1 | //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass is used to make Pc relative loads of constants. |
10 | // For now, only Mips16 will use this. |
11 | // |
12 | // Loading constants inline is expensive on Mips16 and it's in general better |
13 | // to place the constant nearby in code space and then it can be loaded with a |
14 | // simple 16 bit load instruction. |
15 | // |
16 | // The constants can be not just numbers but addresses of functions and labels. |
17 | // This can be particularly helpful in static relocation mode for embedded |
18 | // non-linux targets. |
19 | // |
20 | //===----------------------------------------------------------------------===// |
21 | |
22 | #include "Mips.h" |
23 | #include "Mips16InstrInfo.h" |
24 | #include "MipsMachineFunction.h" |
25 | #include "MipsSubtarget.h" |
26 | #include "llvm/ADT/STLExtras.h" |
27 | #include "llvm/ADT/SmallSet.h" |
28 | #include "llvm/ADT/SmallVector.h" |
29 | #include "llvm/ADT/Statistic.h" |
30 | #include "llvm/ADT/StringRef.h" |
31 | #include "llvm/CodeGen/MachineBasicBlock.h" |
32 | #include "llvm/CodeGen/MachineConstantPool.h" |
33 | #include "llvm/CodeGen/MachineFunction.h" |
34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
35 | #include "llvm/CodeGen/MachineInstr.h" |
36 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
37 | #include "llvm/CodeGen/MachineOperand.h" |
38 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
39 | #include "llvm/Config/llvm-config.h" |
40 | #include "llvm/IR/Constants.h" |
41 | #include "llvm/IR/DataLayout.h" |
42 | #include "llvm/IR/DebugLoc.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/Type.h" |
45 | #include "llvm/Support/CommandLine.h" |
46 | #include "llvm/Support/Compiler.h" |
47 | #include "llvm/Support/Debug.h" |
48 | #include "llvm/Support/ErrorHandling.h" |
49 | #include "llvm/Support/Format.h" |
50 | #include "llvm/Support/raw_ostream.h" |
51 | #include <cassert> |
52 | #include <cstdint> |
53 | #include <iterator> |
54 | #include <vector> |
55 | |
56 | using namespace llvm; |
57 | |
58 | #define DEBUG_TYPE "mips-constant-islands" |
59 | |
60 | STATISTIC(NumCPEs, "Number of constpool entries" ); |
61 | STATISTIC(NumSplit, "Number of uncond branches inserted" ); |
62 | STATISTIC(NumCBrFixed, "Number of cond branches fixed" ); |
63 | STATISTIC(NumUBrFixed, "Number of uncond branches fixed" ); |
64 | |
65 | // FIXME: This option should be removed once it has received sufficient testing. |
66 | static cl::opt<bool> |
67 | AlignConstantIslands("mips-align-constant-islands" , cl::Hidden, cl::init(Val: true), |
68 | cl::desc("Align constant islands in code" )); |
69 | |
70 | // Rather than do make check tests with huge amounts of code, we force |
71 | // the test to use this amount. |
72 | static cl::opt<int> ConstantIslandsSmallOffset( |
73 | "mips-constant-islands-small-offset" , |
74 | cl::init(Val: 0), |
75 | cl::desc("Make small offsets be this amount for testing purposes" ), |
76 | cl::Hidden); |
77 | |
78 | // For testing purposes we tell it to not use relaxed load forms so that it |
79 | // will split blocks. |
80 | static cl::opt<bool> NoLoadRelaxation( |
81 | "mips-constant-islands-no-load-relaxation" , |
82 | cl::init(Val: false), |
83 | cl::desc("Don't relax loads to long loads - for testing purposes" ), |
84 | cl::Hidden); |
85 | |
86 | static unsigned int branchTargetOperand(MachineInstr *MI) { |
87 | switch (MI->getOpcode()) { |
88 | case Mips::Bimm16: |
89 | case Mips::BimmX16: |
90 | case Mips::Bteqz16: |
91 | case Mips::BteqzX16: |
92 | case Mips::Btnez16: |
93 | case Mips::BtnezX16: |
94 | case Mips::JalB16: |
95 | return 0; |
96 | case Mips::BeqzRxImm16: |
97 | case Mips::BeqzRxImmX16: |
98 | case Mips::BnezRxImm16: |
99 | case Mips::BnezRxImmX16: |
100 | return 1; |
101 | } |
102 | llvm_unreachable("Unknown branch type" ); |
103 | } |
104 | |
105 | static unsigned int longformBranchOpcode(unsigned int Opcode) { |
106 | switch (Opcode) { |
107 | case Mips::Bimm16: |
108 | case Mips::BimmX16: |
109 | return Mips::BimmX16; |
110 | case Mips::Bteqz16: |
111 | case Mips::BteqzX16: |
112 | return Mips::BteqzX16; |
113 | case Mips::Btnez16: |
114 | case Mips::BtnezX16: |
115 | return Mips::BtnezX16; |
116 | case Mips::JalB16: |
117 | return Mips::JalB16; |
118 | case Mips::BeqzRxImm16: |
119 | case Mips::BeqzRxImmX16: |
120 | return Mips::BeqzRxImmX16; |
121 | case Mips::BnezRxImm16: |
122 | case Mips::BnezRxImmX16: |
123 | return Mips::BnezRxImmX16; |
124 | } |
125 | llvm_unreachable("Unknown branch type" ); |
126 | } |
127 | |
128 | // FIXME: need to go through this whole constant islands port and check |
129 | // the math for branch ranges and clean this up and make some functions |
130 | // to calculate things that are done many times identically. |
131 | // Need to refactor some of the code to call this routine. |
132 | static unsigned int branchMaxOffsets(unsigned int Opcode) { |
133 | unsigned Bits, Scale; |
134 | switch (Opcode) { |
135 | case Mips::Bimm16: |
136 | Bits = 11; |
137 | Scale = 2; |
138 | break; |
139 | case Mips::BimmX16: |
140 | Bits = 16; |
141 | Scale = 2; |
142 | break; |
143 | case Mips::BeqzRxImm16: |
144 | Bits = 8; |
145 | Scale = 2; |
146 | break; |
147 | case Mips::BeqzRxImmX16: |
148 | Bits = 16; |
149 | Scale = 2; |
150 | break; |
151 | case Mips::BnezRxImm16: |
152 | Bits = 8; |
153 | Scale = 2; |
154 | break; |
155 | case Mips::BnezRxImmX16: |
156 | Bits = 16; |
157 | Scale = 2; |
158 | break; |
159 | case Mips::Bteqz16: |
160 | Bits = 8; |
161 | Scale = 2; |
162 | break; |
163 | case Mips::BteqzX16: |
164 | Bits = 16; |
165 | Scale = 2; |
166 | break; |
167 | case Mips::Btnez16: |
168 | Bits = 8; |
169 | Scale = 2; |
170 | break; |
171 | case Mips::BtnezX16: |
172 | Bits = 16; |
173 | Scale = 2; |
174 | break; |
175 | default: |
176 | llvm_unreachable("Unknown branch type" ); |
177 | } |
178 | unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; |
179 | return MaxOffs; |
180 | } |
181 | |
182 | namespace { |
183 | |
184 | using Iter = MachineBasicBlock::iterator; |
185 | using ReverseIter = MachineBasicBlock::reverse_iterator; |
186 | |
187 | /// MipsConstantIslands - Due to limited PC-relative displacements, Mips |
188 | /// requires constant pool entries to be scattered among the instructions |
189 | /// inside a function. To do this, it completely ignores the normal LLVM |
190 | /// constant pool; instead, it places constants wherever it feels like with |
191 | /// special instructions. |
192 | /// |
193 | /// The terminology used in this pass includes: |
194 | /// Islands - Clumps of constants placed in the function. |
195 | /// Water - Potential places where an island could be formed. |
196 | /// CPE - A constant pool entry that has been placed somewhere, which |
197 | /// tracks a list of users. |
198 | |
199 | class MipsConstantIslands : public MachineFunctionPass { |
200 | /// BasicBlockInfo - Information about the offset and size of a single |
201 | /// basic block. |
202 | struct BasicBlockInfo { |
203 | /// Offset - Distance from the beginning of the function to the beginning |
204 | /// of this basic block. |
205 | /// |
206 | /// Offsets are computed assuming worst case padding before an aligned |
207 | /// block. This means that subtracting basic block offsets always gives a |
208 | /// conservative estimate of the real distance which may be smaller. |
209 | /// |
210 | /// Because worst case padding is used, the computed offset of an aligned |
211 | /// block may not actually be aligned. |
212 | unsigned Offset = 0; |
213 | |
214 | /// Size - Size of the basic block in bytes. If the block contains |
215 | /// inline assembly, this is a worst case estimate. |
216 | /// |
217 | /// The size does not include any alignment padding whether from the |
218 | /// beginning of the block, or from an aligned jump table at the end. |
219 | unsigned Size = 0; |
220 | |
221 | BasicBlockInfo() = default; |
222 | |
223 | unsigned postOffset() const { return Offset + Size; } |
224 | }; |
225 | |
226 | std::vector<BasicBlockInfo> BBInfo; |
227 | |
228 | /// WaterList - A sorted list of basic blocks where islands could be placed |
229 | /// (i.e. blocks that don't fall through to the following block, due |
230 | /// to a return, unreachable, or unconditional branch). |
231 | std::vector<MachineBasicBlock*> WaterList; |
232 | |
233 | /// NewWaterList - The subset of WaterList that was created since the |
234 | /// previous iteration by inserting unconditional branches. |
235 | SmallSet<MachineBasicBlock*, 4> NewWaterList; |
236 | |
237 | using water_iterator = std::vector<MachineBasicBlock *>::iterator; |
238 | |
239 | /// CPUser - One user of a constant pool, keeping the machine instruction |
