| 1 | //===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISC-V -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines an instruction selector for the RISC-V target. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "RISCVISelDAGToDAG.h" |
| 14 | #include "MCTargetDesc/RISCVBaseInfo.h" |
| 15 | #include "MCTargetDesc/RISCVMCTargetDesc.h" |
| 16 | #include "MCTargetDesc/RISCVMatInt.h" |
| 17 | #include "RISCVISelLowering.h" |
| 18 | #include "RISCVInstrInfo.h" |
| 19 | #include "RISCVSelectionDAGInfo.h" |
| 20 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 21 | #include "llvm/IR/IntrinsicsRISCV.h" |
| 22 | #include "llvm/Support/Alignment.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/MathExtras.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | #define DEBUG_TYPE "riscv-isel" |
| 30 | #define PASS_NAME "RISC-V DAG->DAG Pattern Instruction Selection" |
| 31 | |
| 32 | static cl::opt<bool> UsePseudoMovImm( |
| 33 | "riscv-use-rematerializable-movimm" , cl::Hidden, |
| 34 | cl::desc("Use a rematerializable pseudoinstruction for 2 instruction " |
| 35 | "constant materialization" ), |
| 36 | cl::init(Val: false)); |
| 37 | |
| 38 | #define GET_DAGISEL_BODY RISCVDAGToDAGISel |
| 39 | #include "RISCVGenDAGISel.inc" |
| 40 | |
| 41 | void RISCVDAGToDAGISel::PreprocessISelDAG() { |
| 42 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 43 | |
| 44 | bool MadeChange = false; |
| 45 | while (Position != CurDAG->allnodes_begin()) { |
| 46 | SDNode *N = &*--Position; |
| 47 | if (N->use_empty()) |
| 48 | continue; |
| 49 | |
| 50 | SDValue Result; |
| 51 | switch (N->getOpcode()) { |
| 52 | case ISD::SPLAT_VECTOR: { |
| 53 | // Convert integer SPLAT_VECTOR to VMV_V_X_VL and floating-point |
| 54 | // SPLAT_VECTOR to VFMV_V_F_VL to reduce isel burden. |
| 55 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 56 | unsigned Opc = |
| 57 | VT.isInteger() ? RISCVISD::VMV_V_X_VL : RISCVISD::VFMV_V_F_VL; |
| 58 | SDLoc DL(N); |
| 59 | SDValue VL = CurDAG->getRegister(Reg: RISCV::X0, VT: Subtarget->getXLenVT()); |
| 60 | SDValue Src = N->getOperand(Num: 0); |
| 61 | if (VT.isInteger()) |
| 62 | Src = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL, VT: Subtarget->getXLenVT(), |
| 63 | Operand: N->getOperand(Num: 0)); |
| 64 | Result = CurDAG->getNode(Opcode: Opc, DL, VT, N1: CurDAG->getUNDEF(VT), N2: Src, N3: VL); |
| 65 | break; |
| 66 | } |
| 67 | case RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL: { |
| 68 | // Lower SPLAT_VECTOR_SPLIT_I64 to two scalar stores and a stride 0 vector |
| 69 | // load. Done after lowering and combining so that we have a chance to |
| 70 | // optimize this to VMV_V_X_VL when the upper bits aren't needed. |
| 71 | assert(N->getNumOperands() == 4 && "Unexpected number of operands" ); |
| 72 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 73 | SDValue Passthru = N->getOperand(Num: 0); |
| 74 | SDValue Lo = N->getOperand(Num: 1); |
| 75 | SDValue Hi = N->getOperand(Num: 2); |
| 76 | SDValue VL = N->getOperand(Num: 3); |
| 77 | assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && |
| 78 | Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && |
| 79 | "Unexpected VTs!" ); |
| 80 | MachineFunction &MF = CurDAG->getMachineFunction(); |
| 81 | SDLoc DL(N); |
| 82 | |
| 83 | // Create temporary stack for each expanding node. |
| 84 | SDValue StackSlot = |
| 85 | CurDAG->CreateStackTemporary(Bytes: TypeSize::getFixed(ExactSize: 8), Alignment: Align(8)); |
| 86 | int FI = cast<FrameIndexSDNode>(Val: StackSlot.getNode())->getIndex(); |
| 87 | MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); |
| 88 | |
| 89 | SDValue Chain = CurDAG->getEntryNode(); |
| 90 | Lo = CurDAG->getStore(Chain, dl: DL, Val: Lo, Ptr: StackSlot, PtrInfo: MPI, Alignment: Align(8)); |
| 91 | |
| 92 | SDValue OffsetSlot = |
| 93 | CurDAG->getMemBasePlusOffset(Base: StackSlot, Offset: TypeSize::getFixed(ExactSize: 4), DL); |
| 94 | Hi = CurDAG->getStore(Chain, dl: DL, Val: Hi, Ptr: OffsetSlot, PtrInfo: MPI.getWithOffset(O: 4), |
| 95 | Alignment: Align(8)); |
| 96 | |
| 97 | Chain = CurDAG->getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, N1: Lo, N2: Hi); |
| 98 | |
| 99 | SDVTList VTs = CurDAG->getVTList(VTs: {VT, MVT::Other}); |
| 100 | SDValue IntID = |
| 101 | CurDAG->getTargetConstant(Val: Intrinsic::riscv_vlse, DL, VT: MVT::i64); |
| 102 | SDValue Ops[] = {Chain, |
| 103 | IntID, |
| 104 | Passthru, |
| 105 | StackSlot, |
| 106 | CurDAG->getRegister(Reg: RISCV::X0, VT: MVT::i64), |
| 107 | VL}; |
| 108 | |
| 109 | Result = CurDAG->getMemIntrinsicNode(Opcode: ISD::INTRINSIC_W_CHAIN, dl: DL, VTList: VTs, Ops, |
| 110 | MemVT: MVT::i64, PtrInfo: MPI, Alignment: Align(8), |
| 111 | Flags: MachineMemOperand::MOLoad); |
| 112 | break; |
| 113 | } |
| 114 | case ISD::FP_EXTEND: { |
| 115 | // We only have vector patterns for riscv_fpextend_vl in isel. |
| 116 | SDLoc DL(N); |
| 117 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 118 | if (!VT.isVector()) |
| 119 | break; |
| 120 | SDValue VLMAX = CurDAG->getRegister(Reg: RISCV::X0, VT: Subtarget->getXLenVT()); |
| 121 | SDValue TrueMask = CurDAG->getNode( |
| 122 | Opcode: RISCVISD::VMSET_VL, DL, VT: VT.changeVectorElementType(EltVT: MVT::i1), Operand: VLMAX); |
| 123 | Result = CurDAG->getNode(Opcode: RISCVISD::FP_EXTEND_VL, DL, VT, N1: N->getOperand(Num: 0), |
| 124 | N2: TrueMask, N3: VLMAX); |
| 125 | break; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | if (Result) { |
| 130 | LLVM_DEBUG(dbgs() << "RISC-V DAG preprocessing replacing:\nOld: " ); |
| 131 | LLVM_DEBUG(N->dump(CurDAG)); |
| 132 | LLVM_DEBUG(dbgs() << "\nNew: " ); |
| 133 | LLVM_DEBUG(Result->dump(CurDAG)); |
| 134 | LLVM_DEBUG(dbgs() << "\n" ); |
| 135 | |
| 136 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Result); |
| 137 | MadeChange = true; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | if (MadeChange) |
| 142 | CurDAG->RemoveDeadNodes(); |
| 143 | } |
| 144 | |
| 145 | void RISCVDAGToDAGISel::PostprocessISelDAG() { |
| 146 | HandleSDNode Dummy(CurDAG->getRoot()); |
| 147 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 148 | |
| 149 | bool MadeChange = false; |
| 150 | while (Position != CurDAG->allnodes_begin()) { |
| 151 | SDNode *N = &*--Position; |
| 152 | // Skip dead nodes and any non-machine opcodes. |
| 153 | if (N->use_empty() || !N->isMachineOpcode()) |
| 154 | continue; |
| 155 | |
| 156 | MadeChange |= doPeepholeSExtW(Node: N); |
| 157 | |
| 158 | // FIXME: This is here only because the VMerge transform doesn't |
| 159 | // know how to handle masked true inputs. Once that has been moved |
| 160 | // to post-ISEL, this can be deleted as well. |
| 161 | MadeChange |= doPeepholeMaskedRVV(Node: cast<MachineSDNode>(Val: N)); |
| 162 | } |
| 163 | |
| 164 | CurDAG->setRoot(Dummy.getValue()); |
| 165 | |
| 166 | MadeChange |= doPeepholeMergeVVMFold(); |
| 167 | |
| 168 | // After we're done with everything else, convert IMPLICIT_DEF |
| 169 | // passthru operands to NoRegister. This is required to workaround |
| 170 | // an optimization deficiency in MachineCSE. This really should |
| 171 | // be merged back into each of the patterns (i.e. there's no good |
| 172 | // reason not to go directly to NoReg), but is being done this way |
| 173 | // to allow easy backporting. |
| 174 | MadeChange |= doPeepholeNoRegPassThru(); |
| 175 | |
| 176 | if (MadeChange) |
| 177 | CurDAG->RemoveDeadNodes(); |
| 178 | } |
| 179 | |
| 180 | static SDValue selectImmSeq(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT, |
| 181 | RISCVMatInt::InstSeq &Seq) { |
| 182 | SDValue SrcReg = CurDAG->getRegister(Reg: RISCV::X0, VT); |
| 183 | for (const RISCVMatInt::Inst &Inst : Seq) { |
| 184 | SDValue SDImm = CurDAG->getSignedTargetConstant(Val: Inst.getImm(), DL, VT); |
| 185 | SDNode *Result = nullptr; |
| 186 | switch (Inst.getOpndKind()) { |
| 187 | case RISCVMatInt::Imm: |
| 188 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SDImm); |
| 189 | break; |
| 190 | case RISCVMatInt::RegX0: |
| 191 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SrcReg, |
| 192 | Op2: CurDAG->getRegister(Reg: RISCV::X0, VT)); |
| 193 | break; |
| 194 | case RISCVMatInt::RegReg: |
| 195 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SrcReg, Op2: SrcReg); |
| 196 | break; |
| 197 | case RISCVMatInt::RegImm: |
| 198 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SrcReg, Op2: SDImm); |
| 199 | break; |
| 200 | } |
| 201 | |
| 202 | // Only the first instruction has X0 as its source. |
| 203 | SrcReg = SDValue(Result, 0); |
| 204 | } |
| 205 | |
| 206 | return SrcReg; |
| 207 | } |
| 208 | |
| 209 | static SDValue selectImm(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT, |
| 210 | int64_t Imm, const RISCVSubtarget &Subtarget) { |
| 211 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val: Imm, STI: Subtarget); |
| 212 | |
| 213 | // Use a rematerializable pseudo instruction for short sequences if enabled. |
| 214 | if (Seq.size() == 2 && UsePseudoMovImm) |
| 215 | return SDValue( |
| 216 | CurDAG->getMachineNode(Opcode: RISCV::PseudoMovImm, dl: DL, VT, |
| 217 | Op1: CurDAG->getSignedTargetConstant(Val: Imm, DL, VT)), |
| 218 | 0); |
| 219 | |
| 220 | // See if we can create this constant as (ADD (SLLI X, C), X) where X is at |
| 221 | // worst an LUI+ADDIW. This will require an extra register, but avoids a |
| 222 | // constant pool. |
| 223 | // If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where |
| 224 | // low and high 32 bits are the same and bit 31 and 63 are set. |
| 225 | if (Seq.size() > 3) { |
| 226 | unsigned ShiftAmt, AddOpc; |
| 227 | RISCVMatInt::InstSeq SeqLo = |
| 228 | RISCVMatInt::generateTwoRegInstSeq(Val: Imm, STI: Subtarget, ShiftAmt, AddOpc); |
| 229 | if (!SeqLo.empty() && (SeqLo.size() + 2) < Seq.size()) { |
| 230 | SDValue Lo = selectImmSeq(CurDAG, DL, VT, Seq&: SeqLo); |
| 231 | |
| 232 | SDValue SLLI = SDValue( |
| 233 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: Lo, |
| 234 | Op2: CurDAG->getTargetConstant(Val: ShiftAmt, DL, VT)), |
| 235 | 0); |
| 236 | return SDValue(CurDAG->getMachineNode(Opcode: AddOpc, dl: DL, VT, Op1: Lo, Op2: SLLI), 0); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // Otherwise, use the original sequence. |
| 241 | return selectImmSeq(CurDAG, DL, VT, Seq); |
| 242 | } |
| 243 | |
| 244 | void RISCVDAGToDAGISel::addVectorLoadStoreOperands( |
| 245 | SDNode *Node, unsigned Log2SEW, const SDLoc &DL, unsigned CurOp, |
| 246 | bool IsMasked, bool IsStridedOrIndexed, SmallVectorImpl<SDValue> &Operands, |
| 247 | bool IsLoad, MVT *IndexVT) { |
| 248 | SDValue Chain = Node->getOperand(Num: 0); |
| 249 | |
| 250 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Base pointer. |
| 251 | |
| 252 | if (IsStridedOrIndexed) { |
| 253 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Index. |
| 254 | if (IndexVT) |
| 255 | *IndexVT = Operands.back()->getSimpleValueType(ResNo: 0); |
| 256 | } |
| 257 | |
| 258 | if (IsMasked) { |
| 259 | SDValue Mask = Node->getOperand(Num: CurOp++); |
| 260 | Operands.push_back(Elt: Mask); |
| 261 | } |
| 262 | SDValue VL; |
| 263 | selectVLOp(N: Node->getOperand(Num: CurOp++), VL); |
| 264 | Operands.push_back(Elt: VL); |
| 265 | |
| 266 | MVT XLenVT = Subtarget->getXLenVT(); |
| 267 | SDValue SEWOp = CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: XLenVT); |
| 268 | Operands.push_back(Elt: SEWOp); |
| 269 | |
| 270 | // At the IR layer, all the masked load intrinsics have policy operands, |
| 271 | // none of the others do. All have passthru operands. For our pseudos, |
| 272 | // all loads have policy operands. |
| 273 | if (IsLoad) { |
| 274 | uint64_t Policy = RISCVVType::MASK_AGNOSTIC; |
| 275 | if (IsMasked) |
| 276 | Policy = Node->getConstantOperandVal(Num: CurOp++); |
| 277 | SDValue PolicyOp = CurDAG->getTargetConstant(Val: Policy, DL, VT: XLenVT); |
| 278 | Operands.push_back(Elt: PolicyOp); |
| 279 | } |
| 280 | |
| 281 | Operands.push_back(Elt: Chain); // Chain. |
| 282 | } |
| 283 | |
| 284 | void RISCVDAGToDAGISel::selectVLSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 285 | bool IsStrided) { |
| 286 | SDLoc DL(Node); |
| 287 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 288 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 289 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 290 | |
| 291 | unsigned CurOp = 2; |
| 292 | SmallVector<SDValue, 8> Operands; |
| 293 | |
| 294 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 295 | |
| 296 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 297 | Operands, /*IsLoad=*/true); |
| 298 | |
| 299 | const RISCV::VLSEGPseudo *P = |
| 300 | RISCV::getVLSEGPseudo(NF, Masked: IsMasked, Strided: IsStrided, /*FF*/ false, Log2SEW, |
| 301 | LMUL: static_cast<unsigned>(LMUL)); |
| 302 | MachineSDNode *Load = |
| 303 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT1: MVT::Untyped, VT2: MVT::Other, Ops: Operands); |
| 304 | |
| 305 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 306 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 307 | |
| 308 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Load, 0)); |
| 309 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Load, 1)); |
| 310 | CurDAG->RemoveDeadNode(N: Node); |
| 311 | } |
| 312 | |
| 313 | void RISCVDAGToDAGISel::selectVLSEGFF(SDNode *Node, unsigned NF, |
| 314 | bool IsMasked) { |
| 315 | SDLoc DL(Node); |
| 316 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 317 | MVT XLenVT = Subtarget->getXLenVT(); |
| 318 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 319 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 320 | |
| 321 | unsigned CurOp = 2; |
| 322 | SmallVector<SDValue, 7> Operands; |
| 323 | |
| 324 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 325 | |
| 326 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 327 | /*IsStridedOrIndexed*/ false, Operands, |
| 328 | /*IsLoad=*/true); |
| 329 | |
| 330 | const RISCV::VLSEGPseudo *P = |
| 331 | RISCV::getVLSEGPseudo(NF, Masked: IsMasked, /*Strided*/ false, /*FF*/ true, |
| 332 | Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 333 | MachineSDNode *Load = CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT1: MVT::Untyped, |
| 334 | VT2: XLenVT, VT3: MVT::Other, Ops: Operands); |
| 335 | |
| 336 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 337 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 338 | |
| 339 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Load, 0)); // Result |
| 340 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Load, 1)); // VL |
| 341 | ReplaceUses(F: SDValue(Node, 2), T: SDValue(Load, 2)); // Chain |
| 342 | CurDAG->RemoveDeadNode(N: Node); |
| 343 | } |
| 344 | |
| 345 | void RISCVDAGToDAGISel::selectVLXSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 346 | bool IsOrdered) { |
| 347 | SDLoc DL(Node); |
| 348 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 349 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 350 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 351 | |
| 352 | unsigned CurOp = 2; |
| 353 | SmallVector<SDValue, 8> Operands; |
| 354 | |
| 355 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 356 | |
| 357 | MVT IndexVT; |
| 358 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 359 | /*IsStridedOrIndexed*/ true, Operands, |
| 360 | /*IsLoad=*/true, IndexVT: &IndexVT); |
| 361 | |
| 362 | #ifndef NDEBUG |
| 363 | // Number of element = RVVBitsPerBlock * LMUL / SEW |
| 364 | unsigned ContainedTyNumElts = RISCV::RVVBitsPerBlock >> Log2SEW; |
| 365 | auto DecodedLMUL = RISCVVType::decodeVLMUL(LMUL); |
| 366 | if (DecodedLMUL.second) |
| 367 | ContainedTyNumElts /= DecodedLMUL.first; |
| 368 | else |
| 369 | ContainedTyNumElts *= DecodedLMUL.first; |
| 370 | assert(ContainedTyNumElts == IndexVT.getVectorMinNumElements() && |
| 371 | "Element count mismatch" ); |
| 372 | #endif |
| 373 | |
| 374 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 375 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 376 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 377 | report_fatal_error(reason: "The V extension does not support EEW=64 for index " |
| 378 | "values when XLEN=32" ); |
| 379 | } |
| 380 | const RISCV::VLXSEGPseudo *P = RISCV::getVLXSEGPseudo( |
| 381 | NF, Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, LMUL: static_cast<unsigned>(LMUL), |
| 382 | IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 383 | MachineSDNode *Load = |
| 384 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT1: MVT::Untyped, VT2: MVT::Other, Ops: Operands); |
| 385 | |
| 386 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 387 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 388 | |
| 389 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Load, 0)); |
| 390 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Load, 1)); |
| 391 | CurDAG->RemoveDeadNode(N: Node); |
| 392 | } |
| 393 | |
| 394 | void RISCVDAGToDAGISel::selectVSSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 395 | bool IsStrided) { |
| 396 | SDLoc DL(Node); |
| 397 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 398 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 399 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 400 | |
| 401 | unsigned CurOp = 2; |
| 402 | SmallVector<SDValue, 8> Operands; |
| 403 | |
| 404 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 405 | |
| 406 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 407 | Operands); |
| 408 | |
| 409 | const RISCV::VSSEGPseudo *P = RISCV::getVSSEGPseudo( |
| 410 | NF, Masked: IsMasked, Strided: IsStrided, Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 411 | MachineSDNode *Store = |
| 412 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT: Node->getValueType(ResNo: 0), Ops: Operands); |
| 413 | |
| 414 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 415 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {MemOp->getMemOperand()}); |
| 416 | |
| 417 | ReplaceNode(F: Node, T: Store); |
| 418 | } |
| 419 | |
| 420 | void RISCVDAGToDAGISel::selectVSXSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 421 | bool IsOrdered) { |
| 422 | SDLoc DL(Node); |
| 423 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 424 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 425 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 426 | |
| 427 | unsigned CurOp = 2; |
| 428 | SmallVector<SDValue, 8> Operands; |
| 429 | |
| 430 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 431 | |
| 432 | MVT IndexVT; |
| 433 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 434 | /*IsStridedOrIndexed*/ true, Operands, |
| 435 | /*IsLoad=*/false, IndexVT: &IndexVT); |
| 436 | |
| 437 | #ifndef NDEBUG |
| 438 | // Number of element = RVVBitsPerBlock * LMUL / SEW |
| 439 | unsigned ContainedTyNumElts = RISCV::RVVBitsPerBlock >> Log2SEW; |
| 440 | auto DecodedLMUL = RISCVVType::decodeVLMUL(LMUL); |
| 441 | if (DecodedLMUL.second) |
| 442 | ContainedTyNumElts /= DecodedLMUL.first; |
| 443 | else |
| 444 | ContainedTyNumElts *= DecodedLMUL.first; |
| 445 | assert(ContainedTyNumElts == IndexVT.getVectorMinNumElements() && |
| 446 | "Element count mismatch" ); |
| 447 | #endif |
| 448 | |
| 449 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 450 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 451 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 452 | report_fatal_error(reason: "The V extension does not support EEW=64 for index " |
| 453 | "values when XLEN=32" ); |
| 454 | } |
| 455 | const RISCV::VSXSEGPseudo *P = RISCV::getVSXSEGPseudo( |
| 456 | NF, Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, LMUL: static_cast<unsigned>(LMUL), |
| 457 | IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 458 | MachineSDNode *Store = |
| 459 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT: Node->getValueType(ResNo: 0), Ops: Operands); |
| 460 | |
| 461 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 462 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {MemOp->getMemOperand()}); |
| 463 | |
| 464 | ReplaceNode(F: Node, T: Store); |
| 465 | } |
| 466 | |
| 467 | void RISCVDAGToDAGISel::selectVSETVLI(SDNode *Node) { |
| 468 | if (!Subtarget->hasVInstructions()) |
| 469 | return; |
| 470 | |
| 471 | assert(Node->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Unexpected opcode" ); |
| 472 | |
| 473 | SDLoc DL(Node); |
| 474 | MVT XLenVT = Subtarget->getXLenVT(); |
| 475 | |
| 476 | unsigned IntNo = Node->getConstantOperandVal(Num: 0); |
| 477 | |
| 478 | assert((IntNo == Intrinsic::riscv_vsetvli || |
| 479 | IntNo == Intrinsic::riscv_vsetvlimax) && |
| 480 | "Unexpected vsetvli intrinsic" ); |
| 481 | |
| 482 | bool VLMax = IntNo == Intrinsic::riscv_vsetvlimax; |
| 483 | unsigned Offset = (VLMax ? 1 : 2); |
| 484 | |
| 485 | assert(Node->getNumOperands() == Offset + 2 && |
| 486 | "Unexpected number of operands" ); |
| 487 | |
| 488 | unsigned SEW = |
| 489 | RISCVVType::decodeVSEW(VSEW: Node->getConstantOperandVal(Num: Offset) & 0x7); |
| 490 | RISCVVType::VLMUL VLMul = static_cast<RISCVVType::VLMUL>( |
| 491 | Node->getConstantOperandVal(Num: Offset + 1) & 0x7); |
| 492 | |
| 493 | unsigned VTypeI = RISCVVType::encodeVTYPE(VLMUL: VLMul, SEW, /*TailAgnostic*/ true, |
| 494 | /*MaskAgnostic*/ true); |
| 495 | SDValue VTypeIOp = CurDAG->getTargetConstant(Val: VTypeI, DL, VT: XLenVT); |
| 496 | |
| 497 | SDValue VLOperand; |
| 498 | unsigned Opcode = RISCV::PseudoVSETVLI; |
| 499 | if (auto *C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1))) { |
| 500 | if (auto VLEN = Subtarget->getRealVLen()) |
| 501 | if (*VLEN / RISCVVType::getSEWLMULRatio(SEW, VLMul) == C->getZExtValue()) |
| 502 | VLMax = true; |
| 503 | } |
| 504 | if (VLMax || isAllOnesConstant(V: Node->getOperand(Num: 1))) { |
| 505 | VLOperand = CurDAG->getRegister(Reg: RISCV::X0, VT: XLenVT); |
| 506 | Opcode = RISCV::PseudoVSETVLIX0; |
| 507 | } else { |
| 508 | VLOperand = Node->getOperand(Num: 1); |
| 509 | |
| 510 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: VLOperand)) { |
| 511 | uint64_t AVL = C->getZExtValue(); |
| 512 | if (isUInt<5>(x: AVL)) { |
| 513 | SDValue VLImm = CurDAG->getTargetConstant(Val: AVL, DL, VT: XLenVT); |
| 514 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: RISCV::PseudoVSETIVLI, dl: DL, |
| 515 | VT: XLenVT, Op1: VLImm, Op2: VTypeIOp)); |
| 516 | return; |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | ReplaceNode(F: Node, |
| 522 | T: CurDAG->getMachineNode(Opcode, dl: DL, VT: XLenVT, Op1: VLOperand, Op2: VTypeIOp)); |
| 523 | } |
| 524 | |
| 525 | bool RISCVDAGToDAGISel::tryShrinkShlLogicImm(SDNode *Node) { |
| 526 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 527 | unsigned Opcode = Node->getOpcode(); |
| 528 | assert((Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR) && |
| 529 | "Unexpected opcode" ); |
| 530 | SDLoc DL(Node); |
| 531 | |
| 532 | // For operations of the form (x << C1) op C2, check if we can use |
| 533 | // ANDI/ORI/XORI by transforming it into (x op (C2>>C1)) << C1. |
| 534 | SDValue N0 = Node->getOperand(Num: 0); |
| 535 | SDValue N1 = Node->getOperand(Num: 1); |
| 536 | |
| 537 | ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Val&: N1); |
| 538 | if (!Cst) |
| 539 | return false; |
| 540 | |
| 541 | int64_t Val = Cst->getSExtValue(); |
| 542 | |
| 543 | // Check if immediate can already use ANDI/ORI/XORI. |
| 544 | if (isInt<12>(x: Val)) |
| 545 | return false; |
| 546 | |
| 547 | SDValue Shift = N0; |
| 548 | |
| 549 | // If Val is simm32 and we have a sext_inreg from i32, then the binop |
| 550 | // produces at least 33 sign bits. We can peek through the sext_inreg and use |
