1 | //===- HexagonOptAddrMode.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This implements a Hexagon-specific pass to optimize addressing mode for |
9 | // load/store instructions. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "Hexagon.h" |
13 | #include "HexagonInstrInfo.h" |
14 | #include "HexagonSubtarget.h" |
15 | #include "MCTargetDesc/HexagonBaseInfo.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/DenseSet.h" |
18 | #include "llvm/ADT/StringRef.h" |
19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
20 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
21 | #include "llvm/CodeGen/MachineDominators.h" |
22 | #include "llvm/CodeGen/MachineFunction.h" |
23 | #include "llvm/CodeGen/MachineFunctionPass.h" |
24 | #include "llvm/CodeGen/MachineInstr.h" |
25 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
26 | #include "llvm/CodeGen/MachineOperand.h" |
27 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
28 | #include "llvm/CodeGen/RDFGraph.h" |
29 | #include "llvm/CodeGen/RDFLiveness.h" |
30 | #include "llvm/CodeGen/RDFRegisters.h" |
31 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
32 | #include "llvm/InitializePasses.h" |
33 | #include "llvm/MC/MCInstrDesc.h" |
34 | #include "llvm/Pass.h" |
35 | #include "llvm/Support/CommandLine.h" |
36 | #include "llvm/Support/Debug.h" |
37 | #include "llvm/Support/ErrorHandling.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include <cassert> |
40 | #include <cstdint> |
41 | |
42 | #define DEBUG_TYPE "opt-addr-mode" |
43 | |
44 | using namespace llvm; |
45 | using namespace rdf; |
46 | |
47 | static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit" , |
48 | cl::Hidden, cl::init(Val: 0), cl::desc("Code growth limit for address mode " |
49 | "optimization" )); |
50 | |
51 | extern cl::opt<unsigned> RDFFuncBlockLimit; |
52 | |
53 | namespace { |
54 | |
55 | class HexagonOptAddrMode : public MachineFunctionPass { |
56 | public: |
57 | static char ID; |
58 | |
59 | HexagonOptAddrMode() : MachineFunctionPass(ID) {} |
60 | |
61 | StringRef getPassName() const override { |
62 | return "Optimize addressing mode of load/store" ; |
63 | } |
64 | |
65 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
66 | MachineFunctionPass::getAnalysisUsage(AU); |
67 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
68 | AU.addRequired<MachineDominanceFrontier>(); |
69 | AU.setPreservesAll(); |
70 | } |
71 | |
72 | bool runOnMachineFunction(MachineFunction &MF) override; |
73 | |
74 | private: |
75 | using MISetType = DenseSet<MachineInstr *>; |
76 | using InstrEvalMap = DenseMap<MachineInstr *, bool>; |
77 | DenseSet<MachineInstr *> ProcessedAddiInsts; |
78 | |
79 | MachineRegisterInfo *MRI = nullptr; |
80 | const TargetRegisterInfo *TRI = nullptr; |
81 | const HexagonInstrInfo *HII = nullptr; |
82 | const HexagonRegisterInfo *HRI = nullptr; |
83 | MachineDominatorTree *MDT = nullptr; |
84 | DataFlowGraph *DFG = nullptr; |
85 | DataFlowGraph::DefStackMap DefM; |
86 | Liveness *LV = nullptr; |
87 | MISetType Deleted; |
88 | |
89 | bool processBlock(NodeAddr<BlockNode *> BA); |
90 | bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI, |
91 | NodeAddr<UseNode *> UseN, unsigned UseMOnum); |
92 | bool processAddBases(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI); |
93 | bool usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, int64_t NewOffset); |
94 | bool findFirstReachedInst( |
95 | MachineInstr *AddMI, |
96 | std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> |
97 | &AddiList, |
98 | NodeAddr<StmtNode *> &UseSN); |
99 | bool updateAddBases(MachineInstr *CurrentMI, MachineInstr *FirstReachedMI, |
100 | int64_t NewOffset); |
101 | bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI, |
102 | const NodeList &UNodeList); |
103 | bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI); |
104 | bool analyzeUses(unsigned DefR, const NodeList &UNodeList, |
105 | InstrEvalMap &InstrEvalResult, short &SizeInc); |
106 | bool hasRepForm(MachineInstr &MI, unsigned TfrDefR); |
107 | bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI, |
108 | const NodeList &UNodeList); |
109 | bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI, |
110 | unsigned LRExtReg, const NodeList &UNodeList); |
111 | void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList); |
112 | bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList); |
113 | short getBaseWithLongOffset(const MachineInstr &MI) const; |
114 | bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp, |
115 | unsigned ImmOpNum); |
116 | bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum); |
117 | bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI, |
118 | const MachineOperand &ImmOp, unsigned ImmOpNum); |
119 | bool isValidOffset(MachineInstr *MI, int Offset); |
120 | unsigned getBaseOpPosition(MachineInstr *MI); |
121 | unsigned getOffsetOpPosition(MachineInstr *MI); |
122 | }; |
123 | |
124 | } // end anonymous namespace |
125 | |
126 | char HexagonOptAddrMode::ID = 0; |
127 | |
128 | INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt" , |
129 | "Optimize addressing mode" , false, false) |
130 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
131 | INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier) |
132 | INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt" , "Optimize addressing mode" , |
133 | false, false) |
134 | |
135 | bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) { |
136 | const MCInstrDesc &MID = MI.getDesc(); |
137 | |
138 | if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI)) |
139 | return false; |
140 | |
141 | if (MID.mayStore()) { |
142 | MachineOperand StOp = MI.getOperand(i: MI.getNumOperands() - 1); |
143 | if (StOp.isReg() && StOp.getReg() == TfrDefR) |
144 | return false; |
145 | } |
146 | |
147 | if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset) |
148 | // Transform to Absolute plus register offset. |
149 | return (HII->changeAddrMode_rr_ur(MI) >= 0); |
150 | else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) |
151 | // Transform to absolute addressing mode. |
