| 1 | //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "HexagonLoopIdiomRecognition.h" |
| 10 | #include "Hexagon.h" |
| 11 | #include "llvm/ADT/APInt.h" |
| 12 | #include "llvm/ADT/DenseMap.h" |
| 13 | #include "llvm/ADT/SetVector.h" |
| 14 | #include "llvm/ADT/SmallPtrSet.h" |
| 15 | #include "llvm/ADT/SmallSet.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/Analysis/AliasAnalysis.h" |
| 19 | #include "llvm/Analysis/InstructionSimplify.h" |
| 20 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 21 | #include "llvm/Analysis/LoopInfo.h" |
| 22 | #include "llvm/Analysis/LoopPass.h" |
| 23 | #include "llvm/Analysis/MemoryLocation.h" |
| 24 | #include "llvm/Analysis/ScalarEvolution.h" |
| 25 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 26 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 27 | #include "llvm/Analysis/ValueTracking.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/Constant.h" |
| 31 | #include "llvm/IR/Constants.h" |
| 32 | #include "llvm/IR/DataLayout.h" |
| 33 | #include "llvm/IR/DebugLoc.h" |
| 34 | #include "llvm/IR/DerivedTypes.h" |
| 35 | #include "llvm/IR/Dominators.h" |
| 36 | #include "llvm/IR/Function.h" |
| 37 | #include "llvm/IR/IRBuilder.h" |
| 38 | #include "llvm/IR/InstrTypes.h" |
| 39 | #include "llvm/IR/Instruction.h" |
| 40 | #include "llvm/IR/Instructions.h" |
| 41 | #include "llvm/IR/IntrinsicInst.h" |
| 42 | #include "llvm/IR/Intrinsics.h" |
| 43 | #include "llvm/IR/IntrinsicsHexagon.h" |
| 44 | #include "llvm/IR/Module.h" |
| 45 | #include "llvm/IR/PassManager.h" |
| 46 | #include "llvm/IR/PatternMatch.h" |
| 47 | #include "llvm/IR/Type.h" |
| 48 | #include "llvm/IR/User.h" |
| 49 | #include "llvm/IR/Value.h" |
| 50 | #include "llvm/InitializePasses.h" |
| 51 | #include "llvm/Pass.h" |
| 52 | #include "llvm/Support/Casting.h" |
| 53 | #include "llvm/Support/CommandLine.h" |
| 54 | #include "llvm/Support/Compiler.h" |
| 55 | #include "llvm/Support/Debug.h" |
| 56 | #include "llvm/Support/ErrorHandling.h" |
| 57 | #include "llvm/Support/KnownBits.h" |
| 58 | #include "llvm/Support/raw_ostream.h" |
| 59 | #include "llvm/TargetParser/Triple.h" |
| 60 | #include "llvm/Transforms/Scalar.h" |
| 61 | #include "llvm/Transforms/Utils.h" |
| 62 | #include "llvm/Transforms/Utils/Local.h" |
| 63 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 64 | #include <algorithm> |
| 65 | #include <array> |
| 66 | #include <cassert> |
| 67 | #include <cstdint> |
| 68 | #include <cstdlib> |
| 69 | #include <deque> |
| 70 | #include <functional> |
| 71 | #include <iterator> |
| 72 | #include <map> |
| 73 | #include <set> |
| 74 | #include <utility> |
| 75 | #include <vector> |
| 76 | |
| 77 | #define DEBUG_TYPE "hexagon-lir" |
| 78 | |
| 79 | using namespace llvm; |
| 80 | |
| 81 | static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom" , |
| 82 | cl::Hidden, cl::init(Val: false), |
| 83 | cl::desc("Disable generation of memcpy in loop idiom recognition" )); |
| 84 | |
| 85 | static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom" , |
| 86 | cl::Hidden, cl::init(Val: false), |
| 87 | cl::desc("Disable generation of memmove in loop idiom recognition" )); |
| 88 | |
| 89 | static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold" , |
| 90 | cl::Hidden, cl::init(Val: 0), cl::desc("Threshold (in bytes) for the runtime " |
| 91 | "check guarding the memmove." )); |
| 92 | |
| 93 | static cl::opt<unsigned> CompileTimeMemSizeThreshold( |
| 94 | "compile-time-mem-idiom-threshold" , cl::Hidden, cl::init(Val: 64), |
| 95 | cl::desc("Threshold (in bytes) to perform the transformation, if the " |
| 96 | "runtime loop count (mem transfer size) is known at compile-time." )); |
| 97 | |
| 98 | static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom" , |
| 99 | cl::Hidden, cl::init(Val: true), |
| 100 | cl::desc("Only enable generating memmove in non-nested loops" )); |
| 101 | |
| 102 | static cl::opt<bool> HexagonVolatileMemcpy( |
| 103 | "disable-hexagon-volatile-memcpy" , cl::Hidden, cl::init(Val: false), |
| 104 | cl::desc("Enable Hexagon-specific memcpy for volatile destination." )); |
| 105 | |
| 106 | static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit" , cl::init(Val: 10000), |
| 107 | cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR" )); |
| 108 | |
| 109 | static const char *HexagonVolatileMemcpyName |
| 110 | = "hexagon_memcpy_forward_vp4cp4n2" ; |
| 111 | |
| 112 | namespace { |
| 113 | |
| 114 | class HexagonLoopIdiomRecognize { |
| 115 | public: |
| 116 | explicit HexagonLoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, |
| 117 | LoopInfo *LF, const TargetLibraryInfo *TLI, |
| 118 | ScalarEvolution *SE) |
| 119 | : AA(AA), DT(DT), LF(LF), TLI(TLI), SE(SE) {} |
| 120 | |
| 121 | bool run(Loop *L); |
| 122 | |
| 123 | private: |
| 124 | int getSCEVStride(const SCEVAddRecExpr *StoreEv); |
| 125 | bool isLegalStore(Loop *CurLoop, StoreInst *SI); |
| 126 | void collectStores(Loop *CurLoop, BasicBlock *BB, |
| 127 | SmallVectorImpl<StoreInst *> &Stores); |
| 128 | bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount); |
| 129 | bool coverLoop(Loop *L, SmallVectorImpl<Instruction *> &Insts) const; |
| 130 | bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, |
| 131 | SmallVectorImpl<BasicBlock *> &ExitBlocks); |
| 132 | bool runOnCountableLoop(Loop *L); |
| 133 | |
| 134 | AliasAnalysis *AA; |
| 135 | const DataLayout *DL; |
| 136 | DominatorTree *DT; |
| 137 | LoopInfo *LF; |
| 138 | const TargetLibraryInfo *TLI; |
| 139 | ScalarEvolution *SE; |
| 140 | bool HasMemcpy, HasMemmove; |
| 141 | }; |
| 142 | |
| 143 | class HexagonLoopIdiomRecognizeLegacyPass : public LoopPass { |
| 144 | public: |
| 145 | static char ID; |
| 146 | |
| 147 | explicit HexagonLoopIdiomRecognizeLegacyPass() : LoopPass(ID) {} |
| 148 | |
| 149 | StringRef getPassName() const override { |
| 150 | return "Recognize Hexagon-specific loop idioms" ; |
| 151 | } |
| 152 | |
| 153 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 154 | AU.addRequired<LoopInfoWrapperPass>(); |
| 155 | AU.addRequiredID(ID&: LoopSimplifyID); |
| 156 | AU.addRequiredID(ID&: LCSSAID); |
| 157 | AU.addRequired<AAResultsWrapperPass>(); |
| 158 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 159 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 160 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 161 | AU.addPreserved<TargetLibraryInfoWrapperPass>(); |
| 162 | } |
| 163 | |
| 164 | bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| 165 | }; |
| 166 | |
| 167 | struct Simplifier { |
| 168 | struct Rule { |
| 169 | using FuncType = std::function<Value *(Instruction *, LLVMContext &)>; |
| 170 | Rule(StringRef N, FuncType F) : Name(N), Fn(F) {} |
| 171 | StringRef Name; // For debugging. |
| 172 | FuncType Fn; |
| 173 | }; |
| 174 | |
| 175 | void addRule(StringRef N, const Rule::FuncType &F) { |
| 176 | Rules.push_back(x: Rule(N, F)); |
| 177 | } |
| 178 | |
| 179 | private: |
| 180 | struct WorkListType { |
| 181 | WorkListType() = default; |
| 182 | |
| 183 | void push_back(Value *V) { |
| 184 | // Do not push back duplicates. |
| 185 | if (S.insert(x: V).second) |
| 186 | Q.push_back(x: V); |
| 187 | } |
| 188 | |
| 189 | Value *pop_front_val() { |
| 190 | Value *V = Q.front(); |
| 191 | Q.pop_front(); |
| 192 | S.erase(x: V); |
| 193 | return V; |
| 194 | } |
| 195 | |
| 196 | bool empty() const { return Q.empty(); } |
| 197 | |
| 198 | private: |
| 199 | std::deque<Value *> Q; |
| 200 | std::set<Value *> S; |
| 201 | }; |
| 202 | |
| 203 | using ValueSetType = std::set<Value *>; |
| 204 | |
| 205 | std::vector<Rule> Rules; |
| 206 | |
| 207 | public: |
| 208 | struct Context { |
| 209 | using ValueMapType = DenseMap<Value *, Value *>; |
| 210 | |
| 211 | Value *Root; |
| 212 | ValueSetType Used; // The set of all cloned values used by Root. |
| 213 | ValueSetType Clones; // The set of all cloned values. |
| 214 | LLVMContext &Ctx; |
| 215 | |
| 216 | Context(Instruction *Exp) |
| 217 | : Ctx(Exp->getParent()->getParent()->getContext()) { |
| 218 | initialize(Exp); |
| 219 | } |
| 220 | |
| 221 | ~Context() { cleanup(); } |
| 222 | |
| 223 | void print(raw_ostream &OS, const Value *V) const; |
| 224 | Value *materialize(BasicBlock *B, BasicBlock::iterator At); |
| 225 | |
| 226 | private: |
| 227 | friend struct Simplifier; |
| 228 | |
| 229 | void initialize(Instruction *Exp); |
| 230 | void cleanup(); |
| 231 | |
| 232 | template <typename FuncT> void traverse(Value *V, FuncT F); |
| 233 | void record(Value *V); |
| 234 | void use(Value *V); |
| 235 | void unuse(Value *V); |
| 236 | |
| 237 | bool equal(const Instruction *I, const Instruction *J) const; |
| 238 | Value *find(Value *Tree, Value *Sub) const; |
| 239 | Value *subst(Value *Tree, Value *OldV, Value *NewV); |
| 240 | void replace(Value *OldV, Value *NewV); |
| 241 | void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At); |
| 242 | }; |
| 243 | |
| 244 | Value *simplify(Context &C); |
| 245 | }; |
| 246 | |
| 247 | struct PE { |
| 248 | PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {} |
| 249 | |
| 250 | const Simplifier::Context &C; |
| 251 | const Value *V; |
| 252 | }; |
| 253 | |
| 254 | LLVM_ATTRIBUTE_USED |
| 255 | raw_ostream &operator<<(raw_ostream &OS, const PE &P) { |
| 256 | P.C.print(OS, V: P.V ? P.V : P.C.Root); |
| 257 | return OS; |
| 258 | } |
| 259 | |
| 260 | } // end anonymous namespace |
| 261 | |
| 262 | char HexagonLoopIdiomRecognizeLegacyPass::ID = 0; |
| 263 | |
| 264 | INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognizeLegacyPass, "hexagon-loop-idiom" , |
| 265 | "Recognize Hexagon-specific loop idioms" , false, false) |
| 266 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 267 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| 268 | INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) |
| 269 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 270 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 271 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 272 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 273 | INITIALIZE_PASS_END(HexagonLoopIdiomRecognizeLegacyPass, "hexagon-loop-idiom" , |
| 274 | "Recognize Hexagon-specific loop idioms" , false, false) |
| 275 | |
| 276 | template <typename FuncT> |
| 277 | void Simplifier::Context::traverse(Value *V, FuncT F) { |
| 278 | WorkListType Q; |
| 279 | Q.push_back(V); |
| 280 | |
| 281 | while (!Q.empty()) { |
| 282 | Instruction *U = dyn_cast<Instruction>(Val: Q.pop_front_val()); |
| 283 | if (!U || U->getParent()) |
| 284 | continue; |
| 285 | if (!F(U)) |
| 286 | continue; |
| 287 | for (Value *Op : U->operands()) |
| 288 | Q.push_back(V: Op); |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | void Simplifier::Context::print(raw_ostream &OS, const Value *V) const { |
| 293 | const auto *U = dyn_cast<const Instruction>(Val: V); |
| 294 | if (!U) { |
| 295 | OS << V << '(' << *V << ')'; |
| 296 | return; |
| 297 | } |
| 298 | |
| 299 | if (U->getParent()) { |
| 300 | OS << U << '('; |
| 301 | U->printAsOperand(O&: OS, PrintType: true); |
| 302 | OS << ')'; |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | unsigned N = U->getNumOperands(); |
| 307 | if (N != 0) |
| 308 | OS << U << '('; |
| 309 | OS << U->getOpcodeName(); |
| 310 | for (const Value *Op : U->operands()) { |
| 311 | OS << ' '; |
| 312 | print(OS, V: Op); |
| 313 | } |
| 314 | if (N != 0) |
| 315 | OS << ')'; |
| 316 | } |
| 317 | |
| 318 | void Simplifier::Context::initialize(Instruction *Exp) { |
| 319 | // Perform a deep clone of the expression, set Root to the root |
| 320 | // of the clone, and build a map from the cloned values to the |
| 321 | // original ones. |
| 322 | ValueMapType M; |
| 323 | BasicBlock *Block = Exp->getParent(); |
| 324 | WorkListType Q; |
| 325 | Q.push_back(V: Exp); |
| 326 | |
| 327 | while (!Q.empty()) { |
| 328 | Value *V = Q.pop_front_val(); |
| 329 | if (M.contains(Val: V)) |
| 330 | continue; |
| 331 | if (Instruction *U = dyn_cast<Instruction>(Val: V)) { |
| 332 | if (isa<PHINode>(Val: U) || U->getParent() != Block) |
| 333 | continue; |
| 334 | for (Value *Op : U->operands()) |
| 335 | Q.push_back(V: Op); |
| 336 | M.insert(KV: {U, U->clone()}); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | for (std::pair<Value*,Value*> P : M) { |
| 341 | Instruction *U = cast<Instruction>(Val: P.second); |
