| 1 | //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "MCTargetDesc/HexagonMCInstrInfo.h" |
| 14 | #include "MCTargetDesc/HexagonBaseInfo.h" |
| 15 | #include "MCTargetDesc/HexagonMCChecker.h" |
| 16 | #include "MCTargetDesc/HexagonMCExpr.h" |
| 17 | #include "MCTargetDesc/HexagonMCShuffler.h" |
| 18 | #include "MCTargetDesc/HexagonMCTargetDesc.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/StringSwitch.h" |
| 21 | #include "llvm/MC/MCContext.h" |
| 22 | #include "llvm/MC/MCExpr.h" |
| 23 | #include "llvm/MC/MCInst.h" |
| 24 | #include "llvm/MC/MCInstrInfo.h" |
| 25 | #include "llvm/MC/MCInstrItineraries.h" |
| 26 | #include "llvm/MC/MCSubtargetInfo.h" |
| 27 | #include "llvm/Support/Casting.h" |
| 28 | #include "llvm/Support/ErrorHandling.h" |
| 29 | #include <cassert> |
| 30 | #include <cstdint> |
| 31 | #include <limits> |
| 32 | |
| 33 | using namespace llvm; |
| 34 | |
| 35 | bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const { |
| 36 | return Register != Hexagon::NoRegister; |
| 37 | } |
| 38 | |
| 39 | Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII, |
| 40 | MCInst const &Inst) |
| 41 | : MCII(MCII), BundleCurrent(Inst.begin() + |
| 42 | HexagonMCInstrInfo::bundleInstructionsOffset), |
| 43 | BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {} |
| 44 | |
| 45 | Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII, |
| 46 | MCInst const &Inst, std::nullptr_t) |
| 47 | : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()), |
| 48 | DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {} |
| 49 | |
| 50 | Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() { |
| 51 | if (DuplexCurrent != DuplexEnd) { |
| 52 | ++DuplexCurrent; |
| 53 | if (DuplexCurrent == DuplexEnd) { |
| 54 | DuplexCurrent = BundleEnd; |
| 55 | DuplexEnd = BundleEnd; |
| 56 | ++BundleCurrent; |
| 57 | } |
| 58 | return *this; |
| 59 | } |
| 60 | ++BundleCurrent; |
| 61 | if (BundleCurrent != BundleEnd) { |
| 62 | MCInst const &Inst = *BundleCurrent->getInst(); |
| 63 | if (HexagonMCInstrInfo::isDuplex(MCII, MCI: Inst)) { |
| 64 | DuplexCurrent = Inst.begin(); |
| 65 | DuplexEnd = Inst.end(); |
| 66 | } |
| 67 | } |
| 68 | return *this; |
| 69 | } |
| 70 | |
| 71 | MCInst const &Hexagon::PacketIterator::operator*() const { |
| 72 | if (DuplexCurrent != DuplexEnd) |
| 73 | return *DuplexCurrent->getInst(); |
| 74 | return *BundleCurrent->getInst(); |
| 75 | } |
| 76 | |
| 77 | bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const { |
| 78 | return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd && |
| 79 | DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd; |
| 80 | } |
| 81 | |
| 82 | void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value, |
| 83 | MCContext &Context) { |
| 84 | MI.addOperand(Op: MCOperand::createExpr(Val: MCConstantExpr::create(Value, Ctx&: Context))); |
| 85 | } |
| 86 | |
| 87 | void HexagonMCInstrInfo::addConstExtender(MCContext &Context, |
| 88 | MCInstrInfo const &MCII, MCInst &MCB, |
| 89 | MCInst const &MCI) { |
| 90 | assert(HexagonMCInstrInfo::isBundle(MCB)); |
| 91 | MCOperand const &exOp = |
| 92 | MCI.getOperand(i: HexagonMCInstrInfo::getExtendableOp(MCII, MCI)); |
| 93 | |
| 94 | // Create the extender. |
| 95 | MCInst *XMCI = |
| 96 | new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, Inst: MCI, MO: exOp)); |
| 97 | XMCI->setLoc(MCI.getLoc()); |
| 98 | |
| 99 | MCB.addOperand(Op: MCOperand::createInst(Val: XMCI)); |
| 100 | } |
| 101 | |
| 102 | iterator_range<Hexagon::PacketIterator> |
| 103 | HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII, |
| 104 | MCInst const &MCI) { |
| 105 | assert(isBundle(MCI)); |
| 106 | return make_range(x: Hexagon::PacketIterator(MCII, MCI), |
| 107 | y: Hexagon::PacketIterator(MCII, MCI, nullptr)); |
| 108 | } |
| 109 | |
| 110 | iterator_range<MCInst::const_iterator> |
| 111 | HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) { |
| 112 | assert(isBundle(MCI)); |
| 113 | return drop_begin(RangeOrContainer: MCI, N: bundleInstructionsOffset); |
| 114 | } |
| 115 | |
| 116 | size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) { |
| 117 | if (HexagonMCInstrInfo::isBundle(MCI)) |
| 118 | return (MCI.size() - bundleInstructionsOffset); |
| 119 | else |
| 120 | return (1); |
| 121 | } |
| 122 | |
| 123 | namespace { |
| 124 | bool canonicalizePacketImpl(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
| 125 | MCContext &Context, MCInst &MCB, |
| 126 | HexagonMCChecker *Check) { |
| 127 | // Check the bundle for errors. |
| 128 | bool CheckOk = Check ? Check->check(FullCheck: false) : true; |
| 129 | if (!CheckOk) |
| 130 | return false; |
| 131 | |
| 132 | MCInst OrigMCB = MCB; |
| 133 | |
| 134 | // Examine the packet and convert pairs of instructions to compound |
| 135 | // instructions when possible. |
| 136 | if (!HexagonDisableCompound) |
| 137 | HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCI&: MCB); |
| 138 | HexagonMCShuffle(Context, ReportErrors: false, MCII, STI, MCB); |
| 139 | |
| 140 | const SmallVector<DuplexCandidate, 8> possibleDuplexes = |
| 141 | (STI.hasFeature(Feature: Hexagon::FeatureDuplex)) |
| 142 | ? HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB) |
| 143 | : SmallVector<DuplexCandidate, 8>(); |
| 144 | |
| 145 | // Examine the packet and convert pairs of instructions to duplex |
