| 1 | //===--- SPIRVUtils.h ---- SPIR-V Utility Functions -------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains miscellaneous utility functions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H |
| 14 | #define LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H |
| 15 | |
| 16 | #include "MCTargetDesc/SPIRVBaseInfo.h" |
| 17 | #include "llvm/Analysis/LoopInfo.h" |
| 18 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 19 | #include "llvm/IR/Dominators.h" |
| 20 | #include "llvm/IR/GlobalVariable.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/TypedPointerType.h" |
| 23 | #include <queue> |
| 24 | #include <string> |
| 25 | #include <unordered_map> |
| 26 | #include <unordered_set> |
| 27 | |
| 28 | namespace llvm { |
| 29 | class MCInst; |
| 30 | class MachineFunction; |
| 31 | class MachineInstr; |
| 32 | class MachineInstrBuilder; |
| 33 | class MachineIRBuilder; |
| 34 | class MachineRegisterInfo; |
| 35 | class Register; |
| 36 | class StringRef; |
| 37 | class SPIRVInstrInfo; |
| 38 | class SPIRVSubtarget; |
| 39 | class SPIRVGlobalRegistry; |
| 40 | |
| 41 | // This class implements a partial ordering visitor, which visits a cyclic graph |
| 42 | // in natural topological-like ordering. Topological ordering is not defined for |
| 43 | // directed graphs with cycles, so this assumes cycles are a single node, and |
| 44 | // ignores back-edges. The cycle is visited from the entry in the same |
| 45 | // topological-like ordering. |
| 46 | // |
| 47 | // Note: this visitor REQUIRES a reducible graph. |
| 48 | // |
| 49 | // This means once we visit a node, we know all the possible ancestors have been |
| 50 | // visited. |
| 51 | // |
| 52 | // clang-format off |
| 53 | // |
| 54 | // Given this graph: |
| 55 | // |
| 56 | // ,-> B -\ |
| 57 | // A -+ +---> D ----> E -> F -> G -> H |
| 58 | // `-> C -/ ^ | |
| 59 | // +-----------------+ |
| 60 | // |
| 61 | // Visit order is: |
| 62 | // A, [B, C in any order], D, E, F, G, H |
| 63 | // |
| 64 | // clang-format on |
| 65 | // |
| 66 | // Changing the function CFG between the construction of the visitor and |
| 67 | // visiting is undefined. The visitor can be reused, but if the CFG is updated, |
| 68 | // the visitor must be rebuilt. |
| 69 | class PartialOrderingVisitor { |
| 70 | DomTreeBuilder::BBDomTree DT; |
| 71 | LoopInfo LI; |
| 72 | |
| 73 | std::unordered_set<BasicBlock *> Queued = {}; |
| 74 | std::queue<BasicBlock *> ToVisit = {}; |
| 75 | |
| 76 | struct OrderInfo { |
| 77 | size_t Rank; |
| 78 | size_t TraversalIndex; |
| 79 | }; |
| 80 | |
| 81 | using BlockToOrderInfoMap = std::unordered_map<BasicBlock *, OrderInfo>; |
| 82 | BlockToOrderInfoMap BlockToOrder; |
| 83 | std::vector<BasicBlock *> Order = {}; |
| 84 | |
| 85 | // Get all basic-blocks reachable from Start. |
| 86 | std::unordered_set<BasicBlock *> getReachableFrom(BasicBlock *Start); |
| 87 | |
| 88 | // Internal function used to determine the partial ordering. |
| 89 | // Visits |BB| with the current rank being |Rank|. |
| 90 | size_t visit(BasicBlock *BB, size_t Rank); |
| 91 | |
| 92 | bool CanBeVisited(BasicBlock *BB) const; |
| 93 | |
| 94 | public: |
| 95 | size_t GetNodeRank(BasicBlock *BB) const; |
| 96 | |
| 97 | // Build the visitor to operate on the function F. |
| 98 | PartialOrderingVisitor(Function &F); |
| 99 | |
| 100 | // Returns true is |LHS| comes before |RHS| in the partial ordering. |
| 101 | // If |LHS| and |RHS| have the same rank, the traversal order determines the |
| 102 | // order (order is stable). |
| 103 | bool compare(const BasicBlock *LHS, const BasicBlock *RHS) const; |
| 104 | |
| 105 | // Visit the function starting from the basic block |Start|, and calling |Op| |