240 | /// pointer, the constant pool being referenced, and the max displacement |
241 | /// allowed from the instruction to the CP. The HighWaterMark records the |
242 | /// highest basic block where a new CPEntry can be placed. To ensure this |
243 | /// pass terminates, the CP entries are initially placed at the end of the |
244 | /// function and then move monotonically to lower addresses. The |
245 | /// exception to this rule is when the current CP entry for a particular |
246 | /// CPUser is out of range, but there is another CP entry for the same |
247 | /// constant value in range. We want to use the existing in-range CP |
248 | /// entry, but if it later moves out of range, the search for new water |
249 | /// should resume where it left off. The HighWaterMark is used to record |
250 | /// that point. |
251 | struct CPUser { |
252 | MachineInstr *MI; |
253 | MachineInstr *CPEMI; |
254 | MachineBasicBlock *HighWaterMark; |
255 | |
256 | private: |
257 | unsigned MaxDisp; |
258 | unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions |
259 | // with different displacements |
260 | unsigned LongFormOpcode; |
261 | |
262 | public: |
263 | bool NegOk; |
264 | |
265 | CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, |
266 | bool neg, |
267 | unsigned longformmaxdisp, unsigned longformopcode) |
268 | : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), |
269 | LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode), |
270 | NegOk(neg){ |
271 | HighWaterMark = CPEMI->getParent(); |
272 | } |
273 | |
274 | /// getMaxDisp - Returns the maximum displacement supported by MI. |
275 | unsigned getMaxDisp() const { |
276 | unsigned xMaxDisp = ConstantIslandsSmallOffset? |
277 | ConstantIslandsSmallOffset: MaxDisp; |
278 | return xMaxDisp; |
279 | } |
280 | |
281 | void setMaxDisp(unsigned val) { |
282 | MaxDisp = val; |
283 | } |
284 | |
285 | unsigned getLongFormMaxDisp() const { |
286 | return LongFormMaxDisp; |
287 | } |
288 | |
289 | unsigned getLongFormOpcode() const { |
290 | return LongFormOpcode; |
291 | } |
292 | }; |
293 | |
294 | /// CPUsers - Keep track of all of the machine instructions that use various |
295 | /// constant pools and their max displacement. |
296 | std::vector<CPUser> CPUsers; |
297 | |
298 | /// CPEntry - One per constant pool entry, keeping the machine instruction |
299 | /// pointer, the constpool index, and the number of CPUser's which |
300 | /// reference this entry. |
301 | struct CPEntry { |
302 | MachineInstr *CPEMI; |
303 | unsigned CPI; |
304 | unsigned RefCount; |
305 | |
306 | CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) |
307 | : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} |
308 | }; |
309 | |
310 | /// CPEntries - Keep track of all of the constant pool entry machine |
311 | /// instructions. For each original constpool index (i.e. those that |
312 | /// existed upon entry to this pass), it keeps a vector of entries. |
313 | /// Original elements are cloned as we go along; the clones are |
314 | /// put in the vector of the original element, but have distinct CPIs. |
315 | std::vector<std::vector<CPEntry>> CPEntries; |
316 | |
317 | /// ImmBranch - One per immediate branch, keeping the machine instruction |
318 | /// pointer, conditional or unconditional, the max displacement, |
319 | /// and (if isCond is true) the corresponding unconditional branch |
320 | /// opcode. |
321 | struct ImmBranch { |
322 | MachineInstr *MI; |
323 | unsigned MaxDisp : 31; |
324 | LLVM_PREFERRED_TYPE(bool) |
325 | unsigned isCond : 1; |
326 | int UncondBr; |
327 | |
328 | ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) |
329 | : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} |
330 | }; |
331 | |
332 | /// ImmBranches - Keep track of all the immediate branch instructions. |
333 | /// |
334 | std::vector<ImmBranch> ImmBranches; |
335 | |
336 | /// HasFarJump - True if any far jump instruction has been emitted during |
337 | /// the branch fix up pass. |
338 | bool HasFarJump; |
339 | |
340 | const MipsSubtarget *STI = nullptr; |
341 | const Mips16InstrInfo *TII; |
342 | MipsFunctionInfo *MFI; |
343 | MachineFunction *MF = nullptr; |
344 | MachineConstantPool *MCP = nullptr; |
345 | |
346 | unsigned PICLabelUId; |
347 | bool PrescannedForConstants = false; |
348 | |
349 | void initPICLabelUId(unsigned UId) { |
350 | PICLabelUId = UId; |
351 | } |
352 | |
353 | unsigned createPICLabelUId() { |
354 | return PICLabelUId++; |
355 | } |
356 | |
357 | public: |
358 | static char ID; |
359 | |
360 | MipsConstantIslands() : MachineFunctionPass(ID) {} |
361 | |
362 | StringRef getPassName() const override { return "Mips Constant Islands" ; } |
363 | |
364 | bool runOnMachineFunction(MachineFunction &F) override; |
365 | |
366 | MachineFunctionProperties getRequiredProperties() const override { |
367 | return MachineFunctionProperties().setNoVRegs(); |
368 | } |
369 | |
370 | void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); |
371 | CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); |
372 | Align getCPEAlign(const MachineInstr &CPEMI); |
373 | void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); |
374 | unsigned getOffsetOf(MachineInstr *MI) const; |
375 | unsigned getUserOffset(CPUser&) const; |
376 | void dumpBBs(); |
377 | |
378 | bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, |
379 | unsigned Disp, bool NegativeOK); |
380 | bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, |
381 | const CPUser &U); |
382 | |
383 | void computeBlockSize(MachineBasicBlock *MBB); |
384 | MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); |
385 | void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); |
386 | void adjustBBOffsetsAfter(MachineBasicBlock *BB); |
387 | bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); |
388 | int findInRangeCPEntry(CPUser& U, unsigned UserOffset); |
389 | int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset); |
390 | bool findAvailableWater(CPUser&U, unsigned UserOffset, |
391 | water_iterator &WaterIter); |
392 | void createNewWater(unsigned CPUserIndex, unsigned UserOffset, |
393 | MachineBasicBlock *&NewMBB); |
394 | bool handleConstantPoolUser(unsigned CPUserIndex); |
395 | void removeDeadCPEMI(MachineInstr *CPEMI); |
396 | bool removeUnusedCPEntries(); |
397 | bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, |
398 | MachineInstr *CPEMI, unsigned Disp, bool NegOk, |
399 | bool DoDump = false); |
400 | bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, |
401 | CPUser &U, unsigned &Growth); |
402 | bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); |
403 | bool fixupImmediateBr(ImmBranch &Br); |
404 | bool fixupConditionalBr(ImmBranch &Br); |
405 | bool fixupUnconditionalBr(ImmBranch &Br); |
406 | |
407 | void prescanForConstants(); |
408 | }; |
409 | |
410 | } // end anonymous namespace |
411 | |
412 | char MipsConstantIslands::ID = 0; |
413 | |
414 | bool MipsConstantIslands::isOffsetInRange |
415 | (unsigned UserOffset, unsigned TrialOffset, |
416 | const CPUser &U) { |
417 | return isOffsetInRange(UserOffset, TrialOffset, |
418 | Disp: U.getMaxDisp(), NegativeOK: U.NegOk); |
419 | } |
420 | |
421 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
422 | /// print block size and offset information - debugging |
423 | LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() { |
424 | for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { |
425 | const BasicBlockInfo &BBI = BBInfo[J]; |
426 | dbgs() << format("%08x %bb.%u\t" , BBI.Offset, J) |
427 | << format(" size=%#x\n" , BBInfo[J].Size); |
428 | } |
429 | } |
430 | #endif |
431 | |
432 | bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) { |
433 | // The intention is for this to be a mips16 only pass for now |
434 | // FIXME: |
435 | MF = &mf; |
436 | MCP = mf.getConstantPool(); |
437 | STI = &mf.getSubtarget<MipsSubtarget>(); |
438 | LLVM_DEBUG(dbgs() << "constant island machine function " |
439 | << "\n" ); |
440 | if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) { |
441 | return false; |
442 | } |
443 | TII = (const Mips16InstrInfo *)STI->getInstrInfo(); |
444 | MFI = MF->getInfo<MipsFunctionInfo>(); |
445 | LLVM_DEBUG(dbgs() << "constant island processing " |
446 | << "\n" ); |
447 | // |
448 | // will need to make predermination if there is any constants we need to |
449 | // put in constant islands. TBD. |
450 | // |
451 | if (!PrescannedForConstants) prescanForConstants(); |
452 | |
453 | HasFarJump = false; |
454 | // This pass invalidates liveness information when it splits basic blocks. |
455 | MF->getRegInfo().invalidateLiveness(); |
456 | |
457 | // Renumber all of the machine basic blocks in the function, guaranteeing that |
458 | // the numbers agree with the position of the block in the function. |
459 | MF->RenumberBlocks(); |