| 551 | // a SLLIW at the end. |
| 552 | bool SignExt = false; |
| 553 | if (isInt<32>(x: Val) && N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 554 | N0.hasOneUse() && cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT() == MVT::i32) { |
| 555 | SignExt = true; |
| 556 | Shift = N0.getOperand(i: 0); |
| 557 | } |
| 558 | |
| 559 | if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse()) |
| 560 | return false; |
| 561 | |
| 562 | ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Val: Shift.getOperand(i: 1)); |
| 563 | if (!ShlCst) |
| 564 | return false; |
| 565 | |
| 566 | uint64_t ShAmt = ShlCst->getZExtValue(); |
| 567 | |
| 568 | // Make sure that we don't change the operation by removing bits. |
| 569 | // This only matters for OR and XOR, AND is unaffected. |
| 570 | uint64_t RemovedBitsMask = maskTrailingOnes<uint64_t>(N: ShAmt); |
| 571 | if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) |
| 572 | return false; |
| 573 | |
| 574 | int64_t ShiftedVal = Val >> ShAmt; |
| 575 | if (!isInt<12>(x: ShiftedVal)) |
| 576 | return false; |
| 577 | |
| 578 | // If we peeked through a sext_inreg, make sure the shift is valid for SLLIW. |
| 579 | if (SignExt && ShAmt >= 32) |
| 580 | return false; |
| 581 | |
| 582 | // Ok, we can reorder to get a smaller immediate. |
| 583 | unsigned BinOpc; |
| 584 | switch (Opcode) { |
| 585 | default: llvm_unreachable("Unexpected opcode" ); |
| 586 | case ISD::AND: BinOpc = RISCV::ANDI; break; |
| 587 | case ISD::OR: BinOpc = RISCV::ORI; break; |
| 588 | case ISD::XOR: BinOpc = RISCV::XORI; break; |
| 589 | } |
| 590 | |
| 591 | unsigned ShOpc = SignExt ? RISCV::SLLIW : RISCV::SLLI; |
| 592 | |
| 593 | SDNode *BinOp = CurDAG->getMachineNode( |
| 594 | Opcode: BinOpc, dl: DL, VT, Op1: Shift.getOperand(i: 0), |
| 595 | Op2: CurDAG->getSignedTargetConstant(Val: ShiftedVal, DL, VT)); |
| 596 | SDNode *SLLI = |
| 597 | CurDAG->getMachineNode(Opcode: ShOpc, dl: DL, VT, Op1: SDValue(BinOp, 0), |
| 598 | Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)); |
| 599 | ReplaceNode(F: Node, T: SLLI); |
| 600 | return true; |
| 601 | } |
| 602 | |
| 603 | bool RISCVDAGToDAGISel::(SDNode *Node) { |
| 604 | unsigned Opc; |
| 605 | |
| 606 | if (Subtarget->hasVendorXTHeadBb()) |
| 607 | Opc = RISCV::TH_EXT; |
| 608 | else if (Subtarget->hasVendorXAndesPerf()) |
| 609 | Opc = RISCV::NDS_BFOS; |
| 610 | else if (Subtarget->hasVendorXqcibm()) |
| 611 | Opc = RISCV::QC_EXT; |
| 612 | else |
| 613 | // Only supported with XTHeadBb/XAndesPerf/Xqcibm at the moment. |
| 614 | return false; |
| 615 | |
| 616 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 617 | if (!N1C) |
| 618 | return false; |
| 619 | |
| 620 | SDValue N0 = Node->getOperand(Num: 0); |
| 621 | if (!N0.hasOneUse()) |
| 622 | return false; |
| 623 | |
| 624 | auto = [&](SDValue N0, unsigned Msb, unsigned Lsb, |
| 625 | const SDLoc &DL, MVT VT) { |
| 626 | if (Opc == RISCV::QC_EXT) { |
| 627 | // QC.EXT X, width, shamt |
| 628 | // shamt is the same as Lsb |
| 629 | // width is the number of bits to extract from the Lsb |
| 630 | Msb = Msb - Lsb + 1; |
| 631 | } |
| 632 | return CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 633 | Op2: CurDAG->getTargetConstant(Val: Msb, DL, VT), |
| 634 | Op3: CurDAG->getTargetConstant(Val: Lsb, DL, VT)); |
| 635 | }; |
| 636 | |
| 637 | SDLoc DL(Node); |
| 638 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 639 | const unsigned RightShAmt = N1C->getZExtValue(); |
| 640 | |
| 641 | // Transform (sra (shl X, C1) C2) with C1 < C2 |
| 642 | // -> (SignedBitfieldExtract X, msb, lsb) |
| 643 | if (N0.getOpcode() == ISD::SHL) { |
| 644 | auto *N01C = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1)); |
| 645 | if (!N01C) |
| 646 | return false; |
| 647 | |
| 648 | const unsigned LeftShAmt = N01C->getZExtValue(); |
| 649 | // Make sure that this is a bitfield extraction (i.e., the shift-right |
| 650 | // amount can not be less than the left-shift). |
| 651 | if (LeftShAmt > RightShAmt) |
| 652 | return false; |
| 653 | |
| 654 | const unsigned MsbPlusOne = VT.getSizeInBits() - LeftShAmt; |
| 655 | const unsigned Msb = MsbPlusOne - 1; |
| 656 | const unsigned Lsb = RightShAmt - LeftShAmt; |
| 657 | |
| 658 | SDNode *Sbe = BitfieldExtract(N0, Msb, Lsb, DL, VT); |
| 659 | ReplaceNode(F: Node, T: Sbe); |
| 660 | return true; |
| 661 | } |
| 662 | |
| 663 | // Transform (sra (sext_inreg X, _), C) -> |
| 664 | // (SignedBitfieldExtract X, msb, lsb) |
| 665 | if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| 666 | unsigned ExtSize = |
| 667 | cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT().getSizeInBits(); |
| 668 | |
| 669 | // ExtSize of 32 should use sraiw via tablegen pattern. |
| 670 | if (ExtSize == 32) |
| 671 | return false; |
| 672 | |
| 673 | const unsigned Msb = ExtSize - 1; |
| 674 | // If the shift-right amount is greater than Msb, it means that extracts |
| 675 | // the X[Msb] bit and sign-extend it. |
| 676 | const unsigned Lsb = RightShAmt > Msb ? Msb : RightShAmt; |
| 677 | |
| 678 | SDNode *Sbe = BitfieldExtract(N0, Msb, Lsb, DL, VT); |
| 679 | ReplaceNode(F: Node, T: Sbe); |
| 680 | return true; |
| 681 | } |
| 682 | |
| 683 | return false; |
| 684 | } |
| 685 | |
| 686 | bool RISCVDAGToDAGISel::trySignedBitfieldInsertInSign(SDNode *Node) { |
| 687 | // Only supported with XAndesPerf at the moment. |
| 688 | if (!Subtarget->hasVendorXAndesPerf()) |
| 689 | return false; |
| 690 | |
| 691 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 692 | if (!N1C) |
| 693 | return false; |
| 694 | |
| 695 | SDValue N0 = Node->getOperand(Num: 0); |
| 696 | if (!N0.hasOneUse()) |
| 697 | return false; |
| 698 | |
| 699 | auto BitfieldInsert = [&](SDValue N0, unsigned Msb, unsigned Lsb, |
| 700 | const SDLoc &DL, MVT VT) { |
| 701 | unsigned Opc = RISCV::NDS_BFOS; |
| 702 | // If the Lsb is equal to the Msb, then the Lsb should be 0. |
| 703 | if (Lsb == Msb) |
| 704 | Lsb = 0; |
| 705 | return CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 706 | Op2: CurDAG->getTargetConstant(Val: Lsb, DL, VT), |
| 707 | Op3: CurDAG->getTargetConstant(Val: Msb, DL, VT)); |
| 708 | }; |
| 709 | |
| 710 | SDLoc DL(Node); |
| 711 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 712 | const unsigned RightShAmt = N1C->getZExtValue(); |
| 713 | |
| 714 | // Transform (sra (shl X, C1) C2) with C1 > C2 |
| 715 | // -> (NDS.BFOS X, lsb, msb) |
| 716 | if (N0.getOpcode() == ISD::SHL) { |
| 717 | auto *N01C = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1)); |
| 718 | if (!N01C) |
| 719 | return false; |
| 720 | |
| 721 | const unsigned LeftShAmt = N01C->getZExtValue(); |
| 722 | // Make sure that this is a bitfield insertion (i.e., the shift-right |
| 723 | // amount should be less than the left-shift). |
| 724 | if (LeftShAmt <= RightShAmt) |
| 725 | return false; |
| 726 | |
| 727 | const unsigned MsbPlusOne = VT.getSizeInBits() - RightShAmt; |
| 728 | const unsigned Msb = MsbPlusOne - 1; |
| 729 | const unsigned Lsb = LeftShAmt - RightShAmt; |
| 730 | |
| 731 | SDNode *Sbi = BitfieldInsert(N0, Msb, Lsb, DL, VT); |
| 732 | ReplaceNode(F: Node, T: Sbi); |
| 733 | return true; |
| 734 | } |
| 735 | |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | bool RISCVDAGToDAGISel::(SDNode *Node, |
| 740 | const SDLoc &DL, MVT VT, |
| 741 | SDValue X, unsigned Msb, |
| 742 | unsigned Lsb) { |
| 743 | unsigned Opc; |
| 744 | |
| 745 | if (Subtarget->hasVendorXTHeadBb()) { |
| 746 | Opc = RISCV::TH_EXTU; |
| 747 | } else if (Subtarget->hasVendorXAndesPerf()) { |
| 748 | Opc = RISCV::NDS_BFOZ; |
| 749 | } else if (Subtarget->hasVendorXqcibm()) { |
| 750 | Opc = RISCV::QC_EXTU; |
| 751 | // QC.EXTU X, width, shamt |
| 752 | // shamt is the same as Lsb |
| 753 | // width is the number of bits to extract from the Lsb |
| 754 | Msb = Msb - Lsb + 1; |
| 755 | } else { |
| 756 | // Only supported with XTHeadBb/XAndesPerf/Xqcibm at the moment. |
| 757 | return false; |
| 758 | } |
| 759 | |
| 760 | SDNode *Ube = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: X, |
| 761 | Op2: CurDAG->getTargetConstant(Val: Msb, DL, VT), |
| 762 | Op3: CurDAG->getTargetConstant(Val: Lsb, DL, VT)); |
| 763 | ReplaceNode(F: Node, T: Ube); |
| 764 | return true; |
| 765 | } |
| 766 | |
| 767 | bool RISCVDAGToDAGISel::tryUnsignedBitfieldInsertInZero(SDNode *Node, |
| 768 | const SDLoc &DL, MVT VT, |
| 769 | SDValue X, unsigned Msb, |
| 770 | unsigned Lsb) { |
| 771 | // Only supported with XAndesPerf at the moment. |
| 772 | if (!Subtarget->hasVendorXAndesPerf()) |
| 773 | return false; |
| 774 | |
| 775 | unsigned Opc = RISCV::NDS_BFOZ; |
| 776 | |
| 777 | // If the Lsb is equal to the Msb, then the Lsb should be 0. |
| 778 | if (Lsb == Msb) |
| 779 | Lsb = 0; |
| 780 | SDNode *Ubi = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: X, |
| 781 | Op2: CurDAG->getTargetConstant(Val: Lsb, DL, VT), |
| 782 | Op3: CurDAG->getTargetConstant(Val: Msb, DL, VT)); |
| 783 | ReplaceNode(F: Node, T: Ubi); |
| 784 | return true; |
| 785 | } |
| 786 | |
| 787 | bool RISCVDAGToDAGISel::tryIndexedLoad(SDNode *Node) { |
| 788 | // Target does not support indexed loads. |
| 789 | if (!Subtarget->hasVendorXTHeadMemIdx()) |
| 790 | return false; |
| 791 | |
| 792 | LoadSDNode *Ld = cast<LoadSDNode>(Val: Node); |
| 793 | ISD::MemIndexedMode AM = Ld->getAddressingMode(); |
| 794 | if (AM == ISD::UNINDEXED) |
| 795 | return false; |
| 796 | |
| 797 | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Ld->getOffset()); |
| 798 | if (!C) |
| 799 | return false; |
| 800 | |
| 801 | EVT LoadVT = Ld->getMemoryVT(); |
| 802 | assert((AM == ISD::PRE_INC || AM == ISD::POST_INC) && |
| 803 | "Unexpected addressing mode" ); |
| 804 | bool IsPre = AM == ISD::PRE_INC; |
| 805 | bool IsPost = AM == ISD::POST_INC; |
| 806 | int64_t Offset = C->getSExtValue(); |
| 807 | |
| 808 | // The constants that can be encoded in the THeadMemIdx instructions |
| 809 | // are of the form (sign_extend(imm5) << imm2). |
| 810 | unsigned Shift; |
| 811 | for (Shift = 0; Shift < 4; Shift++) |
| 812 | if (isInt<5>(x: Offset >> Shift) && ((Offset % (1LL << Shift)) == 0)) |
| 813 | break; |
| 814 | |
| 815 | // Constant cannot be encoded. |
| 816 | if (Shift == 4) |
| 817 | return false; |
| 818 | |
| 819 | bool IsZExt = (Ld->getExtensionType() == ISD::ZEXTLOAD); |
| 820 | unsigned Opcode; |
| 821 | if (LoadVT == MVT::i8 && IsPre) |
| 822 | Opcode = IsZExt ? RISCV::TH_LBUIB : RISCV::TH_LBIB; |
| 823 | else if (LoadVT == MVT::i8 && IsPost) |
| 824 | Opcode = IsZExt ? RISCV::TH_LBUIA : RISCV::TH_LBIA; |
| 825 | else if (LoadVT == MVT::i16 && IsPre) |
| 826 | Opcode = IsZExt ? RISCV::TH_LHUIB : RISCV::TH_LHIB; |
| 827 | else if (LoadVT == MVT::i16 && IsPost) |
| 828 | Opcode = IsZExt ? RISCV::TH_LHUIA : RISCV::TH_LHIA; |
| 829 | else if (LoadVT == MVT::i32 && IsPre) |
| 830 | Opcode = IsZExt ? RISCV::TH_LWUIB : RISCV::TH_LWIB; |
| 831 | else if (LoadVT == MVT::i32 && IsPost) |
| 832 | Opcode = IsZExt ? RISCV::TH_LWUIA : RISCV::TH_LWIA; |
| 833 | else if (LoadVT == MVT::i64 && IsPre) |
| 834 | Opcode = RISCV::TH_LDIB; |
| 835 | else if (LoadVT == MVT::i64 && IsPost) |
| 836 | Opcode = RISCV::TH_LDIA; |
| 837 | else |
| 838 | return false; |
| 839 | |
| 840 | EVT Ty = Ld->getOffset().getValueType(); |
| 841 | SDValue Ops[] = { |
| 842 | Ld->getBasePtr(), |
| 843 | CurDAG->getSignedTargetConstant(Val: Offset >> Shift, DL: SDLoc(Node), VT: Ty), |
| 844 | CurDAG->getTargetConstant(Val: Shift, DL: SDLoc(Node), VT: Ty), Ld->getChain()}; |
| 845 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(Node), VT1: Ld->getValueType(ResNo: 0), |
| 846 | VT2: Ld->getValueType(ResNo: 1), VT3: MVT::Other, Ops); |
| 847 | |
| 848 | MachineMemOperand *MemOp = cast<MemSDNode>(Val: Node)->getMemOperand(); |
| 849 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: New), NewMemRefs: {MemOp}); |
| 850 | |
| 851 | ReplaceNode(F: Node, T: New); |
| 852 | |
| 853 | return true; |
| 854 | } |
| 855 | |
| 856 | void RISCVDAGToDAGISel::selectSF_VC_X_SE(SDNode *Node) { |
| 857 | if (!Subtarget->hasVInstructions()) |
| 858 | return; |
| 859 | |
| 860 | assert(Node->getOpcode() == ISD::INTRINSIC_VOID && "Unexpected opcode" ); |
| 861 | |
| 862 | SDLoc DL(Node); |
| 863 | unsigned IntNo = Node->getConstantOperandVal(Num: 1); |
| 864 | |
| 865 | assert((IntNo == Intrinsic::riscv_sf_vc_x_se || |
| 866 | IntNo == Intrinsic::riscv_sf_vc_i_se) && |
| 867 | "Unexpected vsetvli intrinsic" ); |
| 868 | |
| 869 | // imm, imm, imm, simm5/scalar, sew, log2lmul, vl |
| 870 | unsigned Log2SEW = Log2_32(Value: Node->getConstantOperandVal(Num: 6)); |
| 871 | SDValue SEWOp = |
| 872 | CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: Subtarget->getXLenVT()); |
| 873 | SmallVector<SDValue, 8> Operands = {Node->getOperand(Num: 2), Node->getOperand(Num: 3), |
| 874 | Node->getOperand(Num: 4), Node->getOperand(Num: 5), |
| 875 | Node->getOperand(Num: 8), SEWOp, |
| 876 | Node->getOperand(Num: 0)}; |
| 877 | |
| 878 | unsigned Opcode; |
| 879 | auto *LMulSDNode = cast<ConstantSDNode>(Val: Node->getOperand(Num: 7)); |
| 880 | switch (LMulSDNode->getSExtValue()) { |
| 881 | case 5: |
| 882 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_MF8 |
| 883 | : RISCV::PseudoSF_VC_I_SE_MF8; |
| 884 | break; |
| 885 | case 6: |
| 886 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_MF4 |
| 887 | : RISCV::PseudoSF_VC_I_SE_MF4; |
| 888 | break; |
| 889 | case 7: |
| 890 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_MF2 |
| 891 | : RISCV::PseudoSF_VC_I_SE_MF2; |
| 892 | break; |
| 893 | case 0: |
| 894 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M1 |
| 895 | : RISCV::PseudoSF_VC_I_SE_M1; |
| 896 | break; |
| 897 | case 1: |
| 898 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M2 |
| 899 | : RISCV::PseudoSF_VC_I_SE_M2; |
| 900 | break; |
| 901 | case 2: |
| 902 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M4 |
| 903 | : RISCV::PseudoSF_VC_I_SE_M4; |
| 904 | break; |
| 905 | case 3: |
| 906 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M8 |
| 907 | : RISCV::PseudoSF_VC_I_SE_M8; |
| 908 | break; |
| 909 | } |
| 910 | |
| 911 | ReplaceNode(F: Node, T: CurDAG->getMachineNode( |
| 912 | Opcode, dl: DL, VT: Node->getSimpleValueType(ResNo: 0), Ops: Operands)); |
| 913 | } |
| 914 | |
| 915 | static unsigned getSegInstNF(unsigned Intrinsic) { |
| 916 | #define INST_NF_CASE(NAME, NF) \ |
| 917 | case Intrinsic::riscv_##NAME##NF: \ |
| 918 | return NF; |
| 919 | #define INST_NF_CASE_MASK(NAME, NF) \ |
| 920 | case Intrinsic::riscv_##NAME##NF##_mask: \ |
| 921 | return NF; |
| 922 | #define INST_NF_CASE_FF(NAME, NF) \ |
| 923 | case Intrinsic::riscv_##NAME##NF##ff: \ |
| 924 | return NF; |
| 925 | #define INST_NF_CASE_FF_MASK(NAME, NF) \ |
| 926 | case Intrinsic::riscv_##NAME##NF##ff_mask: \ |
| 927 | return NF; |
| 928 | #define INST_ALL_NF_CASE_BASE(MACRO_NAME, NAME) \ |
| 929 | MACRO_NAME(NAME, 2) \ |
| 930 | MACRO_NAME(NAME, 3) \ |
| 931 | MACRO_NAME(NAME, 4) \ |
| 932 | MACRO_NAME(NAME, 5) \ |
| 933 | MACRO_NAME(NAME, 6) \ |
| 934 | MACRO_NAME(NAME, 7) \ |
| 935 | MACRO_NAME(NAME, 8) |
| 936 | #define INST_ALL_NF_CASE(NAME) \ |
| 937 | INST_ALL_NF_CASE_BASE(INST_NF_CASE, NAME) \ |
| 938 | INST_ALL_NF_CASE_BASE(INST_NF_CASE_MASK, NAME) |
| 939 | #define INST_ALL_NF_CASE_WITH_FF(NAME) \ |
| 940 | INST_ALL_NF_CASE(NAME) \ |
| 941 | INST_ALL_NF_CASE_BASE(INST_NF_CASE_FF, NAME) \ |
| 942 | INST_ALL_NF_CASE_BASE(INST_NF_CASE_FF_MASK, NAME) |
| 943 | switch (Intrinsic) { |
| 944 | default: |
| 945 | llvm_unreachable("Unexpected segment load/store intrinsic" ); |
| 946 | INST_ALL_NF_CASE_WITH_FF(vlseg) |
| 947 | INST_ALL_NF_CASE(vlsseg) |
| 948 | INST_ALL_NF_CASE(vloxseg) |
| 949 | INST_ALL_NF_CASE(vluxseg) |
| 950 | INST_ALL_NF_CASE(vsseg) |
| 951 | INST_ALL_NF_CASE(vssseg) |
| 952 | INST_ALL_NF_CASE(vsoxseg) |
| 953 | INST_ALL_NF_CASE(vsuxseg) |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | void RISCVDAGToDAGISel::Select(SDNode *Node) { |
| 958 | // If we have a custom node, we have already selected. |
| 959 | if (Node->isMachineOpcode()) { |
| 960 | LLVM_DEBUG(dbgs() << "== " ; Node->dump(CurDAG); dbgs() << "\n" ); |
| 961 | Node->setNodeId(-1); |
| 962 | return; |
| 963 | } |
| 964 | |
| 965 | // Instruction Selection not handled by the auto-generated tablegen selection |
| 966 | // should be handled here. |
| 967 | unsigned Opcode = Node->getOpcode(); |
| 968 | MVT XLenVT = Subtarget->getXLenVT(); |
| 969 | SDLoc DL(Node); |
| 970 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 971 | |
| 972 | bool HasBitTest = Subtarget->hasStdExtZbs() || Subtarget->hasVendorXTHeadBs(); |
| 973 | |
| 974 | switch (Opcode) { |
| 975 | case ISD::Constant: { |
| 976 | assert((VT == Subtarget->getXLenVT() || VT == MVT::i32) && "Unexpected VT" ); |
| 977 | auto *ConstNode = cast<ConstantSDNode>(Val: Node); |
| 978 | if (ConstNode->isZero()) { |
| 979 | SDValue New = |
| 980 | CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl: DL, Reg: RISCV::X0, VT); |
| 981 | ReplaceNode(F: Node, T: New.getNode()); |
| 982 | return; |
| 983 | } |
| 984 | int64_t Imm = ConstNode->getSExtValue(); |
| 985 | // If only the lower 8 bits are used, try to convert this to a simm6 by |
| 986 | // sign-extending bit 7. This is neutral without the C extension, and |
| 987 | // allows C.LI to be used if C is present. |
| 988 | if (isUInt<8>(x: Imm) && isInt<6>(x: SignExtend64<8>(x: Imm)) && hasAllBUsers(Node)) |
| 989 | Imm = SignExtend64<8>(x: Imm); |
| 990 | // If the upper XLen-16 bits are not used, try to convert this to a simm12 |
| 991 | // by sign extending bit 15. |
| 992 | if (isUInt<16>(x: Imm) && isInt<12>(x: SignExtend64<16>(x: Imm)) && |
| 993 | hasAllHUsers(Node)) |
| 994 | Imm = SignExtend64<16>(x: Imm); |
| 995 | // If the upper 32-bits are not used try to convert this into a simm32 by |
| 996 | // sign extending bit 32. |
| 997 | if (!isInt<32>(x: Imm) && isUInt<32>(x: Imm) && hasAllWUsers(Node)) |
| 998 | Imm = SignExtend64<32>(x: Imm); |
| 999 | |
| 1000 | ReplaceNode(F: Node, T: selectImm(CurDAG, DL, VT, Imm, Subtarget: *Subtarget).getNode()); |
| 1001 | return; |
| 1002 | } |
| 1003 | case ISD::ConstantFP: { |
| 1004 | const APFloat &APF = cast<ConstantFPSDNode>(Val: Node)->getValueAPF(); |
| 1005 | |
| 1006 | bool Is64Bit = Subtarget->is64Bit(); |
| 1007 | bool HasZdinx = Subtarget->hasStdExtZdinx(); |
| 1008 | |
| 1009 | bool NegZeroF64 = APF.isNegZero() && VT == MVT::f64; |
| 1010 | SDValue Imm; |
| 1011 | // For +0.0 or f64 -0.0 we need to start from X0. For all others, we will |
| 1012 | // create an integer immediate. |
| 1013 | if (APF.isPosZero() || NegZeroF64) { |
| 1014 | if (VT == MVT::f64 && HasZdinx && !Is64Bit) |
| 1015 | Imm = CurDAG->getRegister(Reg: RISCV::X0_Pair, VT: MVT::f64); |
| 1016 | else |
| 1017 | Imm = CurDAG->getRegister(Reg: RISCV::X0, VT: XLenVT); |
| 1018 | } else { |
| 1019 | Imm = selectImm(CurDAG, DL, VT: XLenVT, Imm: APF.bitcastToAPInt().getSExtValue(), |
| 1020 | Subtarget: *Subtarget); |
| 1021 | } |
| 1022 | |
| 1023 | unsigned Opc; |
| 1024 | switch (VT.SimpleTy) { |
| 1025 | default: |
| 1026 | llvm_unreachable("Unexpected size" ); |
| 1027 | case MVT::bf16: |
| 1028 | assert(Subtarget->hasStdExtZfbfmin()); |
| 1029 | Opc = RISCV::FMV_H_X; |
| 1030 | break; |
| 1031 | case MVT::f16: |
| 1032 | Opc = Subtarget->hasStdExtZhinxmin() ? RISCV::COPY : RISCV::FMV_H_X; |
| 1033 | break; |
| 1034 | case MVT::f32: |
| 1035 | Opc = Subtarget->hasStdExtZfinx() ? RISCV::COPY : RISCV::FMV_W_X; |
| 1036 | break; |
| 1037 | case MVT::f64: |
| 1038 | // For RV32, we can't move from a GPR, we need to convert instead. This |
| 1039 | // should only happen for +0.0 and -0.0. |
| 1040 | assert((Subtarget->is64Bit() || APF.isZero()) && "Unexpected constant" ); |
| 1041 | if (HasZdinx) |
| 1042 | Opc = RISCV::COPY; |
| 1043 | else |
| 1044 | Opc = Is64Bit ? RISCV::FMV_D_X : RISCV::FCVT_D_W; |
| 1045 | break; |
| 1046 | } |
| 1047 | |
| 1048 | SDNode *Res; |
| 1049 | if (VT.SimpleTy == MVT::f16 && Opc == RISCV::COPY) { |
| 1050 | Res = |
| 1051 | CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_16, DL, VT, Operand: Imm).getNode(); |
| 1052 | } else if (VT.SimpleTy == MVT::f32 && Opc == RISCV::COPY) { |
| 1053 | Res = |
| 1054 | CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_32, DL, VT, Operand: Imm).getNode(); |
| 1055 | } else if (Opc == RISCV::FCVT_D_W_IN32X || Opc == RISCV::FCVT_D_W) |
| 1056 | Res = CurDAG->getMachineNode( |
| 1057 | Opcode: Opc, dl: DL, VT, Op1: Imm, |
| 1058 | Op2: CurDAG->getTargetConstant(Val: RISCVFPRndMode::RNE, DL, VT: XLenVT)); |
| 1059 | else |
| 1060 | Res = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: Imm); |
| 1061 | |
| 1062 | // For f64 -0.0, we need to insert a fneg.d idiom. |
| 1063 | if (NegZeroF64) { |
| 1064 | Opc = RISCV::FSGNJN_D; |
| 1065 | if (HasZdinx) |
| 1066 | Opc = Is64Bit ? RISCV::FSGNJN_D_INX : RISCV::FSGNJN_D_IN32X; |
| 1067 | Res = |
| 1068 | CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: SDValue(Res, 0), Op2: SDValue(Res, 0)); |
| 1069 | } |
| 1070 | |
| 1071 | ReplaceNode(F: Node, T: Res); |
| 1072 | return; |
| 1073 | } |
| 1074 | case RISCVISD::BuildGPRPair: |
| 1075 | case RISCVISD::BuildPairF64: { |
| 1076 | if (Opcode == RISCVISD::BuildPairF64 && !Subtarget->hasStdExtZdinx()) |
| 1077 | break; |
| 1078 | |
| 1079 | assert((!Subtarget->is64Bit() || Opcode == RISCVISD::BuildGPRPair) && |
| 1080 | "BuildPairF64 only handled here on rv32i_zdinx" ); |
| 1081 | |
| 1082 | SDValue Ops[] = { |
| 1083 | CurDAG->getTargetConstant(Val: RISCV::GPRPairRegClassID, DL, VT: MVT::i32), |
| 1084 | Node->getOperand(Num: 0), |
| 1085 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_even, DL, VT: MVT::i32), |
| 1086 | Node->getOperand(Num: 1), |
| 1087 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_odd, DL, VT: MVT::i32)}; |
| 1088 | |
| 1089 | SDNode *N = CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, VT, Ops); |
| 1090 | ReplaceNode(F: Node, T: N); |
| 1091 | return; |
| 1092 | } |
| 1093 | case RISCVISD::SplitGPRPair: |
| 1094 | case RISCVISD::SplitF64: { |
| 1095 | if (Subtarget->hasStdExtZdinx() || Opcode != RISCVISD::SplitF64) { |
| 1096 | assert((!Subtarget->is64Bit() || Opcode == RISCVISD::SplitGPRPair) && |
| 1097 | "SplitF64 only handled here on rv32i_zdinx" ); |
| 1098 | |
| 1099 | if (!SDValue(Node, 0).use_empty()) { |
| 1100 | SDValue Lo = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_even, DL, |
| 1101 | VT: Node->getValueType(ResNo: 0), |
| 1102 | Operand: Node->getOperand(Num: 0)); |
| 1103 | ReplaceUses(F: SDValue(Node, 0), T: Lo); |
| 1104 | } |
| 1105 | |
| 1106 | if (!SDValue(Node, 1).use_empty()) { |
| 1107 | SDValue Hi = CurDAG->getTargetExtractSubreg( |
| 1108 | SRIdx: RISCV::sub_gpr_odd, DL, VT: Node->getValueType(ResNo: 1), Operand: Node->getOperand(Num: 0)); |
| 1109 | ReplaceUses(F: SDValue(Node, 1), T: Hi); |
| 1110 | } |
| 1111 | |
| 1112 | CurDAG->RemoveDeadNode(N: Node); |
| 1113 | return; |
| 1114 | } |
| 1115 | |
| 1116 | assert(Opcode != RISCVISD::SplitGPRPair && |
| 1117 | "SplitGPRPair should already be handled" ); |
| 1118 | |
| 1119 | if (!Subtarget->hasStdExtZfa()) |
| 1120 | break; |
| 1121 | assert(Subtarget->hasStdExtD() && !Subtarget->is64Bit() && |
| 1122 | "Unexpected subtarget" ); |
| 1123 | |
| 1124 | // With Zfa, lower to fmv.x.w and fmvh.x.d. |
| 1125 | if (!SDValue(Node, 0).use_empty()) { |
| 1126 | SDNode *Lo = CurDAG->getMachineNode(Opcode: RISCV::FMV_X_W_FPR64, dl: DL, VT, |
| 1127 | Op1: Node->getOperand(Num: 0)); |
| 1128 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Lo, 0)); |
| 1129 | } |
| 1130 | if (!SDValue(Node, 1).use_empty()) { |
