp); |
3084 | return true; |
3085 | } |
3086 | |
3087 | /// Can these instructions execute at the same time in a bundle. |
3088 | bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First, |
3089 | const MachineInstr &Second) const { |
3090 | if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) { |
3091 | const MachineOperand &Op = Second.getOperand(i: 0); |
3092 | if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29) |
3093 | return true; |
3094 | } |
3095 | if (DisableNVSchedule) |
3096 | return false; |
3097 | if (mayBeNewStore(MI: Second)) { |
3098 | // Make sure the definition of the first instruction is the value being |
3099 | // stored. |
3100 | const MachineOperand &Stored = |
3101 | Second.getOperand(i: Second.getNumOperands() - 1); |
3102 | if (!Stored.isReg()) |
3103 | return false; |
3104 | for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) { |
3105 | const MachineOperand &Op = First.getOperand(i); |
3106 | if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg()) |
3107 | return true; |
3108 | } |
3109 | } |
3110 | return false; |
3111 | } |
3112 | |
3113 | bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const { |
3114 | unsigned Opc = CallMI.getOpcode(); |
3115 | return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr; |
3116 | } |
3117 | |
3118 | bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const { |
3119 | for (auto &I : *B) |
3120 | if (I.isEHLabel()) |
3121 | return true; |
3122 | return false; |
3123 | } |
3124 | |
3125 | // Returns true if an instruction can be converted into a non-extended |
3126 | // equivalent instruction. |
3127 | bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const { |
3128 | short NonExtOpcode; |
3129 | // Check if the instruction has a register form that uses register in place |
3130 | // of the extended operand, if so return that as the non-extended form. |
3131 | if (Hexagon::getRegForm(Opcode: MI.getOpcode()) >= 0) |
3132 | return true; |
3133 | |
3134 | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { |
3135 | // Check addressing mode and retrieve non-ext equivalent instruction. |
3136 | |
3137 | switch (getAddrMode(MI)) { |
3138 | case HexagonII::Absolute: |
3139 | // Load/store with absolute addressing mode can be converted into |
3140 | // base+offset mode. |
3141 | NonExtOpcode = Hexagon::changeAddrMode_abs_io(Opcode: MI.getOpcode()); |
3142 | break; |
3143 | case HexagonII::BaseImmOffset: |
3144 | // Load/store with base+offset addressing mode can be converted into |
3145 | // base+register offset addressing mode. However left shift operand should |
3146 | // be set to 0. |
3147 | NonExtOpcode = Hexagon::changeAddrMode_io_rr(Opcode: MI.getOpcode()); |
3148 | break; |
3149 | case HexagonII::BaseLongOffset: |
3150 | NonExtOpcode = Hexagon::changeAddrMode_ur_rr(Opcode: MI.getOpcode()); |
3151 | break; |
3152 | default: |
3153 | return false; |
3154 | } |
3155 | if (NonExtOpcode < 0) |
3156 | return false; |
3157 | return true; |
3158 | } |
3159 | return false; |
3160 | } |
3161 | |
3162 | bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const { |
3163 | return Hexagon::getRealHWInstr(Opcode: MI.getOpcode(), |
3164 | inInstrType: Hexagon::InstrType_Pseudo) >= 0; |
3165 | } |
3166 | |
3167 | bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B) |
3168 | const { |
3169 | MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); |
3170 | while (I != E) { |
3171 | if (I->isBarrier()) |
3172 | return true; |
3173 | ++I; |
3174 | } |
3175 | return false; |
3176 | } |
3177 | |
3178 | // Returns true, if a LD insn can be promoted to a cur load. |
3179 | bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const { |
3180 | const uint64_t F = MI.getDesc().TSFlags; |
3181 | return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) && |
3182 | Subtarget.hasV60Ops(); |
3183 | } |
3184 | |
3185 | // Returns true, if a ST insn can be promoted to a new-value store. |
3186 | bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const { |
3187 | if (MI.mayStore() && !Subtarget.useNewValueStores()) |
3188 | return false; |
3189 | |
3190 | const uint64_t F = MI.getDesc().TSFlags; |
3191 | return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask; |
3192 | } |
3193 | |
3194 | bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI, |
3195 | const MachineInstr &ConsMI) const { |
3196 | // There is no stall when ProdMI is not a V60 vector. |
3197 | if (!isHVXVec(MI: ProdMI)) |
3198 | return false; |
3199 | |
3200 | // There is no stall when ProdMI and ConsMI are not dependent. |
3201 | if (!isDependent(ProdMI, ConsMI)) |
3202 | return false; |
3203 | |
3204 | // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI |
3205 | // are scheduled in consecutive packets. |
3206 | if (isVecUsableNextPacket(ProdMI, ConsMI)) |
3207 | return false; |
3208 | |
3209 | return true; |
3210 | } |
3211 | |
3212 | bool HexagonInstrInfo::producesStall(const MachineInstr &MI, |
3213 | MachineBasicBlock::const_instr_iterator BII) const { |
3214 | // There is no stall when I is not a V60 vector. |
3215 | if (!isHVXVec(MI)) |
3216 | return false; |
3217 | |
3218 | MachineBasicBlock::const_instr_iterator MII = BII; |
3219 | MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end(); |
3220 | |
3221 | if (!MII->isBundle()) |
3222 | return producesStall(ProdMI: *MII, ConsMI: MI); |
3223 | |
3224 | for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) { |
3225 | const MachineInstr &J = *MII; |
3226 | if (producesStall(ProdMI: J, ConsMI: MI)) |
3227 | return true; |
3228 | } |
3229 | return false; |
3230 | } |
3231 | |
3232 | bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI, |
3233 | Register PredReg) const { |
3234 | for (const MachineOperand &MO : MI.operands()) { |
3235 | // Predicate register must be explicitly defined. |
3236 | if (MO.isRegMask() && MO.clobbersPhysReg(PhysReg: PredReg)) |
3237 | return false; |
3238 | if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg)) |
3239 | return false; |
3240 | } |
3241 | |
3242 | // Instruction that produce late predicate cannot be used as sources of |
3243 | // dot-new. |
3244 | switch (MI.getOpcode()) { |
3245 | case Hexagon::A4_addp_c: |
3246 | case Hexagon::A4_subp_c: |
3247 | case Hexagon::A4_tlbmatch: |
3248 | case Hexagon::A5_ACS: |
3249 | case Hexagon::F2_sfinvsqrta: |
3250 | case Hexagon::F2_sfrecipa: |
3251 | case Hexagon::J2_endloop0: |
3252 | case Hexagon::J2_endloop01: |
3253 | case Hexagon::J2_ploop1si: |
3254 | case Hexagon::J2_ploop1sr: |
3255 | case Hexagon::J2_ploop2si: |
3256 | case Hexagon::J2_ploop2sr: |
3257 | case Hexagon::J2_ploop3si: |
3258 | case Hexagon::J2_ploop3sr: |
3259 | case Hexagon::S2_cabacdecbin: |
3260 | case Hexagon::S2_storew_locked: |
3261 | case Hexagon::S4_stored_locked: |
3262 | return false; |
3263 | } |
3264 | return true; |
3265 | } |
3266 | |
3267 | bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const { |
3268 | return Opcode == Hexagon::J2_jumpt || |
3269 | Opcode == Hexagon::J2_jumptpt || |
3270 | Opcode == Hexagon::J2_jumpf || |
3271 | Opcode == Hexagon::J2_jumpfpt || |
3272 | Opcode == Hexagon::J2_jumptnew || |
3273 | Opcode == Hexagon::J2_jumpfnew || |
3274 | Opcode == Hexagon::J2_jumptnewpt || |
3275 | Opcode == Hexagon::J2_jumpfnewpt; |
3276 | } |
3277 | |
3278 | bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const { |
3279 | if (Cond.empty() || !isPredicated(Opcode: Cond[0].getImm())) |
3280 | return false; |
3281 | return !isPredicatedTrue(Opcode: Cond[0].getImm()); |
3282 | } |
3283 | |
3284 | unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const { |
3285 | const uint64_t F = MI.getDesc().TSFlags; |
3286 | return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; |
3287 | } |
3288 | |
3289 | // Returns the base register in a memory access (load/store). The offset is |
3290 | // returned in Offset and the access size is returned in AccessSize. |
3291 | // If the base operand has a subregister or the offset field does not contain |
3292 | // an immediate value, return nullptr. |
3293 | MachineOperand * |
3294 | HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, |
3295 | LocationSize &AccessSize) const { |
3296 | // Return if it is not a base+offset type instruction or a MemOp. |
3297 | if (getAddrMode(MI) != HexagonII::BaseImmOffset && |
3298 | getAddrMode(MI) != HexagonII::BaseLongOffset && !isMemOp(MI) && |
3299 | !isPostIncrement(MI)) |
3300 | return nullptr; |
3301 | |
3302 | AccessSize = LocationSize::precise(Value: getMemAccessSize(MI)); |
3303 | |
3304 | unsigned BasePos = 0, OffsetPos = 0; |
3305 | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) |
3306 | return nullptr; |