| 106 | // on each visited BB. This traversal ignores back-edges, meaning this won't |
| 107 | // visit a node to which |Start| is not an ancestor. |
| 108 | // If Op returns |true|, the visitor continues. If |Op| returns false, the |
| 109 | // visitor will stop at that rank. This means if 2 nodes share the same rank, |
| 110 | // and Op returns false when visiting the first, the second will be visited |
| 111 | // afterwards. But none of their successors will. |
| 112 | void partialOrderVisit(BasicBlock &Start, |
| 113 | std::function<bool(BasicBlock *)> Op); |
| 114 | }; |
| 115 | |
| 116 | // Add the given string as a series of integer operand, inserting null |
| 117 | // terminators and padding to make sure the operands all have 32-bit |
| 118 | // little-endian words. |
| 119 | void addStringImm(const StringRef &Str, MCInst &Inst); |
| 120 | void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB); |
| 121 | void addStringImm(const StringRef &Str, IRBuilder<> &B, |
| 122 | std::vector<Value *> &Args); |
| 123 | |
| 124 | // Read the series of integer operands back as a null-terminated string using |
| 125 | // the reverse of the logic in addStringImm. |
| 126 | std::string getStringImm(const MachineInstr &MI, unsigned StartIndex); |
| 127 | |
| 128 | // Returns the string constant that the register refers to. It is assumed that |
| 129 | // Reg is a global value that contains a string. |
| 130 | std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI); |
| 131 | |
| 132 | // Add the given numerical immediate to MIB. |
| 133 | void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB); |
| 134 | |
| 135 | // Add an OpName instruction for the given target register. |
| 136 | void buildOpName(Register Target, const StringRef &Name, |
| 137 | MachineIRBuilder &MIRBuilder); |
| 138 | void buildOpName(Register Target, const StringRef &Name, MachineInstr &I, |
| 139 | const SPIRVInstrInfo &TII); |
| 140 | |
| 141 | // Add an OpDecorate instruction for the given Reg. |
| 142 | void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, |
| 143 | SPIRV::Decoration::Decoration Dec, |
| 144 | const std::vector<uint32_t> &DecArgs, |
| 145 | StringRef StrImm = "" ); |
| 146 | void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII, |
| 147 | SPIRV::Decoration::Decoration Dec, |
| 148 | const std::vector<uint32_t> &DecArgs, |
| 149 | StringRef StrImm = "" ); |
| 150 | |
| 151 | // Add an OpDecorate instruction for the given Reg. |
| 152 | void buildOpMemberDecorate(Register Reg, MachineIRBuilder &MIRBuilder, |
| 153 | SPIRV::Decoration::Decoration Dec, uint32_t Member, |
| 154 | const std::vector<uint32_t> &DecArgs, |
| 155 | StringRef StrImm = "" ); |
| 156 | void buildOpMemberDecorate(Register Reg, MachineInstr &I, |
| 157 | const SPIRVInstrInfo &TII, |
| 158 | SPIRV::Decoration::Decoration Dec, uint32_t Member, |
| 159 | const std::vector<uint32_t> &DecArgs, |
| 160 | StringRef StrImm = "" ); |
| 161 | |
| 162 | // Add an OpDecorate instruction by "spirv.Decorations" metadata node. |
| 163 | void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder, |
| 164 | const MDNode *GVarMD); |
| 165 | |
| 166 | // Return a valid position for the OpVariable instruction inside a function, |
| 167 | // i.e., at the beginning of the first block of the function. |
| 168 | MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I); |
| 169 | |
| 170 | // Return a valid position for the instruction at the end of the block before |
| 171 | // terminators and debug instructions. |
| 172 | MachineBasicBlock::iterator getInsertPtValidEnd(MachineBasicBlock *MBB); |
| 173 | |
| 174 | // Returns true if a pointer to the storage class can be casted to/from a |
| 175 | // pointer to the Generic storage class. |