152 | return (HII->changeAddrMode_io_abs(MI) >= 0); |
153 | |
154 | return false; |
155 | } |
156 | |
157 | // Check if addasl instruction can be removed. This is possible only |
158 | // if it's feeding to only load/store instructions with base + register |
159 | // offset as these instruction can be transformed to use 'absolute plus |
160 | // shifted register offset'. |
161 | // ex: |
162 | // Rs = ##foo |
163 | // Rx = addasl(Rs, Rt, #2) |
164 | // Rd = memw(Rx + #28) |
165 | // Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28) |
166 | |
167 | bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, |
168 | MachineInstr &MI, |
169 | const NodeList &UNodeList) { |
170 | // check offset size in addasl. if 'offset > 3' return false |
171 | const MachineOperand &OffsetOp = MI.getOperand(i: 3); |
172 | if (!OffsetOp.isImm() || OffsetOp.getImm() > 3) |
173 | return false; |
174 | |
175 | Register OffsetReg = MI.getOperand(i: 2).getReg(); |
176 | RegisterRef OffsetRR; |
177 | NodeId OffsetRegRD = 0; |
178 | for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(P: DFG->IsUse, G: *DFG)) { |
179 | RegisterRef RR = UA.Addr->getRegRef(G: *DFG); |
180 | if (OffsetReg == RR.Reg) { |
181 | OffsetRR = RR; |
182 | OffsetRegRD = UA.Addr->getReachingDef(); |
183 | } |
184 | } |
185 | |
186 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
187 | NodeAddr<UseNode *> UA = *I; |
188 | NodeAddr<InstrNode *> IA = UA.Addr->getOwner(G: *DFG); |
189 | if (UA.Addr->getFlags() & NodeAttrs::PhiRef) |
190 | return false; |
191 | NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(RefRR: OffsetRR, IA); |
192 | if ((DFG->IsDef(BA: AA) && AA.Id != OffsetRegRD) || |
193 | AA.Addr->getReachingDef() != OffsetRegRD) |
194 | return false; |
195 | |
196 | MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode(); |
197 | NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(N: OffsetRegRD); |
198 | // Reaching Def to an offset register can't be a phi. |
199 | if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) && |
200 | MI.getParent() != UseMI.getParent()) |
201 | return false; |
202 | |
203 | const MCInstrDesc &UseMID = UseMI.getDesc(); |
204 | if ((!UseMID.mayLoad() && !UseMID.mayStore()) || |
205 | HII->getAddrMode(MI: UseMI) != HexagonII::BaseImmOffset || |
206 | getBaseWithLongOffset(MI: UseMI) < 0) |
207 | return false; |
208 | |
209 | // Addasl output can't be a store value. |
210 | if (UseMID.mayStore() && UseMI.getOperand(i: 2).isReg() && |
211 | UseMI.getOperand(i: 2).getReg() == MI.getOperand(i: 0).getReg()) |
212 | return false; |
213 | |
214 | for (auto &Mo : UseMI.operands()) |
215 | // Is it a frame index? |
216 | if (Mo.isFI()) |
217 | return false; |
218 | // Is the OffsetReg definition actually reaches UseMI? |
219 | if (!UseMI.getParent()->isLiveIn(Reg: OffsetReg) && |
220 | MI.getParent() != UseMI.getParent()) { |
221 | LLVM_DEBUG(dbgs() << " The offset reg " << printReg(OffsetReg, TRI) |
222 | << " is NOT live in to MBB " |
223 | << UseMI.getParent()->getName() << "\n" ); |
224 | return false; |
225 | } |
226 | } |
227 | return true; |
228 | } |
229 | |
230 | bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA, |
231 | NodeList &UNodeList) { |
232 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
233 | NodeAddr<UseNode *> UN = *I; |
234 | RegisterRef UR = UN.Addr->getRegRef(G: *DFG); |
235 | NodeSet Visited, Defs; |
236 | const auto &P = LV->getAllReachingDefsRec(RefRR: UR, RefA: UN, Visited, Defs); |
237 | if (!P.second) { |
238 | LLVM_DEBUG({ |
239 | dbgs() << "*** Unable to collect all reaching defs for use ***\n" |
240 | << PrintNode<UseNode*>(UN, *DFG) << '\n' |
241 | << "The program's complexity may exceed the limits.\n" ; |
242 | }); |
243 | return false; |
244 | } |
245 | const auto &ReachingDefs = P.first; |
246 | if (ReachingDefs.size() > 1) { |
247 | LLVM_DEBUG({ |
248 | dbgs() << "*** Multiple Reaching Defs found!!! ***\n" ; |
249 | for (auto DI : ReachingDefs) { |
250 | NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI); |
251 | NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG); |
252 | dbgs() << "\t\t[Reaching Def]: " |
253 | << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n" ; |
254 | } |
255 | }); |
256 | return false; |
257 | } |
258 | } |
259 | return true; |
260 | } |
261 | |
262 | void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA, |
263 | NodeList &UNodeList) { |
264 | for (NodeAddr<DefNode *> DA : SA.Addr->members_if(P: DFG->IsDef, G: *DFG)) { |
265 | LLVM_DEBUG(dbgs() << "\t\t[DefNode]: " |
266 | << Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n" ); |
267 | RegisterRef DR = DA.Addr->getRegRef(G: *DFG); |
268 | |
269 | auto UseSet = LV->getAllReachedUses(RefRR: DR, DefA: DA); |
270 | |
271 | for (auto UI : UseSet) { |
272 | NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(N: UI); |
273 | LLVM_DEBUG({ |
274 | NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG); |
275 | dbgs() << "\t\t\t[Reached Use]: " |
276 | << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n" ; |
277 | }); |
278 | |
279 | if (UA.Addr->getFlags() & NodeAttrs::PhiRef) { |
280 | NodeAddr<PhiNode *> PA = UA.Addr->getOwner(G: *DFG); |
281 | NodeId id = PA.Id; |
282 | const Liveness::RefMap &phiUse = LV->getRealUses(P: id); |
283 | LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses" |
284 | << Print<Liveness::RefMap>(phiUse, *DFG) << "\n" ); |
285 | if (!phiUse.empty()) { |
286 | for (auto I : phiUse) { |
287 | if (!DFG->getPRI().alias(RA: RegisterRef(I.first), RB: DR)) |
288 | continue; |
289 | auto phiUseSet = I.second; |
290 | for (auto phiUI : phiUseSet) { |
291 | NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(N: phiUI.first); |
292 | UNodeList.push_back(Elt: phiUA); |
293 | } |
294 | } |
295 | } |
296 | } else |
297 | UNodeList.push_back(Elt: UA); |
298 | } |
299 | } |
300 | } |
301 | |
302 | bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN, |
303 | MachineInstr *MI, unsigned LRExtReg, |
304 | const NodeList &UNodeList) { |
305 | RegisterRef LRExtRR; |
306 | NodeId LRExtRegRD = 0; |
307 | // Iterate through all the UseNodes in SN and find the reaching def |