3307 | |
3308 | // Post increment updates its EA after the mem access, |
3309 | // so we need to treat its offset as zero. |
3310 | if (isPostIncrement(MI)) { |
3311 | Offset = 0; |
3312 | } else { |
3313 | const MachineOperand &OffsetOp = MI.getOperand(i: OffsetPos); |
3314 | if (!OffsetOp.isImm()) |
3315 | return nullptr; |
3316 | Offset = OffsetOp.getImm(); |
3317 | } |
3318 | |
3319 | const MachineOperand &BaseOp = MI.getOperand(i: BasePos); |
3320 | if (BaseOp.getSubReg() != 0) |
3321 | return nullptr; |
3322 | return &const_cast<MachineOperand&>(BaseOp); |
3323 | } |
3324 | |
3325 | /// Return the position of the base and offset operands for this instruction. |
3326 | bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI, |
3327 | unsigned &BasePos, unsigned &OffsetPos) const { |
3328 | if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI)) |
3329 | return false; |
3330 | |
3331 | // Deal with memops first. |
3332 | if (isMemOp(MI)) { |
3333 | BasePos = 0; |
3334 | OffsetPos = 1; |
3335 | } else if (MI.mayStore()) { |
3336 | BasePos = 0; |
3337 | OffsetPos = 1; |
3338 | } else if (MI.mayLoad()) { |
3339 | BasePos = 1; |
3340 | OffsetPos = 2; |
3341 | } else |
3342 | return false; |
3343 | |
3344 | if (isPredicated(MI)) { |
3345 | BasePos++; |
3346 | OffsetPos++; |
3347 | } |
3348 | if (isPostIncrement(MI)) { |
3349 | BasePos++; |
3350 | OffsetPos++; |
3351 | } |
3352 | |
3353 | if (!MI.getOperand(i: BasePos).isReg() || !MI.getOperand(i: OffsetPos).isImm()) |
3354 | return false; |
3355 | |
3356 | return true; |
3357 | } |
3358 | |
3359 | // Inserts branching instructions in reverse order of their occurrence. |
3360 | // e.g. jump_t t1 (i1) |
3361 | // jump t2 (i2) |
3362 | // Jumpers = {i2, i1} |
3363 | SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs( |
3364 | MachineBasicBlock& MBB) const { |
3365 | SmallVector<MachineInstr*, 2> Jumpers; |
3366 | // If the block has no terminators, it just falls into the block after it. |
3367 | MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
3368 | if (I == MBB.instr_begin()) |
3369 | return Jumpers; |
3370 | |
3371 | // A basic block may looks like this: |
3372 | // |
3373 | // [ insn |
3374 | // EH_LABEL |
3375 | // insn |
3376 | // insn |
3377 | // insn |
3378 | // EH_LABEL |
3379 | // insn ] |
3380 | // |
3381 | // It has two succs but does not have a terminator |
3382 | // Don't know how to handle it. |
3383 | do { |
3384 | --I; |
3385 | if (I->isEHLabel()) |
3386 | return Jumpers; |
3387 | } while (I != MBB.instr_begin()); |
3388 | |
3389 | I = MBB.instr_end(); |
3390 | --I; |
3391 | |
3392 | while (I->isDebugInstr()) { |
3393 | if (I == MBB.instr_begin()) |
3394 | return Jumpers; |
3395 | --I; |
3396 | } |
3397 | if (!isUnpredicatedTerminator(MI: *I)) |
3398 | return Jumpers; |
3399 | |
3400 | // Get the last instruction in the block. |
3401 | MachineInstr *LastInst = &*I; |
3402 | Jumpers.push_back(Elt: LastInst); |
3403 | MachineInstr *SecondLastInst = nullptr; |
3404 | // Find one more terminator if present. |
3405 | do { |
3406 | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(MI: *I)) { |
3407 | if (!SecondLastInst) { |
3408 | SecondLastInst = &*I; |
3409 | Jumpers.push_back(Elt: SecondLastInst); |
3410 | } else // This is a third branch. |
3411 | return Jumpers; |
3412 | } |
3413 | if (I == MBB.instr_begin()) |
3414 | break; |
3415 | --I; |
3416 | } while (true); |
3417 | return Jumpers; |
3418 | } |
3419 | |
3420 | // Returns Operand Index for the constant extended instruction. |
3421 | unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const { |
3422 | const uint64_t F = MI.getDesc().TSFlags; |
3423 | return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask; |
3424 | } |
3425 | |
3426 | // See if instruction could potentially be a duplex candidate. |
3427 | // If so, return its group. Zero otherwise. |
3428 | HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup( |
3429 | const MachineInstr &MI) const { |
3430 | Register DstReg, SrcReg, Src1Reg, Src2Reg; |
3431 | |
3432 | switch (MI.getOpcode()) { |
3433 | default: |
3434 | return HexagonII::HCG_None; |
3435 | // |
3436 | // Compound pairs. |
3437 | // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2" |
3438 | // "Rd16=#U6 ; jump #r9:2" |
3439 | // "Rd16=Rs16 ; jump #r9:2" |
3440 | // |
3441 | case Hexagon::C2_cmpeq: |
3442 | case Hexagon::C2_cmpgt: |
3443 | case Hexagon::C2_cmpgtu: |
3444 | DstReg = MI.getOperand(i: 0).getReg(); |
3445 | Src1Reg = MI.getOperand(i: 1).getReg(); |
3446 | Src2Reg = MI.getOperand(i: 2).getReg(); |
3447 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
3448 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && |
3449 | isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg)) |
3450 | return HexagonII::HCG_A; |
3451 | break; |
3452 | case Hexagon::C2_cmpeqi: |
3453 | case Hexagon::C2_cmpgti: |
3454 | case Hexagon::C2_cmpgtui: |
3455 | // P0 = cmp.eq(Rs,#u2) |
3456 | DstReg = MI.getOperand(i: 0).getReg(); |
3457 | SrcReg = MI.getOperand(i: 1).getReg(); |
3458 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
3459 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && |
3460 | isIntRegForSubInst(Reg: SrcReg) && MI.getOperand(i: 2).isImm() && |
3461 | ((isUInt<5>(x: MI.getOperand(i: 2).getImm())) || |
3462 | (MI.getOperand(i: 2).getImm() == -1))) |
3463 | return HexagonII::HCG_A; |
3464 | break; |
3465 | case Hexagon::A2_tfr: |
3466 | // Rd = Rs |
3467 | DstReg = MI.getOperand(i: 0).getReg(); |
3468 | SrcReg = MI.getOperand(i: 1).getReg(); |
3469 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg)) |
3470 | return HexagonII::HCG_A; |
3471 | break; |
3472 | case Hexagon::A2_tfrsi: |
3473 | // Rd = #u6 |
3474 | // Do not test for #u6 size since the const is getting extended |
3475 | // regardless and compound could be formed. |
3476 | DstReg = MI.getOperand(i: 0).getReg(); |
3477 | if (isIntRegForSubInst(Reg: DstReg)) |
3478 | return HexagonII::HCG_A; |
3479 | break; |
3480 | case Hexagon::S2_tstbit_i: |
3481 | DstReg = MI.getOperand(i: 0).getReg(); |
3482 | Src1Reg = MI.getOperand(i: 1).getReg(); |
3483 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
3484 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && |
3485 | MI.getOperand(i: 2).isImm() && |
3486 | isIntRegForSubInst(Reg: Src1Reg) && (MI.getOperand(i: 2).getImm() == 0)) |
3487 | return HexagonII::HCG_A; |
3488 | break; |
3489 | // The fact that .new form is used pretty much guarantees |
3490 | // that predicate register will match. Nevertheless, |
3491 | // there could be some false positives without additional |
3492 | // checking. |
3493 | case Hexagon::J2_jumptnew: |
3494 | case Hexagon::J2_jumpfnew: |
3495 | case Hexagon::J2_jumptnewpt: |
3496 | case Hexagon::J2_jumpfnewpt: |
3497 | Src1Reg = MI.getOperand(i: 0).getReg(); |
3498 | if (Hexagon::PredRegsRegClass.contains(Reg: Src1Reg) && |
3499 | (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg)) |
3500 | return HexagonII::HCG_B; |
3501 | break; |
3502 | // Transfer and jump: |
3503 | // Rd=#U6 ; jump #r9:2 |
3504 | // Rd=Rs ; jump #r9:2 |
3505 | // Do not test for jump range here. |
3506 | case Hexagon::J2_jump: |
3507 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: |
3508 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: |
3509 | return HexagonII::HCG_C; |
3510 | } |
3511 | |
3512 | return HexagonII::HCG_None; |
3513 | } |
3514 | |
3515 | // Returns -1 when there is no opcode found. |
3516 | unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA, |
3517 | const MachineInstr &GB) const { |
3518 | assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A); |
3519 | assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B); |
3520 | if ((GA.getOpcode() != Hexagon::C2_cmpeqi) || |
3521 | (GB.getOpcode() != Hexagon::J2_jumptnew)) |
3522 | return -1u; |
3523 | Register DestReg = GA.getOperand(i: 0).getReg(); |
3524 | if (!GB.readsRegister(Reg: DestReg, /*TRI=*/nullptr)) |
3525 | return -1u; |
3526 | if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1) |
3527 | return -1u; |
3528 | // The value compared against must be either u5 or -1. |
3529 | const MachineOperand &CmpOp = GA.getOperand(i: 2); |
3530 | if (!CmpOp.isImm()) |
3531 | return -1u; |
3532 | int V = CmpOp.getImm(); |
3533 | if (V == -1) |
3534 | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt |
3535 | : Hexagon::J4_cmpeqn1_tp1_jump_nt; |
3536 | if (!isUInt<5>(x: V)) |
3537 | return -1u; |
3538 | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt |
3539 | : Hexagon::J4_cmpeqi_tp1_jump_nt; |
3540 | } |
3541 | |
3542 | // Returns -1 if there is no opcode found. |
3543 | int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI, |