460 | |
461 | bool MadeChange = false; |
462 | |
463 | // Perform the initial placement of the constant pool entries. To start with, |
464 | // we put them all at the end of the function. |
465 | std::vector<MachineInstr*> CPEMIs; |
466 | if (!MCP->isEmpty()) |
467 | doInitialPlacement(CPEMIs); |
468 | |
469 | /// The next UID to take is the first unused one. |
470 | initPICLabelUId(UId: CPEMIs.size()); |
471 | |
472 | // Do the initial scan of the function, building up information about the |
473 | // sizes of each block, the location of all the water, and finding all of the |
474 | // constant pool users. |
475 | initializeFunctionInfo(CPEMIs); |
476 | CPEMIs.clear(); |
477 | LLVM_DEBUG(dumpBBs()); |
478 | |
479 | /// Remove dead constant pool entries. |
480 | MadeChange |= removeUnusedCPEntries(); |
481 | |
482 | // Iteratively place constant pool entries and fix up branches until there |
483 | // is no change. |
484 | unsigned NoCPIters = 0, NoBRIters = 0; |
485 | (void)NoBRIters; |
486 | while (true) { |
487 | LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); |
488 | bool CPChange = false; |
489 | for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) |
490 | CPChange |= handleConstantPoolUser(CPUserIndex: i); |
491 | if (CPChange && ++NoCPIters > 30) |
492 | report_fatal_error(reason: "Constant Island pass failed to converge!" ); |
493 | LLVM_DEBUG(dumpBBs()); |
494 | |
495 | // Clear NewWaterList now. If we split a block for branches, it should |
496 | // appear as "new water" for the next iteration of constant pool placement. |
497 | NewWaterList.clear(); |
498 | |
499 | LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); |
500 | bool BRChange = false; |
501 | for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) |
502 | BRChange |= fixupImmediateBr(Br&: ImmBranches[i]); |
503 | if (BRChange && ++NoBRIters > 30) |
504 | report_fatal_error(reason: "Branch Fix Up pass failed to converge!" ); |
505 | LLVM_DEBUG(dumpBBs()); |
506 | if (!CPChange && !BRChange) |
507 | break; |
508 | MadeChange = true; |
509 | } |
510 | |
511 | LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); |
512 | |
513 | BBInfo.clear(); |
514 | WaterList.clear(); |
515 | CPUsers.clear(); |
516 | CPEntries.clear(); |
517 | ImmBranches.clear(); |
518 | return MadeChange; |
519 | } |
520 | |
521 | /// doInitialPlacement - Perform the initial placement of the constant pool |
522 | /// entries. To start with, we put them all at the end of the function. |
523 | void |
524 | MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { |
525 | // Create the basic block to hold the CPE's. |
526 | MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); |
527 | MF->push_back(MBB: BB); |
528 | |
529 | // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). |
530 | const Align MaxAlign = MCP->getConstantPoolAlign(); |
531 | |
532 | // Mark the basic block as required by the const-pool. |
533 | // If AlignConstantIslands isn't set, use 4-byte alignment for everything. |
534 | BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4)); |
535 | |
536 | // The function needs to be as aligned as the basic blocks. The linker may |
537 | // move functions around based on their alignment. |
538 | MF->ensureAlignment(A: BB->getAlignment()); |
539 | |
540 | // Order the entries in BB by descending alignment. That ensures correct |
541 | // alignment of all entries as long as BB is sufficiently aligned. Keep |
542 | // track of the insertion point for each alignment. We are going to bucket |
543 | // sort the entries as they are created. |
544 | SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(A: MaxAlign) + 1, |
545 | BB->end()); |
546 | |
547 | // Add all of the constants from the constant pool to the end block, use an |
548 | // identity mapping of CPI's to CPE's. |
549 | const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); |
550 | |
551 | const DataLayout &TD = MF->getDataLayout(); |
552 | for (unsigned i = 0, e = CPs.size(); i != e; ++i) { |
553 | unsigned Size = CPs[i].getSizeInBytes(DL: TD); |
554 | assert(Size >= 4 && "Too small constant pool entry" ); |
555 | Align Alignment = CPs[i].getAlign(); |
556 | // Verify that all constant pool entries are a multiple of their alignment. |
557 | // If not, we would have to pad them out so that instructions stay aligned. |
558 | assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!" ); |
559 | |
560 | // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. |
561 | unsigned LogAlign = Log2(A: Alignment); |
562 | MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; |
563 | |
564 | MachineInstr *CPEMI = |
565 | BuildMI(BB&: *BB, I: InsAt, MIMD: DebugLoc(), MCID: TII->get(Opcode: Mips::CONSTPOOL_ENTRY)) |
566 | .addImm(Val: i).addConstantPoolIndex(Idx: i).addImm(Val: Size); |
567 | |
568 | CPEMIs.push_back(x: CPEMI); |
569 | |
570 | // Ensure that future entries with higher alignment get inserted before |
571 | // CPEMI. This is bucket sort with iterators. |
572 | for (unsigned a = LogAlign + 1; a <= Log2(A: MaxAlign); ++a) |
573 | if (InsPoint[a] == InsAt) |
574 | InsPoint[a] = CPEMI; |
575 | // Add a new CPEntry, but no corresponding CPUser yet. |
576 | CPEntries.emplace_back(args: 1, args: CPEntry(CPEMI, i)); |
577 | ++NumCPEs; |
578 | LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " |
579 | << Size << ", align = " << Alignment.value() << '\n'); |
580 | } |
581 | LLVM_DEBUG(BB->dump()); |
582 | } |
583 | |
584 | /// BBHasFallthrough - Return true if the specified basic block can fallthrough |
585 | /// into the block immediately after it. |
586 | static bool BBHasFallthrough(MachineBasicBlock *MBB) { |
587 | // Get the next machine basic block in the function. |
588 | MachineFunction::iterator MBBI = MBB->getIterator(); |
589 | // Can't fall off end of function. |
590 | if (std::next(x: MBBI) == MBB->getParent()->end()) |
591 | return false; |
592 | |
593 | MachineBasicBlock *NextBB = &*std::next(x: MBBI); |
594 | return llvm::is_contained(Range: MBB->successors(), Element: NextBB); |
595 | } |
596 | |
597 | /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, |
598 | /// look up the corresponding CPEntry. |
599 | MipsConstantIslands::CPEntry |
600 | *MipsConstantIslands::findConstPoolEntry(unsigned CPI, |
601 | const MachineInstr *CPEMI) { |
602 | std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
603 | // Number of entries per constpool index should be small, just do a |
604 | // linear search. |
605 | for (CPEntry &CPE : CPEs) { |
606 | if (CPE.CPEMI == CPEMI) |
607 | return &CPE; |
608 | } |
609 | return nullptr; |
610 | } |
611 | |
612 | /// getCPEAlign - Returns the required alignment of the constant pool entry |
613 | /// represented by CPEMI. Alignment is measured in log2(bytes) units. |
614 | Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { |
615 | assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY); |
616 | |
617 | // Everything is 4-byte aligned unless AlignConstantIslands is set. |
618 | if (!AlignConstantIslands) |
619 | return Align(4); |
620 | |
621 | unsigned CPI = CPEMI.getOperand(i: 1).getIndex(); |
622 | assert(CPI < MCP->getConstants().size() && "Invalid constant pool index." ); |
623 | return MCP->getConstants()[CPI].getAlign(); |
624 | } |
625 | |
626 | /// initializeFunctionInfo - Do the initial scan of the function, building up |
627 | /// information about the sizes of each block, the location of all the water, |
628 | /// and finding all of the constant pool users. |
629 | void MipsConstantIslands:: |
630 | initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { |
631 | BBInfo.clear(); |
632 | BBInfo.resize(new_size: MF->getNumBlockIDs()); |
633 | |
634 | // First thing, compute the size of all basic blocks, and see if the function |
635 | // has any inline assembly in it. If so, we have to be conservative about |
636 | // alignment assumptions, as we don't know for sure the size of any |
637 | // instructions in the inline assembly. |
638 | for (MachineBasicBlock &MBB : *MF) |
639 | computeBlockSize(MBB: &MBB); |
640 | |
641 | // Compute block offsets. |
642 | adjustBBOffsetsAfter(BB: &MF->front()); |
643 | |
644 | // Now go back through the instructions and build up our data structures. |
645 | for (MachineBasicBlock &MBB : *MF) { |
646 | // If this block doesn't fall through into the next MBB, then this is |
647 | // 'water' that a constant pool island could be placed. |
648 | if (!BBHasFallthrough(MBB: &MBB)) |
649 | WaterList.push_back(x: &MBB); |
650 | for (MachineInstr &MI : MBB) { |
651 | if (MI.isDebugInstr()) |
652 | continue; |
653 | |
654 | int Opc = MI.getOpcode(); |
655 | if (MI.isBranch()) { |
656 | bool isCond = false; |
657 | unsigned Bits = 0; |
658 | unsigned Scale = 1; |
659 | int UOpc = Opc; |