| 146 | // instructions when possible. |
| 147 | HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes); |
| 148 | |
| 149 | // Examines packet and pad the packet, if needed, when an |
| 150 | // end-loop is in the bundle. |
| 151 | HexagonMCInstrInfo::padEndloop(MCI&: MCB, Context); |
| 152 | |
| 153 | // If compounding and duplexing didn't reduce the size below |
| 154 | // 4 or less we have a packet that is too big. |
| 155 | if (HexagonMCInstrInfo::bundleSize(MCI: MCB) > HEXAGON_PACKET_SIZE) { |
| 156 | if (Check) |
| 157 | Check->reportError(Msg: "invalid instruction packet: out of slots" ); |
| 158 | return false; |
| 159 | } |
| 160 | // Check the bundle for errors. |
| 161 | CheckOk = Check ? Check->check(FullCheck: true) : true; |
| 162 | if (!CheckOk) |
| 163 | return false; |
| 164 | |
| 165 | HexagonMCShuffle(Context, ReportErrors: true, MCII, STI, MCB); |
| 166 | |
| 167 | return true; |
| 168 | } |
| 169 | } // namespace |
| 170 | |
| 171 | bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII, |
| 172 | MCSubtargetInfo const &STI, |
| 173 | MCContext &Context, MCInst &MCB, |
| 174 | HexagonMCChecker *Check, |
| 175 | bool AttemptCompatibility) { |
| 176 | auto ArchSTI = Hexagon_MC::getArchSubtarget(STI: &STI); |
| 177 | if (!AttemptCompatibility || ArchSTI == nullptr) |
| 178 | return canonicalizePacketImpl(MCII, STI, Context, MCB, Check); |
| 179 | |
| 180 | const MCRegisterInfo *RI = Context.getRegisterInfo(); |
| 181 | HexagonMCChecker DefaultCheck(Context, MCII, STI, MCB, *RI, false); |
| 182 | HexagonMCChecker *BaseCheck = (Check == nullptr) ? &DefaultCheck : Check; |
| 183 | HexagonMCChecker PerfCheck(*BaseCheck, STI, false); |
| 184 | if (canonicalizePacketImpl(MCII, STI, Context, MCB, Check: &PerfCheck)) |
| 185 | return true; |
| 186 | |
| 187 | HexagonMCChecker ArchCheck(*BaseCheck, *ArchSTI, true); |
| 188 | return canonicalizePacketImpl(MCII, STI: *ArchSTI, Context, MCB, Check: &ArchCheck); |
| 189 | } |
| 190 | |
| 191 | MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII, |
| 192 | MCInst const &Inst, |
| 193 | MCOperand const &MO) { |
| 194 | assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) || |
| 195 | HexagonMCInstrInfo::isExtended(MCII, Inst)); |
| 196 | |
| 197 | MCInst XMI; |
| 198 | XMI.setOpcode(Hexagon::A4_ext); |
| 199 | if (MO.isImm()) |
| 200 | XMI.addOperand(Op: MCOperand::createImm(Val: MO.getImm() & (~0x3f))); |
| 201 | else if (MO.isExpr()) |
| 202 | XMI.addOperand(Op: MCOperand::createExpr(Val: MO.getExpr())); |
| 203 | else |
| 204 | llvm_unreachable("invalid extendable operand" ); |
| 205 | return XMI; |
| 206 | } |
| 207 | |
| 208 | MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass, |
| 209 | MCInst const &inst0, |
| 210 | MCInst const &inst1) { |
| 211 | assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf" ); |
| 212 | MCInst *duplexInst = new (Context) MCInst; |
| 213 | duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass); |
| 214 | |
| 215 | MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(Inst: inst0)); |
| 216 | MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(Inst: inst1)); |
| 217 | duplexInst->addOperand(Op: MCOperand::createInst(Val: SubInst0)); |
| 218 | duplexInst->addOperand(Op: MCOperand::createInst(Val: SubInst1)); |
| 219 | return duplexInst; |
| 220 | } |
| 221 | |
| 222 | MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB, |
| 223 | size_t Index) { |
| 224 | assert(Index <= bundleSize(MCB)); |
| 225 | if (Index == 0) |
| 226 | return nullptr; |
| 227 | MCInst const *Inst = |
| 228 | MCB.getOperand(i: Index + bundleInstructionsOffset - 1).getInst(); |
| 229 | if (isImmext(MCI: *Inst)) |
| 230 | return Inst; |
| 231 | return nullptr; |
| 232 | } |
| 233 | |
| 234 | void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context, |
| 235 | MCInstrInfo const &MCII, MCInst &MCB, |
| 236 | MCInst const &MCI) { |
| 237 | if (isConstExtended(MCII, MCI)) |
| 238 | addConstExtender(Context, MCII, MCB, MCI); |
| 239 | } |
| 240 | |
| 241 | unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII, |
| 242 | MCInst const &MCI) { |
| 243 | uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 244 | unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask; |
| 245 | return HexagonII::getMemAccessSizeInBytes(S: HexagonII::MemAccessSize(S)); |
| 246 | } |
| 247 | |
| 248 | unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII, |
| 249 | MCInst const &MCI) { |
| 250 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 251 | return static_cast<unsigned>((F >> HexagonII::AddrModePos) & |
| 252 | HexagonII::AddrModeMask); |
| 253 | } |
| 254 | |
| 255 | MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII, |
| 256 | MCInst const &MCI) { |
| 257 | return MCII.get(Opcode: MCI.getOpcode()); |
| 258 | } |
| 259 | |
| 260 | unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(MCRegister Reg) { |
| 261 | using namespace Hexagon; |
| 262 | |
| 263 | switch (Reg.id()) { |
| 264 | default: |
| 265 | llvm_unreachable("unknown duplex register" ); |
| 266 | // Rs Rss |
| 267 | case R0: |
| 268 | case D0: |
| 269 | return 0; |
| 270 | case R1: |
| 271 | case D1: |
| 272 | return 1; |
| 273 | case R2: |
| 274 | case D2: |
| 275 | return 2; |
| 276 | case R3: |
| 277 | case D3: |
| 278 | return 3; |
| 279 | case R4: |
| 280 | case D8: |
| 281 | return 4; |