| 176 | constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC) { |
| 177 | switch (SC) { |
| 178 | case SPIRV::StorageClass::Workgroup: |
| 179 | case SPIRV::StorageClass::CrossWorkgroup: |
| 180 | case SPIRV::StorageClass::Function: |
| 181 | return true; |
| 182 | default: |
| 183 | return false; |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | // Convert a SPIR-V storage class to the corresponding LLVM IR address space. |
| 188 | // TODO: maybe the following two functions should be handled in the subtarget |
| 189 | // to allow for different OpenCL vs Vulkan handling. |
| 190 | constexpr unsigned |
| 191 | storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC) { |
| 192 | switch (SC) { |
| 193 | case SPIRV::StorageClass::Function: |
| 194 | return 0; |
| 195 | case SPIRV::StorageClass::CrossWorkgroup: |
| 196 | return 1; |
| 197 | case SPIRV::StorageClass::UniformConstant: |
| 198 | return 2; |
| 199 | case SPIRV::StorageClass::Workgroup: |
| 200 | return 3; |
| 201 | case SPIRV::StorageClass::Generic: |
| 202 | return 4; |
| 203 | case SPIRV::StorageClass::DeviceOnlyINTEL: |
| 204 | return 5; |
| 205 | case SPIRV::StorageClass::HostOnlyINTEL: |
| 206 | return 6; |
| 207 | case SPIRV::StorageClass::Input: |
| 208 | return 7; |
| 209 | case SPIRV::StorageClass::Output: |
| 210 | return 8; |
| 211 | case SPIRV::StorageClass::CodeSectionINTEL: |
| 212 | return 9; |
| 213 | case SPIRV::StorageClass::Private: |
| 214 | return 10; |
| 215 | case SPIRV::StorageClass::StorageBuffer: |
| 216 | return 11; |
| 217 | case SPIRV::StorageClass::Uniform: |
| 218 | return 12; |
| 219 | default: |
| 220 | report_fatal_error(reason: "Unable to get address space id" ); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | // Convert an LLVM IR address space to a SPIR-V storage class. |
| 225 | SPIRV::StorageClass::StorageClass |
| 226 | addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI); |
| 227 | |
| 228 | SPIRV::MemorySemantics::MemorySemantics |
| 229 | getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC); |
| 230 | |
| 231 | SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord); |
| 232 | |
| 233 | SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id); |
| 234 | |
| 235 | // Find def instruction for the given ConstReg, walking through |
| 236 | // spv_track_constant and ASSIGN_TYPE instructions. Updates ConstReg by def |
| 237 | // of OpConstant instruction. |
| 238 | MachineInstr *getDefInstrMaybeConstant(Register &ConstReg, |
| 239 | const MachineRegisterInfo *MRI); |
| 240 | |
| 241 | // Get constant integer value of the given ConstReg. |
| 242 | uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI); |
| 243 | |
| 244 | // Check if MI is a SPIR-V specific intrinsic call. |
| 245 | bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID); |
| 246 | // Check if it's a SPIR-V specific intrinsic call. |
| 247 | bool isSpvIntrinsic(const Value *Arg); |
| 248 | |
| 249 | // Get type of i-th operand of the metadata node. |
| 250 | Type *getMDOperandAsType(const MDNode *N, unsigned I); |
| 251 | |
| 252 | // If OpenCL or SPIR-V builtin function name is recognized, return a demangled |
| 253 | // name, otherwise return an empty string. |
| 254 | std::string getOclOrSpirvBuiltinDemangledName(StringRef Name); |
| 255 | |
| 256 | // Check if a string contains a builtin prefix. |
| 257 | bool hasBuiltinTypePrefix(StringRef Name); |
| 258 | |
| 259 | // Check if given LLVM type is a special opaque builtin type. |
| 260 | bool isSpecialOpaqueType(const Type *Ty); |
| 261 | |
| 262 | // Check if the function is an SPIR-V entry point |
| 263 | bool isEntryPoint(const Function &F); |
| 264 | |
| 265 | // Parse basic scalar type name, substring TypeName, and return LLVM type. |