| 342 | for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { |
| 343 | auto F = M.find(Val: U->getOperand(i)); |
| 344 | if (F != M.end()) |
| 345 | U->setOperand(i, Val: F->second); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | auto R = M.find(Val: Exp); |
| 350 | assert(R != M.end()); |
| 351 | Root = R->second; |
| 352 | |
| 353 | record(V: Root); |
| 354 | use(V: Root); |
| 355 | } |
| 356 | |
| 357 | void Simplifier::Context::record(Value *V) { |
| 358 | auto Record = [this](Instruction *U) -> bool { |
| 359 | Clones.insert(x: U); |
| 360 | return true; |
| 361 | }; |
| 362 | traverse(V, F: Record); |
| 363 | } |
| 364 | |
| 365 | void Simplifier::Context::use(Value *V) { |
| 366 | auto Use = [this](Instruction *U) -> bool { |
| 367 | Used.insert(x: U); |
| 368 | return true; |
| 369 | }; |
| 370 | traverse(V, F: Use); |
| 371 | } |
| 372 | |
| 373 | void Simplifier::Context::unuse(Value *V) { |
| 374 | if (!isa<Instruction>(Val: V) || cast<Instruction>(Val: V)->getParent() != nullptr) |
| 375 | return; |
| 376 | |
| 377 | auto Unuse = [this](Instruction *U) -> bool { |
| 378 | if (!U->use_empty()) |
| 379 | return false; |
| 380 | Used.erase(x: U); |
| 381 | return true; |
| 382 | }; |
| 383 | traverse(V, F: Unuse); |
| 384 | } |
| 385 | |
| 386 | Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) { |
| 387 | if (Tree == OldV) |
| 388 | return NewV; |
| 389 | if (OldV == NewV) |
| 390 | return Tree; |
| 391 | |
| 392 | WorkListType Q; |
| 393 | Q.push_back(V: Tree); |
| 394 | while (!Q.empty()) { |
| 395 | Instruction *U = dyn_cast<Instruction>(Val: Q.pop_front_val()); |
| 396 | // If U is not an instruction, or it's not a clone, skip it. |
| 397 | if (!U || U->getParent()) |
| 398 | continue; |
| 399 | for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { |
| 400 | Value *Op = U->getOperand(i); |
| 401 | if (Op == OldV) { |
| 402 | U->setOperand(i, Val: NewV); |
| 403 | unuse(V: OldV); |
| 404 | } else { |
| 405 | Q.push_back(V: Op); |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | return Tree; |
| 410 | } |
| 411 | |
| 412 | void Simplifier::Context::replace(Value *OldV, Value *NewV) { |
| 413 | if (Root == OldV) { |
| 414 | Root = NewV; |
| 415 | use(V: Root); |
| 416 | return; |
| 417 | } |
| 418 | |
| 419 | // NewV may be a complex tree that has just been created by one of the |
| 420 | // transformation rules. We need to make sure that it is commoned with |
| 421 | // the existing Root to the maximum extent possible. |
| 422 | // Identify all subtrees of NewV (including NewV itself) that have |
| 423 | // equivalent counterparts in Root, and replace those subtrees with |
| 424 | // these counterparts. |
| 425 | WorkListType Q; |
| 426 | Q.push_back(V: NewV); |
| 427 | while (!Q.empty()) { |
| 428 | Value *V = Q.pop_front_val(); |
| 429 | Instruction *U = dyn_cast<Instruction>(Val: V); |
| 430 | if (!U || U->getParent()) |
| 431 | continue; |
| 432 | if (Value *DupV = find(Tree: Root, Sub: V)) { |
| 433 | if (DupV != V) |
| 434 | NewV = subst(Tree: NewV, OldV: V, NewV: DupV); |
| 435 | } else { |
| 436 | for (Value *Op : U->operands()) |
| 437 | Q.push_back(V: Op); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // Now, simply replace OldV with NewV in Root. |
| 442 | Root = subst(Tree: Root, OldV, NewV); |
| 443 | use(V: Root); |
| 444 | } |
| 445 | |
| 446 | void Simplifier::Context::cleanup() { |
| 447 | for (Value *V : Clones) { |
| 448 | Instruction *U = cast<Instruction>(Val: V); |
| 449 | if (!U->getParent()) |
| 450 | U->dropAllReferences(); |
| 451 | } |
| 452 | |
| 453 | for (Value *V : Clones) { |
| 454 | Instruction *U = cast<Instruction>(Val: V); |
| 455 | if (!U->getParent()) |
| 456 | U->deleteValue(); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | bool Simplifier::Context::equal(const Instruction *I, |
| 461 | const Instruction *J) const { |
| 462 | if (I == J) |
| 463 | return true; |
| 464 | if (!I->isSameOperationAs(I: J)) |
| 465 | return false; |
| 466 | if (isa<PHINode>(Val: I)) |
| 467 | return I->isIdenticalTo(I: J); |
| 468 | |
| 469 | for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) { |
| 470 | Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i); |
| 471 | if (OpI == OpJ) |
| 472 | continue; |
| 473 | auto *InI = dyn_cast<const Instruction>(Val: OpI); |
| 474 | auto *InJ = dyn_cast<const Instruction>(Val: OpJ); |
| 475 | if (InI && InJ) { |
| 476 | if (!equal(I: InI, J: InJ)) |
| 477 | return false; |
| 478 | } else if (InI != InJ || !InI) |
| 479 | return false; |
| 480 | } |
| 481 | return true; |
| 482 | } |
| 483 | |
| 484 | Value *Simplifier::Context::find(Value *Tree, Value *Sub) const { |
| 485 | Instruction *SubI = dyn_cast<Instruction>(Val: Sub); |
| 486 | WorkListType Q; |
| 487 | Q.push_back(V: Tree); |
| 488 | |
| 489 | while (!Q.empty()) { |
| 490 | Value *V = Q.pop_front_val(); |
| 491 | if (V == Sub) |
| 492 | return V; |
| 493 | Instruction *U = dyn_cast<Instruction>(Val: V); |
| 494 | if (!U || U->getParent()) |
| 495 | continue; |
| 496 | if (SubI && equal(I: SubI, J: U)) |
| 497 | return U; |
| 498 | assert(!isa<PHINode>(U)); |
| 499 | for (Value *Op : U->operands()) |
| 500 | Q.push_back(V: Op); |
| 501 | } |
| 502 | return nullptr; |
| 503 | } |
| 504 | |
| 505 | void Simplifier::Context::link(Instruction *I, BasicBlock *B, |
| 506 | BasicBlock::iterator At) { |
| 507 | if (I->getParent()) |
| 508 | return; |
| 509 | |
| 510 | for (Value *Op : I->operands()) { |
| 511 | if (Instruction *OpI = dyn_cast<Instruction>(Val: Op)) |
| 512 | link(I: OpI, B, At); |
| 513 | } |
| 514 | |
| 515 | I->insertInto(ParentBB: B, It: At); |
| 516 | } |
| 517 | |
| 518 | Value *Simplifier::Context::materialize(BasicBlock *B, |
| 519 | BasicBlock::iterator At) { |
| 520 | if (Instruction *RootI = dyn_cast<Instruction>(Val: Root)) |
| 521 | link(I: RootI, B, At); |
| 522 | return Root; |
| 523 | } |
| 524 | |
| 525 | Value *Simplifier::simplify(Context &C) { |
| 526 | WorkListType Q; |
| 527 | Q.push_back(V: C.Root); |
| 528 | unsigned Count = 0; |
| 529 | const unsigned Limit = SimplifyLimit; |
| 530 | |
| 531 | while (!Q.empty()) { |
| 532 | if (Count++ >= Limit) |
| 533 | break; |
| 534 | Instruction *U = dyn_cast<Instruction>(Val: Q.pop_front_val()); |
| 535 | if (!U || U->getParent() || !C.Used.count(x: U)) |
| 536 | continue; |
| 537 | bool Changed = false; |
| 538 | for (Rule &R : Rules) { |
| 539 | Value *W = R.Fn(U, C.Ctx); |
| 540 | if (!W) |
| 541 | continue; |
| 542 | Changed = true; |
| 543 | C.record(V: W); |
| 544 | C.replace(OldV: U, NewV: W); |
| 545 | Q.push_back(V: C.Root); |
| 546 | break; |
| 547 | } |
| 548 | if (!Changed) { |
| 549 | for (Value *Op : U->operands()) |
| 550 | Q.push_back(V: Op); |
| 551 | } |
| 552 | } |
| 553 | return Count < Limit ? C.Root : nullptr; |
| 554 | } |
| 555 | |
| 556 | //===----------------------------------------------------------------------===// |
| 557 | // |
| 558 | // Implementation of PolynomialMultiplyRecognize |
| 559 | // |
| 560 | //===----------------------------------------------------------------------===// |
| 561 | |
| 562 | namespace { |
| 563 | |
| 564 | class PolynomialMultiplyRecognize { |
| 565 | public: |
| 566 | explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl, |
| 567 | const DominatorTree &dt, const TargetLibraryInfo &tli, |
| 568 | ScalarEvolution &se) |
| 569 | : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {} |
| 570 | |
| 571 | bool recognize(); |
| 572 | |
| 573 | private: |
| 574 | using ValueSeq = SetVector<Value *>; |
| 575 | |
| 576 | IntegerType *getPmpyType() const { |
| 577 | LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext(); |
| 578 | return IntegerType::get(C&: Ctx, NumBits: 32); |
| 579 | } |
| 580 | |
| 581 | bool isPromotableTo(Value *V, IntegerType *Ty); |
| 582 | void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB); |
| 583 | bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB); |
| 584 | |
| 585 | Value *getCountIV(BasicBlock *BB); |
| 586 | bool findCycle(Value *Out, Value *In, ValueSeq &Cycle); |
| 587 | void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, |
| 588 | ValueSeq &Late); |
| 589 | bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late); |
| 590 | bool commutesWithShift(Instruction *I); |
| 591 | bool highBitsAreZero(Value *V, unsigned IterCount); |
| 592 | bool keepsHighBitsZero(Value *V, unsigned IterCount); |
| 593 | bool isOperandShifted(Instruction *I, Value *Op); |
| 594 | bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, |
| 595 | unsigned IterCount); |
| 596 | void cleanupLoopBody(BasicBlock *LoopB); |
| 597 | |
| 598 | struct ParsedValues { |
| 599 | ParsedValues() = default; |
| 600 | |
| 601 | Value *M = nullptr; |
| 602 | Value *P = nullptr; |
| 603 | Value *Q = nullptr; |
| 604 | Value *R = nullptr; |
| 605 | Value *X = nullptr; |
| 606 | Instruction *Res = nullptr; |
| 607 | unsigned IterCount = 0; |
| 608 | bool Left = false; |
| 609 | bool Inv = false; |
| 610 | }; |
| 611 | |
| 612 | bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV); |
| 613 | bool matchRightShift(SelectInst *SelI, ParsedValues &PV); |
| 614 | bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB, |
| 615 | Value *CIV, ParsedValues &PV, bool PreScan); |
| 616 | unsigned getInverseMxN(unsigned QP); |
| 617 | Value *generate(BasicBlock::iterator At, ParsedValues &PV); |
| 618 | |
| 619 | void setupPreSimplifier(Simplifier &S); |
| 620 | void setupPostSimplifier(Simplifier &S); |
| 621 | |
| 622 | Loop *CurLoop; |
| 623 | const DataLayout &DL; |
| 624 | const DominatorTree &DT; |
| 625 | const TargetLibraryInfo &TLI; |
| 626 | ScalarEvolution &SE; |
| 627 | }; |
| 628 | |
| 629 | } // end anonymous namespace |
| 630 | |
| 631 | Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) { |
| 632 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| 633 | if (std::distance(first: PI, last: PE) != 2) |
| 634 | return nullptr; |
| 635 | BasicBlock *PB = (*PI == BB) ? *std::next(x: PI) : *PI; |
| 636 | |
| 637 | for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(Val: I); ++I) { |
| 638 | auto *PN = cast<PHINode>(Val&: I); |
| 639 | Value *InitV = PN->getIncomingValueForBlock(BB: PB); |
| 640 | if (!isa<ConstantInt>(Val: InitV) || !cast<ConstantInt>(Val: InitV)->isZero()) |
| 641 | continue; |
| 642 | Value *IterV = PN->getIncomingValueForBlock(BB); |
| 643 | auto *BO = dyn_cast<BinaryOperator>(Val: IterV); |
| 644 | if (!BO) |
| 645 | continue; |
| 646 | if (BO->getOpcode() != Instruction::Add) |
| 647 | continue; |
| 648 | Value *IncV = nullptr; |
| 649 | if (BO->getOperand(i_nocapture: 0) == PN) |
| 650 | IncV = BO->getOperand(i_nocapture: 1); |
| 651 | else if (BO->getOperand(i_nocapture: 1) == PN) |
| 652 | IncV = BO->getOperand(i_nocapture: 0); |
| 653 | if (IncV == nullptr) |
| 654 | continue; |
| 655 | |
| 656 | if (auto *T = dyn_cast<ConstantInt>(Val: IncV)) |
| 657 | if (T->isOne()) |
| 658 | return PN; |
| 659 | } |
| 660 | return nullptr; |
| 661 | } |
| 662 | |
| 663 | static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) { |
| 664 | for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) { |
| 665 | Use &TheUse = UI.getUse(); |
| 666 | ++UI; |
| 667 | if (auto *II = dyn_cast<Instruction>(Val: TheUse.getUser())) |
| 668 | if (BB == II->getParent()) |
| 669 | II->replaceUsesOfWith(From: I, To: J); |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI, |
| 674 | Value *CIV, ParsedValues &PV) { |
| 675 | // Match the following: |
| 676 | // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R |
| 677 | // select (X & (1 << i)) == 0 ? R : R ^ (Q << i) |
| 678 | // The condition may also check for equality with the masked value, i.e |
| 679 | // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R |
| 680 | // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i); |
| 681 | |
| 682 | Value *CondV = SelI->getCondition(); |
| 683 | Value *TrueV = SelI->getTrueValue(); |
| 684 | Value *FalseV = SelI->getFalseValue(); |
| 685 | |
| 686 | using namespace PatternMatch; |
| 687 | |
| 688 | CmpPredicate P; |
| 689 | Value *A = nullptr, *B = nullptr, *C = nullptr; |
| 690 | |
| 691 | if (!match(V: CondV, P: m_ICmp(Pred&: P, L: m_And(L: m_Value(V&: A), R: m_Value(V&: B)), R: m_Value(V&: C))) && |
| 692 | !match(V: CondV, P: m_ICmp(Pred&: P, L: m_Value(V&: C), R: m_And(L: m_Value(V&: A), R: m_Value(V&: B))))) |
| 693 | return false; |