| 282 | case R5: |
| 283 | case D9: |
| 284 | return 5; |
| 285 | case R6: |
| 286 | case D10: |
| 287 | return 6; |
| 288 | case R7: |
| 289 | case D11: |
| 290 | return 7; |
| 291 | case R16: |
| 292 | return 8; |
| 293 | case R17: |
| 294 | return 9; |
| 295 | case R18: |
| 296 | return 10; |
| 297 | case R19: |
| 298 | return 11; |
| 299 | case R20: |
| 300 | return 12; |
| 301 | case R21: |
| 302 | return 13; |
| 303 | case R22: |
| 304 | return 14; |
| 305 | case R23: |
| 306 | return 15; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) { |
| 311 | const auto &HExpr = cast<HexagonMCExpr>(Val: Expr); |
| 312 | assert(HExpr.getExpr()); |
| 313 | return *HExpr.getExpr(); |
| 314 | } |
| 315 | |
| 316 | unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII, |
| 317 | MCInst const &MCI) { |
| 318 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 319 | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); |
| 320 | } |
| 321 | |
| 322 | MCOperand const & |
| 323 | HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII, |
| 324 | MCInst const &MCI) { |
| 325 | unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI); |
| 326 | MCOperand const &MO = MCI.getOperand(i: O); |
| 327 | |
| 328 | assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) || |
| 329 | HexagonMCInstrInfo::isExtended(MCII, MCI)) && |
| 330 | (MO.isImm() || MO.isExpr())); |
| 331 | return (MO); |
| 332 | } |
| 333 | |
| 334 | unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII, |
| 335 | MCInst const &MCI) { |
| 336 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 337 | return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask); |
| 338 | } |
| 339 | |
| 340 | unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII, |
| 341 | MCInst const &MCI) { |
| 342 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 343 | return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); |
| 344 | } |
| 345 | |
| 346 | bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII, |
| 347 | MCInst const &MCI) { |
| 348 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 349 | return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; |
| 350 | } |
| 351 | |
| 352 | /// Return the maximum value of an extendable operand. |
| 353 | int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII, |
| 354 | MCInst const &MCI) { |
| 355 | assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) || |
| 356 | HexagonMCInstrInfo::isExtended(MCII, MCI)); |
| 357 | |
| 358 | if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed |
| 359 | return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1; |
| 360 | return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1; |
| 361 | } |
| 362 | |
| 363 | /// Return the minimum value of an extendable operand. |
| 364 | int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII, |
| 365 | MCInst const &MCI) { |
| 366 | assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) || |
| 367 | HexagonMCInstrInfo::isExtended(MCII, MCI)); |
| 368 | |
| 369 | if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed |
| 370 | return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)); |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII, |
| 375 | MCInst const &MCI) { |
| 376 | return MCII.getName(Opcode: MCI.getOpcode()); |
| 377 | } |
| 378 | |
| 379 | unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII, |
| 380 | MCInst const &MCI) { |
| 381 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 382 | return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask); |
| 383 | } |
| 384 | |
| 385 | MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII, |
| 386 | MCInst const &MCI) { |
| 387 | if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) { |
| 388 | // VTMP doesn't actually exist in the encodings for these 184 |
| 389 | // 3 instructions so go ahead and create it here. |
| 390 | static MCOperand MCO = MCOperand::createReg(Reg: Hexagon::VTMP); |
| 391 | return (MCO); |
| 392 | } else { |
| 393 | unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI); |
| 394 | MCOperand const &MCO = MCI.getOperand(i: O); |
| 395 | |
| 396 | assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || |
| 397 | HexagonMCInstrInfo::hasNewValue(MCII, MCI)) && |
| 398 | MCO.isReg()); |
| 399 | return (MCO); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /// Return the new value or the newly produced value. |
| 404 | unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII, |
| 405 | MCInst const &MCI) { |
| 406 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 407 | return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2); |
| 408 | } |
| 409 | |
| 410 | MCOperand const & |
| 411 | HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII, |
| 412 | MCInst const &MCI) { |
| 413 | unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI); |
| 414 | MCOperand const &MCO = MCI.getOperand(i: O); |
| 415 | |
| 416 | assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || |
| 417 | HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) && |
| 418 | MCO.isReg()); |
| 419 | return (MCO); |
| 420 | } |
| 421 | |
| 422 | /// Return the Hexagon ISA class for the insn. |
| 423 | unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII, |
| 424 | MCInst const &MCI) { |
| 425 | const uint64_t F = MCII.get(Opcode: MCI.getOpcode()).TSFlags; |
