| 1 | //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines an instruction selector for the SystemZ target. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "SystemZTargetMachine.h" |
| 14 | #include "SystemZISelLowering.h" |
| 15 | #include "llvm/Analysis/AliasAnalysis.h" |
| 16 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 17 | #include "llvm/Support/Debug.h" |
| 18 | #include "llvm/Support/KnownBits.h" |
| 19 | #include "llvm/Support/raw_ostream.h" |
| 20 | |
| 21 | using namespace llvm; |
| 22 | |
| 23 | #define DEBUG_TYPE "systemz-isel" |
| 24 | #define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection" |
| 25 | |
| 26 | namespace { |
| 27 | // Used to build addressing modes. |
| 28 | struct SystemZAddressingMode { |
| 29 | // The shape of the address. |
| 30 | enum AddrForm { |
| 31 | // base+displacement |
| 32 | FormBD, |
| 33 | |
| 34 | // base+displacement+index for load and store operands |
| 35 | FormBDXNormal, |
| 36 | |
| 37 | // base+displacement+index for load address operands |
| 38 | FormBDXLA, |
| 39 | |
| 40 | // base+displacement+index+ADJDYNALLOC |
| 41 | FormBDXDynAlloc |
| 42 | }; |
| 43 | AddrForm Form; |
| 44 | |
| 45 | // The type of displacement. The enum names here correspond directly |
| 46 | // to the definitions in SystemZOperand.td. We could split them into |
| 47 | // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. |
| 48 | enum DispRange { |
| 49 | Disp12Only, |
| 50 | Disp12Pair, |
| 51 | Disp20Only, |
| 52 | Disp20Only128, |
| 53 | Disp20Pair |
| 54 | }; |
| 55 | DispRange DR; |
| 56 | |
| 57 | // The parts of the address. The address is equivalent to: |
| 58 | // |
| 59 | // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) |
| 60 | SDValue Base; |
| 61 | int64_t Disp; |
| 62 | SDValue Index; |
| 63 | bool IncludesDynAlloc; |
| 64 | |
| 65 | SystemZAddressingMode(AddrForm form, DispRange dr) |
| 66 | : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {} |
| 67 | |
| 68 | // True if the address can have an index register. |
| 69 | bool hasIndexField() { return Form != FormBD; } |
| 70 | |
| 71 | // True if the address can (and must) include ADJDYNALLOC. |
| 72 | bool isDynAlloc() { return Form == FormBDXDynAlloc; } |
| 73 | |
| 74 | void dump(const llvm::SelectionDAG *DAG) { |
| 75 | errs() << "SystemZAddressingMode " << this << '\n'; |
| 76 | |
| 77 | errs() << " Base " ; |
| 78 | if (Base.getNode()) |
| 79 | Base.getNode()->dump(G: DAG); |
| 80 | else |
| 81 | errs() << "null\n" ; |
| 82 | |
| 83 | if (hasIndexField()) { |
| 84 | errs() << " Index " ; |
| 85 | if (Index.getNode()) |
| 86 | Index.getNode()->dump(G: DAG); |
| 87 | else |
| 88 | errs() << "null\n" ; |
| 89 | } |
| 90 | |
| 91 | errs() << " Disp " << Disp; |
| 92 | if (IncludesDynAlloc) |
| 93 | errs() << " + ADJDYNALLOC" ; |
| 94 | errs() << '\n'; |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | // Return a mask with Count low bits set. |
| 99 | static uint64_t allOnes(unsigned int Count) { |
| 100 | assert(Count <= 64); |
| 101 | if (Count > 63) |
| 102 | return UINT64_MAX; |
| 103 | return (uint64_t(1) << Count) - 1; |
| 104 | } |
| 105 | |
| 106 | // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation |
| 107 | // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and |
| 108 | // Rotate (I5). The combined operand value is effectively: |
| 109 | // |
| 110 | // (or (rotl Input, Rotate), ~Mask) |
| 111 | // |
| 112 | // for RNSBG and: |
| 113 | // |
| 114 | // (and (rotl Input, Rotate), Mask) |
| 115 | // |
| 116 | // otherwise. The output value has BitSize bits, although Input may be |
| 117 | // narrower (in which case the upper bits are don't care), or wider (in which |
| 118 | // case the result will be truncated as part of the operation). |
| 119 | struct RxSBGOperands { |
| 120 | RxSBGOperands(unsigned Op, SDValue N) |
| 121 | : Opcode(Op), BitSize(N.getValueSizeInBits()), |
| 122 | Mask(allOnes(Count: BitSize)), Input(N), Start(64 - BitSize), End(63), |
| 123 | Rotate(0) {} |
| 124 | |
| 125 | unsigned Opcode; |
| 126 | unsigned BitSize; |
| 127 | uint64_t Mask; |
| 128 | SDValue Input; |
| 129 | unsigned Start; |
| 130 | unsigned End; |
| 131 | unsigned Rotate; |
| 132 | }; |
| 133 | |
| 134 | class SystemZDAGToDAGISel : public SelectionDAGISel { |
| 135 | const SystemZSubtarget *Subtarget; |
| 136 | |
| 137 | // Used by SystemZOperands.td to create integer constants. |
| 138 | inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { |
| 139 | return CurDAG->getTargetConstant(Val: Imm, DL: SDLoc(Node), VT: Node->getValueType(ResNo: 0)); |
| 140 | } |
| 141 | |
| 142 | const SystemZTargetMachine &getTargetMachine() const { |
| 143 | return static_cast<const SystemZTargetMachine &>(TM); |
| 144 | } |
| 145 | |
| 146 | const SystemZInstrInfo *getInstrInfo() const { |
| 147 | return Subtarget->getInstrInfo(); |
| 148 | } |
| 149 | |
| 150 | // Try to fold more of the base or index of AM into AM, where IsBase |
| 151 | // selects between the base and index. |
| 152 | bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; |
| 153 | |
| 154 | // Try to describe N in AM, returning true on success. |
| 155 | bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; |
| 156 | |
| 157 | // Extract individual target operands from matched address AM. |
| 158 | void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, |
| 159 | SDValue &Base, SDValue &Disp) const; |
| 160 | void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, |
| 161 | SDValue &Base, SDValue &Disp, SDValue &Index) const; |
| 162 | |
| 163 | // Try to match Addr as a FormBD address with displacement type DR. |
| 164 | // Return true on success, storing the base and displacement in |
| 165 | // Base and Disp respectively. |
| 166 | bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, |
| 167 | SDValue &Base, SDValue &Disp) const; |
| 168 | |
| 169 | // Try to match Addr as a FormBDX address with displacement type DR. |
| 170 | // Return true on success and if the result had no index. Store the |
| 171 | // base and displacement in Base and Disp respectively. |
| 172 | bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, |
| 173 | SDValue &Base, SDValue &Disp) const; |
| 174 | |
| 175 | // Try to match Addr as a FormBDX* address of form Form with |
| 176 | // displacement type DR. Return true on success, storing the base, |
| 177 | // displacement and index in Base, Disp and Index respectively. |
| 178 | bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, |
| 179 | SystemZAddressingMode::DispRange DR, SDValue Addr, |
| 180 | SDValue &Base, SDValue &Disp, SDValue &Index) const; |
| 181 | |
| 182 | // PC-relative address matching routines used by SystemZOperands.td. |
| 183 | bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { |
| 184 | if (SystemZISD::isPCREL(Opcode: Addr.getOpcode())) { |
| 185 | Target = Addr.getOperand(i: 0); |
| 186 | return true; |
| 187 | } |
| 188 | return false; |
| 189 | } |
| 190 | |
| 191 | // BD matching routines used by SystemZOperands.td. |
| 192 | bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| 193 | return selectBDAddr(DR: SystemZAddressingMode::Disp12Only, Addr, Base, Disp); |
| 194 | } |
| 195 | bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| 196 | return selectBDAddr(DR: SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); |
| 197 | } |
| 198 | bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| 199 | return selectBDAddr(DR: SystemZAddressingMode::Disp20Only, Addr, Base, Disp); |
| 200 | } |
| 201 | bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| 202 | return selectBDAddr(DR: SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); |
| 203 | } |
| 204 | |
| 205 | // MVI matching routines used by SystemZOperands.td. |
| 206 | bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| 207 | return selectMVIAddr(DR: SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); |
| 208 | } |
| 209 | bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| 210 | return selectMVIAddr(DR: SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); |
| 211 | } |
| 212 | |
| 213 | // BDX matching routines used by SystemZOperands.td. |
| 214 | bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 215 | SDValue &Index) const { |
| 216 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal, |
| 217 | DR: SystemZAddressingMode::Disp12Only, |
| 218 | Addr, Base, Disp, Index); |
| 219 | } |
| 220 | bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 221 | SDValue &Index) const { |
| 222 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal, |
| 223 | DR: SystemZAddressingMode::Disp12Pair, |
| 224 | Addr, Base, Disp, Index); |
| 225 | } |
| 226 | bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 227 | SDValue &Index) const { |
| 228 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXDynAlloc, |
| 229 | DR: SystemZAddressingMode::Disp12Only, |
| 230 | Addr, Base, Disp, Index); |
| 231 | } |
| 232 | bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 233 | SDValue &Index) const { |
| 234 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal, |
| 235 | DR: SystemZAddressingMode::Disp20Only, |
| 236 | Addr, Base, Disp, Index); |
| 237 | } |
| 238 | bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 239 | SDValue &Index) const { |
| 240 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal, |
| 241 | DR: SystemZAddressingMode::Disp20Only128, |
| 242 | Addr, Base, Disp, Index); |
| 243 | } |
| 244 | bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 245 | SDValue &Index) const { |
| 246 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXNormal, |
| 247 | DR: SystemZAddressingMode::Disp20Pair, |
| 248 | Addr, Base, Disp, Index); |
| 249 | } |
| 250 | bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 251 | SDValue &Index) const { |
| 252 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXLA, |
| 253 | DR: SystemZAddressingMode::Disp12Pair, |
| 254 | Addr, Base, Disp, Index); |
| 255 | } |
| 256 | bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| 257 | SDValue &Index) const { |
| 258 | return selectBDXAddr(Form: SystemZAddressingMode::FormBDXLA, |
| 259 | DR: SystemZAddressingMode::Disp20Pair, |
| 260 | Addr, Base, Disp, Index); |
| 261 | } |
| 262 | |
| 263 | // Try to match Addr as an address with a base, 12-bit displacement |
| 264 | // and index, where the index is element Elem of a vector. |
| 265 | // Return true on success, storing the base, displacement and vector |
| 266 | // in Base, Disp and Index respectively. |
| 267 | bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base, |
| 268 | SDValue &Disp, SDValue &Index) const; |
| 269 | |
| 270 | // Check whether (or Op (and X InsertMask)) is effectively an insertion |
| 271 | // of X into bits InsertMask of some Y != Op. Return true if so and |
| 272 | // set Op to that Y. |
| 273 | bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; |
| 274 | |
| 275 | // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. |
| 276 | // Return true on success. |