| 266 | Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx); |
| 267 | |
| 268 | // Sort blocks in a partial ordering, so each block is after all its |
| 269 | // dominators. This should match both the SPIR-V and the MIR requirements. |
| 270 | // Returns true if the function was changed. |
| 271 | bool sortBlocks(Function &F); |
| 272 | |
| 273 | inline bool hasInitializer(const GlobalVariable *GV) { |
| 274 | return GV->hasInitializer() && !isa<UndefValue>(Val: GV->getInitializer()); |
| 275 | } |
| 276 | |
| 277 | // True if this is an instance of TypedPointerType. |
| 278 | inline bool isTypedPointerTy(const Type *T) { |
| 279 | return T && T->getTypeID() == Type::TypedPointerTyID; |
| 280 | } |
| 281 | |
| 282 | // True if this is an instance of PointerType. |
| 283 | inline bool isUntypedPointerTy(const Type *T) { |
| 284 | return T && T->getTypeID() == Type::PointerTyID; |
| 285 | } |
| 286 | |
| 287 | // True if this is an instance of PointerType or TypedPointerType. |
| 288 | inline bool isPointerTy(const Type *T) { |
| 289 | return isUntypedPointerTy(T) || isTypedPointerTy(T); |
| 290 | } |
| 291 | |
| 292 | // Get the address space of this pointer or pointer vector type for instances of |
| 293 | // PointerType or TypedPointerType. |
| 294 | inline unsigned getPointerAddressSpace(const Type *T) { |
| 295 | Type *SubT = T->getScalarType(); |
| 296 | return SubT->getTypeID() == Type::PointerTyID |
| 297 | ? cast<PointerType>(Val: SubT)->getAddressSpace() |
| 298 | : cast<TypedPointerType>(Val: SubT)->getAddressSpace(); |
| 299 | } |
| 300 | |
| 301 | // Return true if the Argument is decorated with a pointee type |
| 302 | inline bool hasPointeeTypeAttr(Argument *Arg) { |
| 303 | return Arg->hasByValAttr() || Arg->hasByRefAttr() || Arg->hasStructRetAttr(); |
| 304 | } |
| 305 | |
| 306 | // Return the pointee type of the argument or nullptr otherwise |
| 307 | inline Type *getPointeeTypeByAttr(Argument *Arg) { |
| 308 | if (Arg->hasByValAttr()) |
| 309 | return Arg->getParamByValType(); |
| 310 | if (Arg->hasStructRetAttr()) |
| 311 | return Arg->getParamStructRetType(); |
| 312 | if (Arg->hasByRefAttr()) |
| 313 | return Arg->getParamByRefType(); |
| 314 | return nullptr; |
| 315 | } |
| 316 | |
| 317 | inline Type *reconstructFunctionType(Function *F) { |
| 318 | SmallVector<Type *> ArgTys; |
| 319 | for (unsigned i = 0; i < F->arg_size(); ++i) |
| 320 | ArgTys.push_back(Elt: F->getArg(i)->getType()); |
| 321 | return FunctionType::get(Result: F->getReturnType(), Params: ArgTys, isVarArg: F->isVarArg()); |
| 322 | } |
| 323 | |
| 324 | #define TYPED_PTR_TARGET_EXT_NAME "spirv.$TypedPointerType" |
| 325 | inline Type *getTypedPointerWrapper(Type *ElemTy, unsigned AS) { |
| 326 | return TargetExtType::get(Context&: ElemTy->getContext(), TYPED_PTR_TARGET_EXT_NAME, |
| 327 | Types: {ElemTy}, Ints: {AS}); |
| 328 | } |
| 329 | |
| 330 | inline bool isTypedPointerWrapper(const TargetExtType *ExtTy) { |
| 331 | return ExtTy->getName() == TYPED_PTR_TARGET_EXT_NAME && |
| 332 | ExtTy->getNumIntParameters() == 1 && |
| 333 | ExtTy->getNumTypeParameters() == 1; |
| 334 | } |
| 335 | |
| 336 | // True if this is an instance of PointerType or TypedPointerType. |
| 337 | inline bool isPointerTyOrWrapper(const Type *Ty) { |
| 338 | if (auto *ExtTy = dyn_cast<TargetExtType>(Val: Ty)) |
| 339 | return isTypedPointerWrapper(ExtTy); |
| 340 | return isPointerTy(T: Ty); |
| 341 | } |
| 342 | |
| 343 | inline Type *applyWrappers(Type *Ty) { |
| 344 | if (auto *ExtTy = dyn_cast<TargetExtType>(Val: Ty)) { |
| 345 | if (isTypedPointerWrapper(ExtTy)) |
| 346 | return TypedPointerType::get(ElementType: applyWrappers(Ty: ExtTy->getTypeParameter(i: 0)), |