3544 | bool ForBigCore) const { |
3545 | // Static table to switch the opcodes across Tiny Core and Big Core. |
3546 | // dup_ opcodes are Big core opcodes. |
3547 | // NOTE: There are special instructions that need to handled later. |
3548 | // L4_return* instructions, they will only occupy SLOT0 (on big core too). |
3549 | // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2. |
3550 | // The compiler need to base the root instruction to L6_return_map_to_raw |
3551 | // which can go any slot. |
3552 | static const std::map<unsigned, unsigned> DupMap = { |
3553 | {Hexagon::A2_add, Hexagon::dup_A2_add}, |
3554 | {Hexagon::A2_addi, Hexagon::dup_A2_addi}, |
3555 | {Hexagon::A2_andir, Hexagon::dup_A2_andir}, |
3556 | {Hexagon::A2_combineii, Hexagon::dup_A2_combineii}, |
3557 | {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb}, |
3558 | {Hexagon::A2_sxth, Hexagon::dup_A2_sxth}, |
3559 | {Hexagon::A2_tfr, Hexagon::dup_A2_tfr}, |
3560 | {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi}, |
3561 | {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb}, |
3562 | {Hexagon::A2_zxth, Hexagon::dup_A2_zxth}, |
3563 | {Hexagon::A4_combineii, Hexagon::dup_A4_combineii}, |
3564 | {Hexagon::A4_combineir, Hexagon::dup_A4_combineir}, |
3565 | {Hexagon::A4_combineri, Hexagon::dup_A4_combineri}, |
3566 | {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif}, |
3567 | {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit}, |
3568 | {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif}, |
3569 | {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit}, |
3570 | {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi}, |
3571 | {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe}, |
3572 | {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io}, |
3573 | {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io}, |
3574 | {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io}, |
3575 | {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io}, |
3576 | {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io}, |
3577 | {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io}, |
3578 | {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe}, |
3579 | {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io}, |
3580 | {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io}, |
3581 | {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io}, |
3582 | {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io}, |
3583 | {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io}, |
3584 | {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io}, |
3585 | }; |
3586 | unsigned OpNum = MI.getOpcode(); |
3587 | // Conversion to Big core. |
3588 | if (ForBigCore) { |
3589 | auto Iter = DupMap.find(x: OpNum); |
3590 | if (Iter != DupMap.end()) |
3591 | return Iter->second; |
3592 | } else { // Conversion to Tiny core. |
3593 | for (const auto &Iter : DupMap) |
3594 | if (Iter.second == OpNum) |
3595 | return Iter.first; |
3596 | } |
3597 | return -1; |
3598 | } |
3599 | |
3600 | int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { |
3601 | enum Hexagon::PredSense inPredSense; |
3602 | inPredSense = invertPredicate ? Hexagon::PredSense_false : |
3603 | Hexagon::PredSense_true; |
3604 | int CondOpcode = Hexagon::getPredOpcode(Opcode: Opc, inPredSense); |
3605 | if (CondOpcode >= 0) // Valid Conditional opcode/instruction |
3606 | return CondOpcode; |
3607 | |
3608 | llvm_unreachable("Unexpected predicable instruction" ); |
3609 | } |
3610 | |
3611 | // Return the cur value instruction for a given store. |
3612 | int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const { |
3613 | switch (MI.getOpcode()) { |
3614 | default: llvm_unreachable("Unknown .cur type" ); |
3615 | case Hexagon::V6_vL32b_pi: |
3616 | return Hexagon::V6_vL32b_cur_pi; |
3617 | case Hexagon::V6_vL32b_ai: |
3618 | return Hexagon::V6_vL32b_cur_ai; |
3619 | case Hexagon::V6_vL32b_nt_pi: |
3620 | return Hexagon::V6_vL32b_nt_cur_pi; |
3621 | case Hexagon::V6_vL32b_nt_ai: |
3622 | return Hexagon::V6_vL32b_nt_cur_ai; |
3623 | case Hexagon::V6_vL32b_ppu: |
3624 | return Hexagon::V6_vL32b_cur_ppu; |
3625 | case Hexagon::V6_vL32b_nt_ppu: |
3626 | return Hexagon::V6_vL32b_nt_cur_ppu; |
3627 | } |
3628 | return 0; |
3629 | } |
3630 | |
3631 | // Return the regular version of the .cur instruction. |
3632 | int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const { |
3633 | switch (MI.getOpcode()) { |
3634 | default: llvm_unreachable("Unknown .cur type" ); |
3635 | case Hexagon::V6_vL32b_cur_pi: |
3636 | return Hexagon::V6_vL32b_pi; |
3637 | case Hexagon::V6_vL32b_cur_ai: |
3638 | return Hexagon::V6_vL32b_ai; |
3639 | case Hexagon::V6_vL32b_nt_cur_pi: |
3640 | return Hexagon::V6_vL32b_nt_pi; |
3641 | case Hexagon::V6_vL32b_nt_cur_ai: |
3642 | return Hexagon::V6_vL32b_nt_ai; |
3643 | case Hexagon::V6_vL32b_cur_ppu: |
3644 | return Hexagon::V6_vL32b_ppu; |
3645 | case Hexagon::V6_vL32b_nt_cur_ppu: |
3646 | return Hexagon::V6_vL32b_nt_ppu; |
3647 | } |
3648 | return 0; |
3649 | } |
3650 | |
3651 | // The diagram below shows the steps involved in the conversion of a predicated |
3652 | // store instruction to its .new predicated new-value form. |
3653 | // |
3654 | // Note: It doesn't include conditional new-value stores as they can't be |
3655 | // converted to .new predicate. |
3656 | // |
3657 | // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] |
3658 | // ^ ^ |
3659 | // / \ (not OK. it will cause new-value store to be |
3660 | // / X conditional on p0.new while R2 producer is |
3661 | // / \ on p0) |
3662 | // / \. |
3663 | // p.new store p.old NV store |
3664 | // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] |
3665 | // ^ ^ |
3666 | // \ / |
3667 | // \ / |
3668 | // \ / |
3669 | // p.old store |
3670 | // [if (p0)memw(R0+#0)=R2] |
3671 | // |
3672 | // The following set of instructions further explains the scenario where |
3673 | // conditional new-value store becomes invalid when promoted to .new predicate |
3674 | // form. |
3675 | // |
3676 | // { 1) if (p0) r0 = add(r1, r2) |
3677 | // 2) p0 = cmp.eq(r3, #0) } |
3678 | // |
3679 | // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with |
3680 | // the first two instructions because in instr 1, r0 is conditional on old value |
3681 | // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which |
3682 | // is not valid for new-value stores. |
3683 | // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded |
3684 | // from the "Conditional Store" list. Because a predicated new value store |
3685 | // would NOT be promoted to a double dot new store. See diagram below: |
3686 | // This function returns yes for those stores that are predicated but not |
3687 | // yet promoted to predicate dot new instructions. |
3688 | // |
3689 | // +---------------------+ |
3690 | // /-----| if (p0) memw(..)=r0 |---------\~ |
3691 | // || +---------------------+ || |
3692 | // promote || /\ /\ || promote |
3693 | // || /||\ /||\ || |
3694 | // \||/ demote || \||/ |
3695 | // \/ || || \/ |
3696 | // +-------------------------+ || +-------------------------+ |
3697 | // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | |
3698 | // +-------------------------+ || +-------------------------+ |
3699 | // || || || |
3700 | // || demote \||/ |
3701 | // promote || \/ NOT possible |
3702 | // || || /\~ |
3703 | // \||/ || /||\~ |
3704 | // \/ || || |
3705 | // +-----------------------------+ |
3706 | // | if (p0.new) memw(..)=r0.new | |
3707 | // +-----------------------------+ |
3708 | // Double Dot New Store |
3709 | // |
3710 | // Returns the most basic instruction for the .new predicated instructions and |
3711 | // new-value stores. |
3712 | // For example, all of the following instructions will be converted back to the |
3713 | // same instruction: |
3714 | // 1) if (p0.new) memw(R0+#0) = R1.new ---> |
3715 | // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 |
3716 | // 3) if (p0.new) memw(R0+#0) = R1 ---> |
3717 | // |
3718 | // To understand the translation of instruction 1 to its original form, consider |
3719 | // a packet with 3 instructions. |
3720 | // { p0 = cmp.eq(R0,R1) |
3721 | // if (p0.new) R2 = add(R3, R4) |
3722 | // R5 = add (R3, R1) |
3723 | // } |
3724 | // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet |
3725 | // |
3726 | // This instruction can be part of the previous packet only if both p0 and R2 |
3727 | // are promoted to .new values. This promotion happens in steps, first |
3728 | // predicate register is promoted to .new and in the next iteration R2 is |