| 694 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 695 | return false; |
| 696 | // Matched: select (A & B) == C ? ... : ... |
| 697 | // select (A & B) != C ? ... : ... |
| 698 | |
| 699 | Value *X = nullptr, *Sh1 = nullptr; |
| 700 | // Check (A & B) for (X & (1 << i)): |
| 701 | if (match(V: A, P: m_Shl(L: m_One(), R: m_Specific(V: CIV)))) { |
| 702 | Sh1 = A; |
| 703 | X = B; |
| 704 | } else if (match(V: B, P: m_Shl(L: m_One(), R: m_Specific(V: CIV)))) { |
| 705 | Sh1 = B; |
| 706 | X = A; |
| 707 | } else { |
| 708 | // TODO: Could also check for an induction variable containing single |
| 709 | // bit shifted left by 1 in each iteration. |
| 710 | return false; |
| 711 | } |
| 712 | |
| 713 | bool TrueIfZero; |
| 714 | |
| 715 | // Check C against the possible values for comparison: 0 and (1 << i): |
| 716 | if (match(V: C, P: m_Zero())) |
| 717 | TrueIfZero = (P == CmpInst::ICMP_EQ); |
| 718 | else if (C == Sh1) |
| 719 | TrueIfZero = (P == CmpInst::ICMP_NE); |
| 720 | else |
| 721 | return false; |
| 722 | |
| 723 | // So far, matched: |
| 724 | // select (X & (1 << i)) ? ... : ... |
| 725 | // including variations of the check against zero/non-zero value. |
| 726 | |
| 727 | Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr; |
| 728 | if (TrueIfZero) { |
| 729 | ShouldSameV = TrueV; |
| 730 | ShouldXoredV = FalseV; |
| 731 | } else { |
| 732 | ShouldSameV = FalseV; |
| 733 | ShouldXoredV = TrueV; |
| 734 | } |
| 735 | |
| 736 | Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr; |
| 737 | Value *T = nullptr; |
| 738 | if (match(V: ShouldXoredV, P: m_Xor(L: m_Value(V&: Y), R: m_Value(V&: Z)))) { |
| 739 | // Matched: select +++ ? ... : Y ^ Z |
| 740 | // select +++ ? Y ^ Z : ... |
| 741 | // where +++ denotes previously checked matches. |
| 742 | if (ShouldSameV == Y) |
| 743 | T = Z; |
| 744 | else if (ShouldSameV == Z) |
| 745 | T = Y; |
| 746 | else |
| 747 | return false; |
| 748 | R = ShouldSameV; |
| 749 | // Matched: select +++ ? R : R ^ T |
| 750 | // select +++ ? R ^ T : R |
| 751 | // depending on TrueIfZero. |
| 752 | |
| 753 | } else if (match(V: ShouldSameV, P: m_Zero())) { |
| 754 | // Matched: select +++ ? 0 : ... |
| 755 | // select +++ ? ... : 0 |
| 756 | if (!SelI->hasOneUse()) |
| 757 | return false; |
| 758 | T = ShouldXoredV; |
| 759 | // Matched: select +++ ? 0 : T |
| 760 | // select +++ ? T : 0 |
| 761 | |
| 762 | Value *U = *SelI->user_begin(); |
| 763 | if (!match(V: U, P: m_c_Xor(L: m_Specific(V: SelI), R: m_Value(V&: R)))) |
| 764 | return false; |
| 765 | // Matched: xor (select +++ ? 0 : T), R |
| 766 | // xor (select +++ ? T : 0), R |
| 767 | } else |
| 768 | return false; |
| 769 | |
| 770 | // The xor input value T is isolated into its own match so that it could |
| 771 | // be checked against an induction variable containing a shifted bit |
| 772 | // (todo). |
| 773 | // For now, check against (Q << i). |
| 774 | if (!match(V: T, P: m_Shl(L: m_Value(V&: Q), R: m_Specific(V: CIV))) && |
| 775 | !match(V: T, P: m_Shl(L: m_ZExt(Op: m_Value(V&: Q)), R: m_ZExt(Op: m_Specific(V: CIV))))) |
| 776 | return false; |
| 777 | // Matched: select +++ ? R : R ^ (Q << i) |
| 778 | // select +++ ? R ^ (Q << i) : R |
| 779 | |
| 780 | PV.X = X; |
| 781 | PV.Q = Q; |
| 782 | PV.R = R; |
| 783 | PV.Left = true; |
| 784 | return true; |
| 785 | } |
| 786 | |
| 787 | bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI, |
| 788 | ParsedValues &PV) { |
| 789 | // Match the following: |
| 790 | // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1) |
| 791 | // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q |
| 792 | // The condition may also check for equality with the masked value, i.e |
| 793 | // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1) |
| 794 | // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q |
| 795 | |
| 796 | Value *CondV = SelI->getCondition(); |
| 797 | Value *TrueV = SelI->getTrueValue(); |
| 798 | Value *FalseV = SelI->getFalseValue(); |
| 799 | |
| 800 | using namespace PatternMatch; |
| 801 | |
| 802 | Value *C = nullptr; |
| 803 | CmpPredicate P; |
| 804 | bool TrueIfZero; |
| 805 | |
| 806 | if (match(V: CondV, P: m_c_ICmp(Pred&: P, L: m_Value(V&: C), R: m_Zero()))) { |
| 807 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 808 | return false; |
| 809 | // Matched: select C == 0 ? ... : ... |
| 810 | // select C != 0 ? ... : ... |
| 811 | TrueIfZero = (P == CmpInst::ICMP_EQ); |
| 812 | } else if (match(V: CondV, P: m_c_ICmp(Pred&: P, L: m_Value(V&: C), R: m_One()))) { |
| 813 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 814 | return false; |
| 815 | // Matched: select C == 1 ? ... : ... |
| 816 | // select C != 1 ? ... : ... |
| 817 | TrueIfZero = (P == CmpInst::ICMP_NE); |
| 818 | } else |
| 819 | return false; |
| 820 | |
| 821 | Value *X = nullptr; |
| 822 | if (!match(V: C, P: m_And(L: m_Value(V&: X), R: m_One()))) |
| 823 | return false; |
| 824 | // Matched: select (X & 1) == +++ ? ... : ... |
| 825 | // select (X & 1) != +++ ? ... : ... |
| 826 | |
| 827 | Value *R = nullptr, *Q = nullptr; |
| 828 | if (TrueIfZero) { |
| 829 | // The select's condition is true if the tested bit is 0. |
| 830 | // TrueV must be the shift, FalseV must be the xor. |
| 831 | if (!match(V: TrueV, P: m_LShr(L: m_Value(V&: R), R: m_One()))) |
| 832 | return false; |
| 833 | // Matched: select +++ ? (R >> 1) : ... |
| 834 | if (!match(V: FalseV, P: m_c_Xor(L: m_Specific(V: TrueV), R: m_Value(V&: Q)))) |
| 835 | return false; |
| 836 | // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q |
| 837 | // with commuting ^. |
| 838 | } else { |
| 839 | // The select's condition is true if the tested bit is 1. |
| 840 | // TrueV must be the xor, FalseV must be the shift. |
| 841 | if (!match(V: FalseV, P: m_LShr(L: m_Value(V&: R), R: m_One()))) |
| 842 | return false; |
| 843 | // Matched: select +++ ? ... : (R >> 1) |
| 844 | if (!match(V: TrueV, P: m_c_Xor(L: m_Specific(V: FalseV), R: m_Value(V&: Q)))) |
| 845 | return false; |
| 846 | // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1) |
| 847 | // with commuting ^. |
| 848 | } |
| 849 | |
| 850 | PV.X = X; |
| 851 | PV.Q = Q; |
| 852 | PV.R = R; |
| 853 | PV.Left = false; |
| 854 | return true; |
| 855 | } |
| 856 | |
| 857 | bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI, |
| 858 | BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, |
| 859 | bool PreScan) { |
| 860 | using namespace PatternMatch; |
| 861 | |
| 862 | // The basic pattern for R = P.Q is: |
| 863 | // for i = 0..31 |
| 864 | // R = phi (0, R') |
| 865 | // if (P & (1 << i)) ; test-bit(P, i) |
| 866 | // R' = R ^ (Q << i) |
| 867 | // |
| 868 | // Similarly, the basic pattern for R = (P/Q).Q - P |
| 869 | // for i = 0..31 |
| 870 | // R = phi(P, R') |
| 871 | // if (R & (1 << i)) |
| 872 | // R' = R ^ (Q << i) |
| 873 | |
| 874 | // There exist idioms, where instead of Q being shifted left, P is shifted |
| 875 | // right. This produces a result that is shifted right by 32 bits (the |
| 876 | // non-shifted result is 64-bit). |
| 877 | // |
| 878 | // For R = P.Q, this would be: |
| 879 | // for i = 0..31 |
| 880 | // R = phi (0, R') |
| 881 | // if ((P >> i) & 1) |
| 882 | // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must |
| 883 | // else ; be shifted by 1, not i. |
| 884 | // R' = R >> 1 |
| 885 | // |
| 886 | // And for the inverse: |
| 887 | // for i = 0..31 |
| 888 | // R = phi (P, R') |
| 889 | // if (R & 1) |
| 890 | // R' = (R >> 1) ^ Q |
| 891 | // else |
| 892 | // R' = R >> 1 |
| 893 | |
| 894 | // The left-shifting idioms share the same pattern: |
| 895 | // select (X & (1 << i)) ? R ^ (Q << i) : R |
| 896 | // Similarly for right-shifting idioms: |
| 897 | // select (X & 1) ? (R >> 1) ^ Q |
| 898 | |
| 899 | if (matchLeftShift(SelI, CIV, PV)) { |
| 900 | // If this is a pre-scan, getting this far is sufficient. |
| 901 | if (PreScan) |
| 902 | return true; |
| 903 | |
| 904 | // Need to make sure that the SelI goes back into R. |
| 905 | auto *RPhi = dyn_cast<PHINode>(Val: PV.R); |
| 906 | if (!RPhi) |
| 907 | return false; |
| 908 | if (SelI != RPhi->getIncomingValueForBlock(BB: LoopB)) |
| 909 | return false; |
| 910 | PV.Res = SelI; |
| 911 | |
| 912 | // If X is loop invariant, it must be the input polynomial, and the |
| 913 | // idiom is the basic polynomial multiply. |
| 914 | if (CurLoop->isLoopInvariant(V: PV.X)) { |
| 915 | PV.P = PV.X; |
| 916 | PV.Inv = false; |
| 917 | } else { |
| 918 | // X is not loop invariant. If X == R, this is the inverse pmpy. |
| 919 | // Otherwise, check for an xor with an invariant value. If the |
| 920 | // variable argument to the xor is R, then this is still a valid |
| 921 | // inverse pmpy. |
| 922 | PV.Inv = true; |
| 923 | if (PV.X != PV.R) { |
| 924 | Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr; |
| 925 | if (!match(V: PV.X, P: m_Xor(L: m_Value(V&: X1), R: m_Value(V&: X2)))) |
| 926 | return false; |
| 927 | auto *I1 = dyn_cast<Instruction>(Val: X1); |
| 928 | auto *I2 = dyn_cast<Instruction>(Val: X2); |
| 929 | if (!I1 || I1->getParent() != LoopB) { |
| 930 | Var = X2; |
| 931 | Inv = X1; |
| 932 | } else if (!I2 || I2->getParent() != LoopB) { |
| 933 | Var = X1; |
| 934 | Inv = X2; |
| 935 | } else |
| 936 | return false; |
| 937 | if (Var != PV.R) |
| 938 | return false; |
| 939 | PV.M = Inv; |
| 940 | } |
| 941 | // The input polynomial P still needs to be determined. It will be |
| 942 | // the entry value of R. |
| 943 | Value *EntryP = RPhi->getIncomingValueForBlock(BB: PrehB); |
| 944 | PV.P = EntryP; |
| 945 | } |
| 946 | |
| 947 | return true; |
| 948 | } |
| 949 | |
| 950 | if (matchRightShift(SelI, PV)) { |
| 951 | // If this is an inverse pattern, the Q polynomial must be known at |
| 952 | // compile time. |
| 953 | if (PV.Inv && !isa<ConstantInt>(Val: PV.Q)) |
| 954 | return false; |
| 955 | if (PreScan) |
| 956 | return true; |
| 957 | // There is no exact matching of right-shift pmpy. |
| 958 | return false; |
| 959 | } |
| 960 | |
| 961 | return false; |
| 962 | } |
| 963 | |
| 964 | bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val, |
| 965 | IntegerType *DestTy) { |
| 966 | IntegerType *T = dyn_cast<IntegerType>(Val: Val->getType()); |
| 967 | if (!T || T->getBitWidth() > DestTy->getBitWidth()) |
| 968 | return false; |
| 969 | if (T->getBitWidth() == DestTy->getBitWidth()) |
| 970 | return true; |
| 971 | // Non-instructions are promotable. The reason why an instruction may not |
| 972 | // be promotable is that it may produce a different result if its operands |
| 973 | // and the result are promoted, for example, it may produce more non-zero |
| 974 | // bits. While it would still be possible to represent the proper result |
| 975 | // in a wider type, it may require adding additional instructions (which |
| 976 | // we don't want to do). |
| 977 | Instruction *In = dyn_cast<Instruction>(Val); |
| 978 | if (!In) |
| 979 | return true; |
| 980 | // The bitwidth of the source type is smaller than the destination. |
| 981 | // Check if the individual operation can be promoted. |
| 982 | switch (In->getOpcode()) { |
| 983 | case Instruction::PHI: |
| 984 | case Instruction::ZExt: |
| 985 | case Instruction::And: |
| 986 | case Instruction::Or: |
| 987 | case Instruction::Xor: |
| 988 | case Instruction::LShr: // Shift right is ok. |
| 989 | case Instruction::Select: |
| 990 | case Instruction::Trunc: |
| 991 | return true; |
| 992 | case Instruction::ICmp: |
| 993 | if (CmpInst *CI = cast<CmpInst>(Val: In)) |
| 994 | return CI->isEquality() || CI->isUnsigned(); |
| 995 | llvm_unreachable("Cast failed unexpectedly" ); |
| 996 | case Instruction::Add: |
| 997 | return In->hasNoSignedWrap() && In->hasNoUnsignedWrap(); |
| 998 | } |
| 999 | return false; |
| 1000 | } |
| 1001 | |
| 1002 | void PolynomialMultiplyRecognize::promoteTo(Instruction *In, |
| 1003 | IntegerType *DestTy, BasicBlock *LoopB) { |
| 1004 | Type *OrigTy = In->getType(); |
| 1005 | assert(!OrigTy->isVoidTy() && "Invalid instruction to promote" ); |
| 1006 | |
| 1007 | // Leave boolean values alone. |
| 1008 | if (!In->getType()->isIntegerTy(Bitwidth: 1)) |
| 1009 | In->mutateType(Ty: DestTy); |
| 1010 | unsigned DestBW = DestTy->getBitWidth(); |
| 1011 | |
| 1012 | // Handle PHIs. |
| 1013 | if (PHINode *P = dyn_cast<PHINode>(Val: In)) { |
| 1014 | unsigned N = P->getNumIncomingValues(); |