660 | switch (Opc) { |
661 | default: |
662 | continue; // Ignore other branches for now |
663 | case Mips::Bimm16: |
664 | Bits = 11; |
665 | Scale = 2; |
666 | isCond = false; |
667 | break; |
668 | case Mips::BimmX16: |
669 | Bits = 16; |
670 | Scale = 2; |
671 | isCond = false; |
672 | break; |
673 | case Mips::BeqzRxImm16: |
674 | UOpc=Mips::Bimm16; |
675 | Bits = 8; |
676 | Scale = 2; |
677 | isCond = true; |
678 | break; |
679 | case Mips::BeqzRxImmX16: |
680 | UOpc=Mips::Bimm16; |
681 | Bits = 16; |
682 | Scale = 2; |
683 | isCond = true; |
684 | break; |
685 | case Mips::BnezRxImm16: |
686 | UOpc=Mips::Bimm16; |
687 | Bits = 8; |
688 | Scale = 2; |
689 | isCond = true; |
690 | break; |
691 | case Mips::BnezRxImmX16: |
692 | UOpc=Mips::Bimm16; |
693 | Bits = 16; |
694 | Scale = 2; |
695 | isCond = true; |
696 | break; |
697 | case Mips::Bteqz16: |
698 | UOpc=Mips::Bimm16; |
699 | Bits = 8; |
700 | Scale = 2; |
701 | isCond = true; |
702 | break; |
703 | case Mips::BteqzX16: |
704 | UOpc=Mips::Bimm16; |
705 | Bits = 16; |
706 | Scale = 2; |
707 | isCond = true; |
708 | break; |
709 | case Mips::Btnez16: |
710 | UOpc=Mips::Bimm16; |
711 | Bits = 8; |
712 | Scale = 2; |
713 | isCond = true; |
714 | break; |
715 | case Mips::BtnezX16: |
716 | UOpc=Mips::Bimm16; |
717 | Bits = 16; |
718 | Scale = 2; |
719 | isCond = true; |
720 | break; |
721 | } |
722 | // Record this immediate branch. |
723 | unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; |
724 | ImmBranches.push_back(x: ImmBranch(&MI, MaxOffs, isCond, UOpc)); |
725 | } |
726 | |
727 | if (Opc == Mips::CONSTPOOL_ENTRY) |
728 | continue; |
729 | |
730 | // Scan the instructions for constant pool operands. |
731 | for (const MachineOperand &MO : MI.operands()) |
732 | if (MO.isCPI()) { |
733 | // We found one. The addressing mode tells us the max displacement |
734 | // from the PC that this instruction permits. |
735 | |
736 | // Basic size info comes from the TSFlags field. |
737 | unsigned Bits = 0; |
738 | unsigned Scale = 1; |
739 | bool NegOk = false; |
740 | unsigned LongFormBits = 0; |
741 | unsigned LongFormScale = 0; |
742 | unsigned LongFormOpcode = 0; |
743 | switch (Opc) { |
744 | default: |
745 | llvm_unreachable("Unknown addressing mode for CP reference!" ); |
746 | case Mips::LwRxPcTcp16: |
747 | Bits = 8; |
748 | Scale = 4; |
749 | LongFormOpcode = Mips::LwRxPcTcpX16; |
750 | LongFormBits = 14; |
751 | LongFormScale = 1; |
752 | break; |
753 | case Mips::LwRxPcTcpX16: |
754 | Bits = 14; |
755 | Scale = 1; |
756 | NegOk = true; |
757 | break; |
758 | } |
759 | // Remember that this is a user of a CP entry. |
760 | unsigned CPI = MO.getIndex(); |
761 | MachineInstr *CPEMI = CPEMIs[CPI]; |
762 | unsigned MaxOffs = ((1 << Bits)-1) * Scale; |
763 | unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale; |
764 | CPUsers.push_back(x: CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs, |
765 | LongFormOpcode)); |
766 | |
767 | // Increment corresponding CPEntry reference count. |
768 | CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); |
769 | assert(CPE && "Cannot find a corresponding CPEntry!" ); |
770 | CPE->RefCount++; |
771 | |
772 | // Instructions can only use one CP entry, don't bother scanning the |
773 | // rest of the operands. |
774 | break; |
775 | } |
776 | } |
777 | } |
778 | } |
779 | |
780 | /// computeBlockSize - Compute the size and some alignment information for MBB. |
781 | /// This function updates BBInfo directly. |
782 | void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { |
783 | BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; |
784 | BBI.Size = 0; |
785 | |
786 | for (const MachineInstr &MI : *MBB) |
787 | BBI.Size += TII->getInstSizeInBytes(MI); |
788 | } |
789 | |
790 | /// getOffsetOf - Return the current offset of the specified machine instruction |
791 | /// from the start of the function. This offset changes as stuff is moved |
792 | /// around inside the function. |
793 | unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const { |
794 | MachineBasicBlock *MBB = MI->getParent(); |
795 | |
796 | // The offset is composed of two things: the sum of the sizes of all MBB's |
797 | // before this instruction's block, and the offset from the start of the block |
798 | // it is in. |
799 | unsigned Offset = BBInfo[MBB->getNumber()].Offset; |
800 | |
801 | // Sum instructions before MI in MBB. |
802 | for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { |
803 | assert(I != MBB->end() && "Didn't find MI in its own basic block?" ); |
804 | Offset += TII->getInstSizeInBytes(MI: *I); |
805 | } |
806 | return Offset; |
807 | } |
808 | |
809 | /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB |
810 | /// ID. |
811 | static bool CompareMBBNumbers(const MachineBasicBlock *LHS, |
812 | const MachineBasicBlock *RHS) { |
813 | return LHS->getNumber() < RHS->getNumber(); |
814 | } |
815 | |
816 | /// updateForInsertedWaterBlock - When a block is newly inserted into the |
817 | /// machine function, it upsets all of the block numbers. Renumber the blocks |
818 | /// and update the arrays that parallel this numbering. |
819 | void MipsConstantIslands::updateForInsertedWaterBlock |
820 | (MachineBasicBlock *NewBB) { |
821 | // Renumber the MBB's to keep them consecutive. |
822 | NewBB->getParent()->RenumberBlocks(MBBFrom: NewBB); |
823 | |
824 | // Insert an entry into BBInfo to align it properly with the (newly |
825 | // renumbered) block numbers. |
826 | BBInfo.insert(position: BBInfo.begin() + NewBB->getNumber(), x: BasicBlockInfo()); |
827 | |
828 | // Next, update WaterList. Specifically, we need to add NewMBB as having |
829 | // available water after it. |
830 | water_iterator IP = llvm::lower_bound(Range&: WaterList, Value&: NewBB, C: CompareMBBNumbers); |
831 | WaterList.insert(position: IP, x: NewBB); |
832 | } |
833 | |
834 | unsigned MipsConstantIslands::getUserOffset(CPUser &U) const { |
835 | return getOffsetOf(MI: U.MI); |
836 | } |
837 | |
838 | /// Split the basic block containing MI into two blocks, which are joined by |
839 | /// an unconditional branch. Update data structures and renumber blocks to |
840 | /// account for this change and returns the newly created block. |
841 | MachineBasicBlock * |
842 | MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { |
843 | MachineBasicBlock *OrigBB = MI.getParent(); |
844 | |
845 | // Create a new MBB for the code after the OrigBB. |
846 | MachineBasicBlock *NewBB = |
847 | MF->CreateMachineBasicBlock(BB: OrigBB->getBasicBlock()); |
848 | MachineFunction::iterator MBBI = ++OrigBB->getIterator(); |
849 | MF->insert(MBBI, MBB: NewBB); |
850 | |
851 | // Splice the instructions starting with MI over to NewBB. |
852 | NewBB->splice(Where: NewBB->end(), Other: OrigBB, From: MI, To: OrigBB->end()); |
853 | |
854 | // Add an unconditional branch from OrigBB to NewBB. |
855 | // Note the new unconditional branch is not being recorded. |
856 | // There doesn't seem to be meaningful DebugInfo available; this doesn't |
857 | // correspond to anything in the source. |
858 | BuildMI(BB: OrigBB, MIMD: DebugLoc(), MCID: TII->get(Opcode: Mips::Bimm16)).addMBB(MBB: NewBB); |
859 | ++NumSplit; |
860 | |
861 | // Update the CFG. All succs of OrigBB are now succs of NewBB. |
862 | NewBB->transferSuccessors(FromMBB: OrigBB); |
863 | |
864 | // OrigBB branches to NewBB. |
865 | OrigBB->addSuccessor(Succ: NewBB); |
866 | |
867 | // Update internal data structures to account for the newly inserted MBB. |
868 | // This is almost the same as updateForInsertedWaterBlock, except that |
869 | // the Water goes after OrigBB, not NewBB. |
870 | MF->RenumberBlocks(MBBFrom: NewBB); |
871 | |
872 | // Insert an entry into BBInfo to align it properly with the (newly |
873 | // renumbered) block numbers. |
874 | BBInfo.insert(position: BBInfo.begin() + NewBB->getNumber(), x: BasicBlockInfo()); |
875 | |
876 | // Next, update WaterList. Specifically, we need to add OrigMBB as having |
877 | // available water after it (but not if it's already there, which happens |
878 | // when splitting before a conditional branch that is followed by an |
879 | // unconditional branch - in that case we want to insert NewBB). |
880 | water_iterator IP = llvm::lower_bound(Range&: WaterList, Value&: OrigBB, C: CompareMBBNumbers); |
881 | MachineBasicBlock* WaterBB = *IP; |
882 | if (WaterBB == OrigBB) |
883 | WaterList.insert(position: std::next(x: IP), x: NewBB); |
884 | else |
885 | WaterList.insert(position: IP, x: OrigBB); |
886 | NewWaterList.insert(Ptr: OrigBB); |
887 | |
888 | // Figure out how large the OrigBB is. As the first half of the original |
889 | // block, it cannot contain a tablejump. The size includes |
890 | // the new jump we added. (It should be possible to do this without |
