| 1 | //===-- RISCVLegalizerInfo.cpp ----------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements the targeting of the Machinelegalizer class for RISC-V. |
| 10 | /// \todo This should be generated by TableGen. |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "RISCVLegalizerInfo.h" |
| 14 | #include "MCTargetDesc/RISCVMatInt.h" |
| 15 | #include "RISCVMachineFunctionInfo.h" |
| 16 | #include "RISCVSubtarget.h" |
| 17 | #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutor.h" |
| 18 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 19 | #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| 20 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 21 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 22 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 23 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 24 | #include "llvm/CodeGen/MachineOperand.h" |
| 25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 26 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 27 | #include "llvm/CodeGen/ValueTypes.h" |
| 28 | #include "llvm/IR/DerivedTypes.h" |
| 29 | #include "llvm/IR/Type.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | using namespace LegalityPredicates; |
| 33 | using namespace LegalizeMutations; |
| 34 | |
| 35 | static LegalityPredicate |
| 36 | typeIsLegalIntOrFPVec(unsigned TypeIdx, |
| 37 | std::initializer_list<LLT> IntOrFPVecTys, |
| 38 | const RISCVSubtarget &ST) { |
| 39 | LegalityPredicate P = [=, &ST](const LegalityQuery &Query) { |
| 40 | return ST.hasVInstructions() && |
| 41 | (Query.Types[TypeIdx].getScalarSizeInBits() != 64 || |
| 42 | ST.hasVInstructionsI64()) && |
| 43 | (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 || |
| 44 | ST.getELen() == 64); |
| 45 | }; |
| 46 | |
| 47 | return all(P0: typeInSet(TypeIdx, TypesInit: IntOrFPVecTys), P1: P); |
| 48 | } |
| 49 | |
| 50 | static LegalityPredicate |
| 51 | typeIsLegalBoolVec(unsigned TypeIdx, std::initializer_list<LLT> BoolVecTys, |
| 52 | const RISCVSubtarget &ST) { |
| 53 | LegalityPredicate P = [=, &ST](const LegalityQuery &Query) { |
| 54 | return ST.hasVInstructions() && |
| 55 | (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 || |
| 56 | ST.getELen() == 64); |
| 57 | }; |
| 58 | return all(P0: typeInSet(TypeIdx, TypesInit: BoolVecTys), P1: P); |
| 59 | } |
| 60 | |
| 61 | static LegalityPredicate typeIsLegalPtrVec(unsigned TypeIdx, |
| 62 | std::initializer_list<LLT> PtrVecTys, |
| 63 | const RISCVSubtarget &ST) { |
| 64 | LegalityPredicate P = [=, &ST](const LegalityQuery &Query) { |
| 65 | return ST.hasVInstructions() && |
| 66 | (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 || |
| 67 | ST.getELen() == 64) && |
| 68 | (Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 16 || |
| 69 | Query.Types[TypeIdx].getScalarSizeInBits() == 32); |
| 70 | }; |
| 71 | return all(P0: typeInSet(TypeIdx, TypesInit: PtrVecTys), P1: P); |
| 72 | } |
| 73 | |
| 74 | RISCVLegalizerInfo::RISCVLegalizerInfo(const RISCVSubtarget &ST) |
| 75 | : STI(ST), XLen(STI.getXLen()), sXLen(LLT::scalar(SizeInBits: XLen)) { |
| 76 | const LLT sDoubleXLen = LLT::scalar(SizeInBits: 2 * XLen); |
| 77 | const LLT p0 = LLT::pointer(AddressSpace: 0, SizeInBits: XLen); |
| 78 | const LLT s1 = LLT::scalar(SizeInBits: 1); |
| 79 | const LLT s8 = LLT::scalar(SizeInBits: 8); |
| 80 | const LLT s16 = LLT::scalar(SizeInBits: 16); |
| 81 | const LLT s32 = LLT::scalar(SizeInBits: 32); |
| 82 | const LLT s64 = LLT::scalar(SizeInBits: 64); |
| 83 | const LLT s128 = LLT::scalar(SizeInBits: 128); |
| 84 | |
| 85 | const LLT nxv1s1 = LLT::scalable_vector(MinNumElements: 1, ScalarTy: s1); |
| 86 | const LLT nxv2s1 = LLT::scalable_vector(MinNumElements: 2, ScalarTy: s1); |
| 87 | const LLT nxv4s1 = LLT::scalable_vector(MinNumElements: 4, ScalarTy: s1); |
| 88 | const LLT nxv8s1 = LLT::scalable_vector(MinNumElements: 8, ScalarTy: s1); |
| 89 | const LLT nxv16s1 = LLT::scalable_vector(MinNumElements: 16, ScalarTy: s1); |
| 90 | const LLT nxv32s1 = LLT::scalable_vector(MinNumElements: 32, ScalarTy: s1); |
| 91 | const LLT nxv64s1 = LLT::scalable_vector(MinNumElements: 64, ScalarTy: s1); |
| 92 | |
| 93 | const LLT nxv1s8 = LLT::scalable_vector(MinNumElements: 1, ScalarTy: s8); |
| 94 | const LLT nxv2s8 = LLT::scalable_vector(MinNumElements: 2, ScalarTy: s8); |
| 95 | const LLT nxv4s8 = LLT::scalable_vector(MinNumElements: 4, ScalarTy: s8); |
| 96 | const LLT nxv8s8 = LLT::scalable_vector(MinNumElements: 8, ScalarTy: s8); |
| 97 | const LLT nxv16s8 = LLT::scalable_vector(MinNumElements: 16, ScalarTy: s8); |
| 98 | const LLT nxv32s8 = LLT::scalable_vector(MinNumElements: 32, ScalarTy: s8); |
| 99 | const LLT nxv64s8 = LLT::scalable_vector(MinNumElements: 64, ScalarTy: s8); |
| 100 | |
| 101 | const LLT nxv1s16 = LLT::scalable_vector(MinNumElements: 1, ScalarTy: s16); |
| 102 | const LLT nxv2s16 = LLT::scalable_vector(MinNumElements: 2, ScalarTy: s16); |
| 103 | const LLT nxv4s16 = LLT::scalable_vector(MinNumElements: 4, ScalarTy: s16); |
| 104 | const LLT nxv8s16 = LLT::scalable_vector(MinNumElements: 8, ScalarTy: s16); |
| 105 | const LLT nxv16s16 = LLT::scalable_vector(MinNumElements: 16, ScalarTy: s16); |
| 106 | const LLT nxv32s16 = LLT::scalable_vector(MinNumElements: 32, ScalarTy: s16); |
| 107 | |
| 108 | const LLT nxv1s32 = LLT::scalable_vector(MinNumElements: 1, ScalarTy: s32); |
| 109 | const LLT nxv2s32 = LLT::scalable_vector(MinNumElements: 2, ScalarTy: s32); |
| 110 | const LLT nxv4s32 = LLT::scalable_vector(MinNumElements: 4, ScalarTy: s32); |
| 111 | const LLT nxv8s32 = LLT::scalable_vector(MinNumElements: 8, ScalarTy: s32); |
| 112 | const LLT nxv16s32 = LLT::scalable_vector(MinNumElements: 16, ScalarTy: s32); |
| 113 | |
| 114 | const LLT nxv1s64 = LLT::scalable_vector(MinNumElements: 1, ScalarTy: s64); |
| 115 | const LLT nxv2s64 = LLT::scalable_vector(MinNumElements: 2, ScalarTy: s64); |
| 116 | const LLT nxv4s64 = LLT::scalable_vector(MinNumElements: 4, ScalarTy: s64); |
| 117 | const LLT nxv8s64 = LLT::scalable_vector(MinNumElements: 8, ScalarTy: s64); |
| 118 | |
| 119 | const LLT nxv1p0 = LLT::scalable_vector(MinNumElements: 1, ScalarTy: p0); |
| 120 | const LLT nxv2p0 = LLT::scalable_vector(MinNumElements: 2, ScalarTy: p0); |
| 121 | const LLT nxv4p0 = LLT::scalable_vector(MinNumElements: 4, ScalarTy: p0); |
| 122 | const LLT nxv8p0 = LLT::scalable_vector(MinNumElements: 8, ScalarTy: p0); |
| 123 | const LLT nxv16p0 = LLT::scalable_vector(MinNumElements: 16, ScalarTy: p0); |
| 124 | |
| 125 | using namespace TargetOpcode; |
| 126 | |
| 127 | auto BoolVecTys = {nxv1s1, nxv2s1, nxv4s1, nxv8s1, nxv16s1, nxv32s1, nxv64s1}; |
| 128 | |
| 129 | auto IntOrFPVecTys = {nxv1s8, nxv2s8, nxv4s8, nxv8s8, nxv16s8, nxv32s8, |
| 130 | nxv64s8, nxv1s16, nxv2s16, nxv4s16, nxv8s16, nxv16s16, |
| 131 | nxv32s16, nxv1s32, nxv2s32, nxv4s32, nxv8s32, nxv16s32, |
| 132 | nxv1s64, nxv2s64, nxv4s64, nxv8s64}; |
| 133 | |
| 134 | auto PtrVecTys = {nxv1p0, nxv2p0, nxv4p0, nxv8p0, nxv16p0}; |
| 135 | |
| 136 | getActionDefinitionsBuilder(Opcodes: {G_ADD, G_SUB}) |
| 137 | .legalFor(Types: {sXLen}) |
| 138 | .legalIf(Predicate: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST)) |
| 139 | .customFor(Pred: ST.is64Bit(), Types: {s32}) |
| 140 | .widenScalarToNextPow2(TypeIdx: 0) |
| 141 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 142 | |
| 143 | getActionDefinitionsBuilder(Opcodes: {G_AND, G_OR, G_XOR}) |
| 144 | .legalFor(Types: {sXLen}) |
| 145 | .legalIf(Predicate: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST)) |
| 146 | .widenScalarToNextPow2(TypeIdx: 0) |
| 147 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 148 | |
| 149 | getActionDefinitionsBuilder( |
| 150 | Opcodes: {G_UADDE, G_UADDO, G_USUBE, G_USUBO}).lower(); |
| 151 | |
| 152 | getActionDefinitionsBuilder(Opcodes: {G_SADDO, G_SSUBO}).minScalar(TypeIdx: 0, Ty: sXLen).lower(); |
| 153 | |
| 154 | // TODO: Use Vector Single-Width Saturating Instructions for vector types. |
| 155 | getActionDefinitionsBuilder(Opcodes: {G_UADDSAT, G_SADDSAT, G_USUBSAT, G_SSUBSAT}) |
| 156 | .lower(); |
| 157 | |
| 158 | getActionDefinitionsBuilder(Opcodes: {G_SHL, G_ASHR, G_LSHR}) |
| 159 | .legalFor(Types: {{sXLen, sXLen}}) |
| 160 | .customFor(Pred: ST.is64Bit(), Types: {{s32, s32}}) |
| 161 | .widenScalarToNextPow2(TypeIdx: 0) |
| 162 | .clampScalar(TypeIdx: 1, MinTy: sXLen, MaxTy: sXLen) |
| 163 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 164 | |
| 165 | getActionDefinitionsBuilder(Opcodes: {G_ZEXT, G_SEXT, G_ANYEXT}) |
| 166 | .legalFor(Types: {{s32, s16}}) |
| 167 | .legalFor(Pred: ST.is64Bit(), Types: {{s64, s16}, {s64, s32}}) |
| 168 | .legalIf(Predicate: all(P0: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST), |
| 169 | P1: typeIsLegalIntOrFPVec(TypeIdx: 1, IntOrFPVecTys, ST))) |
| 170 | .customIf(Predicate: typeIsLegalBoolVec(TypeIdx: 1, BoolVecTys, ST)) |
| 171 | .maxScalar(TypeIdx: 0, Ty: sXLen); |
| 172 | |
| 173 | getActionDefinitionsBuilder(Opcode: G_SEXT_INREG) |
| 174 | .customFor(Types: {sXLen}) |
| 175 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen) |
| 176 | .lower(); |
| 177 | |
| 178 | // Merge/Unmerge |
| 179 | for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { |
| 180 | auto &MergeUnmergeActions = getActionDefinitionsBuilder(Opcode: Op); |
| 181 | unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; |
| 182 | unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; |
| 183 | if (XLen == 32 && ST.hasStdExtD()) { |
| 184 | MergeUnmergeActions.legalIf( |
| 185 | Predicate: all(P0: typeIs(TypeIdx: BigTyIdx, TypesInit: s64), P1: typeIs(TypeIdx: LitTyIdx, TypesInit: s32))); |