| 277 | bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; |
| 278 | |
| 279 | // Try to fold some of RxSBG.Input into other fields of RxSBG. |
| 280 | // Return true on success. |
| 281 | bool expandRxSBG(RxSBGOperands &RxSBG) const; |
| 282 | |
| 283 | // Return an undefined value of type VT. |
| 284 | SDValue getUNDEF(const SDLoc &DL, EVT VT) const; |
| 285 | |
| 286 | // Convert N to VT, if it isn't already. |
| 287 | SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const; |
| 288 | |
| 289 | // Try to implement AND or shift node N using RISBG with the zero flag set. |
| 290 | // Return the selected node on success, otherwise return null. |
| 291 | bool tryRISBGZero(SDNode *N); |
| 292 | |
| 293 | // Try to use RISBG or Opcode to implement OR or XOR node N. |
| 294 | // Return the selected node on success, otherwise return null. |
| 295 | bool tryRxSBG(SDNode *N, unsigned Opcode); |
| 296 | |
| 297 | // If Op0 is null, then Node is a constant that can be loaded using: |
| 298 | // |
| 299 | // (Opcode UpperVal LowerVal) |
| 300 | // |
| 301 | // If Op0 is nonnull, then Node can be implemented using: |
| 302 | // |
| 303 | // (Opcode (Opcode Op0 UpperVal) LowerVal) |
| 304 | void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, |
| 305 | uint64_t UpperVal, uint64_t LowerVal); |
| 306 | |
| 307 | void loadVectorConstant(const SystemZVectorConstantInfo &VCI, |
| 308 | SDNode *Node); |
| 309 | |
| 310 | SDNode *loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL); |
| 311 | |
| 312 | // Try to use gather instruction Opcode to implement vector insertion N. |
| 313 | bool tryGather(SDNode *N, unsigned Opcode); |
| 314 | |
| 315 | // Try to use scatter instruction Opcode to implement store Store. |
| 316 | bool tryScatter(StoreSDNode *Store, unsigned Opcode); |
| 317 | |
| 318 | // Change a chain of {load; op; store} of the same value into a simple op |
| 319 | // through memory of that value, if the uses of the modified value and its |
| 320 | // address are suitable. |
| 321 | bool tryFoldLoadStoreIntoMemOperand(SDNode *Node); |
| 322 | |
| 323 | // Return true if Load and Store are loads and stores of the same size |
| 324 | // and are guaranteed not to overlap. Such operations can be implemented |
| 325 | // using block (SS-format) instructions. |
| 326 | // |
| 327 | // Partial overlap would lead to incorrect code, since the block operations |
| 328 | // are logically bytewise, even though they have a fast path for the |
| 329 | // non-overlapping case. We also need to avoid full overlap (i.e. two |
| 330 | // addresses that might be equal at run time) because although that case |
| 331 | // would be handled correctly, it might be implemented by millicode. |
| 332 | bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; |
| 333 | |
| 334 | // N is a (store (load Y), X) pattern. Return true if it can use an MVC |
| 335 | // from Y to X. |
| 336 | bool storeLoadCanUseMVC(SDNode *N) const; |
| 337 | |
| 338 | // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true |
| 339 | // if A[1 - I] == X and if N can use a block operation like NC from A[I] |
| 340 | // to X. |
| 341 | bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; |
| 342 | |
| 343 | // Return true if N (a load or a store) fullfills the alignment |
| 344 | // requirements for a PC-relative access. |
| 345 | bool storeLoadIsAligned(SDNode *N) const; |
| 346 | |
| 347 | // Return the load extension type of a load or atomic load. |
| 348 | ISD::LoadExtType getLoadExtType(SDNode *N) const; |
| 349 | |
| 350 | // Try to expand a boolean SELECT_CCMASK using an IPM sequence. |
| 351 | SDValue expandSelectBoolean(SDNode *Node); |
| 352 | |
| 353 | // Return true if the flags of N and the subtarget allows for |
| 354 | // reassociation, in which case a reg/reg opcode is needed as input to the |
| 355 | // MachineCombiner. |
| 356 | bool shouldSelectForReassoc(SDNode *N) const; |
| 357 | |
| 358 | public: |
| 359 | SystemZDAGToDAGISel() = delete; |
| 360 | |
| 361 | SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel) |
| 362 | : SelectionDAGISel(TM, OptLevel) {} |
| 363 | |
| 364 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 365 | const Function &F = MF.getFunction(); |
| 366 | if (F.getFnAttribute(Kind: "fentry-call" ).getValueAsString() != "true" ) { |
| 367 | if (F.hasFnAttribute(Kind: "mnop-mcount" )) |
| 368 | report_fatal_error(reason: "mnop-mcount only supported with fentry-call" ); |
| 369 | if (F.hasFnAttribute(Kind: "mrecord-mcount" )) |
| 370 | report_fatal_error(reason: "mrecord-mcount only supported with fentry-call" ); |
| 371 | } |
| 372 | |
| 373 | Subtarget = &MF.getSubtarget<SystemZSubtarget>(); |
| 374 | return SelectionDAGISel::runOnMachineFunction(mf&: MF); |
| 375 | } |
| 376 | |
| 377 | // Override SelectionDAGISel. |
| 378 | void Select(SDNode *Node) override; |
| 379 | bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| 380 | InlineAsm::ConstraintCode ConstraintID, |
| 381 | std::vector<SDValue> &OutOps) override; |
| 382 | bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; |
| 383 | void PreprocessISelDAG() override; |
| 384 | |
| 385 | // Include the pieces autogenerated from the target description. |
| 386 | #include "SystemZGenDAGISel.inc" |
| 387 | }; |
| 388 | |
| 389 | class SystemZDAGToDAGISelLegacy : public SelectionDAGISelLegacy { |
| 390 | public: |
| 391 | static char ID; |
| 392 | explicit SystemZDAGToDAGISelLegacy(SystemZTargetMachine &TM, |
| 393 | CodeGenOptLevel OptLevel) |
| 394 | : SelectionDAGISelLegacy( |
| 395 | ID, std::make_unique<SystemZDAGToDAGISel>(args&: TM, args&: OptLevel)) {} |
| 396 | }; |
| 397 | } // end anonymous namespace |
| 398 | |
| 399 | char SystemZDAGToDAGISelLegacy::ID = 0; |
| 400 | |
| 401 | INITIALIZE_PASS(SystemZDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 402 | |
| 403 | FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, |
| 404 | CodeGenOptLevel OptLevel) { |
| 405 | return new SystemZDAGToDAGISelLegacy(TM, OptLevel); |
| 406 | } |
| 407 | |
| 408 | // Return true if Val should be selected as a displacement for an address |
| 409 | // with range DR. Here we're interested in the range of both the instruction |
| 410 | // described by DR and of any pairing instruction. |
| 411 | static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { |
| 412 | switch (DR) { |
| 413 | case SystemZAddressingMode::Disp12Only: |
| 414 | return isUInt<12>(x: Val); |
| 415 | |
| 416 | case SystemZAddressingMode::Disp12Pair: |
| 417 | case SystemZAddressingMode::Disp20Only: |
| 418 | case SystemZAddressingMode::Disp20Pair: |
| 419 | return isInt<20>(x: Val); |
| 420 | |
| 421 | case SystemZAddressingMode::Disp20Only128: |
| 422 | return isInt<20>(x: Val) && isInt<20>(x: Val + 8); |
| 423 | } |
| 424 | llvm_unreachable("Unhandled displacement range" ); |
| 425 | } |
| 426 | |
| 427 | // Change the base or index in AM to Value, where IsBase selects |
| 428 | // between the base and index. |
| 429 | static void changeComponent(SystemZAddressingMode &AM, bool IsBase, |
| 430 | SDValue Value) { |
| 431 | if (IsBase) |
| 432 | AM.Base = Value; |
| 433 | else |
| 434 | AM.Index = Value; |
| 435 | } |
| 436 | |
| 437 | // The base or index of AM is equivalent to Value + ADJDYNALLOC, |
| 438 | // where IsBase selects between the base and index. Try to fold the |
| 439 | // ADJDYNALLOC into AM. |
| 440 | static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, |
| 441 | SDValue Value) { |
| 442 | if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { |
| 443 | changeComponent(AM, IsBase, Value); |
| 444 | AM.IncludesDynAlloc = true; |
| 445 | return true; |
| 446 | } |
| 447 | return false; |
| 448 | } |
| 449 | |
| 450 | // The base of AM is equivalent to Base + Index. Try to use Index as |
| 451 | // the index register. |
| 452 | static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, |
| 453 | SDValue Index) { |
| 454 | if (AM.hasIndexField() && !AM.Index.getNode()) { |
| 455 | AM.Base = Base; |
| 456 | AM.Index = Index; |
| 457 | return true; |
| 458 | } |
| 459 | return false; |
| 460 | } |
| 461 | |
| 462 | // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects |
| 463 | // between the base and index. Try to fold Op1 into AM's displacement. |
| 464 | static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, |
| 465 | SDValue Op0, uint64_t Op1) { |
| 466 | // First try adjusting the displacement. |
| 467 | int64_t TestDisp = AM.Disp + Op1; |
| 468 | if (selectDisp(DR: AM.DR, Val: TestDisp)) { |
| 469 | changeComponent(AM, IsBase, Value: Op0); |
| 470 | AM.Disp = TestDisp; |
| 471 | return true; |
| 472 | } |
| 473 | |
| 474 | // We could consider forcing the displacement into a register and |
| 475 | // using it as an index, but it would need to be carefully tuned. |
| 476 | return false; |
| 477 | } |
| 478 | |
| 479 | bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, |
| 480 | bool IsBase) const { |
| 481 | SDValue N = IsBase ? AM.Base : AM.Index; |
| 482 | unsigned Opcode = N.getOpcode(); |
| 483 | // Look through no-op truncations. |
| 484 | if (Opcode == ISD::TRUNCATE && N.getOperand(i: 0).getValueSizeInBits() <= 64) { |
| 485 | N = N.getOperand(i: 0); |
| 486 | Opcode = N.getOpcode(); |
| 487 | } |
| 488 | if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 489 | SDValue Op0 = N.getOperand(i: 0); |
| 490 | SDValue Op1 = N.getOperand(i: 1); |
| 491 | |
| 492 | unsigned Op0Code = Op0->getOpcode(); |
| 493 | unsigned Op1Code = Op1->getOpcode(); |
| 494 | |
| 495 | if (Op0Code == SystemZISD::ADJDYNALLOC) |
| 496 | return expandAdjDynAlloc(AM, IsBase, Value: Op1); |
| 497 | if (Op1Code == SystemZISD::ADJDYNALLOC) |
| 498 | return expandAdjDynAlloc(AM, IsBase, Value: Op0); |
| 499 | |
| 500 | if (Op0Code == ISD::Constant) |
| 501 | return expandDisp(AM, IsBase, Op0: Op1, |
| 502 | Op1: cast<ConstantSDNode>(Val&: Op0)->getSExtValue()); |
| 503 | if (Op1Code == ISD::Constant) |
| 504 | return expandDisp(AM, IsBase, Op0, |
| 505 | Op1: cast<ConstantSDNode>(Val&: Op1)->getSExtValue()); |
| 506 | |
| 507 | if (IsBase && expandIndex(AM, Base: Op0, Index: Op1)) |
| 508 | return true; |
| 509 | } |
| 510 | if (Opcode == SystemZISD::PCREL_OFFSET) { |
| 511 | SDValue Full = N.getOperand(i: 0); |
| 512 | SDValue Base = N.getOperand(i: 1); |
| 513 | SDValue Anchor = Base.getOperand(i: 0); |
| 514 | uint64_t Offset = (cast<GlobalAddressSDNode>(Val&: Full)->getOffset() - |
| 515 | cast<GlobalAddressSDNode>(Val&: Anchor)->getOffset()); |
| 516 | return expandDisp(AM, IsBase, Op0: Base, Op1: Offset); |
| 517 | } |
| 518 | return false; |
| 519 | } |
| 520 | |
| 521 | // Return true if an instruction with displacement range DR should be |
| 522 | // used for displacement value Val. selectDisp(DR, Val) must already hold. |
| 523 | static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { |
| 524 | assert(selectDisp(DR, Val) && "Invalid displacement" ); |
| 525 | switch (DR) { |
| 526 | case SystemZAddressingMode::Disp12Only: |
| 527 | case SystemZAddressingMode::Disp20Only: |
| 528 | case SystemZAddressingMode::Disp20Only128: |
