| 1 | //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===---------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass analyzes vector computations and removes unnecessary |
| 10 | // doubleword swaps (xxswapd instructions). This pass is performed |
| 11 | // only for little-endian VSX code generation. |
| 12 | // |
| 13 | // For this specific case, loads and stores of v4i32, v4f32, v2i64, |
| 14 | // and v2f64 vectors are inefficient. These are implemented using |
| 15 | // the lxvd2x and stxvd2x instructions, which invert the order of |
| 16 | // doublewords in a vector register. Thus code generation inserts |
| 17 | // an xxswapd after each such load, and prior to each such store. |
| 18 | // |
| 19 | // The extra xxswapd instructions reduce performance. The purpose |
| 20 | // of this pass is to reduce the number of xxswapd instructions |
| 21 | // required for correctness. |
| 22 | // |
| 23 | // The primary insight is that much code that operates on vectors |
| 24 | // does not care about the relative order of elements in a register, |
| 25 | // so long as the correct memory order is preserved. If we have a |
| 26 | // computation where all input values are provided by lxvd2x/xxswapd, |
| 27 | // all outputs are stored using xxswapd/lxvd2x, and all intermediate |
| 28 | // computations are lane-insensitive (independent of element order), |
| 29 | // then all the xxswapd instructions associated with the loads and |
| 30 | // stores may be removed without changing observable semantics. |
| 31 | // |
| 32 | // This pass uses standard equivalence class infrastructure to create |
| 33 | // maximal webs of computations fitting the above description. Each |
| 34 | // such web is then optimized by removing its unnecessary xxswapd |
| 35 | // instructions. |
| 36 | // |
| 37 | // There are some lane-sensitive operations for which we can still |
| 38 | // permit the optimization, provided we modify those operations |
| 39 | // accordingly. Such operations are identified as using "special |
| 40 | // handling" within this module. |
| 41 | // |
| 42 | //===---------------------------------------------------------------------===// |
| 43 | |
| 44 | #include "PPC.h" |
| 45 | #include "PPCInstrInfo.h" |
| 46 | #include "PPCTargetMachine.h" |
| 47 | #include "llvm/ADT/DenseMap.h" |
| 48 | #include "llvm/ADT/EquivalenceClasses.h" |
| 49 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 50 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 51 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 52 | #include "llvm/Config/llvm-config.h" |
| 53 | #include "llvm/Support/Debug.h" |
| 54 | #include "llvm/Support/Format.h" |
| 55 | #include "llvm/Support/raw_ostream.h" |
| 56 | |
| 57 | using namespace llvm; |
| 58 | |
| 59 | #define DEBUG_TYPE "ppc-vsx-swaps" |
| 60 | |
| 61 | namespace { |
| 62 | |
| 63 | // A PPCVSXSwapEntry is created for each machine instruction that |
| 64 | // is relevant to a vector computation. |
| 65 | struct PPCVSXSwapEntry { |
| 66 | // Pointer to the instruction. |
| 67 | MachineInstr *VSEMI; |
| 68 | |
| 69 | // Unique ID (position in the swap vector). |
| 70 | int VSEId; |
| 71 | |
| 72 | // Attributes of this node. |
| 73 | unsigned int IsLoad : 1; |
| 74 | unsigned int IsStore : 1; |
| 75 | unsigned int IsSwap : 1; |
| 76 | unsigned int MentionsPhysVR : 1; |
| 77 | unsigned int IsSwappable : 1; |
| 78 | unsigned int MentionsPartialVR : 1; |
| 79 | unsigned int SpecialHandling : 3; |
| 80 | unsigned int WebRejected : 1; |
| 81 | unsigned int WillRemove : 1; |
| 82 | }; |
| 83 | |
| 84 | enum SHValues { |
| 85 | SH_NONE = 0, |
| 86 | , |
| 87 | SH_INSERT, |
| 88 | SH_NOSWAP_LD, |
| 89 | SH_NOSWAP_ST, |
| 90 | SH_SPLAT, |
| 91 | SH_XXPERMDI, |
| 92 | SH_COPYWIDEN |
| 93 | }; |
| 94 | |
| 95 | struct PPCVSXSwapRemoval : public MachineFunctionPass { |
| 96 | |
| 97 | static char ID; |
| 98 | const PPCInstrInfo *TII; |
| 99 | MachineFunction *MF; |
| 100 | MachineRegisterInfo *MRI; |
| 101 | |
| 102 | // Swap entries are allocated in a vector for better performance. |
| 103 | std::vector<PPCVSXSwapEntry> SwapVector; |
| 104 | |
| 105 | // A mapping is maintained between machine instructions and |
| 106 | // their swap entries. The key is the address of the MI. |
| 107 | DenseMap<MachineInstr*, int> SwapMap; |
| 108 | |
| 109 | // Equivalence classes are used to gather webs of related computation. |
| 110 | // Swap entries are represented by their VSEId fields. |
| 111 | EquivalenceClasses<int> *EC; |
| 112 | |
| 113 | PPCVSXSwapRemoval() : MachineFunctionPass(ID) {} |
| 114 | |
| 115 | private: |
| 116 | // Initialize data structures. |
| 117 | void initialize(MachineFunction &MFParm); |
| 118 | |
| 119 | // Walk the machine instructions to gather vector usage information. |
| 120 | // Return true iff vector mentions are present. |
| 121 | bool gatherVectorInstructions(); |
| 122 | |
| 123 | // Add an entry to the swap vector and swap map. |
| 124 | int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); |
| 125 | |
| 126 | // Hunt backwards through COPY and SUBREG_TO_REG chains for a |
| 127 | // source register. VecIdx indicates the swap vector entry to |
| 128 | // mark as mentioning a physical register if the search leads |
| 129 | // to one. |
| 130 | unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); |
| 131 | |
| 132 | // Generate equivalence classes for related computations (webs). |
| 133 | void formWebs(); |
| 134 | |
| 135 | // Analyze webs and determine those that cannot be optimized. |