| 347 | AddressSpace: ExtTy->getIntParameter(i: 0)); |
| 348 | } else if (auto *VecTy = dyn_cast<VectorType>(Val: Ty)) { |
| 349 | Type *ElemTy = VecTy->getElementType(); |
| 350 | Type *NewElemTy = ElemTy->isTargetExtTy() ? applyWrappers(Ty: ElemTy) : ElemTy; |
| 351 | if (NewElemTy != ElemTy) |
| 352 | return VectorType::get(ElementType: NewElemTy, EC: VecTy->getElementCount()); |
| 353 | } |
| 354 | return Ty; |
| 355 | } |
| 356 | |
| 357 | inline Type *getPointeeType(const Type *Ty) { |
| 358 | if (Ty) { |
| 359 | if (auto PType = dyn_cast<TypedPointerType>(Val: Ty)) |
| 360 | return PType->getElementType(); |
| 361 | else if (auto *ExtTy = dyn_cast<TargetExtType>(Val: Ty)) |
| 362 | if (isTypedPointerWrapper(ExtTy)) |
| 363 | return ExtTy->getTypeParameter(i: 0); |
| 364 | } |
| 365 | return nullptr; |
| 366 | } |
| 367 | |
| 368 | inline bool isUntypedEquivalentToTyExt(Type *Ty1, Type *Ty2) { |
| 369 | if (!isUntypedPointerTy(T: Ty1) || !Ty2) |
| 370 | return false; |
| 371 | if (auto *ExtTy = dyn_cast<TargetExtType>(Val: Ty2)) |
| 372 | if (isTypedPointerWrapper(ExtTy) && |
| 373 | ExtTy->getTypeParameter(i: 0) == |
| 374 | IntegerType::getInt8Ty(C&: Ty1->getContext()) && |
| 375 | ExtTy->getIntParameter(i: 0) == cast<PointerType>(Val: Ty1)->getAddressSpace()) |
| 376 | return true; |
| 377 | return false; |
| 378 | } |
| 379 | |
| 380 | inline bool isEquivalentTypes(Type *Ty1, Type *Ty2) { |
| 381 | return isUntypedEquivalentToTyExt(Ty1, Ty2) || |
| 382 | isUntypedEquivalentToTyExt(Ty1: Ty2, Ty2: Ty1); |
| 383 | } |
| 384 | |
| 385 | inline Type *toTypedPointer(Type *Ty) { |
| 386 | if (Type *NewTy = applyWrappers(Ty); NewTy != Ty) |
| 387 | return NewTy; |
| 388 | return isUntypedPointerTy(T: Ty) |
| 389 | ? TypedPointerType::get(ElementType: IntegerType::getInt8Ty(C&: Ty->getContext()), |
| 390 | AddressSpace: getPointerAddressSpace(T: Ty)) |
| 391 | : Ty; |
| 392 | } |
| 393 | |
| 394 | inline Type *toTypedFunPointer(FunctionType *FTy) { |
| 395 | Type *OrigRetTy = FTy->getReturnType(); |
| 396 | Type *RetTy = toTypedPointer(Ty: OrigRetTy); |
| 397 | bool IsUntypedPtr = false; |
| 398 | for (Type *PTy : FTy->params()) { |
| 399 | if (isUntypedPointerTy(T: PTy)) { |
| 400 | IsUntypedPtr = true; |
| 401 | break; |
| 402 | } |
| 403 | } |
| 404 | if (!IsUntypedPtr && RetTy == OrigRetTy) |
| 405 | return FTy; |
| 406 | SmallVector<Type *> ParamTys; |
| 407 | for (Type *PTy : FTy->params()) |
| 408 | ParamTys.push_back(Elt: toTypedPointer(Ty: PTy)); |
| 409 | return FunctionType::get(Result: RetTy, Params: ParamTys, isVarArg: FTy->isVarArg()); |
| 410 | } |
| 411 | |
| 412 | inline const Type *unifyPtrType(const Type *Ty) { |
| 413 | if (auto FTy = dyn_cast<FunctionType>(Val: Ty)) |
| 414 | return toTypedFunPointer(FTy: const_cast<FunctionType *>(FTy)); |
| 415 | return toTypedPointer(Ty: const_cast<Type *>(Ty)); |
| 416 | } |
| 417 | |
| 418 | inline bool isVector1(Type *Ty) { |
| 419 | auto *FVTy = dyn_cast<FixedVectorType>(Val: Ty); |
| 420 | return FVTy && FVTy->getNumElements() == 1; |
| 421 | } |
| 422 | |
| 423 | // Modify an LLVM type to conform with future transformations in IRTranslator. |
| 424 | // At the moment use cases comprise only a <1 x Type> vector. To extend when/if |
| 425 | // needed. |
| 426 | inline Type *normalizeType(Type *Ty) { |
| 427 | auto *FVTy = dyn_cast<FixedVectorType>(Val: Ty); |
| 428 | if (!FVTy || FVTy->getNumElements() != 1) |
| 429 | return Ty; |
| 430 | // If it's a <1 x Type> vector type, replace it by the element type, because |
| 431 | // it's not a legal vector type in LLT and IRTranslator will represent it as |
| 432 | // the scalar eventually. |
| 433 | return normalizeType(Ty: FVTy->getElementType()); |
| 434 | } |
| 435 | |