| 186 | } |
| 187 | MergeUnmergeActions.widenScalarToNextPow2(TypeIdx: LitTyIdx, MinSize: XLen) |
| 188 | .widenScalarToNextPow2(TypeIdx: BigTyIdx, MinSize: XLen) |
| 189 | .clampScalar(TypeIdx: LitTyIdx, MinTy: sXLen, MaxTy: sXLen) |
| 190 | .clampScalar(TypeIdx: BigTyIdx, MinTy: sXLen, MaxTy: sXLen); |
| 191 | } |
| 192 | |
| 193 | getActionDefinitionsBuilder(Opcodes: {G_FSHL, G_FSHR}).lower(); |
| 194 | |
| 195 | getActionDefinitionsBuilder(Opcodes: {G_ROTR, G_ROTL}) |
| 196 | .legalFor(Pred: ST.hasStdExtZbb() || ST.hasStdExtZbkb(), Types: {{sXLen, sXLen}}) |
| 197 | .customFor(Pred: ST.is64Bit() && (ST.hasStdExtZbb() || ST.hasStdExtZbkb()), |
| 198 | Types: {{s32, s32}}) |
| 199 | .lower(); |
| 200 | |
| 201 | getActionDefinitionsBuilder(Opcode: G_BITREVERSE).maxScalar(TypeIdx: 0, Ty: sXLen).lower(); |
| 202 | |
| 203 | getActionDefinitionsBuilder(Opcode: G_BITCAST).legalIf( |
| 204 | Predicate: all(P0: LegalityPredicates::any(P0: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST), |
| 205 | P1: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST)), |
| 206 | P1: LegalityPredicates::any(P0: typeIsLegalIntOrFPVec(TypeIdx: 1, IntOrFPVecTys, ST), |
| 207 | P1: typeIsLegalBoolVec(TypeIdx: 1, BoolVecTys, ST)))); |
| 208 | |
| 209 | auto &BSWAPActions = getActionDefinitionsBuilder(Opcode: G_BSWAP); |
| 210 | if (ST.hasStdExtZbb() || ST.hasStdExtZbkb()) |
| 211 | BSWAPActions.legalFor(Types: {sXLen}).clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 212 | else |
| 213 | BSWAPActions.maxScalar(TypeIdx: 0, Ty: sXLen).lower(); |
| 214 | |
| 215 | auto &CountZerosActions = getActionDefinitionsBuilder(Opcodes: {G_CTLZ, G_CTTZ}); |
| 216 | auto &CountZerosUndefActions = |
| 217 | getActionDefinitionsBuilder(Opcodes: {G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF}); |
| 218 | if (ST.hasStdExtZbb()) { |
| 219 | CountZerosActions.legalFor(Types: {{sXLen, sXLen}}) |
| 220 | .customFor(Types: {{s32, s32}}) |
| 221 | .clampScalar(TypeIdx: 0, MinTy: s32, MaxTy: sXLen) |
| 222 | .widenScalarToNextPow2(TypeIdx: 0) |
| 223 | .scalarSameSizeAs(TypeIdx: 1, SameSizeIdx: 0); |
| 224 | } else { |
| 225 | CountZerosActions.maxScalar(TypeIdx: 0, Ty: sXLen).scalarSameSizeAs(TypeIdx: 1, SameSizeIdx: 0).lower(); |
| 226 | CountZerosUndefActions.maxScalar(TypeIdx: 0, Ty: sXLen).scalarSameSizeAs(TypeIdx: 1, SameSizeIdx: 0); |
| 227 | } |
| 228 | CountZerosUndefActions.lower(); |
| 229 | |
| 230 | auto &CTPOPActions = getActionDefinitionsBuilder(Opcode: G_CTPOP); |
| 231 | if (ST.hasStdExtZbb()) { |
| 232 | CTPOPActions.legalFor(Types: {{sXLen, sXLen}}) |
| 233 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen) |
| 234 | .scalarSameSizeAs(TypeIdx: 1, SameSizeIdx: 0); |
| 235 | } else { |
| 236 | CTPOPActions.maxScalar(TypeIdx: 0, Ty: sXLen).scalarSameSizeAs(TypeIdx: 1, SameSizeIdx: 0).lower(); |
| 237 | } |
| 238 | |
| 239 | getActionDefinitionsBuilder(Opcode: G_CONSTANT) |
| 240 | .legalFor(Types: {p0}) |
| 241 | .legalFor(Pred: !ST.is64Bit(), Types: {s32}) |
| 242 | .customFor(Pred: ST.is64Bit(), Types: {s64}) |
| 243 | .widenScalarToNextPow2(TypeIdx: 0) |
| 244 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 245 | |
| 246 | // TODO: transform illegal vector types into legal vector type |
| 247 | getActionDefinitionsBuilder(Opcode: G_FREEZE) |
| 248 | .legalFor(Types: {s16, s32, p0}) |
| 249 | .legalFor(Pred: ST.is64Bit(), Types: {s64}) |
| 250 | .legalIf(Predicate: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST)) |
| 251 | .legalIf(Predicate: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST)) |
| 252 | .widenScalarToNextPow2(TypeIdx: 0) |
| 253 | .clampScalar(TypeIdx: 0, MinTy: s16, MaxTy: sXLen); |
| 254 | |
| 255 | // TODO: transform illegal vector types into legal vector type |
| 256 | // TODO: Merge with G_FREEZE? |
| 257 | getActionDefinitionsBuilder( |
| 258 | Opcodes: {G_IMPLICIT_DEF, G_CONSTANT_FOLD_BARRIER}) |
| 259 | .legalFor(Types: {s32, sXLen, p0}) |
| 260 | .legalIf(Predicate: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST)) |
| 261 | .legalIf(Predicate: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST)) |
| 262 | .widenScalarToNextPow2(TypeIdx: 0) |
| 263 | .clampScalar(TypeIdx: 0, MinTy: s32, MaxTy: sXLen); |
| 264 | |
| 265 | getActionDefinitionsBuilder(Opcode: G_ICMP) |
| 266 | .legalFor(Types: {{sXLen, sXLen}, {sXLen, p0}}) |
| 267 | .legalIf(Predicate: all(P0: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST), |
| 268 | P1: typeIsLegalIntOrFPVec(TypeIdx: 1, IntOrFPVecTys, ST))) |
| 269 | .widenScalarOrEltToNextPow2OrMinSize(TypeIdx: 1, MinSize: 8) |
| 270 | .clampScalar(TypeIdx: 1, MinTy: sXLen, MaxTy: sXLen) |
| 271 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 272 | |
| 273 | getActionDefinitionsBuilder(Opcode: G_SELECT) |
| 274 | .legalFor(Types: {{s32, sXLen}, {p0, sXLen}}) |
| 275 | .legalIf(Predicate: all(P0: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST), |
| 276 | P1: typeIsLegalBoolVec(TypeIdx: 1, BoolVecTys, ST))) |
| 277 | .legalFor(Pred: XLen == 64 || ST.hasStdExtD(), Types: {{s64, sXLen}}) |
| 278 | .widenScalarToNextPow2(TypeIdx: 0) |
| 279 | .clampScalar(TypeIdx: 0, MinTy: s32, MaxTy: (XLen == 64 || ST.hasStdExtD()) ? s64 : s32) |
| 280 | .clampScalar(TypeIdx: 1, MinTy: sXLen, MaxTy: sXLen); |
| 281 | |
| 282 | auto &LoadActions = getActionDefinitionsBuilder(Opcode: G_LOAD); |
| 283 | auto &StoreActions = getActionDefinitionsBuilder(Opcode: G_STORE); |
| 284 | auto &ExtLoadActions = getActionDefinitionsBuilder(Opcodes: {G_SEXTLOAD, G_ZEXTLOAD}); |
| 285 | |
| 286 | // Return the alignment needed for scalar memory ops. If unaligned scalar mem |
| 287 | // is supported, we only require byte alignment. Otherwise, we need the memory |
| 288 | // op to be natively aligned. |
| 289 | auto getScalarMemAlign = [&ST](unsigned Size) { |
| 290 | return ST.enableUnalignedScalarMem() ? 8 : Size; |
| 291 | }; |
| 292 | |
| 293 | LoadActions.legalForTypesWithMemDesc( |
| 294 | TypesAndMemDesc: {{.Type0: s16, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 295 | {.Type0: s32, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 296 | {.Type0: s16, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}, |
| 297 | {.Type0: s32, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}, |
| 298 | {.Type0: s32, .Type1: p0, .MemTy: s32, .Align: getScalarMemAlign(32)}, |
| 299 | {.Type0: p0, .Type1: p0, .MemTy: sXLen, .Align: getScalarMemAlign(XLen)}}); |
| 300 | StoreActions.legalForTypesWithMemDesc( |
| 301 | TypesAndMemDesc: {{.Type0: s16, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 302 | {.Type0: s32, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 303 | {.Type0: s16, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}, |
| 304 | {.Type0: s32, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}, |
| 305 | {.Type0: s32, .Type1: p0, .MemTy: s32, .Align: getScalarMemAlign(32)}, |
| 306 | {.Type0: p0, .Type1: p0, .MemTy: sXLen, .Align: getScalarMemAlign(XLen)}}); |
| 307 | ExtLoadActions.legalForTypesWithMemDesc( |
| 308 | TypesAndMemDesc: {{.Type0: sXLen, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 309 | {.Type0: sXLen, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}}); |
| 310 | if (XLen == 64) { |
| 311 | LoadActions.legalForTypesWithMemDesc( |
| 312 | TypesAndMemDesc: {{.Type0: s64, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 313 | {.Type0: s64, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}, |
| 314 | {.Type0: s64, .Type1: p0, .MemTy: s32, .Align: getScalarMemAlign(32)}, |
| 315 | {.Type0: s64, .Type1: p0, .MemTy: s64, .Align: getScalarMemAlign(64)}}); |
| 316 | StoreActions.legalForTypesWithMemDesc( |
| 317 | TypesAndMemDesc: {{.Type0: s64, .Type1: p0, .MemTy: s8, .Align: getScalarMemAlign(8)}, |
| 318 | {.Type0: s64, .Type1: p0, .MemTy: s16, .Align: getScalarMemAlign(16)}, |
| 319 | {.Type0: s64, .Type1: p0, .MemTy: s32, .Align: getScalarMemAlign(32)}, |
| 320 | {.Type0: s64, .Type1: p0, .MemTy: s64, .Align: getScalarMemAlign(64)}}); |
| 321 | ExtLoadActions.legalForTypesWithMemDesc( |
| 322 | TypesAndMemDesc: {{.Type0: s64, .Type1: p0, .MemTy: s32, .Align: getScalarMemAlign(32)}}); |
| 323 | } else if (ST.hasStdExtD()) { |
| 324 | LoadActions.legalForTypesWithMemDesc( |
| 325 | TypesAndMemDesc: {{.Type0: s64, .Type1: p0, .MemTy: s64, .Align: getScalarMemAlign(64)}}); |
| 326 | StoreActions.legalForTypesWithMemDesc( |
| 327 | TypesAndMemDesc: {{.Type0: s64, .Type1: p0, .MemTy: s64, .Align: getScalarMemAlign(64)}}); |
| 328 | } |
| 329 | |
| 330 | // Vector loads/stores. |
| 331 | if (ST.hasVInstructions()) { |
| 332 | LoadActions.legalForTypesWithMemDesc(TypesAndMemDesc: {{.Type0: nxv2s8, .Type1: p0, .MemTy: nxv2s8, .Align: 8}, |
| 333 | {.Type0: nxv4s8, .Type1: p0, .MemTy: nxv4s8, .Align: 8}, |
| 334 | {.Type0: nxv8s8, .Type1: p0, .MemTy: nxv8s8, .Align: 8}, |
| 335 | {.Type0: nxv16s8, .Type1: p0, .MemTy: nxv16s8, .Align: 8}, |
| 336 | {.Type0: nxv32s8, .Type1: p0, .MemTy: nxv32s8, .Align: 8}, |
| 337 | {.Type0: nxv64s8, .Type1: p0, .MemTy: nxv64s8, .Align: 8}, |
| 338 | {.Type0: nxv2s16, .Type1: p0, .MemTy: nxv2s16, .Align: 16}, |
| 339 | {.Type0: nxv4s16, .Type1: p0, .MemTy: nxv4s16, .Align: 16}, |
| 340 | {.Type0: nxv8s16, .Type1: p0, .MemTy: nxv8s16, .Align: 16}, |
| 341 | {.Type0: nxv16s16, .Type1: p0, .MemTy: nxv16s16, .Align: 16}, |
| 342 | {.Type0: nxv32s16, .Type1: p0, .MemTy: nxv32s16, .Align: 16}, |
| 343 | {.Type0: nxv2s32, .Type1: p0, .MemTy: nxv2s32, .Align: 32}, |
| 344 | {.Type0: nxv4s32, .Type1: p0, .MemTy: nxv4s32, .Align: 32}, |
| 345 | {.Type0: nxv8s32, .Type1: p0, .MemTy: nxv8s32, .Align: 32}, |
| 346 | {.Type0: nxv16s32, .Type1: p0, .MemTy: nxv16s32, .Align: 32}}); |