| 136 | void recordUnoptimizableWebs(); |
| 137 | |
| 138 | // Record which swap instructions can be safely removed. |
| 139 | void markSwapsForRemoval(); |
| 140 | |
| 141 | // Remove swaps and update other instructions requiring special |
| 142 | // handling. Return true iff any changes are made. |
| 143 | bool removeSwaps(); |
| 144 | |
| 145 | // Insert a swap instruction from SrcReg to DstReg at the given |
| 146 | // InsertPoint. |
| 147 | void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, |
| 148 | unsigned DstReg, unsigned SrcReg); |
| 149 | |
| 150 | // Update instructions requiring special handling. |
| 151 | void handleSpecialSwappables(int EntryIdx); |
| 152 | |
| 153 | // Dump a description of the entries in the swap vector. |
| 154 | void dumpSwapVector(); |
| 155 | |
| 156 | // Return true iff the given register is in the given class. |
| 157 | bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { |
| 158 | if (Register::isVirtualRegister(Reg)) |
| 159 | return RC->hasSubClassEq(RC: MRI->getRegClass(Reg)); |
| 160 | return RC->contains(Reg); |
| 161 | } |
| 162 | |
| 163 | // Return true iff the given register is a full vector register. |
| 164 | bool isVecReg(unsigned Reg) { |
| 165 | return (isRegInClass(Reg, RC: &PPC::VSRCRegClass) || |
| 166 | isRegInClass(Reg, RC: &PPC::VRRCRegClass)); |
| 167 | } |
| 168 | |
| 169 | // Return true iff the given register is a partial vector register. |
| 170 | bool isScalarVecReg(unsigned Reg) { |
| 171 | return (isRegInClass(Reg, RC: &PPC::VSFRCRegClass) || |
| 172 | isRegInClass(Reg, RC: &PPC::VSSRCRegClass)); |
| 173 | } |
| 174 | |
| 175 | // Return true iff the given register mentions all or part of a |
| 176 | // vector register. Also sets Partial to true if the mention |
| 177 | // is for just the floating-point register overlap of the register. |
| 178 | bool isAnyVecReg(unsigned Reg, bool &Partial) { |
| 179 | if (isScalarVecReg(Reg)) |
| 180 | Partial = true; |
| 181 | return isScalarVecReg(Reg) || isVecReg(Reg); |
| 182 | } |
| 183 | |
| 184 | public: |
| 185 | // Main entry point for this pass. |
| 186 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 187 | if (skipFunction(F: MF.getFunction())) |
| 188 | return false; |
| 189 | |
| 190 | // If we don't have VSX on the subtarget, don't do anything. |
| 191 | // Also, on Power 9 the load and store ops preserve element order and so |
| 192 | // the swaps are not required. |
| 193 | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
| 194 | if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps()) |
| 195 | return false; |
| 196 | |
| 197 | bool Changed = false; |
| 198 | initialize(MFParm&: MF); |
| 199 | |
| 200 | if (gatherVectorInstructions()) { |
| 201 | formWebs(); |
| 202 | recordUnoptimizableWebs(); |
| 203 | markSwapsForRemoval(); |
| 204 | Changed = removeSwaps(); |
| 205 | } |
| 206 | |
| 207 | // FIXME: See the allocation of EC in initialize(). |
| 208 | delete EC; |
| 209 | return Changed; |
| 210 | } |
| 211 | }; |
| 212 | } // end anonymous namespace |
| 213 | |
| 214 | // Initialize data structures for this pass. In particular, clear the |
| 215 | // swap vector and allocate the equivalence class mapping before |
| 216 | // processing each function. |
| 217 | void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { |
| 218 | MF = &MFParm; |
| 219 | MRI = &MF->getRegInfo(); |
| 220 | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 221 | |
| 222 | // An initial vector size of 256 appears to work well in practice. |
| 223 | // Small/medium functions with vector content tend not to incur a |
| 224 | // reallocation at this size. Three of the vector tests in |
| 225 | // projects/test-suite reallocate, which seems like a reasonable rate. |
| 226 | const int InitialVectorSize(256); |
| 227 | SwapVector.clear(); |
| 228 | SwapVector.reserve(n: InitialVectorSize); |
| 229 | |
| 230 | // FIXME: Currently we allocate EC each time because we don't have |
| 231 | // access to the set representation on which to call clear(). Should |
| 232 | // consider adding a clear() method to the EquivalenceClasses class. |
| 233 | EC = new EquivalenceClasses<int>; |
| 234 | } |
| 235 | |
| 236 | // Create an entry in the swap vector for each instruction that mentions |
| 237 | // a full vector register, recording various characteristics of the |
| 238 | // instructions there. |
| 239 | bool PPCVSXSwapRemoval::gatherVectorInstructions() { |
| 240 | bool RelevantFunction = false; |
| 241 | |
| 242 | for (MachineBasicBlock &MBB : *MF) { |
| 243 | for (MachineInstr &MI : MBB) { |
| 244 | |
| 245 | if (MI.isDebugInstr()) |
| 246 | continue; |
| 247 | |
| 248 | bool RelevantInstr = false; |
| 249 | bool Partial = false; |
| 250 | |
| 251 | for (const MachineOperand &MO : MI.operands()) { |
| 252 | if (!MO.isReg()) |
| 253 | continue; |
| 254 | Register Reg = MO.getReg(); |
| 255 | // All operands need to be checked because there are instructions that |
| 256 | // operate on a partial register and produce a full register (such as |
| 257 | // XXPERMDIs). |
| 258 | if (isAnyVecReg(Reg, Partial)) |
| 259 | RelevantInstr = true; |
| 260 | } |
| 261 | |
| 262 | if (!RelevantInstr) |
| 263 | continue; |
| 264 | |
| 265 | RelevantFunction = true; |
| 266 | |
| 267 | // Create a SwapEntry initialized to zeros, then fill in the |
| 268 | // instruction and ID fields before pushing it to the back |
| 269 | // of the swap vector. |
| 270 | PPCVSXSwapEntry SwapEntry{}; |