| 426 | return ((F >> HexagonII::TypePos) & HexagonII::TypeMask); |
| 427 | } |
| 428 | |
| 429 | /// Return the resources used by this instruction |
| 430 | unsigned HexagonMCInstrInfo::getCVIResources(MCInstrInfo const &MCII, |
| 431 | MCSubtargetInfo const &STI, |
| 432 | MCInst const &MCI) { |
| 433 | |
| 434 | const InstrItinerary *II = STI.getSchedModel().InstrItineraries; |
| 435 | int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); |
| 436 | int Size = II[SchedClass].LastStage - II[SchedClass].FirstStage; |
| 437 | |
| 438 | // HVX resources used are currently located at the second to last stage. |
| 439 | // This could also be done with a linear search of the stages looking for: |
| 440 | // CVI_ALL, CVI_MPY01, CVI_XLSHF, CVI_MPY0, CVI_MPY1, CVI_SHIFT, CVI_XLANE, |
| 441 | // CVI_ZW |
| 442 | unsigned Stage = II[SchedClass].LastStage - 1; |
| 443 | |
| 444 | if (Size < 2) |
| 445 | return 0; |
| 446 | return ((Stage + HexagonStages)->getUnits()); |
| 447 | } |
| 448 | |
| 449 | /// Return the slots this instruction can execute out of |
| 450 | unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII, |
| 451 | MCSubtargetInfo const &STI, |
| 452 | MCInst const &MCI) { |
| 453 | const InstrItinerary *II = STI.getSchedModel().InstrItineraries; |
| 454 | int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); |
| 455 | return ((II[SchedClass].FirstStage + HexagonStages)->getUnits()); |
| 456 | } |
| 457 | |
| 458 | /// Return the slots this instruction consumes in addition to |
| 459 | /// the slot(s) it can execute out of |
| 460 | |
| 461 | unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII, |
| 462 | MCSubtargetInfo const &STI, |
| 463 | MCInst const &MCI) { |
| 464 | const InstrItinerary *II = STI.getSchedModel().InstrItineraries; |
| 465 | int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); |
| 466 | unsigned Slots = 0; |
| 467 | |
| 468 | // FirstStage are slots that this instruction can execute in. |
| 469 | // FirstStage+1 are slots that are also consumed by this instruction. |
| 470 | // For example: vmemu can only execute in slot 0 but also consumes slot 1. |
| 471 | for (unsigned Stage = II[SchedClass].FirstStage + 1; |
| 472 | Stage < II[SchedClass].LastStage; ++Stage) { |
| 473 | unsigned Units = (Stage + HexagonStages)->getUnits(); |
| 474 | if (Units > HexagonGetLastSlot()) |
| 475 | break; |
| 476 | // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8 |
| 477 | Slots |= Units; |
| 478 | } |
| 479 | |
| 480 | // if 0 is returned, then no additional slots are consumed by this inst. |
| 481 | return Slots; |
| 482 | } |
| 483 | |
| 484 | bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 485 | if (!HexagonMCInstrInfo::isBundle(MCI)) |
| 486 | return false; |
| 487 | |
| 488 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) { |
| 489 | if (HexagonMCInstrInfo::isDuplex(MCII, MCI: *I.getInst())) |
| 490 | return true; |
| 491 | } |
| 492 | |
| 493 | return false; |
| 494 | } |
| 495 | |
| 496 | bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) { |
| 497 | return extenderForIndex(MCB, Index) != nullptr; |
| 498 | } |
| 499 | |
| 500 | bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) { |
| 501 | if (!HexagonMCInstrInfo::isBundle(MCI)) |
| 502 | return false; |
| 503 | |
| 504 | for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) { |
| 505 | if (isImmext(MCI: *I.getInst())) |
| 506 | return true; |
| 507 | } |
| 508 | |
| 509 | return false; |
| 510 | } |
| 511 | |
| 512 | /// Return whether the insn produces a value. |
| 513 | bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII, |
| 514 | MCInst const &MCI) { |
| 515 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 516 | return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask); |
| 517 | } |
| 518 | |
| 519 | /// Return whether the insn produces a second value. |
| 520 | bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII, |
| 521 | MCInst const &MCI) { |
| 522 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 523 | return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2); |
| 524 | } |
| 525 | |
| 526 | MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) { |
| 527 | assert(isBundle(MCB)); |
| 528 | assert(Index < HEXAGON_PRESHUFFLE_PACKET_SIZE); |
| 529 | return *MCB.getOperand(i: bundleInstructionsOffset + Index).getInst(); |
| 530 | } |
| 531 | |
| 532 | /// Return where the instruction is an accumulator. |
| 533 | bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII, |
| 534 | MCInst const &MCI) { |
| 535 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 536 | return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); |
| 537 | } |
| 538 | |
| 539 | bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) { |
| 540 | auto Result = Hexagon::BUNDLE == MCI.getOpcode(); |
| 541 | assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm())); |
| 542 | return Result; |
| 543 | } |
| 544 | |
| 545 | bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII, |
| 546 | MCInst const &MCI) { |
| 547 | if (HexagonMCInstrInfo::isExtended(MCII, MCI)) |
| 548 | return true; |
| 549 | if (!HexagonMCInstrInfo::isExtendable(MCII, MCI)) |
| 550 | return false; |
| 551 | MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI); |
| 552 | if (isa<HexagonMCExpr>(Val: MO.getExpr()) && |