| 1015 | for (unsigned i = 0; i != N; ++i) { |
| 1016 | BasicBlock *InB = P->getIncomingBlock(i); |
| 1017 | if (InB == LoopB) |
| 1018 | continue; |
| 1019 | Value *InV = P->getIncomingValue(i); |
| 1020 | IntegerType *Ty = cast<IntegerType>(Val: InV->getType()); |
| 1021 | // Do not promote values in PHI nodes of type i1. |
| 1022 | if (Ty != P->getType()) { |
| 1023 | // If the value type does not match the PHI type, the PHI type |
| 1024 | // must have been promoted. |
| 1025 | assert(Ty->getBitWidth() < DestBW); |
| 1026 | InV = IRBuilder<>(InB->getTerminator()).CreateZExt(V: InV, DestTy); |
| 1027 | P->setIncomingValue(i, V: InV); |
| 1028 | } |
| 1029 | } |
| 1030 | } else if (ZExtInst *Z = dyn_cast<ZExtInst>(Val: In)) { |
| 1031 | Value *Op = Z->getOperand(i_nocapture: 0); |
| 1032 | if (Op->getType() == Z->getType()) |
| 1033 | Z->replaceAllUsesWith(V: Op); |
| 1034 | Z->eraseFromParent(); |
| 1035 | return; |
| 1036 | } |
| 1037 | if (TruncInst *T = dyn_cast<TruncInst>(Val: In)) { |
| 1038 | IntegerType *TruncTy = cast<IntegerType>(Val: OrigTy); |
| 1039 | Value *Mask = ConstantInt::get(Ty: DestTy, V: (1u << TruncTy->getBitWidth()) - 1); |
| 1040 | Value *And = IRBuilder<>(In).CreateAnd(LHS: T->getOperand(i_nocapture: 0), RHS: Mask); |
| 1041 | T->replaceAllUsesWith(V: And); |
| 1042 | T->eraseFromParent(); |
| 1043 | return; |
| 1044 | } |
| 1045 | |
| 1046 | // Promote immediates. |
| 1047 | for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) { |
| 1048 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: In->getOperand(i))) |
| 1049 | if (CI->getBitWidth() < DestBW) |
| 1050 | In->setOperand(i, Val: ConstantInt::get(Ty: DestTy, V: CI->getZExtValue())); |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB, |
| 1055 | BasicBlock *ExitB) { |
| 1056 | assert(LoopB); |
| 1057 | // Skip loops where the exit block has more than one predecessor. The values |
| 1058 | // coming from the loop block will be promoted to another type, and so the |
| 1059 | // values coming into the exit block from other predecessors would also have |
| 1060 | // to be promoted. |
| 1061 | if (!ExitB || (ExitB->getSinglePredecessor() != LoopB)) |
| 1062 | return false; |
| 1063 | IntegerType *DestTy = getPmpyType(); |
| 1064 | // Check if the exit values have types that are no wider than the type |
| 1065 | // that we want to promote to. |
| 1066 | unsigned DestBW = DestTy->getBitWidth(); |
| 1067 | for (PHINode &P : ExitB->phis()) { |
| 1068 | if (P.getNumIncomingValues() != 1) |
| 1069 | return false; |
| 1070 | assert(P.getIncomingBlock(0) == LoopB); |
| 1071 | IntegerType *T = dyn_cast<IntegerType>(Val: P.getType()); |
| 1072 | if (!T || T->getBitWidth() > DestBW) |
| 1073 | return false; |
| 1074 | } |
| 1075 | |
| 1076 | // Check all instructions in the loop. |
| 1077 | for (Instruction &In : *LoopB) |
| 1078 | if (!In.isTerminator() && !isPromotableTo(Val: &In, DestTy)) |
| 1079 | return false; |
| 1080 | |
| 1081 | // Perform the promotion. |
| 1082 | SmallVector<Instruction *> LoopIns(llvm::make_pointer_range(Range&: *LoopB)); |
| 1083 | for (Instruction *In : LoopIns) |
| 1084 | if (!In->isTerminator()) |
| 1085 | promoteTo(In, DestTy, LoopB); |
| 1086 | |
| 1087 | // Fix up the PHI nodes in the exit block. |
| 1088 | BasicBlock::iterator End = ExitB->getFirstNonPHIIt(); |
| 1089 | for (auto I = ExitB->begin(); I != End; ++I) { |
| 1090 | PHINode *P = dyn_cast<PHINode>(Val&: I); |
| 1091 | if (!P) |
| 1092 | break; |
| 1093 | Type *Ty0 = P->getIncomingValue(i: 0)->getType(); |
| 1094 | Type *PTy = P->getType(); |
| 1095 | if (PTy != Ty0) { |
| 1096 | assert(Ty0 == DestTy); |
| 1097 | // In order to create the trunc, P must have the promoted type. |
| 1098 | P->mutateType(Ty: Ty0); |
| 1099 | Value *T = IRBuilder<>(ExitB, End).CreateTrunc(V: P, DestTy: PTy); |
| 1100 | // In order for the RAUW to work, the types of P and T must match. |
| 1101 | P->mutateType(Ty: PTy); |
| 1102 | P->replaceAllUsesWith(V: T); |
| 1103 | // Final update of the P's type. |
| 1104 | P->mutateType(Ty: Ty0); |
| 1105 | cast<Instruction>(Val: T)->setOperand(i: 0, Val: P); |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | return true; |
| 1110 | } |
| 1111 | |
| 1112 | bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In, |
| 1113 | ValueSeq &Cycle) { |
| 1114 | // Out = ..., In, ... |
| 1115 | if (Out == In) |
| 1116 | return true; |
| 1117 | |
| 1118 | auto *BB = cast<Instruction>(Val: Out)->getParent(); |
| 1119 | bool HadPhi = false; |
| 1120 | |
| 1121 | for (auto *U : Out->users()) { |
| 1122 | auto *I = dyn_cast<Instruction>(Val: &*U); |
| 1123 | if (I == nullptr || I->getParent() != BB) |
| 1124 | continue; |
| 1125 | // Make sure that there are no multi-iteration cycles, e.g. |
| 1126 | // p1 = phi(p2) |
| 1127 | // p2 = phi(p1) |
| 1128 | // The cycle p1->p2->p1 would span two loop iterations. |
| 1129 | // Check that there is only one phi in the cycle. |
| 1130 | bool IsPhi = isa<PHINode>(Val: I); |
| 1131 | if (IsPhi && HadPhi) |
| 1132 | return false; |
| 1133 | HadPhi |= IsPhi; |
| 1134 | if (!Cycle.insert(X: I)) |
| 1135 | return false; |
| 1136 | if (findCycle(Out: I, In, Cycle)) |
| 1137 | break; |
| 1138 | Cycle.remove(X: I); |
| 1139 | } |
| 1140 | return !Cycle.empty(); |
| 1141 | } |
| 1142 | |
| 1143 | void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI, |
| 1144 | ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) { |
| 1145 | // All the values in the cycle that are between the phi node and the |
| 1146 | // divider instruction will be classified as "early", all other values |
| 1147 | // will be "late". |
| 1148 | |
| 1149 | bool IsE = true; |
| 1150 | unsigned I, N = Cycle.size(); |
| 1151 | for (I = 0; I < N; ++I) { |
| 1152 | Value *V = Cycle[I]; |
| 1153 | if (DivI == V) |
| 1154 | IsE = false; |
| 1155 | else if (!isa<PHINode>(Val: V)) |
| 1156 | continue; |
| 1157 | // Stop if found either. |
| 1158 | break; |
| 1159 | } |
| 1160 | // "I" is the index of either DivI or the phi node, whichever was first. |
| 1161 | // "E" is "false" or "true" respectively. |
| 1162 | ValueSeq &First = !IsE ? Early : Late; |
| 1163 | for (unsigned J = 0; J < I; ++J) |
| 1164 | First.insert(X: Cycle[J]); |
| 1165 | |
| 1166 | ValueSeq &Second = IsE ? Early : Late; |
| 1167 | Second.insert(X: Cycle[I]); |
| 1168 | for (++I; I < N; ++I) { |
| 1169 | Value *V = Cycle[I]; |
| 1170 | if (DivI == V || isa<PHINode>(Val: V)) |
| 1171 | break; |
| 1172 | Second.insert(X: V); |
| 1173 | } |
| 1174 | |
| 1175 | for (; I < N; ++I) |
| 1176 | First.insert(X: Cycle[I]); |
| 1177 | } |
| 1178 | |
| 1179 | bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI, |
| 1180 | ValueSeq &Early, ValueSeq &Late) { |
| 1181 | // Select is an exception, since the condition value does not have to be |
| 1182 | // classified in the same way as the true/false values. The true/false |
| 1183 | // values do have to be both early or both late. |
| 1184 | if (UseI->getOpcode() == Instruction::Select) { |
| 1185 | Value *TV = UseI->getOperand(i: 1), *FV = UseI->getOperand(i: 2); |
| 1186 | if (Early.count(key: TV) || Early.count(key: FV)) { |
| 1187 | if (Late.count(key: TV) || Late.count(key: FV)) |
| 1188 | return false; |
| 1189 | Early.insert(X: UseI); |
| 1190 | } else if (Late.count(key: TV) || Late.count(key: FV)) { |
| 1191 | if (Early.count(key: TV) || Early.count(key: FV)) |
| 1192 | return false; |
| 1193 | Late.insert(X: UseI); |
| 1194 | } |
| 1195 | return true; |
| 1196 | } |
| 1197 | |
| 1198 | // Not sure what would be the example of this, but the code below relies |
| 1199 | // on having at least one operand. |
| 1200 | if (UseI->getNumOperands() == 0) |
| 1201 | return true; |
| 1202 | |
| 1203 | bool AE = true, AL = true; |
| 1204 | for (auto &I : UseI->operands()) { |
| 1205 | if (Early.count(key: &*I)) |
| 1206 | AL = false; |
| 1207 | else if (Late.count(key: &*I)) |
| 1208 | AE = false; |
| 1209 | } |
| 1210 | // If the operands appear "all early" and "all late" at the same time, |
| 1211 | // then it means that none of them are actually classified as either. |
| 1212 | // This is harmless. |
| 1213 | if (AE && AL) |
| 1214 | return true; |
| 1215 | // Conversely, if they are neither "all early" nor "all late", then |
| 1216 | // we have a mixture of early and late operands that is not a known |
| 1217 | // exception. |
| 1218 | if (!AE && !AL) |
| 1219 | return false; |
| 1220 | |
| 1221 | // Check that we have covered the two special cases. |
| 1222 | assert(AE != AL); |
| 1223 | |
| 1224 | if (AE) |
| 1225 | Early.insert(X: UseI); |
| 1226 | else |
| 1227 | Late.insert(X: UseI); |
| 1228 | return true; |
| 1229 | } |
| 1230 | |
| 1231 | bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) { |
| 1232 | switch (I->getOpcode()) { |
| 1233 | case Instruction::And: |
| 1234 | case Instruction::Or: |
| 1235 | case Instruction::Xor: |
| 1236 | case Instruction::LShr: |
| 1237 | case Instruction::Shl: |
| 1238 | case Instruction::Select: |
| 1239 | case Instruction::ICmp: |
| 1240 | case Instruction::PHI: |
| 1241 | break; |
| 1242 | default: |
| 1243 | return false; |
| 1244 | } |
| 1245 | return true; |
| 1246 | } |
| 1247 | |
| 1248 | bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V, |
| 1249 | unsigned IterCount) { |
| 1250 | auto *T = dyn_cast<IntegerType>(Val: V->getType()); |
| 1251 | if (!T) |
| 1252 | return false; |
| 1253 | |
| 1254 | KnownBits Known(T->getBitWidth()); |
| 1255 | computeKnownBits(V, Known, DL); |
| 1256 | return Known.countMinLeadingZeros() >= IterCount; |
| 1257 | } |
| 1258 | |
| 1259 | bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V, |
| 1260 | unsigned IterCount) { |
| 1261 | // Assume that all inputs to the value have the high bits zero. |
| 1262 | // Check if the value itself preserves the zeros in the high bits. |
| 1263 | if (auto *C = dyn_cast<ConstantInt>(Val: V)) |
| 1264 | return C->getValue().countl_zero() >= IterCount; |
| 1265 | |
| 1266 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 1267 | switch (I->getOpcode()) { |
| 1268 | case Instruction::And: |
| 1269 | case Instruction::Or: |
| 1270 | case Instruction::Xor: |
| 1271 | case Instruction::LShr: |
| 1272 | case Instruction::Select: |
| 1273 | case Instruction::ICmp: |
| 1274 | case Instruction::PHI: |
| 1275 | case Instruction::ZExt: |
| 1276 | return true; |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | return false; |
| 1281 | } |
| 1282 | |
| 1283 | bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) { |
| 1284 | unsigned Opc = I->getOpcode(); |
| 1285 | if (Opc == Instruction::Shl || Opc == Instruction::LShr) |
| 1286 | return Op != I->getOperand(i: 1); |
| 1287 | return true; |
| 1288 | } |
| 1289 | |
| 1290 | bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB, |
| 1291 | BasicBlock *ExitB, unsigned IterCount) { |
| 1292 | Value *CIV = getCountIV(BB: LoopB); |
| 1293 | if (CIV == nullptr) |
| 1294 | return false; |
| 1295 | auto *CIVTy = dyn_cast<IntegerType>(Val: CIV->getType()); |
| 1296 | if (CIVTy == nullptr) |
| 1297 | return false; |
| 1298 | |
| 1299 | ValueSeq RShifts; |
| 1300 | ValueSeq Early, Late, Cycled; |
| 1301 | |
| 1302 | // Find all value cycles that contain logical right shifts by 1. |
| 1303 | for (Instruction &I : *LoopB) { |
| 1304 | using namespace PatternMatch; |
| 1305 | |
| 1306 | Value *V = nullptr; |
| 1307 | if (!match(V: &I, P: m_LShr(L: m_Value(V), R: m_One()))) |
| 1308 | continue; |
| 1309 | ValueSeq C; |
| 1310 | if (!findCycle(Out: &I, In: V, Cycle&: C)) |
| 1311 | continue; |
| 1312 | |
| 1313 | // Found a cycle. |
| 1314 | C.insert(X: &I); |
| 1315 | classifyCycle(DivI: &I, Cycle&: C, Early, Late); |
| 1316 | Cycled.insert_range(R&: C); |
| 1317 | RShifts.insert(X: &I); |
| 1318 | } |
| 1319 | |
| 1320 | // Find the set of all values affected by the shift cycles, i.e. all |
| 1321 | // cycled values, and (recursively) all their users. |
| 1322 | ValueSeq Users(llvm::from_range, Cycled); |
| 1323 | for (unsigned i = 0; i < Users.size(); ++i) { |
| 1324 | Value *V = Users[i]; |
| 1325 | if (!isa<IntegerType>(Val: V->getType())) |
| 1326 | return false; |
| 1327 | auto *R = cast<Instruction>(Val: V); |
| 1328 | // If the instruction does not commute with shifts, the loop cannot |
| 1329 | // be unshifted. |
| 1330 | if (!commutesWithShift(I: R)) |
| 1331 | return false; |
| 1332 | for (User *U : R->users()) { |