| 271 | int VecIdx = addSwapEntry(MI: &MI, SwapEntry); |
| 272 | |
| 273 | switch(MI.getOpcode()) { |
| 274 | default: |
| 275 | // Unless noted otherwise, an instruction is considered |
| 276 | // safe for the optimization. There are a large number of |
| 277 | // such true-SIMD instructions (all vector math, logical, |
| 278 | // select, compare, etc.). However, if the instruction |
| 279 | // mentions a partial vector register and does not have |
| 280 | // special handling defined, it is not swappable. |
| 281 | if (Partial) |
| 282 | SwapVector[VecIdx].MentionsPartialVR = 1; |
| 283 | else |
| 284 | SwapVector[VecIdx].IsSwappable = 1; |
| 285 | break; |
| 286 | case PPC::XXPERMDI: { |
| 287 | // This is a swap if it is of the form XXPERMDI t, s, s, 2. |
| 288 | // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we |
| 289 | // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, |
| 290 | // for example. We have to look through chains of COPY and |
| 291 | // SUBREG_TO_REG to find the real source value for comparison. |
| 292 | // If the real source value is a physical register, then mark the |
| 293 | // XXPERMDI as mentioning a physical register. |
| 294 | int immed = MI.getOperand(i: 3).getImm(); |
| 295 | if (immed == 2) { |
| 296 | unsigned trueReg1 = lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), |
| 297 | VecIdx); |
| 298 | unsigned trueReg2 = lookThruCopyLike(SrcReg: MI.getOperand(i: 2).getReg(), |
| 299 | VecIdx); |
| 300 | if (trueReg1 == trueReg2) |
| 301 | SwapVector[VecIdx].IsSwap = 1; |
| 302 | else { |
| 303 | // We can still handle these if the two registers are not |
| 304 | // identical, by adjusting the form of the XXPERMDI. |
| 305 | SwapVector[VecIdx].IsSwappable = 1; |
| 306 | SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; |
| 307 | } |
| 308 | // This is a doubleword splat if it is of the form |
| 309 | // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we |
| 310 | // must look through chains of copy-likes to find the source |
| 311 | // register. We turn off the marking for mention of a physical |
| 312 | // register, because splatting it is safe; the optimization |
| 313 | // will not swap the value in the physical register. Whether |
| 314 | // or not the two input registers are identical, we can handle |
| 315 | // these by adjusting the form of the XXPERMDI. |
| 316 | } else if (immed == 0 || immed == 3) { |
| 317 | |
| 318 | SwapVector[VecIdx].IsSwappable = 1; |
| 319 | SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; |
| 320 | |
| 321 | unsigned trueReg1 = lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), |
| 322 | VecIdx); |
| 323 | unsigned trueReg2 = lookThruCopyLike(SrcReg: MI.getOperand(i: 2).getReg(), |
| 324 | VecIdx); |
| 325 | if (trueReg1 == trueReg2) |
| 326 | SwapVector[VecIdx].MentionsPhysVR = 0; |
| 327 | |
| 328 | } else { |
| 329 | // We can still handle these by adjusting the form of the XXPERMDI. |
| 330 | SwapVector[VecIdx].IsSwappable = 1; |
| 331 | SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; |
| 332 | } |
| 333 | break; |
| 334 | } |
| 335 | case PPC::LVX: |
| 336 | // Non-permuting loads are currently unsafe. We can use special |
| 337 | // handling for this in the future. By not marking these as |
| 338 | // IsSwap, we ensure computations containing them will be rejected |
| 339 | // for now. |
| 340 | SwapVector[VecIdx].IsLoad = 1; |
| 341 | break; |
| 342 | case PPC::LXVD2X: |
| 343 | case PPC::LXVW4X: |
| 344 | // Permuting loads are marked as both load and swap, and are |
| 345 | // safe for optimization. |
| 346 | SwapVector[VecIdx].IsLoad = 1; |
| 347 | SwapVector[VecIdx].IsSwap = 1; |
| 348 | break; |
| 349 | case PPC::LXSDX: |
| 350 | case PPC::LXSSPX: |
| 351 | case PPC::XFLOADf64: |
| 352 | case PPC::XFLOADf32: |
| 353 | // A load of a floating-point value into the high-order half of |
| 354 | // a vector register is safe, provided that we introduce a swap |
| 355 | // following the load, which will be done by the SUBREG_TO_REG |
| 356 | // support. So just mark these as safe. |
| 357 | SwapVector[VecIdx].IsLoad = 1; |
| 358 | SwapVector[VecIdx].IsSwappable = 1; |
| 359 | break; |
| 360 | case PPC::STVX: |
| 361 | // Non-permuting stores are currently unsafe. We can use special |
| 362 | // handling for this in the future. By not marking these as |
| 363 | // IsSwap, we ensure computations containing them will be rejected |
| 364 | // for now. |
| 365 | SwapVector[VecIdx].IsStore = 1; |
| 366 | break; |
| 367 | case PPC::STXVD2X: |
| 368 | case PPC::STXVW4X: |
| 369 | // Permuting stores are marked as both store and swap, and are |
| 370 | // safe for optimization. |
| 371 | SwapVector[VecIdx].IsStore = 1; |
| 372 | SwapVector[VecIdx].IsSwap = 1; |
| 373 | break; |
| 374 | case PPC::COPY: |
| 375 | // These are fine provided they are moving between full vector |
| 376 | // register classes. |
| 377 | if (isVecReg(Reg: MI.getOperand(i: 0).getReg()) && |
| 378 | isVecReg(Reg: MI.getOperand(i: 1).getReg())) |
| 379 | SwapVector[VecIdx].IsSwappable = 1; |
| 380 | // If we have a copy from one scalar floating-point register |
| 381 | // to another, we can accept this even if it is a physical |
| 382 | // register. The only way this gets involved is if it feeds |
| 383 | // a SUBREG_TO_REG, which is handled by introducing a swap. |
| 384 | else if (isScalarVecReg(Reg: MI.getOperand(i: 0).getReg()) && |
| 385 | isScalarVecReg(Reg: MI.getOperand(i: 1).getReg())) |
| 386 | SwapVector[VecIdx].IsSwappable = 1; |