| 553 | HexagonMCInstrInfo::mustExtend(Expr: *MO.getExpr())) |
| 554 | return true; |
| 555 | // Branch insns are handled as necessary by relaxation. |
| 556 | if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) || |
| 557 | (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ && |
| 558 | HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) || |
| 559 | (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ && |
| 560 | HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch())) |
| 561 | return false; |
| 562 | // Otherwise loop instructions and other CR insts are handled by relaxation |
| 563 | else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) && |
| 564 | (MCI.getOpcode() != Hexagon::C4_addipc)) |
| 565 | return false; |
| 566 | |
| 567 | assert(!MO.isImm()); |
| 568 | if (isa<HexagonMCExpr>(Val: MO.getExpr()) && |
| 569 | HexagonMCInstrInfo::mustNotExtend(Expr: *MO.getExpr())) |
| 570 | return false; |
| 571 | |
| 572 | int64_t Value; |
| 573 | if (!MO.getExpr()->evaluateAsAbsolute(Res&: Value)) |
| 574 | return true; |
| 575 | if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) { |
| 576 | int32_t SValue = Value; |
| 577 | int32_t MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI); |
| 578 | int32_t MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI); |
| 579 | return SValue < MinValue || SValue > MaxValue; |
| 580 | } |
| 581 | uint32_t UValue = Value; |
| 582 | uint32_t MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI); |
| 583 | uint32_t MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI); |
| 584 | return UValue < MinValue || UValue > MaxValue; |
| 585 | } |
| 586 | |
| 587 | bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 588 | return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() && |
| 589 | !HexagonMCInstrInfo::isPrefix(MCII, MCI); |
| 590 | } |
| 591 | |
| 592 | bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 593 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 594 | return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask); |
| 595 | } |
| 596 | |
| 597 | bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII, |
| 598 | MCInst const &MCI) { |
| 599 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 600 | return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask); |
| 601 | } |
| 602 | |
| 603 | bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII, |
| 604 | MCInst const &MCI) { |
| 605 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 606 | return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask); |
| 607 | } |
| 608 | |
| 609 | bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII, |
| 610 | MCInst const &MCI) { |
| 611 | return (getType(MCII, MCI) == HexagonII::TypeCJ); |
| 612 | } |
| 613 | |
| 614 | bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 615 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 616 | return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask); |
| 617 | } |
| 618 | |
| 619 | bool HexagonMCInstrInfo::isDblRegForSubInst(MCRegister Reg) { |
| 620 | return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) || |
| 621 | (Reg >= Hexagon::D8 && Reg <= Hexagon::D11)); |
| 622 | } |
| 623 | |
| 624 | bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 625 | return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI); |
| 626 | } |
| 627 | |
| 628 | bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII, |
| 629 | MCInst const &MCI) { |
| 630 | uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 631 | return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; |
| 632 | } |
| 633 | |
| 634 | bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII, |
| 635 | MCInst const &MCI) { |
| 636 | uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 637 | return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; |
| 638 | } |
| 639 | |
| 640 | bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 641 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 642 | return ((F >> HexagonII::FPPos) & HexagonII::FPMask); |
| 643 | } |
| 644 | |
| 645 | bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 646 | const uint64_t V = getType(MCII, MCI); |
| 647 | return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; |
| 648 | } |
| 649 | |
| 650 | bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) { |
| 651 | return MCI.getOpcode() == Hexagon::A4_ext; |
| 652 | } |
| 653 | |
| 654 | bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) { |
| 655 | assert(isBundle(MCI)); |
| 656 | int64_t Flags = MCI.getOperand(i: 0).getImm(); |
| 657 | return (Flags & innerLoopMask) != 0; |
| 658 | } |
| 659 | |
| 660 | bool HexagonMCInstrInfo::isIntReg(MCRegister Reg) { |
| 661 | return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31); |
| 662 | } |
| 663 | |
| 664 | bool HexagonMCInstrInfo::isIntRegForSubInst(MCRegister Reg) { |
| 665 | return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || |
| 666 | (Reg >= Hexagon::R16 && Reg <= Hexagon::R23)); |
| 667 | } |
| 668 | |
| 669 | /// Return whether the insn expects newly produced value. |
| 670 | bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII, |
| 671 | MCInst const &MCI) { |
| 672 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 673 | return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); |
| 674 | } |
| 675 | |