| 529 | return true; |
| 530 | |
| 531 | case SystemZAddressingMode::Disp12Pair: |
| 532 | // Use the other instruction if the displacement is too large. |
| 533 | return isUInt<12>(x: Val); |
| 534 | |
| 535 | case SystemZAddressingMode::Disp20Pair: |
| 536 | // Use the other instruction if the displacement is small enough. |
| 537 | return !isUInt<12>(x: Val); |
| 538 | } |
| 539 | llvm_unreachable("Unhandled displacement range" ); |
| 540 | } |
| 541 | |
| 542 | // Return true if Base + Disp + Index should be performed by LA(Y). |
| 543 | static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { |
| 544 | // Don't use LA(Y) for constants. |
| 545 | if (!Base) |
| 546 | return false; |
| 547 | |
| 548 | // Always use LA(Y) for frame addresses, since we know that the destination |
| 549 | // register is almost always (perhaps always) going to be different from |
| 550 | // the frame register. |
| 551 | if (Base->getOpcode() == ISD::FrameIndex) |
| 552 | return true; |
| 553 | |
| 554 | if (Disp) { |
| 555 | // Always use LA(Y) if there is a base, displacement and index. |
| 556 | if (Index) |
| 557 | return true; |
| 558 | |
| 559 | // Always use LA if the displacement is small enough. It should always |
| 560 | // be no worse than AGHI (and better if it avoids a move). |
| 561 | if (isUInt<12>(x: Disp)) |
| 562 | return true; |
| 563 | |
| 564 | // For similar reasons, always use LAY if the constant is too big for AGHI. |
| 565 | // LAY should be no worse than AGFI. |
| 566 | if (!isInt<16>(x: Disp)) |
| 567 | return true; |
| 568 | } else { |
| 569 | // Don't use LA for plain registers. |
| 570 | if (!Index) |
| 571 | return false; |
| 572 | |
| 573 | // Don't use LA for plain addition if the index operand is only used |
| 574 | // once. It should be a natural two-operand addition in that case. |
| 575 | if (Index->hasOneUse()) |
| 576 | return false; |
| 577 | |
| 578 | // Prefer addition if the second operation is sign-extended, in the |
| 579 | // hope of using AGF. |
| 580 | unsigned IndexOpcode = Index->getOpcode(); |
| 581 | if (IndexOpcode == ISD::SIGN_EXTEND || |
| 582 | IndexOpcode == ISD::SIGN_EXTEND_INREG) |
| 583 | return false; |
| 584 | } |
| 585 | |
| 586 | // Don't use LA for two-operand addition if either operand is only |
| 587 | // used once. The addition instructions are better in that case. |
| 588 | if (Base->hasOneUse()) |
| 589 | return false; |
| 590 | |
| 591 | return true; |
| 592 | } |
| 593 | |
| 594 | // Return true if Addr is suitable for AM, updating AM if so. |
| 595 | bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, |
| 596 | SystemZAddressingMode &AM) const { |
| 597 | // Start out assuming that the address will need to be loaded separately, |
| 598 | // then try to extend it as much as we can. |
| 599 | AM.Base = Addr; |
| 600 | |
| 601 | // First try treating the address as a constant. |
| 602 | if (Addr.getOpcode() == ISD::Constant && |
| 603 | expandDisp(AM, IsBase: true, Op0: SDValue(), |
| 604 | Op1: cast<ConstantSDNode>(Val&: Addr)->getSExtValue())) |
| 605 | ; |
| 606 | // Also see if it's a bare ADJDYNALLOC. |
| 607 | else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC && |
| 608 | expandAdjDynAlloc(AM, IsBase: true, Value: SDValue())) |
| 609 | ; |
| 610 | else |
| 611 | // Otherwise try expanding each component. |
| 612 | while (expandAddress(AM, IsBase: true) || |
| 613 | (AM.Index.getNode() && expandAddress(AM, IsBase: false))) |
| 614 | continue; |
| 615 | |
| 616 | // Reject cases where it isn't profitable to use LA(Y). |
| 617 | if (AM.Form == SystemZAddressingMode::FormBDXLA && |
| 618 | !shouldUseLA(Base: AM.Base.getNode(), Disp: AM.Disp, Index: AM.Index.getNode())) |
| 619 | return false; |
| 620 | |
| 621 | // Reject cases where the other instruction in a pair should be used. |
| 622 | if (!isValidDisp(DR: AM.DR, Val: AM.Disp)) |
| 623 | return false; |
| 624 | |
| 625 | // Make sure that ADJDYNALLOC is included where necessary. |
| 626 | if (AM.isDynAlloc() && !AM.IncludesDynAlloc) |
| 627 | return false; |
| 628 | |
| 629 | LLVM_DEBUG(AM.dump(CurDAG)); |
| 630 | return true; |
| 631 | } |
| 632 | |
| 633 | // Insert a node into the DAG at least before Pos. This will reposition |
| 634 | // the node as needed, and will assign it a node ID that is <= Pos's ID. |
| 635 | // Note that this does *not* preserve the uniqueness of node IDs! |
| 636 | // The selection DAG must no longer depend on their uniqueness when this |
| 637 | // function is used. |
| 638 | static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { |
| 639 | if (N->getNodeId() == -1 || |
| 640 | (SelectionDAGISel::getUninvalidatedNodeId(N: N.getNode()) > |
| 641 | SelectionDAGISel::getUninvalidatedNodeId(N: Pos))) { |
| 642 | DAG->RepositionNode(Position: Pos->getIterator(), N: N.getNode()); |
| 643 | // Mark Node as invalid for pruning as after this it may be a successor to a |
| 644 | // selected node but otherwise be in the same position of Pos. |
| 645 | // Conservatively mark it with the same -abs(Id) to assure node id |
| 646 | // invariant is preserved. |
| 647 | N->setNodeId(Pos->getNodeId()); |
| 648 | SelectionDAGISel::InvalidateNodeId(N: N.getNode()); |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, |
| 653 | EVT VT, SDValue &Base, |
| 654 | SDValue &Disp) const { |
| 655 | Base = AM.Base; |
| 656 | if (!Base.getNode()) |
| 657 | // Register 0 means "no base". This is mostly useful for shifts. |
| 658 | Base = CurDAG->getRegister(Reg: 0, VT); |
| 659 | else if (Base.getOpcode() == ISD::FrameIndex) { |
| 660 | // Lower a FrameIndex to a TargetFrameIndex. |
| 661 | int64_t FrameIndex = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 662 | Base = CurDAG->getTargetFrameIndex(FI: FrameIndex, VT); |
| 663 | } else if (Base.getValueType() != VT) { |
| 664 | // Truncate values from i64 to i32, for shifts. |
| 665 | assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && |
| 666 | "Unexpected truncation" ); |
| 667 | SDLoc DL(Base); |
| 668 | SDValue Trunc = CurDAG->getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Base); |
| 669 | insertDAGNode(DAG: CurDAG, Pos: Base.getNode(), N: Trunc); |
| 670 | Base = Trunc; |
| 671 | } |
| 672 | |
| 673 | // Lower the displacement to a TargetConstant. |
| 674 | Disp = CurDAG->getSignedTargetConstant(Val: AM.Disp, DL: SDLoc(Base), VT); |
| 675 | } |
| 676 | |
| 677 | void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, |
| 678 | EVT VT, SDValue &Base, |
| 679 | SDValue &Disp, |
| 680 | SDValue &Index) const { |
| 681 | getAddressOperands(AM, VT, Base, Disp); |
| 682 | |
| 683 | Index = AM.Index; |
| 684 | if (!Index.getNode()) |
| 685 | // Register 0 means "no index". |
| 686 | Index = CurDAG->getRegister(Reg: 0, VT); |
| 687 | } |
| 688 | |
| 689 | bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, |
| 690 | SDValue Addr, SDValue &Base, |
| 691 | SDValue &Disp) const { |
| 692 | SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); |
| 693 | if (!selectAddress(Addr, AM)) |
| 694 | return false; |
| 695 | |
| 696 | getAddressOperands(AM, VT: Addr.getValueType(), Base, Disp); |
| 697 | return true; |
| 698 | } |
| 699 | |
| 700 | bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, |
| 701 | SDValue Addr, SDValue &Base, |
| 702 | SDValue &Disp) const { |
| 703 | SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); |
| 704 | if (!selectAddress(Addr, AM) || AM.Index.getNode()) |
| 705 | return false; |
| 706 | |
| 707 | getAddressOperands(AM, VT: Addr.getValueType(), Base, Disp); |
| 708 | return true; |
| 709 | } |
| 710 | |
| 711 | bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, |
| 712 | SystemZAddressingMode::DispRange DR, |
| 713 | SDValue Addr, SDValue &Base, |
| 714 | SDValue &Disp, SDValue &Index) const { |
| 715 | SystemZAddressingMode AM(Form, DR); |
| 716 | if (!selectAddress(Addr, AM)) |
| 717 | return false; |
| 718 | |
| 719 | getAddressOperands(AM, VT: Addr.getValueType(), Base, Disp, Index); |
| 720 | return true; |
| 721 | } |
| 722 | |
| 723 | bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem, |
| 724 | SDValue &Base, |
| 725 | SDValue &Disp, |
| 726 | SDValue &Index) const { |
| 727 | SDValue Regs[2]; |
| 728 | if (selectBDXAddr12Only(Addr, Base&: Regs[0], Disp, Index&: Regs[1]) && |
| 729 | Regs[0].getNode() && Regs[1].getNode()) { |
| 730 | for (unsigned int I = 0; I < 2; ++I) { |
| 731 | Base = Regs[I]; |
| 732 | Index = Regs[1 - I]; |
| 733 | // We can't tell here whether the index vector has the right type |
| 734 | // for the access; the caller needs to do that instead. |
| 735 | if (Index.getOpcode() == ISD::ZERO_EXTEND) |
| 736 | Index = Index.getOperand(i: 0); |
| 737 | if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 738 | Index.getOperand(i: 1) == Elem) { |
| 739 | Index = Index.getOperand(i: 0); |
| 740 | return true; |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | return false; |
| 745 | } |
| 746 | |
| 747 | bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, |
| 748 | uint64_t InsertMask) const { |
| 749 | // We're only interested in cases where the insertion is into some operand |
| 750 | // of Op, rather than into Op itself. The only useful case is an AND. |
| 751 | if (Op.getOpcode() != ISD::AND) |
| 752 | return false; |
| 753 | |
| 754 | // We need a constant mask. |
| 755 | auto *MaskNode = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1).getNode()); |
| 756 | if (!MaskNode) |
| 757 | return false; |
| 758 | |
| 759 | // It's not an insertion of Op.getOperand(0) if the two masks overlap. |
| 760 | uint64_t AndMask = MaskNode->getZExtValue(); |
| 761 | if (InsertMask & AndMask) |
| 762 | return false; |
| 763 | |
| 764 | // It's only an insertion if all bits are covered or are known to be zero. |
| 765 | // The inner check covers all cases but is more expensive. |
| 766 | uint64_t Used = allOnes(Count: Op.getValueSizeInBits()); |
| 767 | if (Used != (AndMask | InsertMask)) { |
| 768 | KnownBits Known = CurDAG->computeKnownBits(Op: Op.getOperand(i: 0)); |
| 769 | if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue())) |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | Op = Op.getOperand(i: 0); |
| 774 | return true; |
| 775 | } |
| 776 | |
| 777 | bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, |
| 778 | uint64_t Mask) const { |
| 779 | const SystemZInstrInfo *TII = getInstrInfo(); |
| 780 | if (RxSBG.Rotate != 0) |
| 781 | Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); |
| 782 | Mask &= RxSBG.Mask; |
| 783 | if (TII->isRxSBGMask(Mask, BitSize: RxSBG.BitSize, Start&: RxSBG.Start, End&: RxSBG.End)) { |
| 784 | RxSBG.Mask = Mask; |
| 785 | return true; |
| 786 | } |
| 787 | return false; |
| 788 | } |
| 789 | |
| 790 | // Return true if any bits of (RxSBG.Input & Mask) are significant. |
| 791 | static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { |
| 792 | // Rotate the mask in the same way as RxSBG.Input is rotated. |
| 793 | if (RxSBG.Rotate != 0) |
| 794 | Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); |