| 387 | break; |
| 388 | case PPC::SUBREG_TO_REG: { |
| 389 | // These are fine provided they are moving between full vector |
| 390 | // register classes. If they are moving from a scalar |
| 391 | // floating-point class to a vector class, we can handle those |
| 392 | // as well, provided we introduce a swap. It is generally the |
| 393 | // case that we will introduce fewer swaps than we remove, but |
| 394 | // (FIXME) a cost model could be used. However, introduced |
| 395 | // swaps could potentially be CSEd, so this is not trivial. |
| 396 | if (isVecReg(Reg: MI.getOperand(i: 0).getReg()) && |
| 397 | isVecReg(Reg: MI.getOperand(i: 2).getReg())) |
| 398 | SwapVector[VecIdx].IsSwappable = 1; |
| 399 | else if (isVecReg(Reg: MI.getOperand(i: 0).getReg()) && |
| 400 | isScalarVecReg(Reg: MI.getOperand(i: 2).getReg())) { |
| 401 | SwapVector[VecIdx].IsSwappable = 1; |
| 402 | SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; |
| 403 | } |
| 404 | break; |
| 405 | } |
| 406 | case PPC::VSPLTB: |
| 407 | case PPC::VSPLTH: |
| 408 | case PPC::VSPLTW: |
| 409 | case PPC::XXSPLTW: |
| 410 | // Splats are lane-sensitive, but we can use special handling |
| 411 | // to adjust the source lane for the splat. |
| 412 | SwapVector[VecIdx].IsSwappable = 1; |
| 413 | SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; |
| 414 | break; |
| 415 | // The presence of the following lane-sensitive operations in a |
| 416 | // web will kill the optimization, at least for now. For these |
| 417 | // we do nothing, causing the optimization to fail. |
| 418 | // FIXME: Some of these could be permitted with special handling, |
| 419 | // and will be phased in as time permits. |
| 420 | // FIXME: There is no simple and maintainable way to express a set |
| 421 | // of opcodes having a common attribute in TableGen. Should this |
| 422 | // change, this is a prime candidate to use such a mechanism. |
| 423 | case PPC::INLINEASM: |
| 424 | case PPC::INLINEASM_BR: |
| 425 | case PPC::EXTRACT_SUBREG: |
| 426 | case PPC::INSERT_SUBREG: |
| 427 | case PPC::COPY_TO_REGCLASS: |
| 428 | case PPC::LVEBX: |
| 429 | case PPC::LVEHX: |
| 430 | case PPC::LVEWX: |
| 431 | case PPC::LVSL: |
| 432 | case PPC::LVSR: |
| 433 | case PPC::LVXL: |
| 434 | case PPC::STVEBX: |
| 435 | case PPC::STVEHX: |
| 436 | case PPC::STVEWX: |
| 437 | case PPC::STVXL: |
| 438 | // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, |
| 439 | // by adding special handling for narrowing copies as well as |
| 440 | // widening ones. However, I've experimented with this, and in |
| 441 | // practice we currently do not appear to use STXSDX fed by |
| 442 | // a narrowing copy from a full vector register. Since I can't |
| 443 | // generate any useful test cases, I've left this alone for now. |
| 444 | case PPC::STXSDX: |
| 445 | case PPC::STXSSPX: |
| 446 | case PPC::VCIPHER: |
| 447 | case PPC::VCIPHERLAST: |
| 448 | case PPC::VMRGHB: |
| 449 | case PPC::VMRGHH: |
| 450 | case PPC::VMRGHW: |
| 451 | case PPC::VMRGLB: |
| 452 | case PPC::VMRGLH: |
| 453 | case PPC::VMRGLW: |
| 454 | case PPC::VMULESB: |
| 455 | case PPC::VMULESH: |
| 456 | case PPC::VMULESW: |
| 457 | case PPC::VMULEUB: |
| 458 | case PPC::VMULEUH: |
| 459 | case PPC::VMULEUW: |
| 460 | case PPC::VMULOSB: |
| 461 | case PPC::VMULOSH: |
| 462 | case PPC::VMULOSW: |
| 463 | case PPC::VMULOUB: |
| 464 | case PPC::VMULOUH: |
| 465 | case PPC::VMULOUW: |
| 466 | case PPC::VNCIPHER: |
| 467 | case PPC::VNCIPHERLAST: |
| 468 | case PPC::VPERM: |
| 469 | case PPC::VPERMXOR: |
| 470 | case PPC::VPKPX: |
| 471 | case PPC::VPKSHSS: |
| 472 | case PPC::VPKSHUS: |
| 473 | case PPC::VPKSDSS: |
| 474 | case PPC::VPKSDUS: |
| 475 | case PPC::VPKSWSS: |
| 476 | case PPC::VPKSWUS: |
| 477 | case PPC::VPKUDUM: |
| 478 | case PPC::VPKUDUS: |
| 479 | case PPC::VPKUHUM: |
| 480 | case PPC::VPKUHUS: |
| 481 | case PPC::VPKUWUM: |
| 482 | case PPC::VPKUWUS: |
| 483 | case PPC::VPMSUMB: |
| 484 | case PPC::VPMSUMD: |
| 485 | case PPC::VPMSUMH: |
| 486 | case PPC::VPMSUMW: |
| 487 | case PPC::VRLB: |
| 488 | case PPC::VRLD: |
| 489 | case PPC::VRLH: |
| 490 | case PPC::VRLW: |
| 491 | case PPC::VSBOX: |
| 492 | case PPC::VSHASIGMAD: |
| 493 | case PPC::VSHASIGMAW: |
| 494 | case PPC::VSL: |
| 495 | case PPC::VSLDOI: |
| 496 | case PPC::VSLO: |
| 497 | case PPC::VSR: |
| 498 | case PPC::VSRO: |
| 499 | case PPC::VSUM2SWS: |
| 500 | case PPC::VSUM4SBS: |
| 501 | case PPC::VSUM4SHS: |
| 502 | case PPC::VSUM4UBS: |
| 503 | case PPC::VSUMSWS: |
| 504 | case PPC::VUPKHPX: |
| 505 | case PPC::VUPKHSB: |
| 506 | case PPC::VUPKHSH: |
| 507 | case PPC::VUPKHSW: |
| 508 | case PPC::VUPKLPX: |
| 509 | case PPC::VUPKLSB: |
| 510 | case PPC::VUPKLSH: |
| 511 | case PPC::VUPKLSW: |
| 512 | case PPC::XXMRGHW: |
| 513 | case PPC::XXMRGLW: |
| 514 | // XXSLDWI could be replaced by a general permute with one of three |
| 515 | // permute control vectors (for shift values 1, 2, 3). However, |
| 516 | // VPERM has a more restrictive register class. |
| 517 | case PPC::XXSLDWI: |
| 518 | case PPC::XSCVDPSPN: |
| 519 | case PPC::XSCVSPDPN: |
| 520 | case PPC::MTVSCR: |
| 521 | case PPC::MFVSCR: |
| 522 | break; |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | if (RelevantFunction) { |
| 528 | LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n" ); |
| 529 | LLVM_DEBUG(dumpSwapVector()); |
| 530 | } |
| 531 | |
| 532 | return RelevantFunction; |
| 533 | } |
| 534 | |
| 535 | // Add an entry to the swap vector and swap map, and make a |