| 676 | bool HexagonMCInstrInfo::isNewValueStore(MCInstrInfo const &MCII, |
| 677 | MCInst const &MCI) { |
| 678 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 679 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; |
| 680 | } |
| 681 | |
| 682 | /// Return whether the operand is extendable. |
| 683 | bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII, |
| 684 | MCInst const &MCI, unsigned short O) { |
| 685 | return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI)); |
| 686 | } |
| 687 | |
| 688 | bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) { |
| 689 | assert(isBundle(MCI)); |
| 690 | int64_t Flags = MCI.getOperand(i: 0).getImm(); |
| 691 | return (Flags & outerLoopMask) != 0; |
| 692 | } |
| 693 | |
| 694 | bool HexagonMCInstrInfo::IsVecRegPair(MCRegister VecReg) { |
| 695 | return (VecReg >= Hexagon::W0 && VecReg <= Hexagon::W15) || |
| 696 | (VecReg >= Hexagon::WR0 && VecReg <= Hexagon::WR15); |
| 697 | } |
| 698 | |
| 699 | bool HexagonMCInstrInfo::IsReverseVecRegPair(MCRegister VecReg) { |
| 700 | return (VecReg >= Hexagon::WR0 && VecReg <= Hexagon::WR15); |
| 701 | } |
| 702 | |
| 703 | bool HexagonMCInstrInfo::IsVecRegSingle(MCRegister VecReg) { |
| 704 | return (VecReg >= Hexagon::V0 && VecReg <= Hexagon::V31); |
| 705 | } |
| 706 | |
| 707 | std::pair<unsigned, unsigned> |
| 708 | HexagonMCInstrInfo::GetVecRegPairIndices(MCRegister VecRegPair) { |
| 709 | assert(IsVecRegPair(VecRegPair) && |
| 710 | "VecRegPair must be a vector register pair" ); |
| 711 | |
| 712 | const bool IsRev = IsReverseVecRegPair(VecReg: VecRegPair); |
| 713 | const unsigned PairIndex = |
| 714 | 2 * (IsRev ? VecRegPair - Hexagon::WR0 : VecRegPair - Hexagon::W0); |
| 715 | |
| 716 | return IsRev ? std::make_pair(x: PairIndex, y: PairIndex + 1) |
| 717 | : std::make_pair(x: PairIndex + 1, y: PairIndex); |
| 718 | } |
| 719 | |
| 720 | bool HexagonMCInstrInfo::IsSingleConsumerRefPairProducer(MCRegister Producer, |
| 721 | MCRegister Consumer) { |
| 722 | if (IsVecRegPair(VecReg: Producer) && IsVecRegSingle(VecReg: Consumer)) { |
| 723 | const unsigned ProdPairIndex = IsReverseVecRegPair(VecReg: Producer) |
| 724 | ? Producer - Hexagon::WR0 |
| 725 | : Producer - Hexagon::W0; |
| 726 | const unsigned ConsumerSingleIndex = (Consumer - Hexagon::V0) >> 1; |
| 727 | |
| 728 | return ConsumerSingleIndex == ProdPairIndex; |
| 729 | } |
| 730 | return false; |
| 731 | } |
| 732 | |
| 733 | bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII, |
| 734 | MCInst const &MCI) { |
| 735 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 736 | return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); |
| 737 | } |
| 738 | |
| 739 | bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 740 | return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI); |
| 741 | } |
| 742 | |
| 743 | bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII, |
| 744 | MCInst const &MCI) { |
| 745 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 746 | return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask); |
| 747 | } |
| 748 | |
| 749 | /// Return whether the insn is newly predicated. |
| 750 | bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII, |
| 751 | MCInst const &MCI) { |
| 752 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 753 | return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); |
| 754 | } |
| 755 | |
| 756 | bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII, |
| 757 | MCInst const &MCI) { |
| 758 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 759 | return ( |
| 760 | !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); |
| 761 | } |
| 762 | |
| 763 | bool HexagonMCInstrInfo::isPredReg(MCRegisterInfo const &MRI, MCRegister Reg) { |
| 764 | auto &PredRegClass = MRI.getRegClass(i: Hexagon::PredRegsRegClassID); |
| 765 | return PredRegClass.contains(Reg); |
| 766 | } |
| 767 | |
| 768 | bool HexagonMCInstrInfo::isPredRegister(MCInstrInfo const &MCII, |
| 769 | MCInst const &Inst, unsigned I) { |
| 770 | MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, MCI: Inst); |
| 771 | |
| 772 | return Inst.getOperand(i: I).isReg() && |
| 773 | Desc.operands()[I].RegClass == Hexagon::PredRegsRegClassID; |
| 774 | } |
| 775 | |
| 776 | /// Return whether the insn can be packaged only with A and X-type insns. |
| 777 | bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 778 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 779 | return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask); |
| 780 | } |
| 781 | |
| 782 | /// Return whether the insn can be packaged only with an A-type insn in slot #1. |
| 783 | bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII, |
| 784 | MCInst const &MCI) { |
| 785 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 786 | return ((F >> HexagonII::RestrictSlot1AOKPos) & |
| 787 | HexagonII::RestrictSlot1AOKMask); |
| 788 | } |
| 789 | |
| 790 | bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII, |
| 791 | MCInst const &MCI) { |
| 792 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 793 | return ((F >> HexagonII::RestrictNoSlot1StorePos) & |
| 794 | HexagonII::RestrictNoSlot1StoreMask); |
| 795 | } |
| 796 | |
| 797 | /// Return whether the insn is solo, i.e., cannot be in a packet. |
| 798 | bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 799 | const uint64_t F = MCII.get(Opcode: MCI.getOpcode()).TSFlags; |