| 795 | return (Mask & RxSBG.Mask) != 0; |
| 796 | } |
| 797 | |
| 798 | bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { |
| 799 | SDValue N = RxSBG.Input; |
| 800 | unsigned Opcode = N.getOpcode(); |
| 801 | switch (Opcode) { |
| 802 | case ISD::TRUNCATE: { |
| 803 | if (RxSBG.Opcode == SystemZ::RNSBG) |
| 804 | return false; |
| 805 | if (N.getOperand(i: 0).getValueSizeInBits() > 64) |
| 806 | return false; |
| 807 | uint64_t BitSize = N.getValueSizeInBits(); |
| 808 | uint64_t Mask = allOnes(Count: BitSize); |
| 809 | if (!refineRxSBGMask(RxSBG, Mask)) |
| 810 | return false; |
| 811 | RxSBG.Input = N.getOperand(i: 0); |
| 812 | return true; |
| 813 | } |
| 814 | case ISD::AND: { |
| 815 | if (RxSBG.Opcode == SystemZ::RNSBG) |
| 816 | return false; |
| 817 | |
| 818 | auto *MaskNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode()); |
| 819 | if (!MaskNode) |
| 820 | return false; |
| 821 | |
| 822 | SDValue Input = N.getOperand(i: 0); |
| 823 | uint64_t Mask = MaskNode->getZExtValue(); |
| 824 | if (!refineRxSBGMask(RxSBG, Mask)) { |
| 825 | // If some bits of Input are already known zeros, those bits will have |
| 826 | // been removed from the mask. See if adding them back in makes the |
| 827 | // mask suitable. |
| 828 | KnownBits Known = CurDAG->computeKnownBits(Op: Input); |
| 829 | Mask |= Known.Zero.getZExtValue(); |
| 830 | if (!refineRxSBGMask(RxSBG, Mask)) |
| 831 | return false; |
| 832 | } |
| 833 | RxSBG.Input = Input; |
| 834 | return true; |
| 835 | } |
| 836 | |
| 837 | case ISD::OR: { |
| 838 | if (RxSBG.Opcode != SystemZ::RNSBG) |
| 839 | return false; |
| 840 | |
| 841 | auto *MaskNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode()); |
| 842 | if (!MaskNode) |
| 843 | return false; |
| 844 | |
| 845 | SDValue Input = N.getOperand(i: 0); |
| 846 | uint64_t Mask = ~MaskNode->getZExtValue(); |
| 847 | if (!refineRxSBGMask(RxSBG, Mask)) { |
| 848 | // If some bits of Input are already known ones, those bits will have |
| 849 | // been removed from the mask. See if adding them back in makes the |
| 850 | // mask suitable. |
| 851 | KnownBits Known = CurDAG->computeKnownBits(Op: Input); |
| 852 | Mask &= ~Known.One.getZExtValue(); |
| 853 | if (!refineRxSBGMask(RxSBG, Mask)) |
| 854 | return false; |
| 855 | } |
| 856 | RxSBG.Input = Input; |
| 857 | return true; |
| 858 | } |
| 859 | |
| 860 | case ISD::ROTL: { |
| 861 | // Any 64-bit rotate left can be merged into the RxSBG. |
| 862 | if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) |
| 863 | return false; |
| 864 | auto *CountNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode()); |
| 865 | if (!CountNode) |
| 866 | return false; |
| 867 | |
| 868 | RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; |
| 869 | RxSBG.Input = N.getOperand(i: 0); |
| 870 | return true; |
| 871 | } |
| 872 | |
| 873 | case ISD::ANY_EXTEND: |
| 874 | // Bits above the extended operand are don't-care. |
| 875 | RxSBG.Input = N.getOperand(i: 0); |
| 876 | return true; |
| 877 | |
| 878 | case ISD::ZERO_EXTEND: |
| 879 | if (RxSBG.Opcode != SystemZ::RNSBG) { |
| 880 | // Restrict the mask to the extended operand. |
| 881 | unsigned InnerBitSize = N.getOperand(i: 0).getValueSizeInBits(); |
| 882 | if (!refineRxSBGMask(RxSBG, Mask: allOnes(Count: InnerBitSize))) |
| 883 | return false; |
| 884 | |
| 885 | RxSBG.Input = N.getOperand(i: 0); |
| 886 | return true; |
| 887 | } |
| 888 | [[fallthrough]]; |
| 889 | |
| 890 | case ISD::SIGN_EXTEND: { |
| 891 | // Check that the extension bits are don't-care (i.e. are masked out |
| 892 | // by the final mask). |
| 893 | unsigned BitSize = N.getValueSizeInBits(); |
| 894 | unsigned InnerBitSize = N.getOperand(i: 0).getValueSizeInBits(); |
| 895 | if (maskMatters(RxSBG, Mask: allOnes(Count: BitSize) - allOnes(Count: InnerBitSize))) { |
| 896 | // In the case where only the sign bit is active, increase Rotate with |
| 897 | // the extension width. |
| 898 | if (RxSBG.Mask == 1 && RxSBG.Rotate == 1) |
| 899 | RxSBG.Rotate += (BitSize - InnerBitSize); |
| 900 | else |
| 901 | return false; |
| 902 | } |
| 903 | |
| 904 | RxSBG.Input = N.getOperand(i: 0); |
| 905 | return true; |
| 906 | } |
| 907 | |
| 908 | case ISD::SHL: { |
| 909 | auto *CountNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode()); |
| 910 | if (!CountNode) |
| 911 | return false; |
| 912 | |
| 913 | uint64_t Count = CountNode->getZExtValue(); |
| 914 | unsigned BitSize = N.getValueSizeInBits(); |
| 915 | if (Count < 1 || Count >= BitSize) |
| 916 | return false; |
| 917 | |
| 918 | if (RxSBG.Opcode == SystemZ::RNSBG) { |
| 919 | // Treat (shl X, count) as (rotl X, size-count) as long as the bottom |
| 920 | // count bits from RxSBG.Input are ignored. |
| 921 | if (maskMatters(RxSBG, Mask: allOnes(Count))) |
| 922 | return false; |
| 923 | } else { |
| 924 | // Treat (shl X, count) as (and (rotl X, count), ~0<<count). |
| 925 | if (!refineRxSBGMask(RxSBG, Mask: allOnes(Count: BitSize - Count) << Count)) |
| 926 | return false; |
| 927 | } |
| 928 | |
| 929 | RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; |
| 930 | RxSBG.Input = N.getOperand(i: 0); |
| 931 | return true; |
| 932 | } |
| 933 | |
| 934 | case ISD::SRL: |
| 935 | case ISD::SRA: { |
| 936 | auto *CountNode = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getNode()); |
| 937 | if (!CountNode) |
| 938 | return false; |
| 939 | |
| 940 | uint64_t Count = CountNode->getZExtValue(); |
| 941 | unsigned BitSize = N.getValueSizeInBits(); |
| 942 | if (Count < 1 || Count >= BitSize) |
| 943 | return false; |
| 944 | |
| 945 | if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { |
| 946 | // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top |
| 947 | // count bits from RxSBG.Input are ignored. |
| 948 | if (maskMatters(RxSBG, Mask: allOnes(Count) << (BitSize - Count))) |
| 949 | return false; |
| 950 | } else { |
| 951 | // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), |
| 952 | // which is similar to SLL above. |
| 953 | if (!refineRxSBGMask(RxSBG, Mask: allOnes(Count: BitSize - Count))) |
| 954 | return false; |
| 955 | } |
| 956 | |
| 957 | RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; |
| 958 | RxSBG.Input = N.getOperand(i: 0); |
| 959 | return true; |
| 960 | } |
| 961 | default: |
| 962 | return false; |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const { |
| 967 | SDNode *N = CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT); |
| 968 | return SDValue(N, 0); |
| 969 | } |
| 970 | |
| 971 | SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT, |
| 972 | SDValue N) const { |
| 973 | if (N.getValueType() == MVT::i32 && VT == MVT::i64) |
| 974 | return CurDAG->getTargetInsertSubreg(SRIdx: SystemZ::subreg_l32, |
| 975 | DL, VT, Operand: getUNDEF(DL, VT: MVT::i64), Subreg: N); |
| 976 | if (N.getValueType() == MVT::i64 && VT == MVT::i32) |
| 977 | return CurDAG->getTargetExtractSubreg(SRIdx: SystemZ::subreg_l32, DL, VT, Operand: N); |
| 978 | assert(N.getValueType() == VT && "Unexpected value types" ); |
| 979 | return N; |
| 980 | } |
| 981 | |
| 982 | bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { |
| 983 | SDLoc DL(N); |
| 984 | EVT VT = N->getValueType(ResNo: 0); |
| 985 | if (!VT.isInteger() || VT.getSizeInBits() > 64) |
| 986 | return false; |
| 987 | RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); |
| 988 | unsigned Count = 0; |
| 989 | while (expandRxSBG(RxSBG&: RISBG)) |
| 990 | // The widening or narrowing is expected to be free. |
| 991 | // Counting widening or narrowing as a saved operation will result in |
| 992 | // preferring an R*SBG over a simple shift/logical instruction. |
| 993 | if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND && |
| 994 | RISBG.Input.getOpcode() != ISD::TRUNCATE) |
| 995 | Count += 1; |
| 996 | if (Count == 0 || isa<ConstantSDNode>(Val: RISBG.Input)) |
| 997 | return false; |
| 998 | |
| 999 | // Prefer to use normal shift instructions over RISBG, since they can handle |
| 1000 | // all cases and are sometimes shorter. |
| 1001 | if (Count == 1 && N->getOpcode() != ISD::AND) |
| 1002 | return false; |
| 1003 | |
| 1004 | // Prefer LOAD LOGICAL INDEXED ADDRESS over RISBG in the case where we |
| 1005 | // can use its displacement to pull in an addition. |
| 1006 | if (Subtarget->hasMiscellaneousExtensions4() && |
| 1007 | RISBG.Rotate >= 1 && RISBG.Rotate <= 4 && |
| 1008 | RISBG.Mask == (((uint64_t)1 << 32) - 1) << RISBG.Rotate && |
| 1009 | RISBG.Input.getOpcode() == ISD::ADD) |
| 1010 | if (auto *C = dyn_cast<ConstantSDNode>(Val: RISBG.Input.getOperand(i: 1))) |
| 1011 | if (isInt<20>(x: C->getSExtValue())) |
| 1012 | return false; |
| 1013 | |
| 1014 | // Prefer register extensions like LLC over RISBG. Also prefer to start |
| 1015 | // out with normal ANDs if one instruction would be enough. We can convert |
| 1016 | // these ANDs into an RISBG later if a three-address instruction is useful. |
| 1017 | if (RISBG.Rotate == 0) { |
| 1018 | bool PreferAnd = false; |
| 1019 | // Prefer AND for any 32-bit and-immediate operation. |
| 1020 | if (VT == MVT::i32) |
| 1021 | PreferAnd = true; |
| 1022 | // As well as for any 64-bit operation that can be implemented via LLC(R), |
| 1023 | // LLH(R), LLGT(R), or one of the and-immediate instructions. |
| 1024 | else if (RISBG.Mask == 0xff || |
| 1025 | RISBG.Mask == 0xffff || |
| 1026 | RISBG.Mask == 0x7fffffff || |
| 1027 | SystemZ::isImmLF(Val: ~RISBG.Mask) || |
| 1028 | SystemZ::isImmHF(Val: ~RISBG.Mask)) |
| 1029 | PreferAnd = true; |
| 1030 | // And likewise for the LLZRGF instruction, which doesn't have a register |
| 1031 | // to register version. |
| 1032 | else if (auto *Load = dyn_cast<LoadSDNode>(Val&: RISBG.Input)) { |
| 1033 | if (Load->getMemoryVT() == MVT::i32 && |
| 1034 | (Load->getExtensionType() == ISD::EXTLOAD || |
| 1035 | Load->getExtensionType() == ISD::ZEXTLOAD) && |
| 1036 | RISBG.Mask == 0xffffff00 && |
| 1037 | Subtarget->hasLoadAndZeroRightmostByte()) |
| 1038 | PreferAnd = true; |
| 1039 | } |
| 1040 | if (PreferAnd) { |
| 1041 | // Replace the current node with an AND. Note that the current node |
| 1042 | // might already be that same AND, in which case it is already CSE'd |
| 1043 | // with it, and we must not call ReplaceNode. |
| 1044 | SDValue In = convertTo(DL, VT, N: RISBG.Input); |
| 1045 | SDValue Mask = CurDAG->getConstant(Val: RISBG.Mask, DL, VT); |
| 1046 | SDValue New = CurDAG->getNode(Opcode: ISD::AND, DL, VT, N1: In, N2: Mask); |
| 1047 | if (N != New.getNode()) { |
| 1048 | insertDAGNode(DAG: CurDAG, Pos: N, N: Mask); |
| 1049 | insertDAGNode(DAG: CurDAG, Pos: N, N: New); |
| 1050 | ReplaceNode(F: N, T: New.getNode()); |
| 1051 | N = New.getNode(); |
| 1052 | } |
| 1053 | // Now, select the machine opcode to implement this operation. |
| 1054 | if (!N->isMachineOpcode()) |
| 1055 | SelectCode(N); |
| 1056 | return true; |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | unsigned Opcode = SystemZ::RISBG; |
| 1061 | // Prefer RISBGN if available, since it does not clobber CC. |