| 1131 | SDNode *Hi = CurDAG->getMachineNode(Opcode: RISCV::FMVH_X_D, dl: DL, VT, |
| 1132 | Op1: Node->getOperand(Num: 0)); |
| 1133 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Hi, 0)); |
| 1134 | } |
| 1135 | |
| 1136 | CurDAG->RemoveDeadNode(N: Node); |
| 1137 | return; |
| 1138 | } |
| 1139 | case ISD::SHL: { |
| 1140 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1141 | if (!N1C) |
| 1142 | break; |
| 1143 | SDValue N0 = Node->getOperand(Num: 0); |
| 1144 | if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || |
| 1145 | !isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) |
| 1146 | break; |
| 1147 | unsigned ShAmt = N1C->getZExtValue(); |
| 1148 | uint64_t Mask = N0.getConstantOperandVal(i: 1); |
| 1149 | |
| 1150 | if (isShiftedMask_64(Value: Mask)) { |
| 1151 | unsigned XLen = Subtarget->getXLen(); |
| 1152 | unsigned LeadingZeros = XLen - llvm::bit_width(Value: Mask); |
| 1153 | unsigned TrailingZeros = llvm::countr_zero(Val: Mask); |
| 1154 | if (ShAmt <= 32 && TrailingZeros > 0 && LeadingZeros == 32) { |
| 1155 | // Optimize (shl (and X, C2), C) -> (slli (srliw X, C3), C3+C) |
| 1156 | // where C2 has 32 leading zeros and C3 trailing zeros. |
| 1157 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1158 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0->getOperand(Num: 0), |
| 1159 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros, DL, VT)); |
| 1160 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1161 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1162 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros + ShAmt, DL, VT)); |
| 1163 | ReplaceNode(F: Node, T: SLLI); |
| 1164 | return; |
| 1165 | } |
| 1166 | if (TrailingZeros == 0 && LeadingZeros > ShAmt && |
| 1167 | XLen - LeadingZeros > 11 && LeadingZeros != 32) { |
| 1168 | // Optimize (shl (and X, C2), C) -> (srli (slli X, C4), C4-C) |
| 1169 | // where C2 has C4 leading zeros and no trailing zeros. |
| 1170 | // This is profitable if the "and" was to be lowered to |
| 1171 | // (srli (slli X, C4), C4) and not (andi X, C2). |
| 1172 | // For "LeadingZeros == 32": |
| 1173 | // - with Zba it's just (slli.uw X, C) |
| 1174 | // - without Zba a tablegen pattern applies the very same |
| 1175 | // transform as we would have done here |
| 1176 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1177 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0->getOperand(Num: 0), |
| 1178 | Op2: CurDAG->getTargetConstant(Val: LeadingZeros, DL, VT)); |
| 1179 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1180 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1181 | Op2: CurDAG->getTargetConstant(Val: LeadingZeros - ShAmt, DL, VT)); |
| 1182 | ReplaceNode(F: Node, T: SRLI); |
| 1183 | return; |
| 1184 | } |
| 1185 | } |
| 1186 | break; |
| 1187 | } |
| 1188 | case ISD::SRL: { |
| 1189 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1190 | if (!N1C) |
| 1191 | break; |
| 1192 | SDValue N0 = Node->getOperand(Num: 0); |
| 1193 | if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) |
| 1194 | break; |
| 1195 | unsigned ShAmt = N1C->getZExtValue(); |
| 1196 | uint64_t Mask = N0.getConstantOperandVal(i: 1); |
| 1197 | |
| 1198 | // Optimize (srl (and X, C2), C) -> (slli (srliw X, C3), C3-C) where C2 has |
| 1199 | // 32 leading zeros and C3 trailing zeros. |
| 1200 | if (isShiftedMask_64(Value: Mask) && N0.hasOneUse()) { |
| 1201 | unsigned XLen = Subtarget->getXLen(); |
| 1202 | unsigned LeadingZeros = XLen - llvm::bit_width(Value: Mask); |
| 1203 | unsigned TrailingZeros = llvm::countr_zero(Val: Mask); |
| 1204 | if (LeadingZeros == 32 && TrailingZeros > ShAmt) { |
| 1205 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1206 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0->getOperand(Num: 0), |
| 1207 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros, DL, VT)); |
| 1208 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1209 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1210 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros - ShAmt, DL, VT)); |
| 1211 | ReplaceNode(F: Node, T: SLLI); |
| 1212 | return; |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | // Optimize (srl (and X, C2), C) -> |
| 1217 | // (srli (slli X, (XLen-C3), (XLen-C3) + C) |
| 1218 | // Where C2 is a mask with C3 trailing ones. |
| 1219 | // Taking into account that the C2 may have had lower bits unset by |
| 1220 | // SimplifyDemandedBits. This avoids materializing the C2 immediate. |
| 1221 | // This pattern occurs when type legalizing right shifts for types with |
| 1222 | // less than XLen bits. |
| 1223 | Mask |= maskTrailingOnes<uint64_t>(N: ShAmt); |
| 1224 | if (!isMask_64(Value: Mask)) |
| 1225 | break; |
| 1226 | unsigned TrailingOnes = llvm::countr_one(Value: Mask); |
| 1227 | if (ShAmt >= TrailingOnes) |
| 1228 | break; |
| 1229 | // If the mask has 32 trailing ones, use SRLI on RV32 or SRLIW on RV64. |
| 1230 | if (TrailingOnes == 32) { |
| 1231 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1232 | Opcode: Subtarget->is64Bit() ? RISCV::SRLIW : RISCV::SRLI, dl: DL, VT, |
| 1233 | Op1: N0->getOperand(Num: 0), Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)); |
| 1234 | ReplaceNode(F: Node, T: SRLI); |
| 1235 | return; |
| 1236 | } |
| 1237 | |
| 1238 | // Only do the remaining transforms if the AND has one use. |
| 1239 | if (!N0.hasOneUse()) |
| 1240 | break; |
| 1241 | |
| 1242 | // If C2 is (1 << ShAmt) use bexti or th.tst if possible. |
| 1243 | if (HasBitTest && ShAmt + 1 == TrailingOnes) { |
| 1244 | SDNode *BEXTI = CurDAG->getMachineNode( |
| 1245 | Opcode: Subtarget->hasStdExtZbs() ? RISCV::BEXTI : RISCV::TH_TST, dl: DL, VT, |
| 1246 | Op1: N0->getOperand(Num: 0), Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)); |
| 1247 | ReplaceNode(F: Node, T: BEXTI); |
| 1248 | return; |
| 1249 | } |
| 1250 | |
| 1251 | const unsigned Msb = TrailingOnes - 1; |
| 1252 | const unsigned Lsb = ShAmt; |
| 1253 | if (tryUnsignedBitfieldExtract(Node, DL, VT, X: N0->getOperand(Num: 0), Msb, Lsb)) |
| 1254 | return; |
| 1255 | |
| 1256 | unsigned LShAmt = Subtarget->getXLen() - TrailingOnes; |
| 1257 | SDNode *SLLI = |
| 1258 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0->getOperand(Num: 0), |
| 1259 | Op2: CurDAG->getTargetConstant(Val: LShAmt, DL, VT)); |
| 1260 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1261 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1262 | Op2: CurDAG->getTargetConstant(Val: LShAmt + ShAmt, DL, VT)); |
| 1263 | ReplaceNode(F: Node, T: SRLI); |
| 1264 | return; |
| 1265 | } |
| 1266 | case ISD::SRA: { |
| 1267 | if (trySignedBitfieldExtract(Node)) |
| 1268 | return; |
| 1269 | |
| 1270 | if (trySignedBitfieldInsertInSign(Node)) |
| 1271 | return; |
| 1272 | |
| 1273 | // Optimize (sra (sext_inreg X, i16), C) -> |
| 1274 | // (srai (slli X, (XLen-16), (XLen-16) + C) |
| 1275 | // And (sra (sext_inreg X, i8), C) -> |
| 1276 | // (srai (slli X, (XLen-8), (XLen-8) + C) |
| 1277 | // This can occur when Zbb is enabled, which makes sext_inreg i16/i8 legal. |
| 1278 | // This transform matches the code we get without Zbb. The shifts are more |
| 1279 | // compressible, and this can help expose CSE opportunities in the sdiv by |
| 1280 | // constant optimization. |
| 1281 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1282 | if (!N1C) |
| 1283 | break; |
| 1284 | SDValue N0 = Node->getOperand(Num: 0); |
| 1285 | if (N0.getOpcode() != ISD::SIGN_EXTEND_INREG || !N0.hasOneUse()) |
| 1286 | break; |
| 1287 | unsigned ShAmt = N1C->getZExtValue(); |
| 1288 | unsigned ExtSize = |
| 1289 | cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT().getSizeInBits(); |
| 1290 | // ExtSize of 32 should use sraiw via tablegen pattern. |
| 1291 | if (ExtSize >= 32 || ShAmt >= ExtSize) |
| 1292 | break; |
| 1293 | unsigned LShAmt = Subtarget->getXLen() - ExtSize; |
| 1294 | SDNode *SLLI = |
| 1295 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0->getOperand(Num: 0), |
| 1296 | Op2: CurDAG->getTargetConstant(Val: LShAmt, DL, VT)); |
| 1297 | SDNode *SRAI = CurDAG->getMachineNode( |
| 1298 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1299 | Op2: CurDAG->getTargetConstant(Val: LShAmt + ShAmt, DL, VT)); |
| 1300 | ReplaceNode(F: Node, T: SRAI); |
| 1301 | return; |
| 1302 | } |
| 1303 | case ISD::OR: |
| 1304 | case ISD::XOR: |
| 1305 | if (tryShrinkShlLogicImm(Node)) |
| 1306 | return; |
| 1307 | |
| 1308 | break; |
| 1309 | case ISD::AND: { |
| 1310 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1311 | if (!N1C) |
| 1312 | break; |
| 1313 | |
| 1314 | SDValue N0 = Node->getOperand(Num: 0); |
| 1315 | |
| 1316 | bool LeftShift = N0.getOpcode() == ISD::SHL; |
| 1317 | if (LeftShift || N0.getOpcode() == ISD::SRL) { |
| 1318 | auto *C = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 1319 | if (!C) |
| 1320 | break; |
| 1321 | unsigned C2 = C->getZExtValue(); |
| 1322 | unsigned XLen = Subtarget->getXLen(); |
| 1323 | assert((C2 > 0 && C2 < XLen) && "Unexpected shift amount!" ); |
| 1324 | |
| 1325 | // Keep track of whether this is a c.andi. If we can't use c.andi, the |
| 1326 | // shift pair might offer more compression opportunities. |
| 1327 | // TODO: We could check for C extension here, but we don't have many lit |
| 1328 | // tests with the C extension enabled so not checking gets better |
| 1329 | // coverage. |
| 1330 | // TODO: What if ANDI faster than shift? |
| 1331 | bool IsCANDI = isInt<6>(x: N1C->getSExtValue()); |
| 1332 | |
| 1333 | uint64_t C1 = N1C->getZExtValue(); |
| 1334 | |
| 1335 | // Clear irrelevant bits in the mask. |
| 1336 | if (LeftShift) |
| 1337 | C1 &= maskTrailingZeros<uint64_t>(N: C2); |
| 1338 | else |
| 1339 | C1 &= maskTrailingOnes<uint64_t>(N: XLen - C2); |
| 1340 | |
| 1341 | // Some transforms should only be done if the shift has a single use or |
| 1342 | // the AND would become (srli (slli X, 32), 32) |
| 1343 | bool OneUseOrZExtW = N0.hasOneUse() || C1 == UINT64_C(0xFFFFFFFF); |
| 1344 | |
| 1345 | SDValue X = N0.getOperand(i: 0); |
| 1346 | |
| 1347 | // Turn (and (srl x, c2) c1) -> (srli (slli x, c3-c2), c3) if c1 is a mask |
| 1348 | // with c3 leading zeros. |
| 1349 | if (!LeftShift && isMask_64(Value: C1)) { |
| 1350 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1351 | if (C2 < Leading) { |
| 1352 | // If the number of leading zeros is C2+32 this can be SRLIW. |
| 1353 | if (C2 + 32 == Leading) { |
| 1354 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1355 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: X, Op2: CurDAG->getTargetConstant(Val: C2, DL, VT)); |
| 1356 | ReplaceNode(F: Node, T: SRLIW); |
| 1357 | return; |
| 1358 | } |
| 1359 | |
| 1360 | // (and (srl (sexti32 Y), c2), c1) -> (srliw (sraiw Y, 31), c3 - 32) |
| 1361 | // if c1 is a mask with c3 leading zeros and c2 >= 32 and c3-c2==1. |
| 1362 | // |
| 1363 | // This pattern occurs when (i32 (srl (sra 31), c3 - 32)) is type |
| 1364 | // legalized and goes through DAG combine. |
| 1365 | if (C2 >= 32 && (Leading - C2) == 1 && N0.hasOneUse() && |
| 1366 | X.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 1367 | cast<VTSDNode>(Val: X.getOperand(i: 1))->getVT() == MVT::i32) { |
| 1368 | SDNode *SRAIW = |
| 1369 | CurDAG->getMachineNode(Opcode: RISCV::SRAIW, dl: DL, VT, Op1: X.getOperand(i: 0), |
| 1370 | Op2: CurDAG->getTargetConstant(Val: 31, DL, VT)); |
| 1371 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1372 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: SDValue(SRAIW, 0), |
| 1373 | Op2: CurDAG->getTargetConstant(Val: Leading - 32, DL, VT)); |
| 1374 | ReplaceNode(F: Node, T: SRLIW); |
| 1375 | return; |
| 1376 | } |
| 1377 | |
| 1378 | // Try to use an unsigned bitfield extract (e.g., th.extu) if |
| 1379 | // available. |
| 1380 | // Transform (and (srl x, C2), C1) |
| 1381 | // -> (<bfextract> x, msb, lsb) |
| 1382 | // |
| 1383 | // Make sure to keep this below the SRLIW cases, as we always want to |
| 1384 | // prefer the more common instruction. |
| 1385 | const unsigned Msb = llvm::bit_width(Value: C1) + C2 - 1; |
| 1386 | const unsigned Lsb = C2; |
| 1387 | if (tryUnsignedBitfieldExtract(Node, DL, VT, X, Msb, Lsb)) |
| 1388 | return; |
| 1389 | |
| 1390 | // (srli (slli x, c3-c2), c3). |
| 1391 | // Skip if we could use (zext.w (sraiw X, C2)). |
| 1392 | bool Skip = Subtarget->hasStdExtZba() && Leading == 32 && |
| 1393 | X.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 1394 | cast<VTSDNode>(Val: X.getOperand(i: 1))->getVT() == MVT::i32; |
| 1395 | // Also Skip if we can use bexti or th.tst. |
| 1396 | Skip |= HasBitTest && Leading == XLen - 1; |
| 1397 | if (OneUseOrZExtW && !Skip) { |
| 1398 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1399 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: X, |
| 1400 | Op2: CurDAG->getTargetConstant(Val: Leading - C2, DL, VT)); |
| 1401 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1402 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1403 | Op2: CurDAG->getTargetConstant(Val: Leading, DL, VT)); |
| 1404 | ReplaceNode(F: Node, T: SRLI); |
| 1405 | return; |
| 1406 | } |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | // Turn (and (shl x, c2), c1) -> (srli (slli c2+c3), c3) if c1 is a mask |
| 1411 | // shifted by c2 bits with c3 leading zeros. |
| 1412 | if (LeftShift && isShiftedMask_64(Value: C1)) { |
| 1413 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1414 | |
| 1415 | if (C2 + Leading < XLen && |
| 1416 | C1 == (maskTrailingOnes<uint64_t>(N: XLen - (C2 + Leading)) << C2)) { |
| 1417 | // Use slli.uw when possible. |
| 1418 | if ((XLen - (C2 + Leading)) == 32 && Subtarget->hasStdExtZba()) { |
| 1419 | SDNode *SLLI_UW = |
| 1420 | CurDAG->getMachineNode(Opcode: RISCV::SLLI_UW, dl: DL, VT, Op1: X, |
| 1421 | Op2: CurDAG->getTargetConstant(Val: C2, DL, VT)); |
| 1422 | ReplaceNode(F: Node, T: SLLI_UW); |
| 1423 | return; |
| 1424 | } |
| 1425 | |
| 1426 | // Try to use an unsigned bitfield insert (e.g., nds.bfoz) if |
| 1427 | // available. |
| 1428 | // Transform (and (shl x, c2), c1) |
| 1429 | // -> (<bfinsert> x, msb, lsb) |
| 1430 | // e.g. |
| 1431 | // (and (shl x, 12), 0x00fff000) |
| 1432 | // If XLen = 32 and C2 = 12, then |
| 1433 | // Msb = 32 - 8 - 1 = 23 and Lsb = 12 |
| 1434 | const unsigned Msb = XLen - Leading - 1; |
| 1435 | const unsigned Lsb = C2; |
| 1436 | if (tryUnsignedBitfieldInsertInZero(Node, DL, VT, X, Msb, Lsb)) |
| 1437 | return; |
| 1438 | |
| 1439 | // (srli (slli c2+c3), c3) |
| 1440 | if (OneUseOrZExtW && !IsCANDI) { |
| 1441 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1442 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: X, |
| 1443 | Op2: CurDAG->getTargetConstant(Val: C2 + Leading, DL, VT)); |
| 1444 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1445 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1446 | Op2: CurDAG->getTargetConstant(Val: Leading, DL, VT)); |
| 1447 | ReplaceNode(F: Node, T: SRLI); |
| 1448 | return; |
| 1449 | } |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | // Turn (and (shr x, c2), c1) -> (slli (srli x, c2+c3), c3) if c1 is a |
| 1454 | // shifted mask with c2 leading zeros and c3 trailing zeros. |
| 1455 | if (!LeftShift && isShiftedMask_64(Value: C1)) { |
| 1456 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1457 | unsigned Trailing = llvm::countr_zero(Val: C1); |
| 1458 | if (Leading == C2 && C2 + Trailing < XLen && OneUseOrZExtW && |
| 1459 | !IsCANDI) { |
| 1460 | unsigned SrliOpc = RISCV::SRLI; |
| 1461 | // If the input is zexti32 we should use SRLIW. |
| 1462 | if (X.getOpcode() == ISD::AND && |
| 1463 | isa<ConstantSDNode>(Val: X.getOperand(i: 1)) && |
| 1464 | X.getConstantOperandVal(i: 1) == UINT64_C(0xFFFFFFFF)) { |
| 1465 | SrliOpc = RISCV::SRLIW; |
| 1466 | X = X.getOperand(i: 0); |
| 1467 | } |
| 1468 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1469 | Opcode: SrliOpc, dl: DL, VT, Op1: X, |
| 1470 | Op2: CurDAG->getTargetConstant(Val: C2 + Trailing, DL, VT)); |
| 1471 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1472 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1473 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1474 | ReplaceNode(F: Node, T: SLLI); |
| 1475 | return; |
| 1476 | } |
| 1477 | // If the leading zero count is C2+32, we can use SRLIW instead of SRLI. |
| 1478 | if (Leading > 32 && (Leading - 32) == C2 && C2 + Trailing < 32 && |
| 1479 | OneUseOrZExtW && !IsCANDI) { |
| 1480 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1481 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: X, |
| 1482 | Op2: CurDAG->getTargetConstant(Val: C2 + Trailing, DL, VT)); |
| 1483 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1484 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1485 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1486 | ReplaceNode(F: Node, T: SLLI); |
| 1487 | return; |
| 1488 | } |
| 1489 | // If we have 32 bits in the mask, we can use SLLI_UW instead of SLLI. |
| 1490 | if (Trailing > 0 && Leading + Trailing == 32 && C2 + Trailing < XLen && |
| 1491 | OneUseOrZExtW && Subtarget->hasStdExtZba()) { |
| 1492 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1493 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: X, |
| 1494 | Op2: CurDAG->getTargetConstant(Val: C2 + Trailing, DL, VT)); |
| 1495 | SDNode *SLLI_UW = CurDAG->getMachineNode( |
| 1496 | Opcode: RISCV::SLLI_UW, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1497 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1498 | ReplaceNode(F: Node, T: SLLI_UW); |
| 1499 | return; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | // Turn (and (shl x, c2), c1) -> (slli (srli x, c3-c2), c3) if c1 is a |
| 1504 | // shifted mask with no leading zeros and c3 trailing zeros. |
| 1505 | if (LeftShift && isShiftedMask_64(Value: C1)) { |
| 1506 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1507 | unsigned Trailing = llvm::countr_zero(Val: C1); |
| 1508 | if (Leading == 0 && C2 < Trailing && OneUseOrZExtW && !IsCANDI) { |
| 1509 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1510 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: X, |
| 1511 | Op2: CurDAG->getTargetConstant(Val: Trailing - C2, DL, VT)); |
| 1512 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1513 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1514 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1515 | ReplaceNode(F: Node, T: SLLI); |
| 1516 | return; |
| 1517 | } |
| 1518 | // If we have (32-C2) leading zeros, we can use SRLIW instead of SRLI. |
| 1519 | if (C2 < Trailing && Leading + C2 == 32 && OneUseOrZExtW && !IsCANDI) { |
| 1520 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1521 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: X, |
| 1522 | Op2: CurDAG->getTargetConstant(Val: Trailing - C2, DL, VT)); |
| 1523 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1524 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1525 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1526 | ReplaceNode(F: Node, T: SLLI); |
| 1527 | return; |
| 1528 | } |
| 1529 | |
| 1530 | // If we have 32 bits in the mask, we can use SLLI_UW instead of SLLI. |
| 1531 | if (C2 < Trailing && Leading + Trailing == 32 && OneUseOrZExtW && |
| 1532 | Subtarget->hasStdExtZba()) { |
| 1533 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1534 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: X, |
| 1535 | Op2: CurDAG->getTargetConstant(Val: Trailing - C2, DL, VT)); |
| 1536 | SDNode *SLLI_UW = CurDAG->getMachineNode( |
| 1537 | Opcode: RISCV::SLLI_UW, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1538 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1539 | ReplaceNode(F: Node, T: SLLI_UW); |
| 1540 | return; |
| 1541 | } |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | const uint64_t C1 = N1C->getZExtValue(); |
| 1546 | |
| 1547 | if (N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 1548 | N0.hasOneUse()) { |
| 1549 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 1550 | unsigned XLen = Subtarget->getXLen(); |
| 1551 | assert((C2 > 0 && C2 < XLen) && "Unexpected shift amount!" ); |
| 1552 | |
| 1553 | SDValue X = N0.getOperand(i: 0); |
| 1554 | |
| 1555 | // Prefer SRAIW + ANDI when possible. |
| 1556 | bool Skip = C2 > 32 && isInt<12>(x: N1C->getSExtValue()) && |
| 1557 | X.getOpcode() == ISD::SHL && |
| 1558 | isa<ConstantSDNode>(Val: X.getOperand(i: 1)) && |
| 1559 | X.getConstantOperandVal(i: 1) == 32; |
| 1560 | // Turn (and (sra x, c2), c1) -> (srli (srai x, c2-c3), c3) if c1 is a |
| 1561 | // mask with c3 leading zeros and c2 is larger than c3. |
| 1562 | if (isMask_64(Value: C1) && !Skip) { |
| 1563 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1564 | if (C2 > Leading) { |
| 1565 | SDNode *SRAI = CurDAG->getMachineNode( |
| 1566 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: X, |
| 1567 | Op2: CurDAG->getTargetConstant(Val: C2 - Leading, DL, VT)); |
| 1568 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1569 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SRAI, 0), |
| 1570 | Op2: CurDAG->getTargetConstant(Val: Leading, DL, VT)); |
| 1571 | ReplaceNode(F: Node, T: SRLI); |
| 1572 | return; |
| 1573 | } |
| 1574 | } |
| 1575 | |
| 1576 | // Look for (and (sra y, c2), c1) where c1 is a shifted mask with c3 |
| 1577 | // leading zeros and c4 trailing zeros. If c2 is greater than c3, we can |
| 1578 | // use (slli (srli (srai y, c2 - c3), c3 + c4), c4). |
| 1579 | if (isShiftedMask_64(Value: C1) && !Skip) { |
| 1580 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1581 | unsigned Trailing = llvm::countr_zero(Val: C1); |
| 1582 | if (C2 > Leading && Leading > 0 && Trailing > 0) { |
| 1583 | SDNode *SRAI = CurDAG->getMachineNode( |
| 1584 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1585 | Op2: CurDAG->getTargetConstant(Val: C2 - Leading, DL, VT)); |
| 1586 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1587 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SRAI, 0), |
| 1588 | Op2: CurDAG->getTargetConstant(Val: Leading + Trailing, DL, VT)); |
| 1589 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1590 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1591 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1592 | ReplaceNode(F: Node, T: SLLI); |
| 1593 | return; |
| 1594 | } |
| 1595 | } |
| 1596 | } |
| 1597 | |
| 1598 | // If C1 masks off the upper bits only (but can't be formed as an |
| 1599 | // ANDI), use an unsigned bitfield extract (e.g., th.extu), if |
| 1600 | // available. |
| 1601 | // Transform (and x, C1) |
| 1602 | // -> (<bfextract> x, msb, lsb) |
| 1603 | if (isMask_64(Value: C1) && !isInt<12>(x: N1C->getSExtValue())) { |
| 1604 | const unsigned Msb = llvm::bit_width(Value: C1) - 1; |
| 1605 | if (tryUnsignedBitfieldExtract(Node, DL, VT, X: N0, Msb, Lsb: 0)) |
| 1606 | return; |
| 1607 | } |
| 1608 | |
| 1609 | if (tryShrinkShlLogicImm(Node)) |
| 1610 | return; |
| 1611 | |
| 1612 | break; |
| 1613 | } |
| 1614 | case ISD::MUL: { |
| 1615 | // Special case for calculating (mul (and X, C2), C1) where the full product |
| 1616 | // fits in XLen bits. We can shift X left by the number of leading zeros in |
| 1617 | // C2 and shift C1 left by XLen-lzcnt(C2). This will ensure the final |
| 1618 | // product has XLen trailing zeros, putting it in the output of MULHU. This |
| 1619 | // can avoid materializing a constant in a register for C2. |
| 1620 | |
| 1621 | // RHS should be a constant. |
| 1622 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1623 | if (!N1C || !N1C->hasOneUse()) |
| 1624 | break; |
| 1625 | |
| 1626 | // LHS should be an AND with constant. |
| 1627 | SDValue N0 = Node->getOperand(Num: 0); |