| 800 | return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask); |
| 801 | } |
| 802 | |
| 803 | bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) { |
| 804 | assert(isBundle(MCI)); |
| 805 | auto Flags = MCI.getOperand(i: 0).getImm(); |
| 806 | return (Flags & memReorderDisabledMask) != 0; |
| 807 | } |
| 808 | |
| 809 | bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) { |
| 810 | switch (MCI.getOpcode()) { |
| 811 | default: |
| 812 | return false; |
| 813 | case Hexagon::SA1_addi: |
| 814 | case Hexagon::SA1_addrx: |
| 815 | case Hexagon::SA1_addsp: |
| 816 | case Hexagon::SA1_and1: |
| 817 | case Hexagon::SA1_clrf: |
| 818 | case Hexagon::SA1_clrfnew: |
| 819 | case Hexagon::SA1_clrt: |
| 820 | case Hexagon::SA1_clrtnew: |
| 821 | case Hexagon::SA1_cmpeqi: |
| 822 | case Hexagon::SA1_combine0i: |
| 823 | case Hexagon::SA1_combine1i: |
| 824 | case Hexagon::SA1_combine2i: |
| 825 | case Hexagon::SA1_combine3i: |
| 826 | case Hexagon::SA1_combinerz: |
| 827 | case Hexagon::SA1_combinezr: |
| 828 | case Hexagon::SA1_dec: |
| 829 | case Hexagon::SA1_inc: |
| 830 | case Hexagon::SA1_seti: |
| 831 | case Hexagon::SA1_setin1: |
| 832 | case Hexagon::SA1_sxtb: |
| 833 | case Hexagon::SA1_sxth: |
| 834 | case Hexagon::SA1_tfr: |
| 835 | case Hexagon::SA1_zxtb: |
| 836 | case Hexagon::SA1_zxth: |
| 837 | case Hexagon::SL1_loadri_io: |
| 838 | case Hexagon::SL1_loadrub_io: |
| 839 | case Hexagon::SL2_deallocframe: |
| 840 | case Hexagon::SL2_jumpr31: |
| 841 | case Hexagon::SL2_jumpr31_f: |
| 842 | case Hexagon::SL2_jumpr31_fnew: |
| 843 | case Hexagon::SL2_jumpr31_t: |
| 844 | case Hexagon::SL2_jumpr31_tnew: |
| 845 | case Hexagon::SL2_loadrb_io: |
| 846 | case Hexagon::SL2_loadrd_sp: |
| 847 | case Hexagon::SL2_loadrh_io: |
| 848 | case Hexagon::SL2_loadri_sp: |
| 849 | case Hexagon::SL2_loadruh_io: |
| 850 | case Hexagon::SL2_return: |
| 851 | case Hexagon::SL2_return_f: |
| 852 | case Hexagon::SL2_return_fnew: |
| 853 | case Hexagon::SL2_return_t: |
| 854 | case Hexagon::SL2_return_tnew: |
| 855 | case Hexagon::SS1_storeb_io: |
| 856 | case Hexagon::SS1_storew_io: |
| 857 | case Hexagon::SS2_allocframe: |
| 858 | case Hexagon::SS2_storebi0: |
| 859 | case Hexagon::SS2_storebi1: |
| 860 | case Hexagon::SS2_stored_sp: |
| 861 | case Hexagon::SS2_storeh_io: |
| 862 | case Hexagon::SS2_storew_sp: |
| 863 | case Hexagon::SS2_storewi0: |
| 864 | case Hexagon::SS2_storewi1: |
| 865 | return true; |
| 866 | } |
| 867 | } |
| 868 | |
| 869 | bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 870 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 871 | return (F >> HexagonII::isCVIPos) & HexagonII::isCVIMask; |
| 872 | } |
| 873 | |
| 874 | int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) { |
| 875 | auto Sentinel = static_cast<int64_t>(std::numeric_limits<uint32_t>::max()) |
| 876 | << 8; |
| 877 | if (MCI.size() <= Index) |
| 878 | return Sentinel; |
| 879 | MCOperand const &MCO = MCI.getOperand(i: Index); |
| 880 | if (!MCO.isExpr()) |
| 881 | return Sentinel; |
| 882 | int64_t Value; |
| 883 | if (!MCO.getExpr()->evaluateAsAbsolute(Res&: Value)) |
| 884 | return Sentinel; |
| 885 | return Value; |
| 886 | } |
| 887 | |
| 888 | void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) { |
| 889 | HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Val: Expr)); |
| 890 | HExpr.setMustExtend(Val); |
| 891 | } |
| 892 | |
| 893 | bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) { |
| 894 | HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Val: Expr); |
| 895 | return HExpr.mustExtend(); |
| 896 | } |
| 897 | void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) { |
| 898 | HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Val: Expr)); |
| 899 | HExpr.setMustNotExtend(Val); |
| 900 | } |
| 901 | bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) { |
| 902 | HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Val: Expr); |
| 903 | return HExpr.mustNotExtend(); |
| 904 | } |
| 905 | void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) { |
| 906 | HexagonMCExpr &HExpr = |
| 907 | const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(Val: &Expr)); |
| 908 | HExpr.setS27_2_reloc(Val); |
| 909 | } |
| 910 | bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) { |
| 911 | HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(Val: &Expr); |
| 912 | if (!HExpr) |
| 913 | return false; |
| 914 | return HExpr->s27_2_reloc(); |
| 915 | } |
| 916 | |
| 917 | unsigned HexagonMCInstrInfo::packetSizeSlots(MCSubtargetInfo const &STI) { |
| 918 | const bool IsTiny = STI.hasFeature(Feature: Hexagon::ProcTinyCore); |
| 919 | |
| 920 | return IsTiny ? (HEXAGON_PACKET_SIZE - 1) : HEXAGON_PACKET_SIZE; |
| 921 | } |
| 922 | |
| 923 | unsigned HexagonMCInstrInfo::packetSize(StringRef CPU) { |
| 924 | return llvm::StringSwitch<unsigned>(CPU) |
| 925 | .Case(S: "hexagonv67t" , Value: 3) |
| 926 | .Default(Value: 4); |
| 927 | } |
| 928 | |
| 929 | void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) { |
| 930 | MCInst Nop; |
| 931 | Nop.setOpcode(Hexagon::A2_nop); |
| 932 | assert(isBundle(MCB)); |
| 933 | while (LoopNeedsPadding(MCB)) |
| 934 | MCB.addOperand(Op: MCOperand::createInst(Val: new (Context) MCInst(Nop))); |
| 935 | } |
| 936 | |