308 | // for the LRExtReg. |
309 | for (NodeAddr<UseNode *> UA : SN.Addr->members_if(P: DFG->IsUse, G: *DFG)) { |
310 | RegisterRef RR = UA.Addr->getRegRef(G: *DFG); |
311 | if (LRExtReg == RR.Reg) { |
312 | LRExtRR = RR; |
313 | LRExtRegRD = UA.Addr->getReachingDef(); |
314 | } |
315 | } |
316 | |
317 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
318 | NodeAddr<UseNode *> UA = *I; |
319 | NodeAddr<InstrNode *> IA = UA.Addr->getOwner(G: *DFG); |
320 | // The reaching def of LRExtRR at load/store node should be same as the |
321 | // one reaching at the SN. |
322 | if (UA.Addr->getFlags() & NodeAttrs::PhiRef) |
323 | return false; |
324 | NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(RefRR: LRExtRR, IA); |
325 | if ((DFG->IsDef(BA: AA) && AA.Id != LRExtRegRD) || |
326 | AA.Addr->getReachingDef() != LRExtRegRD) { |
327 | LLVM_DEBUG( |
328 | dbgs() << "isSafeToExtLR: Returning false; another reaching def\n" ); |
329 | return false; |
330 | } |
331 | |
332 | // If the register is undefined (for example if it's a reserved register), |
333 | // it may still be possible to extend the range, but it's safer to be |
334 | // conservative and just punt. |
335 | if (LRExtRegRD == 0) |
336 | return false; |
337 | |
338 | MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode(); |
339 | NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(N: LRExtRegRD); |
340 | // Reaching Def to LRExtReg can't be a phi. |
341 | if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) && |
342 | MI->getParent() != UseMI->getParent()) |
343 | return false; |
344 | // Is the OffsetReg definition actually reaches UseMI? |
345 | if (!UseMI->getParent()->isLiveIn(Reg: LRExtReg) && |
346 | MI->getParent() != UseMI->getParent()) { |
347 | LLVM_DEBUG(dbgs() << " The LRExtReg reg " << printReg(LRExtReg, TRI) |
348 | << " is NOT live in to MBB " |
349 | << UseMI->getParent()->getName() << "\n" ); |
350 | return false; |
351 | } |
352 | } |
353 | return true; |
354 | } |
355 | |
356 | bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) { |
357 | if (HII->isHVXVec(MI: *MI)) { |
358 | // only HVX vgather instructions handled |
359 | // TODO: extend the pass to other vector load/store operations |
360 | switch (MI->getOpcode()) { |
361 | case Hexagon::V6_vgathermh_pseudo: |
362 | case Hexagon::V6_vgathermw_pseudo: |
363 | case Hexagon::V6_vgathermhw_pseudo: |
364 | case Hexagon::V6_vgathermhq_pseudo: |
365 | case Hexagon::V6_vgathermwq_pseudo: |
366 | case Hexagon::V6_vgathermhwq_pseudo: |
367 | return HII->isValidOffset(Opcode: MI->getOpcode(), Offset, TRI: HRI, Extend: false); |
368 | default: |
369 | if (HII->getAddrMode(MI: *MI) == HexagonII::BaseImmOffset) { |
370 | // The immediates are mentioned in multiples of vector counts |
371 | unsigned AlignMask = HII->getMemAccessSize(MI: *MI) - 1; |
372 | if ((AlignMask & Offset) == 0) |
373 | return HII->isValidOffset(Opcode: MI->getOpcode(), Offset, TRI: HRI, Extend: false); |
374 | } |
375 | return false; |
376 | } |
377 | } |
378 | |
379 | if (HII->getAddrMode(MI: *MI) != HexagonII::BaseImmOffset) |
380 | return false; |
381 | |
382 | unsigned AlignMask = 0; |
383 | switch (HII->getMemAccessSize(MI: *MI)) { |
384 | case HexagonII::MemAccessSize::DoubleWordAccess: |
385 | AlignMask = 0x7; |
386 | break; |
387 | case HexagonII::MemAccessSize::WordAccess: |
388 | AlignMask = 0x3; |
389 | break; |
390 | case HexagonII::MemAccessSize::HalfWordAccess: |
391 | AlignMask = 0x1; |
392 | break; |
393 | case HexagonII::MemAccessSize::ByteAccess: |
394 | AlignMask = 0x0; |
395 | break; |
396 | default: |
397 | return false; |
398 | } |
399 | |
400 | if ((AlignMask & Offset) != 0) |
401 | return false; |
402 | return HII->isValidOffset(Opcode: MI->getOpcode(), Offset, TRI: HRI, Extend: false); |
403 | } |
404 | |
405 | unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) { |
406 | const MCInstrDesc &MID = MI->getDesc(); |
407 | switch (MI->getOpcode()) { |
408 | // vgather pseudos are mayLoad and mayStore |
409 | // hence need to explicitly specify Base and |
410 | // Offset operand positions |
411 | case Hexagon::V6_vgathermh_pseudo: |
412 | case Hexagon::V6_vgathermw_pseudo: |
413 | case Hexagon::V6_vgathermhw_pseudo: |
414 | case Hexagon::V6_vgathermhq_pseudo: |
415 | case Hexagon::V6_vgathermwq_pseudo: |
416 | case Hexagon::V6_vgathermhwq_pseudo: |
417 | return 0; |
418 | default: |
419 | return MID.mayLoad() ? 1 : 0; |
420 | } |
421 | } |
422 | |
423 | unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) { |
424 | assert( |
425 | (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) && |
426 | "Looking for an offset in non-BaseImmOffset addressing mode instruction" ); |
427 | |
428 | const MCInstrDesc &MID = MI->getDesc(); |
429 | switch (MI->getOpcode()) { |
430 | // vgather pseudos are mayLoad and mayStore |
431 | // hence need to explicitly specify Base and |
432 | // Offset operand positions |
433 | case Hexagon::V6_vgathermh_pseudo: |
434 | case Hexagon::V6_vgathermw_pseudo: |
435 | case Hexagon::V6_vgathermhw_pseudo: |
436 | case Hexagon::V6_vgathermhq_pseudo: |
437 | case Hexagon::V6_vgathermwq_pseudo: |
438 | case Hexagon::V6_vgathermhwq_pseudo: |
439 | return 1; |
440 | default: |
441 | return MID.mayLoad() ? 2 : 1; |
442 | } |
443 | } |
444 | |
445 | bool HexagonOptAddrMode::usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, |
446 | int64_t NewOffset) { |
447 | NodeList LoadStoreUseList; |
448 | |
449 | getAllRealUses(SA: CurrentInstSN, UNodeList&: LoadStoreUseList); |
450 | bool FoundLoadStoreUse = false; |
451 | for (auto I = LoadStoreUseList.begin(), E = LoadStoreUseList.end(); I != E; |
452 | ++I) { |
453 | NodeAddr<UseNode *> UN = *I; |
454 | NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG); |
455 | MachineInstr *LoadStoreMI = SN.Addr->getCode(); |
456 | const MCInstrDesc &MID = LoadStoreMI->getDesc(); |
457 | if ((MID.mayLoad() || MID.mayStore()) && |
458 | isValidOffset(MI: LoadStoreMI, Offset: NewOffset)) { |
459 | FoundLoadStoreUse = true; |
460 | break; |
461 | } |
462 | } |
463 | return FoundLoadStoreUse; |
464 | } |
465 | |