| 1333 | auto *T = cast<Instruction>(Val: U); |
| 1334 | // Skip users from outside of the loop. They will be handled later. |
| 1335 | // Also, skip the right-shifts and phi nodes, since they mix early |
| 1336 | // and late values. |
| 1337 | if (T->getParent() != LoopB || RShifts.count(key: T) || isa<PHINode>(Val: T)) |
| 1338 | continue; |
| 1339 | |
| 1340 | Users.insert(X: T); |
| 1341 | if (!classifyInst(UseI: T, Early, Late)) |
| 1342 | return false; |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | if (Users.empty()) |
| 1347 | return false; |
| 1348 | |
| 1349 | // Verify that high bits remain zero. |
| 1350 | ValueSeq Internal(llvm::from_range, Users); |
| 1351 | ValueSeq Inputs; |
| 1352 | for (unsigned i = 0; i < Internal.size(); ++i) { |
| 1353 | auto *R = dyn_cast<Instruction>(Val: Internal[i]); |
| 1354 | if (!R) |
| 1355 | continue; |
| 1356 | for (Value *Op : R->operands()) { |
| 1357 | auto *T = dyn_cast<Instruction>(Val: Op); |
| 1358 | if (T && T->getParent() != LoopB) |
| 1359 | Inputs.insert(X: Op); |
| 1360 | else |
| 1361 | Internal.insert(X: Op); |
| 1362 | } |
| 1363 | } |
| 1364 | for (Value *V : Inputs) |
| 1365 | if (!highBitsAreZero(V, IterCount)) |
| 1366 | return false; |
| 1367 | for (Value *V : Internal) |
| 1368 | if (!keepsHighBitsZero(V, IterCount)) |
| 1369 | return false; |
| 1370 | |
| 1371 | // Finally, the work can be done. Unshift each user. |
| 1372 | IRBuilder<> IRB(LoopB); |
| 1373 | std::map<Value*,Value*> ShiftMap; |
| 1374 | |
| 1375 | using CastMapType = std::map<std::pair<Value *, Type *>, Value *>; |
| 1376 | |
| 1377 | CastMapType CastMap; |
| 1378 | |
| 1379 | auto upcast = [](CastMapType &CM, IRBuilder<> &IRB, Value *V, |
| 1380 | IntegerType *Ty) -> Value * { |
| 1381 | auto [H, Inserted] = CM.try_emplace(k: std::make_pair(x&: V, y&: Ty)); |
| 1382 | if (Inserted) |
| 1383 | H->second = IRB.CreateIntCast(V, DestTy: Ty, isSigned: false); |
| 1384 | return H->second; |
| 1385 | }; |
| 1386 | |
| 1387 | for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) { |
| 1388 | using namespace PatternMatch; |
| 1389 | |
| 1390 | if (isa<PHINode>(Val: I) || !Users.count(key: &*I)) |
| 1391 | continue; |
| 1392 | |
| 1393 | // Match lshr x, 1. |
| 1394 | Value *V = nullptr; |
| 1395 | if (match(V: &*I, P: m_LShr(L: m_Value(V), R: m_One()))) { |
| 1396 | replaceAllUsesOfWithIn(I: &*I, J: V, BB: LoopB); |
| 1397 | continue; |
| 1398 | } |
| 1399 | // For each non-cycled operand, replace it with the corresponding |
| 1400 | // value shifted left. |
| 1401 | for (auto &J : I->operands()) { |
| 1402 | Value *Op = J.get(); |
| 1403 | if (!isOperandShifted(I: &*I, Op)) |
| 1404 | continue; |
| 1405 | if (Users.count(key: Op)) |
| 1406 | continue; |
| 1407 | // Skip shifting zeros. |
| 1408 | if (isa<ConstantInt>(Val: Op) && cast<ConstantInt>(Val: Op)->isZero()) |
| 1409 | continue; |
| 1410 | // Check if we have already generated a shift for this value. |
| 1411 | auto F = ShiftMap.find(x: Op); |
| 1412 | Value *W = (F != ShiftMap.end()) ? F->second : nullptr; |
| 1413 | if (W == nullptr) { |
| 1414 | IRB.SetInsertPoint(&*I); |
| 1415 | // First, the shift amount will be CIV or CIV+1, depending on |
| 1416 | // whether the value is early or late. Instead of creating CIV+1, |
| 1417 | // do a single shift of the value. |
| 1418 | Value *ShAmt = CIV, *ShVal = Op; |
| 1419 | auto *VTy = cast<IntegerType>(Val: ShVal->getType()); |
| 1420 | auto *ATy = cast<IntegerType>(Val: ShAmt->getType()); |
| 1421 | if (Late.count(key: &*I)) |
| 1422 | ShVal = IRB.CreateShl(LHS: Op, RHS: ConstantInt::get(Ty: VTy, V: 1)); |
| 1423 | // Second, the types of the shifted value and the shift amount |
| 1424 | // must match. |
| 1425 | if (VTy != ATy) { |
| 1426 | if (VTy->getBitWidth() < ATy->getBitWidth()) |
| 1427 | ShVal = upcast(CastMap, IRB, ShVal, ATy); |
| 1428 | else |
| 1429 | ShAmt = upcast(CastMap, IRB, ShAmt, VTy); |
| 1430 | } |
| 1431 | // Ready to generate the shift and memoize it. |
| 1432 | W = IRB.CreateShl(LHS: ShVal, RHS: ShAmt); |
| 1433 | ShiftMap.insert(x: std::make_pair(x&: Op, y&: W)); |
| 1434 | } |
| 1435 | I->replaceUsesOfWith(From: Op, To: W); |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | // Update the users outside of the loop to account for having left |
| 1440 | // shifts. They would normally be shifted right in the loop, so shift |
| 1441 | // them right after the loop exit. |
| 1442 | // Take advantage of the loop-closed SSA form, which has all the post- |
| 1443 | // loop values in phi nodes. |
| 1444 | IRB.SetInsertPoint(TheBB: ExitB, IP: ExitB->getFirstInsertionPt()); |
| 1445 | for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) { |
| 1446 | if (!isa<PHINode>(Val: P)) |
| 1447 | break; |
| 1448 | auto *PN = cast<PHINode>(Val&: P); |
| 1449 | Value *U = PN->getIncomingValueForBlock(BB: LoopB); |
| 1450 | if (!Users.count(key: U)) |
| 1451 | continue; |
| 1452 | Value *S = IRB.CreateLShr(LHS: PN, RHS: ConstantInt::get(Ty: PN->getType(), V: IterCount)); |
| 1453 | PN->replaceAllUsesWith(V: S); |
| 1454 | // The above RAUW will create |
| 1455 | // S = lshr S, IterCount |
| 1456 | // so we need to fix it back into |
| 1457 | // S = lshr PN, IterCount |
| 1458 | cast<User>(Val: S)->replaceUsesOfWith(From: S, To: PN); |
| 1459 | } |
| 1460 | |
| 1461 | return true; |
| 1462 | } |
| 1463 | |
| 1464 | void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) { |
| 1465 | for (auto &I : *LoopB) |
| 1466 | if (Value *SV = simplifyInstruction(I: &I, Q: {DL, &TLI, &DT})) |
| 1467 | I.replaceAllUsesWith(V: SV); |
| 1468 | |
| 1469 | for (Instruction &I : llvm::make_early_inc_range(Range&: *LoopB)) |
| 1470 | RecursivelyDeleteTriviallyDeadInstructions(V: &I, TLI: &TLI); |
| 1471 | } |
| 1472 | |
| 1473 | unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) { |
| 1474 | // Arrays of coefficients of Q and the inverse, C. |
| 1475 | // Q[i] = coefficient at x^i. |
| 1476 | std::array<char,32> Q, C; |
| 1477 | |
| 1478 | for (unsigned i = 0; i < 32; ++i) { |
| 1479 | Q[i] = QP & 1; |
| 1480 | QP >>= 1; |
| 1481 | } |
| 1482 | assert(Q[0] == 1); |
| 1483 | |
| 1484 | // Find C, such that |
| 1485 | // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1 |
| 1486 | // |
| 1487 | // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the |
| 1488 | // operations * and + are & and ^ respectively. |
| 1489 | // |
| 1490 | // Find C[i] recursively, by comparing i-th coefficient in the product |
| 1491 | // with 0 (or 1 for i=0). |
| 1492 | // |
| 1493 | // C[0] = 1, since C[0] = Q[0], and Q[0] = 1. |
| 1494 | C[0] = 1; |
| 1495 | for (unsigned i = 1; i < 32; ++i) { |
| 1496 | // Solve for C[i] in: |
| 1497 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0 |
| 1498 | // This is equivalent to |
| 1499 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0 |
| 1500 | // which is |
| 1501 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i] |
| 1502 | unsigned T = 0; |
| 1503 | for (unsigned j = 0; j < i; ++j) |
| 1504 | T = T ^ (C[j] & Q[i-j]); |
| 1505 | C[i] = T; |
| 1506 | } |
| 1507 | |
| 1508 | unsigned QV = 0; |
| 1509 | for (unsigned i = 0; i < 32; ++i) |
| 1510 | if (C[i]) |
| 1511 | QV |= (1 << i); |
| 1512 | |
| 1513 | return QV; |
| 1514 | } |
| 1515 | |
| 1516 | Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At, |
| 1517 | ParsedValues &PV) { |
| 1518 | IRBuilder<> B(&*At); |
| 1519 | Module *M = At->getParent()->getParent()->getParent(); |
| 1520 | Function *PMF = |
| 1521 | Intrinsic::getOrInsertDeclaration(M, id: Intrinsic::hexagon_M4_pmpyw); |
| 1522 | |
| 1523 | Value *P = PV.P, *Q = PV.Q, *P0 = P; |
| 1524 | unsigned IC = PV.IterCount; |
| 1525 | |
| 1526 | if (PV.M != nullptr) |
| 1527 | P0 = P = B.CreateXor(LHS: P, RHS: PV.M); |
| 1528 | |
| 1529 | // Create a bit mask to clear the high bits beyond IterCount. |
| 1530 | auto *BMI = ConstantInt::get(Ty: P->getType(), V: APInt::getLowBitsSet(numBits: 32, loBitsSet: IC)); |
| 1531 | |
| 1532 | if (PV.IterCount != 32) |
| 1533 | P = B.CreateAnd(LHS: P, RHS: BMI); |
| 1534 | |
| 1535 | if (PV.Inv) { |
| 1536 | auto *QI = dyn_cast<ConstantInt>(Val: PV.Q); |
| 1537 | assert(QI && QI->getBitWidth() <= 32); |
| 1538 | |
| 1539 | // Again, clearing bits beyond IterCount. |
| 1540 | unsigned M = (1 << PV.IterCount) - 1; |
| 1541 | unsigned Tmp = (QI->getZExtValue() | 1) & M; |
| 1542 | unsigned QV = getInverseMxN(QP: Tmp) & M; |
| 1543 | auto *QVI = ConstantInt::get(Ty: QI->getType(), V: QV); |
| 1544 | P = B.CreateCall(Callee: PMF, Args: {P, QVI}); |
| 1545 | P = B.CreateTrunc(V: P, DestTy: QI->getType()); |
| 1546 | if (IC != 32) |
| 1547 | P = B.CreateAnd(LHS: P, RHS: BMI); |
| 1548 | } |
| 1549 | |
| 1550 | Value *R = B.CreateCall(Callee: PMF, Args: {P, Q}); |
| 1551 | |
| 1552 | if (PV.M != nullptr) |
| 1553 | R = B.CreateXor(LHS: R, RHS: B.CreateIntCast(V: P0, DestTy: R->getType(), isSigned: false)); |
| 1554 | |
| 1555 | return R; |
| 1556 | } |
| 1557 | |
| 1558 | static bool hasZeroSignBit(const Value *V) { |
| 1559 | if (const auto *CI = dyn_cast<const ConstantInt>(Val: V)) |
| 1560 | return CI->getValue().isNonNegative(); |
| 1561 | const Instruction *I = dyn_cast<const Instruction>(Val: V); |
| 1562 | if (!I) |
| 1563 | return false; |
| 1564 | switch (I->getOpcode()) { |
| 1565 | case Instruction::LShr: |
| 1566 | if (const auto SI = dyn_cast<const ConstantInt>(Val: I->getOperand(i: 1))) |
| 1567 | return SI->getZExtValue() > 0; |
| 1568 | return false; |
| 1569 | case Instruction::Or: |
| 1570 | case Instruction::Xor: |
| 1571 | return hasZeroSignBit(V: I->getOperand(i: 0)) && |
| 1572 | hasZeroSignBit(V: I->getOperand(i: 1)); |
| 1573 | case Instruction::And: |
| 1574 | return hasZeroSignBit(V: I->getOperand(i: 0)) || |
| 1575 | hasZeroSignBit(V: I->getOperand(i: 1)); |
| 1576 | } |
| 1577 | return false; |
| 1578 | } |
| 1579 | |
| 1580 | void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) { |
| 1581 | S.addRule(N: "sink-zext" , |
| 1582 | // Sink zext past bitwise operations. |
| 1583 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1584 | if (I->getOpcode() != Instruction::ZExt) |
| 1585 | return nullptr; |
| 1586 | Instruction *T = dyn_cast<Instruction>(Val: I->getOperand(i: 0)); |
| 1587 | if (!T) |
| 1588 | return nullptr; |
| 1589 | switch (T->getOpcode()) { |
| 1590 | case Instruction::And: |
| 1591 | case Instruction::Or: |
| 1592 | case Instruction::Xor: |
| 1593 | break; |
| 1594 | default: |
| 1595 | return nullptr; |
| 1596 | } |
| 1597 | IRBuilder<> B(Ctx); |
| 1598 | return B.CreateBinOp(Opc: cast<BinaryOperator>(Val: T)->getOpcode(), |
| 1599 | LHS: B.CreateZExt(V: T->getOperand(i: 0), DestTy: I->getType()), |
| 1600 | RHS: B.CreateZExt(V: T->getOperand(i: 1), DestTy: I->getType())); |
| 1601 | }); |
| 1602 | S.addRule(N: "xor/and -> and/xor" , |
| 1603 | // (xor (and x a) (and y a)) -> (and (xor x y) a) |
| 1604 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1605 | if (I->getOpcode() != Instruction::Xor) |
| 1606 | return nullptr; |
| 1607 | Instruction *And0 = dyn_cast<Instruction>(Val: I->getOperand(i: 0)); |
| 1608 | Instruction *And1 = dyn_cast<Instruction>(Val: I->getOperand(i: 1)); |
| 1609 | if (!And0 || !And1) |
| 1610 | return nullptr; |
| 1611 | if (And0->getOpcode() != Instruction::And || |
| 1612 | And1->getOpcode() != Instruction::And) |
| 1613 | return nullptr; |
| 1614 | if (And0->getOperand(i: 1) != And1->getOperand(i: 1)) |
| 1615 | return nullptr; |
| 1616 | IRBuilder<> B(Ctx); |
| 1617 | return B.CreateAnd(LHS: B.CreateXor(LHS: And0->getOperand(i: 0), RHS: And1->getOperand(i: 0)), |
| 1618 | RHS: And0->getOperand(i: 1)); |
| 1619 | }); |
| 1620 | S.addRule(N: "sink binop into select" , |
| 1621 | // (Op (select c x y) z) -> (select c (Op x z) (Op y z)) |
| 1622 | // (Op x (select c y z)) -> (select c (Op x y) (Op x z)) |
| 1623 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1624 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: I); |
| 1625 | if (!BO) |
| 1626 | return nullptr; |
| 1627 | Instruction::BinaryOps Op = BO->getOpcode(); |
| 1628 | if (SelectInst *Sel = dyn_cast<SelectInst>(Val: BO->getOperand(i_nocapture: 0))) { |
| 1629 | IRBuilder<> B(Ctx); |
| 1630 | Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue(); |
| 1631 | Value *Z = BO->getOperand(i_nocapture: 1); |
| 1632 | return B.CreateSelect(C: Sel->getCondition(), |