| 937 | HexagonMCInstrInfo::PredicateInfo |
| 938 | HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 939 | if (!isPredicated(MCII, MCI)) |
| 940 | return {0, 0, false}; |
| 941 | MCInstrDesc const &Desc = getDesc(MCII, MCI); |
| 942 | for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I) |
| 943 | if (Desc.operands()[I].RegClass == Hexagon::PredRegsRegClassID) |
| 944 | return {MCI.getOperand(i: I).getReg(), I, isPredicatedTrue(MCII, MCI)}; |
| 945 | return {0, 0, false}; |
| 946 | } |
| 947 | |
| 948 | bool HexagonMCInstrInfo::(MCInstrInfo const &MCII, |
| 949 | MCInst const &MCI) { |
| 950 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 951 | return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask; |
| 952 | } |
| 953 | |
| 954 | bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 955 | switch (MCI.getOpcode()) { |
| 956 | default: |
| 957 | return false; |
| 958 | case Hexagon::V6_vgathermh: |
| 959 | case Hexagon::V6_vgathermhq: |
| 960 | case Hexagon::V6_vgathermhw: |
| 961 | case Hexagon::V6_vgathermhwq: |
| 962 | case Hexagon::V6_vgathermw: |
| 963 | case Hexagon::V6_vgathermwq: |
| 964 | return true; |
| 965 | } |
| 966 | return false; |
| 967 | } |
| 968 | |
| 969 | bool HexagonMCInstrInfo::hasHvxTmp(MCInstrInfo const &MCII, MCInst const &MCI) { |
| 970 | const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; |
| 971 | return (F >> HexagonII::HasHvxTmpPos) & HexagonII::HasHvxTmpMask; |
| 972 | } |
| 973 | |
| 974 | bool HexagonMCInstrInfo::requiresSlot(MCSubtargetInfo const &STI, |
| 975 | MCInst const &MCI) { |
| 976 | const unsigned OpCode = MCI.getOpcode(); |
| 977 | const bool IsTiny = STI.getFeatureBits() [Hexagon::ProcTinyCore]; |
| 978 | const bool NoSlotReqd = Hexagon::A4_ext == OpCode || |
| 979 | (IsTiny && Hexagon::A2_nop == OpCode) || |
| 980 | (IsTiny && Hexagon::J4_hintjumpr == OpCode); |
| 981 | |
| 982 | return !NoSlotReqd; |
| 983 | } |
| 984 | |
| 985 | unsigned HexagonMCInstrInfo::slotsConsumed(MCInstrInfo const &MCII, |
| 986 | MCSubtargetInfo const &STI, |
| 987 | MCInst const &MCI) { |
| 988 | unsigned slotsUsed = 0; |
| 989 | for (auto HMI : bundleInstructions(MCI)) { |
| 990 | MCInst const &MCI = *HMI.getInst(); |
| 991 | if (!requiresSlot(STI, MCI)) |
| 992 | continue; |
| 993 | if (isDuplex(MCII, MCI)) |
| 994 | slotsUsed += 2; |
| 995 | else |
| 996 | ++slotsUsed; |
| 997 | } |
| 998 | return slotsUsed; |
| 999 | } |
| 1000 | |
| 1001 | void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB, |
| 1002 | DuplexCandidate Candidate) { |
| 1003 | assert(Candidate.packetIndexI < MCB.size()); |
| 1004 | assert(Candidate.packetIndexJ < MCB.size()); |
| 1005 | assert(isBundle(MCB)); |
| 1006 | MCInst *Duplex = |
| 1007 | deriveDuplex(Context, iClass: Candidate.iClass, |
| 1008 | inst0: *MCB.getOperand(i: Candidate.packetIndexJ).getInst(), |
| 1009 | inst1: *MCB.getOperand(i: Candidate.packetIndexI).getInst()); |
| 1010 | assert(Duplex != nullptr); |
| 1011 | MCB.getOperand(i: Candidate.packetIndexI).setInst(Duplex); |
| 1012 | MCB.erase(I: MCB.begin() + Candidate.packetIndexJ); |
| 1013 | } |
| 1014 | |
| 1015 | void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) { |
| 1016 | assert(isBundle(MCI)); |
| 1017 | MCOperand &Operand = MCI.getOperand(i: 0); |
| 1018 | Operand.setImm(Operand.getImm() | innerLoopMask); |
| 1019 | } |
| 1020 | |
| 1021 | void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) { |
| 1022 | assert(isBundle(MCI)); |
| 1023 | MCOperand &Operand = MCI.getOperand(i: 0); |
| 1024 | Operand.setImm(Operand.getImm() | memReorderDisabledMask); |
| 1025 | assert(isMemReorderDisabled(MCI)); |
| 1026 | } |
| 1027 | |
| 1028 | void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) { |
| 1029 | assert(isBundle(MCI)); |
| 1030 | MCOperand &Operand = MCI.getOperand(i: 0); |
| 1031 | Operand.setImm(Operand.getImm() | outerLoopMask); |
| 1032 | } |
| 1033 | |
| 1034 | unsigned HexagonMCInstrInfo::SubregisterBit(MCRegister Consumer, |
| 1035 | MCRegister Producer, |
| 1036 | MCRegister Producer2) { |
| 1037 | // If we're a single vector consumer of a double producer, set subreg bit |
| 1038 | // based on if we're accessing the lower or upper register component |
| 1039 | if (IsVecRegPair(VecReg: Producer) && IsVecRegSingle(VecReg: Consumer)) { |
| 1040 | unsigned Rev = IsReverseVecRegPair(VecReg: Producer); |
| 1041 | return ((Consumer - Hexagon::V0) & 0x1) ^ Rev; |
| 1042 | } |
| 1043 | if (Producer2 != Hexagon::NoRegister) |
| 1044 | return Consumer == Producer; |
| 1045 | return 0; |
| 1046 | } |
| 1047 | |
| 1048 | bool HexagonMCInstrInfo::LoopNeedsPadding(MCInst const &MCB) { |
| 1049 | return ( |
| 1050 | (HexagonMCInstrInfo::isInnerLoop(MCI: MCB) && |
| 1051 | (HexagonMCInstrInfo::bundleSize(MCI: MCB) < HEXAGON_PACKET_INNER_SIZE)) || |
| 1052 | ((HexagonMCInstrInfo::isOuterLoop(MCI: MCB) && |
| 1053 | (HexagonMCInstrInfo::bundleSize(MCI: MCB) < HEXAGON_PACKET_OUTER_SIZE)))); |
| 1054 | } |
| 1055 | |
| 1056 | bool HexagonMCInstrInfo::IsABranchingInst(MCInstrInfo const &MCII, |
| 1057 | MCSubtargetInfo const &STI, |
| 1058 | MCInst const &I) { |
| 1059 | assert(!HexagonMCInstrInfo::isBundle(I)); |
| 1060 | MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, MCI: I); |
| 1061 | return (Desc.isBranch() || Desc.isCall() || Desc.isReturn()); |
| 1062 | } |
| 1063 | |