466 | bool HexagonOptAddrMode::findFirstReachedInst( |
467 | MachineInstr *AddMI, |
468 | std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> &AddiList, |
469 | NodeAddr<StmtNode *> &UseSN) { |
470 | // Find the very first Addi instruction in the current basic block among the |
471 | // AddiList This is the Addi that should be preserved so that we do not need |
472 | // to handle the complexity of moving instructions |
473 | // |
474 | // TODO: find Addi instructions across basic blocks |
475 | // |
476 | // TODO: Try to remove this and add a solution that optimizes the number of |
477 | // Addi instructions that can be modified. |
478 | // This change requires choosing the Addi with the median offset value, but |
479 | // would also require moving that instruction above the others. Since this |
480 | // pass runs after register allocation, there might be multiple cases that |
481 | // need to be handled if we move instructions around |
482 | MachineBasicBlock *CurrentMBB = AddMI->getParent(); |
483 | for (auto &InstIter : *CurrentMBB) { |
484 | // If the instruction is an Addi and is in the AddiList |
485 | if (InstIter.getOpcode() == Hexagon::A2_addi) { |
486 | auto Iter = llvm::find_if(Range&: AddiList, P: [&InstIter](const auto &SUPair) { |
487 | return SUPair.first.Addr->getCode() == &InstIter; |
488 | }); |
489 | if (Iter != AddiList.end()) { |
490 | UseSN = Iter->first; |
491 | return true; |
492 | } |
493 | } |
494 | } |
495 | return false; |
496 | } |
497 | |
498 | // This function tries to modify the immediate value in Hexagon::Addi |
499 | // instructions, so that the immediates could then be moved into a load/store |
500 | // instruction with offset and the add removed completely when we call |
501 | // processAddUses |
502 | // |
503 | // For Example, If we have the below sequence of instructions: |
504 | // |
505 | // r1 = add(r2,#1024) |
506 | // ... |
507 | // r3 = add(r2,#1152) |
508 | // ... |
509 | // r4 = add(r2,#1280) |
510 | // |
511 | // Where the register r2 has the same reaching definition, They get modified to |
512 | // the below sequence: |
513 | // |
514 | // r1 = add(r2,#1024) |
515 | // ... |
516 | // r3 = add(r1,#128) |
517 | // ... |
518 | // r4 = add(r1,#256) |
519 | // |
520 | // The below change helps the processAddUses method to later move the |
521 | // immediates #128 and #256 into a load/store instruction that can take an |
522 | // offset, like the Vd = mem(Rt+#s4) |
523 | bool HexagonOptAddrMode::processAddBases(NodeAddr<StmtNode *> AddSN, |
524 | MachineInstr *AddMI) { |
525 | |
526 | bool Changed = false; |
527 | |
528 | LLVM_DEBUG(dbgs() << "\n\t\t[Processing Addi]: " << *AddMI << "\n" ); |
529 | |
530 | auto Processed = |
531 | [](const MachineInstr *MI, |
532 | const DenseSet<MachineInstr *> &ProcessedAddiInsts) -> bool { |
533 | // If we've already processed this Addi, just return |
534 | if (ProcessedAddiInsts.contains(V: MI)) { |
535 | LLVM_DEBUG(dbgs() << "\t\t\tAddi already found in ProcessedAddiInsts: " |
536 | << *MI << "\n\t\t\tSkipping..." ); |
537 | return true; |
538 | } |
539 | return false; |
540 | }; |
541 | |
542 | if (Processed(AddMI, ProcessedAddiInsts)) |
543 | return Changed; |
544 | ProcessedAddiInsts.insert(V: AddMI); |
545 | |
546 | // Get the base register that would be shared by other Addi Instructions |
547 | Register BaseReg = AddMI->getOperand(i: 1).getReg(); |
548 | |
549 | // Store a list of all Addi instructions that share the above common base |
550 | // register |
551 | std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> AddiList; |
552 | |
553 | NodeId UAReachingDefID; |
554 | // Find the UseNode that contains the base register and it's reachingDef |
555 | for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(P: DFG->IsUse, G: *DFG)) { |
556 | RegisterRef URR = UA.Addr->getRegRef(G: *DFG); |
557 | if (BaseReg != URR.Reg) |
558 | continue; |
559 | |
560 | UAReachingDefID = UA.Addr->getReachingDef(); |
561 | NodeAddr<DefNode *> UADef = DFG->addr<DefNode *>(N: UAReachingDefID); |
562 | if (!UAReachingDefID || UADef.Addr->getFlags() & NodeAttrs::PhiRef) { |
563 | LLVM_DEBUG(dbgs() << "\t\t\t Could not find reachingDef. Skipping...\n" ); |
564 | return false; |
565 | } |
566 | } |
567 | |
568 | NodeAddr<DefNode *> UAReachingDef = DFG->addr<DefNode *>(N: UAReachingDefID); |
569 | NodeAddr<StmtNode *> ReachingDefStmt = UAReachingDef.Addr->getOwner(G: *DFG); |
570 | |
571 | // If the reaching definition is a predicated instruction, this might not be |
572 | // the only definition of our base register, so return immediately. |
573 | MachineInstr *ReachingDefInstr = ReachingDefStmt.Addr->getCode(); |
574 | if (HII->isPredicated(MI: *ReachingDefInstr)) |
575 | return false; |
576 | |
577 | NodeList AddiUseList; |
578 | |
579 | // Find all Addi instructions that share the same base register and add them |
580 | // to the AddiList |
581 | getAllRealUses(SA: ReachingDefStmt, UNodeList&: AddiUseList); |
582 | for (auto I = AddiUseList.begin(), E = AddiUseList.end(); I != E; ++I) { |
583 | NodeAddr<UseNode *> UN = *I; |
584 | NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG); |
585 | MachineInstr *MI = SN.Addr->getCode(); |
586 | |
587 | // Only add instructions if it's an Addi and it's not already processed. |
588 | if (MI->getOpcode() == Hexagon::A2_addi && |
589 | !(MI != AddMI && Processed(MI, ProcessedAddiInsts))) { |
590 | AddiList.push_back(x: {SN, UN}); |
591 | |
592 | // This ensures that we process each instruction only once |
593 | ProcessedAddiInsts.insert(V: MI); |
594 | } |
595 | } |
596 | |
597 | // If there's only one Addi instruction, nothing to do here |
598 | if (AddiList.size() <= 1) |
599 | return Changed; |
600 | |
601 | NodeAddr<StmtNode *> FirstReachedUseSN; |
602 | // Find the first reached use of Addi instruction from the list |
603 | if (!findFirstReachedInst(AddMI, AddiList, UseSN&: FirstReachedUseSN)) |
604 | return Changed; |
605 | |
606 | // If we reach this point we know that the StmtNode FirstReachedUseSN is for |
607 | // an Addi instruction. So, we're guaranteed to have just one DefNode, and |