| 1628 | if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) |
| 1629 | break; |
| 1630 | |
| 1631 | uint64_t C2 = N0.getConstantOperandVal(i: 1); |
| 1632 | |
| 1633 | // Constant should be a mask. |
| 1634 | if (!isMask_64(Value: C2)) |
| 1635 | break; |
| 1636 | |
| 1637 | // If this can be an ANDI or ZEXT.H, don't do this if the ANDI/ZEXT has |
| 1638 | // multiple users or the constant is a simm12. This prevents inserting a |
| 1639 | // shift and still have uses of the AND/ZEXT. Shifting a simm12 will likely |
| 1640 | // make it more costly to materialize. Otherwise, using a SLLI might allow |
| 1641 | // it to be compressed. |
| 1642 | bool IsANDIOrZExt = |
| 1643 | isInt<12>(x: C2) || |
| 1644 | (C2 == UINT64_C(0xFFFF) && Subtarget->hasStdExtZbb()); |
| 1645 | // With XTHeadBb, we can use TH.EXTU. |
| 1646 | IsANDIOrZExt |= C2 == UINT64_C(0xFFFF) && Subtarget->hasVendorXTHeadBb(); |
| 1647 | if (IsANDIOrZExt && (isInt<12>(x: N1C->getSExtValue()) || !N0.hasOneUse())) |
| 1648 | break; |
| 1649 | // If this can be a ZEXT.w, don't do this if the ZEXT has multiple users or |
| 1650 | // the constant is a simm32. |
| 1651 | bool IsZExtW = C2 == UINT64_C(0xFFFFFFFF) && Subtarget->hasStdExtZba(); |
| 1652 | // With XTHeadBb, we can use TH.EXTU. |
| 1653 | IsZExtW |= C2 == UINT64_C(0xFFFFFFFF) && Subtarget->hasVendorXTHeadBb(); |
| 1654 | if (IsZExtW && (isInt<32>(x: N1C->getSExtValue()) || !N0.hasOneUse())) |
| 1655 | break; |
| 1656 | |
| 1657 | // We need to shift left the AND input and C1 by a total of XLen bits. |
| 1658 | |
| 1659 | // How far left do we need to shift the AND input? |
| 1660 | unsigned XLen = Subtarget->getXLen(); |
| 1661 | unsigned LeadingZeros = XLen - llvm::bit_width(Value: C2); |
| 1662 | |
| 1663 | // The constant gets shifted by the remaining amount unless that would |
| 1664 | // shift bits out. |
| 1665 | uint64_t C1 = N1C->getZExtValue(); |
| 1666 | unsigned ConstantShift = XLen - LeadingZeros; |
| 1667 | if (ConstantShift > (XLen - llvm::bit_width(Value: C1))) |
| 1668 | break; |
| 1669 | |
| 1670 | uint64_t ShiftedC1 = C1 << ConstantShift; |
| 1671 | // If this RV32, we need to sign extend the constant. |
| 1672 | if (XLen == 32) |
| 1673 | ShiftedC1 = SignExtend64<32>(x: ShiftedC1); |
| 1674 | |
| 1675 | // Create (mulhu (slli X, lzcnt(C2)), C1 << (XLen - lzcnt(C2))). |
| 1676 | SDNode *Imm = selectImm(CurDAG, DL, VT, Imm: ShiftedC1, Subtarget: *Subtarget).getNode(); |
| 1677 | SDNode *SLLI = |
| 1678 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1679 | Op2: CurDAG->getTargetConstant(Val: LeadingZeros, DL, VT)); |
| 1680 | SDNode *MULHU = CurDAG->getMachineNode(Opcode: RISCV::MULHU, dl: DL, VT, |
| 1681 | Op1: SDValue(SLLI, 0), Op2: SDValue(Imm, 0)); |
| 1682 | ReplaceNode(F: Node, T: MULHU); |
| 1683 | return; |
| 1684 | } |
| 1685 | case ISD::LOAD: { |
| 1686 | if (tryIndexedLoad(Node)) |
| 1687 | return; |
| 1688 | |
| 1689 | if (Subtarget->hasVendorXCVmem() && !Subtarget->is64Bit()) { |
| 1690 | // We match post-incrementing load here |
| 1691 | LoadSDNode *Load = cast<LoadSDNode>(Val: Node); |
| 1692 | if (Load->getAddressingMode() != ISD::POST_INC) |
| 1693 | break; |
| 1694 | |
| 1695 | SDValue Chain = Node->getOperand(Num: 0); |
| 1696 | SDValue Base = Node->getOperand(Num: 1); |
| 1697 | SDValue Offset = Node->getOperand(Num: 2); |
| 1698 | |
| 1699 | bool Simm12 = false; |
| 1700 | bool SignExtend = Load->getExtensionType() == ISD::SEXTLOAD; |
| 1701 | |
| 1702 | if (auto ConstantOffset = dyn_cast<ConstantSDNode>(Val&: Offset)) { |
| 1703 | int ConstantVal = ConstantOffset->getSExtValue(); |
| 1704 | Simm12 = isInt<12>(x: ConstantVal); |
| 1705 | if (Simm12) |
| 1706 | Offset = CurDAG->getTargetConstant(Val: ConstantVal, DL: SDLoc(Offset), |
| 1707 | VT: Offset.getValueType()); |
| 1708 | } |
| 1709 | |
| 1710 | unsigned Opcode = 0; |
| 1711 | switch (Load->getMemoryVT().getSimpleVT().SimpleTy) { |
| 1712 | case MVT::i8: |
| 1713 | if (Simm12 && SignExtend) |
| 1714 | Opcode = RISCV::CV_LB_ri_inc; |
| 1715 | else if (Simm12 && !SignExtend) |
| 1716 | Opcode = RISCV::CV_LBU_ri_inc; |
| 1717 | else if (!Simm12 && SignExtend) |
| 1718 | Opcode = RISCV::CV_LB_rr_inc; |
| 1719 | else |
| 1720 | Opcode = RISCV::CV_LBU_rr_inc; |
| 1721 | break; |
| 1722 | case MVT::i16: |
| 1723 | if (Simm12 && SignExtend) |
| 1724 | Opcode = RISCV::CV_LH_ri_inc; |
| 1725 | else if (Simm12 && !SignExtend) |
| 1726 | Opcode = RISCV::CV_LHU_ri_inc; |
| 1727 | else if (!Simm12 && SignExtend) |
| 1728 | Opcode = RISCV::CV_LH_rr_inc; |
| 1729 | else |
| 1730 | Opcode = RISCV::CV_LHU_rr_inc; |
| 1731 | break; |
| 1732 | case MVT::i32: |
| 1733 | if (Simm12) |
| 1734 | Opcode = RISCV::CV_LW_ri_inc; |
| 1735 | else |
| 1736 | Opcode = RISCV::CV_LW_rr_inc; |
| 1737 | break; |
| 1738 | default: |
| 1739 | break; |
| 1740 | } |
| 1741 | if (!Opcode) |
| 1742 | break; |
| 1743 | |
| 1744 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode, dl: DL, VT1: XLenVT, VT2: XLenVT, |
| 1745 | VT3: Chain.getSimpleValueType(), Op1: Base, |
| 1746 | Op2: Offset, Op3: Chain)); |
| 1747 | return; |
| 1748 | } |
| 1749 | break; |
| 1750 | } |
| 1751 | case RISCVISD::LD_RV32: { |
| 1752 | assert(Subtarget->hasStdExtZilsd() && "LD_RV32 is only used with Zilsd" ); |
| 1753 | |
| 1754 | SDValue Base, Offset; |
| 1755 | SDValue Chain = Node->getOperand(Num: 0); |
| 1756 | SDValue Addr = Node->getOperand(Num: 1); |
| 1757 | SelectAddrRegImm(Addr, Base, Offset); |
| 1758 | |
| 1759 | SDValue Ops[] = {Base, Offset, Chain}; |
| 1760 | MachineSDNode *New = CurDAG->getMachineNode( |
| 1761 | Opcode: RISCV::LD_RV32, dl: DL, ResultTys: {MVT::Untyped, MVT::Other}, Ops); |
| 1762 | SDValue Lo = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_even, DL, |
| 1763 | VT: MVT::i32, Operand: SDValue(New, 0)); |
| 1764 | SDValue Hi = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_odd, DL, |
| 1765 | VT: MVT::i32, Operand: SDValue(New, 0)); |
| 1766 | CurDAG->setNodeMemRefs(N: New, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 1767 | ReplaceUses(F: SDValue(Node, 0), T: Lo); |
| 1768 | ReplaceUses(F: SDValue(Node, 1), T: Hi); |
| 1769 | ReplaceUses(F: SDValue(Node, 2), T: SDValue(New, 1)); |
| 1770 | CurDAG->RemoveDeadNode(N: Node); |
| 1771 | return; |
| 1772 | } |
| 1773 | case RISCVISD::SD_RV32: { |
| 1774 | SDValue Base, Offset; |
| 1775 | SDValue Chain = Node->getOperand(Num: 0); |
| 1776 | SDValue Addr = Node->getOperand(Num: 3); |
| 1777 | SelectAddrRegImm(Addr, Base, Offset); |
| 1778 | |
| 1779 | SDValue Lo = Node->getOperand(Num: 1); |
| 1780 | SDValue Hi = Node->getOperand(Num: 2); |
| 1781 | |
| 1782 | SDValue RegPair; |
| 1783 | // Peephole to use X0_Pair for storing zero. |
| 1784 | if (isNullConstant(V: Lo) && isNullConstant(V: Hi)) { |
| 1785 | RegPair = CurDAG->getRegister(Reg: RISCV::X0_Pair, VT: MVT::Untyped); |
| 1786 | } else { |
| 1787 | SDValue Ops[] = { |
| 1788 | CurDAG->getTargetConstant(Val: RISCV::GPRPairRegClassID, DL, VT: MVT::i32), Lo, |
| 1789 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_even, DL, VT: MVT::i32), Hi, |
| 1790 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_odd, DL, VT: MVT::i32)}; |
| 1791 | |
| 1792 | RegPair = SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, |
| 1793 | VT: MVT::Untyped, Ops), |
| 1794 | 0); |
| 1795 | } |
| 1796 | |
| 1797 | MachineSDNode *New = CurDAG->getMachineNode(Opcode: RISCV::SD_RV32, dl: DL, VT: MVT::Other, |
| 1798 | Ops: {RegPair, Base, Offset, Chain}); |
| 1799 | CurDAG->setNodeMemRefs(N: New, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 1800 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(New, 0)); |
| 1801 | CurDAG->RemoveDeadNode(N: Node); |
| 1802 | return; |
| 1803 | } |
| 1804 | case ISD::INTRINSIC_WO_CHAIN: { |
| 1805 | unsigned IntNo = Node->getConstantOperandVal(Num: 0); |
| 1806 | switch (IntNo) { |
| 1807 | // By default we do not custom select any intrinsic. |
| 1808 | default: |
| 1809 | break; |
| 1810 | case Intrinsic::riscv_vmsgeu: |
| 1811 | case Intrinsic::riscv_vmsge: { |
| 1812 | SDValue Src1 = Node->getOperand(Num: 1); |
| 1813 | SDValue Src2 = Node->getOperand(Num: 2); |
| 1814 | bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu; |
| 1815 | bool IsCmpConstant = false; |
| 1816 | bool IsCmpMinimum = false; |
| 1817 | // Only custom select scalar second operand. |
| 1818 | if (Src2.getValueType() != XLenVT) |
| 1819 | break; |
| 1820 | // Small constants are handled with patterns. |
| 1821 | int64_t CVal = 0; |
| 1822 | MVT Src1VT = Src1.getSimpleValueType(); |
| 1823 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Src2)) { |
| 1824 | IsCmpConstant = true; |
| 1825 | CVal = C->getSExtValue(); |
| 1826 | if (CVal >= -15 && CVal <= 16) { |
| 1827 | if (!IsUnsigned || CVal != 0) |
| 1828 | break; |
| 1829 | IsCmpMinimum = true; |
| 1830 | } else if (!IsUnsigned && CVal == APInt::getSignedMinValue( |
| 1831 | numBits: Src1VT.getScalarSizeInBits()) |
| 1832 | .getSExtValue()) { |
| 1833 | IsCmpMinimum = true; |
| 1834 | } |
| 1835 | } |
| 1836 | unsigned VMSLTOpcode, VMNANDOpcode, VMSetOpcode, VMSGTOpcode; |
| 1837 | switch (RISCVTargetLowering::getLMUL(VT: Src1VT)) { |
| 1838 | default: |
| 1839 | llvm_unreachable("Unexpected LMUL!" ); |
| 1840 | #define CASE_VMSLT_OPCODES(lmulenum, suffix) \ |
| 1841 | case RISCVVType::lmulenum: \ |
| 1842 | VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \ |
| 1843 | : RISCV::PseudoVMSLT_VX_##suffix; \ |
| 1844 | VMSGTOpcode = IsUnsigned ? RISCV::PseudoVMSGTU_VX_##suffix \ |
| 1845 | : RISCV::PseudoVMSGT_VX_##suffix; \ |
| 1846 | break; |
| 1847 | CASE_VMSLT_OPCODES(LMUL_F8, MF8) |
| 1848 | CASE_VMSLT_OPCODES(LMUL_F4, MF4) |
| 1849 | CASE_VMSLT_OPCODES(LMUL_F2, MF2) |
| 1850 | CASE_VMSLT_OPCODES(LMUL_1, M1) |
| 1851 | CASE_VMSLT_OPCODES(LMUL_2, M2) |
| 1852 | CASE_VMSLT_OPCODES(LMUL_4, M4) |
| 1853 | CASE_VMSLT_OPCODES(LMUL_8, M8) |
| 1854 | #undef CASE_VMSLT_OPCODES |
| 1855 | } |
| 1856 | // Mask operations use the LMUL from the mask type. |
| 1857 | switch (RISCVTargetLowering::getLMUL(VT)) { |
| 1858 | default: |
| 1859 | llvm_unreachable("Unexpected LMUL!" ); |
| 1860 | #define CASE_VMNAND_VMSET_OPCODES(lmulenum, suffix) \ |
| 1861 | case RISCVVType::lmulenum: \ |
| 1862 | VMNANDOpcode = RISCV::PseudoVMNAND_MM_##suffix; \ |
| 1863 | VMSetOpcode = RISCV::PseudoVMSET_M_##suffix; \ |
| 1864 | break; |
| 1865 | CASE_VMNAND_VMSET_OPCODES(LMUL_F8, B64) |
| 1866 | CASE_VMNAND_VMSET_OPCODES(LMUL_F4, B32) |
| 1867 | CASE_VMNAND_VMSET_OPCODES(LMUL_F2, B16) |
| 1868 | CASE_VMNAND_VMSET_OPCODES(LMUL_1, B8) |
| 1869 | CASE_VMNAND_VMSET_OPCODES(LMUL_2, B4) |
| 1870 | CASE_VMNAND_VMSET_OPCODES(LMUL_4, B2) |
| 1871 | CASE_VMNAND_VMSET_OPCODES(LMUL_8, B1) |
| 1872 | #undef CASE_VMNAND_VMSET_OPCODES |
| 1873 | } |
| 1874 | SDValue SEW = CurDAG->getTargetConstant( |
| 1875 | Val: Log2_32(Value: Src1VT.getScalarSizeInBits()), DL, VT: XLenVT); |
| 1876 | SDValue MaskSEW = CurDAG->getTargetConstant(Val: 0, DL, VT: XLenVT); |
| 1877 | SDValue VL; |
| 1878 | selectVLOp(N: Node->getOperand(Num: 3), VL); |
| 1879 | |
| 1880 | // If vmsge(u) with minimum value, expand it to vmset. |
| 1881 | if (IsCmpMinimum) { |
| 1882 | ReplaceNode(F: Node, |
| 1883 | T: CurDAG->getMachineNode(Opcode: VMSetOpcode, dl: DL, VT, Op1: VL, Op2: MaskSEW)); |
| 1884 | return; |
| 1885 | } |
| 1886 | |
| 1887 | if (IsCmpConstant) { |
| 1888 | SDValue Imm = |
| 1889 | selectImm(CurDAG, DL: SDLoc(Src2), VT: XLenVT, Imm: CVal - 1, Subtarget: *Subtarget); |
| 1890 | |
| 1891 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMSGTOpcode, dl: DL, VT, |
| 1892 | Ops: {Src1, Imm, VL, SEW})); |
| 1893 | return; |
| 1894 | } |
| 1895 | |
| 1896 | // Expand to |
| 1897 | // vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd |
| 1898 | SDValue Cmp = SDValue( |
| 1899 | CurDAG->getMachineNode(Opcode: VMSLTOpcode, dl: DL, VT, Ops: {Src1, Src2, VL, SEW}), |
| 1900 | 0); |
| 1901 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMNANDOpcode, dl: DL, VT, |
| 1902 | Ops: {Cmp, Cmp, VL, MaskSEW})); |
| 1903 | return; |
| 1904 | } |
| 1905 | case Intrinsic::riscv_vmsgeu_mask: |
| 1906 | case Intrinsic::riscv_vmsge_mask: { |
| 1907 | SDValue Src1 = Node->getOperand(Num: 2); |
| 1908 | SDValue Src2 = Node->getOperand(Num: 3); |
| 1909 | bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu_mask; |
| 1910 | bool IsCmpConstant = false; |
| 1911 | bool IsCmpMinimum = false; |
| 1912 | // Only custom select scalar second operand. |
| 1913 | if (Src2.getValueType() != XLenVT) |
| 1914 | break; |
| 1915 | // Small constants are handled with patterns. |
| 1916 | MVT Src1VT = Src1.getSimpleValueType(); |
| 1917 | int64_t CVal = 0; |
| 1918 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Src2)) { |
| 1919 | IsCmpConstant = true; |
| 1920 | CVal = C->getSExtValue(); |
| 1921 | if (CVal >= -15 && CVal <= 16) { |
| 1922 | if (!IsUnsigned || CVal != 0) |
| 1923 | break; |
| 1924 | IsCmpMinimum = true; |
| 1925 | } else if (!IsUnsigned && CVal == APInt::getSignedMinValue( |
| 1926 | numBits: Src1VT.getScalarSizeInBits()) |
| 1927 | .getSExtValue()) { |
| 1928 | IsCmpMinimum = true; |
| 1929 | } |
| 1930 | } |
| 1931 | unsigned VMSLTOpcode, VMSLTMaskOpcode, VMXOROpcode, VMANDNOpcode, |
| 1932 | VMOROpcode, VMSGTMaskOpcode; |
| 1933 | switch (RISCVTargetLowering::getLMUL(VT: Src1VT)) { |
| 1934 | default: |
| 1935 | llvm_unreachable("Unexpected LMUL!" ); |
| 1936 | #define CASE_VMSLT_OPCODES(lmulenum, suffix) \ |
| 1937 | case RISCVVType::lmulenum: \ |
| 1938 | VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \ |
| 1939 | : RISCV::PseudoVMSLT_VX_##suffix; \ |
| 1940 | VMSLTMaskOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix##_MASK \ |
| 1941 | : RISCV::PseudoVMSLT_VX_##suffix##_MASK; \ |
| 1942 | VMSGTMaskOpcode = IsUnsigned ? RISCV::PseudoVMSGTU_VX_##suffix##_MASK \ |
| 1943 | : RISCV::PseudoVMSGT_VX_##suffix##_MASK; \ |
| 1944 | break; |
| 1945 | CASE_VMSLT_OPCODES(LMUL_F8, MF8) |
| 1946 | CASE_VMSLT_OPCODES(LMUL_F4, MF4) |
| 1947 | CASE_VMSLT_OPCODES(LMUL_F2, MF2) |
| 1948 | CASE_VMSLT_OPCODES(LMUL_1, M1) |
| 1949 | CASE_VMSLT_OPCODES(LMUL_2, M2) |
| 1950 | CASE_VMSLT_OPCODES(LMUL_4, M4) |
| 1951 | CASE_VMSLT_OPCODES(LMUL_8, M8) |
| 1952 | #undef CASE_VMSLT_OPCODES |
| 1953 | } |
| 1954 | // Mask operations use the LMUL from the mask type. |
| 1955 | switch (RISCVTargetLowering::getLMUL(VT)) { |
| 1956 | default: |
| 1957 | llvm_unreachable("Unexpected LMUL!" ); |
| 1958 | #define CASE_VMXOR_VMANDN_VMOR_OPCODES(lmulenum, suffix) \ |
| 1959 | case RISCVVType::lmulenum: \ |
| 1960 | VMXOROpcode = RISCV::PseudoVMXOR_MM_##suffix; \ |
| 1961 | VMANDNOpcode = RISCV::PseudoVMANDN_MM_##suffix; \ |
| 1962 | VMOROpcode = RISCV::PseudoVMOR_MM_##suffix; \ |
| 1963 | break; |
| 1964 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F8, B64) |
| 1965 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F4, B32) |
| 1966 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F2, B16) |
| 1967 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_1, B8) |
| 1968 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_2, B4) |
| 1969 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_4, B2) |
| 1970 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_8, B1) |
| 1971 | #undef CASE_VMXOR_VMANDN_VMOR_OPCODES |
| 1972 | } |
| 1973 | SDValue SEW = CurDAG->getTargetConstant( |
| 1974 | Val: Log2_32(Value: Src1VT.getScalarSizeInBits()), DL, VT: XLenVT); |
| 1975 | SDValue MaskSEW = CurDAG->getTargetConstant(Val: 0, DL, VT: XLenVT); |
| 1976 | SDValue VL; |
| 1977 | selectVLOp(N: Node->getOperand(Num: 5), VL); |
| 1978 | SDValue MaskedOff = Node->getOperand(Num: 1); |
| 1979 | SDValue Mask = Node->getOperand(Num: 4); |
| 1980 | |
| 1981 | // If vmsge(u) with minimum value, expand it to vmor mask, maskedoff. |
| 1982 | if (IsCmpMinimum) { |
| 1983 | // We don't need vmor if the MaskedOff and the Mask are the same |
| 1984 | // value. |
| 1985 | if (Mask == MaskedOff) { |
| 1986 | ReplaceUses(F: Node, T: Mask.getNode()); |
| 1987 | return; |
| 1988 | } |
| 1989 | ReplaceNode(F: Node, |
| 1990 | T: CurDAG->getMachineNode(Opcode: VMOROpcode, dl: DL, VT, |
| 1991 | Ops: {Mask, MaskedOff, VL, MaskSEW})); |
| 1992 | return; |
| 1993 | } |
| 1994 | |
| 1995 | // If the MaskedOff value and the Mask are the same value use |
| 1996 | // vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt |
| 1997 | // This avoids needing to copy v0 to vd before starting the next sequence. |
| 1998 | if (Mask == MaskedOff) { |
| 1999 | SDValue Cmp = SDValue( |
| 2000 | CurDAG->getMachineNode(Opcode: VMSLTOpcode, dl: DL, VT, Ops: {Src1, Src2, VL, SEW}), |
| 2001 | 0); |
| 2002 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMANDNOpcode, dl: DL, VT, |
| 2003 | Ops: {Mask, Cmp, VL, MaskSEW})); |
| 2004 | return; |
| 2005 | } |
| 2006 | |
| 2007 | SDValue PolicyOp = |
| 2008 | CurDAG->getTargetConstant(Val: RISCVVType::TAIL_AGNOSTIC, DL, VT: XLenVT); |
| 2009 | |
| 2010 | if (IsCmpConstant) { |
| 2011 | SDValue Imm = |
| 2012 | selectImm(CurDAG, DL: SDLoc(Src2), VT: XLenVT, Imm: CVal - 1, Subtarget: *Subtarget); |
| 2013 | |
| 2014 | ReplaceNode(F: Node, T: CurDAG->getMachineNode( |
| 2015 | Opcode: VMSGTMaskOpcode, dl: DL, VT, |
| 2016 | Ops: {MaskedOff, Src1, Imm, Mask, VL, SEW, PolicyOp})); |
| 2017 | return; |
| 2018 | } |
| 2019 | |
| 2020 | // Otherwise use |
| 2021 | // vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0 |
| 2022 | // The result is mask undisturbed. |
| 2023 | // We use the same instructions to emulate mask agnostic behavior, because |
| 2024 | // the agnostic result can be either undisturbed or all 1. |
| 2025 | SDValue Cmp = SDValue(CurDAG->getMachineNode(Opcode: VMSLTMaskOpcode, dl: DL, VT, |
| 2026 | Ops: {MaskedOff, Src1, Src2, Mask, |
| 2027 | VL, SEW, PolicyOp}), |
| 2028 | 0); |
| 2029 | // vmxor.mm vd, vd, v0 is used to update active value. |
| 2030 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMXOROpcode, dl: DL, VT, |
| 2031 | Ops: {Cmp, Mask, VL, MaskSEW})); |
| 2032 | return; |
| 2033 | } |
| 2034 | case Intrinsic::riscv_vsetvli: |
| 2035 | case Intrinsic::riscv_vsetvlimax: |
| 2036 | return selectVSETVLI(Node); |
| 2037 | } |
| 2038 | break; |
| 2039 | } |
| 2040 | case ISD::INTRINSIC_W_CHAIN: { |
| 2041 | unsigned IntNo = Node->getConstantOperandVal(Num: 1); |
| 2042 | switch (IntNo) { |
| 2043 | // By default we do not custom select any intrinsic. |
| 2044 | default: |
| 2045 | break; |
| 2046 | case Intrinsic::riscv_vlseg2: |
| 2047 | case Intrinsic::riscv_vlseg3: |
| 2048 | case Intrinsic::riscv_vlseg4: |
| 2049 | case Intrinsic::riscv_vlseg5: |
| 2050 | case Intrinsic::riscv_vlseg6: |
| 2051 | case Intrinsic::riscv_vlseg7: |
| 2052 | case Intrinsic::riscv_vlseg8: { |
| 2053 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2054 | /*IsStrided*/ false); |
| 2055 | return; |
| 2056 | } |
| 2057 | case Intrinsic::riscv_vlseg2_mask: |
| 2058 | case Intrinsic::riscv_vlseg3_mask: |
| 2059 | case Intrinsic::riscv_vlseg4_mask: |
| 2060 | case Intrinsic::riscv_vlseg5_mask: |
| 2061 | case Intrinsic::riscv_vlseg6_mask: |
| 2062 | case Intrinsic::riscv_vlseg7_mask: |
| 2063 | case Intrinsic::riscv_vlseg8_mask: { |
| 2064 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2065 | /*IsStrided*/ false); |
| 2066 | return; |
| 2067 | } |
| 2068 | case Intrinsic::riscv_vlsseg2: |
| 2069 | case Intrinsic::riscv_vlsseg3: |
| 2070 | case Intrinsic::riscv_vlsseg4: |
| 2071 | case Intrinsic::riscv_vlsseg5: |
| 2072 | case Intrinsic::riscv_vlsseg6: |
| 2073 | case Intrinsic::riscv_vlsseg7: |
| 2074 | case Intrinsic::riscv_vlsseg8: { |
| 2075 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2076 | /*IsStrided*/ true); |
| 2077 | return; |
| 2078 | } |
| 2079 | case Intrinsic::riscv_vlsseg2_mask: |
| 2080 | case Intrinsic::riscv_vlsseg3_mask: |
| 2081 | case Intrinsic::riscv_vlsseg4_mask: |
| 2082 | case Intrinsic::riscv_vlsseg5_mask: |
| 2083 | case Intrinsic::riscv_vlsseg6_mask: |
| 2084 | case Intrinsic::riscv_vlsseg7_mask: |
| 2085 | case Intrinsic::riscv_vlsseg8_mask: { |
| 2086 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2087 | /*IsStrided*/ true); |
| 2088 | return; |
| 2089 | } |
| 2090 | case Intrinsic::riscv_vloxseg2: |
| 2091 | case Intrinsic::riscv_vloxseg3: |
| 2092 | case Intrinsic::riscv_vloxseg4: |
| 2093 | case Intrinsic::riscv_vloxseg5: |
| 2094 | case Intrinsic::riscv_vloxseg6: |
| 2095 | case Intrinsic::riscv_vloxseg7: |
| 2096 | case Intrinsic::riscv_vloxseg8: |
| 2097 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2098 | /*IsOrdered*/ true); |
| 2099 | return; |
| 2100 | case Intrinsic::riscv_vluxseg2: |
| 2101 | case Intrinsic::riscv_vluxseg3: |
| 2102 | case Intrinsic::riscv_vluxseg4: |
| 2103 | case Intrinsic::riscv_vluxseg5: |
| 2104 | case Intrinsic::riscv_vluxseg6: |
| 2105 | case Intrinsic::riscv_vluxseg7: |
| 2106 | case Intrinsic::riscv_vluxseg8: |
| 2107 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2108 | /*IsOrdered*/ false); |
| 2109 | return; |
| 2110 | case Intrinsic::riscv_vloxseg2_mask: |
| 2111 | case Intrinsic::riscv_vloxseg3_mask: |
| 2112 | case Intrinsic::riscv_vloxseg4_mask: |
| 2113 | case Intrinsic::riscv_vloxseg5_mask: |
| 2114 | case Intrinsic::riscv_vloxseg6_mask: |
| 2115 | case Intrinsic::riscv_vloxseg7_mask: |
| 2116 | case Intrinsic::riscv_vloxseg8_mask: |
| 2117 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2118 | /*IsOrdered*/ true); |
| 2119 | return; |
| 2120 | case Intrinsic::riscv_vluxseg2_mask: |
| 2121 | case Intrinsic::riscv_vluxseg3_mask: |
| 2122 | case Intrinsic::riscv_vluxseg4_mask: |
| 2123 | case Intrinsic::riscv_vluxseg5_mask: |
| 2124 | case Intrinsic::riscv_vluxseg6_mask: |
| 2125 | case Intrinsic::riscv_vluxseg7_mask: |
| 2126 | case Intrinsic::riscv_vluxseg8_mask: |
| 2127 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2128 | /*IsOrdered*/ false); |
| 2129 | return; |
| 2130 | case Intrinsic::riscv_vlseg8ff: |
| 2131 | case Intrinsic::riscv_vlseg7ff: |
| 2132 | case Intrinsic::riscv_vlseg6ff: |
| 2133 | case Intrinsic::riscv_vlseg5ff: |
| 2134 | case Intrinsic::riscv_vlseg4ff: |
| 2135 | case Intrinsic::riscv_vlseg3ff: |
| 2136 | case Intrinsic::riscv_vlseg2ff: { |
| 2137 | selectVLSEGFF(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false); |
| 2138 | return; |
| 2139 | } |
| 2140 | case Intrinsic::riscv_vlseg8ff_mask: |
| 2141 | case Intrinsic::riscv_vlseg7ff_mask: |
| 2142 | case Intrinsic::riscv_vlseg6ff_mask: |
| 2143 | case Intrinsic::riscv_vlseg5ff_mask: |
| 2144 | case Intrinsic::riscv_vlseg4ff_mask: |
| 2145 | case Intrinsic::riscv_vlseg3ff_mask: |
| 2146 | case Intrinsic::riscv_vlseg2ff_mask: { |
| 2147 | selectVLSEGFF(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true); |
| 2148 | return; |
| 2149 | } |
| 2150 | case Intrinsic::riscv_vloxei: |
| 2151 | case Intrinsic::riscv_vloxei_mask: |
| 2152 | case Intrinsic::riscv_vluxei: |
| 2153 | case Intrinsic::riscv_vluxei_mask: { |
| 2154 | bool IsMasked = IntNo == Intrinsic::riscv_vloxei_mask || |
| 2155 | IntNo == Intrinsic::riscv_vluxei_mask; |
| 2156 | bool IsOrdered = IntNo == Intrinsic::riscv_vloxei || |
| 2157 | IntNo == Intrinsic::riscv_vloxei_mask; |
| 2158 | |
| 2159 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2160 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2161 | |
| 2162 | unsigned CurOp = 2; |
| 2163 | SmallVector<SDValue, 8> Operands; |
| 2164 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2165 | |
| 2166 | MVT IndexVT; |
| 2167 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2168 | /*IsStridedOrIndexed*/ true, Operands, |
| 2169 | /*IsLoad=*/true, IndexVT: &IndexVT); |
| 2170 | |