| 536 | // singleton equivalence class for the entry. |
| 537 | int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, |
| 538 | PPCVSXSwapEntry& SwapEntry) { |
| 539 | SwapEntry.VSEMI = MI; |
| 540 | SwapEntry.VSEId = SwapVector.size(); |
| 541 | SwapVector.push_back(x: SwapEntry); |
| 542 | EC->insert(Data: SwapEntry.VSEId); |
| 543 | SwapMap[MI] = SwapEntry.VSEId; |
| 544 | return SwapEntry.VSEId; |
| 545 | } |
| 546 | |
| 547 | // This is used to find the "true" source register for an |
| 548 | // XXPERMDI instruction, since MachineCSE does not handle the |
| 549 | // "copy-like" operations (Copy and SubregToReg). Returns |
| 550 | // the original SrcReg unless it is the target of a copy-like |
| 551 | // operation, in which case we chain backwards through all |
| 552 | // such operations to the ultimate source register. If a |
| 553 | // physical register is encountered, we stop the search and |
| 554 | // flag the swap entry indicated by VecIdx (the original |
| 555 | // XXPERMDI) as mentioning a physical register. |
| 556 | unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, |
| 557 | unsigned VecIdx) { |
| 558 | MachineInstr *MI = MRI->getVRegDef(Reg: SrcReg); |
| 559 | if (!MI->isCopyLike()) |
| 560 | return SrcReg; |
| 561 | |
| 562 | unsigned CopySrcReg; |
| 563 | if (MI->isCopy()) |
| 564 | CopySrcReg = MI->getOperand(i: 1).getReg(); |
| 565 | else { |
| 566 | assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike" ); |
| 567 | CopySrcReg = MI->getOperand(i: 2).getReg(); |
| 568 | } |
| 569 | |
| 570 | if (!Register::isVirtualRegister(Reg: CopySrcReg)) { |
| 571 | if (!isScalarVecReg(Reg: CopySrcReg)) |
| 572 | SwapVector[VecIdx].MentionsPhysVR = 1; |
| 573 | return CopySrcReg; |
| 574 | } |
| 575 | |
| 576 | return lookThruCopyLike(SrcReg: CopySrcReg, VecIdx); |
| 577 | } |
| 578 | |
| 579 | // Generate equivalence classes for related computations (webs) by |
| 580 | // def-use relationships of virtual registers. Mention of a physical |
| 581 | // register terminates the generation of equivalence classes as this |
| 582 | // indicates a use of a parameter, definition of a return value, use |
| 583 | // of a value returned from a call, or definition of a parameter to a |
| 584 | // call. Computations with physical register mentions are flagged |
| 585 | // as such so their containing webs will not be optimized. |
| 586 | void PPCVSXSwapRemoval::formWebs() { |
| 587 | |
| 588 | LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n" ); |
| 589 | |
| 590 | for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { |
| 591 | |
| 592 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 593 | |
| 594 | LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " " ); |
| 595 | LLVM_DEBUG(MI->dump()); |
| 596 | |
| 597 | // It's sufficient to walk vector uses and join them to their unique |
| 598 | // definitions. In addition, check full vector register operands |
| 599 | // for physical regs. We exclude partial-vector register operands |
| 600 | // because we can handle them if copied to a full vector. |
| 601 | for (const MachineOperand &MO : MI->operands()) { |
| 602 | if (!MO.isReg()) |
| 603 | continue; |
| 604 | |
| 605 | Register Reg = MO.getReg(); |
| 606 | if (!isVecReg(Reg) && !isScalarVecReg(Reg)) |
| 607 | continue; |
| 608 | |
| 609 | if (!Reg.isVirtual()) { |
| 610 | if (!(MI->isCopy() && isScalarVecReg(Reg))) |
| 611 | SwapVector[EntryIdx].MentionsPhysVR = 1; |
| 612 | continue; |
| 613 | } |
| 614 | |
| 615 | if (!MO.isUse()) |
| 616 | continue; |
| 617 | |
| 618 | MachineInstr* DefMI = MRI->getVRegDef(Reg); |
| 619 | assert(SwapMap.contains(DefMI) && |
| 620 | "Inconsistency: def of vector reg not found in swap map!" ); |
| 621 | int DefIdx = SwapMap[DefMI]; |
| 622 | (void)EC->unionSets(V1: SwapVector[DefIdx].VSEId, |
| 623 | V2: SwapVector[EntryIdx].VSEId); |
| 624 | |
| 625 | LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n" , |
| 626 | SwapVector[DefIdx].VSEId, |
| 627 | SwapVector[EntryIdx].VSEId)); |
| 628 | LLVM_DEBUG(dbgs() << " Def: " ); |
| 629 | LLVM_DEBUG(DefMI->dump()); |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | // Walk the swap vector entries looking for conditions that prevent their |
| 635 | // containing computations from being optimized. When such conditions are |
| 636 | // found, mark the representative of the computation's equivalence class |
| 637 | // as rejected. |
| 638 | void PPCVSXSwapRemoval::recordUnoptimizableWebs() { |
| 639 | |
| 640 | LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n" ); |
| 641 | |
| 642 | for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { |
| 643 | int Repr = EC->getLeaderValue(V: SwapVector[EntryIdx].VSEId); |
| 644 | |
| 645 | // If representative is already rejected, don't waste further time. |
| 646 | if (SwapVector[Repr].WebRejected) |
| 647 | continue; |
| 648 | |
| 649 | // Reject webs containing mentions of physical or partial registers, or |
| 650 | // containing operations that we don't know how to handle in a lane- |
| 651 | // permuted region. |
| 652 | if (SwapVector[EntryIdx].MentionsPhysVR || |
| 653 | SwapVector[EntryIdx].MentionsPartialVR || |
| 654 | !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { |
| 655 | |
| 656 | SwapVector[Repr].WebRejected = 1; |
| 657 | |
| 658 | LLVM_DEBUG( |
| 659 | dbgs() << format("Web %d rejected for physreg, partial reg, or not " |
| 660 | "swap[pable]\n" , |
| 661 | Repr)); |
| 662 | LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": " ); |