608 | // hence we can access the front() directly without checks |
609 | NodeAddr<DefNode *> FirstReachedUseDN = |
610 | FirstReachedUseSN.Addr->members_if(P: DFG->IsDef, G: *DFG).front(); |
611 | |
612 | MachineInstr *FirstReachedMI = FirstReachedUseSN.Addr->getCode(); |
613 | const MachineOperand FirstReachedMIImmOp = FirstReachedMI->getOperand(i: 2); |
614 | if (!FirstReachedMIImmOp.isImm()) |
615 | return false; |
616 | |
617 | for (auto &I : AddiList) { |
618 | NodeAddr<StmtNode *> CurrentInstSN = I.first; |
619 | NodeAddr<UseNode *> CurrentInstUN = I.second; |
620 | |
621 | MachineInstr *CurrentMI = CurrentInstSN.Addr->getCode(); |
622 | MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(i: 2); |
623 | |
624 | int64_t NewOffset; |
625 | |
626 | // Even though we know it's an Addi instruction, the second operand could be |
627 | // a global value and not an immediate |
628 | if (!CurrentMIImmOp.isImm()) |
629 | continue; |
630 | |
631 | NewOffset = CurrentMIImmOp.getImm() - FirstReachedMIImmOp.getImm(); |
632 | |
633 | // This is the first occurring Addi, so skip modifying this |
634 | if (CurrentMI == FirstReachedMI) { |
635 | continue; |
636 | } |
637 | |
638 | if (CurrentMI->getParent() != FirstReachedMI->getParent()) |
639 | continue; |
640 | |
641 | // Modify the Addi instruction only if it could be used to modify a |
642 | // future load/store instruction and get removed |
643 | // |
644 | // This check is needed because, if we modify the current Addi instruction |
645 | // we create RAW dependence between the FirstReached Addi and the current |
646 | // one, which could result in extra packets. So we only do this change if |
647 | // we know the current Addi would get removed later |
648 | if (!usedInLoadStore(CurrentInstSN, NewOffset)) { |
649 | return false; |
650 | } |
651 | |
652 | // Verify whether the First Addi's definition register is still live when |
653 | // we reach the current Addi |
654 | RegisterRef FirstReachedDefRR = FirstReachedUseDN.Addr->getRegRef(G: *DFG); |
655 | NodeAddr<InstrNode *> CurrentAddiIN = CurrentInstUN.Addr->getOwner(G: *DFG); |
656 | NodeAddr<RefNode *> NearestAA = |
657 | LV->getNearestAliasedRef(RefRR: FirstReachedDefRR, IA: CurrentAddiIN); |
658 | if ((DFG->IsDef(BA: NearestAA) && NearestAA.Id != FirstReachedUseDN.Id) || |
659 | (!DFG->IsDef(BA: NearestAA) && |
660 | NearestAA.Addr->getReachingDef() != FirstReachedUseDN.Id)) { |
661 | // Found another definition of FirstReachedDef |
662 | LLVM_DEBUG(dbgs() << "\t\t\tCould not modify below Addi since the first " |
663 | "defined Addi register was redefined\n" ); |
664 | continue; |
665 | } |
666 | |
667 | MachineOperand CurrentMIBaseOp = CurrentMI->getOperand(i: 1); |
668 | if (CurrentMIBaseOp.getReg() != FirstReachedMI->getOperand(i: 1).getReg()) { |
669 | continue; |
670 | } |
671 | |
672 | // If we reached this point, then we can modify MI to use the result of |
673 | // FirstReachedMI |
674 | Changed |= updateAddBases(CurrentMI, FirstReachedMI, NewOffset); |
675 | |
676 | // Update the reachingDef of the Current AddI use after change |
677 | CurrentInstUN.Addr->linkToDef(Self: CurrentInstUN.Id, DA: FirstReachedUseDN); |
678 | } |
679 | |
680 | return Changed; |
681 | } |
682 | |
683 | bool HexagonOptAddrMode::updateAddBases(MachineInstr *CurrentMI, |
684 | MachineInstr *FirstReachedMI, |
685 | int64_t NewOffset) { |
686 | LLVM_DEBUG(dbgs() << "[About to modify the Addi]: " << *CurrentMI << "\n" ); |
687 | const MachineOperand FirstReachedDef = FirstReachedMI->getOperand(i: 0); |
688 | Register FirstDefRegister = FirstReachedDef.getReg(); |
689 | |
690 | MachineOperand &CurrentMIBaseOp = CurrentMI->getOperand(i: 1); |
691 | MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(i: 2); |
692 | |
693 | CurrentMIBaseOp.setReg(FirstDefRegister); |
694 | CurrentMIBaseOp.setIsUndef(FirstReachedDef.isUndef()); |
695 | CurrentMIBaseOp.setImplicit(FirstReachedDef.isImplicit()); |
696 | CurrentMIImmOp.setImm(NewOffset); |
697 | ProcessedAddiInsts.insert(V: CurrentMI); |
698 | MRI->clearKillFlags(Reg: FirstDefRegister); |
699 | return true; |
700 | } |
701 | |
702 | bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN, |
703 | MachineInstr *AddMI, |
704 | const NodeList &UNodeList) { |
705 | |
706 | Register AddDefR = AddMI->getOperand(i: 0).getReg(); |
707 | Register BaseReg = AddMI->getOperand(i: 1).getReg(); |
708 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
709 | NodeAddr<UseNode *> UN = *I; |
710 | NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG); |
711 | MachineInstr *MI = SN.Addr->getCode(); |
712 | const MCInstrDesc &MID = MI->getDesc(); |
713 | if ((!MID.mayLoad() && !MID.mayStore()) || |
714 | HII->getAddrMode(MI: *MI) != HexagonII::BaseImmOffset) |
715 | return false; |
716 | |
717 | MachineOperand BaseOp = MI->getOperand(i: getBaseOpPosition(MI)); |
718 | |
719 | if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR) |
720 | return false; |
721 | |
722 | MachineOperand OffsetOp = MI->getOperand(i: getOffsetOpPosition(MI)); |
723 | if (!OffsetOp.isImm()) |
724 | return false; |
725 | |
726 | int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(i: 2).getImm(); |
727 | if (!isValidOffset(MI, Offset: newOffset)) |
728 | return false; |
729 | |
730 | // Since we'll be extending the live range of Rt in the following example, |
731 | // make sure that is safe. another definition of Rt doesn't exist between 'add' |
732 | // and load/store instruction. |
733 | // |
734 | // Ex: Rx= add(Rt,#10) |
735 | // memw(Rx+#0) = Rs |
736 | // will be replaced with => memw(Rt+#10) = Rs |
737 | if (!isSafeToExtLR(SN: AddSN, MI: AddMI, LRExtReg: BaseReg, UNodeList)) |
738 | return false; |
739 | } |
740 | |
741 | NodeId LRExtRegRD = 0; |
742 | // Iterate through all the UseNodes in SN and find the reaching def |
743 | // for the LRExtReg. |
744 | for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(P: DFG->IsUse, G: *DFG)) { |
745 | RegisterRef RR = UA.Addr->getRegRef(G: *DFG); |
746 | if (BaseReg == RR.Reg) |
747 | LRExtRegRD = UA.Addr->getReachingDef(); |
748 | } |
749 | |