| 1062 | if (Subtarget->hasMiscellaneousExtensions()) |
| 1063 | Opcode = SystemZ::RISBGN; |
| 1064 | EVT OpcodeVT = MVT::i64; |
| 1065 | if (VT == MVT::i32 && Subtarget->hasHighWord() && |
| 1066 | // We can only use the 32-bit instructions if all source bits are |
| 1067 | // in the low 32 bits without wrapping, both after rotation (because |
| 1068 | // of the smaller range for Start and End) and before rotation |
| 1069 | // (because the input value is truncated). |
| 1070 | RISBG.Start >= 32 && RISBG.End >= RISBG.Start && |
| 1071 | ((RISBG.Start + RISBG.Rotate) & 63) >= 32 && |
| 1072 | ((RISBG.End + RISBG.Rotate) & 63) >= |
| 1073 | ((RISBG.Start + RISBG.Rotate) & 63)) { |
| 1074 | Opcode = SystemZ::RISBMux; |
| 1075 | OpcodeVT = MVT::i32; |
| 1076 | RISBG.Start &= 31; |
| 1077 | RISBG.End &= 31; |
| 1078 | } |
| 1079 | SDValue Ops[5] = { |
| 1080 | getUNDEF(DL, VT: OpcodeVT), |
| 1081 | convertTo(DL, VT: OpcodeVT, N: RISBG.Input), |
| 1082 | CurDAG->getTargetConstant(Val: RISBG.Start, DL, VT: MVT::i32), |
| 1083 | CurDAG->getTargetConstant(Val: RISBG.End | 128, DL, VT: MVT::i32), |
| 1084 | CurDAG->getTargetConstant(Val: RISBG.Rotate, DL, VT: MVT::i32) |
| 1085 | }; |
| 1086 | SDValue New = convertTo( |
| 1087 | DL, VT, N: SDValue(CurDAG->getMachineNode(Opcode, dl: DL, VT: OpcodeVT, Ops), 0)); |
| 1088 | ReplaceNode(F: N, T: New.getNode()); |
| 1089 | return true; |
| 1090 | } |
| 1091 | |
| 1092 | bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { |
| 1093 | SDLoc DL(N); |
| 1094 | EVT VT = N->getValueType(ResNo: 0); |
| 1095 | if (!VT.isInteger() || VT.getSizeInBits() > 64) |
| 1096 | return false; |
| 1097 | // Try treating each operand of N as the second operand of the RxSBG |
| 1098 | // and see which goes deepest. |
| 1099 | RxSBGOperands RxSBG[] = { |
| 1100 | RxSBGOperands(Opcode, N->getOperand(Num: 0)), |
| 1101 | RxSBGOperands(Opcode, N->getOperand(Num: 1)) |
| 1102 | }; |
| 1103 | unsigned Count[] = { 0, 0 }; |
| 1104 | for (unsigned I = 0; I < 2; ++I) |
| 1105 | while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG&: RxSBG[I])) |
| 1106 | // In cases of multiple users it seems better to keep the simple |
| 1107 | // instruction as they are one cycle faster, and it also helps in cases |
| 1108 | // where both inputs share a common node. |
| 1109 | // The widening or narrowing is expected to be free. Counting widening |
| 1110 | // or narrowing as a saved operation will result in preferring an R*SBG |
| 1111 | // over a simple shift/logical instruction. |
| 1112 | if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND && |
| 1113 | RxSBG[I].Input.getOpcode() != ISD::TRUNCATE) |
| 1114 | Count[I] += 1; |
| 1115 | |
| 1116 | // Do nothing if neither operand is suitable. |
| 1117 | if (Count[0] == 0 && Count[1] == 0) |
| 1118 | return false; |
| 1119 | |
| 1120 | // Pick the deepest second operand. |
| 1121 | unsigned I = Count[0] > Count[1] ? 0 : 1; |
| 1122 | SDValue Op0 = N->getOperand(Num: I ^ 1); |
| 1123 | |
| 1124 | // Prefer IC for character insertions from memory. |
| 1125 | if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) |
| 1126 | if (auto *Load = dyn_cast<LoadSDNode>(Val: Op0.getNode())) |
| 1127 | if (Load->getMemoryVT() == MVT::i8) |
| 1128 | return false; |
| 1129 | |
| 1130 | // See whether we can avoid an AND in the first operand by converting |
| 1131 | // ROSBG to RISBG. |
| 1132 | if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op&: Op0, InsertMask: RxSBG[I].Mask)) { |
| 1133 | Opcode = SystemZ::RISBG; |
| 1134 | // Prefer RISBGN if available, since it does not clobber CC. |
| 1135 | if (Subtarget->hasMiscellaneousExtensions()) |
| 1136 | Opcode = SystemZ::RISBGN; |
| 1137 | } |
| 1138 | |
| 1139 | SDValue Ops[5] = { |
| 1140 | convertTo(DL, VT: MVT::i64, N: Op0), |
| 1141 | convertTo(DL, VT: MVT::i64, N: RxSBG[I].Input), |
| 1142 | CurDAG->getTargetConstant(Val: RxSBG[I].Start, DL, VT: MVT::i32), |
| 1143 | CurDAG->getTargetConstant(Val: RxSBG[I].End, DL, VT: MVT::i32), |
| 1144 | CurDAG->getTargetConstant(Val: RxSBG[I].Rotate, DL, VT: MVT::i32) |
| 1145 | }; |
| 1146 | SDValue New = convertTo( |
| 1147 | DL, VT, N: SDValue(CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::i64, Ops), 0)); |
| 1148 | ReplaceNode(F: N, T: New.getNode()); |
| 1149 | return true; |
| 1150 | } |
| 1151 | |
| 1152 | void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, |
| 1153 | SDValue Op0, uint64_t UpperVal, |
| 1154 | uint64_t LowerVal) { |
| 1155 | EVT VT = Node->getValueType(ResNo: 0); |
| 1156 | SDLoc DL(Node); |
| 1157 | SDValue Upper = CurDAG->getConstant(Val: UpperVal, DL, VT); |
| 1158 | if (Op0.getNode()) |
| 1159 | Upper = CurDAG->getNode(Opcode, DL, VT, N1: Op0, N2: Upper); |
| 1160 | |
| 1161 | { |
| 1162 | // When we haven't passed in Op0, Upper will be a constant. In order to |
| 1163 | // prevent folding back to the large immediate in `Or = getNode(...)` we run |
| 1164 | // SelectCode first and end up with an opaque machine node. This means that |
| 1165 | // we need to use a handle to keep track of Upper in case it gets CSE'd by |
| 1166 | // SelectCode. |
| 1167 | // |
| 1168 | // Note that in the case where Op0 is passed in we could just call |
| 1169 | // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing |
| 1170 | // the handle at all, but it's fine to do it here. |
| 1171 | // |
| 1172 | // TODO: This is a pretty hacky way to do this. Can we do something that |
| 1173 | // doesn't require a two paragraph explanation? |
| 1174 | HandleSDNode Handle(Upper); |
| 1175 | SelectCode(N: Upper.getNode()); |
| 1176 | Upper = Handle.getValue(); |
| 1177 | } |
| 1178 | |
| 1179 | SDValue Lower = CurDAG->getConstant(Val: LowerVal, DL, VT); |
| 1180 | SDValue Or = CurDAG->getNode(Opcode, DL, VT, N1: Upper, N2: Lower); |
| 1181 | |
| 1182 | ReplaceNode(F: Node, T: Or.getNode()); |
| 1183 | |
| 1184 | SelectCode(N: Or.getNode()); |
| 1185 | } |
| 1186 | |
| 1187 | void SystemZDAGToDAGISel::loadVectorConstant( |
| 1188 | const SystemZVectorConstantInfo &VCI, SDNode *Node) { |
| 1189 | assert((VCI.Opcode == SystemZISD::BYTE_MASK || |
| 1190 | VCI.Opcode == SystemZISD::REPLICATE || |
| 1191 | VCI.Opcode == SystemZISD::ROTATE_MASK) && |
| 1192 | "Bad opcode!" ); |
| 1193 | assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type" ); |
| 1194 | EVT VT = Node->getValueType(ResNo: 0); |
| 1195 | SDLoc DL(Node); |
| 1196 | SmallVector<SDValue, 2> Ops; |
| 1197 | for (unsigned OpVal : VCI.OpVals) |
| 1198 | Ops.push_back(Elt: CurDAG->getTargetConstant(Val: OpVal, DL, VT: MVT::i32)); |
| 1199 | SDValue Op = CurDAG->getNode(Opcode: VCI.Opcode, DL, VT: VCI.VecVT, Ops); |
| 1200 | |
| 1201 | if (VCI.VecVT == VT.getSimpleVT()) |
| 1202 | ReplaceNode(F: Node, T: Op.getNode()); |
| 1203 | else if (VT.getSizeInBits() == 128) { |
| 1204 | SDValue BitCast = CurDAG->getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 1205 | ReplaceNode(F: Node, T: BitCast.getNode()); |
| 1206 | SelectCode(N: BitCast.getNode()); |
| 1207 | } else { // half, float or double |
| 1208 | unsigned SubRegIdx = (VT.getSizeInBits() == 16 ? SystemZ::subreg_h16 |
| 1209 | : VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 |
| 1210 | : SystemZ::subreg_h64); |
| 1211 | ReplaceNode( |
| 1212 | F: Node, T: CurDAG->getTargetExtractSubreg(SRIdx: SubRegIdx, DL, VT, Operand: Op).getNode()); |
| 1213 | } |
| 1214 | SelectCode(N: Op.getNode()); |
| 1215 | } |
| 1216 | |
| 1217 | SDNode *SystemZDAGToDAGISel::loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL) { |
| 1218 | SDNode *ResNode; |
| 1219 | assert (VT.getSizeInBits() == 128); |
| 1220 | |
| 1221 | SDValue CP = CurDAG->getTargetConstantPool( |
| 1222 | C: ConstantInt::get(Ty: Type::getInt128Ty(C&: *CurDAG->getContext()), V: Val), |
| 1223 | VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1224 | |
| 1225 | EVT PtrVT = CP.getValueType(); |
| 1226 | SDValue Ops[] = { |
| 1227 | SDValue(CurDAG->getMachineNode(Opcode: SystemZ::LARL, dl: DL, VT: PtrVT, Op1: CP), 0), |
| 1228 | CurDAG->getTargetConstant(Val: 0, DL, VT: PtrVT), |
| 1229 | CurDAG->getRegister(Reg: 0, VT: PtrVT), |
| 1230 | CurDAG->getEntryNode() |
| 1231 | }; |
| 1232 | ResNode = CurDAG->getMachineNode(Opcode: SystemZ::VL, dl: DL, VT1: VT, VT2: MVT::Other, Ops); |
| 1233 | |
| 1234 | // Annotate ResNode with memory operand information so that MachineInstr |
| 1235 | // queries work properly. This e.g. gives the register allocation the |
| 1236 | // required information for rematerialization. |
| 1237 | MachineFunction& MF = CurDAG->getMachineFunction(); |
| 1238 | MachineMemOperand *MemOp = |
| 1239 | MF.getMachineMemOperand(PtrInfo: MachinePointerInfo::getConstantPool(MF), |
| 1240 | F: MachineMemOperand::MOLoad, Size: 16, BaseAlignment: Align(8)); |
| 1241 | |
| 1242 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: ResNode), NewMemRefs: {MemOp}); |
| 1243 | return ResNode; |
| 1244 | } |
| 1245 | |
| 1246 | bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) { |
| 1247 | SDValue ElemV = N->getOperand(Num: 2); |
| 1248 | auto *ElemN = dyn_cast<ConstantSDNode>(Val&: ElemV); |
| 1249 | if (!ElemN) |
| 1250 | return false; |
| 1251 | |
| 1252 | unsigned Elem = ElemN->getZExtValue(); |
| 1253 | EVT VT = N->getValueType(ResNo: 0); |
| 1254 | if (Elem >= VT.getVectorNumElements()) |
| 1255 | return false; |
| 1256 | |
| 1257 | auto *Load = dyn_cast<LoadSDNode>(Val: N->getOperand(Num: 1)); |
| 1258 | if (!Load || !Load->hasNUsesOfValue(NUses: 1, Value: 0)) |
| 1259 | return false; |
| 1260 | if (Load->getMemoryVT().getSizeInBits() != |
| 1261 | Load->getValueType(ResNo: 0).getSizeInBits()) |
| 1262 | return false; |
| 1263 | |
| 1264 | SDValue Base, Disp, Index; |
| 1265 | if (!selectBDVAddr12Only(Addr: Load->getBasePtr(), Elem: ElemV, Base, Disp, Index) || |
| 1266 | Index.getValueType() != VT.changeVectorElementTypeToInteger()) |
| 1267 | return false; |
| 1268 | |
| 1269 | SDLoc DL(Load); |
| 1270 | SDValue Ops[] = { |
| 1271 | N->getOperand(Num: 0), Base, Disp, Index, |
| 1272 | CurDAG->getTargetConstant(Val: Elem, DL, VT: MVT::i32), Load->getChain() |
| 1273 | }; |
| 1274 | SDNode *Res = CurDAG->getMachineNode(Opcode, dl: DL, VT1: VT, VT2: MVT::Other, Ops); |
| 1275 | ReplaceUses(F: SDValue(Load, 1), T: SDValue(Res, 1)); |
| 1276 | ReplaceNode(F: N, T: Res); |
| 1277 | return true; |
| 1278 | } |
| 1279 | |
| 1280 | bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) { |
| 1281 | SDValue Value = Store->getValue(); |
| 1282 | if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| 1283 | return false; |
| 1284 | if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits()) |
| 1285 | return false; |
| 1286 | |
| 1287 | SDValue ElemV = Value.getOperand(i: 1); |
| 1288 | auto *ElemN = dyn_cast<ConstantSDNode>(Val&: ElemV); |
| 1289 | if (!ElemN) |
| 1290 | return false; |
| 1291 | |
| 1292 | SDValue Vec = Value.getOperand(i: 0); |
| 1293 | EVT VT = Vec.getValueType(); |
| 1294 | unsigned Elem = ElemN->getZExtValue(); |
| 1295 | if (Elem >= VT.getVectorNumElements()) |