3729 | // promoted. Therefore, in case of dependence check failure (due to R5) during |
3730 | // next iteration, it should be converted back to its most basic form. |
3731 | |
3732 | // Return the new value instruction for a given store. |
3733 | int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const { |
3734 | int NVOpcode = Hexagon::getNewValueOpcode(Opcode: MI.getOpcode()); |
3735 | if (NVOpcode >= 0) // Valid new-value store instruction. |
3736 | return NVOpcode; |
3737 | |
3738 | switch (MI.getOpcode()) { |
3739 | default: |
3740 | report_fatal_error(reason: Twine("Unknown .new type: " ) + |
3741 | std::to_string(val: MI.getOpcode())); |
3742 | case Hexagon::S4_storerb_ur: |
3743 | return Hexagon::S4_storerbnew_ur; |
3744 | |
3745 | case Hexagon::S2_storerb_pci: |
3746 | return Hexagon::S2_storerb_pci; |
3747 | |
3748 | case Hexagon::S2_storeri_pci: |
3749 | return Hexagon::S2_storeri_pci; |
3750 | |
3751 | case Hexagon::S2_storerh_pci: |
3752 | return Hexagon::S2_storerh_pci; |
3753 | |
3754 | case Hexagon::S2_storerd_pci: |
3755 | return Hexagon::S2_storerd_pci; |
3756 | |
3757 | case Hexagon::S2_storerf_pci: |
3758 | return Hexagon::S2_storerf_pci; |
3759 | |
3760 | case Hexagon::V6_vS32b_ai: |
3761 | return Hexagon::V6_vS32b_new_ai; |
3762 | |
3763 | case Hexagon::V6_vS32b_pi: |
3764 | return Hexagon::V6_vS32b_new_pi; |
3765 | } |
3766 | return 0; |
3767 | } |
3768 | |
3769 | // Returns the opcode to use when converting MI, which is a conditional jump, |
3770 | // into a conditional instruction which uses the .new value of the predicate. |
3771 | // We also use branch probabilities to add a hint to the jump. |
3772 | // If MBPI is null, all edges will be treated as equally likely for the |
3773 | // purposes of establishing a predication hint. |
3774 | int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI, |
3775 | const MachineBranchProbabilityInfo *MBPI) const { |
3776 | // We assume that block can have at most two successors. |
3777 | const MachineBasicBlock *Src = MI.getParent(); |
3778 | const MachineOperand &BrTarget = MI.getOperand(i: 1); |
3779 | bool Taken = false; |
3780 | const BranchProbability OneHalf(1, 2); |
3781 | |
3782 | auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src, |
3783 | const MachineBasicBlock *Dst) { |
3784 | if (MBPI) |
3785 | return MBPI->getEdgeProbability(Src, Dst); |
3786 | return BranchProbability(1, Src->succ_size()); |
3787 | }; |
3788 | |
3789 | if (BrTarget.isMBB()) { |
3790 | const MachineBasicBlock *Dst = BrTarget.getMBB(); |
3791 | Taken = getEdgeProbability(Src, Dst) >= OneHalf; |
3792 | } else { |
3793 | // The branch target is not a basic block (most likely a function). |
3794 | // Since BPI only gives probabilities for targets that are basic blocks, |
3795 | // try to identify another target of this branch (potentially a fall- |
3796 | // -through) and check the probability of that target. |
3797 | // |
3798 | // The only handled branch combinations are: |
3799 | // - one conditional branch, |
3800 | // - one conditional branch followed by one unconditional branch. |
3801 | // Otherwise, assume not-taken. |
3802 | assert(MI.isConditionalBranch()); |
3803 | const MachineBasicBlock &B = *MI.getParent(); |
3804 | bool SawCond = false, Bad = false; |
3805 | for (const MachineInstr &I : B) { |
3806 | if (!I.isBranch()) |
3807 | continue; |
3808 | if (I.isConditionalBranch()) { |
3809 | SawCond = true; |
3810 | if (&I != &MI) { |
3811 | Bad = true; |
3812 | break; |
3813 | } |
3814 | } |
3815 | if (I.isUnconditionalBranch() && !SawCond) { |
3816 | Bad = true; |
3817 | break; |
3818 | } |
3819 | } |
3820 | if (!Bad) { |
3821 | MachineBasicBlock::const_instr_iterator It(MI); |
3822 | MachineBasicBlock::const_instr_iterator NextIt = std::next(x: It); |
3823 | if (NextIt == B.instr_end()) { |
3824 | // If this branch is the last, look for the fall-through block. |
3825 | for (const MachineBasicBlock *SB : B.successors()) { |
3826 | if (!B.isLayoutSuccessor(MBB: SB)) |
3827 | continue; |
3828 | Taken = getEdgeProbability(Src, SB) < OneHalf; |
3829 | break; |
3830 | } |
3831 | } else { |
3832 | assert(NextIt->isUnconditionalBranch()); |
3833 | // Find the first MBB operand and assume it's the target. |
3834 | const MachineBasicBlock *BT = nullptr; |
3835 | for (const MachineOperand &Op : NextIt->operands()) { |
3836 | if (!Op.isMBB()) |
3837 | continue; |
3838 | BT = Op.getMBB(); |
3839 | break; |
3840 | } |
3841 | Taken = BT && getEdgeProbability(Src, BT) < OneHalf; |
3842 | } |
3843 | } // if (!Bad) |
3844 | } |
3845 | |
3846 | // The Taken flag should be set to something reasonable by this point. |
3847 | |
3848 | switch (MI.getOpcode()) { |
3849 | case Hexagon::J2_jumpt: |
3850 | return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; |
3851 | case Hexagon::J2_jumpf: |
3852 | return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; |
3853 | |
3854 | default: |
3855 | llvm_unreachable("Unexpected jump instruction." ); |
3856 | } |
3857 | } |
3858 | |
3859 | // Return .new predicate version for an instruction. |
3860 | int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI, |
3861 | const MachineBranchProbabilityInfo *MBPI) const { |
3862 | switch (MI.getOpcode()) { |
3863 | // Conditional Jumps |
3864 | case Hexagon::J2_jumpt: |
3865 | case Hexagon::J2_jumpf: |
3866 | return getDotNewPredJumpOp(MI, MBPI); |
3867 | } |
3868 | |
3869 | int NewOpcode = Hexagon::getPredNewOpcode(Opcode: MI.getOpcode()); |
3870 | if (NewOpcode >= 0) |
3871 | return NewOpcode; |
3872 | return 0; |
3873 | } |
3874 | |
3875 | int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const { |
3876 | int NewOp = MI.getOpcode(); |
3877 | if (isPredicated(Opcode: NewOp) && isPredicatedNew(Opcode: NewOp)) { // Get predicate old form |
3878 | NewOp = Hexagon::getPredOldOpcode(Opcode: NewOp); |
3879 | // All Hexagon architectures have prediction bits on dot-new branches, |
3880 | // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure |
3881 | // to pick the right opcode when converting back to dot-old. |
3882 | if (!Subtarget.hasFeature(Feature: Hexagon::ArchV60)) { |
3883 | switch (NewOp) { |
3884 | case Hexagon::J2_jumptpt: |
3885 | NewOp = Hexagon::J2_jumpt; |
3886 | break; |
3887 | case Hexagon::J2_jumpfpt: |
3888 | NewOp = Hexagon::J2_jumpf; |
3889 | break; |
3890 | case Hexagon::J2_jumprtpt: |
3891 | NewOp = Hexagon::J2_jumprt; |
3892 | break; |
3893 | case Hexagon::J2_jumprfpt: |
3894 | NewOp = Hexagon::J2_jumprf; |
3895 | break; |
3896 | } |
3897 | } |
3898 | assert(NewOp >= 0 && |
3899 | "Couldn't change predicate new instruction to its old form." ); |
3900 | } |
3901 | |
3902 | if (isNewValueStore(Opcode: NewOp)) { // Convert into non-new-value format |
3903 | NewOp = Hexagon::getNonNVStore(Opcode: NewOp); |
3904 | assert(NewOp >= 0 && "Couldn't change new-value store to its old form." ); |
3905 | } |
3906 | |
3907 | if (Subtarget.hasV60Ops()) |
3908 | return NewOp; |
3909 | |
3910 | // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps. |
3911 | switch (NewOp) { |
3912 | case Hexagon::J2_jumpfpt: |
3913 | return Hexagon::J2_jumpf; |
3914 | case Hexagon::J2_jumptpt: |
3915 | return Hexagon::J2_jumpt; |
3916 | case Hexagon::J2_jumprfpt: |
3917 | return Hexagon::J2_jumprf; |
3918 | case Hexagon::J2_jumprtpt: |
3919 | return Hexagon::J2_jumprt; |
3920 | } |
3921 | return NewOp; |
3922 | } |
3923 | |
3924 | // See if instruction could potentially be a duplex candidate. |
3925 | // If so, return its group. Zero otherwise. |
3926 | HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup( |
3927 | const MachineInstr &MI) const { |
3928 | Register DstReg, SrcReg, Src1Reg, Src2Reg; |
3929 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
3930 | |
3931 | switch (MI.getOpcode()) { |
3932 | default: |
3933 | return HexagonII::HSIG_None; |
3934 | // |
3935 | // Group L1: |
3936 | // |
3937 | // Rd = memw(Rs+#u4:2) |
3938 | // Rd = memub(Rs+#u4:0) |
3939 | case Hexagon::L2_loadri_io: |
3940 | case Hexagon::dup_L2_loadri_io: |
3941 | DstReg = MI.getOperand(i: 0).getReg(); |
3942 | SrcReg = MI.getOperand(i: 1).getReg(); |
3943 | // Special case this one from Group L2. |
3944 | // Rd = memw(r29+#u5:2) |
3945 | if (isIntRegForSubInst(Reg: DstReg)) { |
3946 | if (Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
3947 | HRI.getStackRegister() == SrcReg && |
3948 | MI.getOperand(i: 2).isImm() && |
3949 | isShiftedUInt<5,2>(x: MI.getOperand(i: 2).getImm())) |
3950 | return HexagonII::HSIG_L2; |
3951 | // Rd = memw(Rs+#u4:2) |
3952 | if (isIntRegForSubInst(Reg: SrcReg) && |
3953 | (MI.getOperand(i: 2).isImm() && |
3954 | isShiftedUInt<4,2>(x: MI.getOperand(i: 2).getImm()))) |