| 2171 | assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| 2172 | "Element count mismatch" ); |
| 2173 | |
| 2174 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2175 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 2176 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 2177 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 2178 | report_fatal_error(reason: "The V extension does not support EEW=64 for index " |
| 2179 | "values when XLEN=32" ); |
| 2180 | } |
| 2181 | const RISCV::VLX_VSXPseudo *P = RISCV::getVLXPseudo( |
| 2182 | Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, LMUL: static_cast<unsigned>(LMUL), |
| 2183 | IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 2184 | MachineSDNode *Load = |
| 2185 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2186 | |
| 2187 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 2188 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 2189 | |
| 2190 | ReplaceNode(F: Node, T: Load); |
| 2191 | return; |
| 2192 | } |
| 2193 | case Intrinsic::riscv_vlm: |
| 2194 | case Intrinsic::riscv_vle: |
| 2195 | case Intrinsic::riscv_vle_mask: |
| 2196 | case Intrinsic::riscv_vlse: |
| 2197 | case Intrinsic::riscv_vlse_mask: { |
| 2198 | bool IsMasked = IntNo == Intrinsic::riscv_vle_mask || |
| 2199 | IntNo == Intrinsic::riscv_vlse_mask; |
| 2200 | bool IsStrided = |
| 2201 | IntNo == Intrinsic::riscv_vlse || IntNo == Intrinsic::riscv_vlse_mask; |
| 2202 | |
| 2203 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2204 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2205 | |
| 2206 | // The riscv_vlm intrinsic are always tail agnostic and no passthru |
| 2207 | // operand at the IR level. In pseudos, they have both policy and |
| 2208 | // passthru operand. The passthru operand is needed to track the |
| 2209 | // "tail undefined" state, and the policy is there just for |
| 2210 | // for consistency - it will always be "don't care" for the |
| 2211 | // unmasked form. |
| 2212 | bool HasPassthruOperand = IntNo != Intrinsic::riscv_vlm; |
| 2213 | unsigned CurOp = 2; |
| 2214 | SmallVector<SDValue, 8> Operands; |
| 2215 | if (HasPassthruOperand) |
| 2216 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2217 | else { |
| 2218 | // We eagerly lower to implicit_def (instead of undef), as we |
| 2219 | // otherwise fail to select nodes such as: nxv1i1 = undef |
| 2220 | SDNode *Passthru = |
| 2221 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT); |
| 2222 | Operands.push_back(Elt: SDValue(Passthru, 0)); |
| 2223 | } |
| 2224 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 2225 | Operands, /*IsLoad=*/true); |
| 2226 | |
| 2227 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2228 | const RISCV::VLEPseudo *P = |
| 2229 | RISCV::getVLEPseudo(Masked: IsMasked, Strided: IsStrided, /*FF*/ false, Log2SEW, |
| 2230 | LMUL: static_cast<unsigned>(LMUL)); |
| 2231 | MachineSDNode *Load = |
| 2232 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2233 | |
| 2234 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 2235 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 2236 | |
| 2237 | ReplaceNode(F: Node, T: Load); |
| 2238 | return; |
| 2239 | } |
| 2240 | case Intrinsic::riscv_vleff: |
| 2241 | case Intrinsic::riscv_vleff_mask: { |
| 2242 | bool IsMasked = IntNo == Intrinsic::riscv_vleff_mask; |
| 2243 | |
| 2244 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2245 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2246 | |
| 2247 | unsigned CurOp = 2; |
| 2248 | SmallVector<SDValue, 7> Operands; |
| 2249 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2250 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2251 | /*IsStridedOrIndexed*/ false, Operands, |
| 2252 | /*IsLoad=*/true); |
| 2253 | |
| 2254 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2255 | const RISCV::VLEPseudo *P = |
| 2256 | RISCV::getVLEPseudo(Masked: IsMasked, /*Strided*/ false, /*FF*/ true, |
| 2257 | Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2258 | MachineSDNode *Load = CurDAG->getMachineNode( |
| 2259 | Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2260 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 2261 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 2262 | |
| 2263 | ReplaceNode(F: Node, T: Load); |
| 2264 | return; |
| 2265 | } |
| 2266 | } |
| 2267 | break; |
| 2268 | } |
| 2269 | case ISD::INTRINSIC_VOID: { |
| 2270 | unsigned IntNo = Node->getConstantOperandVal(Num: 1); |
| 2271 | switch (IntNo) { |
| 2272 | case Intrinsic::riscv_vsseg2: |
| 2273 | case Intrinsic::riscv_vsseg3: |
| 2274 | case Intrinsic::riscv_vsseg4: |
| 2275 | case Intrinsic::riscv_vsseg5: |
| 2276 | case Intrinsic::riscv_vsseg6: |
| 2277 | case Intrinsic::riscv_vsseg7: |
| 2278 | case Intrinsic::riscv_vsseg8: { |
| 2279 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2280 | /*IsStrided*/ false); |
| 2281 | return; |
| 2282 | } |
| 2283 | case Intrinsic::riscv_vsseg2_mask: |
| 2284 | case Intrinsic::riscv_vsseg3_mask: |
| 2285 | case Intrinsic::riscv_vsseg4_mask: |
| 2286 | case Intrinsic::riscv_vsseg5_mask: |
| 2287 | case Intrinsic::riscv_vsseg6_mask: |
| 2288 | case Intrinsic::riscv_vsseg7_mask: |
| 2289 | case Intrinsic::riscv_vsseg8_mask: { |
| 2290 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2291 | /*IsStrided*/ false); |
| 2292 | return; |
| 2293 | } |
| 2294 | case Intrinsic::riscv_vssseg2: |
| 2295 | case Intrinsic::riscv_vssseg3: |
| 2296 | case Intrinsic::riscv_vssseg4: |
| 2297 | case Intrinsic::riscv_vssseg5: |
| 2298 | case Intrinsic::riscv_vssseg6: |
| 2299 | case Intrinsic::riscv_vssseg7: |
| 2300 | case Intrinsic::riscv_vssseg8: { |
| 2301 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2302 | /*IsStrided*/ true); |
| 2303 | return; |
| 2304 | } |
| 2305 | case Intrinsic::riscv_vssseg2_mask: |
| 2306 | case Intrinsic::riscv_vssseg3_mask: |
| 2307 | case Intrinsic::riscv_vssseg4_mask: |
| 2308 | case Intrinsic::riscv_vssseg5_mask: |
| 2309 | case Intrinsic::riscv_vssseg6_mask: |
| 2310 | case Intrinsic::riscv_vssseg7_mask: |
| 2311 | case Intrinsic::riscv_vssseg8_mask: { |
| 2312 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2313 | /*IsStrided*/ true); |
| 2314 | return; |
| 2315 | } |
| 2316 | case Intrinsic::riscv_vsoxseg2: |
| 2317 | case Intrinsic::riscv_vsoxseg3: |
| 2318 | case Intrinsic::riscv_vsoxseg4: |
| 2319 | case Intrinsic::riscv_vsoxseg5: |
| 2320 | case Intrinsic::riscv_vsoxseg6: |
| 2321 | case Intrinsic::riscv_vsoxseg7: |
| 2322 | case Intrinsic::riscv_vsoxseg8: |
| 2323 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2324 | /*IsOrdered*/ true); |
| 2325 | return; |
| 2326 | case Intrinsic::riscv_vsuxseg2: |
| 2327 | case Intrinsic::riscv_vsuxseg3: |
| 2328 | case Intrinsic::riscv_vsuxseg4: |
| 2329 | case Intrinsic::riscv_vsuxseg5: |
| 2330 | case Intrinsic::riscv_vsuxseg6: |
| 2331 | case Intrinsic::riscv_vsuxseg7: |
| 2332 | case Intrinsic::riscv_vsuxseg8: |
| 2333 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2334 | /*IsOrdered*/ false); |
| 2335 | return; |
| 2336 | case Intrinsic::riscv_vsoxseg2_mask: |
| 2337 | case Intrinsic::riscv_vsoxseg3_mask: |
| 2338 | case Intrinsic::riscv_vsoxseg4_mask: |
| 2339 | case Intrinsic::riscv_vsoxseg5_mask: |
| 2340 | case Intrinsic::riscv_vsoxseg6_mask: |
| 2341 | case Intrinsic::riscv_vsoxseg7_mask: |
| 2342 | case Intrinsic::riscv_vsoxseg8_mask: |
| 2343 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2344 | /*IsOrdered*/ true); |
| 2345 | return; |
| 2346 | case Intrinsic::riscv_vsuxseg2_mask: |
| 2347 | case Intrinsic::riscv_vsuxseg3_mask: |
| 2348 | case Intrinsic::riscv_vsuxseg4_mask: |
| 2349 | case Intrinsic::riscv_vsuxseg5_mask: |
| 2350 | case Intrinsic::riscv_vsuxseg6_mask: |
| 2351 | case Intrinsic::riscv_vsuxseg7_mask: |
| 2352 | case Intrinsic::riscv_vsuxseg8_mask: |
| 2353 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2354 | /*IsOrdered*/ false); |
| 2355 | return; |
| 2356 | case Intrinsic::riscv_vsoxei: |
| 2357 | case Intrinsic::riscv_vsoxei_mask: |
| 2358 | case Intrinsic::riscv_vsuxei: |
| 2359 | case Intrinsic::riscv_vsuxei_mask: { |
| 2360 | bool IsMasked = IntNo == Intrinsic::riscv_vsoxei_mask || |
| 2361 | IntNo == Intrinsic::riscv_vsuxei_mask; |
| 2362 | bool IsOrdered = IntNo == Intrinsic::riscv_vsoxei || |
| 2363 | IntNo == Intrinsic::riscv_vsoxei_mask; |
| 2364 | |
| 2365 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 2366 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2367 | |
| 2368 | unsigned CurOp = 2; |
| 2369 | SmallVector<SDValue, 8> Operands; |
| 2370 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Store value. |
| 2371 | |
| 2372 | MVT IndexVT; |
| 2373 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2374 | /*IsStridedOrIndexed*/ true, Operands, |
| 2375 | /*IsLoad=*/false, IndexVT: &IndexVT); |
| 2376 | |
| 2377 | assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| 2378 | "Element count mismatch" ); |
| 2379 | |
| 2380 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2381 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 2382 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 2383 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 2384 | report_fatal_error(reason: "The V extension does not support EEW=64 for index " |
| 2385 | "values when XLEN=32" ); |
| 2386 | } |
| 2387 | const RISCV::VLX_VSXPseudo *P = RISCV::getVSXPseudo( |
| 2388 | Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, |
| 2389 | LMUL: static_cast<unsigned>(LMUL), IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 2390 | MachineSDNode *Store = |
| 2391 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2392 | |
| 2393 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 2394 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {MemOp->getMemOperand()}); |
| 2395 | |
| 2396 | ReplaceNode(F: Node, T: Store); |
| 2397 | return; |
| 2398 | } |
| 2399 | case Intrinsic::riscv_vsm: |
| 2400 | case Intrinsic::riscv_vse: |
| 2401 | case Intrinsic::riscv_vse_mask: |
| 2402 | case Intrinsic::riscv_vsse: |
| 2403 | case Intrinsic::riscv_vsse_mask: { |
| 2404 | bool IsMasked = IntNo == Intrinsic::riscv_vse_mask || |
| 2405 | IntNo == Intrinsic::riscv_vsse_mask; |
| 2406 | bool IsStrided = |
| 2407 | IntNo == Intrinsic::riscv_vsse || IntNo == Intrinsic::riscv_vsse_mask; |
| 2408 | |
| 2409 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 2410 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2411 | |
| 2412 | unsigned CurOp = 2; |
| 2413 | SmallVector<SDValue, 8> Operands; |
| 2414 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Store value. |
| 2415 | |
| 2416 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 2417 | Operands); |
| 2418 | |
| 2419 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2420 | const RISCV::VSEPseudo *P = RISCV::getVSEPseudo( |
| 2421 | Masked: IsMasked, Strided: IsStrided, Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2422 | MachineSDNode *Store = |
| 2423 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2424 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 2425 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {MemOp->getMemOperand()}); |
| 2426 | |
| 2427 | ReplaceNode(F: Node, T: Store); |
| 2428 | return; |
| 2429 | } |
| 2430 | case Intrinsic::riscv_sf_vc_x_se: |
| 2431 | case Intrinsic::riscv_sf_vc_i_se: |
| 2432 | selectSF_VC_X_SE(Node); |
| 2433 | return; |
| 2434 | } |
| 2435 | break; |
| 2436 | } |
| 2437 | case ISD::BITCAST: { |
| 2438 | MVT SrcVT = Node->getOperand(Num: 0).getSimpleValueType(); |
| 2439 | // Just drop bitcasts between vectors if both are fixed or both are |
| 2440 | // scalable. |
| 2441 | if ((VT.isScalableVector() && SrcVT.isScalableVector()) || |
| 2442 | (VT.isFixedLengthVector() && SrcVT.isFixedLengthVector())) { |
| 2443 | ReplaceUses(F: SDValue(Node, 0), T: Node->getOperand(Num: 0)); |
| 2444 | CurDAG->RemoveDeadNode(N: Node); |
| 2445 | return; |
| 2446 | } |
| 2447 | break; |
| 2448 | } |
| 2449 | case ISD::INSERT_SUBVECTOR: |
| 2450 | case RISCVISD::TUPLE_INSERT: { |
| 2451 | SDValue V = Node->getOperand(Num: 0); |
| 2452 | SDValue SubV = Node->getOperand(Num: 1); |
| 2453 | SDLoc DL(SubV); |
| 2454 | auto Idx = Node->getConstantOperandVal(Num: 2); |
| 2455 | MVT SubVecVT = SubV.getSimpleValueType(); |
| 2456 | |
| 2457 | const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering(); |
| 2458 | MVT SubVecContainerVT = SubVecVT; |
| 2459 | // Establish the correct scalable-vector types for any fixed-length type. |
| 2460 | if (SubVecVT.isFixedLengthVector()) { |
| 2461 | SubVecContainerVT = TLI.getContainerForFixedLengthVector(VT: SubVecVT); |
| 2462 | TypeSize VecRegSize = TypeSize::getScalable(MinimumSize: RISCV::RVVBitsPerBlock); |
| 2463 | [[maybe_unused]] bool ExactlyVecRegSized = |
| 2464 | Subtarget->expandVScale(X: SubVecVT.getSizeInBits()) |
| 2465 | .isKnownMultipleOf(RHS: Subtarget->expandVScale(X: VecRegSize)); |
| 2466 | assert(isPowerOf2_64(Subtarget->expandVScale(SubVecVT.getSizeInBits()) |
| 2467 | .getKnownMinValue())); |
| 2468 | assert(Idx == 0 && (ExactlyVecRegSized || V.isUndef())); |
| 2469 | } |
| 2470 | MVT ContainerVT = VT; |
| 2471 | if (VT.isFixedLengthVector()) |
| 2472 | ContainerVT = TLI.getContainerForFixedLengthVector(VT); |
| 2473 | |
| 2474 | const auto *TRI = Subtarget->getRegisterInfo(); |
| 2475 | unsigned SubRegIdx; |
| 2476 | std::tie(args&: SubRegIdx, args&: Idx) = |
| 2477 | RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| 2478 | VecVT: ContainerVT, SubVecVT: SubVecContainerVT, InsertExtractIdx: Idx, TRI); |
| 2479 | |
| 2480 | // If the Idx hasn't been completely eliminated then this is a subvector |
| 2481 | // insert which doesn't naturally align to a vector register. These must |
| 2482 | // be handled using instructions to manipulate the vector registers. |
| 2483 | if (Idx != 0) |
| 2484 | break; |
| 2485 | |
| 2486 | RISCVVType::VLMUL SubVecLMUL = |
| 2487 | RISCVTargetLowering::getLMUL(VT: SubVecContainerVT); |
| 2488 | [[maybe_unused]] bool IsSubVecPartReg = |
| 2489 | SubVecLMUL == RISCVVType::VLMUL::LMUL_F2 || |
| 2490 | SubVecLMUL == RISCVVType::VLMUL::LMUL_F4 || |
| 2491 | SubVecLMUL == RISCVVType::VLMUL::LMUL_F8; |
| 2492 | assert((V.getValueType().isRISCVVectorTuple() || !IsSubVecPartReg || |
| 2493 | V.isUndef()) && |
| 2494 | "Expecting lowering to have created legal INSERT_SUBVECTORs when " |
| 2495 | "the subvector is smaller than a full-sized register" ); |
| 2496 | |
| 2497 | // If we haven't set a SubRegIdx, then we must be going between |
| 2498 | // equally-sized LMUL groups (e.g. VR -> VR). This can be done as a copy. |
| 2499 | if (SubRegIdx == RISCV::NoSubRegister) { |
| 2500 | unsigned InRegClassID = |
| 2501 | RISCVTargetLowering::getRegClassIDForVecVT(VT: ContainerVT); |
| 2502 | assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) == |
| 2503 | InRegClassID && |
| 2504 | "Unexpected subvector extraction" ); |
| 2505 | SDValue RC = CurDAG->getTargetConstant(Val: InRegClassID, DL, VT: XLenVT); |
| 2506 | SDNode *NewNode = CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS, |
| 2507 | dl: DL, VT, Op1: SubV, Op2: RC); |
| 2508 | ReplaceNode(F: Node, T: NewNode); |
| 2509 | return; |
| 2510 | } |
| 2511 | |
| 2512 | SDValue Insert = CurDAG->getTargetInsertSubreg(SRIdx: SubRegIdx, DL, VT, Operand: V, Subreg: SubV); |
| 2513 | ReplaceNode(F: Node, T: Insert.getNode()); |
| 2514 | return; |
| 2515 | } |
| 2516 | case ISD::EXTRACT_SUBVECTOR: |
| 2517 | case RISCVISD::TUPLE_EXTRACT: { |
| 2518 | SDValue V = Node->getOperand(Num: 0); |
| 2519 | auto Idx = Node->getConstantOperandVal(Num: 1); |
| 2520 | MVT InVT = V.getSimpleValueType(); |
| 2521 | SDLoc DL(V); |
| 2522 | |
| 2523 | const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering(); |
| 2524 | MVT SubVecContainerVT = VT; |
| 2525 | // Establish the correct scalable-vector types for any fixed-length type. |
| 2526 | if (VT.isFixedLengthVector()) { |
| 2527 | assert(Idx == 0); |
| 2528 | SubVecContainerVT = TLI.getContainerForFixedLengthVector(VT); |
| 2529 | } |
| 2530 | if (InVT.isFixedLengthVector()) |
| 2531 | InVT = TLI.getContainerForFixedLengthVector(VT: InVT); |
| 2532 | |
| 2533 | const auto *TRI = Subtarget->getRegisterInfo(); |
| 2534 | unsigned SubRegIdx; |
| 2535 | std::tie(args&: SubRegIdx, args&: Idx) = |
| 2536 | RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| 2537 | VecVT: InVT, SubVecVT: SubVecContainerVT, InsertExtractIdx: Idx, TRI); |
| 2538 | |
| 2539 | // If the Idx hasn't been completely eliminated then this is a subvector |
| 2540 | // extract which doesn't naturally align to a vector register. These must |
| 2541 | // be handled using instructions to manipulate the vector registers. |
| 2542 | if (Idx != 0) |
| 2543 | break; |
| 2544 | |
| 2545 | // If we haven't set a SubRegIdx, then we must be going between |
| 2546 | // equally-sized LMUL types (e.g. VR -> VR). This can be done as a copy. |
| 2547 | if (SubRegIdx == RISCV::NoSubRegister) { |
| 2548 | unsigned InRegClassID = RISCVTargetLowering::getRegClassIDForVecVT(VT: InVT); |
| 2549 | assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) == |
| 2550 | InRegClassID && |
| 2551 | "Unexpected subvector extraction" ); |
| 2552 | SDValue RC = CurDAG->getTargetConstant(Val: InRegClassID, DL, VT: XLenVT); |
| 2553 | SDNode *NewNode = |
| 2554 | CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS, dl: DL, VT, Op1: V, Op2: RC); |
| 2555 | ReplaceNode(F: Node, T: NewNode); |
| 2556 | return; |
| 2557 | } |
| 2558 | |
| 2559 | SDValue = CurDAG->getTargetExtractSubreg(SRIdx: SubRegIdx, DL, VT, Operand: V); |
| 2560 | ReplaceNode(F: Node, T: Extract.getNode()); |
| 2561 | return; |
| 2562 | } |
| 2563 | case RISCVISD::VMV_S_X_VL: |
| 2564 | case RISCVISD::VFMV_S_F_VL: |
| 2565 | case RISCVISD::VMV_V_X_VL: |
| 2566 | case RISCVISD::VFMV_V_F_VL: { |
| 2567 | // Try to match splat of a scalar load to a strided load with stride of x0. |
| 2568 | bool IsScalarMove = Node->getOpcode() == RISCVISD::VMV_S_X_VL || |
| 2569 | Node->getOpcode() == RISCVISD::VFMV_S_F_VL; |
| 2570 | if (!Node->getOperand(Num: 0).isUndef()) |
| 2571 | break; |
| 2572 | SDValue Src = Node->getOperand(Num: 1); |
| 2573 | auto *Ld = dyn_cast<LoadSDNode>(Val&: Src); |
| 2574 | // Can't fold load update node because the second |
| 2575 | // output is used so that load update node can't be removed. |
| 2576 | if (!Ld || Ld->isIndexed()) |
| 2577 | break; |
| 2578 | EVT MemVT = Ld->getMemoryVT(); |
| 2579 | // The memory VT should be the same size as the element type. |
| 2580 | if (MemVT.getStoreSize() != VT.getVectorElementType().getStoreSize()) |
| 2581 | break; |
| 2582 | if (!IsProfitableToFold(N: Src, U: Node, Root: Node) || |
| 2583 | !IsLegalToFold(N: Src, U: Node, Root: Node, OptLevel: TM.getOptLevel())) |
| 2584 | break; |
| 2585 | |
| 2586 | SDValue VL; |
| 2587 | if (IsScalarMove) { |
| 2588 | // We could deal with more VL if we update the VSETVLI insert pass to |
| 2589 | // avoid introducing more VSETVLI. |
| 2590 | if (!isOneConstant(V: Node->getOperand(Num: 2))) |
| 2591 | break; |
| 2592 | selectVLOp(N: Node->getOperand(Num: 2), VL); |
| 2593 | } else |
| 2594 | selectVLOp(N: Node->getOperand(Num: 2), VL); |
| 2595 | |
| 2596 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2597 | SDValue SEW = CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: XLenVT); |
| 2598 | |
| 2599 | // If VL=1, then we don't need to do a strided load and can just do a |
| 2600 | // regular load. |
| 2601 | bool IsStrided = !isOneConstant(V: VL); |
| 2602 | |
| 2603 | // Only do a strided load if we have optimized zero-stride vector load. |
| 2604 | if (IsStrided && !Subtarget->hasOptimizedZeroStrideLoad()) |
| 2605 | break; |
| 2606 | |
| 2607 | SmallVector<SDValue> Operands = { |
| 2608 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT), 0), |
| 2609 | Ld->getBasePtr()}; |
| 2610 | if (IsStrided) |
| 2611 | Operands.push_back(Elt: CurDAG->getRegister(Reg: RISCV::X0, VT: XLenVT)); |
| 2612 | uint64_t Policy = RISCVVType::MASK_AGNOSTIC | RISCVVType::TAIL_AGNOSTIC; |
| 2613 | SDValue PolicyOp = CurDAG->getTargetConstant(Val: Policy, DL, VT: XLenVT); |
| 2614 | Operands.append(IL: {VL, SEW, PolicyOp, Ld->getChain()}); |
| 2615 | |
| 2616 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2617 | const RISCV::VLEPseudo *P = RISCV::getVLEPseudo( |
| 2618 | /*IsMasked*/ Masked: false, Strided: IsStrided, /*FF*/ false, |
| 2619 | Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2620 | MachineSDNode *Load = |
| 2621 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, ResultTys: {VT, MVT::Other}, Ops: Operands); |
| 2622 | // Update the chain. |
| 2623 | ReplaceUses(F: Src.getValue(R: 1), T: SDValue(Load, 1)); |
| 2624 | // Record the mem-refs |
| 2625 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {Ld->getMemOperand()}); |
| 2626 | // Replace the splat with the vlse. |
| 2627 | ReplaceNode(F: Node, T: Load); |
| 2628 | return; |
| 2629 | } |
| 2630 | case ISD::PREFETCH: |
| 2631 | unsigned Locality = Node->getConstantOperandVal(Num: 3); |
| 2632 | if (Locality > 2) |
| 2633 | break; |
| 2634 | |
| 2635 | if (auto *LoadStoreMem = dyn_cast<MemSDNode>(Val: Node)) { |
| 2636 | MachineMemOperand *MMO = LoadStoreMem->getMemOperand(); |
| 2637 | MMO->setFlags(MachineMemOperand::MONonTemporal); |
| 2638 | |
| 2639 | int NontemporalLevel = 0; |
| 2640 | switch (Locality) { |
| 2641 | case 0: |
| 2642 | NontemporalLevel = 3; // NTL.ALL |
| 2643 | break; |
| 2644 | case 1: |
| 2645 | NontemporalLevel = 1; // NTL.PALL |
| 2646 | break; |
| 2647 | case 2: |
| 2648 | NontemporalLevel = 0; // NTL.P1 |
| 2649 | break; |
| 2650 | default: |
| 2651 | llvm_unreachable("unexpected locality value." ); |
| 2652 | } |
| 2653 | |
| 2654 | if (NontemporalLevel & 0b1) |
| 2655 | MMO->setFlags(MONontemporalBit0); |
| 2656 | if (NontemporalLevel & 0b10) |
| 2657 | MMO->setFlags(MONontemporalBit1); |
| 2658 | } |
| 2659 | break; |
| 2660 | } |
| 2661 | |
| 2662 | // Select the default instruction. |
| 2663 | SelectCode(N: Node); |
| 2664 | } |
| 2665 | |
| 2666 | bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 2667 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 2668 | std::vector<SDValue> &OutOps) { |
| 2669 | // Always produce a register and immediate operand, as expected by |
| 2670 | // RISCVAsmPrinter::PrintAsmMemoryOperand. |
| 2671 | switch (ConstraintID) { |
| 2672 | case InlineAsm::ConstraintCode::o: |
| 2673 | case InlineAsm::ConstraintCode::m: { |
| 2674 | SDValue Op0, Op1; |
| 2675 | [[maybe_unused]] bool Found = SelectAddrRegImm(Addr: Op, Base&: Op0, Offset&: Op1); |
| 2676 | assert(Found && "SelectAddrRegImm should always succeed" ); |
| 2677 | OutOps.push_back(x: Op0); |
| 2678 | OutOps.push_back(x: Op1); |
| 2679 | return false; |
| 2680 | } |
| 2681 | case InlineAsm::ConstraintCode::A: |
| 2682 | OutOps.push_back(x: Op); |
| 2683 | OutOps.push_back( |
| 2684 | x: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Op), VT: Subtarget->getXLenVT())); |
| 2685 | return false; |
| 2686 | default: |
| 2687 | report_fatal_error(reason: "Unexpected asm memory constraint " + |
| 2688 | InlineAsm::getMemConstraintName(C: ConstraintID)); |
| 2689 | } |
| 2690 | |
| 2691 | return true; |
| 2692 | } |
| 2693 | |
| 2694 | bool RISCVDAGToDAGISel::SelectAddrFrameIndex(SDValue Addr, SDValue &Base, |
| 2695 | SDValue &Offset) { |
| 2696 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Addr)) { |
| 2697 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT: Subtarget->getXLenVT()); |
| 2698 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: Subtarget->getXLenVT()); |
| 2699 | return true; |
| 2700 | } |
| 2701 | |
| 2702 | return false; |
| 2703 | } |