| 1296 | return false; |
| 1297 | |
| 1298 | SDValue Base, Disp, Index; |
| 1299 | if (!selectBDVAddr12Only(Addr: Store->getBasePtr(), Elem: ElemV, Base, Disp, Index) || |
| 1300 | Index.getValueType() != VT.changeVectorElementTypeToInteger()) |
| 1301 | return false; |
| 1302 | |
| 1303 | SDLoc DL(Store); |
| 1304 | SDValue Ops[] = { |
| 1305 | Vec, Base, Disp, Index, CurDAG->getTargetConstant(Val: Elem, DL, VT: MVT::i32), |
| 1306 | Store->getChain() |
| 1307 | }; |
| 1308 | ReplaceNode(F: Store, T: CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::Other, Ops)); |
| 1309 | return true; |
| 1310 | } |
| 1311 | |
| 1312 | // Check whether or not the chain ending in StoreNode is suitable for doing |
| 1313 | // the {load; op; store} to modify transformation. |
| 1314 | static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, |
| 1315 | SDValue StoredVal, SelectionDAG *CurDAG, |
| 1316 | LoadSDNode *&LoadNode, |
| 1317 | SDValue &InputChain) { |
| 1318 | // Is the stored value result 0 of the operation? |
| 1319 | if (StoredVal.getResNo() != 0) |
| 1320 | return false; |
| 1321 | |
| 1322 | // Are there other uses of the loaded value than the operation? |
| 1323 | if (!StoredVal.getNode()->hasNUsesOfValue(NUses: 1, Value: 0)) |
| 1324 | return false; |
| 1325 | |
| 1326 | // Is the store non-extending and non-indexed? |
| 1327 | if (!ISD::isNormalStore(N: StoreNode) || StoreNode->isNonTemporal()) |
| 1328 | return false; |
| 1329 | |
| 1330 | SDValue Load = StoredVal->getOperand(Num: 0); |
| 1331 | // Is the stored value a non-extending and non-indexed load? |
| 1332 | if (!ISD::isNormalLoad(N: Load.getNode())) |
| 1333 | return false; |
| 1334 | |
| 1335 | // Return LoadNode by reference. |
| 1336 | LoadNode = cast<LoadSDNode>(Val&: Load); |
| 1337 | |
| 1338 | // Is store the only read of the loaded value? |
| 1339 | if (!Load.hasOneUse()) |
| 1340 | return false; |
| 1341 | |
| 1342 | // Is the address of the store the same as the load? |
| 1343 | if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || |
| 1344 | LoadNode->getOffset() != StoreNode->getOffset()) |
| 1345 | return false; |
| 1346 | |
| 1347 | // Check if the chain is produced by the load or is a TokenFactor with |
| 1348 | // the load output chain as an operand. Return InputChain by reference. |
| 1349 | SDValue Chain = StoreNode->getChain(); |
| 1350 | |
| 1351 | bool ChainCheck = false; |
| 1352 | if (Chain == Load.getValue(R: 1)) { |
| 1353 | ChainCheck = true; |
| 1354 | InputChain = LoadNode->getChain(); |
| 1355 | } else if (Chain.getOpcode() == ISD::TokenFactor) { |
| 1356 | SmallVector<SDValue, 4> ChainOps; |
| 1357 | SmallVector<const SDNode *, 4> LoopWorklist; |
| 1358 | SmallPtrSet<const SDNode *, 16> Visited; |
| 1359 | const unsigned int Max = 1024; |
| 1360 | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { |
| 1361 | SDValue Op = Chain.getOperand(i); |
| 1362 | if (Op == Load.getValue(R: 1)) { |
| 1363 | ChainCheck = true; |
| 1364 | // Drop Load, but keep its chain. No cycle check necessary. |
| 1365 | ChainOps.push_back(Elt: Load.getOperand(i: 0)); |
| 1366 | continue; |
| 1367 | } |
| 1368 | LoopWorklist.push_back(Elt: Op.getNode()); |
| 1369 | ChainOps.push_back(Elt: Op); |
| 1370 | } |
| 1371 | |
| 1372 | if (ChainCheck) { |
| 1373 | // Add the other operand of StoredVal to worklist. |
| 1374 | for (SDValue Op : StoredVal->ops()) |
| 1375 | if (Op.getNode() != LoadNode) |
| 1376 | LoopWorklist.push_back(Elt: Op.getNode()); |
| 1377 | |
| 1378 | // Check if Load is reachable from any of the nodes in the worklist. |
| 1379 | if (SDNode::hasPredecessorHelper(N: Load.getNode(), Visited, Worklist&: LoopWorklist, MaxSteps: Max, |
| 1380 | TopologicalPrune: true)) |
| 1381 | return false; |
| 1382 | |
| 1383 | // Make a new TokenFactor with all the other input chains except |
| 1384 | // for the load. |
| 1385 | InputChain = CurDAG->getNode(Opcode: ISD::TokenFactor, DL: SDLoc(Chain), |
| 1386 | VT: MVT::Other, Ops: ChainOps); |
| 1387 | } |
| 1388 | } |
| 1389 | if (!ChainCheck) |
| 1390 | return false; |
| 1391 | |
| 1392 | return true; |
| 1393 | } |
| 1394 | |
| 1395 | // Change a chain of {load; op; store} of the same value into a simple op |
| 1396 | // through memory of that value, if the uses of the modified value and its |
| 1397 | // address are suitable. |
| 1398 | // |
| 1399 | // The tablegen pattern memory operand pattern is currently not able to match |
| 1400 | // the case where the CC on the original operation are used. |
| 1401 | // |
| 1402 | // See the equivalent routine in X86ISelDAGToDAG for further comments. |
| 1403 | bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) { |
| 1404 | StoreSDNode *StoreNode = cast<StoreSDNode>(Val: Node); |
| 1405 | SDValue StoredVal = StoreNode->getOperand(Num: 1); |
| 1406 | unsigned Opc = StoredVal->getOpcode(); |
| 1407 | SDLoc DL(StoreNode); |
| 1408 | |
| 1409 | // Before we try to select anything, make sure this is memory operand size |
| 1410 | // and opcode we can handle. Note that this must match the code below that |
| 1411 | // actually lowers the opcodes. |
| 1412 | EVT MemVT = StoreNode->getMemoryVT(); |
| 1413 | unsigned NewOpc = 0; |
| 1414 | bool NegateOperand = false; |
| 1415 | switch (Opc) { |
| 1416 | default: |
| 1417 | return false; |
| 1418 | case SystemZISD::SSUBO: |
| 1419 | NegateOperand = true; |
| 1420 | [[fallthrough]]; |
| 1421 | case SystemZISD::SADDO: |
| 1422 | if (MemVT == MVT::i32) |
| 1423 | NewOpc = SystemZ::ASI; |
| 1424 | else if (MemVT == MVT::i64) |
| 1425 | NewOpc = SystemZ::AGSI; |
| 1426 | else |
| 1427 | return false; |
| 1428 | break; |
| 1429 | case SystemZISD::USUBO: |
| 1430 | NegateOperand = true; |
| 1431 | [[fallthrough]]; |
| 1432 | case SystemZISD::UADDO: |
| 1433 | if (MemVT == MVT::i32) |
| 1434 | NewOpc = SystemZ::ALSI; |
| 1435 | else if (MemVT == MVT::i64) |
| 1436 | NewOpc = SystemZ::ALGSI; |
| 1437 | else |
| 1438 | return false; |
| 1439 | break; |
| 1440 | } |
| 1441 | |
| 1442 | LoadSDNode *LoadNode = nullptr; |
| 1443 | SDValue InputChain; |
| 1444 | if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, |
| 1445 | InputChain)) |
| 1446 | return false; |
| 1447 | |
| 1448 | SDValue Operand = StoredVal.getOperand(i: 1); |
| 1449 | auto *OperandC = dyn_cast<ConstantSDNode>(Val&: Operand); |
| 1450 | if (!OperandC) |
| 1451 | return false; |
| 1452 | auto OperandV = OperandC->getAPIntValue(); |
| 1453 | if (NegateOperand) |
| 1454 | OperandV = -OperandV; |
| 1455 | if (OperandV.getSignificantBits() > 8) |
| 1456 | return false; |
| 1457 | Operand = CurDAG->getTargetConstant(Val: OperandV, DL, VT: MemVT); |
| 1458 | |
| 1459 | SDValue Base, Disp; |
| 1460 | if (!selectBDAddr20Only(Addr: StoreNode->getBasePtr(), Base, Disp)) |
| 1461 | return false; |
| 1462 | |
| 1463 | SDValue Ops[] = { Base, Disp, Operand, InputChain }; |
| 1464 | MachineSDNode *Result = |
| 1465 | CurDAG->getMachineNode(Opcode: NewOpc, dl: DL, VT1: MVT::i32, VT2: MVT::Other, Ops); |
| 1466 | CurDAG->setNodeMemRefs( |
| 1467 | N: Result, NewMemRefs: {StoreNode->getMemOperand(), LoadNode->getMemOperand()}); |
| 1468 | |
| 1469 | ReplaceUses(F: SDValue(StoreNode, 0), T: SDValue(Result, 1)); |
| 1470 | ReplaceUses(F: SDValue(StoredVal.getNode(), 1), T: SDValue(Result, 0)); |
| 1471 | CurDAG->RemoveDeadNode(N: Node); |
| 1472 | return true; |
| 1473 | } |
| 1474 | |
| 1475 | bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, |
| 1476 | LoadSDNode *Load) const { |
| 1477 | // Check that the two memory operands have the same size. |
| 1478 | if (Load->getMemoryVT() != Store->getMemoryVT()) |
| 1479 | return false; |
| 1480 | |
| 1481 | // Volatility stops an access from being decomposed. |
| 1482 | if (Load->isVolatile() || Store->isVolatile()) |
| 1483 | return false; |
| 1484 | |
| 1485 | // There's no chance of overlap if the load is invariant. |
| 1486 | if (Load->isInvariant() && Load->isDereferenceable()) |
| 1487 | return true; |
| 1488 | |
| 1489 | // Otherwise we need to check whether there's an alias. |
| 1490 | const Value *V1 = Load->getMemOperand()->getValue(); |
| 1491 | const Value *V2 = Store->getMemOperand()->getValue(); |
| 1492 | if (!V1 || !V2) |
| 1493 | return false; |
| 1494 | |
| 1495 | // Reject equality. |
| 1496 | uint64_t Size = Load->getMemoryVT().getStoreSize(); |
| 1497 | int64_t End1 = Load->getSrcValueOffset() + Size; |
| 1498 | int64_t End2 = Store->getSrcValueOffset() + Size; |
| 1499 | if (V1 == V2 && End1 == End2) |
| 1500 | return false; |
| 1501 | |
| 1502 | return BatchAA->isNoAlias(LocA: MemoryLocation(V1, End1, Load->getAAInfo()), |
| 1503 | LocB: MemoryLocation(V2, End2, Store->getAAInfo())); |
| 1504 | } |
| 1505 | |
| 1506 | bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { |
| 1507 | auto *Store = cast<StoreSDNode>(Val: N); |
| 1508 | auto *Load = cast<LoadSDNode>(Val: Store->getValue()); |
| 1509 | |
| 1510 | // Prefer not to use MVC if either address can use ... RELATIVE LONG |
| 1511 | // instructions. |
| 1512 | uint64_t Size = Load->getMemoryVT().getStoreSize(); |
| 1513 | if (Size > 1 && Size <= 8) { |
| 1514 | // Prefer LHRL, LRL and LGRL. |
| 1515 | if (SystemZISD::isPCREL(Opcode: Load->getBasePtr().getOpcode())) |
| 1516 | return false; |
| 1517 | // Prefer STHRL, STRL and STGRL. |
| 1518 | if (SystemZISD::isPCREL(Opcode: Store->getBasePtr().getOpcode())) |
| 1519 | return false; |
| 1520 | } |
| 1521 | |
| 1522 | return canUseBlockOperation(Store, Load); |
| 1523 | } |
| 1524 | |
| 1525 | bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, |
| 1526 | unsigned I) const { |
| 1527 | auto *StoreA = cast<StoreSDNode>(Val: N); |
| 1528 | auto *LoadA = cast<LoadSDNode>(Val: StoreA->getValue().getOperand(i: 1 - I)); |
| 1529 | auto *LoadB = cast<LoadSDNode>(Val: StoreA->getValue().getOperand(i: I)); |
| 1530 | return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() && |
| 1531 | canUseBlockOperation(Store: StoreA, Load: LoadB); |
| 1532 | } |
| 1533 | |
| 1534 | bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const { |
| 1535 | |
| 1536 | auto *MemAccess = cast<MemSDNode>(Val: N); |
| 1537 | auto *LdSt = dyn_cast<LSBaseSDNode>(Val: MemAccess); |
| 1538 | TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize(); |
| 1539 | SDValue BasePtr = MemAccess->getBasePtr(); |
| 1540 | MachineMemOperand *MMO = MemAccess->getMemOperand(); |
| 1541 | assert(MMO && "Expected a memory operand." ); |
| 1542 | |
| 1543 | // The memory access must have a proper alignment and no index register. |
| 1544 | // Only load and store nodes have the offset operand (atomic loads do not). |
| 1545 | if (MemAccess->getAlign().value() < StoreSize || |
| 1546 | (LdSt && !LdSt->getOffset().isUndef())) |
| 1547 | return false; |
| 1548 | |
| 1549 | // The MMO must not have an unaligned offset. |
| 1550 | if (MMO->getOffset() % StoreSize != 0) |
| 1551 | return false; |
| 1552 | |
| 1553 | // An access to GOT or the Constant Pool is aligned. |
| 1554 | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) |
| 1555 | if ((PSV->isGOT() || PSV->isConstantPool())) |