| 1633 | True: B.CreateBinOp(Opc: Op, LHS: X, RHS: Z), |
| 1634 | False: B.CreateBinOp(Opc: Op, LHS: Y, RHS: Z)); |
| 1635 | } |
| 1636 | if (SelectInst *Sel = dyn_cast<SelectInst>(Val: BO->getOperand(i_nocapture: 1))) { |
| 1637 | IRBuilder<> B(Ctx); |
| 1638 | Value *X = BO->getOperand(i_nocapture: 0); |
| 1639 | Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue(); |
| 1640 | return B.CreateSelect(C: Sel->getCondition(), |
| 1641 | True: B.CreateBinOp(Opc: Op, LHS: X, RHS: Y), |
| 1642 | False: B.CreateBinOp(Opc: Op, LHS: X, RHS: Z)); |
| 1643 | } |
| 1644 | return nullptr; |
| 1645 | }); |
| 1646 | S.addRule(N: "fold select-select" , |
| 1647 | // (select c (select c x y) z) -> (select c x z) |
| 1648 | // (select c x (select c y z)) -> (select c x z) |
| 1649 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1650 | SelectInst *Sel = dyn_cast<SelectInst>(Val: I); |
| 1651 | if (!Sel) |
| 1652 | return nullptr; |
| 1653 | IRBuilder<> B(Ctx); |
| 1654 | Value *C = Sel->getCondition(); |
| 1655 | if (SelectInst *Sel0 = dyn_cast<SelectInst>(Val: Sel->getTrueValue())) { |
| 1656 | if (Sel0->getCondition() == C) |
| 1657 | return B.CreateSelect(C, True: Sel0->getTrueValue(), False: Sel->getFalseValue()); |
| 1658 | } |
| 1659 | if (SelectInst *Sel1 = dyn_cast<SelectInst>(Val: Sel->getFalseValue())) { |
| 1660 | if (Sel1->getCondition() == C) |
| 1661 | return B.CreateSelect(C, True: Sel->getTrueValue(), False: Sel1->getFalseValue()); |
| 1662 | } |
| 1663 | return nullptr; |
| 1664 | }); |
| 1665 | S.addRule(N: "or-signbit -> xor-signbit" , |
| 1666 | // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0) |
| 1667 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1668 | if (I->getOpcode() != Instruction::Or) |
| 1669 | return nullptr; |
| 1670 | ConstantInt *Msb = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1)); |
| 1671 | if (!Msb || !Msb->getValue().isSignMask()) |
| 1672 | return nullptr; |
| 1673 | if (!hasZeroSignBit(V: I->getOperand(i: 0))) |
| 1674 | return nullptr; |
| 1675 | return IRBuilder<>(Ctx).CreateXor(LHS: I->getOperand(i: 0), RHS: Msb); |
| 1676 | }); |
| 1677 | S.addRule(N: "sink lshr into binop" , |
| 1678 | // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c)) |
| 1679 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1680 | if (I->getOpcode() != Instruction::LShr) |
| 1681 | return nullptr; |
| 1682 | BinaryOperator *BitOp = dyn_cast<BinaryOperator>(Val: I->getOperand(i: 0)); |
| 1683 | if (!BitOp) |
| 1684 | return nullptr; |
| 1685 | switch (BitOp->getOpcode()) { |
| 1686 | case Instruction::And: |
| 1687 | case Instruction::Or: |
| 1688 | case Instruction::Xor: |
| 1689 | break; |
| 1690 | default: |
| 1691 | return nullptr; |
| 1692 | } |
| 1693 | IRBuilder<> B(Ctx); |
| 1694 | Value *S = I->getOperand(i: 1); |
| 1695 | return B.CreateBinOp(Opc: BitOp->getOpcode(), |
| 1696 | LHS: B.CreateLShr(LHS: BitOp->getOperand(i_nocapture: 0), RHS: S), |
| 1697 | RHS: B.CreateLShr(LHS: BitOp->getOperand(i_nocapture: 1), RHS: S)); |
| 1698 | }); |
| 1699 | S.addRule(N: "expose bitop-const" , |
| 1700 | // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b)) |
| 1701 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1702 | auto IsBitOp = [](unsigned Op) -> bool { |
| 1703 | switch (Op) { |
| 1704 | case Instruction::And: |
| 1705 | case Instruction::Or: |
| 1706 | case Instruction::Xor: |
| 1707 | return true; |
| 1708 | } |
| 1709 | return false; |
| 1710 | }; |
| 1711 | BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(Val: I); |
| 1712 | if (!BitOp1 || !IsBitOp(BitOp1->getOpcode())) |
| 1713 | return nullptr; |
| 1714 | BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(Val: BitOp1->getOperand(i_nocapture: 0)); |
| 1715 | if (!BitOp2 || !IsBitOp(BitOp2->getOpcode())) |
| 1716 | return nullptr; |
| 1717 | ConstantInt *CA = dyn_cast<ConstantInt>(Val: BitOp2->getOperand(i_nocapture: 1)); |
| 1718 | ConstantInt *CB = dyn_cast<ConstantInt>(Val: BitOp1->getOperand(i_nocapture: 1)); |
| 1719 | if (!CA || !CB) |
| 1720 | return nullptr; |
| 1721 | IRBuilder<> B(Ctx); |
| 1722 | Value *X = BitOp2->getOperand(i_nocapture: 0); |
| 1723 | return B.CreateBinOp(Opc: BitOp2->getOpcode(), LHS: X, |
| 1724 | RHS: B.CreateBinOp(Opc: BitOp1->getOpcode(), LHS: CA, RHS: CB)); |
| 1725 | }); |
| 1726 | } |
| 1727 | |
| 1728 | void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) { |
| 1729 | S.addRule(N: "(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a" , |
| 1730 | F: [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1731 | if (I->getOpcode() != Instruction::And) |
| 1732 | return nullptr; |
| 1733 | Instruction *Xor = dyn_cast<Instruction>(Val: I->getOperand(i: 0)); |
| 1734 | ConstantInt *C0 = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1)); |
| 1735 | if (!Xor || !C0) |
| 1736 | return nullptr; |
| 1737 | if (Xor->getOpcode() != Instruction::Xor) |
| 1738 | return nullptr; |
| 1739 | Instruction *And0 = dyn_cast<Instruction>(Val: Xor->getOperand(i: 0)); |
| 1740 | Instruction *And1 = dyn_cast<Instruction>(Val: Xor->getOperand(i: 1)); |
| 1741 | // Pick the first non-null and. |
| 1742 | if (!And0 || And0->getOpcode() != Instruction::And) |
| 1743 | std::swap(a&: And0, b&: And1); |
| 1744 | ConstantInt *C1 = dyn_cast<ConstantInt>(Val: And0->getOperand(i: 1)); |
| 1745 | if (!C1) |
| 1746 | return nullptr; |
| 1747 | uint32_t V0 = C0->getZExtValue(); |
| 1748 | uint32_t V1 = C1->getZExtValue(); |
| 1749 | if (V0 != (V0 & V1)) |
| 1750 | return nullptr; |
| 1751 | IRBuilder<> B(Ctx); |
| 1752 | return B.CreateAnd(LHS: B.CreateXor(LHS: And0->getOperand(i: 0), RHS: And1), RHS: C0); |
| 1753 | }); |
| 1754 | } |
| 1755 | |
| 1756 | bool PolynomialMultiplyRecognize::recognize() { |
| 1757 | LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n" |
| 1758 | << *CurLoop << '\n'); |
| 1759 | // Restrictions: |
| 1760 | // - The loop must consist of a single block. |
| 1761 | // - The iteration count must be known at compile-time. |
| 1762 | // - The loop must have an induction variable starting from 0, and |
| 1763 | // incremented in each iteration of the loop. |
| 1764 | BasicBlock *LoopB = CurLoop->getHeader(); |
| 1765 | LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB); |
| 1766 | |
| 1767 | if (LoopB != CurLoop->getLoopLatch()) |
| 1768 | return false; |
| 1769 | BasicBlock *ExitB = CurLoop->getExitBlock(); |
| 1770 | if (ExitB == nullptr) |
| 1771 | return false; |
| 1772 | BasicBlock *EntryB = CurLoop->getLoopPreheader(); |
| 1773 | if (EntryB == nullptr) |
| 1774 | return false; |
| 1775 | |
| 1776 | unsigned IterCount = 0; |
| 1777 | const SCEV *CT = SE.getBackedgeTakenCount(L: CurLoop); |
| 1778 | if (isa<SCEVCouldNotCompute>(Val: CT)) |
| 1779 | return false; |
| 1780 | if (auto *CV = dyn_cast<SCEVConstant>(Val: CT)) |
| 1781 | IterCount = CV->getValue()->getZExtValue() + 1; |
| 1782 | |
| 1783 | Value *CIV = getCountIV(BB: LoopB); |
| 1784 | if (CIV == nullptr) |
| 1785 | return false; |
| 1786 | ParsedValues PV; |
| 1787 | Simplifier PreSimp; |
| 1788 | PV.IterCount = IterCount; |
| 1789 | LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount |
| 1790 | << '\n'); |
| 1791 | |
| 1792 | setupPreSimplifier(PreSimp); |
| 1793 | |
| 1794 | // Perform a preliminary scan of select instructions to see if any of them |
| 1795 | // looks like a generator of the polynomial multiply steps. Assume that a |
| 1796 | // loop can only contain a single transformable operation, so stop the |
| 1797 | // traversal after the first reasonable candidate was found. |
| 1798 | // XXX: Currently this approach can modify the loop before being 100% sure |
| 1799 | // that the transformation can be carried out. |
| 1800 | bool FoundPreScan = false; |
| 1801 | auto FeedsPHI = [LoopB](const Value *V) -> bool { |
| 1802 | for (const Value *U : V->users()) { |
| 1803 | if (const auto *P = dyn_cast<const PHINode>(Val: U)) |
| 1804 | if (P->getParent() == LoopB) |
| 1805 | return true; |
| 1806 | } |
| 1807 | return false; |
| 1808 | }; |
| 1809 | for (Instruction &In : *LoopB) { |
| 1810 | SelectInst *SI = dyn_cast<SelectInst>(Val: &In); |
| 1811 | if (!SI || !FeedsPHI(SI)) |
| 1812 | continue; |
| 1813 | |
| 1814 | Simplifier::Context C(SI); |
| 1815 | Value *T = PreSimp.simplify(C); |
| 1816 | SelectInst *SelI = (T && isa<SelectInst>(Val: T)) ? cast<SelectInst>(Val: T) : SI; |
| 1817 | LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n'); |
| 1818 | if (scanSelect(SelI, LoopB, PrehB: EntryB, CIV, PV, PreScan: true)) { |
| 1819 | FoundPreScan = true; |
| 1820 | if (SelI != SI) { |
| 1821 | Value *NewSel = C.materialize(B: LoopB, At: SI->getIterator()); |
| 1822 | SI->replaceAllUsesWith(V: NewSel); |
| 1823 | RecursivelyDeleteTriviallyDeadInstructions(V: SI, TLI: &TLI); |
| 1824 | } |
| 1825 | break; |
| 1826 | } |
| 1827 | } |
| 1828 | |
| 1829 | if (!FoundPreScan) { |
| 1830 | LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n" ); |
| 1831 | return false; |
| 1832 | } |
| 1833 | |
| 1834 | if (!PV.Left) { |
| 1835 | // The right shift version actually only returns the higher bits of |
| 1836 | // the result (each iteration discards the LSB). If we want to convert it |
| 1837 | // to a left-shifting loop, the working data type must be at least as |
| 1838 | // wide as the target's pmpy instruction. |
| 1839 | if (!promoteTypes(LoopB, ExitB)) |
| 1840 | return false; |
| 1841 | // Run post-promotion simplifications. |
| 1842 | Simplifier PostSimp; |
| 1843 | setupPostSimplifier(PostSimp); |
| 1844 | for (Instruction &In : *LoopB) { |
| 1845 | SelectInst *SI = dyn_cast<SelectInst>(Val: &In); |
| 1846 | if (!SI || !FeedsPHI(SI)) |
| 1847 | continue; |
| 1848 | Simplifier::Context C(SI); |
| 1849 | Value *T = PostSimp.simplify(C); |
| 1850 | SelectInst *SelI = dyn_cast_or_null<SelectInst>(Val: T); |
| 1851 | if (SelI != SI) { |
| 1852 | Value *NewSel = C.materialize(B: LoopB, At: SI->getIterator()); |
| 1853 | SI->replaceAllUsesWith(V: NewSel); |
| 1854 | RecursivelyDeleteTriviallyDeadInstructions(V: SI, TLI: &TLI); |
| 1855 | } |
| 1856 | break; |
| 1857 | } |
| 1858 | |
| 1859 | if (!convertShiftsToLeft(LoopB, ExitB, IterCount)) |
| 1860 | return false; |
| 1861 | cleanupLoopBody(LoopB); |
| 1862 | } |
| 1863 | |
| 1864 | // Scan the loop again, find the generating select instruction. |
| 1865 | bool FoundScan = false; |
| 1866 | for (Instruction &In : *LoopB) { |
| 1867 | SelectInst *SelI = dyn_cast<SelectInst>(Val: &In); |
| 1868 | if (!SelI) |
| 1869 | continue; |
| 1870 | LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n'); |
| 1871 | FoundScan = scanSelect(SelI, LoopB, PrehB: EntryB, CIV, PV, PreScan: false); |
| 1872 | if (FoundScan) |
| 1873 | break; |
| 1874 | } |
| 1875 | assert(FoundScan); |
| 1876 | |
| 1877 | LLVM_DEBUG({ |
| 1878 | StringRef PP = (PV.M ? "(P+M)" : "P" ); |
| 1879 | if (!PV.Inv) |
| 1880 | dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n" ; |
| 1881 | else |
| 1882 | dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + " |
| 1883 | << PP << "\n" ; |
| 1884 | dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n" ; |
| 1885 | if (PV.M) |
| 1886 | dbgs() << " M:" << *PV.M << "\n" ; |
| 1887 | dbgs() << " Q:" << *PV.Q << "\n" ; |
| 1888 | dbgs() << " Iteration count:" << PV.IterCount << "\n" ; |
| 1889 | }); |
| 1890 | |
| 1891 | BasicBlock::iterator At(EntryB->getTerminator()); |
| 1892 | Value *PM = generate(At, PV); |
| 1893 | if (PM == nullptr) |
| 1894 | return false; |
| 1895 | |
| 1896 | if (PM->getType() != PV.Res->getType()) |
| 1897 | PM = IRBuilder<>(&*At).CreateIntCast(V: PM, DestTy: PV.Res->getType(), isSigned: false); |
| 1898 | |
| 1899 | PV.Res->replaceAllUsesWith(V: PM); |
| 1900 | PV.Res->eraseFromParent(); |
| 1901 | return true; |
| 1902 | } |
| 1903 | |
| 1904 | int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) { |
| 1905 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: S->getOperand(i: 1))) |
| 1906 | return SC->getAPInt().getSExtValue(); |
| 1907 | return 0; |
| 1908 | } |
| 1909 | |
| 1910 | bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) { |
| 1911 | // Allow volatile stores if HexagonVolatileMemcpy is enabled. |
| 1912 | if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple()) |
| 1913 | return false; |
| 1914 | |
| 1915 | Value *StoredVal = SI->getValueOperand(); |
| 1916 | Value *StorePtr = SI->getPointerOperand(); |
| 1917 | |