891 | // recounting everything, but it's very confusing, and this is rarely |
892 | // executed.) |
893 | computeBlockSize(MBB: OrigBB); |
894 | |
895 | // Figure out how large the NewMBB is. As the second half of the original |
896 | // block, it may contain a tablejump. |
897 | computeBlockSize(MBB: NewBB); |
898 | |
899 | // All BBOffsets following these blocks must be modified. |
900 | adjustBBOffsetsAfter(BB: OrigBB); |
901 | |
902 | return NewBB; |
903 | } |
904 | |
905 | /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool |
906 | /// reference) is within MaxDisp of TrialOffset (a proposed location of a |
907 | /// constant pool entry). |
908 | bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset, |
909 | unsigned TrialOffset, unsigned MaxDisp, |
910 | bool NegativeOK) { |
911 | if (UserOffset <= TrialOffset) { |
912 | // User before the Trial. |
913 | if (TrialOffset - UserOffset <= MaxDisp) |
914 | return true; |
915 | } else if (NegativeOK) { |
916 | if (UserOffset - TrialOffset <= MaxDisp) |
917 | return true; |
918 | } |
919 | return false; |
920 | } |
921 | |
922 | /// isWaterInRange - Returns true if a CPE placed after the specified |
923 | /// Water (a basic block) will be in range for the specific MI. |
924 | /// |
925 | /// Compute how much the function will grow by inserting a CPE after Water. |
926 | bool MipsConstantIslands::isWaterInRange(unsigned UserOffset, |
927 | MachineBasicBlock* Water, CPUser &U, |
928 | unsigned &Growth) { |
929 | unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); |
930 | unsigned NextBlockOffset; |
931 | Align NextBlockAlignment; |
932 | MachineFunction::const_iterator NextBlock = ++Water->getIterator(); |
933 | if (NextBlock == MF->end()) { |
934 | NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); |
935 | NextBlockAlignment = Align(1); |
936 | } else { |
937 | NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; |
938 | NextBlockAlignment = NextBlock->getAlignment(); |
939 | } |
940 | unsigned Size = U.CPEMI->getOperand(i: 2).getImm(); |
941 | unsigned CPEEnd = CPEOffset + Size; |
942 | |
943 | // The CPE may be able to hide in the alignment padding before the next |
944 | // block. It may also cause more padding to be required if it is more aligned |
945 | // that the next block. |
946 | if (CPEEnd > NextBlockOffset) { |
947 | Growth = CPEEnd - NextBlockOffset; |
948 | // Compute the padding that would go at the end of the CPE to align the next |
949 | // block. |
950 | Growth += offsetToAlignment(Value: CPEEnd, Alignment: NextBlockAlignment); |
951 | |
952 | // If the CPE is to be inserted before the instruction, that will raise |
953 | // the offset of the instruction. Also account for unknown alignment padding |
954 | // in blocks between CPE and the user. |
955 | if (CPEOffset < UserOffset) |
956 | UserOffset += Growth; |
957 | } else |
958 | // CPE fits in existing padding. |
959 | Growth = 0; |
960 | |
961 | return isOffsetInRange(UserOffset, TrialOffset: CPEOffset, U); |
962 | } |
963 | |
964 | /// isCPEntryInRange - Returns true if the distance between specific MI and |
965 | /// specific ConstPool entry instruction can fit in MI's displacement field. |
966 | bool MipsConstantIslands::isCPEntryInRange |
967 | (MachineInstr *MI, unsigned UserOffset, |
968 | MachineInstr *CPEMI, unsigned MaxDisp, |
969 | bool NegOk, bool DoDump) { |
970 | unsigned CPEOffset = getOffsetOf(MI: CPEMI); |
971 | |
972 | if (DoDump) { |
973 | LLVM_DEBUG({ |
974 | unsigned Block = MI->getParent()->getNumber(); |
975 | const BasicBlockInfo &BBI = BBInfo[Block]; |
976 | dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() |
977 | << " max delta=" << MaxDisp |
978 | << format(" insn address=%#x" , UserOffset) << " in " |
979 | << printMBBReference(*MI->getParent()) << ": " |
980 | << format("%#x-%x\t" , BBI.Offset, BBI.postOffset()) << *MI |
981 | << format("CPE address=%#x offset=%+d: " , CPEOffset, |
982 | int(CPEOffset - UserOffset)); |
983 | }); |
984 | } |
985 | |
986 | return isOffsetInRange(UserOffset, TrialOffset: CPEOffset, MaxDisp, NegativeOK: NegOk); |
987 | } |
988 | |
989 | #ifndef NDEBUG |
990 | /// BBIsJumpedOver - Return true of the specified basic block's only predecessor |
991 | /// unconditionally branches to its only successor. |
992 | static bool BBIsJumpedOver(MachineBasicBlock *MBB) { |
993 | if (MBB->pred_size() != 1 || MBB->succ_size() != 1) |
994 | return false; |
995 | MachineBasicBlock *Succ = *MBB->succ_begin(); |
996 | MachineBasicBlock *Pred = *MBB->pred_begin(); |
997 | MachineInstr *PredMI = &Pred->back(); |
998 | if (PredMI->getOpcode() == Mips::Bimm16) |
999 | return PredMI->getOperand(0).getMBB() == Succ; |
1000 | return false; |
1001 | } |
1002 | #endif |
1003 | |
1004 | void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { |
1005 | unsigned BBNum = BB->getNumber(); |
1006 | for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { |
1007 | // Get the offset and known bits at the end of the layout predecessor. |
1008 | // Include the alignment of the current block. |
1009 | unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size; |
1010 | BBInfo[i].Offset = Offset; |
1011 | } |
1012 | } |
1013 | |
1014 | /// decrementCPEReferenceCount - find the constant pool entry with index CPI |
1015 | /// and instruction CPEMI, and decrement its refcount. If the refcount |
1016 | /// becomes 0 remove the entry and instruction. Returns true if we removed |
1017 | /// the entry, false if we didn't. |
1018 | bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI, |
1019 | MachineInstr *CPEMI) { |
1020 | // Find the old entry. Eliminate it if it is no longer used. |
1021 | CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); |
1022 | assert(CPE && "Unexpected!" ); |
1023 | if (--CPE->RefCount == 0) { |
1024 | removeDeadCPEMI(CPEMI); |
1025 | CPE->CPEMI = nullptr; |
1026 | --NumCPEs; |
1027 | return true; |
1028 | } |
1029 | return false; |
1030 | } |
1031 | |
1032 | /// LookForCPEntryInRange - see if the currently referenced CPE is in range; |
1033 | /// if not, see if an in-range clone of the CPE is in range, and if so, |
1034 | /// change the data structures so the user references the clone. Returns: |
1035 | /// 0 = no existing entry found |
1036 | /// 1 = entry found, and there were no code insertions or deletions |
1037 | /// 2 = entry found, and there were code insertions or deletions |
1038 | int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) |
1039 | { |
1040 | MachineInstr *UserMI = U.MI; |
1041 | MachineInstr *CPEMI = U.CPEMI; |
1042 | |
1043 | // Check to see if the CPE is already in-range. |
1044 | if (isCPEntryInRange(MI: UserMI, UserOffset, CPEMI, MaxDisp: U.getMaxDisp(), NegOk: U.NegOk, |
1045 | DoDump: true)) { |
1046 | LLVM_DEBUG(dbgs() << "In range\n" ); |
1047 | return 1; |
1048 | } |
1049 | |
1050 | // No. Look for previously created clones of the CPE that are in range. |
1051 | unsigned CPI = CPEMI->getOperand(i: 1).getIndex(); |
1052 | std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
1053 | for (CPEntry &CPE : CPEs) { |
1054 | // We already tried this one |
1055 | if (CPE.CPEMI == CPEMI) |
1056 | continue; |
1057 | // Removing CPEs can leave empty entries, skip |
1058 | if (CPE.CPEMI == nullptr) |
1059 | continue; |
1060 | if (isCPEntryInRange(MI: UserMI, UserOffset, CPEMI: CPE.CPEMI, MaxDisp: U.getMaxDisp(), |
1061 | NegOk: U.NegOk)) { |
1062 | LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI |
1063 | << "\n" ); |
1064 | // Point the CPUser node to the replacement |
1065 | U.CPEMI = CPE.CPEMI; |
1066 | // Change the CPI in the instruction operand to refer to the clone. |
1067 | for (MachineOperand &MO : UserMI->operands()) |
1068 | if (MO.isCPI()) { |
1069 | MO.setIndex(CPE.CPI); |
1070 | break; |
1071 | } |
1072 | // Adjust the refcount of the clone... |
1073 | CPE.RefCount++; |
1074 | // ...and the original. If we didn't remove the old entry, none of the |
1075 | // addresses changed, so we don't need another pass. |
1076 | return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; |
1077 | } |
1078 | } |
1079 | return 0; |
1080 | } |
1081 | |
1082 | /// LookForCPEntryInRange - see if the currently referenced CPE is in range; |
1083 | /// This version checks if the longer form of the instruction can be used to |
1084 | /// to satisfy things. |
1085 | /// if not, see if an in-range clone of the CPE is in range, and if so, |
1086 | /// change the data structures so the user references the clone. Returns: |
1087 | /// 0 = no existing entry found |
1088 | /// 1 = entry found, and there were no code insertions or deletions |
1089 | /// 2 = entry found, and there were code insertions or deletions |
1090 | int MipsConstantIslands::findLongFormInRangeCPEntry |
1091 | (CPUser& U, unsigned UserOffset) |