| 1556 | return true; |
| 1557 | |
| 1558 | // Check the alignment of a Global Address. |
| 1559 | if (BasePtr.getNumOperands()) |
| 1560 | if (GlobalAddressSDNode *GA = |
| 1561 | dyn_cast<GlobalAddressSDNode>(Val: BasePtr.getOperand(i: 0))) { |
| 1562 | // The immediate offset must be aligned. |
| 1563 | if (GA->getOffset() % StoreSize != 0) |
| 1564 | return false; |
| 1565 | |
| 1566 | // The alignment of the symbol itself must be at least the store size. |
| 1567 | const GlobalValue *GV = GA->getGlobal(); |
| 1568 | const DataLayout &DL = GV->getDataLayout(); |
| 1569 | if (GV->getPointerAlignment(DL).value() < StoreSize) |
| 1570 | return false; |
| 1571 | } |
| 1572 | |
| 1573 | return true; |
| 1574 | } |
| 1575 | |
| 1576 | ISD::LoadExtType SystemZDAGToDAGISel::getLoadExtType(SDNode *N) const { |
| 1577 | ISD::LoadExtType ETy; |
| 1578 | if (auto *L = dyn_cast<LoadSDNode>(Val: N)) |
| 1579 | ETy = L->getExtensionType(); |
| 1580 | else if (auto *AL = dyn_cast<AtomicSDNode>(Val: N)) |
| 1581 | ETy = AL->getExtensionType(); |
| 1582 | else |
| 1583 | llvm_unreachable("Unkown load node type." ); |
| 1584 | return ETy; |
| 1585 | } |
| 1586 | |
| 1587 | void SystemZDAGToDAGISel::Select(SDNode *Node) { |
| 1588 | // If we have a custom node, we already have selected! |
| 1589 | if (Node->isMachineOpcode()) { |
| 1590 | LLVM_DEBUG(errs() << "== " ; Node->dump(CurDAG); errs() << "\n" ); |
| 1591 | Node->setNodeId(-1); |
| 1592 | return; |
| 1593 | } |
| 1594 | |
| 1595 | unsigned Opcode = Node->getOpcode(); |
| 1596 | switch (Opcode) { |
| 1597 | case ISD::OR: |
| 1598 | if (Node->getOperand(Num: 1).getOpcode() != ISD::Constant) |
| 1599 | if (tryRxSBG(N: Node, Opcode: SystemZ::ROSBG)) |
| 1600 | return; |
| 1601 | goto or_xor; |
| 1602 | |
| 1603 | case ISD::XOR: |
| 1604 | if (Node->getOperand(Num: 1).getOpcode() != ISD::Constant) |
| 1605 | if (tryRxSBG(N: Node, Opcode: SystemZ::RXSBG)) |
| 1606 | return; |
| 1607 | // Fall through. |
| 1608 | or_xor: |
| 1609 | // If this is a 64-bit operation in which both 32-bit halves are nonzero, |
| 1610 | // split the operation into two. If both operands here happen to be |
| 1611 | // constant, leave this to common code to optimize. |
| 1612 | if (Node->getValueType(ResNo: 0) == MVT::i64 && |
| 1613 | Node->getOperand(Num: 0).getOpcode() != ISD::Constant) |
| 1614 | if (auto *Op1 = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1))) { |
| 1615 | uint64_t Val = Op1->getZExtValue(); |
| 1616 | // Don't split the operation if we can match one of the combined |
| 1617 | // logical operations provided by miscellaneous-extensions-3. |
| 1618 | if (Subtarget->hasMiscellaneousExtensions3()) { |
| 1619 | unsigned ChildOpcode = Node->getOperand(Num: 0).getOpcode(); |
| 1620 | // Check whether this expression matches NAND/NOR/NXOR. |
| 1621 | if (Val == (uint64_t)-1 && Opcode == ISD::XOR) |
| 1622 | if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR || |
| 1623 | ChildOpcode == ISD::XOR) |
| 1624 | break; |
| 1625 | // Check whether this expression matches OR-with-complement |
| 1626 | // (or matches an alternate pattern for NXOR). |
| 1627 | if (ChildOpcode == ISD::XOR) { |
| 1628 | auto Op0 = Node->getOperand(Num: 0); |
| 1629 | if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Val: Op0->getOperand(Num: 1))) |
| 1630 | if (Op0Op1->getZExtValue() == (uint64_t)-1) |
| 1631 | break; |
| 1632 | } |
| 1633 | } |
| 1634 | // Don't split an XOR with -1 as LCGR/AGHI is more compact. |
| 1635 | if (Opcode == ISD::XOR && Op1->isAllOnes()) |
| 1636 | break; |
| 1637 | if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) { |
| 1638 | splitLargeImmediate(Opcode, Node, Op0: Node->getOperand(Num: 0), |
| 1639 | UpperVal: Val - uint32_t(Val), LowerVal: uint32_t(Val)); |
| 1640 | return; |
| 1641 | } |
| 1642 | } |
| 1643 | break; |
| 1644 | |
| 1645 | case ISD::AND: |
| 1646 | if (Node->getOperand(Num: 1).getOpcode() != ISD::Constant) |
| 1647 | if (tryRxSBG(N: Node, Opcode: SystemZ::RNSBG)) |
| 1648 | return; |
| 1649 | [[fallthrough]]; |
| 1650 | case ISD::ROTL: |
| 1651 | case ISD::SHL: |
| 1652 | case ISD::SRL: |
| 1653 | case ISD::ZERO_EXTEND: |
| 1654 | if (tryRISBGZero(N: Node)) |
| 1655 | return; |
| 1656 | break; |
| 1657 | |
| 1658 | case ISD::BSWAP: |
| 1659 | if (Node->getValueType(ResNo: 0) == MVT::i128) { |
| 1660 | SDLoc DL(Node); |
| 1661 | SDValue Src = Node->getOperand(Num: 0); |
| 1662 | Src = CurDAG->getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v16i8, Operand: Src); |
| 1663 | |
| 1664 | uint64_t Bytes[2] = { 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL }; |
| 1665 | SDNode *Mask = loadPoolVectorConstant(Val: APInt(128, Bytes), VT: MVT::v16i8, DL); |
| 1666 | SDValue Ops[] = { Src, Src, SDValue(Mask, 0) }; |
| 1667 | SDValue Res = SDValue(CurDAG->getMachineNode(Opcode: SystemZ::VPERM, dl: DL, |
| 1668 | VT: MVT::v16i8, Ops), 0); |
| 1669 | |
| 1670 | Res = CurDAG->getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i128, Operand: Res); |
| 1671 | SDNode *ResNode = Res.getNode(); |
| 1672 | ReplaceNode(F: Node, T: ResNode); |
| 1673 | SelectCode(N: Src.getNode()); |
| 1674 | SelectCode(N: ResNode); |
| 1675 | return; |
| 1676 | } |
| 1677 | break; |
| 1678 | |
| 1679 | case ISD::Constant: |
| 1680 | // If this is a 64-bit constant that is out of the range of LLILF, |
| 1681 | // LLIHF and LGFI, split it into two 32-bit pieces. |
| 1682 | if (Node->getValueType(ResNo: 0) == MVT::i64) { |
| 1683 | uint64_t Val = Node->getAsZExtVal(); |
| 1684 | if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(x: Val)) { |
| 1685 | splitLargeImmediate(Opcode: ISD::OR, Node, Op0: SDValue(), UpperVal: Val - uint32_t(Val), |
| 1686 | LowerVal: uint32_t(Val)); |
| 1687 | return; |
| 1688 | } |
| 1689 | } |
| 1690 | if (Node->getValueType(ResNo: 0) == MVT::i128) { |
| 1691 | const APInt &Val = Node->getAsAPIntVal(); |
| 1692 | SystemZVectorConstantInfo VCI(Val); |
| 1693 | if (VCI.isVectorConstantLegal(Subtarget: *Subtarget)) { |
| 1694 | loadVectorConstant(VCI, Node); |
| 1695 | return; |
| 1696 | } |
| 1697 | // If we can't materialize the constant we need to use a literal pool. |
| 1698 | SDNode *ResNode = loadPoolVectorConstant(Val, VT: MVT::i128, DL: SDLoc(Node)); |
| 1699 | ReplaceNode(F: Node, T: ResNode); |
| 1700 | return; |
| 1701 | } |
| 1702 | break; |
| 1703 | |
| 1704 | case SystemZISD::SELECT_CCMASK: { |
| 1705 | SDValue Op0 = Node->getOperand(Num: 0); |
| 1706 | SDValue Op1 = Node->getOperand(Num: 1); |
| 1707 | // Prefer to put any load first, so that it can be matched as a |
| 1708 | // conditional load. Likewise for constants in range for LOCHI. |
| 1709 | if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) || |
| 1710 | (Subtarget->hasLoadStoreOnCond2() && |
| 1711 | Node->getValueType(ResNo: 0).isInteger() && |
| 1712 | Node->getValueType(ResNo: 0).getSizeInBits() <= 64 && |
| 1713 | Op1.getOpcode() == ISD::Constant && |
| 1714 | isInt<16>(x: cast<ConstantSDNode>(Val&: Op1)->getSExtValue()) && |
| 1715 | !(Op0.getOpcode() == ISD::Constant && |
| 1716 | isInt<16>(x: cast<ConstantSDNode>(Val&: Op0)->getSExtValue())))) { |
| 1717 | SDValue CCValid = Node->getOperand(Num: 2); |
| 1718 | SDValue CCMask = Node->getOperand(Num: 3); |
| 1719 | uint64_t ConstCCValid = CCValid.getNode()->getAsZExtVal(); |
| 1720 | uint64_t ConstCCMask = CCMask.getNode()->getAsZExtVal(); |
| 1721 | // Invert the condition. |
| 1722 | CCMask = CurDAG->getTargetConstant(Val: ConstCCValid ^ ConstCCMask, |
| 1723 | DL: SDLoc(Node), VT: CCMask.getValueType()); |
| 1724 | SDValue Op4 = Node->getOperand(Num: 4); |
| 1725 | SDNode *UpdatedNode = |
| 1726 | CurDAG->UpdateNodeOperands(N: Node, Op1, Op2: Op0, Op3: CCValid, Op4: CCMask, Op5: Op4); |
| 1727 | if (UpdatedNode != Node) { |
| 1728 | // In case this node already exists then replace Node with it. |
| 1729 | ReplaceNode(F: Node, T: UpdatedNode); |
| 1730 | Node = UpdatedNode; |
| 1731 | } |
| 1732 | } |
| 1733 | break; |
| 1734 | } |
| 1735 | |
| 1736 | case ISD::INSERT_VECTOR_ELT: { |
| 1737 | EVT VT = Node->getValueType(ResNo: 0); |
| 1738 | unsigned ElemBitSize = VT.getScalarSizeInBits(); |
| 1739 | if (ElemBitSize == 32) { |
| 1740 | if (tryGather(N: Node, Opcode: SystemZ::VGEF)) |
| 1741 | return; |
| 1742 | } else if (ElemBitSize == 64) { |
| 1743 | if (tryGather(N: Node, Opcode: SystemZ::VGEG)) |
| 1744 | return; |
| 1745 | } |
| 1746 | break; |
| 1747 | } |
| 1748 | |
| 1749 | case ISD::BUILD_VECTOR: { |
| 1750 | auto *BVN = cast<BuildVectorSDNode>(Val: Node); |
| 1751 | SystemZVectorConstantInfo VCI(BVN); |
| 1752 | if (VCI.isVectorConstantLegal(Subtarget: *Subtarget)) { |
| 1753 | loadVectorConstant(VCI, Node); |
| 1754 | return; |
| 1755 | } |
| 1756 | break; |
| 1757 | } |
| 1758 | |
| 1759 | case ISD::ConstantFP: { |
| 1760 | APFloat Imm = cast<ConstantFPSDNode>(Val: Node)->getValueAPF(); |
| 1761 | if (Imm.isZero() || Imm.isNegZero()) |
| 1762 | break; |
| 1763 | SystemZVectorConstantInfo VCI(Imm); |
| 1764 | bool Success = VCI.isVectorConstantLegal(Subtarget: *Subtarget); (void)Success; |
| 1765 | assert(Success && "Expected legal FP immediate" ); |
| 1766 | loadVectorConstant(VCI, Node); |
| 1767 | return; |
| 1768 | } |
| 1769 | |
| 1770 | case ISD::STORE: { |
| 1771 | if (tryFoldLoadStoreIntoMemOperand(Node)) |
| 1772 | return; |
| 1773 | auto *Store = cast<StoreSDNode>(Val: Node); |
| 1774 | unsigned ElemBitSize = Store->getValue().getValueSizeInBits(); |
| 1775 | if (ElemBitSize == 32) { |
| 1776 | if (tryScatter(Store, Opcode: SystemZ::VSCEF)) |
| 1777 | return; |
| 1778 | } else if (ElemBitSize == 64) { |
| 1779 | if (tryScatter(Store, Opcode: SystemZ::VSCEG)) |
| 1780 | return; |
| 1781 | } |
| 1782 | break; |
| 1783 | } |
| 1784 | |
| 1785 | case ISD::ATOMIC_STORE: { |
| 1786 | auto *AtomOp = cast<AtomicSDNode>(Val: Node); |
| 1787 | // Replace the atomic_store with a regular store and select it. This is |
| 1788 | // ok since we know all store instructions <= 8 bytes are atomic, and the |
| 1789 | // 16 byte case is already handled during lowering. |
| 1790 | StoreSDNode *St = cast<StoreSDNode>(Val: CurDAG->getTruncStore( |
| 1791 | Chain: AtomOp->getChain(), dl: SDLoc(AtomOp), Val: AtomOp->getVal(), |
| 1792 | Ptr: AtomOp->getBasePtr(), SVT: AtomOp->getMemoryVT(), MMO: AtomOp->getMemOperand())); |
| 1793 | assert(St->getMemOperand()->isAtomic() && "Broken MMO." ); |
| 1794 | SDNode *Chain = St; |
| 1795 | // We have to enforce sequential consistency by performing a |
| 1796 | // serialization operation after the store. |
| 1797 | if (AtomOp->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 1798 | Chain = CurDAG->getMachineNode(Opcode: SystemZ::Serialize, dl: SDLoc(AtomOp), |
| 1799 | VT: MVT::Other, Op1: SDValue(Chain, 0)); |
| 1800 | ReplaceNode(F: Node, T: Chain); |
| 1801 | SelectCode(N: St); |
| 1802 | return; |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | SelectCode(N: Node); |
| 1807 | } |
| 1808 | |