| 347 | StoreActions.legalForTypesWithMemDesc(TypesAndMemDesc: {{.Type0: nxv2s8, .Type1: p0, .MemTy: nxv2s8, .Align: 8}, |
| 348 | {.Type0: nxv4s8, .Type1: p0, .MemTy: nxv4s8, .Align: 8}, |
| 349 | {.Type0: nxv8s8, .Type1: p0, .MemTy: nxv8s8, .Align: 8}, |
| 350 | {.Type0: nxv16s8, .Type1: p0, .MemTy: nxv16s8, .Align: 8}, |
| 351 | {.Type0: nxv32s8, .Type1: p0, .MemTy: nxv32s8, .Align: 8}, |
| 352 | {.Type0: nxv64s8, .Type1: p0, .MemTy: nxv64s8, .Align: 8}, |
| 353 | {.Type0: nxv2s16, .Type1: p0, .MemTy: nxv2s16, .Align: 16}, |
| 354 | {.Type0: nxv4s16, .Type1: p0, .MemTy: nxv4s16, .Align: 16}, |
| 355 | {.Type0: nxv8s16, .Type1: p0, .MemTy: nxv8s16, .Align: 16}, |
| 356 | {.Type0: nxv16s16, .Type1: p0, .MemTy: nxv16s16, .Align: 16}, |
| 357 | {.Type0: nxv32s16, .Type1: p0, .MemTy: nxv32s16, .Align: 16}, |
| 358 | {.Type0: nxv2s32, .Type1: p0, .MemTy: nxv2s32, .Align: 32}, |
| 359 | {.Type0: nxv4s32, .Type1: p0, .MemTy: nxv4s32, .Align: 32}, |
| 360 | {.Type0: nxv8s32, .Type1: p0, .MemTy: nxv8s32, .Align: 32}, |
| 361 | {.Type0: nxv16s32, .Type1: p0, .MemTy: nxv16s32, .Align: 32}}); |
| 362 | |
| 363 | if (ST.getELen() == 64) { |
| 364 | LoadActions.legalForTypesWithMemDesc(TypesAndMemDesc: {{.Type0: nxv1s8, .Type1: p0, .MemTy: nxv1s8, .Align: 8}, |
| 365 | {.Type0: nxv1s16, .Type1: p0, .MemTy: nxv1s16, .Align: 16}, |
| 366 | {.Type0: nxv1s32, .Type1: p0, .MemTy: nxv1s32, .Align: 32}}); |
| 367 | StoreActions.legalForTypesWithMemDesc(TypesAndMemDesc: {{.Type0: nxv1s8, .Type1: p0, .MemTy: nxv1s8, .Align: 8}, |
| 368 | {.Type0: nxv1s16, .Type1: p0, .MemTy: nxv1s16, .Align: 16}, |
| 369 | {.Type0: nxv1s32, .Type1: p0, .MemTy: nxv1s32, .Align: 32}}); |
| 370 | } |
| 371 | |
| 372 | if (ST.hasVInstructionsI64()) { |
| 373 | LoadActions.legalForTypesWithMemDesc(TypesAndMemDesc: {{.Type0: nxv1s64, .Type1: p0, .MemTy: nxv1s64, .Align: 64}, |
| 374 | {.Type0: nxv2s64, .Type1: p0, .MemTy: nxv2s64, .Align: 64}, |
| 375 | {.Type0: nxv4s64, .Type1: p0, .MemTy: nxv4s64, .Align: 64}, |
| 376 | {.Type0: nxv8s64, .Type1: p0, .MemTy: nxv8s64, .Align: 64}}); |
| 377 | StoreActions.legalForTypesWithMemDesc(TypesAndMemDesc: {{.Type0: nxv1s64, .Type1: p0, .MemTy: nxv1s64, .Align: 64}, |
| 378 | {.Type0: nxv2s64, .Type1: p0, .MemTy: nxv2s64, .Align: 64}, |
| 379 | {.Type0: nxv4s64, .Type1: p0, .MemTy: nxv4s64, .Align: 64}, |
| 380 | {.Type0: nxv8s64, .Type1: p0, .MemTy: nxv8s64, .Align: 64}}); |
| 381 | } |
| 382 | |
| 383 | // we will take the custom lowering logic if we have scalable vector types |
| 384 | // with non-standard alignments |
| 385 | LoadActions.customIf(Predicate: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST)); |
| 386 | StoreActions.customIf(Predicate: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST)); |
| 387 | |
| 388 | // Pointers require that XLen sized elements are legal. |
| 389 | if (XLen <= ST.getELen()) { |
| 390 | LoadActions.customIf(Predicate: typeIsLegalPtrVec(TypeIdx: 0, PtrVecTys, ST)); |
| 391 | StoreActions.customIf(Predicate: typeIsLegalPtrVec(TypeIdx: 0, PtrVecTys, ST)); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | LoadActions.widenScalarToNextPow2(TypeIdx: 0, /* MinSize = */ 8) |
| 396 | .lowerIfMemSizeNotByteSizePow2() |
| 397 | .clampScalar(TypeIdx: 0, MinTy: s16, MaxTy: sXLen) |
| 398 | .lower(); |
| 399 | StoreActions |
| 400 | .clampScalar(TypeIdx: 0, MinTy: s16, MaxTy: sXLen) |
| 401 | .lowerIfMemSizeNotByteSizePow2() |
| 402 | .lower(); |
| 403 | |
| 404 | ExtLoadActions.widenScalarToNextPow2(TypeIdx: 0).clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen).lower(); |
| 405 | |
| 406 | getActionDefinitionsBuilder(Opcodes: {G_PTR_ADD, G_PTRMASK}).legalFor(Types: {{p0, sXLen}}); |
| 407 | |
| 408 | getActionDefinitionsBuilder(Opcode: G_PTRTOINT) |
| 409 | .legalFor(Types: {{sXLen, p0}}) |
| 410 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 411 | |
| 412 | getActionDefinitionsBuilder(Opcode: G_INTTOPTR) |
| 413 | .legalFor(Types: {{p0, sXLen}}) |
| 414 | .clampScalar(TypeIdx: 1, MinTy: sXLen, MaxTy: sXLen); |
| 415 | |
| 416 | getActionDefinitionsBuilder(Opcode: G_BRCOND).legalFor(Types: {sXLen}).minScalar(TypeIdx: 0, Ty: sXLen); |
| 417 | |
| 418 | getActionDefinitionsBuilder(Opcode: G_BRJT).customFor(Types: {{p0, sXLen}}); |
| 419 | |
| 420 | getActionDefinitionsBuilder(Opcode: G_BRINDIRECT).legalFor(Types: {p0}); |
| 421 | |
| 422 | getActionDefinitionsBuilder(Opcode: G_PHI) |
| 423 | .legalFor(Types: {p0, s32, sXLen}) |
| 424 | .widenScalarToNextPow2(TypeIdx: 0) |
| 425 | .clampScalar(TypeIdx: 0, MinTy: s32, MaxTy: sXLen); |
| 426 | |
| 427 | getActionDefinitionsBuilder(Opcodes: {G_GLOBAL_VALUE, G_JUMP_TABLE, G_CONSTANT_POOL}) |
| 428 | .legalFor(Types: {p0}); |
| 429 | |
| 430 | if (ST.hasStdExtZmmul()) { |
| 431 | getActionDefinitionsBuilder(Opcode: G_MUL) |
| 432 | .legalFor(Types: {sXLen}) |
| 433 | .widenScalarToNextPow2(TypeIdx: 0) |
| 434 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen); |
| 435 | |
| 436 | // clang-format off |
| 437 | getActionDefinitionsBuilder(Opcodes: {G_SMULH, G_UMULH}) |
| 438 | .legalFor(Types: {sXLen}) |
| 439 | .lower(); |
| 440 | // clang-format on |
| 441 | |
| 442 | getActionDefinitionsBuilder(Opcodes: {G_SMULO, G_UMULO}).minScalar(TypeIdx: 0, Ty: sXLen).lower(); |
| 443 | } else { |
| 444 | getActionDefinitionsBuilder(Opcode: G_MUL) |
| 445 | .libcallFor(Types: {sXLen, sDoubleXLen}) |
| 446 | .widenScalarToNextPow2(TypeIdx: 0) |
| 447 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sDoubleXLen); |
| 448 | |
| 449 | getActionDefinitionsBuilder(Opcodes: {G_SMULH, G_UMULH}).lowerFor(Types: {sXLen}); |
| 450 | |
| 451 | getActionDefinitionsBuilder(Opcodes: {G_SMULO, G_UMULO}) |
| 452 | .minScalar(TypeIdx: 0, Ty: sXLen) |
| 453 | // Widen sXLen to sDoubleXLen so we can use a single libcall to get |
| 454 | // the low bits for the mul result and high bits to do the overflow |
| 455 | // check. |
| 456 | .widenScalarIf(Predicate: typeIs(TypeIdx: 0, TypesInit: sXLen), |
| 457 | Mutation: LegalizeMutations::changeTo(TypeIdx: 0, Ty: sDoubleXLen)) |
| 458 | .lower(); |
| 459 | } |
| 460 | |
| 461 | if (ST.hasStdExtM()) { |
| 462 | getActionDefinitionsBuilder(Opcodes: {G_SDIV, G_UDIV, G_UREM}) |
| 463 | .legalFor(Types: {sXLen}) |
| 464 | .customFor(Types: {s32}) |
| 465 | .libcallFor(Types: {sDoubleXLen}) |
| 466 | .clampScalar(TypeIdx: 0, MinTy: s32, MaxTy: sDoubleXLen) |
| 467 | .widenScalarToNextPow2(TypeIdx: 0); |
| 468 | getActionDefinitionsBuilder(Opcode: G_SREM) |
| 469 | .legalFor(Types: {sXLen}) |
| 470 | .libcallFor(Types: {sDoubleXLen}) |
| 471 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sDoubleXLen) |
| 472 | .widenScalarToNextPow2(TypeIdx: 0); |
| 473 | } else { |
| 474 | getActionDefinitionsBuilder(Opcodes: {G_UDIV, G_SDIV, G_UREM, G_SREM}) |
| 475 | .libcallFor(Types: {sXLen, sDoubleXLen}) |
| 476 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sDoubleXLen) |
| 477 | .widenScalarToNextPow2(TypeIdx: 0); |
| 478 | } |
| 479 | |
| 480 | // TODO: Use libcall for sDoubleXLen. |
| 481 | getActionDefinitionsBuilder(Opcodes: {G_SDIVREM, G_UDIVREM}).lower(); |
| 482 | |
| 483 | getActionDefinitionsBuilder(Opcode: G_ABS) |
| 484 | .customFor(Pred: ST.hasStdExtZbb(), Types: {sXLen}) |
| 485 | .minScalar(Pred: ST.hasStdExtZbb(), TypeIdx: 0, Ty: sXLen) |
| 486 | .lower(); |
| 487 | |
| 488 | getActionDefinitionsBuilder(Opcodes: {G_UMAX, G_UMIN, G_SMAX, G_SMIN}) |
| 489 | .legalFor(Pred: ST.hasStdExtZbb(), Types: {sXLen}) |
| 490 | .minScalar(Pred: ST.hasStdExtZbb(), TypeIdx: 0, Ty: sXLen) |
| 491 | .lower(); |
| 492 | |
| 493 | getActionDefinitionsBuilder(Opcodes: {G_SCMP, G_UCMP}).lower(); |
| 494 | |
| 495 | getActionDefinitionsBuilder(Opcode: G_FRAME_INDEX).legalFor(Types: {p0}); |
| 496 | |
| 497 | getActionDefinitionsBuilder(Opcodes: {G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall(); |
| 498 | |
| 499 | getActionDefinitionsBuilder(Opcodes: {G_DYN_STACKALLOC, G_STACKSAVE, G_STACKRESTORE}) |
| 500 | .lower(); |
| 501 | |
| 502 | // FP Operations |
| 503 | |
| 504 | // FIXME: Support s128 for rv32 when libcall handling is able to use sret. |
| 505 | getActionDefinitionsBuilder( |
| 506 | Opcodes: {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FSQRT, G_FMAXNUM, G_FMINNUM}) |
| 507 | .legalFor(Pred: ST.hasStdExtF(), Types: {s32}) |
| 508 | .legalFor(Pred: ST.hasStdExtD(), Types: {s64}) |
| 509 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {s16}) |
| 510 | .libcallFor(Types: {s32, s64}) |
| 511 | .libcallFor(Pred: ST.is64Bit(), Types: {s128}); |
| 512 | |
| 513 | getActionDefinitionsBuilder(Opcodes: {G_FNEG, G_FABS}) |
| 514 | .legalFor(Pred: ST.hasStdExtF(), Types: {s32}) |
| 515 | .legalFor(Pred: ST.hasStdExtD(), Types: {s64}) |
| 516 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {s16}) |
| 517 | .lowerFor(Types: {s32, s64, s128}); |
| 518 | |
| 519 | getActionDefinitionsBuilder(Opcode: G_FREM) |
| 520 | .libcallFor(Types: {s32, s64}) |
| 521 | .libcallFor(Pred: ST.is64Bit(), Types: {s128}) |
| 522 | .minScalar(TypeIdx: 0, Ty: s32) |
| 523 | .scalarize(TypeIdx: 0); |
| 524 | |
| 525 | getActionDefinitionsBuilder(Opcode: G_FCOPYSIGN) |
| 526 | .legalFor(Pred: ST.hasStdExtF(), Types: {{s32, s32}}) |
| 527 | .legalFor(Pred: ST.hasStdExtD(), Types: {{s64, s64}, {s32, s64}, {s64, s32}}) |
| 528 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {{s16, s16}, {s16, s32}, {s32, s16}}) |
| 529 | .legalFor(Pred: ST.hasStdExtZfh() && ST.hasStdExtD(), Types: {{s16, s64}, {s64, s16}}) |
| 530 | .lower(); |
| 531 | |
| 532 | // FIXME: Use Zfhmin. |
| 533 | getActionDefinitionsBuilder(Opcode: G_FPTRUNC) |