| 1918 | // Reject stores that are so large that they overflow an unsigned. |
| 1919 | uint64_t SizeInBits = DL->getTypeSizeInBits(Ty: StoredVal->getType()); |
| 1920 | if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) |
| 1921 | return false; |
| 1922 | |
| 1923 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1924 | // loop, which indicates a strided store. If we have something else, it's a |
| 1925 | // random store we can't handle. |
| 1926 | auto *StoreEv = dyn_cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: StorePtr)); |
| 1927 | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| 1928 | return false; |
| 1929 | |
| 1930 | // Check to see if the stride matches the size of the store. If so, then we |
| 1931 | // know that every byte is touched in the loop. |
| 1932 | int Stride = getSCEVStride(S: StoreEv); |
| 1933 | if (Stride == 0) |
| 1934 | return false; |
| 1935 | unsigned StoreSize = DL->getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
| 1936 | if (StoreSize != unsigned(std::abs(x: Stride))) |
| 1937 | return false; |
| 1938 | |
| 1939 | // The store must be feeding a non-volatile load. |
| 1940 | LoadInst *LI = dyn_cast<LoadInst>(Val: SI->getValueOperand()); |
| 1941 | if (!LI || !LI->isSimple()) |
| 1942 | return false; |
| 1943 | |
| 1944 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1945 | // loop, which indicates a strided load. If we have something else, it's a |
| 1946 | // random load we can't handle. |
| 1947 | Value *LoadPtr = LI->getPointerOperand(); |
| 1948 | auto *LoadEv = dyn_cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: LoadPtr)); |
| 1949 | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) |
| 1950 | return false; |
| 1951 | |
| 1952 | // The store and load must share the same stride. |
| 1953 | if (StoreEv->getOperand(i: 1) != LoadEv->getOperand(i: 1)) |
| 1954 | return false; |
| 1955 | |
| 1956 | // Success. This store can be converted into a memcpy. |
| 1957 | return true; |
| 1958 | } |
| 1959 | |
| 1960 | /// mayLoopAccessLocation - Return true if the specified loop might access the |
| 1961 | /// specified pointer location, which is a loop-strided access. The 'Access' |
| 1962 | /// argument specifies what the verboten forms of access are (read or write). |
| 1963 | static bool |
| 1964 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
| 1965 | const SCEV *BECount, unsigned StoreSize, |
| 1966 | AliasAnalysis &AA, |
| 1967 | SmallPtrSetImpl<Instruction *> &Ignored) { |
| 1968 | // Get the location that may be stored across the loop. Since the access |
| 1969 | // is strided positively through memory, we say that the modified location |
| 1970 | // starts at the pointer and has infinite size. |
| 1971 | LocationSize AccessSize = LocationSize::afterPointer(); |
| 1972 | |
| 1973 | // If the loop iterates a fixed number of times, we can refine the access |
| 1974 | // size to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| 1975 | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(Val: BECount)) |
| 1976 | AccessSize = LocationSize::precise(Value: (BECst->getValue()->getZExtValue() + 1) * |
| 1977 | StoreSize); |
| 1978 | |
| 1979 | // TODO: For this to be really effective, we have to dive into the pointer |
| 1980 | // operand in the store. Store to &A[i] of 100 will always return may alias |
| 1981 | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| 1982 | // which will then no-alias a store to &A[100]. |
| 1983 | MemoryLocation StoreLoc(Ptr, AccessSize); |
| 1984 | |
| 1985 | for (auto *B : L->blocks()) |
| 1986 | for (auto &I : *B) |
| 1987 | if (Ignored.count(Ptr: &I) == 0 && |
| 1988 | isModOrRefSet(MRI: AA.getModRefInfo(I: &I, OptLoc: StoreLoc) & Access)) |
| 1989 | return true; |
| 1990 | |
| 1991 | return false; |
| 1992 | } |
| 1993 | |
| 1994 | void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB, |
| 1995 | SmallVectorImpl<StoreInst*> &Stores) { |
| 1996 | Stores.clear(); |
| 1997 | for (Instruction &I : *BB) |
| 1998 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: &I)) |
| 1999 | if (isLegalStore(CurLoop, SI)) |
| 2000 | Stores.push_back(Elt: SI); |
| 2001 | } |
| 2002 | |
| 2003 | bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop, |
| 2004 | StoreInst *SI, const SCEV *BECount) { |
| 2005 | assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) && |
| 2006 | "Expected only non-volatile stores, or Hexagon-specific memcpy" |
| 2007 | "to volatile destination." ); |
| 2008 | |
| 2009 | Value *StorePtr = SI->getPointerOperand(); |
| 2010 | auto *StoreEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: StorePtr)); |
| 2011 | unsigned Stride = getSCEVStride(S: StoreEv); |
| 2012 | unsigned StoreSize = DL->getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
| 2013 | if (Stride != StoreSize) |
| 2014 | return false; |
| 2015 | |
| 2016 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 2017 | // loop, which indicates a strided load. If we have something else, it's a |
| 2018 | // random load we can't handle. |
| 2019 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
| 2020 | auto *LoadEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: LI->getPointerOperand())); |
| 2021 | |
| 2022 | // The trip count of the loop and the base pointer of the addrec SCEV is |
| 2023 | // guaranteed to be loop invariant, which means that it should dominate the |
| 2024 | // header. This allows us to insert code for it in the preheader. |
| 2025 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 2026 | Instruction *ExpPt = Preheader->getTerminator(); |
| 2027 | IRBuilder<> Builder(ExpPt); |
| 2028 | SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom" ); |
| 2029 | |
| 2030 | Type *IntPtrTy = Builder.getIntPtrTy(DL: *DL, AddrSpace: SI->getPointerAddressSpace()); |
| 2031 | |
| 2032 | // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| 2033 | // this into a memcpy/memmove in the loop preheader now if we want. However, |
| 2034 | // this would be unsafe to do if there is anything else in the loop that may |
| 2035 | // read or write the memory region we're storing to. For memcpy, this |
| 2036 | // includes the load that feeds the stores. Check for an alias by generating |
| 2037 | // the base address and checking everything. |
| 2038 | Value *StoreBasePtr = Expander.expandCodeFor(SH: StoreEv->getStart(), |
| 2039 | Ty: Builder.getPtrTy(AddrSpace: SI->getPointerAddressSpace()), I: ExpPt); |
| 2040 | Value *LoadBasePtr = nullptr; |
| 2041 | |
| 2042 | bool Overlap = false; |
| 2043 | bool DestVolatile = SI->isVolatile(); |
| 2044 | Type *BECountTy = BECount->getType(); |
| 2045 | |
| 2046 | if (DestVolatile) { |
| 2047 | // The trip count must fit in i32, since it is the type of the "num_words" |
| 2048 | // argument to hexagon_memcpy_forward_vp4cp4n2. |
| 2049 | if (StoreSize != 4 || DL->getTypeSizeInBits(Ty: BECountTy) > 32) { |
| 2050 | CleanupAndExit: |
| 2051 | // If we generated new code for the base pointer, clean up. |
| 2052 | Expander.clear(); |
| 2053 | if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) { |
| 2054 | RecursivelyDeleteTriviallyDeadInstructions(V: StoreBasePtr, TLI); |
| 2055 | StoreBasePtr = nullptr; |
| 2056 | } |
| 2057 | if (LoadBasePtr) { |
| 2058 | RecursivelyDeleteTriviallyDeadInstructions(V: LoadBasePtr, TLI); |
| 2059 | LoadBasePtr = nullptr; |
| 2060 | } |
| 2061 | return false; |
| 2062 | } |
| 2063 | } |
| 2064 | |
| 2065 | SmallPtrSet<Instruction*, 2> Ignore1; |
| 2066 | Ignore1.insert(Ptr: SI); |
| 2067 | if (mayLoopAccessLocation(Ptr: StoreBasePtr, Access: ModRefInfo::ModRef, L: CurLoop, BECount, |
| 2068 | StoreSize, AA&: *AA, Ignored&: Ignore1)) { |
| 2069 | // Check if the load is the offending instruction. |
| 2070 | Ignore1.insert(Ptr: LI); |
| 2071 | if (mayLoopAccessLocation(Ptr: StoreBasePtr, Access: ModRefInfo::ModRef, L: CurLoop, |
| 2072 | BECount, StoreSize, AA&: *AA, Ignored&: Ignore1)) { |
| 2073 | // Still bad. Nothing we can do. |
| 2074 | goto CleanupAndExit; |
| 2075 | } |
| 2076 | // It worked with the load ignored. |
| 2077 | Overlap = true; |
| 2078 | } |
| 2079 | |
| 2080 | if (!Overlap) { |
| 2081 | if (DisableMemcpyIdiom || !HasMemcpy) |
| 2082 | goto CleanupAndExit; |
| 2083 | } else { |
| 2084 | // Don't generate memmove if this function will be inlined. This is |
| 2085 | // because the caller will undergo this transformation after inlining. |
| 2086 | Function *Func = CurLoop->getHeader()->getParent(); |
| 2087 | if (Func->hasFnAttribute(Kind: Attribute::AlwaysInline)) |
| 2088 | goto CleanupAndExit; |
| 2089 | |
| 2090 | // In case of a memmove, the call to memmove will be executed instead |
| 2091 | // of the loop, so we need to make sure that there is nothing else in |
| 2092 | // the loop than the load, store and instructions that these two depend |
| 2093 | // on. |
| 2094 | SmallVector<Instruction*,2> Insts; |
| 2095 | Insts.push_back(Elt: SI); |
| 2096 | Insts.push_back(Elt: LI); |
| 2097 | if (!coverLoop(L: CurLoop, Insts)) |
| 2098 | goto CleanupAndExit; |
| 2099 | |
| 2100 | if (DisableMemmoveIdiom || !HasMemmove) |
| 2101 | goto CleanupAndExit; |
| 2102 | bool IsNested = CurLoop->getParentLoop() != nullptr; |
| 2103 | if (IsNested && OnlyNonNestedMemmove) |
| 2104 | goto CleanupAndExit; |
| 2105 | } |
| 2106 | |
| 2107 | // For a memcpy, we have to make sure that the input array is not being |
| 2108 | // mutated by the loop. |
| 2109 | LoadBasePtr = Expander.expandCodeFor(SH: LoadEv->getStart(), |
| 2110 | Ty: Builder.getPtrTy(AddrSpace: LI->getPointerAddressSpace()), I: ExpPt); |
| 2111 | |
| 2112 | SmallPtrSet<Instruction*, 2> Ignore2; |
| 2113 | Ignore2.insert(Ptr: SI); |
| 2114 | if (mayLoopAccessLocation(Ptr: LoadBasePtr, Access: ModRefInfo::Mod, L: CurLoop, BECount, |
| 2115 | StoreSize, AA&: *AA, Ignored&: Ignore2)) |
| 2116 | goto CleanupAndExit; |
| 2117 | |
| 2118 | // Check the stride. |
| 2119 | bool StridePos = getSCEVStride(S: LoadEv) >= 0; |
| 2120 | |
| 2121 | // Currently, the volatile memcpy only emulates traversing memory forward. |
| 2122 | if (!StridePos && DestVolatile) |
| 2123 | goto CleanupAndExit; |
| 2124 | |
| 2125 | bool RuntimeCheck = (Overlap || DestVolatile); |
| 2126 | |
| 2127 | BasicBlock *ExitB; |
| 2128 | if (RuntimeCheck) { |
| 2129 | // The runtime check needs a single exit block. |
| 2130 | SmallVector<BasicBlock*, 8> ExitBlocks; |
| 2131 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
| 2132 | if (ExitBlocks.size() != 1) |
| 2133 | goto CleanupAndExit; |
| 2134 | ExitB = ExitBlocks[0]; |
| 2135 | } |
| 2136 | |
| 2137 | // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| 2138 | // pointer size if it isn't already. |
| 2139 | LLVMContext &Ctx = SI->getContext(); |
| 2140 | BECount = SE->getTruncateOrZeroExtend(V: BECount, Ty: IntPtrTy); |
| 2141 | DebugLoc DLoc = SI->getDebugLoc(); |
| 2142 | |
| 2143 | const SCEV *NumBytesS = |
| 2144 | SE->getAddExpr(LHS: BECount, RHS: SE->getOne(Ty: IntPtrTy), Flags: SCEV::FlagNUW); |
| 2145 | if (StoreSize != 1) |
| 2146 | NumBytesS = SE->getMulExpr(LHS: NumBytesS, RHS: SE->getConstant(Ty: IntPtrTy, V: StoreSize), |
| 2147 | Flags: SCEV::FlagNUW); |
| 2148 | Value *NumBytes = Expander.expandCodeFor(SH: NumBytesS, Ty: IntPtrTy, I: ExpPt); |
| 2149 | if (Instruction *In = dyn_cast<Instruction>(Val: NumBytes)) |
| 2150 | if (Value *Simp = simplifyInstruction(I: In, Q: {*DL, TLI, DT})) |
| 2151 | NumBytes = Simp; |
| 2152 | |
| 2153 | CallInst *NewCall; |
| 2154 | |
| 2155 | if (RuntimeCheck) { |
| 2156 | unsigned Threshold = RuntimeMemSizeThreshold; |
| 2157 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: NumBytes)) { |
| 2158 | uint64_t C = CI->getZExtValue(); |
| 2159 | if (Threshold != 0 && C < Threshold) |
| 2160 | goto CleanupAndExit; |
| 2161 | if (C < CompileTimeMemSizeThreshold) |
| 2162 | goto CleanupAndExit; |
| 2163 | } |
| 2164 | |
| 2165 | BasicBlock * = CurLoop->getHeader(); |
| 2166 | Function *Func = Header->getParent(); |
| 2167 | Loop *ParentL = LF->getLoopFor(BB: Preheader); |
| 2168 | StringRef = Header->getName(); |
| 2169 | |
| 2170 | // Create a new (empty) preheader, and update the PHI nodes in the |
| 2171 | // header to use the new preheader. |
| 2172 | BasicBlock * = BasicBlock::Create(Context&: Ctx, Name: HeaderName+".rtli.ph" , |
| 2173 | Parent: Func, InsertBefore: Header); |
| 2174 | if (ParentL) |
| 2175 | ParentL->addBasicBlockToLoop(NewBB: NewPreheader, LI&: *LF); |