| 663 | LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump()); |
| 664 | LLVM_DEBUG(dbgs() << "\n" ); |
| 665 | } |
| 666 | |
| 667 | // Reject webs than contain swapping loads that feed something other |
| 668 | // than a swap instruction. |
| 669 | else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { |
| 670 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 671 | Register DefReg = MI->getOperand(i: 0).getReg(); |
| 672 | |
| 673 | // We skip debug instructions in the analysis. (Note that debug |
| 674 | // location information is still maintained by this optimization |
| 675 | // because it remains on the LXVD2X and STXVD2X instructions after |
| 676 | // the XXPERMDIs are removed.) |
| 677 | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg: DefReg)) { |
| 678 | int UseIdx = SwapMap[&UseMI]; |
| 679 | |
| 680 | if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || |
| 681 | SwapVector[UseIdx].IsStore) { |
| 682 | |
| 683 | SwapVector[Repr].WebRejected = 1; |
| 684 | |
| 685 | LLVM_DEBUG(dbgs() << format( |
| 686 | "Web %d rejected for load not feeding swap\n" , Repr)); |
| 687 | LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": " ); |
| 688 | LLVM_DEBUG(MI->dump()); |
| 689 | LLVM_DEBUG(dbgs() << " use " << UseIdx << ": " ); |
| 690 | LLVM_DEBUG(UseMI.dump()); |
| 691 | LLVM_DEBUG(dbgs() << "\n" ); |
| 692 | } |
| 693 | |
| 694 | // It is possible that the load feeds a swap and that swap feeds a |
| 695 | // store. In such a case, the code is actually trying to store a swapped |
| 696 | // vector. We must reject such webs. |
| 697 | if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad && |
| 698 | !SwapVector[UseIdx].IsStore) { |
| 699 | Register SwapDefReg = UseMI.getOperand(i: 0).getReg(); |
| 700 | for (MachineInstr &UseOfUseMI : |
| 701 | MRI->use_nodbg_instructions(Reg: SwapDefReg)) { |
| 702 | int UseOfUseIdx = SwapMap[&UseOfUseMI]; |
| 703 | if (SwapVector[UseOfUseIdx].IsStore) { |
| 704 | SwapVector[Repr].WebRejected = 1; |
| 705 | LLVM_DEBUG( |
| 706 | dbgs() << format( |
| 707 | "Web %d rejected for load/swap feeding a store\n" , Repr)); |
| 708 | LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": " ); |
| 709 | LLVM_DEBUG(MI->dump()); |
| 710 | LLVM_DEBUG(dbgs() << " use " << UseIdx << ": " ); |
| 711 | LLVM_DEBUG(UseMI.dump()); |
| 712 | LLVM_DEBUG(dbgs() << "\n" ); |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | // Reject webs that contain swapping stores that are fed by something |
| 719 | // other than a swap instruction. |
| 720 | } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { |
| 721 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 722 | Register UseReg = MI->getOperand(i: 0).getReg(); |
| 723 | MachineInstr *DefMI = MRI->getVRegDef(Reg: UseReg); |
| 724 | Register DefReg = DefMI->getOperand(i: 0).getReg(); |
| 725 | int DefIdx = SwapMap[DefMI]; |
| 726 | |
| 727 | if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || |
| 728 | SwapVector[DefIdx].IsStore) { |
| 729 | |
| 730 | SwapVector[Repr].WebRejected = 1; |
| 731 | |
| 732 | LLVM_DEBUG(dbgs() << format( |
| 733 | "Web %d rejected for store not fed by swap\n" , Repr)); |
| 734 | LLVM_DEBUG(dbgs() << " def " << DefIdx << ": " ); |
| 735 | LLVM_DEBUG(DefMI->dump()); |
| 736 | LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": " ); |
| 737 | LLVM_DEBUG(MI->dump()); |
| 738 | LLVM_DEBUG(dbgs() << "\n" ); |
| 739 | } |
| 740 | |
| 741 | // Ensure all uses of the register defined by DefMI feed store |
| 742 | // instructions |
| 743 | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg: DefReg)) { |
| 744 | int UseIdx = SwapMap[&UseMI]; |
| 745 | |
| 746 | if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) { |
| 747 | SwapVector[Repr].WebRejected = 1; |
| 748 | |
| 749 | LLVM_DEBUG( |
| 750 | dbgs() << format( |
| 751 | "Web %d rejected for swap not feeding only stores\n" , Repr)); |
| 752 | LLVM_DEBUG(dbgs() << " def " |
| 753 | << " : " ); |
| 754 | LLVM_DEBUG(DefMI->dump()); |
| 755 | LLVM_DEBUG(dbgs() << " use " << UseIdx << ": " ); |
| 756 | LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump()); |
| 757 | LLVM_DEBUG(dbgs() << "\n" ); |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n" ); |
| 764 | LLVM_DEBUG(dumpSwapVector()); |
| 765 | } |
| 766 | |
| 767 | // Walk the swap vector entries looking for swaps fed by permuting loads |
| 768 | // and swaps that feed permuting stores. If the containing computation |
| 769 | // has not been marked rejected, mark each such swap for removal. |
| 770 | // (Removal is delayed in case optimization has disturbed the pattern, |
| 771 | // such that multiple loads feed the same swap, etc.) |
| 772 | void PPCVSXSwapRemoval::markSwapsForRemoval() { |
| 773 | |
| 774 | LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n" ); |
| 775 | |
| 776 | for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { |
| 777 | |
| 778 | if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { |
| 779 | int Repr = EC->getLeaderValue(V: SwapVector[EntryIdx].VSEId); |
| 780 | |
| 781 | if (!SwapVector[Repr].WebRejected) { |
| 782 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 783 | Register DefReg = MI->getOperand(i: 0).getReg(); |
| 784 | |
| 785 | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg: DefReg)) { |
| 786 | int UseIdx = SwapMap[&UseMI]; |
| 787 | SwapVector[UseIdx].WillRemove = 1; |
| 788 | |
| 789 | LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: " ); |