3955 | return HexagonII::HSIG_L1; |
3956 | } |
3957 | break; |
3958 | case Hexagon::L2_loadrub_io: |
3959 | case Hexagon::dup_L2_loadrub_io: |
3960 | // Rd = memub(Rs+#u4:0) |
3961 | DstReg = MI.getOperand(i: 0).getReg(); |
3962 | SrcReg = MI.getOperand(i: 1).getReg(); |
3963 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
3964 | MI.getOperand(i: 2).isImm() && isUInt<4>(x: MI.getOperand(i: 2).getImm())) |
3965 | return HexagonII::HSIG_L1; |
3966 | break; |
3967 | // |
3968 | // Group L2: |
3969 | // |
3970 | // Rd = memh/memuh(Rs+#u3:1) |
3971 | // Rd = memb(Rs+#u3:0) |
3972 | // Rd = memw(r29+#u5:2) - Handled above. |
3973 | // Rdd = memd(r29+#u5:3) |
3974 | // deallocframe |
3975 | // [if ([!]p0[.new])] dealloc_return |
3976 | // [if ([!]p0[.new])] jumpr r31 |
3977 | case Hexagon::L2_loadrh_io: |
3978 | case Hexagon::L2_loadruh_io: |
3979 | case Hexagon::dup_L2_loadrh_io: |
3980 | case Hexagon::dup_L2_loadruh_io: |
3981 | // Rd = memh/memuh(Rs+#u3:1) |
3982 | DstReg = MI.getOperand(i: 0).getReg(); |
3983 | SrcReg = MI.getOperand(i: 1).getReg(); |
3984 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
3985 | MI.getOperand(i: 2).isImm() && |
3986 | isShiftedUInt<3,1>(x: MI.getOperand(i: 2).getImm())) |
3987 | return HexagonII::HSIG_L2; |
3988 | break; |
3989 | case Hexagon::L2_loadrb_io: |
3990 | case Hexagon::dup_L2_loadrb_io: |
3991 | // Rd = memb(Rs+#u3:0) |
3992 | DstReg = MI.getOperand(i: 0).getReg(); |
3993 | SrcReg = MI.getOperand(i: 1).getReg(); |
3994 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
3995 | MI.getOperand(i: 2).isImm() && |
3996 | isUInt<3>(x: MI.getOperand(i: 2).getImm())) |
3997 | return HexagonII::HSIG_L2; |
3998 | break; |
3999 | case Hexagon::L2_loadrd_io: |
4000 | case Hexagon::dup_L2_loadrd_io: |
4001 | // Rdd = memd(r29+#u5:3) |
4002 | DstReg = MI.getOperand(i: 0).getReg(); |
4003 | SrcReg = MI.getOperand(i: 1).getReg(); |
4004 | if (isDblRegForSubInst(Reg: DstReg, HRI) && |
4005 | Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
4006 | HRI.getStackRegister() == SrcReg && |
4007 | MI.getOperand(i: 2).isImm() && |
4008 | isShiftedUInt<5,3>(x: MI.getOperand(i: 2).getImm())) |
4009 | return HexagonII::HSIG_L2; |
4010 | break; |
4011 | // dealloc_return is not documented in Hexagon Manual, but marked |
4012 | // with A_SUBINSN attribute in iset_v4classic.py. |
4013 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: |
4014 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: |
4015 | case Hexagon::L4_return: |
4016 | case Hexagon::L2_deallocframe: |
4017 | case Hexagon::dup_L2_deallocframe: |
4018 | return HexagonII::HSIG_L2; |
4019 | case Hexagon::EH_RETURN_JMPR: |
4020 | case Hexagon::PS_jmpret: |
4021 | case Hexagon::SL2_jumpr31: |
4022 | // jumpr r31 |
4023 | // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0 |
4024 | DstReg = MI.getOperand(i: 0).getReg(); |
4025 | if (Hexagon::IntRegsRegClass.contains(Reg: DstReg) && (Hexagon::R31 == DstReg)) |
4026 | return HexagonII::HSIG_L2; |
4027 | break; |
4028 | case Hexagon::PS_jmprett: |
4029 | case Hexagon::PS_jmpretf: |
4030 | case Hexagon::PS_jmprettnewpt: |
4031 | case Hexagon::PS_jmpretfnewpt: |
4032 | case Hexagon::PS_jmprettnew: |
4033 | case Hexagon::PS_jmpretfnew: |
4034 | case Hexagon::SL2_jumpr31_t: |
4035 | case Hexagon::SL2_jumpr31_f: |
4036 | case Hexagon::SL2_jumpr31_tnew: |
4037 | case Hexagon::SL2_jumpr31_fnew: |
4038 | DstReg = MI.getOperand(i: 1).getReg(); |
4039 | SrcReg = MI.getOperand(i: 0).getReg(); |
4040 | // [if ([!]p0[.new])] jumpr r31 |
4041 | if ((Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && |
4042 | (Hexagon::P0 == SrcReg)) && |
4043 | (Hexagon::IntRegsRegClass.contains(Reg: DstReg) && (Hexagon::R31 == DstReg))) |
4044 | return HexagonII::HSIG_L2; |
4045 | break; |
4046 | case Hexagon::L4_return_t: |
4047 | case Hexagon::L4_return_f: |
4048 | case Hexagon::L4_return_tnew_pnt: |
4049 | case Hexagon::L4_return_fnew_pnt: |
4050 | case Hexagon::L4_return_tnew_pt: |
4051 | case Hexagon::L4_return_fnew_pt: |
4052 | // [if ([!]p0[.new])] dealloc_return |
4053 | SrcReg = MI.getOperand(i: 0).getReg(); |
4054 | if (Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && (Hexagon::P0 == SrcReg)) |
4055 | return HexagonII::HSIG_L2; |
4056 | break; |
4057 | // |
4058 | // Group S1: |
4059 | // |
4060 | // memw(Rs+#u4:2) = Rt |
4061 | // memb(Rs+#u4:0) = Rt |
4062 | case Hexagon::S2_storeri_io: |
4063 | case Hexagon::dup_S2_storeri_io: |
4064 | // Special case this one from Group S2. |
4065 | // memw(r29+#u5:2) = Rt |
4066 | Src1Reg = MI.getOperand(i: 0).getReg(); |
4067 | Src2Reg = MI.getOperand(i: 2).getReg(); |
4068 | if (Hexagon::IntRegsRegClass.contains(Reg: Src1Reg) && |
4069 | isIntRegForSubInst(Reg: Src2Reg) && |
4070 | HRI.getStackRegister() == Src1Reg && MI.getOperand(i: 1).isImm() && |
4071 | isShiftedUInt<5,2>(x: MI.getOperand(i: 1).getImm())) |
4072 | return HexagonII::HSIG_S2; |
4073 | // memw(Rs+#u4:2) = Rt |
4074 | if (isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg) && |
4075 | MI.getOperand(i: 1).isImm() && |
4076 | isShiftedUInt<4,2>(x: MI.getOperand(i: 1).getImm())) |
4077 | return HexagonII::HSIG_S1; |
4078 | break; |
4079 | case Hexagon::S2_storerb_io: |
4080 | case Hexagon::dup_S2_storerb_io: |
4081 | // memb(Rs+#u4:0) = Rt |
4082 | Src1Reg = MI.getOperand(i: 0).getReg(); |
4083 | Src2Reg = MI.getOperand(i: 2).getReg(); |
4084 | if (isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg) && |
4085 | MI.getOperand(i: 1).isImm() && isUInt<4>(x: MI.getOperand(i: 1).getImm())) |
4086 | return HexagonII::HSIG_S1; |
4087 | break; |
4088 | // |
4089 | // Group S2: |
4090 | // |
4091 | // memh(Rs+#u3:1) = Rt |
4092 | // memw(r29+#u5:2) = Rt |
4093 | // memd(r29+#s6:3) = Rtt |
4094 | // memw(Rs+#u4:2) = #U1 |
4095 | // memb(Rs+#u4) = #U1 |
4096 | // allocframe(#u5:3) |
4097 | case Hexagon::S2_storerh_io: |
4098 | case Hexagon::dup_S2_storerh_io: |
4099 | // memh(Rs+#u3:1) = Rt |
4100 | Src1Reg = MI.getOperand(i: 0).getReg(); |
4101 | Src2Reg = MI.getOperand(i: 2).getReg(); |
4102 | if (isIntRegForSubInst(Reg: Src1Reg) && isIntRegForSubInst(Reg: Src2Reg) && |
4103 | MI.getOperand(i: 1).isImm() && |
4104 | isShiftedUInt<3,1>(x: MI.getOperand(i: 1).getImm())) |
4105 | return HexagonII::HSIG_S1; |
4106 | break; |
4107 | case Hexagon::S2_storerd_io: |
4108 | case Hexagon::dup_S2_storerd_io: |
4109 | // memd(r29+#s6:3) = Rtt |
4110 | Src1Reg = MI.getOperand(i: 0).getReg(); |
4111 | Src2Reg = MI.getOperand(i: 2).getReg(); |
4112 | if (isDblRegForSubInst(Reg: Src2Reg, HRI) && |
4113 | Hexagon::IntRegsRegClass.contains(Reg: Src1Reg) && |
4114 | HRI.getStackRegister() == Src1Reg && MI.getOperand(i: 1).isImm() && |
4115 | isShiftedInt<6,3>(x: MI.getOperand(i: 1).getImm())) |
4116 | return HexagonII::HSIG_S2; |
4117 | break; |
4118 | case Hexagon::S4_storeiri_io: |
4119 | case Hexagon::dup_S4_storeiri_io: |
4120 | // memw(Rs+#u4:2) = #U1 |
4121 | Src1Reg = MI.getOperand(i: 0).getReg(); |
4122 | if (isIntRegForSubInst(Reg: Src1Reg) && MI.getOperand(i: 1).isImm() && |
4123 | isShiftedUInt<4,2>(x: MI.getOperand(i: 1).getImm()) && |
4124 | MI.getOperand(i: 2).isImm() && isUInt<1>(x: MI.getOperand(i: 2).getImm())) |
4125 | return HexagonII::HSIG_S2; |
4126 | break; |
4127 | case Hexagon::S4_storeirb_io: |
4128 | case Hexagon::dup_S4_storeirb_io: |
4129 | // memb(Rs+#u4) = #U1 |
4130 | Src1Reg = MI.getOperand(i: 0).getReg(); |
4131 | if (isIntRegForSubInst(Reg: Src1Reg) && |
4132 | MI.getOperand(i: 1).isImm() && isUInt<4>(x: MI.getOperand(i: 1).getImm()) && |
4133 | MI.getOperand(i: 2).isImm() && isUInt<1>(x: MI.getOperand(i: 2).getImm())) |
4134 | return HexagonII::HSIG_S2; |
4135 | break; |
4136 | case Hexagon::S2_allocframe: |
4137 | case Hexagon::dup_S2_allocframe: |
4138 | if (MI.getOperand(i: 2).isImm() && |
4139 | isShiftedUInt<5,3>(x: MI.getOperand(i: 2).getImm())) |
4140 | return HexagonII::HSIG_S1; |
4141 | break; |
4142 | // |
4143 | // Group A: |
4144 | // |
4145 | // Rx = add(Rx,#s7) |
4146 | // Rd = Rs |
4147 | // Rd = #u6 |
4148 | // Rd = #-1 |
4149 | // if ([!]P0[.new]) Rd = #0 |
4150 | // Rd = add(r29,#u6:2) |
4151 | // Rx = add(Rx,Rs) |
4152 | // P0 = cmp.eq(Rs,#u2) |
4153 | // Rdd = combine(#0,Rs) |
4154 | // Rdd = combine(Rs,#0) |
4155 | // Rdd = combine(#u2,#U2) |
4156 | // Rd = add(Rs,#1) |
4157 | // Rd = add(Rs,#-1) |
4158 | // Rd = sxth/sxtb/zxtb/zxth(Rs) |
4159 | // Rd = and(Rs,#1) |
4160 | case Hexagon::A2_addi: |
4161 | case Hexagon::dup_A2_addi: |
4162 | DstReg = MI.getOperand(i: 0).getReg(); |
4163 | SrcReg = MI.getOperand(i: 1).getReg(); |
4164 | if (isIntRegForSubInst(Reg: DstReg)) { |
4165 | // Rd = add(r29,#u6:2) |