| 436 | inline PoisonValue *getNormalizedPoisonValue(Type *Ty) { |
| 437 | return PoisonValue::get(T: normalizeType(Ty)); |
| 438 | } |
| 439 | |
| 440 | inline MetadataAsValue *buildMD(Value *Arg) { |
| 441 | LLVMContext &Ctx = Arg->getContext(); |
| 442 | return MetadataAsValue::get( |
| 443 | Context&: Ctx, MD: MDNode::get(Context&: Ctx, MDs: ValueAsMetadata::getConstant(C: Arg))); |
| 444 | } |
| 445 | |
| 446 | CallInst *buildIntrWithMD(Intrinsic::ID IntrID, ArrayRef<Type *> Types, |
| 447 | Value *Arg, Value *Arg2, ArrayRef<Constant *> Imms, |
| 448 | IRBuilder<> &B); |
| 449 | |
| 450 | MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg); |
| 451 | |
| 452 | #define SPIRV_BACKEND_SERVICE_FUN_NAME "__spirv_backend_service_fun" |
| 453 | bool getVacantFunctionName(Module &M, std::string &Name); |
| 454 | |
| 455 | void setRegClassType(Register Reg, const Type *Ty, SPIRVGlobalRegistry *GR, |
| 456 | MachineIRBuilder &MIRBuilder, |
| 457 | SPIRV::AccessQualifier::AccessQualifier AccessQual, |
| 458 | bool EmitIR, bool Force = false); |
| 459 | void setRegClassType(Register Reg, const MachineInstr *SpvType, |
| 460 | SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, |
| 461 | const MachineFunction &MF, bool Force = false); |
| 462 | Register createVirtualRegister(const MachineInstr *SpvType, |
| 463 | SPIRVGlobalRegistry *GR, |
| 464 | MachineRegisterInfo *MRI, |
| 465 | const MachineFunction &MF); |
| 466 | Register createVirtualRegister(const MachineInstr *SpvType, |
| 467 | SPIRVGlobalRegistry *GR, |
| 468 | MachineIRBuilder &MIRBuilder); |
| 469 | Register createVirtualRegister( |
| 470 | const Type *Ty, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIRBuilder, |
| 471 | SPIRV::AccessQualifier::AccessQualifier AccessQual, bool EmitIR); |
| 472 | |
| 473 | // Return true if there is an opaque pointer type nested in the argument. |
| 474 | bool isNestedPointer(const Type *Ty); |
| 475 | |
| 476 | enum FPDecorationId { NONE, RTE, RTZ, RTP, RTN, SAT }; |
| 477 | |
| 478 | inline FPDecorationId demangledPostfixToDecorationId(const std::string &S) { |
| 479 | static std::unordered_map<std::string, FPDecorationId> Mapping = { |
| 480 | {"rte" , FPDecorationId::RTE}, |
| 481 | {"rtz" , FPDecorationId::RTZ}, |
| 482 | {"rtp" , FPDecorationId::RTP}, |
| 483 | {"rtn" , FPDecorationId::RTN}, |
| 484 | {"sat" , FPDecorationId::SAT}}; |
| 485 | auto It = Mapping.find(x: S); |
| 486 | return It == Mapping.end() ? FPDecorationId::NONE : It->second; |
| 487 | } |
| 488 | |
| 489 | SmallVector<MachineInstr *, 4> |
| 490 | createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, |
| 491 | unsigned MinWC, unsigned ContinuedOpcode, |
| 492 | ArrayRef<Register> Args, Register ReturnRegister, |
| 493 | Register TypeID); |
| 494 | |
| 495 | // Instruction selection directed by type folding. |
| 496 | const std::set<unsigned> &getTypeFoldingSupportedOpcodes(); |
| 497 | bool isTypeFoldingSupported(unsigned Opcode); |
| 498 | |
| 499 | // Get loop controls from llvm.loop. metadata. |
| 500 | SmallVector<unsigned, 1> getSpirvLoopControlOperandsFromLoopMetadata(Loop *L); |
| 501 | |
| 502 | // Traversing [g]MIR accounting for pseudo-instructions. |
| 503 | MachineInstr *passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI); |
| 504 | MachineInstr *getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI); |
| 505 | MachineInstr *getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI); |
| 506 | int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI); |
| 507 | unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, |
| 508 | const MachineInstr *ResType); |
| 509 | |
| 510 | } // namespace llvm |
| 511 | #endif // LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H |
| 512 | |