| 2704 | |
| 2705 | // Fold constant addresses. |
| 2706 | static bool selectConstantAddr(SelectionDAG *CurDAG, const SDLoc &DL, |
| 2707 | const MVT VT, const RISCVSubtarget *Subtarget, |
| 2708 | SDValue Addr, SDValue &Base, SDValue &Offset, |
| 2709 | bool IsPrefetch = false) { |
| 2710 | if (!isa<ConstantSDNode>(Val: Addr)) |
| 2711 | return false; |
| 2712 | |
| 2713 | int64_t CVal = cast<ConstantSDNode>(Val&: Addr)->getSExtValue(); |
| 2714 | |
| 2715 | // If the constant is a simm12, we can fold the whole constant and use X0 as |
| 2716 | // the base. If the constant can be materialized with LUI+simm12, use LUI as |
| 2717 | // the base. We can't use generateInstSeq because it favors LUI+ADDIW. |
| 2718 | int64_t Lo12 = SignExtend64<12>(x: CVal); |
| 2719 | int64_t Hi = (uint64_t)CVal - (uint64_t)Lo12; |
| 2720 | if (!Subtarget->is64Bit() || isInt<32>(x: Hi)) { |
| 2721 | if (IsPrefetch && (Lo12 & 0b11111) != 0) |
| 2722 | return false; |
| 2723 | if (Hi) { |
| 2724 | int64_t Hi20 = (Hi >> 12) & 0xfffff; |
| 2725 | Base = SDValue( |
| 2726 | CurDAG->getMachineNode(Opcode: RISCV::LUI, dl: DL, VT, |
| 2727 | Op1: CurDAG->getTargetConstant(Val: Hi20, DL, VT)), |
| 2728 | 0); |
| 2729 | } else { |
| 2730 | Base = CurDAG->getRegister(Reg: RISCV::X0, VT); |
| 2731 | } |
| 2732 | Offset = CurDAG->getSignedTargetConstant(Val: Lo12, DL, VT); |
| 2733 | return true; |
| 2734 | } |
| 2735 | |
| 2736 | // Ask how constant materialization would handle this constant. |
| 2737 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val: CVal, STI: *Subtarget); |
| 2738 | |
| 2739 | // If the last instruction would be an ADDI, we can fold its immediate and |
| 2740 | // emit the rest of the sequence as the base. |
| 2741 | if (Seq.back().getOpcode() != RISCV::ADDI) |
| 2742 | return false; |
| 2743 | Lo12 = Seq.back().getImm(); |
| 2744 | if (IsPrefetch && (Lo12 & 0b11111) != 0) |
| 2745 | return false; |
| 2746 | |
| 2747 | // Drop the last instruction. |
| 2748 | Seq.pop_back(); |
| 2749 | assert(!Seq.empty() && "Expected more instructions in sequence" ); |
| 2750 | |
| 2751 | Base = selectImmSeq(CurDAG, DL, VT, Seq); |
| 2752 | Offset = CurDAG->getSignedTargetConstant(Val: Lo12, DL, VT); |
| 2753 | return true; |
| 2754 | } |
| 2755 | |
| 2756 | // Is this ADD instruction only used as the base pointer of scalar loads and |
| 2757 | // stores? |
| 2758 | static bool isWorthFoldingAdd(SDValue Add) { |
| 2759 | for (auto *User : Add->users()) { |
| 2760 | if (User->getOpcode() != ISD::LOAD && User->getOpcode() != ISD::STORE && |
| 2761 | User->getOpcode() != ISD::ATOMIC_LOAD && |
| 2762 | User->getOpcode() != ISD::ATOMIC_STORE) |
| 2763 | return false; |
| 2764 | EVT VT = cast<MemSDNode>(Val: User)->getMemoryVT(); |
| 2765 | if (!VT.isScalarInteger() && VT != MVT::f16 && VT != MVT::f32 && |
| 2766 | VT != MVT::f64) |
| 2767 | return false; |
| 2768 | // Don't allow stores of the value. It must be used as the address. |
| 2769 | if (User->getOpcode() == ISD::STORE && |
| 2770 | cast<StoreSDNode>(Val: User)->getValue() == Add) |
| 2771 | return false; |
| 2772 | if (User->getOpcode() == ISD::ATOMIC_STORE && |
| 2773 | cast<AtomicSDNode>(Val: User)->getVal() == Add) |
| 2774 | return false; |
| 2775 | if (isStrongerThanMonotonic(AO: cast<MemSDNode>(Val: User)->getSuccessOrdering())) |
| 2776 | return false; |
| 2777 | } |
| 2778 | |
| 2779 | return true; |
| 2780 | } |
| 2781 | |
| 2782 | bool RISCVDAGToDAGISel::SelectAddrRegRegScale(SDValue Addr, |
| 2783 | unsigned MaxShiftAmount, |
| 2784 | SDValue &Base, SDValue &Index, |
| 2785 | SDValue &Scale) { |
| 2786 | EVT VT = Addr.getSimpleValueType(); |
| 2787 | auto UnwrapShl = [this, VT, MaxShiftAmount](SDValue N, SDValue &Index, |
| 2788 | SDValue &Shift) { |
| 2789 | uint64_t ShiftAmt = 0; |
| 2790 | Index = N; |
| 2791 | |
| 2792 | if (N.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 2793 | // Only match shifts by a value in range [0, MaxShiftAmount]. |
| 2794 | if (N.getConstantOperandVal(i: 1) <= MaxShiftAmount) { |
| 2795 | Index = N.getOperand(i: 0); |
| 2796 | ShiftAmt = N.getConstantOperandVal(i: 1); |
| 2797 | } |
| 2798 | } |
| 2799 | |
| 2800 | Shift = CurDAG->getTargetConstant(Val: ShiftAmt, DL: SDLoc(N), VT); |
| 2801 | return ShiftAmt != 0; |
| 2802 | }; |
| 2803 | |
| 2804 | if (Addr.getOpcode() == ISD::ADD) { |
| 2805 | if (auto *C1 = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))) { |
| 2806 | SDValue AddrB = Addr.getOperand(i: 0); |
| 2807 | if (AddrB.getOpcode() == ISD::ADD && |
| 2808 | UnwrapShl(AddrB.getOperand(i: 0), Index, Scale) && |
| 2809 | !isa<ConstantSDNode>(Val: AddrB.getOperand(i: 1)) && |
| 2810 | isInt<12>(x: C1->getSExtValue())) { |
| 2811 | // (add (add (shl A C2) B) C1) -> (add (add B C1) (shl A C2)) |
| 2812 | SDValue C1Val = |
| 2813 | CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL: SDLoc(Addr), VT); |
| 2814 | Base = SDValue(CurDAG->getMachineNode(Opcode: RISCV::ADDI, dl: SDLoc(Addr), VT, |
| 2815 | Op1: AddrB.getOperand(i: 1), Op2: C1Val), |
| 2816 | 0); |
| 2817 | return true; |
| 2818 | } |
| 2819 | } else if (UnwrapShl(Addr.getOperand(i: 0), Index, Scale)) { |
| 2820 | Base = Addr.getOperand(i: 1); |
| 2821 | return true; |
| 2822 | } else { |
| 2823 | UnwrapShl(Addr.getOperand(i: 1), Index, Scale); |
| 2824 | Base = Addr.getOperand(i: 0); |
| 2825 | return true; |
| 2826 | } |
| 2827 | } |
| 2828 | |
| 2829 | return false; |
| 2830 | } |
| 2831 | |
| 2832 | bool RISCVDAGToDAGISel::SelectAddrRegImm(SDValue Addr, SDValue &Base, |
| 2833 | SDValue &Offset) { |
| 2834 | if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| 2835 | return true; |
| 2836 | |
| 2837 | SDLoc DL(Addr); |
| 2838 | MVT VT = Addr.getSimpleValueType(); |
| 2839 | |
| 2840 | if (Addr.getOpcode() == RISCVISD::ADD_LO) { |
| 2841 | Base = Addr.getOperand(i: 0); |
| 2842 | Offset = Addr.getOperand(i: 1); |
| 2843 | return true; |
| 2844 | } |
| 2845 | |
| 2846 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 2847 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 2848 | if (isInt<12>(x: CVal) && isInt<12>(x: CVal)) { |
| 2849 | Base = Addr.getOperand(i: 0); |
| 2850 | if (Base.getOpcode() == RISCVISD::ADD_LO) { |
| 2851 | SDValue LoOperand = Base.getOperand(i: 1); |
| 2852 | if (auto *GA = dyn_cast<GlobalAddressSDNode>(Val&: LoOperand)) { |
| 2853 | // If the Lo in (ADD_LO hi, lo) is a global variable's address |
| 2854 | // (its low part, really), then we can rely on the alignment of that |
| 2855 | // variable to provide a margin of safety before low part can overflow |
| 2856 | // the 12 bits of the load/store offset. Check if CVal falls within |
| 2857 | // that margin; if so (low part + CVal) can't overflow. |
| 2858 | const DataLayout &DL = CurDAG->getDataLayout(); |
| 2859 | Align Alignment = commonAlignment( |
| 2860 | A: GA->getGlobal()->getPointerAlignment(DL), Offset: GA->getOffset()); |
| 2861 | if ((CVal == 0 || Alignment > CVal)) { |
| 2862 | int64_t CombinedOffset = CVal + GA->getOffset(); |
| 2863 | Base = Base.getOperand(i: 0); |
| 2864 | Offset = CurDAG->getTargetGlobalAddress( |
| 2865 | GV: GA->getGlobal(), DL: SDLoc(LoOperand), VT: LoOperand.getValueType(), |
| 2866 | offset: CombinedOffset, TargetFlags: GA->getTargetFlags()); |
| 2867 | return true; |
| 2868 | } |
| 2869 | } |
| 2870 | } |
| 2871 | |
| 2872 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Base)) |
| 2873 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT); |
| 2874 | Offset = CurDAG->getSignedTargetConstant(Val: CVal, DL, VT); |
| 2875 | return true; |
| 2876 | } |
| 2877 | } |
| 2878 | |
| 2879 | // Handle ADD with large immediates. |
| 2880 | if (Addr.getOpcode() == ISD::ADD && isa<ConstantSDNode>(Val: Addr.getOperand(i: 1))) { |
| 2881 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 2882 | assert(!(isInt<12>(CVal) && isInt<12>(CVal)) && |
| 2883 | "simm12 not already handled?" ); |
| 2884 | |
| 2885 | // Handle immediates in the range [-4096,-2049] or [2048, 4094]. We can use |
| 2886 | // an ADDI for part of the offset and fold the rest into the load/store. |
| 2887 | // This mirrors the AddiPair PatFrag in RISCVInstrInfo.td. |
| 2888 | if (CVal >= -4096 && CVal <= 4094) { |
| 2889 | int64_t Adj = CVal < 0 ? -2048 : 2047; |
| 2890 | Base = SDValue( |
| 2891 | CurDAG->getMachineNode(Opcode: RISCV::ADDI, dl: DL, VT, Op1: Addr.getOperand(i: 0), |
| 2892 | Op2: CurDAG->getSignedTargetConstant(Val: Adj, DL, VT)), |
| 2893 | 0); |
| 2894 | Offset = CurDAG->getSignedTargetConstant(Val: CVal - Adj, DL, VT); |
| 2895 | return true; |
| 2896 | } |
| 2897 | |
| 2898 | // For larger immediates, we might be able to save one instruction from |
| 2899 | // constant materialization by folding the Lo12 bits of the immediate into |
| 2900 | // the address. We should only do this if the ADD is only used by loads and |
| 2901 | // stores that can fold the lo12 bits. Otherwise, the ADD will get iseled |
| 2902 | // separately with the full materialized immediate creating extra |
| 2903 | // instructions. |
| 2904 | if (isWorthFoldingAdd(Add: Addr) && |
| 2905 | selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr: Addr.getOperand(i: 1), Base, |
| 2906 | Offset, /*IsPrefetch=*/false)) { |
| 2907 | // Insert an ADD instruction with the materialized Hi52 bits. |
| 2908 | Base = SDValue( |
| 2909 | CurDAG->getMachineNode(Opcode: RISCV::ADD, dl: DL, VT, Op1: Addr.getOperand(i: 0), Op2: Base), |
| 2910 | 0); |
| 2911 | return true; |
| 2912 | } |
| 2913 | } |
| 2914 | |
| 2915 | if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr, Base, Offset, |
| 2916 | /*IsPrefetch=*/false)) |
| 2917 | return true; |
| 2918 | |
| 2919 | Base = Addr; |
| 2920 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 2921 | return true; |
| 2922 | } |
| 2923 | |
| 2924 | /// Similar to SelectAddrRegImm, except that the offset restricted for |
| 2925 | /// unsinged nine bits. |
| 2926 | bool RISCVDAGToDAGISel::SelectAddrRegImm9(SDValue Addr, SDValue &Base, |
| 2927 | SDValue &Offset) { |
| 2928 | if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| 2929 | return true; |
| 2930 | |
| 2931 | SDLoc DL(Addr); |
| 2932 | MVT VT = Addr.getSimpleValueType(); |
| 2933 | |
| 2934 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 2935 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 2936 | if (isUInt<9>(x: CVal)) { |
| 2937 | Base = Addr.getOperand(i: 0); |
| 2938 | |
| 2939 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Base)) |
| 2940 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT); |
| 2941 | Offset = CurDAG->getSignedTargetConstant(Val: CVal, DL, VT); |
| 2942 | return true; |
| 2943 | } |
| 2944 | } |
| 2945 | |
| 2946 | Base = Addr; |
| 2947 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 2948 | return true; |
| 2949 | } |
| 2950 | |
| 2951 | /// Similar to SelectAddrRegImm, except that the least significant 5 bits of |
| 2952 | /// Offset should be all zeros. |
| 2953 | bool RISCVDAGToDAGISel::SelectAddrRegImmLsb00000(SDValue Addr, SDValue &Base, |
| 2954 | SDValue &Offset) { |
| 2955 | if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| 2956 | return true; |
| 2957 | |
| 2958 | SDLoc DL(Addr); |
| 2959 | MVT VT = Addr.getSimpleValueType(); |
| 2960 | |
| 2961 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 2962 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 2963 | if (isInt<12>(x: CVal)) { |
| 2964 | Base = Addr.getOperand(i: 0); |
| 2965 | |
| 2966 | // Early-out if not a valid offset. |
| 2967 | if ((CVal & 0b11111) != 0) { |
| 2968 | Base = Addr; |
| 2969 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 2970 | return true; |
| 2971 | } |
| 2972 | |
| 2973 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Base)) |
| 2974 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT); |
| 2975 | Offset = CurDAG->getSignedTargetConstant(Val: CVal, DL, VT); |
| 2976 | return true; |
| 2977 | } |
| 2978 | } |
| 2979 | |
| 2980 | // Handle ADD with large immediates. |
| 2981 | if (Addr.getOpcode() == ISD::ADD && isa<ConstantSDNode>(Val: Addr.getOperand(i: 1))) { |
| 2982 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 2983 | assert(!isInt<12>(CVal) && "simm12 not already handled?" ); |
| 2984 | |
| 2985 | // Handle immediates in the range [-4096,-2049] or [2017, 4065]. We can save |
| 2986 | // one instruction by folding adjustment (-2048 or 2016) into the address. |
| 2987 | if ((-2049 >= CVal && CVal >= -4096) || (4065 >= CVal && CVal >= 2017)) { |
| 2988 | int64_t Adj = CVal < 0 ? -2048 : 2016; |
| 2989 | int64_t AdjustedOffset = CVal - Adj; |
| 2990 | Base = |
| 2991 | SDValue(CurDAG->getMachineNode( |
| 2992 | Opcode: RISCV::ADDI, dl: DL, VT, Op1: Addr.getOperand(i: 0), |
| 2993 | Op2: CurDAG->getSignedTargetConstant(Val: AdjustedOffset, DL, VT)), |
| 2994 | 0); |
| 2995 | Offset = CurDAG->getSignedTargetConstant(Val: Adj, DL, VT); |
| 2996 | return true; |
| 2997 | } |
| 2998 | |
| 2999 | if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr: Addr.getOperand(i: 1), Base, |
| 3000 | Offset, /*IsPrefetch=*/true)) { |
| 3001 | // Insert an ADD instruction with the materialized Hi52 bits. |
| 3002 | Base = SDValue( |
| 3003 | CurDAG->getMachineNode(Opcode: RISCV::ADD, dl: DL, VT, Op1: Addr.getOperand(i: 0), Op2: Base), |
| 3004 | 0); |
| 3005 | return true; |
| 3006 | } |
| 3007 | } |
| 3008 | |
| 3009 | if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr, Base, Offset, |
| 3010 | /*IsPrefetch=*/true)) |
| 3011 | return true; |
| 3012 | |
| 3013 | Base = Addr; |
| 3014 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 3015 | return true; |
| 3016 | } |
| 3017 | |
| 3018 | bool RISCVDAGToDAGISel::SelectAddrRegReg(SDValue Addr, SDValue &Base, |
| 3019 | SDValue &Offset) { |
| 3020 | if (Addr.getOpcode() != ISD::ADD) |
| 3021 | return false; |
| 3022 | |
| 3023 | if (isa<ConstantSDNode>(Val: Addr.getOperand(i: 1))) |
| 3024 | return false; |
| 3025 | |
| 3026 | Base = Addr.getOperand(i: 0); |
| 3027 | Offset = Addr.getOperand(i: 1); |
| 3028 | return true; |
| 3029 | } |
| 3030 | |
| 3031 | bool RISCVDAGToDAGISel::selectShiftMask(SDValue N, unsigned ShiftWidth, |
| 3032 | SDValue &ShAmt) { |
| 3033 | ShAmt = N; |
| 3034 | |
| 3035 | // Peek through zext. |
| 3036 | if (ShAmt->getOpcode() == ISD::ZERO_EXTEND) |
| 3037 | ShAmt = ShAmt.getOperand(i: 0); |
| 3038 | |
| 3039 | // Shift instructions on RISC-V only read the lower 5 or 6 bits of the shift |
| 3040 | // amount. If there is an AND on the shift amount, we can bypass it if it |
| 3041 | // doesn't affect any of those bits. |
| 3042 | if (ShAmt.getOpcode() == ISD::AND && |
| 3043 | isa<ConstantSDNode>(Val: ShAmt.getOperand(i: 1))) { |
| 3044 | const APInt &AndMask = ShAmt.getConstantOperandAPInt(i: 1); |
| 3045 | |
| 3046 | // Since the max shift amount is a power of 2 we can subtract 1 to make a |
| 3047 | // mask that covers the bits needed to represent all shift amounts. |
| 3048 | assert(isPowerOf2_32(ShiftWidth) && "Unexpected max shift amount!" ); |
| 3049 | APInt ShMask(AndMask.getBitWidth(), ShiftWidth - 1); |
| 3050 | |
| 3051 | if (ShMask.isSubsetOf(RHS: AndMask)) { |
| 3052 | ShAmt = ShAmt.getOperand(i: 0); |
| 3053 | } else { |
| 3054 | // SimplifyDemandedBits may have optimized the mask so try restoring any |
| 3055 | // bits that are known zero. |
| 3056 | KnownBits Known = CurDAG->computeKnownBits(Op: ShAmt.getOperand(i: 0)); |
| 3057 | if (!ShMask.isSubsetOf(RHS: AndMask | Known.Zero)) |
| 3058 | return true; |
| 3059 | ShAmt = ShAmt.getOperand(i: 0); |
| 3060 | } |
| 3061 | } |
| 3062 | |
| 3063 | if (ShAmt.getOpcode() == ISD::ADD && |
| 3064 | isa<ConstantSDNode>(Val: ShAmt.getOperand(i: 1))) { |
| 3065 | uint64_t Imm = ShAmt.getConstantOperandVal(i: 1); |
| 3066 | // If we are shifting by X+N where N == 0 mod Size, then just shift by X |
| 3067 | // to avoid the ADD. |
| 3068 | if (Imm != 0 && Imm % ShiftWidth == 0) { |
| 3069 | ShAmt = ShAmt.getOperand(i: 0); |
| 3070 | return true; |
| 3071 | } |
| 3072 | } else if (ShAmt.getOpcode() == ISD::SUB && |
| 3073 | isa<ConstantSDNode>(Val: ShAmt.getOperand(i: 0))) { |
| 3074 | uint64_t Imm = ShAmt.getConstantOperandVal(i: 0); |
| 3075 | // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to |
| 3076 | // generate a NEG instead of a SUB of a constant. |
| 3077 | if (Imm != 0 && Imm % ShiftWidth == 0) { |
| 3078 | SDLoc DL(ShAmt); |
| 3079 | EVT VT = ShAmt.getValueType(); |
| 3080 | SDValue Zero = CurDAG->getRegister(Reg: RISCV::X0, VT); |
| 3081 | unsigned NegOpc = VT == MVT::i64 ? RISCV::SUBW : RISCV::SUB; |
| 3082 | MachineSDNode *Neg = CurDAG->getMachineNode(Opcode: NegOpc, dl: DL, VT, Op1: Zero, |
| 3083 | Op2: ShAmt.getOperand(i: 1)); |
| 3084 | ShAmt = SDValue(Neg, 0); |
| 3085 | return true; |
| 3086 | } |
| 3087 | // If we are shifting by N-X where N == -1 mod Size, then just shift by ~X |
| 3088 | // to generate a NOT instead of a SUB of a constant. |
| 3089 | if (Imm % ShiftWidth == ShiftWidth - 1) { |
| 3090 | SDLoc DL(ShAmt); |
| 3091 | EVT VT = ShAmt.getValueType(); |
| 3092 | MachineSDNode *Not = CurDAG->getMachineNode( |
| 3093 | Opcode: RISCV::XORI, dl: DL, VT, Op1: ShAmt.getOperand(i: 1), |
| 3094 | Op2: CurDAG->getAllOnesConstant(DL, VT, /*isTarget=*/IsTarget: true)); |
| 3095 | ShAmt = SDValue(Not, 0); |
| 3096 | return true; |
| 3097 | } |
| 3098 | } |
| 3099 | |
| 3100 | return true; |
| 3101 | } |
| 3102 | |
| 3103 | /// RISC-V doesn't have general instructions for integer setne/seteq, but we can |
| 3104 | /// check for equality with 0. This function emits instructions that convert the |
| 3105 | /// seteq/setne into something that can be compared with 0. |
| 3106 | /// \p ExpectedCCVal indicates the condition code to attempt to match (e.g. |
| 3107 | /// ISD::SETNE). |
| 3108 | bool RISCVDAGToDAGISel::selectSETCC(SDValue N, ISD::CondCode ExpectedCCVal, |
| 3109 | SDValue &Val) { |
| 3110 | assert(ISD::isIntEqualitySetCC(ExpectedCCVal) && |
| 3111 | "Unexpected condition code!" ); |
| 3112 | |
| 3113 | // We're looking for a setcc. |
| 3114 | if (N->getOpcode() != ISD::SETCC) |
| 3115 | return false; |
| 3116 | |
| 3117 | // Must be an equality comparison. |
| 3118 | ISD::CondCode CCVal = cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get(); |
| 3119 | if (CCVal != ExpectedCCVal) |
| 3120 | return false; |
| 3121 | |
| 3122 | SDValue LHS = N->getOperand(Num: 0); |
| 3123 | SDValue RHS = N->getOperand(Num: 1); |
| 3124 | |
| 3125 | if (!LHS.getValueType().isScalarInteger()) |
| 3126 | return false; |
| 3127 | |
| 3128 | // If the RHS side is 0, we don't need any extra instructions, return the LHS. |
| 3129 | if (isNullConstant(V: RHS)) { |
| 3130 | Val = LHS; |
| 3131 | return true; |
| 3132 | } |
| 3133 | |
| 3134 | SDLoc DL(N); |
| 3135 | |
| 3136 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 3137 | int64_t CVal = C->getSExtValue(); |
| 3138 | // If the RHS is -2048, we can use xori to produce 0 if the LHS is -2048 and |
| 3139 | // non-zero otherwise. |
| 3140 | if (CVal == -2048) { |
| 3141 | Val = SDValue( |
| 3142 | CurDAG->getMachineNode( |
| 3143 | Opcode: RISCV::XORI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3144 | Op2: CurDAG->getSignedTargetConstant(Val: CVal, DL, VT: N->getValueType(ResNo: 0))), |
| 3145 | 0); |
| 3146 | return true; |
| 3147 | } |
| 3148 | // If the RHS is [-2047,2048], we can use addi with -RHS to produce 0 if the |
| 3149 | // LHS is equal to the RHS and non-zero otherwise. |
| 3150 | if (isInt<12>(x: CVal) || CVal == 2048) { |
| 3151 | Val = SDValue( |
| 3152 | CurDAG->getMachineNode( |
| 3153 | Opcode: RISCV::ADDI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3154 | Op2: CurDAG->getSignedTargetConstant(Val: -CVal, DL, VT: N->getValueType(ResNo: 0))), |
| 3155 | 0); |
| 3156 | return true; |
| 3157 | } |
| 3158 | if (isPowerOf2_64(Value: CVal) && Subtarget->hasStdExtZbs()) { |
| 3159 | Val = SDValue( |
| 3160 | CurDAG->getMachineNode( |
| 3161 | Opcode: RISCV::BINVI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3162 | Op2: CurDAG->getTargetConstant(Val: Log2_64(Value: CVal), DL, VT: N->getValueType(ResNo: 0))), |
| 3163 | 0); |
| 3164 | return true; |
| 3165 | } |
| 3166 | // Same as the addi case above but for larger immediates (signed 26-bit) use |
| 3167 | // the QC_E_ADDI instruction from the Xqcilia extension, if available. Avoid |
| 3168 | // anything which can be done with a single lui as it might be compressible. |
| 3169 | if (Subtarget->hasVendorXqcilia() && isInt<26>(x: CVal) && |
| 3170 | (CVal & 0xFFF) != 0) { |
| 3171 | Val = SDValue( |
| 3172 | CurDAG->getMachineNode( |
| 3173 | Opcode: RISCV::QC_E_ADDI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3174 | Op2: CurDAG->getSignedTargetConstant(Val: -CVal, DL, VT: N->getValueType(ResNo: 0))), |
| 3175 | 0); |
| 3176 | return true; |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | // If nothing else we can XOR the LHS and RHS to produce zero if they are |
| 3181 | // equal and a non-zero value if they aren't. |
| 3182 | Val = SDValue( |
| 3183 | CurDAG->getMachineNode(Opcode: RISCV::XOR, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, Op2: RHS), 0); |
| 3184 | return true; |
| 3185 | } |
| 3186 | |
| 3187 | bool RISCVDAGToDAGISel::selectSExtBits(SDValue N, unsigned Bits, SDValue &Val) { |
| 3188 | if (N.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 3189 | cast<VTSDNode>(Val: N.getOperand(i: 1))->getVT().getSizeInBits() == Bits) { |
| 3190 | Val = N.getOperand(i: 0); |
| 3191 | return true; |
| 3192 | } |
| 3193 | |
| 3194 | auto UnwrapShlSra = [](SDValue N, unsigned ShiftAmt) { |
| 3195 | if (N.getOpcode() != ISD::SRA || !isa<ConstantSDNode>(Val: N.getOperand(i: 1))) |
| 3196 | return N; |
| 3197 | |
| 3198 | SDValue N0 = N.getOperand(i: 0); |
| 3199 | if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 3200 | N.getConstantOperandVal(i: 1) == ShiftAmt && |
| 3201 | N0.getConstantOperandVal(i: 1) == ShiftAmt) |
| 3202 | return N0.getOperand(i: 0); |
| 3203 | |
| 3204 | return N; |
| 3205 | }; |
| 3206 | |
| 3207 | MVT VT = N.getSimpleValueType(); |
| 3208 | if (CurDAG->ComputeNumSignBits(Op: N) > (VT.getSizeInBits() - Bits)) { |
| 3209 | Val = UnwrapShlSra(N, VT.getSizeInBits() - Bits); |
| 3210 | return true; |
| 3211 | } |
| 3212 | |
| 3213 | return false; |
| 3214 | } |
| 3215 | |
| 3216 | bool RISCVDAGToDAGISel::selectZExtBits(SDValue N, unsigned Bits, SDValue &Val) { |
| 3217 | if (N.getOpcode() == ISD::AND) { |
| 3218 | auto *C = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 3219 | if (C && C->getZExtValue() == maskTrailingOnes<uint64_t>(N: Bits)) { |
| 3220 | Val = N.getOperand(i: 0); |
| 3221 | return true; |
| 3222 | } |
| 3223 | } |
| 3224 | MVT VT = N.getSimpleValueType(); |
| 3225 | APInt Mask = APInt::getBitsSetFrom(numBits: VT.getSizeInBits(), loBit: Bits); |
| 3226 | if (CurDAG->MaskedValueIsZero(Op: N, Mask)) { |
| 3227 | Val = N; |
| 3228 | return true; |
| 3229 | } |
| 3230 | |
| 3231 | return false; |
| 3232 | } |
| 3233 | |
| 3234 | /// Look for various patterns that can be done with a SHL that can be folded |
| 3235 | /// into a SHXADD. \p ShAmt contains 1, 2, or 3 and is set based on which |
| 3236 | /// SHXADD we are trying to match. |
| 3237 | bool RISCVDAGToDAGISel::selectSHXADDOp(SDValue N, unsigned ShAmt, |
| 3238 | SDValue &Val) { |
| 3239 | if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 3240 | SDValue N0 = N.getOperand(i: 0); |
| 3241 | |
| 3242 | if (bool LeftShift = N0.getOpcode() == ISD::SHL; |
| 3243 | (LeftShift || N0.getOpcode() == ISD::SRL) && |
| 3244 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 3245 | uint64_t Mask = N.getConstantOperandVal(i: 1); |
| 3246 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 3247 | |