1092 | { |
1093 | MachineInstr *UserMI = U.MI; |
1094 | MachineInstr *CPEMI = U.CPEMI; |
1095 | |
1096 | // Check to see if the CPE is already in-range. |
1097 | if (isCPEntryInRange(MI: UserMI, UserOffset, CPEMI, |
1098 | MaxDisp: U.getLongFormMaxDisp(), NegOk: U.NegOk, |
1099 | DoDump: true)) { |
1100 | LLVM_DEBUG(dbgs() << "In range\n" ); |
1101 | UserMI->setDesc(TII->get(Opcode: U.getLongFormOpcode())); |
1102 | U.setMaxDisp(U.getLongFormMaxDisp()); |
1103 | return 2; // instruction is longer length now |
1104 | } |
1105 | |
1106 | // No. Look for previously created clones of the CPE that are in range. |
1107 | unsigned CPI = CPEMI->getOperand(i: 1).getIndex(); |
1108 | std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
1109 | for (CPEntry &CPE : CPEs) { |
1110 | // We already tried this one |
1111 | if (CPE.CPEMI == CPEMI) |
1112 | continue; |
1113 | // Removing CPEs can leave empty entries, skip |
1114 | if (CPE.CPEMI == nullptr) |
1115 | continue; |
1116 | if (isCPEntryInRange(MI: UserMI, UserOffset, CPEMI: CPE.CPEMI, MaxDisp: U.getLongFormMaxDisp(), |
1117 | NegOk: U.NegOk)) { |
1118 | LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI |
1119 | << "\n" ); |
1120 | // Point the CPUser node to the replacement |
1121 | U.CPEMI = CPE.CPEMI; |
1122 | // Change the CPI in the instruction operand to refer to the clone. |
1123 | for (MachineOperand &MO : UserMI->operands()) |
1124 | if (MO.isCPI()) { |
1125 | MO.setIndex(CPE.CPI); |
1126 | break; |
1127 | } |
1128 | // Adjust the refcount of the clone... |
1129 | CPE.RefCount++; |
1130 | // ...and the original. If we didn't remove the old entry, none of the |
1131 | // addresses changed, so we don't need another pass. |
1132 | return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; |
1133 | } |
1134 | } |
1135 | return 0; |
1136 | } |
1137 | |
1138 | /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in |
1139 | /// the specific unconditional branch instruction. |
1140 | static inline unsigned getUnconditionalBrDisp(int Opc) { |
1141 | switch (Opc) { |
1142 | case Mips::Bimm16: |
1143 | return ((1<<10)-1)*2; |
1144 | case Mips::BimmX16: |
1145 | return ((1<<16)-1)*2; |
1146 | default: |
1147 | break; |
1148 | } |
1149 | return ((1<<16)-1)*2; |
1150 | } |
1151 | |
1152 | /// findAvailableWater - Look for an existing entry in the WaterList in which |
1153 | /// we can place the CPE referenced from U so it's within range of U's MI. |
1154 | /// Returns true if found, false if not. If it returns true, WaterIter |
1155 | /// is set to the WaterList entry. |
1156 | /// To ensure that this pass |
1157 | /// terminates, the CPE location for a particular CPUser is only allowed to |
1158 | /// move to a lower address, so search backward from the end of the list and |
1159 | /// prefer the first water that is in range. |
1160 | bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, |
1161 | water_iterator &WaterIter) { |
1162 | if (WaterList.empty()) |
1163 | return false; |
1164 | |
1165 | unsigned BestGrowth = ~0u; |
1166 | for (water_iterator IP = std::prev(x: WaterList.end()), B = WaterList.begin();; |
1167 | --IP) { |
1168 | MachineBasicBlock* WaterBB = *IP; |
1169 | // Check if water is in range and is either at a lower address than the |
1170 | // current "high water mark" or a new water block that was created since |
1171 | // the previous iteration by inserting an unconditional branch. In the |
1172 | // latter case, we want to allow resetting the high water mark back to |
1173 | // this new water since we haven't seen it before. Inserting branches |
1174 | // should be relatively uncommon and when it does happen, we want to be |
1175 | // sure to take advantage of it for all the CPEs near that block, so that |
1176 | // we don't insert more branches than necessary. |
1177 | unsigned Growth; |
1178 | if (isWaterInRange(UserOffset, Water: WaterBB, U, Growth) && |
1179 | (WaterBB->getNumber() < U.HighWaterMark->getNumber() || |
1180 | NewWaterList.count(Ptr: WaterBB)) && Growth < BestGrowth) { |
1181 | // This is the least amount of required padding seen so far. |
1182 | BestGrowth = Growth; |
1183 | WaterIter = IP; |
1184 | LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) |
1185 | << " Growth=" << Growth << '\n'); |
1186 | |
1187 | // Keep looking unless it is perfect. |
1188 | if (BestGrowth == 0) |
1189 | return true; |
1190 | } |
1191 | if (IP == B) |
1192 | break; |
1193 | } |
1194 | return BestGrowth != ~0u; |
1195 | } |
1196 | |
1197 | /// createNewWater - No existing WaterList entry will work for |
1198 | /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the |
1199 | /// block is used if in range, and the conditional branch munged so control |
1200 | /// flow is correct. Otherwise the block is split to create a hole with an |
1201 | /// unconditional branch around it. In either case NewMBB is set to a |
1202 | /// block following which the new island can be inserted (the WaterList |
1203 | /// is not adjusted). |
1204 | void MipsConstantIslands::createNewWater(unsigned CPUserIndex, |
1205 | unsigned UserOffset, |
1206 | MachineBasicBlock *&NewMBB) { |
1207 | CPUser &U = CPUsers[CPUserIndex]; |
1208 | MachineInstr *UserMI = U.MI; |
1209 | MachineInstr *CPEMI = U.CPEMI; |
1210 | MachineBasicBlock *UserMBB = UserMI->getParent(); |
1211 | const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; |
1212 | |
1213 | // If the block does not end in an unconditional branch already, and if the |
1214 | // end of the block is within range, make new water there. |
1215 | if (BBHasFallthrough(MBB: UserMBB)) { |
1216 | // Size of branch to insert. |
1217 | unsigned Delta = 2; |
1218 | // Compute the offset where the CPE will begin. |
1219 | unsigned CPEOffset = UserBBI.postOffset() + Delta; |
1220 | |
1221 | if (isOffsetInRange(UserOffset, TrialOffset: CPEOffset, U)) { |
1222 | LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) |
1223 | << format(", expected CPE offset %#x\n" , CPEOffset)); |
1224 | NewMBB = &*++UserMBB->getIterator(); |
1225 | // Add an unconditional branch from UserMBB to fallthrough block. Record |
1226 | // it for branch lengthening; this new branch will not get out of range, |
1227 | // but if the preceding conditional branch is out of range, the targets |
1228 | // will be exchanged, and the altered branch may be out of range, so the |
1229 | // machinery has to know about it. |
1230 | int UncondBr = Mips::Bimm16; |
1231 | BuildMI(BB: UserMBB, MIMD: DebugLoc(), MCID: TII->get(Opcode: UncondBr)).addMBB(MBB: NewMBB); |
1232 | unsigned MaxDisp = getUnconditionalBrDisp(Opc: UncondBr); |
1233 | ImmBranches.push_back(x: ImmBranch(&UserMBB->back(), |
1234 | MaxDisp, false, UncondBr)); |
1235 | BBInfo[UserMBB->getNumber()].Size += Delta; |
1236 | adjustBBOffsetsAfter(BB: UserMBB); |
1237 | return; |
1238 | } |
1239 | } |
1240 | |
1241 | // What a big block. Find a place within the block to split it. |
1242 | |
1243 | // Try to split the block so it's fully aligned. Compute the latest split |
1244 | // point where we can add a 4-byte branch instruction, and then align to |
1245 | // Align which is the largest possible alignment in the function. |
1246 | const Align Align = MF->getAlignment(); |
1247 | unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); |
1248 | LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x" , |
1249 | BaseInsertOffset)); |
1250 | |
1251 | // The 4 in the following is for the unconditional branch we'll be inserting |
1252 | // Alignment of the island is handled |
1253 | // inside isOffsetInRange. |
1254 | BaseInsertOffset -= 4; |
1255 | |
1256 | LLVM_DEBUG(dbgs() << format(", adjusted to %#x" , BaseInsertOffset) |
1257 | << " la=" << Log2(Align) << '\n'); |
1258 | |
1259 | // This could point off the end of the block if we've already got constant |
1260 | // pool entries following this block; only the last one is in the water list. |
1261 | // Back past any possible branches (allow for a conditional and a maximally |
1262 | // long unconditional). |
1263 | if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { |
1264 | BaseInsertOffset = UserBBI.postOffset() - 8; |
1265 | LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n" , BaseInsertOffset)); |
1266 | } |
1267 | unsigned EndInsertOffset = BaseInsertOffset + 4 + |
1268 | CPEMI->getOperand(i: 2).getImm(); |
1269 | MachineBasicBlock::iterator MI = UserMI; |
1270 | ++MI; |
1271 | unsigned CPUIndex = CPUserIndex+1; |
1272 | unsigned NumCPUsers = CPUsers.size(); |
1273 | //MachineInstr *LastIT = 0; |
1274 | for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(MI: *UserMI); |
1275 | Offset < BaseInsertOffset; |
1276 | Offset += TII->getInstSizeInBytes(MI: *MI), MI = std::next(x: MI)) { |
1277 | assert(MI != UserMBB->end() && "Fell off end of block" ); |