| 534 | .legalFor(Pred: ST.hasStdExtD(), Types: {{s32, s64}}) |
| 535 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {{s16, s32}}) |
| 536 | .legalFor(Pred: ST.hasStdExtZfh() && ST.hasStdExtD(), Types: {{s16, s64}}) |
| 537 | .libcallFor(Types: {{s32, s64}}) |
| 538 | .libcallFor(Pred: ST.is64Bit(), Types: {{s32, s128}, {s64, s128}}); |
| 539 | getActionDefinitionsBuilder(Opcode: G_FPEXT) |
| 540 | .legalFor(Pred: ST.hasStdExtD(), Types: {{s64, s32}}) |
| 541 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {{s32, s16}}) |
| 542 | .legalFor(Pred: ST.hasStdExtZfh() && ST.hasStdExtD(), Types: {{s64, s16}}) |
| 543 | .libcallFor(Types: {{s64, s32}}) |
| 544 | .libcallFor(Pred: ST.is64Bit(), Types: {{s128, s32}, {s128, s64}}); |
| 545 | |
| 546 | getActionDefinitionsBuilder(Opcode: G_FCMP) |
| 547 | .legalFor(Pred: ST.hasStdExtF(), Types: {{sXLen, s32}}) |
| 548 | .legalFor(Pred: ST.hasStdExtD(), Types: {{sXLen, s64}}) |
| 549 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {{sXLen, s16}}) |
| 550 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen) |
| 551 | .libcallFor(Types: {{sXLen, s32}, {sXLen, s64}}) |
| 552 | .libcallFor(Pred: ST.is64Bit(), Types: {{sXLen, s128}}); |
| 553 | |
| 554 | // TODO: Support vector version of G_IS_FPCLASS. |
| 555 | getActionDefinitionsBuilder(Opcode: G_IS_FPCLASS) |
| 556 | .customFor(Pred: ST.hasStdExtF(), Types: {{s1, s32}}) |
| 557 | .customFor(Pred: ST.hasStdExtD(), Types: {{s1, s64}}) |
| 558 | .customFor(Pred: ST.hasStdExtZfh(), Types: {{s1, s16}}) |
| 559 | .lowerFor(Types: {{s1, s32}, {s1, s64}}); |
| 560 | |
| 561 | getActionDefinitionsBuilder(Opcode: G_FCONSTANT) |
| 562 | .legalFor(Pred: ST.hasStdExtF(), Types: {s32}) |
| 563 | .legalFor(Pred: ST.hasStdExtD(), Types: {s64}) |
| 564 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {s16}) |
| 565 | .lowerFor(Types: {s32, s64, s128}); |
| 566 | |
| 567 | getActionDefinitionsBuilder(Opcodes: {G_FPTOSI, G_FPTOUI}) |
| 568 | .legalFor(Pred: ST.hasStdExtF(), Types: {{sXLen, s32}}) |
| 569 | .legalFor(Pred: ST.hasStdExtD(), Types: {{sXLen, s64}}) |
| 570 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {{sXLen, s16}}) |
| 571 | .customFor(Pred: ST.is64Bit() && ST.hasStdExtF(), Types: {{s32, s32}}) |
| 572 | .customFor(Pred: ST.is64Bit() && ST.hasStdExtD(), Types: {{s32, s64}}) |
| 573 | .customFor(Pred: ST.is64Bit() && ST.hasStdExtZfh(), Types: {{s32, s16}}) |
| 574 | .widenScalarToNextPow2(TypeIdx: 0) |
| 575 | .minScalar(TypeIdx: 0, Ty: s32) |
| 576 | .libcallFor(Types: {{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}}) |
| 577 | .libcallFor(Pred: ST.is64Bit(), Types: {{s32, s128}, {s64, s128}}) // FIXME RV32. |
| 578 | .libcallFor(Pred: ST.is64Bit(), Types: {{s128, s32}, {s128, s64}, {s128, s128}}); |
| 579 | |
| 580 | getActionDefinitionsBuilder(Opcodes: {G_SITOFP, G_UITOFP}) |
| 581 | .legalFor(Pred: ST.hasStdExtF(), Types: {{s32, sXLen}}) |
| 582 | .legalFor(Pred: ST.hasStdExtD(), Types: {{s64, sXLen}}) |
| 583 | .legalFor(Pred: ST.hasStdExtZfh(), Types: {{s16, sXLen}}) |
| 584 | .widenScalarToNextPow2(TypeIdx: 1) |
| 585 | // Promote to XLen if the operation is legal. |
| 586 | .widenScalarIf( |
| 587 | Predicate: [=, &ST](const LegalityQuery &Query) { |
| 588 | return Query.Types[0].isScalar() && Query.Types[1].isScalar() && |
| 589 | (Query.Types[1].getSizeInBits() < ST.getXLen()) && |
| 590 | ((ST.hasStdExtF() && Query.Types[0].getSizeInBits() == 32) || |
| 591 | (ST.hasStdExtD() && Query.Types[0].getSizeInBits() == 64) || |
| 592 | (ST.hasStdExtZfh() && |
| 593 | Query.Types[0].getSizeInBits() == 16)); |
| 594 | }, |
| 595 | Mutation: LegalizeMutations::changeTo(TypeIdx: 1, Ty: sXLen)) |
| 596 | // Otherwise only promote to s32 since we have si libcalls. |
| 597 | .minScalar(TypeIdx: 1, Ty: s32) |
| 598 | .libcallFor(Types: {{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}}) |
| 599 | .libcallFor(Pred: ST.is64Bit(), Types: {{s128, s32}, {s128, s64}}) // FIXME RV32. |
| 600 | .libcallFor(Pred: ST.is64Bit(), Types: {{s32, s128}, {s64, s128}, {s128, s128}}); |
| 601 | |
| 602 | // FIXME: We can do custom inline expansion like SelectionDAG. |
| 603 | getActionDefinitionsBuilder(Opcodes: {G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT, |
| 604 | G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND, |
| 605 | G_INTRINSIC_ROUNDEVEN}) |
| 606 | .legalFor(Pred: ST.hasStdExtZfa(), Types: {s32}) |
| 607 | .legalFor(Pred: ST.hasStdExtZfa() && ST.hasStdExtD(), Types: {s64}) |
| 608 | .legalFor(Pred: ST.hasStdExtZfa() && ST.hasStdExtZfh(), Types: {s16}) |
| 609 | .libcallFor(Types: {s32, s64}) |
| 610 | .libcallFor(Pred: ST.is64Bit(), Types: {s128}); |
| 611 | |
| 612 | getActionDefinitionsBuilder(Opcodes: {G_FMAXIMUM, G_FMINIMUM}) |
| 613 | .legalFor(Pred: ST.hasStdExtZfa(), Types: {s32}) |
| 614 | .legalFor(Pred: ST.hasStdExtZfa() && ST.hasStdExtD(), Types: {s64}) |
| 615 | .legalFor(Pred: ST.hasStdExtZfa() && ST.hasStdExtZfh(), Types: {s16}); |
| 616 | |
| 617 | getActionDefinitionsBuilder(Opcodes: {G_FCOS, G_FSIN, G_FTAN, G_FPOW, G_FLOG, G_FLOG2, |
| 618 | G_FLOG10, G_FEXP, G_FEXP2, G_FEXP10, G_FACOS, |
| 619 | G_FASIN, G_FATAN, G_FATAN2, G_FCOSH, G_FSINH, |
| 620 | G_FTANH}) |
| 621 | .libcallFor(Types: {s32, s64}) |
| 622 | .libcallFor(Pred: ST.is64Bit(), Types: {s128}); |
| 623 | getActionDefinitionsBuilder(Opcodes: {G_FPOWI, G_FLDEXP}) |
| 624 | .libcallFor(Types: {{s32, s32}, {s64, s32}}) |
| 625 | .libcallFor(Pred: ST.is64Bit(), Types: {s128, s32}); |
| 626 | |
| 627 | getActionDefinitionsBuilder(Opcode: G_VASTART).customFor(Types: {p0}); |
| 628 | |
| 629 | // va_list must be a pointer, but most sized types are pretty easy to handle |
| 630 | // as the destination. |
| 631 | getActionDefinitionsBuilder(Opcode: G_VAARG) |
| 632 | // TODO: Implement narrowScalar and widenScalar for G_VAARG for types |
| 633 | // other than sXLen. |
| 634 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen) |
| 635 | .lowerForCartesianProduct(Types0: {sXLen, p0}, Types1: {p0}); |
| 636 | |
| 637 | getActionDefinitionsBuilder(Opcode: G_VSCALE) |
| 638 | .clampScalar(TypeIdx: 0, MinTy: sXLen, MaxTy: sXLen) |
| 639 | .customFor(Types: {sXLen}); |
| 640 | |
| 641 | auto &SplatActions = |
| 642 | getActionDefinitionsBuilder(Opcode: G_SPLAT_VECTOR) |
| 643 | .legalIf(Predicate: all(P0: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST), |
| 644 | P1: typeIs(TypeIdx: 1, TypesInit: sXLen))) |
| 645 | .customIf(Predicate: all(P0: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST), P1: typeIs(TypeIdx: 1, TypesInit: s1))); |
| 646 | // Handle case of s64 element vectors on RV32. If the subtarget does not have |
| 647 | // f64, then try to lower it to G_SPLAT_VECTOR_SPLIT_64_VL. If the subtarget |
| 648 | // does have f64, then we don't know whether the type is an f64 or an i64, |
| 649 | // so mark the G_SPLAT_VECTOR as legal and decide later what to do with it, |
| 650 | // depending on how the instructions it consumes are legalized. They are not |
| 651 | // legalized yet since legalization is in reverse postorder, so we cannot |
| 652 | // make the decision at this moment. |
| 653 | if (XLen == 32) { |
| 654 | if (ST.hasVInstructionsF64() && ST.hasStdExtD()) |
| 655 | SplatActions.legalIf(Predicate: all( |
| 656 | P0: typeInSet(TypeIdx: 0, TypesInit: {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), P1: typeIs(TypeIdx: 1, TypesInit: s64))); |
| 657 | else if (ST.hasVInstructionsI64()) |
| 658 | SplatActions.customIf(Predicate: all( |
| 659 | P0: typeInSet(TypeIdx: 0, TypesInit: {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), P1: typeIs(TypeIdx: 1, TypesInit: s64))); |
| 660 | } |
| 661 | |
| 662 | SplatActions.clampScalar(TypeIdx: 1, MinTy: sXLen, MaxTy: sXLen); |
| 663 | |
| 664 | LegalityPredicate = [=](const LegalityQuery &Query) { |
| 665 | LLT DstTy = Query.Types[0]; |
| 666 | LLT SrcTy = Query.Types[1]; |
| 667 | return DstTy.getElementType() == LLT::scalar(SizeInBits: 1) && |
| 668 | DstTy.getElementCount().getKnownMinValue() >= 8 && |
| 669 | SrcTy.getElementCount().getKnownMinValue() >= 8; |
| 670 | }; |
| 671 | getActionDefinitionsBuilder(Opcode: G_EXTRACT_SUBVECTOR) |
| 672 | // We don't have the ability to slide mask vectors down indexed by their |
| 673 | // i1 elements; the smallest we can do is i8. Often we are able to bitcast |
| 674 | // to equivalent i8 vectors. |
| 675 | .bitcastIf( |
| 676 | Predicate: all(P0: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST), |
| 677 | P1: typeIsLegalBoolVec(TypeIdx: 1, BoolVecTys, ST), args: ExtractSubvecBitcastPred), |
| 678 | Mutation: [=](const LegalityQuery &Query) { |
| 679 | LLT CastTy = LLT::vector( |
| 680 | EC: Query.Types[0].getElementCount().divideCoefficientBy(RHS: 8), ScalarSizeInBits: 8); |
| 681 | return std::pair(0, CastTy); |
| 682 | }) |
| 683 | .customIf(Predicate: LegalityPredicates::any( |
| 684 | P0: all(P0: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST), |
| 685 | P1: typeIsLegalBoolVec(TypeIdx: 1, BoolVecTys, ST)), |
| 686 | P1: all(P0: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST), |
| 687 | P1: typeIsLegalIntOrFPVec(TypeIdx: 1, IntOrFPVecTys, ST)))); |
| 688 | |
| 689 | getActionDefinitionsBuilder(Opcode: G_INSERT_SUBVECTOR) |
| 690 | .customIf(Predicate: all(P0: typeIsLegalBoolVec(TypeIdx: 0, BoolVecTys, ST), |
| 691 | P1: typeIsLegalBoolVec(TypeIdx: 1, BoolVecTys, ST))) |
| 692 | .customIf(Predicate: all(P0: typeIsLegalIntOrFPVec(TypeIdx: 0, IntOrFPVecTys, ST), |
| 693 | P1: typeIsLegalIntOrFPVec(TypeIdx: 1, IntOrFPVecTys, ST))); |
| 694 | |
| 695 | getLegacyLegalizerInfo().computeTables(); |
| 696 | verify(MII: *ST.getInstrInfo()); |
| 697 | } |
| 698 | |