4166 | if (Hexagon::IntRegsRegClass.contains(Reg: SrcReg) && |
4167 | HRI.getStackRegister() == SrcReg && MI.getOperand(i: 2).isImm() && |
4168 | isShiftedUInt<6,2>(x: MI.getOperand(i: 2).getImm())) |
4169 | return HexagonII::HSIG_A; |
4170 | // Rx = add(Rx,#s7) |
4171 | if ((DstReg == SrcReg) && MI.getOperand(i: 2).isImm() && |
4172 | isInt<7>(x: MI.getOperand(i: 2).getImm())) |
4173 | return HexagonII::HSIG_A; |
4174 | // Rd = add(Rs,#1) |
4175 | // Rd = add(Rs,#-1) |
4176 | if (isIntRegForSubInst(Reg: SrcReg) && MI.getOperand(i: 2).isImm() && |
4177 | ((MI.getOperand(i: 2).getImm() == 1) || |
4178 | (MI.getOperand(i: 2).getImm() == -1))) |
4179 | return HexagonII::HSIG_A; |
4180 | } |
4181 | break; |
4182 | case Hexagon::A2_add: |
4183 | case Hexagon::dup_A2_add: |
4184 | // Rx = add(Rx,Rs) |
4185 | DstReg = MI.getOperand(i: 0).getReg(); |
4186 | Src1Reg = MI.getOperand(i: 1).getReg(); |
4187 | Src2Reg = MI.getOperand(i: 2).getReg(); |
4188 | if (isIntRegForSubInst(Reg: DstReg) && (DstReg == Src1Reg) && |
4189 | isIntRegForSubInst(Reg: Src2Reg)) |
4190 | return HexagonII::HSIG_A; |
4191 | break; |
4192 | case Hexagon::A2_andir: |
4193 | case Hexagon::dup_A2_andir: |
4194 | // Same as zxtb. |
4195 | // Rd16=and(Rs16,#255) |
4196 | // Rd16=and(Rs16,#1) |
4197 | DstReg = MI.getOperand(i: 0).getReg(); |
4198 | SrcReg = MI.getOperand(i: 1).getReg(); |
4199 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg) && |
4200 | MI.getOperand(i: 2).isImm() && |
4201 | ((MI.getOperand(i: 2).getImm() == 1) || |
4202 | (MI.getOperand(i: 2).getImm() == 255))) |
4203 | return HexagonII::HSIG_A; |
4204 | break; |
4205 | case Hexagon::A2_tfr: |
4206 | case Hexagon::dup_A2_tfr: |
4207 | // Rd = Rs |
4208 | DstReg = MI.getOperand(i: 0).getReg(); |
4209 | SrcReg = MI.getOperand(i: 1).getReg(); |
4210 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg)) |
4211 | return HexagonII::HSIG_A; |
4212 | break; |
4213 | case Hexagon::A2_tfrsi: |
4214 | case Hexagon::dup_A2_tfrsi: |
4215 | // Rd = #u6 |
4216 | // Do not test for #u6 size since the const is getting extended |
4217 | // regardless and compound could be formed. |
4218 | // Rd = #-1 |
4219 | DstReg = MI.getOperand(i: 0).getReg(); |
4220 | if (isIntRegForSubInst(Reg: DstReg)) |
4221 | return HexagonII::HSIG_A; |
4222 | break; |
4223 | case Hexagon::C2_cmoveit: |
4224 | case Hexagon::C2_cmovenewit: |
4225 | case Hexagon::C2_cmoveif: |
4226 | case Hexagon::C2_cmovenewif: |
4227 | case Hexagon::dup_C2_cmoveit: |
4228 | case Hexagon::dup_C2_cmovenewit: |
4229 | case Hexagon::dup_C2_cmoveif: |
4230 | case Hexagon::dup_C2_cmovenewif: |
4231 | // if ([!]P0[.new]) Rd = #0 |
4232 | // Actual form: |
4233 | // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; |
4234 | DstReg = MI.getOperand(i: 0).getReg(); |
4235 | SrcReg = MI.getOperand(i: 1).getReg(); |
4236 | if (isIntRegForSubInst(Reg: DstReg) && |
4237 | Hexagon::PredRegsRegClass.contains(Reg: SrcReg) && Hexagon::P0 == SrcReg && |
4238 | MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 0) |
4239 | return HexagonII::HSIG_A; |
4240 | break; |
4241 | case Hexagon::C2_cmpeqi: |
4242 | case Hexagon::dup_C2_cmpeqi: |
4243 | // P0 = cmp.eq(Rs,#u2) |
4244 | DstReg = MI.getOperand(i: 0).getReg(); |
4245 | SrcReg = MI.getOperand(i: 1).getReg(); |
4246 | if (Hexagon::PredRegsRegClass.contains(Reg: DstReg) && |
4247 | Hexagon::P0 == DstReg && isIntRegForSubInst(Reg: SrcReg) && |
4248 | MI.getOperand(i: 2).isImm() && isUInt<2>(x: MI.getOperand(i: 2).getImm())) |
4249 | return HexagonII::HSIG_A; |
4250 | break; |
4251 | case Hexagon::A2_combineii: |
4252 | case Hexagon::A4_combineii: |
4253 | case Hexagon::dup_A2_combineii: |
4254 | case Hexagon::dup_A4_combineii: |
4255 | // Rdd = combine(#u2,#U2) |
4256 | DstReg = MI.getOperand(i: 0).getReg(); |
4257 | if (isDblRegForSubInst(Reg: DstReg, HRI) && |
4258 | ((MI.getOperand(i: 1).isImm() && isUInt<2>(x: MI.getOperand(i: 1).getImm())) || |
4259 | (MI.getOperand(i: 1).isGlobal() && |
4260 | isUInt<2>(x: MI.getOperand(i: 1).getOffset()))) && |
4261 | ((MI.getOperand(i: 2).isImm() && isUInt<2>(x: MI.getOperand(i: 2).getImm())) || |
4262 | (MI.getOperand(i: 2).isGlobal() && |
4263 | isUInt<2>(x: MI.getOperand(i: 2).getOffset())))) |
4264 | return HexagonII::HSIG_A; |
4265 | break; |
4266 | case Hexagon::A4_combineri: |
4267 | case Hexagon::dup_A4_combineri: |
4268 | // Rdd = combine(Rs,#0) |
4269 | // Rdd = combine(Rs,#0) |
4270 | DstReg = MI.getOperand(i: 0).getReg(); |
4271 | SrcReg = MI.getOperand(i: 1).getReg(); |
4272 | if (isDblRegForSubInst(Reg: DstReg, HRI) && isIntRegForSubInst(Reg: SrcReg) && |
4273 | ((MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 0) || |
4274 | (MI.getOperand(i: 2).isGlobal() && MI.getOperand(i: 2).getOffset() == 0))) |
4275 | return HexagonII::HSIG_A; |
4276 | break; |
4277 | case Hexagon::A4_combineir: |
4278 | case Hexagon::dup_A4_combineir: |
4279 | // Rdd = combine(#0,Rs) |
4280 | DstReg = MI.getOperand(i: 0).getReg(); |
4281 | SrcReg = MI.getOperand(i: 2).getReg(); |
4282 | if (isDblRegForSubInst(Reg: DstReg, HRI) && isIntRegForSubInst(Reg: SrcReg) && |
4283 | ((MI.getOperand(i: 1).isImm() && MI.getOperand(i: 1).getImm() == 0) || |
4284 | (MI.getOperand(i: 1).isGlobal() && MI.getOperand(i: 1).getOffset() == 0))) |
4285 | return HexagonII::HSIG_A; |
4286 | break; |
4287 | case Hexagon::A2_sxtb: |
4288 | case Hexagon::A2_sxth: |
4289 | case Hexagon::A2_zxtb: |
4290 | case Hexagon::A2_zxth: |
4291 | case Hexagon::dup_A2_sxtb: |
4292 | case Hexagon::dup_A2_sxth: |
4293 | case Hexagon::dup_A2_zxtb: |
4294 | case Hexagon::dup_A2_zxth: |
4295 | // Rd = sxth/sxtb/zxtb/zxth(Rs) |
4296 | DstReg = MI.getOperand(i: 0).getReg(); |
4297 | SrcReg = MI.getOperand(i: 1).getReg(); |
4298 | if (isIntRegForSubInst(Reg: DstReg) && isIntRegForSubInst(Reg: SrcReg)) |
4299 | return HexagonII::HSIG_A; |
4300 | break; |
4301 | } |
4302 | |
4303 | return HexagonII::HSIG_None; |
4304 | } |
4305 | |
4306 | short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const { |
4307 | return Hexagon::getRealHWInstr(Opcode: MI.getOpcode(), inInstrType: Hexagon::InstrType_Real); |
4308 | } |
4309 | |
4310 | unsigned HexagonInstrInfo::getInstrTimingClassLatency( |
4311 | const InstrItineraryData *ItinData, const MachineInstr &MI) const { |
4312 | // Default to one cycle for no itinerary. However, an "empty" itinerary may |
4313 | // still have a MinLatency property, which getStageLatency checks. |
4314 | if (!ItinData) |
4315 | return getInstrLatency(ItinData, MI); |
4316 | |
4317 | if (MI.isTransient()) |
4318 | return 0; |
4319 | return ItinData->getStageLatency(ItinClassIndx: MI.getDesc().getSchedClass()); |
4320 | } |
4321 | |
4322 | /// getOperandLatency - Compute and return the use operand latency of a given |
4323 | /// pair of def and use. |
4324 | /// In most cases, the static scheduling itinerary was enough to determine the |
4325 | /// operand latency. But it may not be possible for instructions with variable |
4326 | /// number of defs / uses. |
4327 | /// |
4328 | /// This is a raw interface to the itinerary that may be directly overridden by |
4329 | /// a target. Use computeOperandLatency to get the best estimate of latency. |
4330 | std::optional<unsigned> HexagonInstrInfo::getOperandLatency( |
4331 | const InstrItineraryData *ItinData, const MachineInstr &DefMI, |
4332 | unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { |
4333 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
4334 | |
4335 | // Get DefIdx and UseIdx for super registers. |
4336 | const MachineOperand &DefMO = DefMI.getOperand(i: DefIdx); |
4337 | |
4338 | if (DefMO.isReg() && DefMO.getReg().isPhysical()) { |
4339 | if (DefMO.isImplicit()) { |
4340 | for (MCPhysReg SR : HRI.superregs(Reg: DefMO.getReg())) { |
4341 | int Idx = DefMI.findRegisterDefOperandIdx(Reg: SR, TRI: &HRI, isDead: false, Overlap: false); |
4342 | if (Idx != -1) { |
4343 | DefIdx = Idx; |
4344 | break; |
4345 | } |
4346 | } |
4347 | } |
4348 | |
4349 | const MachineOperand &UseMO = UseMI.getOperand(i: UseIdx); |
4350 | if (UseMO.isImplicit()) { |
4351 | for (MCPhysReg SR : HRI.superregs(Reg: UseMO.getReg())) { |
4352 | int Idx = UseMI.findRegisterUseOperandIdx(Reg: SR, TRI: &HRI, isKill: false); |
4353 | if (Idx != -1) { |
4354 | UseIdx = Idx; |
4355 | break; |
4356 | } |
4357 | } |
4358 | } |
4359 | } |
4360 | |
4361 | std::optional<unsigned> Latency = TargetInstrInfo::getOperandLatency( |
4362 | ItinData, DefMI, DefIdx, UseMI, UseIdx); |
4363 | if (Latency == 0) |
4364 | // We should never have 0 cycle latency between two instructions unless |
4365 | // they can be packetized together. However, this decision can't be made |