1278 | if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { |
1279 | CPUser &U = CPUsers[CPUIndex]; |
1280 | if (!isOffsetInRange(UserOffset: Offset, TrialOffset: EndInsertOffset, U)) { |
1281 | // Shift intertion point by one unit of alignment so it is within reach. |
1282 | BaseInsertOffset -= Align.value(); |
1283 | EndInsertOffset -= Align.value(); |
1284 | } |
1285 | // This is overly conservative, as we don't account for CPEMIs being |
1286 | // reused within the block, but it doesn't matter much. Also assume CPEs |
1287 | // are added in order with alignment padding. We may eventually be able |
1288 | // to pack the aligned CPEs better. |
1289 | EndInsertOffset += U.CPEMI->getOperand(i: 2).getImm(); |
1290 | CPUIndex++; |
1291 | } |
1292 | } |
1293 | |
1294 | NewMBB = splitBlockBeforeInstr(MI&: *--MI); |
1295 | } |
1296 | |
1297 | /// handleConstantPoolUser - Analyze the specified user, checking to see if it |
1298 | /// is out-of-range. If so, pick up the constant pool value and move it some |
1299 | /// place in-range. Return true if we changed any addresses (thus must run |
1300 | /// another pass of branch lengthening), false otherwise. |
1301 | bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { |
1302 | CPUser &U = CPUsers[CPUserIndex]; |
1303 | MachineInstr *UserMI = U.MI; |
1304 | MachineInstr *CPEMI = U.CPEMI; |
1305 | unsigned CPI = CPEMI->getOperand(i: 1).getIndex(); |
1306 | unsigned Size = CPEMI->getOperand(i: 2).getImm(); |
1307 | // Compute this only once, it's expensive. |
1308 | unsigned UserOffset = getUserOffset(U); |
1309 | |
1310 | // See if the current entry is within range, or there is a clone of it |
1311 | // in range. |
1312 | int result = findInRangeCPEntry(U, UserOffset); |
1313 | if (result==1) return false; |
1314 | else if (result==2) return true; |
1315 | |
1316 | // Look for water where we can place this CPE. |
1317 | MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); |
1318 | MachineBasicBlock *NewMBB; |
1319 | water_iterator IP; |
1320 | if (findAvailableWater(U, UserOffset, WaterIter&: IP)) { |
1321 | LLVM_DEBUG(dbgs() << "Found water in range\n" ); |
1322 | MachineBasicBlock *WaterBB = *IP; |
1323 | |
1324 | // If the original WaterList entry was "new water" on this iteration, |
1325 | // propagate that to the new island. This is just keeping NewWaterList |
1326 | // updated to match the WaterList, which will be updated below. |
1327 | if (NewWaterList.erase(Ptr: WaterBB)) |
1328 | NewWaterList.insert(Ptr: NewIsland); |
1329 | |
1330 | // The new CPE goes before the following block (NewMBB). |
1331 | NewMBB = &*++WaterBB->getIterator(); |
1332 | } else { |
1333 | // No water found. |
1334 | // we first see if a longer form of the instrucion could have reached |
1335 | // the constant. in that case we won't bother to split |
1336 | if (!NoLoadRelaxation) { |
1337 | result = findLongFormInRangeCPEntry(U, UserOffset); |
1338 | if (result != 0) return true; |
1339 | } |
1340 | LLVM_DEBUG(dbgs() << "No water found\n" ); |
1341 | createNewWater(CPUserIndex, UserOffset, NewMBB); |
1342 | |
1343 | // splitBlockBeforeInstr adds to WaterList, which is important when it is |
1344 | // called while handling branches so that the water will be seen on the |
1345 | // next iteration for constant pools, but in this context, we don't want |
1346 | // it. Check for this so it will be removed from the WaterList. |
1347 | // Also remove any entry from NewWaterList. |
1348 | MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); |
1349 | IP = llvm::find(Range&: WaterList, Val: WaterBB); |
1350 | if (IP != WaterList.end()) |
1351 | NewWaterList.erase(Ptr: WaterBB); |
1352 | |
1353 | // We are adding new water. Update NewWaterList. |
1354 | NewWaterList.insert(Ptr: NewIsland); |
1355 | } |
1356 | |
1357 | // Remove the original WaterList entry; we want subsequent insertions in |
1358 | // this vicinity to go after the one we're about to insert. This |
1359 | // considerably reduces the number of times we have to move the same CPE |
1360 | // more than once and is also important to ensure the algorithm terminates. |
1361 | if (IP != WaterList.end()) |
1362 | WaterList.erase(position: IP); |
1363 | |
1364 | // Okay, we know we can put an island before NewMBB now, do it! |
1365 | MF->insert(MBBI: NewMBB->getIterator(), MBB: NewIsland); |
1366 | |
1367 | // Update internal data structures to account for the newly inserted MBB. |
1368 | updateForInsertedWaterBlock(NewBB: NewIsland); |
1369 | |
1370 | // Decrement the old entry, and remove it if refcount becomes 0. |
1371 | decrementCPEReferenceCount(CPI, CPEMI); |
1372 | |
1373 | // No existing clone of this CPE is within range. |
1374 | // We will be generating a new clone. Get a UID for it. |
1375 | unsigned ID = createPICLabelUId(); |
1376 | |
1377 | // Now that we have an island to add the CPE to, clone the original CPE and |
1378 | // add it to the island. |
1379 | U.HighWaterMark = NewIsland; |
1380 | U.CPEMI = BuildMI(BB: NewIsland, MIMD: DebugLoc(), MCID: TII->get(Opcode: Mips::CONSTPOOL_ENTRY)) |
1381 | .addImm(Val: ID).addConstantPoolIndex(Idx: CPI).addImm(Val: Size); |
1382 | CPEntries[CPI].push_back(x: CPEntry(U.CPEMI, ID, 1)); |
1383 | ++NumCPEs; |
1384 | |
1385 | // Mark the basic block as aligned as required by the const-pool entry. |
1386 | NewIsland->setAlignment(getCPEAlign(CPEMI: *U.CPEMI)); |
1387 | |
1388 | // Increase the size of the island block to account for the new entry. |
1389 | BBInfo[NewIsland->getNumber()].Size += Size; |
1390 | adjustBBOffsetsAfter(BB: &*--NewIsland->getIterator()); |
1391 | |
1392 | // Finally, change the CPI in the instruction operand to be ID. |
1393 | for (MachineOperand &MO : UserMI->operands()) |
1394 | if (MO.isCPI()) { |
1395 | MO.setIndex(ID); |
1396 | break; |
1397 | } |
1398 | |
1399 | LLVM_DEBUG( |
1400 | dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI |
1401 | << format(" offset=%#x\n" , BBInfo[NewIsland->getNumber()].Offset)); |
1402 | |
1403 | return true; |
1404 | } |
1405 | |
1406 | /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update |
1407 | /// sizes and offsets of impacted basic blocks. |
1408 | void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { |
1409 | MachineBasicBlock *CPEBB = CPEMI->getParent(); |
1410 | unsigned Size = CPEMI->getOperand(i: 2).getImm(); |
1411 | CPEMI->eraseFromParent(); |
1412 | BBInfo[CPEBB->getNumber()].Size -= Size; |
1413 | // All succeeding offsets have the current size value added in, fix this. |
1414 | if (CPEBB->empty()) { |
1415 | BBInfo[CPEBB->getNumber()].Size = 0; |
1416 | |
1417 | // This block no longer needs to be aligned. |
1418 | CPEBB->setAlignment(Align(1)); |
1419 | } else { |
1420 | // Entries are sorted by descending alignment, so realign from the front. |
1421 | CPEBB->setAlignment(getCPEAlign(CPEMI: *CPEBB->begin())); |
1422 | } |
1423 | |
1424 | adjustBBOffsetsAfter(BB: CPEBB); |
1425 | // An island has only one predecessor BB and one successor BB. Check if |
1426 | // this BB's predecessor jumps directly to this BB's successor. This |
1427 | // shouldn't happen currently. |
1428 | assert(!BBIsJumpedOver(CPEBB) && "How did this happen?" ); |
1429 | // FIXME: remove the empty blocks after all the work is done? |
1430 | } |
1431 | |
1432 | /// removeUnusedCPEntries - Remove constant pool entries whose refcounts |
1433 | /// are zero. |
1434 | bool MipsConstantIslands::removeUnusedCPEntries() { |
1435 | unsigned MadeChange = false; |
1436 | for (std::vector<CPEntry> &CPEs : CPEntries) { |
1437 | for (CPEntry &CPE : CPEs) { |
1438 | if (CPE.RefCount == 0 && CPE.CPEMI) { |
1439 | removeDeadCPEMI(CPEMI: CPE.CPEMI); |
1440 | CPE.CPEMI = nullptr; |
1441 | MadeChange = true; |
1442 | } |
1443 | } |
1444 | } |
1445 | return MadeChange; |
1446 | } |
1447 | |
1448 | /// isBBInRange - Returns true if the distance between specific MI and |
1449 | /// specific BB can fit in MI's displacement field. |
1450 | bool MipsConstantIslands::isBBInRange |
1451 | (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { |
1452 | unsigned PCAdj = 4; |
1453 | unsigned BrOffset = getOffsetOf(MI) + PCAdj; |
1454 | unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; |
1455 | |
1456 | LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) |
1457 | << " from " << printMBBReference(*MI->getParent()) |
1458 | << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) |
1459 | << " to " << DestOffset << " offset " |
1460 | << int(DestOffset - BrOffset) << "\t" << *MI); |
1461 | |
1462 | if (BrOffset <= DestOffset) { |
1463 | // Branch before the Dest. |
1464 | if (DestOffset-BrOffset <= MaxDisp) |
1465 | return true; |
1466 | } else { |
1467 | if (BrOffset-DestOffset <= MaxDisp) |
1468 | return true; |