| 699 | bool RISCVLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, |
| 700 | MachineInstr &MI) const { |
| 701 | Intrinsic::ID IntrinsicID = cast<GIntrinsic>(Val&: MI).getIntrinsicID(); |
| 702 | switch (IntrinsicID) { |
| 703 | default: |
| 704 | return false; |
| 705 | case Intrinsic::vacopy: { |
| 706 | // vacopy arguments must be legal because of the intrinsic signature. |
| 707 | // No need to check here. |
| 708 | |
| 709 | MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; |
| 710 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 711 | MachineFunction &MF = *MI.getMF(); |
| 712 | const DataLayout &DL = MIRBuilder.getDataLayout(); |
| 713 | LLVMContext &Ctx = MF.getFunction().getContext(); |
| 714 | |
| 715 | Register DstLst = MI.getOperand(i: 1).getReg(); |
| 716 | LLT PtrTy = MRI.getType(Reg: DstLst); |
| 717 | |
| 718 | // Load the source va_list |
| 719 | Align Alignment = DL.getABITypeAlign(Ty: getTypeForLLT(Ty: PtrTy, C&: Ctx)); |
| 720 | MachineMemOperand *LoadMMO = MF.getMachineMemOperand( |
| 721 | PtrInfo: MachinePointerInfo(), f: MachineMemOperand::MOLoad, MemTy: PtrTy, base_alignment: Alignment); |
| 722 | auto Tmp = MIRBuilder.buildLoad(Res: PtrTy, Addr: MI.getOperand(i: 2), MMO&: *LoadMMO); |
| 723 | |
| 724 | // Store the result in the destination va_list |
| 725 | MachineMemOperand *StoreMMO = MF.getMachineMemOperand( |
| 726 | PtrInfo: MachinePointerInfo(), f: MachineMemOperand::MOStore, MemTy: PtrTy, base_alignment: Alignment); |
| 727 | MIRBuilder.buildStore(Val: Tmp, Addr: DstLst, MMO&: *StoreMMO); |
| 728 | |
| 729 | MI.eraseFromParent(); |
| 730 | return true; |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | bool RISCVLegalizerInfo::legalizeVAStart(MachineInstr &MI, |
| 736 | MachineIRBuilder &MIRBuilder) const { |
| 737 | // Stores the address of the VarArgsFrameIndex slot into the memory location |
| 738 | assert(MI.getOpcode() == TargetOpcode::G_VASTART); |
| 739 | MachineFunction *MF = MI.getParent()->getParent(); |
| 740 | RISCVMachineFunctionInfo *FuncInfo = MF->getInfo<RISCVMachineFunctionInfo>(); |
| 741 | int FI = FuncInfo->getVarArgsFrameIndex(); |
| 742 | LLT AddrTy = MIRBuilder.getMRI()->getType(Reg: MI.getOperand(i: 0).getReg()); |
| 743 | auto FINAddr = MIRBuilder.buildFrameIndex(Res: AddrTy, Idx: FI); |
| 744 | assert(MI.hasOneMemOperand()); |
| 745 | MIRBuilder.buildStore(Val: FINAddr, Addr: MI.getOperand(i: 0).getReg(), |
| 746 | MMO&: *MI.memoperands()[0]); |
| 747 | MI.eraseFromParent(); |
| 748 | return true; |
| 749 | } |
| 750 | |
| 751 | bool RISCVLegalizerInfo::legalizeBRJT(MachineInstr &MI, |
| 752 | MachineIRBuilder &MIRBuilder) const { |
| 753 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 754 | auto &MF = *MI.getParent()->getParent(); |
| 755 | const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); |
| 756 | unsigned EntrySize = MJTI->getEntrySize(TD: MF.getDataLayout()); |
| 757 | |
| 758 | Register PtrReg = MI.getOperand(i: 0).getReg(); |
| 759 | LLT PtrTy = MRI.getType(Reg: PtrReg); |
| 760 | Register IndexReg = MI.getOperand(i: 2).getReg(); |
| 761 | LLT IndexTy = MRI.getType(Reg: IndexReg); |
| 762 | |
| 763 | if (!isPowerOf2_32(Value: EntrySize)) |
| 764 | return false; |
| 765 | |
| 766 | auto ShiftAmt = MIRBuilder.buildConstant(Res: IndexTy, Val: Log2_32(Value: EntrySize)); |
| 767 | IndexReg = MIRBuilder.buildShl(Dst: IndexTy, Src0: IndexReg, Src1: ShiftAmt).getReg(Idx: 0); |
| 768 | |
| 769 | auto Addr = MIRBuilder.buildPtrAdd(Res: PtrTy, Op0: PtrReg, Op1: IndexReg); |
| 770 | |
| 771 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 772 | PtrInfo: MachinePointerInfo::getJumpTable(MF), F: MachineMemOperand::MOLoad, |
| 773 | Size: EntrySize, BaseAlignment: Align(MJTI->getEntryAlignment(TD: MF.getDataLayout()))); |
| 774 | |
| 775 | Register TargetReg; |
| 776 | switch (MJTI->getEntryKind()) { |
| 777 | default: |
| 778 | return false; |
| 779 | case MachineJumpTableInfo::EK_LabelDifference32: { |
| 780 | // For PIC, the sequence is: |
| 781 | // BRIND(load(Jumptable + index) + RelocBase) |
| 782 | // RelocBase can be JumpTable, GOT or some sort of global base. |
| 783 | unsigned LoadOpc = |
| 784 | STI.is64Bit() ? TargetOpcode::G_SEXTLOAD : TargetOpcode::G_LOAD; |
| 785 | auto Load = MIRBuilder.buildLoadInstr(Opcode: LoadOpc, Res: IndexTy, Addr, MMO&: *MMO); |
| 786 | TargetReg = MIRBuilder.buildPtrAdd(Res: PtrTy, Op0: PtrReg, Op1: Load).getReg(Idx: 0); |
| 787 | break; |
| 788 | } |
| 789 | case MachineJumpTableInfo::EK_Custom32: { |
| 790 | auto Load = MIRBuilder.buildLoadInstr(Opcode: TargetOpcode::G_SEXTLOAD, Res: IndexTy, |
| 791 | Addr, MMO&: *MMO); |
| 792 | TargetReg = MIRBuilder.buildIntToPtr(Dst: PtrTy, Src: Load).getReg(Idx: 0); |
| 793 | break; |
| 794 | } |
| 795 | case MachineJumpTableInfo::EK_BlockAddress: |
| 796 | TargetReg = MIRBuilder.buildLoad(Res: PtrTy, Addr, MMO&: *MMO).getReg(Idx: 0); |
| 797 | break; |
| 798 | } |
| 799 | |
| 800 | MIRBuilder.buildBrIndirect(Tgt: TargetReg); |
| 801 | |
| 802 | MI.eraseFromParent(); |
| 803 | return true; |
| 804 | } |
| 805 | |
| 806 | bool RISCVLegalizerInfo::shouldBeInConstantPool(const APInt &APImm, |
| 807 | bool ShouldOptForSize) const { |
| 808 | assert(APImm.getBitWidth() == 32 || APImm.getBitWidth() == 64); |
| 809 | int64_t Imm = APImm.getSExtValue(); |
| 810 | // All simm32 constants should be handled by isel. |
| 811 | // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making |
| 812 | // this check redundant, but small immediates are common so this check |
| 813 | // should have better compile time. |
| 814 | if (isInt<32>(x: Imm)) |
| 815 | return false; |
| 816 | |
| 817 | // We only need to cost the immediate, if constant pool lowering is enabled. |
| 818 | if (!STI.useConstantPoolForLargeInts()) |
| 819 | return false; |
| 820 | |
| 821 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val: Imm, STI); |
| 822 | if (Seq.size() <= STI.getMaxBuildIntsCost()) |
| 823 | return false; |
| 824 | |
| 825 | // Optimizations below are disabled for opt size. If we're optimizing for |
| 826 | // size, use a constant pool. |
| 827 | if (ShouldOptForSize) |
| 828 | return true; |
| 829 | // |
| 830 | // Special case. See if we can build the constant as (ADD (SLLI X, C), X) do |
| 831 | // that if it will avoid a constant pool. |
| 832 | // It will require an extra temporary register though. |
| 833 | // If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where |
| 834 | // low and high 32 bits are the same and bit 31 and 63 are set. |
| 835 | unsigned ShiftAmt, AddOpc; |
| 836 | RISCVMatInt::InstSeq SeqLo = |
| 837 | RISCVMatInt::generateTwoRegInstSeq(Val: Imm, STI, ShiftAmt, AddOpc); |
| 838 | return !(!SeqLo.empty() && (SeqLo.size() + 2) <= STI.getMaxBuildIntsCost()); |
| 839 | } |
| 840 | |
| 841 | bool RISCVLegalizerInfo::legalizeVScale(MachineInstr &MI, |
| 842 | MachineIRBuilder &MIB) const { |
| 843 | const LLT XLenTy(STI.getXLenVT()); |
| 844 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 845 | |
| 846 | // We define our scalable vector types for lmul=1 to use a 64 bit known |
| 847 | // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate |
| 848 | // vscale as VLENB / 8. |
| 849 | static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!" ); |
| 850 | if (STI.getRealMinVLen() < RISCV::RVVBitsPerBlock) |
| 851 | // Support for VLEN==32 is incomplete. |
| 852 | return false; |
| 853 | |
| 854 | // We assume VLENB is a multiple of 8. We manually choose the best shift |
| 855 | // here because SimplifyDemandedBits isn't always able to simplify it. |
| 856 | uint64_t Val = MI.getOperand(i: 1).getCImm()->getZExtValue(); |
| 857 | if (isPowerOf2_64(Value: Val)) { |
| 858 | uint64_t Log2 = Log2_64(Value: Val); |
| 859 | if (Log2 < 3) { |
| 860 | auto VLENB = MIB.buildInstr(Opc: RISCV::G_READ_VLENB, DstOps: {XLenTy}, SrcOps: {}); |
| 861 | MIB.buildLShr(Dst, Src0: VLENB, Src1: MIB.buildConstant(Res: XLenTy, Val: 3 - Log2)); |
| 862 | } else if (Log2 > 3) { |
| 863 | auto VLENB = MIB.buildInstr(Opc: RISCV::G_READ_VLENB, DstOps: {XLenTy}, SrcOps: {}); |
| 864 | MIB.buildShl(Dst, Src0: VLENB, Src1: MIB.buildConstant(Res: XLenTy, Val: Log2 - 3)); |
| 865 | } else { |
| 866 | MIB.buildInstr(Opc: RISCV::G_READ_VLENB, DstOps: {Dst}, SrcOps: {}); |
| 867 | } |
| 868 | } else if ((Val % 8) == 0) { |
| 869 | // If the multiplier is a multiple of 8, scale it down to avoid needing |
| 870 | // to shift the VLENB value. |
| 871 | auto VLENB = MIB.buildInstr(Opc: RISCV::G_READ_VLENB, DstOps: {XLenTy}, SrcOps: {}); |
| 872 | MIB.buildMul(Dst, Src0: VLENB, Src1: MIB.buildConstant(Res: XLenTy, Val: Val / 8)); |
| 873 | } else { |
| 874 | auto VLENB = MIB.buildInstr(Opc: RISCV::G_READ_VLENB, DstOps: {XLenTy}, SrcOps: {}); |
| 875 | auto VScale = MIB.buildLShr(Dst: XLenTy, Src0: VLENB, Src1: MIB.buildConstant(Res: XLenTy, Val: 3)); |
| 876 | MIB.buildMul(Dst, Src0: VScale, Src1: MIB.buildConstant(Res: XLenTy, Val)); |
| 877 | } |
| 878 | MI.eraseFromParent(); |
| 879 | return true; |
| 880 | } |
| 881 | |
| 882 | // Custom-lower extensions from mask vectors by using a vselect either with 1 |
| 883 | // for zero/any-extension or -1 for sign-extension: |
| 884 | // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) |
| 885 | // Note that any-extension is lowered identically to zero-extension. |
| 886 | bool RISCVLegalizerInfo::legalizeExt(MachineInstr &MI, |
| 887 | MachineIRBuilder &MIB) const { |
| 888 | |
| 889 | unsigned Opc = MI.getOpcode(); |
| 890 | assert(Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_SEXT || |
| 891 | Opc == TargetOpcode::G_ANYEXT); |
| 892 | |