750 | // Update all the uses of 'add' with the appropriate base and offset |
751 | // values. |
752 | bool Changed = false; |
753 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
754 | NodeAddr<UseNode *> UseN = *I; |
755 | assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) && |
756 | "Found a PhiRef node as a real reached use!!" ); |
757 | |
758 | NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(G: *DFG); |
759 | MachineInstr *UseMI = OwnerN.Addr->getCode(); |
760 | LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber() |
761 | << ">]: " << *UseMI << "\n" ); |
762 | Changed |= updateAddUses(AddMI, UseMI); |
763 | |
764 | // Set the reachingDef for UseNode under consideration |
765 | // after updating the Add use. This local change is |
766 | // to avoid rebuilding of the RDF graph after update. |
767 | NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(N: LRExtRegRD); |
768 | UseN.Addr->linkToDef(Self: UseN.Id, DA: LRExtRegDN); |
769 | } |
770 | |
771 | if (Changed) |
772 | Deleted.insert(V: AddMI); |
773 | |
774 | return Changed; |
775 | } |
776 | |
777 | bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI, |
778 | MachineInstr *UseMI) { |
779 | const MachineOperand ImmOp = AddMI->getOperand(i: 2); |
780 | const MachineOperand AddRegOp = AddMI->getOperand(i: 1); |
781 | Register NewReg = AddRegOp.getReg(); |
782 | |
783 | MachineOperand &BaseOp = UseMI->getOperand(i: getBaseOpPosition(MI: UseMI)); |
784 | MachineOperand &OffsetOp = UseMI->getOperand(i: getOffsetOpPosition(MI: UseMI)); |
785 | BaseOp.setReg(NewReg); |
786 | BaseOp.setIsUndef(AddRegOp.isUndef()); |
787 | BaseOp.setImplicit(AddRegOp.isImplicit()); |
788 | OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm()); |
789 | MRI->clearKillFlags(Reg: NewReg); |
790 | |
791 | return true; |
792 | } |
793 | |
794 | bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR, |
795 | const NodeList &UNodeList, |
796 | InstrEvalMap &InstrEvalResult, |
797 | short &SizeInc) { |
798 | bool KeepTfr = false; |
799 | bool HasRepInstr = false; |
800 | InstrEvalResult.clear(); |
801 | |
802 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
803 | bool CanBeReplaced = false; |
804 | NodeAddr<UseNode *> UN = *I; |
805 | NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG); |
806 | MachineInstr &MI = *SN.Addr->getCode(); |
807 | const MCInstrDesc &MID = MI.getDesc(); |
808 | if ((MID.mayLoad() || MID.mayStore())) { |
809 | if (!hasRepForm(MI, TfrDefR: tfrDefR)) { |
810 | KeepTfr = true; |
811 | continue; |
812 | } |
813 | SizeInc++; |
814 | CanBeReplaced = true; |
815 | } else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) { |
816 | NodeList AddaslUseList; |
817 | |
818 | LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n" ); |
819 | getAllRealUses(SA: SN, UNodeList&: AddaslUseList); |
820 | // Process phi nodes. |
821 | if (allValidCandidates(SA: SN, UNodeList&: AddaslUseList) && |
822 | canRemoveAddasl(AddAslSN: SN, MI, UNodeList: AddaslUseList)) { |
823 | SizeInc += AddaslUseList.size(); |
824 | SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed. |
825 | CanBeReplaced = true; |
826 | } else |
827 | SizeInc++; |
828 | } else |
829 | // Currently, only load/store and addasl are handled. |
830 | // Some other instructions to consider - |
831 | // A2_add -> A2_addi |
832 | // M4_mpyrr_addr -> M4_mpyrr_addi |
833 | KeepTfr = true; |
834 | |
835 | InstrEvalResult[&MI] = CanBeReplaced; |
836 | HasRepInstr |= CanBeReplaced; |
837 | } |
838 | |
839 | // Reduce total size by 2 if original tfr can be deleted. |
840 | if (!KeepTfr) |
841 | SizeInc -= 2; |
842 | |
843 | return HasRepInstr; |
844 | } |
845 | |
846 | bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, |
847 | unsigned ImmOpNum) { |
848 | bool Changed = false; |
849 | MachineBasicBlock *BB = OldMI->getParent(); |
850 | auto UsePos = MachineBasicBlock::iterator(OldMI); |
851 | MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator(); |
852 | ++InsertPt; |
853 | unsigned OpStart; |
854 | unsigned OpEnd = OldMI->getNumOperands(); |
855 | MachineInstrBuilder MIB; |
856 | |
857 | if (ImmOpNum == 1) { |
858 | if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseRegOffset) { |
859 | short NewOpCode = HII->changeAddrMode_rr_ur(MI: *OldMI); |
860 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
861 | MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)); |
862 | MIB.add(MO: OldMI->getOperand(i: 0)); |
863 | MIB.add(MO: OldMI->getOperand(i: 2)); |
864 | MIB.add(MO: OldMI->getOperand(i: 3)); |
865 | MIB.add(MO: ImmOp); |
866 | OpStart = 4; |
867 | Changed = true; |
868 | } else if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseImmOffset && |
869 | OldMI->getOperand(i: 2).isImm()) { |
870 | short NewOpCode = HII->changeAddrMode_io_abs(MI: *OldMI); |
871 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
872 | MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)) |
873 | .add(MO: OldMI->getOperand(i: 0)); |
874 | const GlobalValue *GV = ImmOp.getGlobal(); |
875 | int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(i: 2).getImm(); |
876 | |
877 | MIB.addGlobalAddress(GV, Offset, TargetFlags: ImmOp.getTargetFlags()); |
878 | OpStart = 3; |
879 | Changed = true; |
880 | } else |
881 | Changed = false; |
882 | |
883 | LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n" ); |
884 | LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n" ); |
885 | } else if (ImmOpNum == 2) { |
886 | if (OldMI->getOperand(i: 3).isImm() && OldMI->getOperand(i: 3).getImm() == 0) { |
887 | short NewOpCode = HII->changeAddrMode_rr_io(MI: *OldMI); |
888 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
889 | MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)); |
890 | MIB.add(MO: OldMI->getOperand(i: 0)); |
891 | MIB.add(MO: OldMI->getOperand(i: 1)); |
892 | MIB.add(MO: ImmOp); |
893 | OpStart = 4; |
894 | Changed = true; |
895 | LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n" ); |
896 | LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n" ); |
897 | } |
898 | } |
899 | |
900 | if (Changed) |
901 | for (unsigned i = OpStart; i < OpEnd; ++i) |