| 790 | LLVM_DEBUG(UseMI.dump()); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { |
| 795 | int Repr = EC->getLeaderValue(V: SwapVector[EntryIdx].VSEId); |
| 796 | |
| 797 | if (!SwapVector[Repr].WebRejected) { |
| 798 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 799 | Register UseReg = MI->getOperand(i: 0).getReg(); |
| 800 | MachineInstr *DefMI = MRI->getVRegDef(Reg: UseReg); |
| 801 | int DefIdx = SwapMap[DefMI]; |
| 802 | SwapVector[DefIdx].WillRemove = 1; |
| 803 | |
| 804 | LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: " ); |
| 805 | LLVM_DEBUG(DefMI->dump()); |
| 806 | } |
| 807 | |
| 808 | } else if (SwapVector[EntryIdx].IsSwappable && |
| 809 | SwapVector[EntryIdx].SpecialHandling != 0) { |
| 810 | int Repr = EC->getLeaderValue(V: SwapVector[EntryIdx].VSEId); |
| 811 | |
| 812 | if (!SwapVector[Repr].WebRejected) |
| 813 | handleSpecialSwappables(EntryIdx); |
| 814 | } |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | // Create an xxswapd instruction and insert it prior to the given point. |
| 819 | // MI is used to determine basic block and debug loc information. |
| 820 | // FIXME: When inserting a swap, we should check whether SrcReg is |
| 821 | // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so, |
| 822 | // then instead we should generate a copy from Reg to DstReg. |
| 823 | void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, |
| 824 | MachineBasicBlock::iterator InsertPoint, |
| 825 | unsigned DstReg, unsigned SrcReg) { |
| 826 | BuildMI(BB&: *MI->getParent(), I: InsertPoint, MIMD: MI->getDebugLoc(), |
| 827 | MCID: TII->get(Opcode: PPC::XXPERMDI), DestReg: DstReg) |
| 828 | .addReg(RegNo: SrcReg) |
| 829 | .addReg(RegNo: SrcReg) |
| 830 | .addImm(Val: 2); |
| 831 | } |
| 832 | |
| 833 | // The identified swap entry requires special handling to allow its |
| 834 | // containing computation to be optimized. Perform that handling |
| 835 | // here. |
| 836 | // FIXME: Additional opportunities will be phased in with subsequent |
| 837 | // patches. |
| 838 | void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { |
| 839 | switch (SwapVector[EntryIdx].SpecialHandling) { |
| 840 | |
| 841 | default: |
| 842 | llvm_unreachable("Unexpected special handling type" ); |
| 843 | |
| 844 | // For splats based on an index into a vector, add N/2 modulo N |
| 845 | // to the index, where N is the number of vector elements. |
| 846 | case SHValues::SH_SPLAT: { |
| 847 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 848 | unsigned NElts; |
| 849 | |
| 850 | LLVM_DEBUG(dbgs() << "Changing splat: " ); |
| 851 | LLVM_DEBUG(MI->dump()); |
| 852 | |
| 853 | switch (MI->getOpcode()) { |
| 854 | default: |
| 855 | llvm_unreachable("Unexpected splat opcode" ); |
| 856 | case PPC::VSPLTB: NElts = 16; break; |
| 857 | case PPC::VSPLTH: NElts = 8; break; |
| 858 | case PPC::VSPLTW: |
| 859 | case PPC::XXSPLTW: NElts = 4; break; |
| 860 | } |
| 861 | |
| 862 | unsigned EltNo; |
| 863 | if (MI->getOpcode() == PPC::XXSPLTW) |
| 864 | EltNo = MI->getOperand(i: 2).getImm(); |
| 865 | else |
| 866 | EltNo = MI->getOperand(i: 1).getImm(); |
| 867 | |
| 868 | EltNo = (EltNo + NElts / 2) % NElts; |
| 869 | if (MI->getOpcode() == PPC::XXSPLTW) |
| 870 | MI->getOperand(i: 2).setImm(EltNo); |
| 871 | else |
| 872 | MI->getOperand(i: 1).setImm(EltNo); |
| 873 | |
| 874 | LLVM_DEBUG(dbgs() << " Into: " ); |
| 875 | LLVM_DEBUG(MI->dump()); |
| 876 | break; |
| 877 | } |
| 878 | |
| 879 | // For an XXPERMDI that isn't handled otherwise, we need to |
| 880 | // reverse the order of the operands. If the selector operand |
| 881 | // has a value of 0 or 3, we need to change it to 3 or 0, |
| 882 | // respectively. Otherwise we should leave it alone. (This |
| 883 | // is equivalent to reversing the two bits of the selector |
| 884 | // operand and complementing the result.) |
| 885 | case SHValues::SH_XXPERMDI: { |
| 886 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 887 | |
| 888 | LLVM_DEBUG(dbgs() << "Changing XXPERMDI: " ); |
| 889 | LLVM_DEBUG(MI->dump()); |
| 890 | |
| 891 | unsigned Selector = MI->getOperand(i: 3).getImm(); |
| 892 | if (Selector == 0 || Selector == 3) |
| 893 | Selector = 3 - Selector; |
| 894 | MI->getOperand(i: 3).setImm(Selector); |
| 895 | |
| 896 | Register Reg1 = MI->getOperand(i: 1).getReg(); |
| 897 | Register Reg2 = MI->getOperand(i: 2).getReg(); |
| 898 | MI->getOperand(i: 1).setReg(Reg2); |
| 899 | MI->getOperand(i: 2).setReg(Reg1); |
| 900 | |
| 901 | // We also need to swap kill flag associated with the register. |
| 902 | bool IsKill1 = MI->getOperand(i: 1).isKill(); |
| 903 | bool IsKill2 = MI->getOperand(i: 2).isKill(); |
| 904 | MI->getOperand(i: 1).setIsKill(IsKill2); |
| 905 | MI->getOperand(i: 2).setIsKill(IsKill1); |
| 906 | |
| 907 | LLVM_DEBUG(dbgs() << " Into: " ); |
| 908 | LLVM_DEBUG(MI->dump()); |
| 909 | break; |
| 910 | } |
| 911 | |
| 912 | // For a copy from a scalar floating-point register to a vector |
| 913 | // register, removing swaps will leave the copied value in the |
| 914 | // wrong lane. Insert a swap following the copy to fix this. |
| 915 | case SHValues::SH_COPYWIDEN: { |
| 916 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 917 | |
| 918 | LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: " ); |
| 919 | LLVM_DEBUG(MI->dump()); |
| 920 | |
| 921 | Register DstReg = MI->getOperand(i: 0).getReg(); |
| 922 | const TargetRegisterClass *DstRC = MRI->getRegClass(Reg: DstReg); |
| 923 | Register NewVReg = MRI->createVirtualRegister(RegClass: DstRC); |