4366 | // here. |
4367 | Latency = 1; |
4368 | return Latency; |
4369 | } |
4370 | |
4371 | // inverts the predication logic. |
4372 | // p -> NotP |
4373 | // NotP -> P |
4374 | bool HexagonInstrInfo::getInvertedPredSense( |
4375 | SmallVectorImpl<MachineOperand> &Cond) const { |
4376 | if (Cond.empty()) |
4377 | return false; |
4378 | unsigned Opc = getInvertedPredicatedOpcode(Opc: Cond[0].getImm()); |
4379 | Cond[0].setImm(Opc); |
4380 | return true; |
4381 | } |
4382 | |
4383 | unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { |
4384 | int InvPredOpcode; |
4385 | InvPredOpcode = isPredicatedTrue(Opcode: Opc) ? Hexagon::getFalsePredOpcode(Opcode: Opc) |
4386 | : Hexagon::getTruePredOpcode(Opcode: Opc); |
4387 | if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. |
4388 | return InvPredOpcode; |
4389 | |
4390 | llvm_unreachable("Unexpected predicated instruction" ); |
4391 | } |
4392 | |
4393 | // Returns the max value that doesn't need to be extended. |
4394 | int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const { |
4395 | const uint64_t F = MI.getDesc().TSFlags; |
4396 | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) |
4397 | & HexagonII::ExtentSignedMask; |
4398 | unsigned bits = (F >> HexagonII::ExtentBitsPos) |
4399 | & HexagonII::ExtentBitsMask; |
4400 | |
4401 | if (isSigned) // if value is signed |
4402 | return ~(-1U << (bits - 1)); |
4403 | else |
4404 | return ~(-1U << bits); |
4405 | } |
4406 | |
4407 | |
4408 | bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const { |
4409 | switch (MI.getOpcode()) { |
4410 | case Hexagon::L2_loadrbgp: |
4411 | case Hexagon::L2_loadrdgp: |
4412 | case Hexagon::L2_loadrhgp: |
4413 | case Hexagon::L2_loadrigp: |
4414 | case Hexagon::L2_loadrubgp: |
4415 | case Hexagon::L2_loadruhgp: |
4416 | case Hexagon::S2_storerbgp: |
4417 | case Hexagon::S2_storerbnewgp: |
4418 | case Hexagon::S2_storerhgp: |
4419 | case Hexagon::S2_storerhnewgp: |
4420 | case Hexagon::S2_storerigp: |
4421 | case Hexagon::S2_storerinewgp: |
4422 | case Hexagon::S2_storerdgp: |
4423 | case Hexagon::S2_storerfgp: |
4424 | return true; |
4425 | } |
4426 | const uint64_t F = MI.getDesc().TSFlags; |
4427 | unsigned addrMode = |
4428 | ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); |
4429 | // Disallow any base+offset instruction. The assembler does not yet reorder |
4430 | // based up any zero offset instruction. |
4431 | return (addrMode == HexagonII::BaseRegOffset || |
4432 | addrMode == HexagonII::BaseImmOffset || |
4433 | addrMode == HexagonII::BaseLongOffset); |
4434 | } |
4435 | |
4436 | bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const { |
4437 | // Workaround for the Global Scheduler. Sometimes, it creates |
4438 | // A4_ext as a Pseudo instruction and calls this function to see if |
4439 | // it can be added to an existing bundle. Since the instruction doesn't |
4440 | // belong to any BB yet, we can't use getUnits API. |
4441 | if (MI.getOpcode() == Hexagon::A4_ext) |
4442 | return false; |
4443 | |
4444 | unsigned FuncUnits = getUnits(MI); |
4445 | return HexagonFUnits::isSlot0Only(units: FuncUnits); |
4446 | } |
4447 | |
4448 | bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const { |
4449 | const uint64_t F = MI.getDesc().TSFlags; |
4450 | return ((F >> HexagonII::RestrictNoSlot1StorePos) & |
4451 | HexagonII::RestrictNoSlot1StoreMask); |
4452 | } |
4453 | |
4454 | void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, |
4455 | bool ToBigInstrs) const { |
4456 | int Opcode = -1; |
4457 | if (ToBigInstrs) { // To BigCore Instr. |
4458 | // Check if the instruction can form a Duplex. |
4459 | if (getDuplexCandidateGroup(MI: *MII)) |
4460 | // Get the opcode marked "dup_*" tag. |
4461 | Opcode = getDuplexOpcode(MI: *MII, ForBigCore: ToBigInstrs); |
4462 | } else // To TinyCore Instr. |
4463 | Opcode = getDuplexOpcode(MI: *MII, ForBigCore: ToBigInstrs); |
4464 | |
4465 | // Change the opcode of the instruction. |
4466 | if (Opcode >= 0) |
4467 | MII->setDesc(get(Opcode)); |
4468 | } |
4469 | |
4470 | // This function is used to translate instructions to facilitate generating |
4471 | // Duplexes on TinyCore. |
4472 | void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF, |
4473 | bool ToBigInstrs) const { |
4474 | for (auto &MB : MF) |
4475 | for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(), |
4476 | End = MB.instr_end(); |
4477 | Instr != End; ++Instr) |
4478 | changeDuplexOpcode(MII: Instr, ToBigInstrs); |
4479 | } |
4480 | |
4481 | // This is a specialized form of above function. |
4482 | void HexagonInstrInfo::translateInstrsForDup( |
4483 | MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const { |
4484 | MachineBasicBlock *MBB = MII->getParent(); |
4485 | while ((MII != MBB->instr_end()) && MII->isInsideBundle()) { |
4486 | changeDuplexOpcode(MII, ToBigInstrs); |
4487 | ++MII; |
4488 | } |
4489 | } |
4490 | |
4491 | unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const { |
4492 | using namespace HexagonII; |
4493 | |
4494 | const uint64_t F = MI.getDesc().TSFlags; |
4495 | unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask; |
4496 | unsigned Size = getMemAccessSizeInBytes(S: MemAccessSize(S)); |
4497 | if (Size != 0) |
4498 | return Size; |
4499 | // Y2_dcfetchbo is special |
4500 | if (MI.getOpcode() == Hexagon::Y2_dcfetchbo) |
4501 | return HexagonII::DoubleWordAccess; |
4502 | |
4503 | // Handle vector access sizes. |
4504 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); |
4505 | switch (S) { |
4506 | case HexagonII::HVXVectorAccess: |
4507 | return HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
4508 | default: |
4509 | llvm_unreachable("Unexpected instruction" ); |
4510 | } |
4511 | } |
4512 | |
4513 | // Returns the min value that doesn't need to be extended. |
4514 | int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const { |
4515 | const uint64_t F = MI.getDesc().TSFlags; |
4516 | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) |
4517 | & HexagonII::ExtentSignedMask; |
4518 | unsigned bits = (F >> HexagonII::ExtentBitsPos) |
4519 | & HexagonII::ExtentBitsMask; |
4520 | |
4521 | if (isSigned) // if value is signed |
4522 | return -1U << (bits - 1); |
4523 | else |
4524 | return 0; |
4525 | } |
4526 | |
4527 | // Returns opcode of the non-extended equivalent instruction. |
4528 | short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const { |
4529 | // Check if the instruction has a register form that uses register in place |
4530 | // of the extended operand, if so return that as the non-extended form. |
4531 | short NonExtOpcode = Hexagon::getRegForm(Opcode: MI.getOpcode()); |
4532 | if (NonExtOpcode >= 0) |
4533 | return NonExtOpcode; |
4534 | |
4535 | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { |
4536 | // Check addressing mode and retrieve non-ext equivalent instruction. |
4537 | switch (getAddrMode(MI)) { |
4538 | case HexagonII::Absolute: |
4539 | return Hexagon::changeAddrMode_abs_io(Opcode: MI.getOpcode()); |
4540 | case HexagonII::BaseImmOffset: |
4541 | return Hexagon::changeAddrMode_io_rr(Opcode: MI.getOpcode()); |
4542 | case HexagonII::BaseLongOffset: |
4543 | return Hexagon::changeAddrMode_ur_rr(Opcode: MI.getOpcode()); |
4544 | |
4545 | default: |
4546 | return -1; |
4547 | } |
4548 | } |
4549 | return -1; |
4550 | } |
4551 | |
4552 | bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond, |
4553 | Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { |
4554 | if (Cond.empty()) |
4555 | return false; |
4556 | assert(Cond.size() == 2); |
4557 | if (isNewValueJump(Opcode: Cond[0].getImm()) || Cond[1].isMBB()) { |
4558 | LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop" ); |
4559 | return false; |
4560 | } |
4561 | PredReg = Cond[1].getReg(); |
4562 | PredRegPos = 1; |
4563 | // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef |
4564 | PredRegFlags = 0; |
4565 | if (Cond[1].isImplicit()) |
4566 | PredRegFlags = RegState::Implicit; |
4567 | if (Cond[1].isUndef()) |
4568 | PredRegFlags |= RegState::Undef; |
4569 | return true; |
4570 | } |
4571 | |
4572 | short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const { |
4573 | return Hexagon::getRealHWInstr(Opcode: MI.getOpcode(), inInstrType: Hexagon::InstrType_Pseudo); |
4574 | } |
4575 | |
4576 | short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const { |
4577 | return Hexagon::getRegForm(Opcode: MI.getOpcode()); |
4578 | } |
4579 | |
4580 | // Return the number of bytes required to encode the instruction. |
4581 | // Hexagon instructions are fixed length, 4 bytes, unless they |
4582 | // use a constant extender, which requires another 4 bytes. |