1469 | } |
1470 | return false; |
1471 | } |
1472 | |
1473 | /// fixupImmediateBr - Fix up an immediate branch whose destination is too far |
1474 | /// away to fit in its displacement field. |
1475 | bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) { |
1476 | MachineInstr *MI = Br.MI; |
1477 | unsigned TargetOperand = branchTargetOperand(MI); |
1478 | MachineBasicBlock *DestBB = MI->getOperand(i: TargetOperand).getMBB(); |
1479 | |
1480 | // Check to see if the DestBB is already in-range. |
1481 | if (isBBInRange(MI, DestBB, MaxDisp: Br.MaxDisp)) |
1482 | return false; |
1483 | |
1484 | if (!Br.isCond) |
1485 | return fixupUnconditionalBr(Br); |
1486 | return fixupConditionalBr(Br); |
1487 | } |
1488 | |
1489 | /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is |
1490 | /// too far away to fit in its displacement field. If the LR register has been |
1491 | /// spilled in the epilogue, then we can use BL to implement a far jump. |
1492 | /// Otherwise, add an intermediate branch instruction to a branch. |
1493 | bool |
1494 | MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { |
1495 | MachineInstr *MI = Br.MI; |
1496 | MachineBasicBlock *MBB = MI->getParent(); |
1497 | MachineBasicBlock *DestBB = MI->getOperand(i: 0).getMBB(); |
1498 | // Use BL to implement far jump. |
1499 | unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2; |
1500 | if (isBBInRange(MI, DestBB, MaxDisp: BimmX16MaxDisp)) { |
1501 | Br.MaxDisp = BimmX16MaxDisp; |
1502 | MI->setDesc(TII->get(Opcode: Mips::BimmX16)); |
1503 | } |
1504 | else { |
1505 | // need to give the math a more careful look here |
1506 | // this is really a segment address and not |
1507 | // a PC relative address. FIXME. But I think that |
1508 | // just reducing the bits by 1 as I've done is correct. |
1509 | // The basic block we are branching too much be longword aligned. |
1510 | // we know that RA is saved because we always save it right now. |
1511 | // this requirement will be relaxed later but we also have an alternate |
1512 | // way to implement this that I will implement that does not need jal. |
1513 | // We should have a way to back out this alignment restriction |
1514 | // if we "can" later. but it is not harmful. |
1515 | // |
1516 | DestBB->setAlignment(Align(4)); |
1517 | Br.MaxDisp = ((1<<24)-1) * 2; |
1518 | MI->setDesc(TII->get(Opcode: Mips::JalB16)); |
1519 | } |
1520 | BBInfo[MBB->getNumber()].Size += 2; |
1521 | adjustBBOffsetsAfter(BB: MBB); |
1522 | HasFarJump = true; |
1523 | ++NumUBrFixed; |
1524 | |
1525 | LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); |
1526 | |
1527 | return true; |
1528 | } |
1529 | |
1530 | /// fixupConditionalBr - Fix up a conditional branch whose destination is too |
1531 | /// far away to fit in its displacement field. It is converted to an inverse |
1532 | /// conditional branch + an unconditional branch to the destination. |
1533 | bool |
1534 | MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) { |
1535 | MachineInstr *MI = Br.MI; |
1536 | unsigned TargetOperand = branchTargetOperand(MI); |
1537 | MachineBasicBlock *DestBB = MI->getOperand(i: TargetOperand).getMBB(); |
1538 | unsigned Opcode = MI->getOpcode(); |
1539 | unsigned LongFormOpcode = longformBranchOpcode(Opcode); |
1540 | unsigned LongFormMaxOff = branchMaxOffsets(Opcode: LongFormOpcode); |
1541 | |
1542 | // Check to see if the DestBB is already in-range. |
1543 | if (isBBInRange(MI, DestBB, MaxDisp: LongFormMaxOff)) { |
1544 | Br.MaxDisp = LongFormMaxOff; |
1545 | MI->setDesc(TII->get(Opcode: LongFormOpcode)); |
1546 | return true; |
1547 | } |
1548 | |
1549 | // Add an unconditional branch to the destination and invert the branch |
1550 | // condition to jump over it: |
1551 | // bteqz L1 |
1552 | // => |
1553 | // bnez L2 |
1554 | // b L1 |
1555 | // L2: |
1556 | |
1557 | // If the branch is at the end of its MBB and that has a fall-through block, |
1558 | // direct the updated conditional branch to the fall-through block. Otherwise, |
1559 | // split the MBB before the next instruction. |
1560 | MachineBasicBlock *MBB = MI->getParent(); |
1561 | MachineInstr *BMI = &MBB->back(); |
1562 | bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); |
1563 | unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opc: Opcode); |
1564 | |
1565 | ++NumCBrFixed; |
1566 | if (BMI != MI) { |
1567 | if (std::next(x: MachineBasicBlock::iterator(MI)) == std::prev(x: MBB->end()) && |
1568 | BMI->isUnconditionalBranch()) { |
1569 | // Last MI in the BB is an unconditional branch. Can we simply invert the |
1570 | // condition and swap destinations: |
1571 | // beqz L1 |
1572 | // b L2 |
1573 | // => |
1574 | // bnez L2 |
1575 | // b L1 |
1576 | unsigned BMITargetOperand = branchTargetOperand(MI: BMI); |
1577 | MachineBasicBlock *NewDest = |
1578 | BMI->getOperand(i: BMITargetOperand).getMBB(); |
1579 | if (isBBInRange(MI, DestBB: NewDest, MaxDisp: Br.MaxDisp)) { |
1580 | LLVM_DEBUG( |
1581 | dbgs() << " Invert Bcc condition and swap its destination with " |
1582 | << *BMI); |
1583 | MI->setDesc(TII->get(Opcode: OppositeBranchOpcode)); |
1584 | BMI->getOperand(i: BMITargetOperand).setMBB(DestBB); |
1585 | MI->getOperand(i: TargetOperand).setMBB(NewDest); |
1586 | return true; |
1587 | } |
1588 | } |
1589 | } |
1590 | |
1591 | if (NeedSplit) { |
1592 | splitBlockBeforeInstr(MI&: *MI); |
1593 | // No need for the branch to the next block. We're adding an unconditional |
1594 | // branch to the destination. |
1595 | int delta = TII->getInstSizeInBytes(MI: MBB->back()); |
1596 | BBInfo[MBB->getNumber()].Size -= delta; |
1597 | MBB->back().eraseFromParent(); |
1598 | // BBInfo[SplitBB].Offset is wrong temporarily, fixed below |
1599 | } |
1600 | MachineBasicBlock *NextBB = &*++MBB->getIterator(); |
1601 | |
1602 | LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) |
1603 | << " also invert condition and change dest. to " |
1604 | << printMBBReference(*NextBB) << "\n" ); |
1605 | |
1606 | // Insert a new conditional branch and a new unconditional branch. |
1607 | // Also update the ImmBranch as well as adding a new entry for the new branch. |
1608 | if (MI->getNumExplicitOperands() == 2) { |
1609 | BuildMI(BB: MBB, MIMD: DebugLoc(), MCID: TII->get(Opcode: OppositeBranchOpcode)) |
1610 | .addReg(RegNo: MI->getOperand(i: 0).getReg()) |
1611 | .addMBB(MBB: NextBB); |
1612 | } else { |
1613 | BuildMI(BB: MBB, MIMD: DebugLoc(), MCID: TII->get(Opcode: OppositeBranchOpcode)) |
1614 | .addMBB(MBB: NextBB); |
1615 | } |
1616 | Br.MI = &MBB->back(); |
1617 | BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MI: MBB->back()); |
1618 | BuildMI(BB: MBB, MIMD: DebugLoc(), MCID: TII->get(Opcode: Br.UncondBr)).addMBB(MBB: DestBB); |
1619 | BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MI: MBB->back()); |
1620 | unsigned MaxDisp = getUnconditionalBrDisp(Opc: Br.UncondBr); |
1621 | ImmBranches.push_back(x: ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); |
1622 | |
1623 | // Remove the old conditional branch. It may or may not still be in MBB. |
1624 | BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(MI: *MI); |
1625 | MI->eraseFromParent(); |
1626 | adjustBBOffsetsAfter(BB: MBB); |
1627 | return true; |
1628 | } |
1629 | |
1630 | void MipsConstantIslands::prescanForConstants() { |
1631 | for (MachineBasicBlock &B : *MF) { |
1632 | for (MachineInstr &MI : B) { |
1633 | switch (MI.getDesc().getOpcode()) { |
1634 | case Mips::LwConstant32: { |
1635 | PrescannedForConstants = true; |
1636 | LLVM_DEBUG(dbgs() << "constant island constant " << MI << "\n" ); |
1637 | LLVM_DEBUG(dbgs() << "num operands " << MI.getNumOperands() << "\n" ); |
1638 | MachineOperand &Literal = MI.getOperand(i: 1); |
1639 | if (Literal.isImm()) { |
1640 | int64_t V = Literal.getImm(); |
1641 | LLVM_DEBUG(dbgs() << "literal " << V << "\n" ); |
1642 | Type *Int32Ty = Type::getInt32Ty(C&: MF->getFunction().getContext()); |
1643 | const Constant *C = ConstantInt::get(Ty: Int32Ty, V); |
1644 | unsigned index = MCP->getConstantPoolIndex(C, Alignment: Align(4)); |
1645 | MI.getOperand(i: 2).ChangeToImmediate(ImmVal: index); |
1646 | LLVM_DEBUG(dbgs() << "constant island constant " << MI << "\n" ); |
1647 | MI.setDesc(TII->get(Opcode: Mips::LwRxPcTcp16)); |
1648 | MI.removeOperand(OpNo: 1); |
1649 | MI.removeOperand(OpNo: 1); |
1650 | MI.addOperand(Op: MachineOperand::CreateCPI(Idx: index, Offset: 0)); |
1651 | MI.addOperand(Op: MachineOperand::CreateImm(Val: 4)); |
1652 | } |
1653 | break; |
1654 | } |
1655 | default: |
1656 | break; |
1657 | } |
1658 | } |
1659 | } |
1660 | } |
1661 | |
1662 | /// Returns a pass that converts branches to long branches. |
1663 | FunctionPass *llvm::createMipsConstantIslandPass() { |
1664 | return new MipsConstantIslands(); |
1665 | } |
1666 | |