902 | MIB.add(MO: OldMI->getOperand(i)); |
903 | |
904 | return Changed; |
905 | } |
906 | |
907 | bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp, |
908 | unsigned ImmOpNum) { |
909 | bool Changed = false; |
910 | unsigned OpStart = 0; |
911 | unsigned OpEnd = OldMI->getNumOperands(); |
912 | MachineBasicBlock *BB = OldMI->getParent(); |
913 | auto UsePos = MachineBasicBlock::iterator(OldMI); |
914 | MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator(); |
915 | ++InsertPt; |
916 | MachineInstrBuilder MIB; |
917 | if (ImmOpNum == 0) { |
918 | if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseRegOffset) { |
919 | short NewOpCode = HII->changeAddrMode_rr_ur(MI: *OldMI); |
920 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
921 | MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)); |
922 | MIB.add(MO: OldMI->getOperand(i: 1)); |
923 | MIB.add(MO: OldMI->getOperand(i: 2)); |
924 | MIB.add(MO: ImmOp); |
925 | MIB.add(MO: OldMI->getOperand(i: 3)); |
926 | OpStart = 4; |
927 | Changed = true; |
928 | } else if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseImmOffset) { |
929 | short NewOpCode = HII->changeAddrMode_io_abs(MI: *OldMI); |
930 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
931 | MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)); |
932 | const GlobalValue *GV = ImmOp.getGlobal(); |
933 | int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(i: 1).getImm(); |
934 | MIB.addGlobalAddress(GV, Offset, TargetFlags: ImmOp.getTargetFlags()); |
935 | MIB.add(MO: OldMI->getOperand(i: 2)); |
936 | OpStart = 3; |
937 | Changed = true; |
938 | } |
939 | } else if (ImmOpNum == 1 && OldMI->getOperand(i: 2).getImm() == 0) { |
940 | short NewOpCode = HII->changeAddrMode_rr_io(MI: *OldMI); |
941 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
942 | MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)); |
943 | MIB.add(MO: OldMI->getOperand(i: 0)); |
944 | MIB.add(MO: ImmOp); |
945 | OpStart = 3; |
946 | Changed = true; |
947 | } |
948 | if (Changed) { |
949 | LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n" ); |
950 | LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n" ); |
951 | |
952 | for (unsigned i = OpStart; i < OpEnd; ++i) |
953 | MIB.add(MO: OldMI->getOperand(i)); |
954 | } |
955 | |
956 | return Changed; |
957 | } |
958 | |
959 | short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const { |
960 | if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) { |
961 | short TempOpCode = HII->changeAddrMode_io_rr(MI); |
962 | return HII->changeAddrMode_rr_ur(Opc: TempOpCode); |
963 | } |
964 | return HII->changeAddrMode_rr_ur(MI); |
965 | } |
966 | |
967 | bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN, |
968 | MachineInstr *AddAslMI, |
969 | const MachineOperand &ImmOp, |
970 | unsigned ImmOpNum) { |
971 | NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(G: *DFG); |
972 | |
973 | LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n" ); |
974 | |
975 | NodeList UNodeList; |
976 | getAllRealUses(SA, UNodeList); |
977 | |
978 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
979 | NodeAddr<UseNode *> UseUN = *I; |
980 | assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) && |
981 | "Can't transform this 'AddAsl' instruction!" ); |
982 | |
983 | NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(G: *DFG); |
984 | LLVM_DEBUG(dbgs() << "[InstrNode]: " |
985 | << Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n" ); |
986 | MachineInstr *UseMI = UseIA.Addr->getCode(); |
987 | LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent()) |
988 | << ">]: " << *UseMI << "\n" ); |
989 | const MCInstrDesc &UseMID = UseMI->getDesc(); |
990 | assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset); |
991 | |
992 | auto UsePos = MachineBasicBlock::iterator(UseMI); |
993 | MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator(); |
994 | short NewOpCode = getBaseWithLongOffset(MI: *UseMI); |
995 | assert(NewOpCode >= 0 && "Invalid New opcode\n" ); |
996 | |
997 | unsigned OpStart; |
998 | unsigned OpEnd = UseMI->getNumOperands(); |
999 | |
1000 | MachineBasicBlock *BB = UseMI->getParent(); |
1001 | MachineInstrBuilder MIB = |
1002 | BuildMI(BB&: *BB, I: InsertPt, MIMD: UseMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode)); |
1003 | // change mem(Rs + # ) -> mem(Rt << # + ##) |
1004 | if (UseMID.mayLoad()) { |
1005 | MIB.add(MO: UseMI->getOperand(i: 0)); |
1006 | MIB.add(MO: AddAslMI->getOperand(i: 2)); |
1007 | MIB.add(MO: AddAslMI->getOperand(i: 3)); |
1008 | const GlobalValue *GV = ImmOp.getGlobal(); |
1009 | MIB.addGlobalAddress(GV, Offset: UseMI->getOperand(i: 2).getImm()+ImmOp.getOffset(), |
1010 | TargetFlags: ImmOp.getTargetFlags()); |
1011 | OpStart = 3; |
1012 | } else if (UseMID.mayStore()) { |
1013 | MIB.add(MO: AddAslMI->getOperand(i: 2)); |
1014 | MIB.add(MO: AddAslMI->getOperand(i: 3)); |
1015 | const GlobalValue *GV = ImmOp.getGlobal(); |
1016 | MIB.addGlobalAddress(GV, Offset: UseMI->getOperand(i: 1).getImm()+ImmOp.getOffset(), |
1017 | TargetFlags: ImmOp.getTargetFlags()); |
1018 | MIB.add(MO: UseMI->getOperand(i: 2)); |
1019 | OpStart = 3; |
1020 | } else |
1021 | llvm_unreachable("Unhandled instruction" ); |
1022 | |
1023 | for (unsigned i = OpStart; i < OpEnd; ++i) |
1024 | MIB.add(MO: UseMI->getOperand(i)); |
1025 | Deleted.insert(V: UseMI); |
1026 | } |
1027 | |
1028 | return true; |
1029 | } |
1030 | |
1031 | bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI, |
1032 | NodeAddr<UseNode *> UseN, |
1033 | unsigned UseMOnum) { |
1034 | const MachineOperand ImmOp = TfrMI->getOperand(i: 1); |
1035 | const MCInstrDesc &MID = UseMI->getDesc(); |
1036 | unsigned Changed = false; |
1037 | if (MID.mayLoad()) |
1038 | Changed = changeLoad(OldMI: UseMI, ImmOp, ImmOpNum: UseMOnum); |
1039 | else if (MID.mayStore()) |
1040 | Changed = changeStore(OldMI: UseMI, ImmOp, ImmOpNum: UseMOnum); |
1041 | else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri) |
1042 | Changed = changeAddAsl(AddAslUN: UseN, AddAslMI: UseMI, ImmOp, ImmOpNum: UseMOnum); |
1043 | |
1044 | if (Changed) |
1045 | Deleted.insert(V: UseMI); |