| 3248 | unsigned XLen = Subtarget->getXLen(); |
| 3249 | if (LeftShift) |
| 3250 | Mask &= maskTrailingZeros<uint64_t>(N: C2); |
| 3251 | else |
| 3252 | Mask &= maskTrailingOnes<uint64_t>(N: XLen - C2); |
| 3253 | |
| 3254 | if (isShiftedMask_64(Value: Mask)) { |
| 3255 | unsigned Leading = XLen - llvm::bit_width(Value: Mask); |
| 3256 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3257 | if (Trailing != ShAmt) |
| 3258 | return false; |
| 3259 | |
| 3260 | unsigned Opcode; |
| 3261 | // Look for (and (shl y, c2), c1) where c1 is a shifted mask with no |
| 3262 | // leading zeros and c3 trailing zeros. We can use an SRLI by c3-c2 |
| 3263 | // followed by a SHXADD with c3 for the X amount. |
| 3264 | if (LeftShift && Leading == 0 && C2 < Trailing) |
| 3265 | Opcode = RISCV::SRLI; |
| 3266 | // Look for (and (shl y, c2), c1) where c1 is a shifted mask with 32-c2 |
| 3267 | // leading zeros and c3 trailing zeros. We can use an SRLIW by c3-c2 |
| 3268 | // followed by a SHXADD with c3 for the X amount. |
| 3269 | else if (LeftShift && Leading == 32 - C2 && C2 < Trailing) |
| 3270 | Opcode = RISCV::SRLIW; |
| 3271 | // Look for (and (shr y, c2), c1) where c1 is a shifted mask with c2 |
| 3272 | // leading zeros and c3 trailing zeros. We can use an SRLI by c2+c3 |
| 3273 | // followed by a SHXADD using c3 for the X amount. |
| 3274 | else if (!LeftShift && Leading == C2) |
| 3275 | Opcode = RISCV::SRLI; |
| 3276 | // Look for (and (shr y, c2), c1) where c1 is a shifted mask with 32+c2 |
| 3277 | // leading zeros and c3 trailing zeros. We can use an SRLIW by c2+c3 |
| 3278 | // followed by a SHXADD using c3 for the X amount. |
| 3279 | else if (!LeftShift && Leading == 32 + C2) |
| 3280 | Opcode = RISCV::SRLIW; |
| 3281 | else |
| 3282 | return false; |
| 3283 | |
| 3284 | SDLoc DL(N); |
| 3285 | EVT VT = N.getValueType(); |
| 3286 | ShAmt = LeftShift ? Trailing - C2 : Trailing + C2; |
| 3287 | Val = SDValue( |
| 3288 | CurDAG->getMachineNode(Opcode, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3289 | Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)), |
| 3290 | 0); |
| 3291 | return true; |
| 3292 | } |
| 3293 | } else if (N0.getOpcode() == ISD::SRA && N0.hasOneUse() && |
| 3294 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 3295 | uint64_t Mask = N.getConstantOperandVal(i: 1); |
| 3296 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 3297 | |
| 3298 | // Look for (and (sra y, c2), c1) where c1 is a shifted mask with c3 |
| 3299 | // leading zeros and c4 trailing zeros. If c2 is greater than c3, we can |
| 3300 | // use (srli (srai y, c2 - c3), c3 + c4) followed by a SHXADD with c4 as |
| 3301 | // the X amount. |
| 3302 | if (isShiftedMask_64(Value: Mask)) { |
| 3303 | unsigned XLen = Subtarget->getXLen(); |
| 3304 | unsigned Leading = XLen - llvm::bit_width(Value: Mask); |
| 3305 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3306 | if (C2 > Leading && Leading > 0 && Trailing == ShAmt) { |
| 3307 | SDLoc DL(N); |
| 3308 | EVT VT = N.getValueType(); |
| 3309 | Val = SDValue(CurDAG->getMachineNode( |
| 3310 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3311 | Op2: CurDAG->getTargetConstant(Val: C2 - Leading, DL, VT)), |
| 3312 | 0); |
| 3313 | Val = SDValue(CurDAG->getMachineNode( |
| 3314 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: Val, |
| 3315 | Op2: CurDAG->getTargetConstant(Val: Leading + ShAmt, DL, VT)), |
| 3316 | 0); |
| 3317 | return true; |
| 3318 | } |
| 3319 | } |
| 3320 | } |
| 3321 | } else if (bool LeftShift = N.getOpcode() == ISD::SHL; |
| 3322 | (LeftShift || N.getOpcode() == ISD::SRL) && |
| 3323 | isa<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 3324 | SDValue N0 = N.getOperand(i: 0); |
| 3325 | if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && |
| 3326 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 3327 | uint64_t Mask = N0.getConstantOperandVal(i: 1); |
| 3328 | if (isShiftedMask_64(Value: Mask)) { |
| 3329 | unsigned C1 = N.getConstantOperandVal(i: 1); |
| 3330 | unsigned XLen = Subtarget->getXLen(); |
| 3331 | unsigned Leading = XLen - llvm::bit_width(Value: Mask); |
| 3332 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3333 | // Look for (shl (and X, Mask), C1) where Mask has 32 leading zeros and |
| 3334 | // C3 trailing zeros. If C1+C3==ShAmt we can use SRLIW+SHXADD. |
| 3335 | if (LeftShift && Leading == 32 && Trailing > 0 && |
| 3336 | (Trailing + C1) == ShAmt) { |
| 3337 | SDLoc DL(N); |
| 3338 | EVT VT = N.getValueType(); |
| 3339 | Val = SDValue(CurDAG->getMachineNode( |
| 3340 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3341 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)), |
| 3342 | 0); |
| 3343 | return true; |
| 3344 | } |
| 3345 | // Look for (srl (and X, Mask), C1) where Mask has 32 leading zeros and |
| 3346 | // C3 trailing zeros. If C3-C1==ShAmt we can use SRLIW+SHXADD. |
| 3347 | if (!LeftShift && Leading == 32 && Trailing > C1 && |
| 3348 | (Trailing - C1) == ShAmt) { |
| 3349 | SDLoc DL(N); |
| 3350 | EVT VT = N.getValueType(); |
| 3351 | Val = SDValue(CurDAG->getMachineNode( |
| 3352 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3353 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)), |
| 3354 | 0); |
| 3355 | return true; |
| 3356 | } |
| 3357 | } |
| 3358 | } |
| 3359 | } |
| 3360 | |
| 3361 | return false; |
| 3362 | } |
| 3363 | |
| 3364 | /// Look for various patterns that can be done with a SHL that can be folded |
| 3365 | /// into a SHXADD_UW. \p ShAmt contains 1, 2, or 3 and is set based on which |
| 3366 | /// SHXADD_UW we are trying to match. |
| 3367 | bool RISCVDAGToDAGISel::selectSHXADD_UWOp(SDValue N, unsigned ShAmt, |
| 3368 | SDValue &Val) { |
| 3369 | if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(Val: N.getOperand(i: 1)) && |
| 3370 | N.hasOneUse()) { |
| 3371 | SDValue N0 = N.getOperand(i: 0); |
| 3372 | if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 3373 | N0.hasOneUse()) { |
| 3374 | uint64_t Mask = N.getConstantOperandVal(i: 1); |
| 3375 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 3376 | |
| 3377 | Mask &= maskTrailingZeros<uint64_t>(N: C2); |
| 3378 | |
| 3379 | // Look for (and (shl y, c2), c1) where c1 is a shifted mask with |
| 3380 | // 32-ShAmt leading zeros and c2 trailing zeros. We can use SLLI by |
| 3381 | // c2-ShAmt followed by SHXADD_UW with ShAmt for the X amount. |
| 3382 | if (isShiftedMask_64(Value: Mask)) { |
| 3383 | unsigned Leading = llvm::countl_zero(Val: Mask); |
| 3384 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3385 | if (Leading == 32 - ShAmt && Trailing == C2 && Trailing > ShAmt) { |
| 3386 | SDLoc DL(N); |
| 3387 | EVT VT = N.getValueType(); |
| 3388 | Val = SDValue(CurDAG->getMachineNode( |
| 3389 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3390 | Op2: CurDAG->getTargetConstant(Val: C2 - ShAmt, DL, VT)), |
| 3391 | 0); |
| 3392 | return true; |
| 3393 | } |
| 3394 | } |
| 3395 | } |
| 3396 | } |
| 3397 | |
| 3398 | return false; |
| 3399 | } |
| 3400 | |
| 3401 | bool RISCVDAGToDAGISel::orIsAdd(const SDNode *N) const { |
| 3402 | if (N->getFlags().hasDisjoint()) |
| 3403 | return true; |
| 3404 | KnownBits Known0 = CurDAG->computeKnownBits(Op: N->getOperand(Num: 0), Depth: 0); |
| 3405 | KnownBits Known1 = CurDAG->computeKnownBits(Op: N->getOperand(Num: 1), Depth: 0); |
| 3406 | return KnownBits::haveNoCommonBitsSet(LHS: Known0, RHS: Known1); |
| 3407 | } |
| 3408 | |
| 3409 | bool RISCVDAGToDAGISel::selectImm64IfCheaper(int64_t Imm, int64_t OrigImm, |
| 3410 | SDValue N, SDValue &Val) { |
| 3411 | int OrigCost = RISCVMatInt::getIntMatCost(Val: APInt(64, OrigImm), Size: 64, STI: *Subtarget, |
| 3412 | /*CompressionCost=*/true); |
| 3413 | int Cost = RISCVMatInt::getIntMatCost(Val: APInt(64, Imm), Size: 64, STI: *Subtarget, |
| 3414 | /*CompressionCost=*/true); |
| 3415 | if (OrigCost <= Cost) |
| 3416 | return false; |
| 3417 | |
| 3418 | Val = selectImm(CurDAG, DL: SDLoc(N), VT: N->getSimpleValueType(ResNo: 0), Imm, Subtarget: *Subtarget); |
| 3419 | return true; |
| 3420 | } |
| 3421 | |
| 3422 | bool RISCVDAGToDAGISel::selectZExtImm32(SDValue N, SDValue &Val) { |
| 3423 | if (!isa<ConstantSDNode>(Val: N)) |
| 3424 | return false; |
| 3425 | int64_t Imm = cast<ConstantSDNode>(Val&: N)->getSExtValue(); |
| 3426 | if ((Imm >> 31) != 1) |
| 3427 | return false; |
| 3428 | |
| 3429 | for (const SDNode *U : N->users()) { |
| 3430 | switch (U->getOpcode()) { |
| 3431 | case ISD::ADD: |
| 3432 | break; |
| 3433 | case ISD::OR: |
| 3434 | if (orIsAdd(N: U)) |
| 3435 | break; |
| 3436 | return false; |
| 3437 | default: |
| 3438 | return false; |
| 3439 | } |
| 3440 | } |
| 3441 | |
| 3442 | return selectImm64IfCheaper(Imm: 0xffffffff00000000 | Imm, OrigImm: Imm, N, Val); |
| 3443 | } |
| 3444 | |
| 3445 | bool RISCVDAGToDAGISel::selectNegImm(SDValue N, SDValue &Val) { |
| 3446 | if (!isa<ConstantSDNode>(Val: N)) |
| 3447 | return false; |
| 3448 | int64_t Imm = cast<ConstantSDNode>(Val&: N)->getSExtValue(); |
| 3449 | if (isInt<32>(x: Imm)) |
| 3450 | return false; |
| 3451 | |
| 3452 | for (const SDNode *U : N->users()) { |
| 3453 | switch (U->getOpcode()) { |
| 3454 | case ISD::ADD: |
| 3455 | break; |
| 3456 | case RISCVISD::VMV_V_X_VL: |
| 3457 | if (!all_of(Range: U->users(), P: [](const SDNode *V) { |
| 3458 | return V->getOpcode() == ISD::ADD || |
| 3459 | V->getOpcode() == RISCVISD::ADD_VL; |
| 3460 | })) |
| 3461 | return false; |
| 3462 | break; |
| 3463 | default: |
| 3464 | return false; |
| 3465 | } |
| 3466 | } |
| 3467 | |
| 3468 | return selectImm64IfCheaper(Imm: -Imm, OrigImm: Imm, N, Val); |
| 3469 | } |
| 3470 | |
| 3471 | bool RISCVDAGToDAGISel::selectInvLogicImm(SDValue N, SDValue &Val) { |
| 3472 | if (!isa<ConstantSDNode>(Val: N)) |
| 3473 | return false; |
| 3474 | int64_t Imm = cast<ConstantSDNode>(Val&: N)->getSExtValue(); |
| 3475 | |
| 3476 | // For 32-bit signed constants, we can only substitute LUI+ADDI with LUI. |
| 3477 | if (isInt<32>(x: Imm) && ((Imm & 0xfff) != 0xfff || Imm == -1)) |
| 3478 | return false; |
| 3479 | |
| 3480 | // Abandon this transform if the constant is needed elsewhere. |
| 3481 | for (const SDNode *U : N->users()) { |
| 3482 | switch (U->getOpcode()) { |
| 3483 | case ISD::AND: |
| 3484 | case ISD::OR: |
| 3485 | case ISD::XOR: |
| 3486 | if (!(Subtarget->hasStdExtZbb() || Subtarget->hasStdExtZbkb())) |
| 3487 | return false; |
| 3488 | break; |
| 3489 | case RISCVISD::VMV_V_X_VL: |
| 3490 | if (!Subtarget->hasStdExtZvkb()) |
| 3491 | return false; |
| 3492 | if (!all_of(Range: U->users(), P: [](const SDNode *V) { |
| 3493 | return V->getOpcode() == ISD::AND || |
| 3494 | V->getOpcode() == RISCVISD::AND_VL; |
| 3495 | })) |
| 3496 | return false; |
| 3497 | break; |
| 3498 | default: |
| 3499 | return false; |
| 3500 | } |
| 3501 | } |
| 3502 | |
| 3503 | if (isInt<32>(x: Imm)) { |
| 3504 | Val = |
| 3505 | selectImm(CurDAG, DL: SDLoc(N), VT: N->getSimpleValueType(ResNo: 0), Imm: ~Imm, Subtarget: *Subtarget); |
| 3506 | return true; |
| 3507 | } |
| 3508 | |
| 3509 | // For 64-bit constants, the instruction sequences get complex, |
| 3510 | // so we select inverted only if it's cheaper. |
| 3511 | return selectImm64IfCheaper(Imm: ~Imm, OrigImm: Imm, N, Val); |
| 3512 | } |
| 3513 | |
| 3514 | static bool vectorPseudoHasAllNBitUsers(SDNode *User, unsigned UserOpNo, |
| 3515 | unsigned Bits, |
| 3516 | const TargetInstrInfo *TII) { |
| 3517 | unsigned MCOpcode = RISCV::getRVVMCOpcode(RVVPseudoOpcode: User->getMachineOpcode()); |
| 3518 | |
| 3519 | if (!MCOpcode) |
| 3520 | return false; |
| 3521 | |
| 3522 | const MCInstrDesc &MCID = TII->get(Opcode: User->getMachineOpcode()); |
| 3523 | const uint64_t TSFlags = MCID.TSFlags; |
| 3524 | if (!RISCVII::hasSEWOp(TSFlags)) |
| 3525 | return false; |
| 3526 | assert(RISCVII::hasVLOp(TSFlags)); |
| 3527 | |
| 3528 | unsigned ChainOpIdx = User->getNumOperands() - 1; |
| 3529 | bool HasChainOp = User->getOperand(Num: ChainOpIdx).getValueType() == MVT::Other; |
| 3530 | bool HasVecPolicyOp = RISCVII::hasVecPolicyOp(TSFlags); |
| 3531 | unsigned VLIdx = User->getNumOperands() - HasVecPolicyOp - HasChainOp - 2; |
| 3532 | const unsigned Log2SEW = User->getConstantOperandVal(Num: VLIdx + 1); |
| 3533 | |
| 3534 | if (UserOpNo == VLIdx) |
| 3535 | return false; |
| 3536 | |
| 3537 | auto NumDemandedBits = |
| 3538 | RISCV::getVectorLowDemandedScalarBits(Opcode: MCOpcode, Log2SEW); |
| 3539 | return NumDemandedBits && Bits >= *NumDemandedBits; |
| 3540 | } |
| 3541 | |
| 3542 | // Return true if all users of this SDNode* only consume the lower \p Bits. |
| 3543 | // This can be used to form W instructions for add/sub/mul/shl even when the |
| 3544 | // root isn't a sext_inreg. This can allow the ADDW/SUBW/MULW/SLLIW to CSE if |
| 3545 | // SimplifyDemandedBits has made it so some users see a sext_inreg and some |
| 3546 | // don't. The sext_inreg+add/sub/mul/shl will get selected, but still leave |
| 3547 | // the add/sub/mul/shl to become non-W instructions. By checking the users we |
| 3548 | // may be able to use a W instruction and CSE with the other instruction if |
| 3549 | // this has happened. We could try to detect that the CSE opportunity exists |
| 3550 | // before doing this, but that would be more complicated. |
| 3551 | bool RISCVDAGToDAGISel::hasAllNBitUsers(SDNode *Node, unsigned Bits, |
| 3552 | const unsigned Depth) const { |
| 3553 | assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB || |
| 3554 | Node->getOpcode() == ISD::MUL || Node->getOpcode() == ISD::SHL || |
| 3555 | Node->getOpcode() == ISD::SRL || Node->getOpcode() == ISD::AND || |
| 3556 | Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::XOR || |
| 3557 | Node->getOpcode() == ISD::SIGN_EXTEND_INREG || |
| 3558 | isa<ConstantSDNode>(Node) || Depth != 0) && |
| 3559 | "Unexpected opcode" ); |
| 3560 | |
| 3561 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
| 3562 | return false; |
| 3563 | |
| 3564 | // The PatFrags that call this may run before RISCVGenDAGISel.inc has checked |
| 3565 | // the VT. Ensure the type is scalar to avoid wasting time on vectors. |
| 3566 | if (Depth == 0 && !Node->getValueType(ResNo: 0).isScalarInteger()) |
| 3567 | return false; |
| 3568 | |
| 3569 | for (SDUse &Use : Node->uses()) { |
| 3570 | SDNode *User = Use.getUser(); |
| 3571 | // Users of this node should have already been instruction selected |
| 3572 | if (!User->isMachineOpcode()) |
| 3573 | return false; |
| 3574 | |
| 3575 | // TODO: Add more opcodes? |
| 3576 | switch (User->getMachineOpcode()) { |
| 3577 | default: |
| 3578 | if (vectorPseudoHasAllNBitUsers(User, UserOpNo: Use.getOperandNo(), Bits, TII)) |
| 3579 | break; |
| 3580 | return false; |
| 3581 | case RISCV::ADDW: |
| 3582 | case RISCV::ADDIW: |
| 3583 | case RISCV::SUBW: |
| 3584 | case RISCV::MULW: |
| 3585 | case RISCV::SLLW: |
| 3586 | case RISCV::SLLIW: |
| 3587 | case RISCV::SRAW: |
| 3588 | case RISCV::SRAIW: |
| 3589 | case RISCV::SRLW: |
| 3590 | case RISCV::SRLIW: |
| 3591 | case RISCV::DIVW: |
| 3592 | case RISCV::DIVUW: |
| 3593 | case RISCV::REMW: |
| 3594 | case RISCV::REMUW: |
| 3595 | case RISCV::ROLW: |
| 3596 | case RISCV::RORW: |
| 3597 | case RISCV::RORIW: |
| 3598 | case RISCV::CLZW: |
| 3599 | case RISCV::CTZW: |
| 3600 | case RISCV::CPOPW: |
| 3601 | case RISCV::SLLI_UW: |
| 3602 | case RISCV::FMV_W_X: |
| 3603 | case RISCV::FCVT_H_W: |
| 3604 | case RISCV::FCVT_H_W_INX: |
| 3605 | case RISCV::FCVT_H_WU: |
| 3606 | case RISCV::FCVT_H_WU_INX: |
| 3607 | case RISCV::FCVT_S_W: |
| 3608 | case RISCV::FCVT_S_W_INX: |
| 3609 | case RISCV::FCVT_S_WU: |
| 3610 | case RISCV::FCVT_S_WU_INX: |
| 3611 | case RISCV::FCVT_D_W: |
| 3612 | case RISCV::FCVT_D_W_INX: |
| 3613 | case RISCV::FCVT_D_WU: |
| 3614 | case RISCV::FCVT_D_WU_INX: |
| 3615 | case RISCV::TH_REVW: |
| 3616 | case RISCV::TH_SRRIW: |
| 3617 | if (Bits >= 32) |
| 3618 | break; |
| 3619 | return false; |
| 3620 | case RISCV::SLL: |
| 3621 | case RISCV::SRA: |
| 3622 | case RISCV::SRL: |
| 3623 | case RISCV::ROL: |
| 3624 | case RISCV::ROR: |
| 3625 | case RISCV::BSET: |
| 3626 | case RISCV::BCLR: |
| 3627 | case RISCV::BINV: |
| 3628 | // Shift amount operands only use log2(Xlen) bits. |
| 3629 | if (Use.getOperandNo() == 1 && Bits >= Log2_32(Value: Subtarget->getXLen())) |
| 3630 | break; |
| 3631 | return false; |
| 3632 | case RISCV::SLLI: |
| 3633 | // SLLI only uses the lower (XLen - ShAmt) bits. |
| 3634 | if (Bits >= Subtarget->getXLen() - User->getConstantOperandVal(Num: 1)) |
| 3635 | break; |
| 3636 | return false; |
| 3637 | case RISCV::ANDI: |
| 3638 | if (Bits >= (unsigned)llvm::bit_width(Value: User->getConstantOperandVal(Num: 1))) |
| 3639 | break; |
| 3640 | goto RecCheck; |
| 3641 | case RISCV::ORI: { |
| 3642 | uint64_t Imm = cast<ConstantSDNode>(Val: User->getOperand(Num: 1))->getSExtValue(); |
| 3643 | if (Bits >= (unsigned)llvm::bit_width<uint64_t>(Value: ~Imm)) |
| 3644 | break; |
| 3645 | [[fallthrough]]; |
| 3646 | } |
| 3647 | case RISCV::AND: |
| 3648 | case RISCV::OR: |
| 3649 | case RISCV::XOR: |
| 3650 | case RISCV::XORI: |
| 3651 | case RISCV::ANDN: |
| 3652 | case RISCV::ORN: |
| 3653 | case RISCV::XNOR: |
| 3654 | case RISCV::SH1ADD: |
| 3655 | case RISCV::SH2ADD: |
| 3656 | case RISCV::SH3ADD: |
| 3657 | RecCheck: |
| 3658 | if (hasAllNBitUsers(Node: User, Bits, Depth: Depth + 1)) |
| 3659 | break; |
| 3660 | return false; |
| 3661 | case RISCV::SRLI: { |
| 3662 | unsigned ShAmt = User->getConstantOperandVal(Num: 1); |
| 3663 | // If we are shifting right by less than Bits, and users don't demand any |
| 3664 | // bits that were shifted into [Bits-1:0], then we can consider this as an |
| 3665 | // N-Bit user. |
| 3666 | if (Bits > ShAmt && hasAllNBitUsers(Node: User, Bits: Bits - ShAmt, Depth: Depth + 1)) |
| 3667 | break; |
| 3668 | return false; |
| 3669 | } |
| 3670 | case RISCV::SEXT_B: |
| 3671 | case RISCV::PACKH: |
| 3672 | if (Bits >= 8) |
| 3673 | break; |
| 3674 | return false; |
| 3675 | case RISCV::SEXT_H: |
| 3676 | case RISCV::FMV_H_X: |
| 3677 | case RISCV::ZEXT_H_RV32: |
| 3678 | case RISCV::ZEXT_H_RV64: |
| 3679 | case RISCV::PACKW: |
| 3680 | if (Bits >= 16) |
| 3681 | break; |
| 3682 | return false; |
| 3683 | case RISCV::PACK: |
| 3684 | if (Bits >= (Subtarget->getXLen() / 2)) |
| 3685 | break; |
| 3686 | return false; |
| 3687 | case RISCV::ADD_UW: |
| 3688 | case RISCV::SH1ADD_UW: |
| 3689 | case RISCV::SH2ADD_UW: |
| 3690 | case RISCV::SH3ADD_UW: |
| 3691 | // The first operand to add.uw/shXadd.uw is implicitly zero extended from |
| 3692 | // 32 bits. |
| 3693 | if (Use.getOperandNo() == 0 && Bits >= 32) |
| 3694 | break; |
| 3695 | return false; |
| 3696 | case RISCV::SB: |
| 3697 | if (Use.getOperandNo() == 0 && Bits >= 8) |
| 3698 | break; |
| 3699 | return false; |
| 3700 | case RISCV::SH: |
| 3701 | if (Use.getOperandNo() == 0 && Bits >= 16) |
| 3702 | break; |
| 3703 | return false; |
| 3704 | case RISCV::SW: |
| 3705 | if (Use.getOperandNo() == 0 && Bits >= 32) |
| 3706 | break; |
| 3707 | return false; |
| 3708 | } |
| 3709 | } |
| 3710 | |
| 3711 | return true; |
| 3712 | } |
| 3713 | |
| 3714 | // Select a constant that can be represented as (sign_extend(imm5) << imm2). |
| 3715 | bool RISCVDAGToDAGISel::selectSimm5Shl2(SDValue N, SDValue &Simm5, |
| 3716 | SDValue &Shl2) { |
| 3717 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: N)) { |
| 3718 | int64_t Offset = C->getSExtValue(); |
| 3719 | unsigned Shift; |
| 3720 | for (Shift = 0; Shift < 4; Shift++) |
| 3721 | if (isInt<5>(x: Offset >> Shift) && ((Offset % (1LL << Shift)) == 0)) |
| 3722 | break; |
| 3723 | |
| 3724 | // Constant cannot be encoded. |
| 3725 | if (Shift == 4) |
| 3726 | return false; |
| 3727 | |
| 3728 | EVT Ty = N->getValueType(ResNo: 0); |
| 3729 | Simm5 = CurDAG->getSignedTargetConstant(Val: Offset >> Shift, DL: SDLoc(N), VT: Ty); |
| 3730 | Shl2 = CurDAG->getTargetConstant(Val: Shift, DL: SDLoc(N), VT: Ty); |
| 3731 | return true; |
| 3732 | } |
| 3733 | |
| 3734 | return false; |
| 3735 | } |
| 3736 | |
| 3737 | // Select VL as a 5 bit immediate or a value that will become a register. This |
| 3738 | // allows us to choose between VSETIVLI or VSETVLI later. |
| 3739 | bool RISCVDAGToDAGISel::selectVLOp(SDValue N, SDValue &VL) { |
| 3740 | auto *C = dyn_cast<ConstantSDNode>(Val&: N); |
| 3741 | if (C && isUInt<5>(x: C->getZExtValue())) { |
| 3742 | VL = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL: SDLoc(N), |
| 3743 | VT: N->getValueType(ResNo: 0)); |
| 3744 | } else if (C && C->isAllOnes()) { |
| 3745 | // Treat all ones as VLMax. |
| 3746 | VL = CurDAG->getSignedTargetConstant(Val: RISCV::VLMaxSentinel, DL: SDLoc(N), |
| 3747 | VT: N->getValueType(ResNo: 0)); |
| 3748 | } else if (isa<RegisterSDNode>(Val: N) && |
| 3749 | cast<RegisterSDNode>(Val&: N)->getReg() == RISCV::X0) { |
| 3750 | // All our VL operands use an operand that allows GPRNoX0 or an immediate |
| 3751 | // as the register class. Convert X0 to a special immediate to pass the |
| 3752 | // MachineVerifier. This is recognized specially by the vsetvli insertion |
| 3753 | // pass. |
| 3754 | VL = CurDAG->getSignedTargetConstant(Val: RISCV::VLMaxSentinel, DL: SDLoc(N), |
| 3755 | VT: N->getValueType(ResNo: 0)); |
| 3756 | } else { |
| 3757 | VL = N; |
| 3758 | } |
| 3759 | |
| 3760 | return true; |
| 3761 | } |
| 3762 | |
| 3763 | static SDValue findVSplat(SDValue N) { |
| 3764 | if (N.getOpcode() == ISD::INSERT_SUBVECTOR) { |
| 3765 | if (!N.getOperand(i: 0).isUndef()) |
| 3766 | return SDValue(); |
| 3767 | N = N.getOperand(i: 1); |
| 3768 | } |
| 3769 | SDValue Splat = N; |
| 3770 | if ((Splat.getOpcode() != RISCVISD::VMV_V_X_VL && |
| 3771 | Splat.getOpcode() != RISCVISD::VMV_S_X_VL) || |
| 3772 | !Splat.getOperand(i: 0).isUndef()) |
| 3773 | return SDValue(); |
| 3774 | assert(Splat.getNumOperands() == 3 && "Unexpected number of operands" ); |
| 3775 | return Splat; |
| 3776 | } |
| 3777 | |
| 3778 | bool RISCVDAGToDAGISel::selectVSplat(SDValue N, SDValue &SplatVal) { |
| 3779 | SDValue Splat = findVSplat(N); |
| 3780 | if (!Splat) |
| 3781 | return false; |
| 3782 | |
| 3783 | SplatVal = Splat.getOperand(i: 1); |
| 3784 | return true; |
| 3785 | } |
| 3786 | |
| 3787 | static bool selectVSplatImmHelper(SDValue N, SDValue &SplatVal, |
| 3788 | SelectionDAG &DAG, |
| 3789 | const RISCVSubtarget &Subtarget, |
| 3790 | std::function<bool(int64_t)> ValidateImm, |
| 3791 | bool Decrement = false) { |
| 3792 | SDValue Splat = findVSplat(N); |
| 3793 | if (!Splat || !isa<ConstantSDNode>(Val: Splat.getOperand(i: 1))) |
| 3794 | return false; |
| 3795 | |
| 3796 | const unsigned SplatEltSize = Splat.getScalarValueSizeInBits(); |
| 3797 | assert(Subtarget.getXLenVT() == Splat.getOperand(1).getSimpleValueType() && |
| 3798 | "Unexpected splat operand type" ); |
| 3799 | |
| 3800 | // The semantics of RISCVISD::VMV_V_X_VL is that when the operand |
| 3801 | // type is wider than the resulting vector element type: an implicit |
| 3802 | // truncation first takes place. Therefore, perform a manual |
| 3803 | // truncation/sign-extension in order to ignore any truncated bits and catch |
| 3804 | // any zero-extended immediate. |
| 3805 | // For example, we wish to match (i8 -1) -> (XLenVT 255) as a simm5 by first |
| 3806 | // sign-extending to (XLenVT -1). |
| 3807 | APInt SplatConst = Splat.getConstantOperandAPInt(i: 1).sextOrTrunc(width: SplatEltSize); |
| 3808 | |
| 3809 | int64_t SplatImm = SplatConst.getSExtValue(); |
| 3810 | |
| 3811 | if (!ValidateImm(SplatImm)) |
| 3812 | return false; |
| 3813 | |
| 3814 | if (Decrement) |
| 3815 | SplatImm -= 1; |
| 3816 | |