| 2176 | IRBuilder<>(NewPreheader).CreateBr(Dest: Header); |
| 2177 | for (auto &In : *Header) { |
| 2178 | PHINode *PN = dyn_cast<PHINode>(Val: &In); |
| 2179 | if (!PN) |
| 2180 | break; |
| 2181 | int bx = PN->getBasicBlockIndex(BB: Preheader); |
| 2182 | if (bx >= 0) |
| 2183 | PN->setIncomingBlock(i: bx, BB: NewPreheader); |
| 2184 | } |
| 2185 | DT->addNewBlock(BB: NewPreheader, DomBB: Preheader); |
| 2186 | DT->changeImmediateDominator(BB: Header, NewBB: NewPreheader); |
| 2187 | |
| 2188 | // Check for safe conditions to execute memmove. |
| 2189 | // If stride is positive, copying things from higher to lower addresses |
| 2190 | // is equivalent to memmove. For negative stride, it's the other way |
| 2191 | // around. Copying forward in memory with positive stride may not be |
| 2192 | // same as memmove since we may be copying values that we just stored |
| 2193 | // in some previous iteration. |
| 2194 | Value *LA = Builder.CreatePtrToInt(V: LoadBasePtr, DestTy: IntPtrTy); |
| 2195 | Value *SA = Builder.CreatePtrToInt(V: StoreBasePtr, DestTy: IntPtrTy); |
| 2196 | Value *LowA = StridePos ? SA : LA; |
| 2197 | Value *HighA = StridePos ? LA : SA; |
| 2198 | Value *CmpA = Builder.CreateICmpULT(LHS: LowA, RHS: HighA); |
| 2199 | Value *Cond = CmpA; |
| 2200 | |
| 2201 | // Check for distance between pointers. Since the case LowA < HighA |
| 2202 | // is checked for above, assume LowA >= HighA. |
| 2203 | Value *Dist = Builder.CreateSub(LHS: LowA, RHS: HighA); |
| 2204 | Value *CmpD = Builder.CreateICmpSLE(LHS: NumBytes, RHS: Dist); |
| 2205 | Value *CmpEither = Builder.CreateOr(LHS: Cond, RHS: CmpD); |
| 2206 | Cond = CmpEither; |
| 2207 | |
| 2208 | if (Threshold != 0) { |
| 2209 | Type *Ty = NumBytes->getType(); |
| 2210 | Value *Thr = ConstantInt::get(Ty, V: Threshold); |
| 2211 | Value *CmpB = Builder.CreateICmpULT(LHS: Thr, RHS: NumBytes); |
| 2212 | Value *CmpBoth = Builder.CreateAnd(LHS: Cond, RHS: CmpB); |
| 2213 | Cond = CmpBoth; |
| 2214 | } |
| 2215 | BasicBlock *MemmoveB = BasicBlock::Create(Context&: Ctx, Name: Header->getName()+".rtli" , |
| 2216 | Parent: Func, InsertBefore: NewPreheader); |
| 2217 | if (ParentL) |
| 2218 | ParentL->addBasicBlockToLoop(NewBB: MemmoveB, LI&: *LF); |
| 2219 | Instruction *OldT = Preheader->getTerminator(); |
| 2220 | Builder.CreateCondBr(Cond, True: MemmoveB, False: NewPreheader); |
| 2221 | OldT->eraseFromParent(); |
| 2222 | Preheader->setName(Preheader->getName()+".old" ); |
| 2223 | DT->addNewBlock(BB: MemmoveB, DomBB: Preheader); |
| 2224 | // Find the new immediate dominator of the exit block. |
| 2225 | BasicBlock *ExitD = Preheader; |
| 2226 | for (BasicBlock *PB : predecessors(BB: ExitB)) { |
| 2227 | ExitD = DT->findNearestCommonDominator(A: ExitD, B: PB); |
| 2228 | if (!ExitD) |
| 2229 | break; |
| 2230 | } |
| 2231 | // If the prior immediate dominator of ExitB was dominated by the |
| 2232 | // old preheader, then the old preheader becomes the new immediate |
| 2233 | // dominator. Otherwise don't change anything (because the newly |
| 2234 | // added blocks are dominated by the old preheader). |
| 2235 | if (ExitD && DT->dominates(A: Preheader, B: ExitD)) { |
| 2236 | DomTreeNode *BN = DT->getNode(BB: ExitB); |
| 2237 | DomTreeNode *DN = DT->getNode(BB: ExitD); |
| 2238 | BN->setIDom(DN); |
| 2239 | } |
| 2240 | |
| 2241 | // Add a call to memmove to the conditional block. |
| 2242 | IRBuilder<> CondBuilder(MemmoveB); |
| 2243 | CondBuilder.CreateBr(Dest: ExitB); |
| 2244 | CondBuilder.SetInsertPoint(MemmoveB->getTerminator()); |
| 2245 | |
| 2246 | if (DestVolatile) { |
| 2247 | Type *Int32Ty = Type::getInt32Ty(C&: Ctx); |
| 2248 | Type *PtrTy = PointerType::get(C&: Ctx, AddressSpace: 0); |
| 2249 | Type *VoidTy = Type::getVoidTy(C&: Ctx); |
| 2250 | Module *M = Func->getParent(); |
| 2251 | FunctionCallee Fn = M->getOrInsertFunction( |
| 2252 | Name: HexagonVolatileMemcpyName, RetTy: VoidTy, Args: PtrTy, Args: PtrTy, Args: Int32Ty); |
| 2253 | |
| 2254 | const SCEV *OneS = SE->getConstant(Ty: Int32Ty, V: 1); |
| 2255 | const SCEV *BECount32 = SE->getTruncateOrZeroExtend(V: BECount, Ty: Int32Ty); |
| 2256 | const SCEV *NumWordsS = SE->getAddExpr(LHS: BECount32, RHS: OneS, Flags: SCEV::FlagNUW); |
| 2257 | Value *NumWords = Expander.expandCodeFor(SH: NumWordsS, Ty: Int32Ty, |
| 2258 | I: MemmoveB->getTerminator()); |
| 2259 | if (Instruction *In = dyn_cast<Instruction>(Val: NumWords)) |
| 2260 | if (Value *Simp = simplifyInstruction(I: In, Q: {*DL, TLI, DT})) |
| 2261 | NumWords = Simp; |
| 2262 | |
| 2263 | NewCall = CondBuilder.CreateCall(Callee: Fn, |
| 2264 | Args: {StoreBasePtr, LoadBasePtr, NumWords}); |
| 2265 | } else { |
| 2266 | NewCall = CondBuilder.CreateMemMove( |
| 2267 | Dst: StoreBasePtr, DstAlign: SI->getAlign(), Src: LoadBasePtr, SrcAlign: LI->getAlign(), Size: NumBytes); |
| 2268 | } |
| 2269 | } else { |
| 2270 | NewCall = Builder.CreateMemCpy(Dst: StoreBasePtr, DstAlign: SI->getAlign(), Src: LoadBasePtr, |
| 2271 | SrcAlign: LI->getAlign(), Size: NumBytes); |
| 2272 | // Okay, the memcpy has been formed. Zap the original store and |
| 2273 | // anything that feeds into it. |
| 2274 | RecursivelyDeleteTriviallyDeadInstructions(V: SI, TLI); |
| 2275 | } |
| 2276 | |
| 2277 | NewCall->setDebugLoc(DLoc); |
| 2278 | |
| 2279 | LLVM_DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: " ) |
| 2280 | << *NewCall << "\n" |
| 2281 | << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" |
| 2282 | << " from store ptr=" << *StoreEv << " at: " << *SI |
| 2283 | << "\n" ); |
| 2284 | |
| 2285 | return true; |
| 2286 | } |
| 2287 | |
| 2288 | // Check if the instructions in Insts, together with their dependencies |
| 2289 | // cover the loop in the sense that the loop could be safely eliminated once |
| 2290 | // the instructions in Insts are removed. |
| 2291 | bool HexagonLoopIdiomRecognize::coverLoop(Loop *L, |
| 2292 | SmallVectorImpl<Instruction*> &Insts) const { |
| 2293 | SmallSet<BasicBlock*,8> LoopBlocks; |
| 2294 | LoopBlocks.insert_range(R: L->blocks()); |
| 2295 | |
| 2296 | SetVector<Instruction *> Worklist(llvm::from_range, Insts); |
| 2297 | |
| 2298 | // Collect all instructions from the loop that the instructions in Insts |
| 2299 | // depend on (plus their dependencies, etc.). These instructions will |
| 2300 | // constitute the expression trees that feed those in Insts, but the trees |
| 2301 | // will be limited only to instructions contained in the loop. |
| 2302 | for (unsigned i = 0; i < Worklist.size(); ++i) { |
| 2303 | Instruction *In = Worklist[i]; |
| 2304 | for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) { |
| 2305 | Instruction *OpI = dyn_cast<Instruction>(Val: I); |
| 2306 | if (!OpI) |
| 2307 | continue; |
| 2308 | BasicBlock *PB = OpI->getParent(); |
| 2309 | if (!LoopBlocks.count(Ptr: PB)) |
| 2310 | continue; |
| 2311 | Worklist.insert(X: OpI); |
| 2312 | } |
| 2313 | } |
| 2314 | |
| 2315 | // Scan all instructions in the loop, if any of them have a user outside |
| 2316 | // of the loop, or outside of the expressions collected above, then either |
| 2317 | // the loop has a side-effect visible outside of it, or there are |
| 2318 | // instructions in it that are not involved in the original set Insts. |
| 2319 | for (auto *B : L->blocks()) { |
| 2320 | for (auto &In : *B) { |
| 2321 | if (isa<BranchInst>(Val: In)) |
| 2322 | continue; |
| 2323 | if (!Worklist.count(key: &In) && In.mayHaveSideEffects()) |
| 2324 | return false; |
| 2325 | for (auto *K : In.users()) { |
| 2326 | Instruction *UseI = dyn_cast<Instruction>(Val: K); |
| 2327 | if (!UseI) |
| 2328 | continue; |
| 2329 | BasicBlock *UseB = UseI->getParent(); |
| 2330 | if (LF->getLoopFor(BB: UseB) != L) |
| 2331 | return false; |
| 2332 | } |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | return true; |
| 2337 | } |
| 2338 | |
| 2339 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| 2340 | /// with the specified backedge count. This block is known to be in the current |
| 2341 | /// loop and not in any subloops. |
| 2342 | bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, |
| 2343 | const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) { |
| 2344 | // We can only promote stores in this block if they are unconditionally |
| 2345 | // executed in the loop. For a block to be unconditionally executed, it has |
| 2346 | // to dominate all the exit blocks of the loop. Verify this now. |
| 2347 | auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool { |
| 2348 | return DT->dominates(A: BB, B: EB); |
| 2349 | }; |
| 2350 | if (!all_of(Range&: ExitBlocks, P: DominatedByBB)) |
| 2351 | return false; |
| 2352 | |
| 2353 | bool MadeChange = false; |
| 2354 | // Look for store instructions, which may be optimized to memset/memcpy. |
| 2355 | SmallVector<StoreInst*,8> Stores; |
| 2356 | collectStores(CurLoop, BB, Stores); |
| 2357 | |
| 2358 | // Optimize the store into a memcpy, if it feeds an similarly strided load. |
| 2359 | for (auto &SI : Stores) |
| 2360 | MadeChange |= processCopyingStore(CurLoop, SI, BECount); |
| 2361 | |
| 2362 | return MadeChange; |
| 2363 | } |
| 2364 | |
| 2365 | bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) { |
| 2366 | PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE); |
| 2367 | if (PMR.recognize()) |
| 2368 | return true; |
| 2369 | |
| 2370 | if (!HasMemcpy && !HasMemmove) |
| 2371 | return false; |
| 2372 | |
| 2373 | const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| 2374 | assert(!isa<SCEVCouldNotCompute>(BECount) && |
| 2375 | "runOnCountableLoop() called on a loop without a predictable" |
| 2376 | "backedge-taken count" ); |
| 2377 | |
| 2378 | SmallVector<BasicBlock *, 8> ExitBlocks; |
| 2379 | L->getUniqueExitBlocks(ExitBlocks); |
| 2380 | |
| 2381 | bool Changed = false; |
| 2382 | |
| 2383 | // Scan all the blocks in the loop that are not in subloops. |
| 2384 | for (auto *BB : L->getBlocks()) { |
| 2385 | // Ignore blocks in subloops. |
| 2386 | if (LF->getLoopFor(BB) != L) |
| 2387 | continue; |
| 2388 | Changed |= runOnLoopBlock(CurLoop: L, BB, BECount, ExitBlocks); |
| 2389 | } |
| 2390 | |
| 2391 | return Changed; |
| 2392 | } |
| 2393 | |
| 2394 | bool HexagonLoopIdiomRecognize::run(Loop *L) { |
| 2395 | const Module &M = *L->getHeader()->getParent()->getParent(); |
| 2396 | if (M.getTargetTriple().getArch() != Triple::hexagon) |
| 2397 | return false; |
| 2398 | |
| 2399 | // If the loop could not be converted to canonical form, it must have an |
| 2400 | // indirectbr in it, just give up. |
| 2401 | if (!L->getLoopPreheader()) |
| 2402 | return false; |
| 2403 | |
| 2404 | // Disable loop idiom recognition if the function's name is a common idiom. |
| 2405 | StringRef Name = L->getHeader()->getParent()->getName(); |
| 2406 | if (Name == "memset" || Name == "memcpy" || Name == "memmove" ) |
| 2407 | return false; |
| 2408 | |
| 2409 | DL = &L->getHeader()->getDataLayout(); |
| 2410 | |
| 2411 | HasMemcpy = TLI->has(F: LibFunc_memcpy); |
| 2412 | HasMemmove = TLI->has(F: LibFunc_memmove); |
| 2413 | |
| 2414 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| 2415 | return runOnCountableLoop(L); |
| 2416 | return false; |
| 2417 | } |
| 2418 | |
| 2419 | bool HexagonLoopIdiomRecognizeLegacyPass::runOnLoop(Loop *L, |
| 2420 | LPPassManager &LPM) { |
| 2421 | if (skipLoop(L)) |
| 2422 | return false; |
| 2423 | |
| 2424 | auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 2425 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 2426 | auto *LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 2427 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( |
| 2428 | F: *L->getHeader()->getParent()); |
| 2429 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 2430 | return HexagonLoopIdiomRecognize(AA, DT, LF, TLI, SE).run(L); |
| 2431 | } |
| 2432 | |
| 2433 | Pass *llvm::createHexagonLoopIdiomPass() { |
| 2434 | return new HexagonLoopIdiomRecognizeLegacyPass(); |
| 2435 | } |
| 2436 | |
| 2437 | PreservedAnalyses |
| 2438 | HexagonLoopIdiomRecognitionPass::run(Loop &L, LoopAnalysisManager &AM, |
| 2439 | LoopStandardAnalysisResults &AR, |
| 2440 | LPMUpdater &U) { |
| 2441 | return HexagonLoopIdiomRecognize(&AR.AA, &AR.DT, &AR.LI, &AR.TLI, &AR.SE) |
| 2442 | .run(L: &L) |
| 2443 | ? getLoopPassPreservedAnalyses() |
| 2444 | : PreservedAnalyses::all(); |
| 2445 | } |
| 2446 | |