4583 | // For debug instructions and prolog labels, return 0. |
4584 | unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const { |
4585 | if (MI.isDebugInstr() || MI.isPosition()) |
4586 | return 0; |
4587 | |
4588 | unsigned Size = MI.getDesc().getSize(); |
4589 | if (!Size) |
4590 | // Assume the default insn size in case it cannot be determined |
4591 | // for whatever reason. |
4592 | Size = HEXAGON_INSTR_SIZE; |
4593 | |
4594 | if (isConstExtended(MI) || isExtended(MI)) |
4595 | Size += HEXAGON_INSTR_SIZE; |
4596 | |
4597 | // Try and compute number of instructions in asm. |
4598 | if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) { |
4599 | const MachineBasicBlock &MBB = *MI.getParent(); |
4600 | const MachineFunction *MF = MBB.getParent(); |
4601 | const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
4602 | |
4603 | // Count the number of register definitions to find the asm string. |
4604 | unsigned NumDefs = 0; |
4605 | for (; MI.getOperand(i: NumDefs).isReg() && MI.getOperand(i: NumDefs).isDef(); |
4606 | ++NumDefs) |
4607 | assert(NumDefs != MI.getNumOperands()-2 && "No asm string?" ); |
4608 | |
4609 | assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?" ); |
4610 | // Disassemble the AsmStr and approximate number of instructions. |
4611 | const char *AsmStr = MI.getOperand(i: NumDefs).getSymbolName(); |
4612 | Size = getInlineAsmLength(Str: AsmStr, MAI: *MAI); |
4613 | } |
4614 | |
4615 | return Size; |
4616 | } |
4617 | |
4618 | uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const { |
4619 | const uint64_t F = MI.getDesc().TSFlags; |
4620 | return (F >> HexagonII::TypePos) & HexagonII::TypeMask; |
4621 | } |
4622 | |
4623 | InstrStage::FuncUnits HexagonInstrInfo::getUnits(const MachineInstr &MI) const { |
4624 | const InstrItineraryData &II = *Subtarget.getInstrItineraryData(); |
4625 | const InstrStage &IS = *II.beginStage(ItinClassIndx: MI.getDesc().getSchedClass()); |
4626 | |
4627 | return IS.getUnits(); |
4628 | } |
4629 | |
4630 | // Calculate size of the basic block without debug instructions. |
4631 | unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const { |
4632 | return nonDbgMICount(MIB: BB->instr_begin(), MIE: BB->instr_end()); |
4633 | } |
4634 | |
4635 | unsigned HexagonInstrInfo::nonDbgBundleSize( |
4636 | MachineBasicBlock::const_iterator BundleHead) const { |
4637 | assert(BundleHead->isBundle() && "Not a bundle header" ); |
4638 | auto MII = BundleHead.getInstrIterator(); |
4639 | // Skip the bundle header. |
4640 | return nonDbgMICount(MIB: ++MII, MIE: getBundleEnd(I: BundleHead.getInstrIterator())); |
4641 | } |
4642 | |
4643 | /// immediateExtend - Changes the instruction in place to one using an immediate |
4644 | /// extender. |
4645 | void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const { |
4646 | assert((isExtendable(MI)||isConstExtended(MI)) && |
4647 | "Instruction must be extendable" ); |
4648 | // Find which operand is extendable. |
4649 | short ExtOpNum = getCExtOpNum(MI); |
4650 | MachineOperand &MO = MI.getOperand(i: ExtOpNum); |
4651 | // This needs to be something we understand. |
4652 | assert((MO.isMBB() || MO.isImm()) && |
4653 | "Branch with unknown extendable field type" ); |
4654 | // Mark given operand as extended. |
4655 | MO.addTargetFlag(F: HexagonII::HMOTF_ConstExtended); |
4656 | } |
4657 | |
4658 | bool HexagonInstrInfo::invertAndChangeJumpTarget( |
4659 | MachineInstr &MI, MachineBasicBlock *NewTarget) const { |
4660 | LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to " |
4661 | << printMBBReference(*NewTarget); |
4662 | MI.dump();); |
4663 | assert(MI.isBranch()); |
4664 | unsigned NewOpcode = getInvertedPredicatedOpcode(Opc: MI.getOpcode()); |
4665 | int TargetPos = MI.getNumOperands() - 1; |
4666 | // In general branch target is the last operand, |
4667 | // but some implicit defs added at the end might change it. |
4668 | while ((TargetPos > -1) && !MI.getOperand(i: TargetPos).isMBB()) |
4669 | --TargetPos; |
4670 | assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB()); |
4671 | MI.getOperand(i: TargetPos).setMBB(NewTarget); |
4672 | if (EnableBranchPrediction && isPredicatedNew(MI)) { |
4673 | NewOpcode = reversePrediction(Opcode: NewOpcode); |
4674 | } |
4675 | MI.setDesc(get(Opcode: NewOpcode)); |
4676 | return true; |
4677 | } |
4678 | |
4679 | void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const { |
4680 | /* +++ The code below is used to generate complete set of Hexagon Insn +++ */ |
4681 | MachineFunction::iterator A = MF.begin(); |
4682 | MachineBasicBlock &B = *A; |
4683 | MachineBasicBlock::iterator I = B.begin(); |
4684 | DebugLoc DL = I->getDebugLoc(); |
4685 | MachineInstr *NewMI; |
4686 | |
4687 | for (unsigned insn = TargetOpcode::GENERIC_OP_END+1; |
4688 | insn < Hexagon::INSTRUCTION_LIST_END; ++insn) { |
4689 | NewMI = BuildMI(BB&: B, I, MIMD: DL, MCID: get(Opcode: insn)); |
4690 | LLVM_DEBUG(dbgs() << "\n" |
4691 | << getName(NewMI->getOpcode()) |
4692 | << " Class: " << NewMI->getDesc().getSchedClass()); |
4693 | NewMI->eraseFromParent(); |
4694 | } |
4695 | /* --- The code above is used to generate complete set of Hexagon Insn --- */ |
4696 | } |
4697 | |
4698 | // inverts the predication logic. |
4699 | // p -> NotP |
4700 | // NotP -> P |
4701 | bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const { |
4702 | LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:" ; MI.dump()); |
4703 | MI.setDesc(get(Opcode: getInvertedPredicatedOpcode(Opc: MI.getOpcode()))); |
4704 | return true; |
4705 | } |
4706 | |
4707 | // Reverse the branch prediction. |
4708 | unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const { |
4709 | int PredRevOpcode = -1; |
4710 | if (isPredictedTaken(Opcode)) |
4711 | PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode); |
4712 | else |
4713 | PredRevOpcode = Hexagon::takenBranchPrediction(Opcode); |
4714 | assert(PredRevOpcode > 0); |
4715 | return PredRevOpcode; |
4716 | } |
4717 | |
4718 | // TODO: Add more rigorous validation. |
4719 | bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond) |
4720 | const { |
4721 | return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1)); |
4722 | } |
4723 | |
4724 | void HexagonInstrInfo:: |
4725 | setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const { |
4726 | assert(MIB->isBundle()); |
4727 | MachineOperand &Operand = MIB->getOperand(i: 0); |
4728 | if (Operand.isImm()) |
4729 | Operand.setImm(Operand.getImm() | memShufDisabledMask); |
4730 | else |
4731 | MIB->addOperand(Op: MachineOperand::CreateImm(Val: memShufDisabledMask)); |
4732 | } |
4733 | |
4734 | bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const { |
4735 | assert(MIB.isBundle()); |
4736 | const MachineOperand &Operand = MIB.getOperand(i: 0); |
4737 | return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0); |
4738 | } |
4739 | |
4740 | // Addressing mode relations. |
4741 | short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const { |
4742 | return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opcode: Opc) : Opc; |
4743 | } |
4744 | |
4745 | short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const { |
4746 | return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opcode: Opc) : Opc; |
4747 | } |
4748 | |
4749 | short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const { |
4750 | return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opcode: Opc) : Opc; |
4751 | } |
4752 | |
4753 | short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const { |
4754 | return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opcode: Opc) : Opc; |
4755 | } |
4756 | |
4757 | short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const { |
4758 | return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opcode: Opc) : Opc; |
4759 | } |
4760 | |
4761 | short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const { |
4762 | return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opcode: Opc) : Opc; |
4763 | } |
4764 | |
4765 | short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const { |
4766 | return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opcode: Opc) : Opc; |
4767 | } |
4768 | |
4769 | short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const { |
4770 | return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opcode: Opc) : Opc; |
4771 | } |
4772 | |
4773 | MCInst HexagonInstrInfo::getNop() const { |
4774 | static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop); |
4775 | |
4776 | return MCInstBuilder(Hexagon::BUNDLE) |
4777 | .addImm(Val: 0) |
4778 | .addInst(Val: &Nop); |
4779 | } |
4780 | |