| 3817 | SplatVal = |
| 3818 | DAG.getSignedTargetConstant(Val: SplatImm, DL: SDLoc(N), VT: Subtarget.getXLenVT()); |
| 3819 | return true; |
| 3820 | } |
| 3821 | |
| 3822 | bool RISCVDAGToDAGISel::selectVSplatSimm5(SDValue N, SDValue &SplatVal) { |
| 3823 | return selectVSplatImmHelper(N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 3824 | ValidateImm: [](int64_t Imm) { return isInt<5>(x: Imm); }); |
| 3825 | } |
| 3826 | |
| 3827 | bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1(SDValue N, SDValue &SplatVal) { |
| 3828 | return selectVSplatImmHelper( |
| 3829 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 3830 | ValidateImm: [](int64_t Imm) { return (isInt<5>(x: Imm) && Imm != -16) || Imm == 16; }, |
| 3831 | /*Decrement=*/true); |
| 3832 | } |
| 3833 | |
| 3834 | bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1NoDec(SDValue N, SDValue &SplatVal) { |
| 3835 | return selectVSplatImmHelper( |
| 3836 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 3837 | ValidateImm: [](int64_t Imm) { return (isInt<5>(x: Imm) && Imm != -16) || Imm == 16; }, |
| 3838 | /*Decrement=*/false); |
| 3839 | } |
| 3840 | |
| 3841 | bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1NonZero(SDValue N, |
| 3842 | SDValue &SplatVal) { |
| 3843 | return selectVSplatImmHelper( |
| 3844 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 3845 | ValidateImm: [](int64_t Imm) { |
| 3846 | return Imm != 0 && ((isInt<5>(x: Imm) && Imm != -16) || Imm == 16); |
| 3847 | }, |
| 3848 | /*Decrement=*/true); |
| 3849 | } |
| 3850 | |
| 3851 | bool RISCVDAGToDAGISel::selectVSplatUimm(SDValue N, unsigned Bits, |
| 3852 | SDValue &SplatVal) { |
| 3853 | return selectVSplatImmHelper( |
| 3854 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 3855 | ValidateImm: [Bits](int64_t Imm) { return isUIntN(N: Bits, x: Imm); }); |
| 3856 | } |
| 3857 | |
| 3858 | bool RISCVDAGToDAGISel::selectVSplatImm64Neg(SDValue N, SDValue &SplatVal) { |
| 3859 | SDValue Splat = findVSplat(N); |
| 3860 | return Splat && selectNegImm(N: Splat.getOperand(i: 1), Val&: SplatVal); |
| 3861 | } |
| 3862 | |
| 3863 | bool RISCVDAGToDAGISel::selectLow8BitsVSplat(SDValue N, SDValue &SplatVal) { |
| 3864 | auto IsExtOrTrunc = [](SDValue N) { |
| 3865 | switch (N->getOpcode()) { |
| 3866 | case ISD::SIGN_EXTEND: |
| 3867 | case ISD::ZERO_EXTEND: |
| 3868 | // There's no passthru on these _VL nodes so any VL/mask is ok, since any |
| 3869 | // inactive elements will be undef. |
| 3870 | case RISCVISD::TRUNCATE_VECTOR_VL: |
| 3871 | case RISCVISD::VSEXT_VL: |
| 3872 | case RISCVISD::VZEXT_VL: |
| 3873 | return true; |
| 3874 | default: |
| 3875 | return false; |
| 3876 | } |
| 3877 | }; |
| 3878 | |
| 3879 | // We can have multiple nested nodes, so unravel them all if needed. |
| 3880 | while (IsExtOrTrunc(N)) { |
| 3881 | if (!N.hasOneUse() || N.getScalarValueSizeInBits() < 8) |
| 3882 | return false; |
| 3883 | N = N->getOperand(Num: 0); |
| 3884 | } |
| 3885 | |
| 3886 | return selectVSplat(N, SplatVal); |
| 3887 | } |
| 3888 | |
| 3889 | bool RISCVDAGToDAGISel::selectScalarFPAsInt(SDValue N, SDValue &Imm) { |
| 3890 | // Allow bitcasts from XLenVT -> FP. |
| 3891 | if (N.getOpcode() == ISD::BITCAST && |
| 3892 | N.getOperand(i: 0).getValueType() == Subtarget->getXLenVT()) { |
| 3893 | Imm = N.getOperand(i: 0); |
| 3894 | return true; |
| 3895 | } |
| 3896 | // Allow moves from XLenVT to FP. |
| 3897 | if (N.getOpcode() == RISCVISD::FMV_H_X || |
| 3898 | N.getOpcode() == RISCVISD::FMV_W_X_RV64) { |
| 3899 | Imm = N.getOperand(i: 0); |
| 3900 | return true; |
| 3901 | } |
| 3902 | |
| 3903 | // Otherwise, look for FP constants that can materialized with scalar int. |
| 3904 | ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Val: N.getNode()); |
| 3905 | if (!CFP) |
| 3906 | return false; |
| 3907 | const APFloat &APF = CFP->getValueAPF(); |
| 3908 | // td can handle +0.0 already. |
| 3909 | if (APF.isPosZero()) |
| 3910 | return false; |
| 3911 | |
| 3912 | MVT VT = CFP->getSimpleValueType(ResNo: 0); |
| 3913 | |
| 3914 | MVT XLenVT = Subtarget->getXLenVT(); |
| 3915 | if (VT == MVT::f64 && !Subtarget->is64Bit()) { |
| 3916 | assert(APF.isNegZero() && "Unexpected constant." ); |
| 3917 | return false; |
| 3918 | } |
| 3919 | SDLoc DL(N); |
| 3920 | Imm = selectImm(CurDAG, DL, VT: XLenVT, Imm: APF.bitcastToAPInt().getSExtValue(), |
| 3921 | Subtarget: *Subtarget); |
| 3922 | return true; |
| 3923 | } |
| 3924 | |
| 3925 | bool RISCVDAGToDAGISel::selectRVVSimm5(SDValue N, unsigned Width, |
| 3926 | SDValue &Imm) { |
| 3927 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: N)) { |
| 3928 | int64_t ImmVal = SignExtend64(X: C->getSExtValue(), B: Width); |
| 3929 | |
| 3930 | if (!isInt<5>(x: ImmVal)) |
| 3931 | return false; |
| 3932 | |
| 3933 | Imm = CurDAG->getSignedTargetConstant(Val: ImmVal, DL: SDLoc(N), |
| 3934 | VT: Subtarget->getXLenVT()); |
| 3935 | return true; |
| 3936 | } |
| 3937 | |
| 3938 | return false; |
| 3939 | } |
| 3940 | |
| 3941 | // Try to remove sext.w if the input is a W instruction or can be made into |
| 3942 | // a W instruction cheaply. |
| 3943 | bool RISCVDAGToDAGISel::doPeepholeSExtW(SDNode *N) { |
| 3944 | // Look for the sext.w pattern, addiw rd, rs1, 0. |
| 3945 | if (N->getMachineOpcode() != RISCV::ADDIW || |
| 3946 | !isNullConstant(V: N->getOperand(Num: 1))) |
| 3947 | return false; |
| 3948 | |
| 3949 | SDValue N0 = N->getOperand(Num: 0); |
| 3950 | if (!N0.isMachineOpcode()) |
| 3951 | return false; |
| 3952 | |
| 3953 | switch (N0.getMachineOpcode()) { |
| 3954 | default: |
| 3955 | break; |
| 3956 | case RISCV::ADD: |
| 3957 | case RISCV::ADDI: |
| 3958 | case RISCV::SUB: |
| 3959 | case RISCV::MUL: |
| 3960 | case RISCV::SLLI: { |
| 3961 | // Convert sext.w+add/sub/mul to their W instructions. This will create |
| 3962 | // a new independent instruction. This improves latency. |
| 3963 | unsigned Opc; |
| 3964 | switch (N0.getMachineOpcode()) { |
| 3965 | default: |
| 3966 | llvm_unreachable("Unexpected opcode!" ); |
| 3967 | case RISCV::ADD: Opc = RISCV::ADDW; break; |
| 3968 | case RISCV::ADDI: Opc = RISCV::ADDIW; break; |
| 3969 | case RISCV::SUB: Opc = RISCV::SUBW; break; |
| 3970 | case RISCV::MUL: Opc = RISCV::MULW; break; |
| 3971 | case RISCV::SLLI: Opc = RISCV::SLLIW; break; |
| 3972 | } |
| 3973 | |
| 3974 | SDValue N00 = N0.getOperand(i: 0); |
| 3975 | SDValue N01 = N0.getOperand(i: 1); |
| 3976 | |
| 3977 | // Shift amount needs to be uimm5. |
| 3978 | if (N0.getMachineOpcode() == RISCV::SLLI && |
| 3979 | !isUInt<5>(x: cast<ConstantSDNode>(Val&: N01)->getSExtValue())) |
| 3980 | break; |
| 3981 | |
| 3982 | SDNode *Result = |
| 3983 | CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 3984 | Op1: N00, Op2: N01); |
| 3985 | ReplaceUses(F: N, T: Result); |
| 3986 | return true; |
| 3987 | } |
| 3988 | case RISCV::ADDW: |
| 3989 | case RISCV::ADDIW: |
| 3990 | case RISCV::SUBW: |
| 3991 | case RISCV::MULW: |
| 3992 | case RISCV::SLLIW: |
| 3993 | case RISCV::PACKW: |
| 3994 | case RISCV::TH_MULAW: |
| 3995 | case RISCV::TH_MULAH: |
| 3996 | case RISCV::TH_MULSW: |
| 3997 | case RISCV::TH_MULSH: |
| 3998 | if (N0.getValueType() == MVT::i32) |
| 3999 | break; |
| 4000 | |
| 4001 | // Result is already sign extended just remove the sext.w. |
| 4002 | // NOTE: We only handle the nodes that are selected with hasAllWUsers. |
| 4003 | ReplaceUses(F: N, T: N0.getNode()); |
| 4004 | return true; |
| 4005 | } |
| 4006 | |
| 4007 | return false; |
| 4008 | } |
| 4009 | |
| 4010 | static bool usesAllOnesMask(SDValue MaskOp) { |
| 4011 | const auto IsVMSet = [](unsigned Opc) { |
| 4012 | return Opc == RISCV::PseudoVMSET_M_B1 || Opc == RISCV::PseudoVMSET_M_B16 || |
| 4013 | Opc == RISCV::PseudoVMSET_M_B2 || Opc == RISCV::PseudoVMSET_M_B32 || |
| 4014 | Opc == RISCV::PseudoVMSET_M_B4 || Opc == RISCV::PseudoVMSET_M_B64 || |
| 4015 | Opc == RISCV::PseudoVMSET_M_B8; |
| 4016 | }; |
| 4017 | |
| 4018 | // TODO: Check that the VMSET is the expected bitwidth? The pseudo has |
| 4019 | // undefined behaviour if it's the wrong bitwidth, so we could choose to |
| 4020 | // assume that it's all-ones? Same applies to its VL. |
| 4021 | return MaskOp->isMachineOpcode() && IsVMSet(MaskOp.getMachineOpcode()); |
| 4022 | } |
| 4023 | |
| 4024 | static bool isImplicitDef(SDValue V) { |
| 4025 | if (!V.isMachineOpcode()) |
| 4026 | return false; |
| 4027 | if (V.getMachineOpcode() == TargetOpcode::REG_SEQUENCE) { |
| 4028 | for (unsigned I = 1; I < V.getNumOperands(); I += 2) |
| 4029 | if (!isImplicitDef(V: V.getOperand(i: I))) |
| 4030 | return false; |
| 4031 | return true; |
| 4032 | } |
| 4033 | return V.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF; |
| 4034 | } |
| 4035 | |
| 4036 | // Optimize masked RVV pseudo instructions with a known all-ones mask to their |
| 4037 | // corresponding "unmasked" pseudo versions. |
| 4038 | bool RISCVDAGToDAGISel::doPeepholeMaskedRVV(MachineSDNode *N) { |
| 4039 | const RISCV::RISCVMaskedPseudoInfo *I = |
| 4040 | RISCV::getMaskedPseudoInfo(MaskedPseudo: N->getMachineOpcode()); |
| 4041 | if (!I) |
| 4042 | return false; |
| 4043 | |
| 4044 | unsigned MaskOpIdx = I->MaskOpIdx; |
| 4045 | if (!usesAllOnesMask(MaskOp: N->getOperand(Num: MaskOpIdx))) |
| 4046 | return false; |
| 4047 | |
| 4048 | // There are two classes of pseudos in the table - compares and |
| 4049 | // everything else. See the comment on RISCVMaskedPseudo for details. |
| 4050 | const unsigned Opc = I->UnmaskedPseudo; |
| 4051 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
| 4052 | const bool HasPassthru = RISCVII::isFirstDefTiedToFirstUse(Desc: MCID); |
| 4053 | |
| 4054 | const MCInstrDesc &MaskedMCID = TII->get(Opcode: N->getMachineOpcode()); |
| 4055 | const bool MaskedHasPassthru = RISCVII::isFirstDefTiedToFirstUse(Desc: MaskedMCID); |
| 4056 | |
| 4057 | assert((RISCVII::hasVecPolicyOp(MaskedMCID.TSFlags) || |
| 4058 | !RISCVII::hasVecPolicyOp(MCID.TSFlags)) && |
| 4059 | "Unmasked pseudo has policy but masked pseudo doesn't?" ); |
| 4060 | assert(RISCVII::hasVecPolicyOp(MCID.TSFlags) == HasPassthru && |
| 4061 | "Unexpected pseudo structure" ); |
| 4062 | assert(!(HasPassthru && !MaskedHasPassthru) && |
| 4063 | "Unmasked pseudo has passthru but masked pseudo doesn't?" ); |
| 4064 | |
| 4065 | SmallVector<SDValue, 8> Ops; |
| 4066 | // Skip the passthru operand at index 0 if the unmasked don't have one. |
| 4067 | bool ShouldSkip = !HasPassthru && MaskedHasPassthru; |
| 4068 | bool DropPolicy = !RISCVII::hasVecPolicyOp(TSFlags: MCID.TSFlags) && |
| 4069 | RISCVII::hasVecPolicyOp(TSFlags: MaskedMCID.TSFlags); |
| 4070 | bool HasChainOp = |
| 4071 | N->getOperand(Num: N->getNumOperands() - 1).getValueType() == MVT::Other; |
| 4072 | unsigned LastOpNum = N->getNumOperands() - 1 - HasChainOp; |
| 4073 | for (unsigned I = ShouldSkip, E = N->getNumOperands(); I != E; I++) { |
| 4074 | // Skip the mask |
| 4075 | SDValue Op = N->getOperand(Num: I); |
| 4076 | if (I == MaskOpIdx) |
| 4077 | continue; |
| 4078 | if (DropPolicy && I == LastOpNum) |
| 4079 | continue; |
| 4080 | Ops.push_back(Elt: Op); |
| 4081 | } |
| 4082 | |
| 4083 | MachineSDNode *Result = |
| 4084 | CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VTs: N->getVTList(), Ops); |
| 4085 | |
| 4086 | if (!N->memoperands_empty()) |
| 4087 | CurDAG->setNodeMemRefs(N: Result, NewMemRefs: N->memoperands()); |
| 4088 | |
| 4089 | Result->setFlags(N->getFlags()); |
| 4090 | ReplaceUses(F: N, T: Result); |
| 4091 | |
| 4092 | return true; |
| 4093 | } |
| 4094 | |
| 4095 | static bool IsVMerge(SDNode *N) { |
| 4096 | return RISCV::getRVVMCOpcode(RVVPseudoOpcode: N->getMachineOpcode()) == RISCV::VMERGE_VVM; |
| 4097 | } |
| 4098 | |
| 4099 | // Try to fold away VMERGE_VVM instructions into their true operands: |
| 4100 | // |
| 4101 | // %true = PseudoVADD_VV ... |
| 4102 | // %x = PseudoVMERGE_VVM %false, %false, %true, %mask |
| 4103 | // -> |
| 4104 | // %x = PseudoVADD_VV_MASK %false, ..., %mask |
| 4105 | // |
| 4106 | // We can only fold if vmerge's passthru operand, vmerge's false operand and |
| 4107 | // %true's passthru operand (if it has one) are the same. This is because we |
| 4108 | // have to consolidate them into one passthru operand in the result. |
| 4109 | // |
| 4110 | // If %true is masked, then we can use its mask instead of vmerge's if vmerge's |
| 4111 | // mask is all ones. |
| 4112 | // |
| 4113 | // The resulting VL is the minimum of the two VLs. |
| 4114 | // |
| 4115 | // The resulting policy is the effective policy the vmerge would have had, |
| 4116 | // i.e. whether or not it's passthru operand was implicit-def. |
| 4117 | bool RISCVDAGToDAGISel::performCombineVMergeAndVOps(SDNode *N) { |
| 4118 | SDValue Passthru, False, True, VL, Mask; |
| 4119 | assert(IsVMerge(N)); |
| 4120 | Passthru = N->getOperand(Num: 0); |
| 4121 | False = N->getOperand(Num: 1); |
| 4122 | True = N->getOperand(Num: 2); |
| 4123 | Mask = N->getOperand(Num: 3); |
| 4124 | VL = N->getOperand(Num: 4); |
| 4125 | |
| 4126 | // If the EEW of True is different from vmerge's SEW, then we can't fold. |
| 4127 | if (True.getSimpleValueType() != N->getSimpleValueType(ResNo: 0)) |
| 4128 | return false; |
| 4129 | |
| 4130 | // We require that either passthru and false are the same, or that passthru |
| 4131 | // is undefined. |
| 4132 | if (Passthru != False && !isImplicitDef(V: Passthru)) |
| 4133 | return false; |
| 4134 | |
| 4135 | assert(True.getResNo() == 0 && |
| 4136 | "Expect True is the first output of an instruction." ); |
| 4137 | |
| 4138 | // Need N is the exactly one using True. |
| 4139 | if (!True.hasOneUse()) |
| 4140 | return false; |
| 4141 | |
| 4142 | if (!True.isMachineOpcode()) |
| 4143 | return false; |
| 4144 | |
| 4145 | unsigned TrueOpc = True.getMachineOpcode(); |
| 4146 | const MCInstrDesc &TrueMCID = TII->get(Opcode: TrueOpc); |
| 4147 | uint64_t TrueTSFlags = TrueMCID.TSFlags; |
| 4148 | bool HasTiedDest = RISCVII::isFirstDefTiedToFirstUse(Desc: TrueMCID); |
| 4149 | |
| 4150 | const RISCV::RISCVMaskedPseudoInfo *Info = |
| 4151 | RISCV::lookupMaskedIntrinsicByUnmasked(UnmaskedPseudo: TrueOpc); |
| 4152 | if (!Info) |
| 4153 | return false; |
| 4154 | |
| 4155 | // If True has a passthru operand then it needs to be the same as vmerge's |
| 4156 | // False, since False will be used for the result's passthru operand. |
| 4157 | if (HasTiedDest && !isImplicitDef(V: True->getOperand(Num: 0))) { |
| 4158 | SDValue PassthruOpTrue = True->getOperand(Num: 0); |
| 4159 | if (False != PassthruOpTrue) |
| 4160 | return false; |
| 4161 | } |
| 4162 | |
| 4163 | // Skip if True has side effect. |
| 4164 | if (TII->get(Opcode: TrueOpc).hasUnmodeledSideEffects()) |
| 4165 | return false; |
| 4166 | |
| 4167 | unsigned TrueChainOpIdx = True.getNumOperands() - 1; |
| 4168 | bool HasChainOp = |
| 4169 | True.getOperand(i: TrueChainOpIdx).getValueType() == MVT::Other; |
| 4170 | |
| 4171 | if (HasChainOp) { |
| 4172 | // Avoid creating cycles in the DAG. We must ensure that none of the other |
| 4173 | // operands depend on True through it's Chain. |
| 4174 | SmallVector<const SDNode *, 4> LoopWorklist; |
| 4175 | SmallPtrSet<const SDNode *, 16> Visited; |
| 4176 | LoopWorklist.push_back(Elt: False.getNode()); |
| 4177 | LoopWorklist.push_back(Elt: Mask.getNode()); |
| 4178 | LoopWorklist.push_back(Elt: VL.getNode()); |
| 4179 | if (SDNode::hasPredecessorHelper(N: True.getNode(), Visited, Worklist&: LoopWorklist)) |
| 4180 | return false; |
| 4181 | } |
| 4182 | |
| 4183 | // The vector policy operand may be present for masked intrinsics |
| 4184 | bool HasVecPolicyOp = RISCVII::hasVecPolicyOp(TSFlags: TrueTSFlags); |
| 4185 | unsigned TrueVLIndex = |
| 4186 | True.getNumOperands() - HasVecPolicyOp - HasChainOp - 2; |
| 4187 | SDValue TrueVL = True.getOperand(i: TrueVLIndex); |
| 4188 | SDValue SEW = True.getOperand(i: TrueVLIndex + 1); |
| 4189 | |
| 4190 | auto GetMinVL = [](SDValue LHS, SDValue RHS) { |
| 4191 | if (LHS == RHS) |
| 4192 | return LHS; |
| 4193 | if (isAllOnesConstant(V: LHS)) |
| 4194 | return RHS; |
| 4195 | if (isAllOnesConstant(V: RHS)) |
| 4196 | return LHS; |
| 4197 | auto *CLHS = dyn_cast<ConstantSDNode>(Val&: LHS); |
| 4198 | auto *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4199 | if (!CLHS || !CRHS) |
| 4200 | return SDValue(); |
| 4201 | return CLHS->getZExtValue() <= CRHS->getZExtValue() ? LHS : RHS; |
| 4202 | }; |
| 4203 | |
| 4204 | // Because N and True must have the same passthru operand (or True's operand |
| 4205 | // is implicit_def), the "effective" body is the minimum of their VLs. |
| 4206 | SDValue OrigVL = VL; |
| 4207 | VL = GetMinVL(TrueVL, VL); |
| 4208 | if (!VL) |
| 4209 | return false; |
| 4210 | |
| 4211 | // Some operations produce different elementwise results depending on the |
| 4212 | // active elements, like viota.m or vredsum. This transformation is illegal |
| 4213 | // for these if we change the active elements (i.e. mask or VL). |
| 4214 | const MCInstrDesc &TrueBaseMCID = TII->get(Opcode: RISCV::getRVVMCOpcode(RVVPseudoOpcode: TrueOpc)); |
| 4215 | if (RISCVII::elementsDependOnVL(TSFlags: TrueBaseMCID.TSFlags) && (TrueVL != VL)) |
| 4216 | return false; |
| 4217 | if (RISCVII::elementsDependOnMask(TSFlags: TrueBaseMCID.TSFlags) && |
| 4218 | (Mask && !usesAllOnesMask(MaskOp: Mask))) |
| 4219 | return false; |
| 4220 | |
| 4221 | // Make sure it doesn't raise any observable fp exceptions, since changing the |
| 4222 | // active elements will affect how fflags is set. |
| 4223 | if (mayRaiseFPException(Node: True.getNode()) && !True->getFlags().hasNoFPExcept()) |
| 4224 | return false; |
| 4225 | |
| 4226 | SDLoc DL(N); |
| 4227 | |
| 4228 | unsigned MaskedOpc = Info->MaskedPseudo; |
| 4229 | #ifndef NDEBUG |
| 4230 | const MCInstrDesc &MaskedMCID = TII->get(MaskedOpc); |
| 4231 | assert(RISCVII::hasVecPolicyOp(MaskedMCID.TSFlags) && |
| 4232 | "Expected instructions with mask have policy operand." ); |
| 4233 | assert(MaskedMCID.getOperandConstraint(MaskedMCID.getNumDefs(), |
| 4234 | MCOI::TIED_TO) == 0 && |
| 4235 | "Expected instructions with mask have a tied dest." ); |
| 4236 | #endif |
| 4237 | |
| 4238 | // Use a tumu policy, relaxing it to tail agnostic provided that the passthru |
| 4239 | // operand is undefined. |
| 4240 | // |
| 4241 | // However, if the VL became smaller than what the vmerge had originally, then |
| 4242 | // elements past VL that were previously in the vmerge's body will have moved |
| 4243 | // to the tail. In that case we always need to use tail undisturbed to |
| 4244 | // preserve them. |
| 4245 | bool MergeVLShrunk = VL != OrigVL; |
| 4246 | uint64_t Policy = (isImplicitDef(V: Passthru) && !MergeVLShrunk) |
| 4247 | ? RISCVVType::TAIL_AGNOSTIC |
| 4248 | : /*TUMU*/ 0; |
| 4249 | SDValue PolicyOp = |
| 4250 | CurDAG->getTargetConstant(Val: Policy, DL, VT: Subtarget->getXLenVT()); |
| 4251 | |
| 4252 | |
| 4253 | SmallVector<SDValue, 8> Ops; |
| 4254 | Ops.push_back(Elt: False); |
| 4255 | |
| 4256 | const bool HasRoundingMode = RISCVII::hasRoundModeOp(TSFlags: TrueTSFlags); |
| 4257 | const unsigned NormalOpsEnd = TrueVLIndex - HasRoundingMode; |
| 4258 | Ops.append(in_start: True->op_begin() + HasTiedDest, in_end: True->op_begin() + NormalOpsEnd); |
| 4259 | |
| 4260 | Ops.push_back(Elt: Mask); |
| 4261 | |
| 4262 | // For unmasked "VOp" with rounding mode operand, that is interfaces like |
| 4263 | // (..., rm, vl) or (..., rm, vl, policy). |
| 4264 | // Its masked version is (..., vm, rm, vl, policy). |
| 4265 | // Check the rounding mode pseudo nodes under RISCVInstrInfoVPseudos.td |
| 4266 | if (HasRoundingMode) |
| 4267 | Ops.push_back(Elt: True->getOperand(Num: TrueVLIndex - 1)); |
| 4268 | |
| 4269 | Ops.append(IL: {VL, SEW, PolicyOp}); |
| 4270 | |
| 4271 | // Result node should have chain operand of True. |
| 4272 | if (HasChainOp) |
| 4273 | Ops.push_back(Elt: True.getOperand(i: TrueChainOpIdx)); |
| 4274 | |
| 4275 | MachineSDNode *Result = |
| 4276 | CurDAG->getMachineNode(Opcode: MaskedOpc, dl: DL, VTs: True->getVTList(), Ops); |
| 4277 | Result->setFlags(True->getFlags()); |
| 4278 | |
| 4279 | if (!cast<MachineSDNode>(Val&: True)->memoperands_empty()) |
| 4280 | CurDAG->setNodeMemRefs(N: Result, NewMemRefs: cast<MachineSDNode>(Val&: True)->memoperands()); |
| 4281 | |
| 4282 | // Replace vmerge.vvm node by Result. |
| 4283 | ReplaceUses(F: SDValue(N, 0), T: SDValue(Result, 0)); |
| 4284 | |
| 4285 | // Replace another value of True. E.g. chain and VL. |
| 4286 | for (unsigned Idx = 1; Idx < True->getNumValues(); ++Idx) |
| 4287 | ReplaceUses(F: True.getValue(R: Idx), T: SDValue(Result, Idx)); |
| 4288 | |
| 4289 | return true; |
| 4290 | } |
| 4291 | |
| 4292 | bool RISCVDAGToDAGISel::doPeepholeMergeVVMFold() { |
| 4293 | bool MadeChange = false; |
| 4294 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 4295 | |
| 4296 | while (Position != CurDAG->allnodes_begin()) { |
| 4297 | SDNode *N = &*--Position; |
| 4298 | if (N->use_empty() || !N->isMachineOpcode()) |
| 4299 | continue; |
| 4300 | |
| 4301 | if (IsVMerge(N)) |
| 4302 | MadeChange |= performCombineVMergeAndVOps(N); |
| 4303 | } |
| 4304 | return MadeChange; |
| 4305 | } |
| 4306 | |
| 4307 | /// If our passthru is an implicit_def, use noreg instead. This side |
| 4308 | /// steps issues with MachineCSE not being able to CSE expressions with |
| 4309 | /// IMPLICIT_DEF operands while preserving the semantic intent. See |
| 4310 | /// pr64282 for context. Note that this transform is the last one |
| 4311 | /// performed at ISEL DAG to DAG. |
| 4312 | bool RISCVDAGToDAGISel::doPeepholeNoRegPassThru() { |
| 4313 | bool MadeChange = false; |
| 4314 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 4315 | |
| 4316 | while (Position != CurDAG->allnodes_begin()) { |
| 4317 | SDNode *N = &*--Position; |
| 4318 | if (N->use_empty() || !N->isMachineOpcode()) |
| 4319 | continue; |
| 4320 | |
| 4321 | const unsigned Opc = N->getMachineOpcode(); |
| 4322 | if (!RISCVVPseudosTable::getPseudoInfo(Pseudo: Opc) || |
| 4323 | !RISCVII::isFirstDefTiedToFirstUse(Desc: TII->get(Opcode: Opc)) || |
| 4324 | !isImplicitDef(V: N->getOperand(Num: 0))) |
| 4325 | continue; |
| 4326 | |
| 4327 | SmallVector<SDValue> Ops; |
| 4328 | Ops.push_back(Elt: CurDAG->getRegister(Reg: RISCV::NoRegister, VT: N->getValueType(ResNo: 0))); |
| 4329 | for (unsigned I = 1, E = N->getNumOperands(); I != E; I++) { |
| 4330 | SDValue Op = N->getOperand(Num: I); |
| 4331 | Ops.push_back(Elt: Op); |
| 4332 | } |
| 4333 | |
| 4334 | MachineSDNode *Result = |
| 4335 | CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VTs: N->getVTList(), Ops); |
| 4336 | Result->setFlags(N->getFlags()); |
| 4337 | CurDAG->setNodeMemRefs(N: Result, NewMemRefs: cast<MachineSDNode>(Val: N)->memoperands()); |
| 4338 | ReplaceUses(F: N, T: Result); |
| 4339 | MadeChange = true; |
| 4340 | } |
| 4341 | return MadeChange; |
| 4342 | } |
| 4343 | |
| 4344 | |
| 4345 | // This pass converts a legalized DAG into a RISCV-specific DAG, ready |
| 4346 | // for instruction scheduling. |
| 4347 | FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM, |
| 4348 | CodeGenOptLevel OptLevel) { |
| 4349 | return new RISCVDAGToDAGISelLegacy(TM, OptLevel); |
| 4350 | } |
| 4351 | |
| 4352 | char RISCVDAGToDAGISelLegacy::ID = 0; |
| 4353 | |
| 4354 | RISCVDAGToDAGISelLegacy::RISCVDAGToDAGISelLegacy(RISCVTargetMachine &TM, |
| 4355 | CodeGenOptLevel OptLevel) |
| 4356 | : SelectionDAGISelLegacy( |
| 4357 | ID, std::make_unique<RISCVDAGToDAGISel>(args&: TM, args&: OptLevel)) {} |
| 4358 | |
| 4359 | INITIALIZE_PASS(RISCVDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 4360 | |