| 893 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 894 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 895 | Register Src = MI.getOperand(i: 1).getReg(); |
| 896 | |
| 897 | LLT DstTy = MRI.getType(Reg: Dst); |
| 898 | int64_t ExtTrueVal = Opc == TargetOpcode::G_SEXT ? -1 : 1; |
| 899 | LLT DstEltTy = DstTy.getElementType(); |
| 900 | auto SplatZero = MIB.buildSplatVector(Res: DstTy, Val: MIB.buildConstant(Res: DstEltTy, Val: 0)); |
| 901 | auto SplatTrue = |
| 902 | MIB.buildSplatVector(Res: DstTy, Val: MIB.buildConstant(Res: DstEltTy, Val: ExtTrueVal)); |
| 903 | MIB.buildSelect(Res: Dst, Tst: Src, Op0: SplatTrue, Op1: SplatZero); |
| 904 | |
| 905 | MI.eraseFromParent(); |
| 906 | return true; |
| 907 | } |
| 908 | |
| 909 | bool RISCVLegalizerInfo::legalizeLoadStore(MachineInstr &MI, |
| 910 | LegalizerHelper &Helper, |
| 911 | MachineIRBuilder &MIB) const { |
| 912 | assert((isa<GLoad>(MI) || isa<GStore>(MI)) && |
| 913 | "Machine instructions must be Load/Store." ); |
| 914 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 915 | MachineFunction *MF = MI.getMF(); |
| 916 | const DataLayout &DL = MIB.getDataLayout(); |
| 917 | LLVMContext &Ctx = MF->getFunction().getContext(); |
| 918 | |
| 919 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 920 | LLT DataTy = MRI.getType(Reg: DstReg); |
| 921 | if (!DataTy.isVector()) |
| 922 | return false; |
| 923 | |
| 924 | if (!MI.hasOneMemOperand()) |
| 925 | return false; |
| 926 | |
| 927 | MachineMemOperand *MMO = *MI.memoperands_begin(); |
| 928 | |
| 929 | const auto *TLI = STI.getTargetLowering(); |
| 930 | EVT VT = EVT::getEVT(Ty: getTypeForLLT(Ty: DataTy, C&: Ctx)); |
| 931 | |
| 932 | if (TLI->allowsMemoryAccessForAlignment(Context&: Ctx, DL, VT, MMO: *MMO)) |
| 933 | return true; |
| 934 | |
| 935 | unsigned EltSizeBits = DataTy.getScalarSizeInBits(); |
| 936 | assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && |
| 937 | "Unexpected unaligned RVV load type" ); |
| 938 | |
| 939 | // Calculate the new vector type with i8 elements |
| 940 | unsigned NumElements = |
| 941 | DataTy.getElementCount().getKnownMinValue() * (EltSizeBits / 8); |
| 942 | LLT NewDataTy = LLT::scalable_vector(MinNumElements: NumElements, ScalarSizeInBits: 8); |
| 943 | |
| 944 | Helper.bitcast(MI, TypeIdx: 0, Ty: NewDataTy); |
| 945 | |
| 946 | return true; |
| 947 | } |
| 948 | |
| 949 | /// Return the type of the mask type suitable for masking the provided |
| 950 | /// vector type. This is simply an i1 element type vector of the same |
| 951 | /// (possibly scalable) length. |
| 952 | static LLT getMaskTypeFor(LLT VecTy) { |
| 953 | assert(VecTy.isVector()); |
| 954 | ElementCount EC = VecTy.getElementCount(); |
| 955 | return LLT::vector(EC, ScalarTy: LLT::scalar(SizeInBits: 1)); |
| 956 | } |
| 957 | |
| 958 | /// Creates an all ones mask suitable for masking a vector of type VecTy with |
| 959 | /// vector length VL. |
| 960 | static MachineInstrBuilder buildAllOnesMask(LLT VecTy, const SrcOp &VL, |
| 961 | MachineIRBuilder &MIB, |
| 962 | MachineRegisterInfo &MRI) { |
| 963 | LLT MaskTy = getMaskTypeFor(VecTy); |
| 964 | return MIB.buildInstr(Opc: RISCV::G_VMSET_VL, DstOps: {MaskTy}, SrcOps: {VL}); |
| 965 | } |
| 966 | |
| 967 | /// Gets the two common "VL" operands: an all-ones mask and the vector length. |
| 968 | /// VecTy is a scalable vector type. |
| 969 | static std::pair<MachineInstrBuilder, MachineInstrBuilder> |
| 970 | buildDefaultVLOps(LLT VecTy, MachineIRBuilder &MIB, MachineRegisterInfo &MRI) { |
| 971 | assert(VecTy.isScalableVector() && "Expecting scalable container type" ); |
| 972 | const RISCVSubtarget &STI = MIB.getMF().getSubtarget<RISCVSubtarget>(); |
| 973 | LLT XLenTy(STI.getXLenVT()); |
| 974 | auto VL = MIB.buildConstant(Res: XLenTy, Val: -1); |
| 975 | auto Mask = buildAllOnesMask(VecTy, VL, MIB, MRI); |
| 976 | return {Mask, VL}; |
| 977 | } |
| 978 | |
| 979 | static MachineInstrBuilder |
| 980 | buildSplatPartsS64WithVL(const DstOp &Dst, const SrcOp &Passthru, Register Lo, |
| 981 | Register Hi, const SrcOp &VL, MachineIRBuilder &MIB, |
| 982 | MachineRegisterInfo &MRI) { |
| 983 | // TODO: If the Hi bits of the splat are undefined, then it's fine to just |
| 984 | // splat Lo even if it might be sign extended. I don't think we have |
| 985 | // introduced a case where we're build a s64 where the upper bits are undef |
| 986 | // yet. |
| 987 | |
| 988 | // Fall back to a stack store and stride x0 vector load. |
| 989 | // TODO: need to lower G_SPLAT_VECTOR_SPLIT_I64. This is done in |
| 990 | // preprocessDAG in SDAG. |
| 991 | return MIB.buildInstr(Opc: RISCV::G_SPLAT_VECTOR_SPLIT_I64_VL, DstOps: {Dst}, |
| 992 | SrcOps: {Passthru, Lo, Hi, VL}); |
| 993 | } |
| 994 | |
| 995 | static MachineInstrBuilder |
| 996 | buildSplatSplitS64WithVL(const DstOp &Dst, const SrcOp &Passthru, |
| 997 | const SrcOp &Scalar, const SrcOp &VL, |
| 998 | MachineIRBuilder &MIB, MachineRegisterInfo &MRI) { |
| 999 | assert(Scalar.getLLTTy(MRI) == LLT::scalar(64) && "Unexpected VecTy!" ); |
| 1000 | auto Unmerge = MIB.buildUnmerge(Res: LLT::scalar(SizeInBits: 32), Op: Scalar); |
| 1001 | return buildSplatPartsS64WithVL(Dst, Passthru, Lo: Unmerge.getReg(Idx: 0), |
| 1002 | Hi: Unmerge.getReg(Idx: 1), VL, MIB, MRI); |
| 1003 | } |
| 1004 | |
| 1005 | // Lower splats of s1 types to G_ICMP. For each mask vector type, we have a |
| 1006 | // legal equivalently-sized i8 type, so we can use that as a go-between. |
| 1007 | // Splats of s1 types that have constant value can be legalized as VMSET_VL or |
| 1008 | // VMCLR_VL. |
| 1009 | bool RISCVLegalizerInfo::legalizeSplatVector(MachineInstr &MI, |
| 1010 | MachineIRBuilder &MIB) const { |
| 1011 | assert(MI.getOpcode() == TargetOpcode::G_SPLAT_VECTOR); |
| 1012 | |
| 1013 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1014 | |
| 1015 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 1016 | Register SplatVal = MI.getOperand(i: 1).getReg(); |
| 1017 | |
| 1018 | LLT VecTy = MRI.getType(Reg: Dst); |
| 1019 | LLT XLenTy(STI.getXLenVT()); |
| 1020 | |
| 1021 | // Handle case of s64 element vectors on rv32 |
| 1022 | if (XLenTy.getSizeInBits() == 32 && |
| 1023 | VecTy.getElementType().getSizeInBits() == 64) { |
| 1024 | auto [_, VL] = buildDefaultVLOps(VecTy: MRI.getType(Reg: Dst), MIB, MRI); |
| 1025 | buildSplatSplitS64WithVL(Dst, Passthru: MIB.buildUndef(Res: VecTy), Scalar: SplatVal, VL, MIB, |
| 1026 | MRI); |
| 1027 | MI.eraseFromParent(); |
| 1028 | return true; |
| 1029 | } |
| 1030 | |
| 1031 | // All-zeros or all-ones splats are handled specially. |
| 1032 | MachineInstr &SplatValMI = *MRI.getVRegDef(Reg: SplatVal); |
| 1033 | if (isAllOnesOrAllOnesSplat(MI: SplatValMI, MRI)) { |
| 1034 | auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second; |
| 1035 | MIB.buildInstr(Opc: RISCV::G_VMSET_VL, DstOps: {Dst}, SrcOps: {VL}); |
| 1036 | MI.eraseFromParent(); |
| 1037 | return true; |
| 1038 | } |
| 1039 | if (isNullOrNullSplat(MI: SplatValMI, MRI)) { |
| 1040 | auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second; |
| 1041 | MIB.buildInstr(Opc: RISCV::G_VMCLR_VL, DstOps: {Dst}, SrcOps: {VL}); |
| 1042 | MI.eraseFromParent(); |
| 1043 | return true; |
| 1044 | } |
| 1045 | |
| 1046 | // Handle non-constant mask splat (i.e. not sure if it's all zeros or all |
| 1047 | // ones) by promoting it to an s8 splat. |
| 1048 | LLT InterEltTy = LLT::scalar(SizeInBits: 8); |
| 1049 | LLT InterTy = VecTy.changeElementType(NewEltTy: InterEltTy); |
| 1050 | auto ZExtSplatVal = MIB.buildZExt(Res: InterEltTy, Op: SplatVal); |
| 1051 | auto And = |
| 1052 | MIB.buildAnd(Dst: InterEltTy, Src0: ZExtSplatVal, Src1: MIB.buildConstant(Res: InterEltTy, Val: 1)); |
| 1053 | auto LHS = MIB.buildSplatVector(Res: InterTy, Val: And); |
| 1054 | auto ZeroSplat = |
| 1055 | MIB.buildSplatVector(Res: InterTy, Val: MIB.buildConstant(Res: InterEltTy, Val: 0)); |
| 1056 | MIB.buildICmp(Pred: CmpInst::Predicate::ICMP_NE, Res: Dst, Op0: LHS, Op1: ZeroSplat); |
| 1057 | MI.eraseFromParent(); |
| 1058 | return true; |
| 1059 | } |
| 1060 | |
| 1061 | static LLT getLMUL1Ty(LLT VecTy) { |
| 1062 | assert(VecTy.getElementType().getSizeInBits() <= 64 && |
| 1063 | "Unexpected vector LLT" ); |
| 1064 | return LLT::scalable_vector(MinNumElements: RISCV::RVVBitsPerBlock / |
| 1065 | VecTy.getElementType().getSizeInBits(), |
| 1066 | ScalarTy: VecTy.getElementType()); |
| 1067 | } |
| 1068 | |
| 1069 | bool RISCVLegalizerInfo::(MachineInstr &MI, |
| 1070 | MachineIRBuilder &MIB) const { |
| 1071 | GExtractSubvector &ES = cast<GExtractSubvector>(Val&: MI); |
| 1072 | |
| 1073 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1074 | |
| 1075 | Register Dst = ES.getReg(Idx: 0); |
| 1076 | Register Src = ES.getSrcVec(); |
| 1077 | uint64_t Idx = ES.getIndexImm(); |
| 1078 | |
| 1079 | // With an index of 0 this is a cast-like subvector, which can be performed |
| 1080 | // with subregister operations. |
| 1081 | if (Idx == 0) |
| 1082 | return true; |
| 1083 | |
| 1084 | LLT LitTy = MRI.getType(Reg: Dst); |
| 1085 | LLT BigTy = MRI.getType(Reg: Src); |
| 1086 | |
| 1087 | if (LitTy.getElementType() == LLT::scalar(SizeInBits: 1)) { |
| 1088 | // We can't slide this mask vector up indexed by its i1 elements. |
| 1089 | // This poses a problem when we wish to insert a scalable vector which |
| 1090 | // can't be re-expressed as a larger type. Just choose the slow path and |
| 1091 | // extend to a larger type, then truncate back down. |
| 1092 | LLT ExtBigTy = BigTy.changeElementType(NewEltTy: LLT::scalar(SizeInBits: 8)); |
| 1093 | LLT ExtLitTy = LitTy.changeElementType(NewEltTy: LLT::scalar(SizeInBits: 8)); |