| 924 | |
| 925 | MI->getOperand(i: 0).setReg(NewVReg); |
| 926 | LLVM_DEBUG(dbgs() << " Into: " ); |
| 927 | LLVM_DEBUG(MI->dump()); |
| 928 | |
| 929 | auto InsertPoint = ++MachineBasicBlock::iterator(MI); |
| 930 | |
| 931 | // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG |
| 932 | // is copying to a VRRC, we need to be careful to avoid a register |
| 933 | // assignment problem. In this case we must copy from VRRC to VSRC |
| 934 | // prior to the swap, and from VSRC to VRRC following the swap. |
| 935 | // Coalescing will usually remove all this mess. |
| 936 | if (DstRC == &PPC::VRRCRegClass) { |
| 937 | Register VSRCTmp1 = MRI->createVirtualRegister(RegClass: &PPC::VSRCRegClass); |
| 938 | Register VSRCTmp2 = MRI->createVirtualRegister(RegClass: &PPC::VSRCRegClass); |
| 939 | |
| 940 | BuildMI(BB&: *MI->getParent(), I: InsertPoint, MIMD: MI->getDebugLoc(), |
| 941 | MCID: TII->get(Opcode: PPC::COPY), DestReg: VSRCTmp1) |
| 942 | .addReg(RegNo: NewVReg); |
| 943 | LLVM_DEBUG(std::prev(InsertPoint)->dump()); |
| 944 | |
| 945 | insertSwap(MI, InsertPoint, DstReg: VSRCTmp2, SrcReg: VSRCTmp1); |
| 946 | LLVM_DEBUG(std::prev(InsertPoint)->dump()); |
| 947 | |
| 948 | BuildMI(BB&: *MI->getParent(), I: InsertPoint, MIMD: MI->getDebugLoc(), |
| 949 | MCID: TII->get(Opcode: PPC::COPY), DestReg: DstReg) |
| 950 | .addReg(RegNo: VSRCTmp2); |
| 951 | LLVM_DEBUG(std::prev(InsertPoint)->dump()); |
| 952 | |
| 953 | } else { |
| 954 | insertSwap(MI, InsertPoint, DstReg, SrcReg: NewVReg); |
| 955 | LLVM_DEBUG(std::prev(InsertPoint)->dump()); |
| 956 | } |
| 957 | break; |
| 958 | } |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | // Walk the swap vector and replace each entry marked for removal with |
| 963 | // a copy operation. |
| 964 | bool PPCVSXSwapRemoval::removeSwaps() { |
| 965 | |
| 966 | LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n" ); |
| 967 | |
| 968 | bool Changed = false; |
| 969 | |
| 970 | for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { |
| 971 | if (SwapVector[EntryIdx].WillRemove) { |
| 972 | Changed = true; |
| 973 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 974 | MachineBasicBlock *MBB = MI->getParent(); |
| 975 | BuildMI(BB&: *MBB, I: MI, MIMD: MI->getDebugLoc(), MCID: TII->get(Opcode: TargetOpcode::COPY), |
| 976 | DestReg: MI->getOperand(i: 0).getReg()) |
| 977 | .add(MO: MI->getOperand(i: 1)); |
| 978 | |
| 979 | LLVM_DEBUG(dbgs() << format("Replaced %d with copy: " , |
| 980 | SwapVector[EntryIdx].VSEId)); |
| 981 | LLVM_DEBUG(MI->dump()); |
| 982 | |
| 983 | MI->eraseFromParent(); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | return Changed; |
| 988 | } |
| 989 | |
| 990 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 991 | // For debug purposes, dump the contents of the swap vector. |
| 992 | LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() { |
| 993 | |
| 994 | for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { |
| 995 | |
| 996 | MachineInstr *MI = SwapVector[EntryIdx].VSEMI; |
| 997 | int ID = SwapVector[EntryIdx].VSEId; |
| 998 | |
| 999 | dbgs() << format("%6d" , ID); |
| 1000 | dbgs() << format("%6d" , EC->getLeaderValue(ID)); |
| 1001 | dbgs() << format(" %bb.%3d" , MI->getParent()->getNumber()); |
| 1002 | dbgs() << format(" %14s " , TII->getName(MI->getOpcode()).str().c_str()); |
| 1003 | |
| 1004 | if (SwapVector[EntryIdx].IsLoad) |
| 1005 | dbgs() << "load " ; |
| 1006 | if (SwapVector[EntryIdx].IsStore) |
| 1007 | dbgs() << "store " ; |
| 1008 | if (SwapVector[EntryIdx].IsSwap) |
| 1009 | dbgs() << "swap " ; |
| 1010 | if (SwapVector[EntryIdx].MentionsPhysVR) |
| 1011 | dbgs() << "physreg " ; |
| 1012 | if (SwapVector[EntryIdx].MentionsPartialVR) |
| 1013 | dbgs() << "partialreg " ; |
| 1014 | |
| 1015 | if (SwapVector[EntryIdx].IsSwappable) { |
| 1016 | dbgs() << "swappable " ; |
| 1017 | switch(SwapVector[EntryIdx].SpecialHandling) { |
| 1018 | default: |
| 1019 | dbgs() << "special:**unknown**" ; |
| 1020 | break; |
| 1021 | case SH_NONE: |
| 1022 | break; |
| 1023 | case SH_EXTRACT: |
| 1024 | dbgs() << "special:extract " ; |
| 1025 | break; |
| 1026 | case SH_INSERT: |
| 1027 | dbgs() << "special:insert " ; |
| 1028 | break; |
| 1029 | case SH_NOSWAP_LD: |
| 1030 | dbgs() << "special:load " ; |
| 1031 | break; |
| 1032 | case SH_NOSWAP_ST: |
| 1033 | dbgs() << "special:store " ; |
| 1034 | break; |
| 1035 | case SH_SPLAT: |
| 1036 | dbgs() << "special:splat " ; |
| 1037 | break; |
| 1038 | case SH_XXPERMDI: |
| 1039 | dbgs() << "special:xxpermdi " ; |
| 1040 | break; |
| 1041 | case SH_COPYWIDEN: |
| 1042 | dbgs() << "special:copywiden " ; |
| 1043 | break; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | if (SwapVector[EntryIdx].WebRejected) |
| 1048 | dbgs() << "rejected " ; |
| 1049 | if (SwapVector[EntryIdx].WillRemove) |
| 1050 | dbgs() << "remove " ; |
| 1051 | |
| 1052 | dbgs() << "\n" ; |
| 1053 | |
| 1054 | // For no-asserts builds. |
| 1055 | (void)MI; |
| 1056 | (void)ID; |
| 1057 | } |
| 1058 | |
| 1059 | dbgs() << "\n" ; |
| 1060 | } |
| 1061 | #endif |
| 1062 | |
| 1063 | INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, |
| 1064 | "PowerPC VSX Swap Removal" , false, false) |
| 1065 | INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, |
| 1066 | "PowerPC VSX Swap Removal" , false, false) |
| 1067 | |
| 1068 | char PPCVSXSwapRemoval::ID = 0; |
| 1069 | FunctionPass* |
| 1070 | llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); } |
| 1071 | |