1046 | |
1047 | return Changed; |
1048 | } |
1049 | |
1050 | bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) { |
1051 | bool Changed = false; |
1052 | |
1053 | for (auto IA : BA.Addr->members(G: *DFG)) { |
1054 | if (!DFG->IsCode<NodeAttrs::Stmt>(BA: IA)) |
1055 | continue; |
1056 | |
1057 | NodeAddr<StmtNode *> SA = IA; |
1058 | MachineInstr *MI = SA.Addr->getCode(); |
1059 | if ((MI->getOpcode() != Hexagon::A2_tfrsi || |
1060 | !MI->getOperand(i: 1).isGlobal()) && |
1061 | (MI->getOpcode() != Hexagon::A2_addi || |
1062 | !MI->getOperand(i: 2).isImm() || HII->isConstExtended(MI: *MI))) |
1063 | continue; |
1064 | |
1065 | LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode()) |
1066 | << "]: " << *MI << "\n\t[InstrNode]: " |
1067 | << Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n'); |
1068 | |
1069 | if (MI->getOpcode() == Hexagon::A2_addi) |
1070 | Changed |= processAddBases(AddSN: SA, AddMI: MI); |
1071 | NodeList UNodeList; |
1072 | getAllRealUses(SA, UNodeList); |
1073 | |
1074 | if (!allValidCandidates(SA, UNodeList)) |
1075 | continue; |
1076 | |
1077 | // Analyze all uses of 'add'. If the output of 'add' is used as an address |
1078 | // in the base+immediate addressing mode load/store instructions, see if |
1079 | // they can be updated to use the immediate value as an offset. Thus, |
1080 | // providing us the opportunity to eliminate 'add'. |
1081 | // Ex: Rx= add(Rt,#12) |
1082 | // memw(Rx+#0) = Rs |
1083 | // This can be replaced with memw(Rt+#12) = Rs |
1084 | // |
1085 | // This transformation is only performed if all uses can be updated and |
1086 | // the offset isn't required to be constant extended. |
1087 | if (MI->getOpcode() == Hexagon::A2_addi) { |
1088 | Changed |= processAddUses(AddSN: SA, AddMI: MI, UNodeList); |
1089 | continue; |
1090 | } |
1091 | |
1092 | short SizeInc = 0; |
1093 | Register DefR = MI->getOperand(i: 0).getReg(); |
1094 | InstrEvalMap InstrEvalResult; |
1095 | |
1096 | // Analyze all uses and calculate increase in size. Perform the optimization |
1097 | // only if there is no increase in size. |
1098 | if (!analyzeUses(tfrDefR: DefR, UNodeList, InstrEvalResult, SizeInc)) |
1099 | continue; |
1100 | if (SizeInc > CodeGrowthLimit) |
1101 | continue; |
1102 | |
1103 | bool KeepTfr = false; |
1104 | |
1105 | LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size() |
1106 | << "\n" ); |
1107 | LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n" ); |
1108 | for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { |
1109 | NodeAddr<UseNode *> UseN = *I; |
1110 | assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) && |
1111 | "Found a PhiRef node as a real reached use!!" ); |
1112 | |
1113 | NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(G: *DFG); |
1114 | MachineInstr *UseMI = OwnerN.Addr->getCode(); |
1115 | LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent()) |
1116 | << ">]: " << *UseMI << "\n" ); |
1117 | |
1118 | int UseMOnum = -1; |
1119 | unsigned NumOperands = UseMI->getNumOperands(); |
1120 | for (unsigned j = 0; j < NumOperands - 1; ++j) { |
1121 | const MachineOperand &op = UseMI->getOperand(i: j); |
1122 | if (op.isReg() && op.isUse() && DefR == op.getReg()) |
1123 | UseMOnum = j; |
1124 | } |
1125 | // It is possible that the register will not be found in any operand. |
1126 | // This could happen, for example, when DefR = R4, but the used |
1127 | // register is D2. |
1128 | |
1129 | // Change UseMI if replacement is possible. If any replacement failed, |
1130 | // or wasn't attempted, make sure to keep the TFR. |
1131 | bool Xformed = false; |
1132 | if (UseMOnum >= 0 && InstrEvalResult[UseMI]) |
1133 | Xformed = xformUseMI(TfrMI: MI, UseMI, UseN, UseMOnum); |
1134 | Changed |= Xformed; |
1135 | KeepTfr |= !Xformed; |
1136 | } |
1137 | if (!KeepTfr) |
1138 | Deleted.insert(V: MI); |
1139 | } |
1140 | return Changed; |
1141 | } |
1142 | |
1143 | bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) { |
1144 | if (skipFunction(F: MF.getFunction())) |
1145 | return false; |
1146 | |
1147 | // Perform RDF optimizations only if number of basic blocks in the |
1148 | // function is less than the limit |
1149 | if (MF.size() > RDFFuncBlockLimit) { |
1150 | LLVM_DEBUG(dbgs() << "Skipping " << getPassName() |
1151 | << ": too many basic blocks\n" ); |
1152 | return false; |
1153 | } |
1154 | |
1155 | bool Changed = false; |
1156 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
1157 | MRI = &MF.getRegInfo(); |
1158 | TRI = MF.getSubtarget().getRegisterInfo(); |
1159 | HII = HST.getInstrInfo(); |
1160 | HRI = HST.getRegisterInfo(); |
1161 | const auto &MDF = getAnalysis<MachineDominanceFrontier>(); |
1162 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
1163 | |
1164 | DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF); |
1165 | // Need to keep dead phis because we can propagate uses of registers into |
1166 | // nodes dominated by those would-be phis. |
1167 | G.build(config: BuildOptions::KeepDeadPhis); |
1168 | DFG = &G; |
1169 | |
1170 | Liveness L(*MRI, *DFG); |
1171 | L.computePhiInfo(); |
1172 | LV = &L; |
1173 | |
1174 | Deleted.clear(); |
1175 | ProcessedAddiInsts.clear(); |
1176 | NodeAddr<FuncNode *> FA = DFG->getFunc(); |
1177 | LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n " |
1178 | << Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n" ); |
1179 | |
1180 | for (NodeAddr<BlockNode *> BA : FA.Addr->members(G: *DFG)) |
1181 | Changed |= processBlock(BA); |
1182 | |
1183 | for (auto *MI : Deleted) |
1184 | MI->eraseFromParent(); |
1185 | |
1186 | if (Changed) { |
1187 | G.build(); |
1188 | L.computeLiveIns(); |
1189 | L.resetLiveIns(); |
1190 | L.resetKills(); |
1191 | } |
1192 | |
1193 | return Changed; |
1194 | } |
1195 | |
1196 | //===----------------------------------------------------------------------===// |
1197 | // Public Constructor Functions |
1198 | //===----------------------------------------------------------------------===// |
1199 | |
1200 | FunctionPass *llvm::createHexagonOptAddrMode() { |
1201 | return new HexagonOptAddrMode(); |
1202 | } |
1203 | |