| 1094 | auto BigZExt = MIB.buildZExt(Res: ExtBigTy, Op: Src); |
| 1095 | auto = MIB.buildExtractSubvector(Res: ExtLitTy, Src: BigZExt, Index: Idx); |
| 1096 | auto SplatZero = MIB.buildSplatVector( |
| 1097 | Res: ExtLitTy, Val: MIB.buildConstant(Res: ExtLitTy.getElementType(), Val: 0)); |
| 1098 | MIB.buildICmp(Pred: CmpInst::Predicate::ICMP_NE, Res: Dst, Op0: ExtractZExt, Op1: SplatZero); |
| 1099 | MI.eraseFromParent(); |
| 1100 | return true; |
| 1101 | } |
| 1102 | |
| 1103 | // extract_subvector scales the index by vscale if the subvector is scalable, |
| 1104 | // and decomposeSubvectorInsertExtractToSubRegs takes this into account. |
| 1105 | const RISCVRegisterInfo *TRI = STI.getRegisterInfo(); |
| 1106 | MVT LitTyMVT = getMVTForLLT(Ty: LitTy); |
| 1107 | auto Decompose = |
| 1108 | RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| 1109 | VecVT: getMVTForLLT(Ty: BigTy), SubVecVT: LitTyMVT, InsertExtractIdx: Idx, TRI); |
| 1110 | unsigned RemIdx = Decompose.second; |
| 1111 | |
| 1112 | // If the Idx has been completely eliminated then this is a subvector extract |
| 1113 | // which naturally aligns to a vector register. These can easily be handled |
| 1114 | // using subregister manipulation. |
| 1115 | if (RemIdx == 0) |
| 1116 | return true; |
| 1117 | |
| 1118 | // Else LitTy is M1 or smaller and may need to be slid down: if LitTy |
| 1119 | // was > M1 then the index would need to be a multiple of VLMAX, and so would |
| 1120 | // divide exactly. |
| 1121 | assert( |
| 1122 | RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(LitTyMVT)).second || |
| 1123 | RISCVTargetLowering::getLMUL(LitTyMVT) == RISCVVType::LMUL_1); |
| 1124 | |
| 1125 | // If the vector type is an LMUL-group type, extract a subvector equal to the |
| 1126 | // nearest full vector register type. |
| 1127 | LLT InterLitTy = BigTy; |
| 1128 | Register Vec = Src; |
| 1129 | if (TypeSize::isKnownGT(LHS: BigTy.getSizeInBits(), |
| 1130 | RHS: getLMUL1Ty(VecTy: BigTy).getSizeInBits())) { |
| 1131 | // If BigTy has an LMUL > 1, then LitTy should have a smaller LMUL, and |
| 1132 | // we should have successfully decomposed the extract into a subregister. |
| 1133 | assert(Decompose.first != RISCV::NoSubRegister); |
| 1134 | InterLitTy = getLMUL1Ty(VecTy: BigTy); |
| 1135 | // SDAG builds a TargetExtractSubreg. We cannot create a a Copy with SubReg |
| 1136 | // specified on the source Register (the equivalent) since generic virtual |
| 1137 | // register does not allow subregister index. |
| 1138 | Vec = MIB.buildExtractSubvector(Res: InterLitTy, Src, Index: Idx - RemIdx).getReg(Idx: 0); |
| 1139 | } |
| 1140 | |
| 1141 | // Slide this vector register down by the desired number of elements in order |
| 1142 | // to place the desired subvector starting at element 0. |
| 1143 | const LLT XLenTy(STI.getXLenVT()); |
| 1144 | auto SlidedownAmt = MIB.buildVScale(Res: XLenTy, MinElts: RemIdx); |
| 1145 | auto [Mask, VL] = buildDefaultVLOps(VecTy: LitTy, MIB, MRI); |
| 1146 | uint64_t Policy = RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC; |
| 1147 | auto Slidedown = MIB.buildInstr( |
| 1148 | Opc: RISCV::G_VSLIDEDOWN_VL, DstOps: {InterLitTy}, |
| 1149 | SrcOps: {MIB.buildUndef(Res: InterLitTy), Vec, SlidedownAmt, Mask, VL, Policy}); |
| 1150 | |
| 1151 | // Now the vector is in the right position, extract our final subvector. This |
| 1152 | // should resolve to a COPY. |
| 1153 | MIB.buildExtractSubvector(Res: Dst, Src: Slidedown, Index: 0); |
| 1154 | |
| 1155 | MI.eraseFromParent(); |
| 1156 | return true; |
| 1157 | } |
| 1158 | |
| 1159 | bool RISCVLegalizerInfo::legalizeInsertSubvector(MachineInstr &MI, |
| 1160 | LegalizerHelper &Helper, |
| 1161 | MachineIRBuilder &MIB) const { |
| 1162 | GInsertSubvector &IS = cast<GInsertSubvector>(Val&: MI); |
| 1163 | |
| 1164 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1165 | |
| 1166 | Register Dst = IS.getReg(Idx: 0); |
| 1167 | Register BigVec = IS.getBigVec(); |
| 1168 | Register LitVec = IS.getSubVec(); |
| 1169 | uint64_t Idx = IS.getIndexImm(); |
| 1170 | |
| 1171 | LLT BigTy = MRI.getType(Reg: BigVec); |
| 1172 | LLT LitTy = MRI.getType(Reg: LitVec); |
| 1173 | |
| 1174 | if (Idx == 0 || |
| 1175 | MRI.getVRegDef(Reg: BigVec)->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) |
| 1176 | return true; |
| 1177 | |
| 1178 | // We don't have the ability to slide mask vectors up indexed by their i1 |
| 1179 | // elements; the smallest we can do is i8. Often we are able to bitcast to |
| 1180 | // equivalent i8 vectors. Otherwise, we can must zeroextend to equivalent i8 |
| 1181 | // vectors and truncate down after the insert. |
| 1182 | if (LitTy.getElementType() == LLT::scalar(SizeInBits: 1)) { |
| 1183 | auto BigTyMinElts = BigTy.getElementCount().getKnownMinValue(); |
| 1184 | auto LitTyMinElts = LitTy.getElementCount().getKnownMinValue(); |
| 1185 | if (BigTyMinElts >= 8 && LitTyMinElts >= 8) |
| 1186 | return Helper.bitcast( |
| 1187 | MI&: IS, TypeIdx: 0, |
| 1188 | Ty: LLT::vector(EC: BigTy.getElementCount().divideCoefficientBy(RHS: 8), ScalarSizeInBits: 8)); |
| 1189 | |
| 1190 | // We can't slide this mask vector up indexed by its i1 elements. |
| 1191 | // This poses a problem when we wish to insert a scalable vector which |
| 1192 | // can't be re-expressed as a larger type. Just choose the slow path and |
| 1193 | // extend to a larger type, then truncate back down. |
| 1194 | LLT ExtBigTy = BigTy.changeElementType(NewEltTy: LLT::scalar(SizeInBits: 8)); |
| 1195 | return Helper.widenScalar(MI&: IS, TypeIdx: 0, WideTy: ExtBigTy); |
| 1196 | } |
| 1197 | |
| 1198 | const RISCVRegisterInfo *TRI = STI.getRegisterInfo(); |
| 1199 | unsigned SubRegIdx, RemIdx; |
| 1200 | std::tie(args&: SubRegIdx, args&: RemIdx) = |
| 1201 | RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| 1202 | VecVT: getMVTForLLT(Ty: BigTy), SubVecVT: getMVTForLLT(Ty: LitTy), InsertExtractIdx: Idx, TRI); |
| 1203 | |
| 1204 | TypeSize VecRegSize = TypeSize::getScalable(MinimumSize: RISCV::RVVBitsPerBlock); |
| 1205 | assert(isPowerOf2_64( |
| 1206 | STI.expandVScale(LitTy.getSizeInBits()).getKnownMinValue())); |
| 1207 | bool ExactlyVecRegSized = |
| 1208 | STI.expandVScale(X: LitTy.getSizeInBits()) |
| 1209 | .isKnownMultipleOf(RHS: STI.expandVScale(X: VecRegSize)); |
| 1210 | |
| 1211 | // If the Idx has been completely eliminated and this subvector's size is a |
| 1212 | // vector register or a multiple thereof, or the surrounding elements are |
| 1213 | // undef, then this is a subvector insert which naturally aligns to a vector |
| 1214 | // register. These can easily be handled using subregister manipulation. |
| 1215 | if (RemIdx == 0 && ExactlyVecRegSized) |
| 1216 | return true; |
| 1217 | |
| 1218 | // If the subvector is smaller than a vector register, then the insertion |
| 1219 | // must preserve the undisturbed elements of the register. We do this by |
| 1220 | // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type |
| 1221 | // (which resolves to a subregister copy), performing a VSLIDEUP to place the |
| 1222 | // subvector within the vector register, and an INSERT_SUBVECTOR of that |
| 1223 | // LMUL=1 type back into the larger vector (resolving to another subregister |
| 1224 | // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type |
| 1225 | // to avoid allocating a large register group to hold our subvector. |
| 1226 | |
| 1227 | // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements |
| 1228 | // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy |
| 1229 | // (in our case undisturbed). This means we can set up a subvector insertion |
| 1230 | // where OFFSET is the insertion offset, and the VL is the OFFSET plus the |
| 1231 | // size of the subvector. |
| 1232 | const LLT XLenTy(STI.getXLenVT()); |
| 1233 | LLT InterLitTy = BigTy; |
| 1234 | Register = BigVec; |
| 1235 | unsigned AlignedIdx = Idx - RemIdx; |
| 1236 | if (TypeSize::isKnownGT(LHS: BigTy.getSizeInBits(), |
| 1237 | RHS: getLMUL1Ty(VecTy: BigTy).getSizeInBits())) { |
| 1238 | InterLitTy = getLMUL1Ty(VecTy: BigTy); |
| 1239 | // Extract a subvector equal to the nearest full vector register type. This |
| 1240 | // should resolve to a G_EXTRACT on a subreg. |
| 1241 | AlignedExtract = |
| 1242 | MIB.buildExtractSubvector(Res: InterLitTy, Src: BigVec, Index: AlignedIdx).getReg(Idx: 0); |
| 1243 | } |
| 1244 | |
| 1245 | auto Insert = MIB.buildInsertSubvector(Res: InterLitTy, Src0: MIB.buildUndef(Res: InterLitTy), |
| 1246 | Src1: LitVec, Index: 0); |
| 1247 | |
| 1248 | auto [Mask, _] = buildDefaultVLOps(VecTy: BigTy, MIB, MRI); |
| 1249 | auto VL = MIB.buildVScale(Res: XLenTy, MinElts: LitTy.getElementCount().getKnownMinValue()); |
| 1250 | |
| 1251 | // If we're inserting into the lowest elements, use a tail undisturbed |
| 1252 | // vmv.v.v. |
| 1253 | MachineInstrBuilder Inserted; |
| 1254 | bool NeedInsertSubvec = |
| 1255 | TypeSize::isKnownGT(LHS: BigTy.getSizeInBits(), RHS: InterLitTy.getSizeInBits()); |
| 1256 | Register InsertedDst = |
| 1257 | NeedInsertSubvec ? MRI.createGenericVirtualRegister(Ty: InterLitTy) : Dst; |
| 1258 | if (RemIdx == 0) { |
| 1259 | Inserted = MIB.buildInstr(Opc: RISCV::G_VMV_V_V_VL, DstOps: {InsertedDst}, |
| 1260 | SrcOps: {AlignedExtract, Insert, VL}); |
| 1261 | } else { |
| 1262 | auto SlideupAmt = MIB.buildVScale(Res: XLenTy, MinElts: RemIdx); |
| 1263 | // Construct the vector length corresponding to RemIdx + length(LitTy). |
| 1264 | VL = MIB.buildAdd(Dst: XLenTy, Src0: SlideupAmt, Src1: VL); |
| 1265 | // Use tail agnostic policy if we're inserting over InterLitTy's tail. |
| 1266 | ElementCount EndIndex = |
| 1267 | ElementCount::getScalable(MinVal: RemIdx) + LitTy.getElementCount(); |
| 1268 | uint64_t Policy = RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED; |
| 1269 | if (STI.expandVScale(X: EndIndex) == |
| 1270 | STI.expandVScale(X: InterLitTy.getElementCount())) |
| 1271 | Policy = RISCVVType::TAIL_AGNOSTIC; |
| 1272 | |
| 1273 | Inserted = |
| 1274 | MIB.buildInstr(Opc: RISCV::G_VSLIDEUP_VL, DstOps: {InsertedDst}, |
| 1275 | SrcOps: {AlignedExtract, Insert, SlideupAmt, Mask, VL, Policy}); |
| 1276 | } |
| 1277 | |
| 1278 | // If required, insert this subvector back into the correct vector register. |
| 1279 | // This should resolve to an INSERT_SUBREG instruction. |
| 1280 | if (NeedInsertSubvec) |
| 1281 | MIB.buildInsertSubvector(Res: Dst, Src0: BigVec, Src1: Inserted, Index: AlignedIdx); |
| 1282 | |
| 1283 | MI.eraseFromParent(); |
| 1284 | return true; |
| 1285 | } |
| 1286 | |
| 1287 | static unsigned getRISCVWOpcode(unsigned Opcode) { |
| 1288 | switch (Opcode) { |
| 1289 | default: |
| 1290 | llvm_unreachable("Unexpected opcode" ); |
| 1291 | case TargetOpcode::G_ASHR: |
| 1292 | return RISCV::G_SRAW; |
| 1293 | case TargetOpcode::G_LSHR: |
| 1294 | return RISCV::G_SRLW; |
| 1295 | case TargetOpcode::G_SHL: |
| 1296 | return RISCV::G_SLLW; |
| 1297 | case TargetOpcode::G_SDIV: |
| 1298 | return RISCV::G_DIVW; |
| 1299 | case TargetOpcode::G_UDIV: |
| 1300 | return RISCV::G_DIVUW; |
| 1301 | case TargetOpcode::G_UREM: |
| 1302 | return RISCV::G_REMUW; |
| 1303 | case TargetOpcode::G_ROTL: |
| 1304 | return RISCV::G_ROLW; |
| 1305 | case TargetOpcode::G_ROTR: |
| 1306 | return RISCV::G_RORW; |
| 1307 | case TargetOpcode::G_CTLZ: |
| 1308 | return RISCV::G_CLZW; |
| 1309 | case TargetOpcode::G_CTTZ: |
| 1310 | return RISCV::G_CTZW; |
| 1311 | case TargetOpcode::G_FPTOSI: |
| 1312 | return RISCV::G_FCVT_W_RV64; |
| 1313 | case TargetOpcode::G_FPTOUI: |
| 1314 | return RISCV::G_FCVT_WU_RV64; |
| 1315 | } |
| 1316 | } |
| 1317 | |
| 1318 | bool RISCVLegalizerInfo::legalizeCustom( |
| 1319 | LegalizerHelper &Helper, MachineInstr &MI, |
| 1320 | LostDebugLocObserver &LocObserver) const { |
| 1321 | MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; |
| 1322 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 1323 | MachineFunction &MF = *MI.getParent()->getParent(); |
| 1324 | switch (MI.getOpcode()) { |
| 1325 | default: |
| 1326 | // No idea what to do. |
| 1327 | return false; |
| 1328 | case TargetOpcode::G_ABS: |
| 1329 | return Helper.lowerAbsToMaxNeg(MI); |
| 1330 | // TODO: G_FCONSTANT |
| 1331 | case TargetOpcode::G_CONSTANT: { |
| 1332 | const Function &F = MF.getFunction(); |
| 1333 | // TODO: if PSI and BFI are present, add " || |
| 1334 | // llvm::shouldOptForSize(*CurMBB, PSI, BFI)". |
| 1335 | bool ShouldOptForSize = F.hasOptSize(); |
| 1336 | const ConstantInt *ConstVal = MI.getOperand(i: 1).getCImm(); |
| 1337 | if (!shouldBeInConstantPool(APImm: ConstVal->getValue(), ShouldOptForSize)) |
| 1338 | return true; |
| 1339 | return Helper.lowerConstant(MI); |
| 1340 | } |
| 1341 | case TargetOpcode::G_SUB: |
| 1342 | case TargetOpcode::G_ADD: { |
| 1343 | Helper.Observer.changingInstr(MI); |
| 1344 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 1, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1345 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 2, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1346 | |
| 1347 | Register DstALU = MRI.createGenericVirtualRegister(Ty: sXLen); |
| 1348 | |
| 1349 | MachineOperand &MO = MI.getOperand(i: 0); |
| 1350 | MIRBuilder.setInsertPt(MBB&: MIRBuilder.getMBB(), II: ++MIRBuilder.getInsertPt()); |
| 1351 | auto DstSext = MIRBuilder.buildSExtInReg(Res: sXLen, Op: DstALU, ImmOp: 32); |
| 1352 | |
| 1353 | MIRBuilder.buildInstr(Opc: TargetOpcode::G_TRUNC, DstOps: {MO}, SrcOps: {DstSext}); |
| 1354 | MO.setReg(DstALU); |
| 1355 | |
| 1356 | Helper.Observer.changedInstr(MI); |
| 1357 | return true; |
| 1358 | } |
| 1359 | case TargetOpcode::G_SEXT_INREG: { |
| 1360 | LLT DstTy = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 1361 | int64_t SizeInBits = MI.getOperand(i: 2).getImm(); |
| 1362 | // Source size of 32 is sext.w. |
| 1363 | if (DstTy.getSizeInBits() == 64 && SizeInBits == 32) |
| 1364 | return true; |
| 1365 | |
| 1366 | if (STI.hasStdExtZbb() && (SizeInBits == 8 || SizeInBits == 16)) |
| 1367 | return true; |
| 1368 | |
| 1369 | return Helper.lower(MI, TypeIdx: 0, /* Unused hint type */ Ty: LLT()) == |
| 1370 | LegalizerHelper::Legalized; |
| 1371 | } |
| 1372 | case TargetOpcode::G_ASHR: |
| 1373 | case TargetOpcode::G_LSHR: |
| 1374 | case TargetOpcode::G_SHL: { |
| 1375 | if (getIConstantVRegValWithLookThrough(VReg: MI.getOperand(i: 2).getReg(), MRI)) { |
| 1376 | // We don't need a custom node for shift by constant. Just widen the |
| 1377 | // source and the shift amount. |
| 1378 | unsigned ExtOpc = TargetOpcode::G_ANYEXT; |
| 1379 | if (MI.getOpcode() == TargetOpcode::G_ASHR) |
| 1380 | ExtOpc = TargetOpcode::G_SEXT; |
| 1381 | else if (MI.getOpcode() == TargetOpcode::G_LSHR) |
| 1382 | ExtOpc = TargetOpcode::G_ZEXT; |
| 1383 | |
| 1384 | Helper.Observer.changingInstr(MI); |
| 1385 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 1, ExtOpcode: ExtOpc); |
| 1386 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 2, ExtOpcode: TargetOpcode::G_ZEXT); |
| 1387 | Helper.widenScalarDst(MI, WideTy: sXLen); |
| 1388 | Helper.Observer.changedInstr(MI); |
| 1389 | return true; |
| 1390 | } |
| 1391 | |
| 1392 | Helper.Observer.changingInstr(MI); |
| 1393 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 1, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1394 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 2, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1395 | Helper.widenScalarDst(MI, WideTy: sXLen); |
| 1396 | MI.setDesc(MIRBuilder.getTII().get(Opcode: getRISCVWOpcode(Opcode: MI.getOpcode()))); |
| 1397 | Helper.Observer.changedInstr(MI); |
| 1398 | return true; |
| 1399 | } |
| 1400 | case TargetOpcode::G_SDIV: |
| 1401 | case TargetOpcode::G_UDIV: |
| 1402 | case TargetOpcode::G_UREM: |
| 1403 | case TargetOpcode::G_ROTL: |
| 1404 | case TargetOpcode::G_ROTR: { |
| 1405 | Helper.Observer.changingInstr(MI); |
| 1406 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 1, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1407 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 2, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1408 | Helper.widenScalarDst(MI, WideTy: sXLen); |
| 1409 | MI.setDesc(MIRBuilder.getTII().get(Opcode: getRISCVWOpcode(Opcode: MI.getOpcode()))); |
| 1410 | Helper.Observer.changedInstr(MI); |
| 1411 | return true; |
| 1412 | } |
| 1413 | case TargetOpcode::G_CTLZ: |
| 1414 | case TargetOpcode::G_CTTZ: { |
| 1415 | Helper.Observer.changingInstr(MI); |
| 1416 | Helper.widenScalarSrc(MI, WideTy: sXLen, OpIdx: 1, ExtOpcode: TargetOpcode::G_ANYEXT); |
| 1417 | Helper.widenScalarDst(MI, WideTy: sXLen); |
| 1418 | MI.setDesc(MIRBuilder.getTII().get(Opcode: getRISCVWOpcode(Opcode: MI.getOpcode()))); |
| 1419 | Helper.Observer.changedInstr(MI); |
| 1420 | return true; |
| 1421 | } |
| 1422 | case TargetOpcode::G_FPTOSI: |
| 1423 | case TargetOpcode::G_FPTOUI: { |
| 1424 | Helper.Observer.changingInstr(MI); |
| 1425 | Helper.widenScalarDst(MI, WideTy: sXLen); |
| 1426 | MI.setDesc(MIRBuilder.getTII().get(Opcode: getRISCVWOpcode(Opcode: MI.getOpcode()))); |
| 1427 | MI.addOperand(Op: MachineOperand::CreateImm(Val: RISCVFPRndMode::RTZ)); |
| 1428 | Helper.Observer.changedInstr(MI); |
| 1429 | return true; |
| 1430 | } |
| 1431 | case TargetOpcode::G_IS_FPCLASS: { |
| 1432 | Register GISFPCLASS = MI.getOperand(i: 0).getReg(); |
| 1433 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1434 | const MachineOperand &ImmOp = MI.getOperand(i: 2); |
| 1435 | MachineIRBuilder MIB(MI); |
| 1436 | |
| 1437 | // Turn LLVM IR's floating point classes to that in RISC-V, |
| 1438 | // by simply rotating the 10-bit immediate right by two bits. |
| 1439 | APInt GFpClassImm(10, static_cast<uint64_t>(ImmOp.getImm())); |
| 1440 | auto FClassMask = MIB.buildConstant(Res: sXLen, Val: GFpClassImm.rotr(rotateAmt: 2).zext(width: XLen)); |
| 1441 | auto ConstZero = MIB.buildConstant(Res: sXLen, Val: 0); |
| 1442 | |
| 1443 | auto GFClass = MIB.buildInstr(Opc: RISCV::G_FCLASS, DstOps: {sXLen}, SrcOps: {Src}); |
| 1444 | auto And = MIB.buildAnd(Dst: sXLen, Src0: GFClass, Src1: FClassMask); |
| 1445 | MIB.buildICmp(Pred: CmpInst::ICMP_NE, Res: GISFPCLASS, Op0: And, Op1: ConstZero); |
| 1446 | |
| 1447 | MI.eraseFromParent(); |
| 1448 | return true; |
| 1449 | } |
| 1450 | case TargetOpcode::G_BRJT: |
| 1451 | return legalizeBRJT(MI, MIRBuilder); |
| 1452 | case TargetOpcode::G_VASTART: |
| 1453 | return legalizeVAStart(MI, MIRBuilder); |
| 1454 | case TargetOpcode::G_VSCALE: |
| 1455 | return legalizeVScale(MI, MIB&: MIRBuilder); |
| 1456 | case TargetOpcode::G_ZEXT: |
| 1457 | case TargetOpcode::G_SEXT: |
| 1458 | case TargetOpcode::G_ANYEXT: |
| 1459 | return legalizeExt(MI, MIB&: MIRBuilder); |
| 1460 | case TargetOpcode::G_SPLAT_VECTOR: |
| 1461 | return legalizeSplatVector(MI, MIB&: MIRBuilder); |
| 1462 | case TargetOpcode::G_EXTRACT_SUBVECTOR: |
| 1463 | return legalizeExtractSubvector(MI, MIB&: MIRBuilder); |
| 1464 | case TargetOpcode::G_INSERT_SUBVECTOR: |
| 1465 | return legalizeInsertSubvector(MI, Helper, MIB&: MIRBuilder); |
| 1466 | case TargetOpcode::G_LOAD: |
| 1467 | case TargetOpcode::G_STORE: |
| 1468 | return legalizeLoadStore(MI, Helper, MIB&: MIRBuilder); |
| 1469 | } |
| 1470 | |
| 1471 | llvm_unreachable("expected switch to return" ); |
| 1472 | } |
| 1473 | |