| 1809 | bool SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 1810 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 1811 | std::vector<SDValue> &OutOps) { |
| 1812 | SystemZAddressingMode::AddrForm Form; |
| 1813 | SystemZAddressingMode::DispRange DispRange; |
| 1814 | SDValue Base, Disp, Index; |
| 1815 | |
| 1816 | switch(ConstraintID) { |
| 1817 | default: |
| 1818 | llvm_unreachable("Unexpected asm memory constraint" ); |
| 1819 | case InlineAsm::ConstraintCode::i: |
| 1820 | case InlineAsm::ConstraintCode::Q: |
| 1821 | case InlineAsm::ConstraintCode::ZQ: |
| 1822 | // Accept an address with a short displacement, but no index. |
| 1823 | Form = SystemZAddressingMode::FormBD; |
| 1824 | DispRange = SystemZAddressingMode::Disp12Only; |
| 1825 | break; |
| 1826 | case InlineAsm::ConstraintCode::R: |
| 1827 | case InlineAsm::ConstraintCode::ZR: |
| 1828 | // Accept an address with a short displacement and an index. |
| 1829 | Form = SystemZAddressingMode::FormBDXNormal; |
| 1830 | DispRange = SystemZAddressingMode::Disp12Only; |
| 1831 | break; |
| 1832 | case InlineAsm::ConstraintCode::S: |
| 1833 | case InlineAsm::ConstraintCode::ZS: |
| 1834 | // Accept an address with a long displacement, but no index. |
| 1835 | Form = SystemZAddressingMode::FormBD; |
| 1836 | DispRange = SystemZAddressingMode::Disp20Only; |
| 1837 | break; |
| 1838 | case InlineAsm::ConstraintCode::T: |
| 1839 | case InlineAsm::ConstraintCode::m: |
| 1840 | case InlineAsm::ConstraintCode::o: |
| 1841 | case InlineAsm::ConstraintCode::p: |
| 1842 | case InlineAsm::ConstraintCode::ZT: |
| 1843 | // Accept an address with a long displacement and an index. |
| 1844 | // m works the same as T, as this is the most general case. |
| 1845 | // We don't really have any special handling of "offsettable" |
| 1846 | // memory addresses, so just treat o the same as m. |
| 1847 | Form = SystemZAddressingMode::FormBDXNormal; |
| 1848 | DispRange = SystemZAddressingMode::Disp20Only; |
| 1849 | break; |
| 1850 | } |
| 1851 | |
| 1852 | if (selectBDXAddr(Form, DR: DispRange, Addr: Op, Base, Disp, Index)) { |
| 1853 | const TargetRegisterClass *TRC = |
| 1854 | Subtarget->getRegisterInfo()->getPointerRegClass(MF: *MF); |
| 1855 | SDLoc DL(Base); |
| 1856 | SDValue RC = CurDAG->getTargetConstant(Val: TRC->getID(), DL, VT: MVT::i32); |
| 1857 | |
| 1858 | // Make sure that the base address doesn't go into %r0. |
| 1859 | // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything. |
| 1860 | if (Base.getOpcode() != ISD::TargetFrameIndex && |
| 1861 | Base.getOpcode() != ISD::Register) { |
| 1862 | Base = |
| 1863 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS, |
| 1864 | dl: DL, VT: Base.getValueType(), |
| 1865 | Op1: Base, Op2: RC), 0); |
| 1866 | } |
| 1867 | |
| 1868 | // Make sure that the index register isn't assigned to %r0 either. |
| 1869 | if (Index.getOpcode() != ISD::Register) { |
| 1870 | Index = |
| 1871 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS, |
| 1872 | dl: DL, VT: Index.getValueType(), |
| 1873 | Op1: Index, Op2: RC), 0); |
| 1874 | } |
| 1875 | |
| 1876 | OutOps.push_back(x: Base); |
| 1877 | OutOps.push_back(x: Disp); |
| 1878 | OutOps.push_back(x: Index); |
| 1879 | return false; |
| 1880 | } |
| 1881 | |
| 1882 | return true; |
| 1883 | } |
| 1884 | |
| 1885 | // IsProfitableToFold - Returns true if is profitable to fold the specific |
| 1886 | // operand node N of U during instruction selection that starts at Root. |
| 1887 | bool |
| 1888 | SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| 1889 | SDNode *Root) const { |
| 1890 | // We want to avoid folding a LOAD into an ICMP node if as a result |
| 1891 | // we would be forced to spill the condition code into a GPR. |
| 1892 | if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) { |
| 1893 | if (!N.hasOneUse() || !U->hasOneUse()) |
| 1894 | return false; |
| 1895 | |
| 1896 | // The user of the CC value will usually be a CopyToReg into the |
| 1897 | // physical CC register, which in turn is glued and chained to the |
| 1898 | // actual instruction that uses the CC value. Bail out if we have |
| 1899 | // anything else than that. |
| 1900 | SDNode *CCUser = *U->user_begin(); |
| 1901 | SDNode *CCRegUser = nullptr; |
| 1902 | if (CCUser->getOpcode() == ISD::CopyToReg || |
| 1903 | cast<RegisterSDNode>(Val: CCUser->getOperand(Num: 1))->getReg() == SystemZ::CC) { |
| 1904 | for (auto *U : CCUser->users()) { |
| 1905 | if (CCRegUser == nullptr) |
| 1906 | CCRegUser = U; |
| 1907 | else if (CCRegUser != U) |
| 1908 | return false; |
| 1909 | } |
| 1910 | } |
| 1911 | if (CCRegUser == nullptr) |
| 1912 | return false; |
| 1913 | |
| 1914 | // If the actual instruction is a branch, the only thing that remains to be |
| 1915 | // checked is whether the CCUser chain is a predecessor of the load. |
| 1916 | if (CCRegUser->isMachineOpcode() && |
| 1917 | CCRegUser->getMachineOpcode() == SystemZ::BRC) |
| 1918 | return !N->isPredecessorOf(N: CCUser->getOperand(Num: 0).getNode()); |
| 1919 | |
| 1920 | // Otherwise, the instruction may have multiple operands, and we need to |
| 1921 | // verify that none of them are a predecessor of the load. This is exactly |
| 1922 | // the same check that would be done by common code if the CC setter were |
| 1923 | // glued to the CC user, so simply invoke that check here. |
| 1924 | if (!IsLegalToFold(N, U, Root: CCRegUser, OptLevel, IgnoreChains: false)) |
| 1925 | return false; |
| 1926 | } |
| 1927 | |
| 1928 | return true; |
| 1929 | } |
| 1930 | |
| 1931 | namespace { |
| 1932 | // Represents a sequence for extracting a 0/1 value from an IPM result: |
| 1933 | // (((X ^ XORValue) + AddValue) >> Bit) |
| 1934 | struct IPMConversion { |
| 1935 | IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) |
| 1936 | : XORValue(xorValue), AddValue(addValue), Bit(bit) {} |
| 1937 | |
| 1938 | int64_t XORValue; |
| 1939 | int64_t AddValue; |
| 1940 | unsigned Bit; |
| 1941 | }; |
| 1942 | } // end anonymous namespace |
| 1943 | |
| 1944 | // Return a sequence for getting a 1 from an IPM result when CC has a |
| 1945 | // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. |
| 1946 | // The handling of CC values outside CCValid doesn't matter. |
| 1947 | static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { |
| 1948 | // Deal with cases where the result can be taken directly from a bit |
| 1949 | // of the IPM result. |
| 1950 | if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) |
| 1951 | return IPMConversion(0, 0, SystemZ::IPM_CC); |
| 1952 | if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) |
| 1953 | return IPMConversion(0, 0, SystemZ::IPM_CC + 1); |
| 1954 | |
| 1955 | // Deal with cases where we can add a value to force the sign bit |
| 1956 | // to contain the right value. Putting the bit in 31 means we can |
| 1957 | // use SRL rather than RISBG(L), and also makes it easier to get a |
| 1958 | // 0/-1 value, so it has priority over the other tests below. |
| 1959 | // |
| 1960 | // These sequences rely on the fact that the upper two bits of the |
| 1961 | // IPM result are zero. |
| 1962 | uint64_t TopBit = uint64_t(1) << 31; |
| 1963 | if (CCMask == (CCValid & SystemZ::CCMASK_0)) |
| 1964 | return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); |
| 1965 | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) |
| 1966 | return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); |
| 1967 | if (CCMask == (CCValid & (SystemZ::CCMASK_0 |
| 1968 | | SystemZ::CCMASK_1 |
| 1969 | | SystemZ::CCMASK_2))) |
| 1970 | return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); |
| 1971 | if (CCMask == (CCValid & SystemZ::CCMASK_3)) |
| 1972 | return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); |
| 1973 | if (CCMask == (CCValid & (SystemZ::CCMASK_1 |
| 1974 | | SystemZ::CCMASK_2 |
| 1975 | | SystemZ::CCMASK_3))) |
| 1976 | return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); |
| 1977 | |
| 1978 | // Next try inverting the value and testing a bit. 0/1 could be |
| 1979 | // handled this way too, but we dealt with that case above. |
| 1980 | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) |
| 1981 | return IPMConversion(-1, 0, SystemZ::IPM_CC); |
| 1982 | |
| 1983 | // Handle cases where adding a value forces a non-sign bit to contain |
| 1984 | // the right value. |
| 1985 | if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) |
| 1986 | return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); |
| 1987 | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) |
| 1988 | return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); |
| 1989 | |
| 1990 | // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are |
| 1991 | // can be done by inverting the low CC bit and applying one of the |
| 1992 | // sign-based extractions above. |
| 1993 | if (CCMask == (CCValid & SystemZ::CCMASK_1)) |
| 1994 | return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); |
| 1995 | if (CCMask == (CCValid & SystemZ::CCMASK_2)) |
| 1996 | return IPMConversion(1 << SystemZ::IPM_CC, |
| 1997 | TopBit - (3 << SystemZ::IPM_CC), 31); |
| 1998 | if (CCMask == (CCValid & (SystemZ::CCMASK_0 |
| 1999 | | SystemZ::CCMASK_1 |
| 2000 | | SystemZ::CCMASK_3))) |
| 2001 | return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); |
| 2002 | if (CCMask == (CCValid & (SystemZ::CCMASK_0 |
| 2003 | | SystemZ::CCMASK_2 |
| 2004 | | SystemZ::CCMASK_3))) |
| 2005 | return IPMConversion(1 << SystemZ::IPM_CC, |
| 2006 | TopBit - (1 << SystemZ::IPM_CC), 31); |
| 2007 | |
| 2008 | llvm_unreachable("Unexpected CC combination" ); |
| 2009 | } |
| 2010 | |
| 2011 | SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) { |
| 2012 | auto *TrueOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 0)); |
| 2013 | auto *FalseOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 2014 | if (!TrueOp || !FalseOp) |
| 2015 | return SDValue(); |
| 2016 | if (FalseOp->getZExtValue() != 0) |
| 2017 | return SDValue(); |
| 2018 | if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1) |
| 2019 | return SDValue(); |
| 2020 | |
| 2021 | auto *CCValidOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 2)); |
| 2022 | auto *CCMaskOp = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 3)); |
| 2023 | if (!CCValidOp || !CCMaskOp) |
| 2024 | return SDValue(); |
| 2025 | int CCValid = CCValidOp->getZExtValue(); |
| 2026 | int CCMask = CCMaskOp->getZExtValue(); |
| 2027 | |
| 2028 | SDLoc DL(Node); |
| 2029 | SDValue CCReg = Node->getOperand(Num: 4); |
| 2030 | IPMConversion IPM = getIPMConversion(CCValid, CCMask); |
| 2031 | SDValue Result = CurDAG->getNode(Opcode: SystemZISD::IPM, DL, VT: MVT::i32, Operand: CCReg); |
| 2032 | |
| 2033 | if (IPM.XORValue) |
| 2034 | Result = CurDAG->getNode(Opcode: ISD::XOR, DL, VT: MVT::i32, N1: Result, |
| 2035 | N2: CurDAG->getConstant(Val: IPM.XORValue, DL, VT: MVT::i32)); |
| 2036 | |
| 2037 | if (IPM.AddValue) |
| 2038 | Result = |
| 2039 | CurDAG->getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: Result, |
| 2040 | N2: CurDAG->getSignedConstant(Val: IPM.AddValue, DL, VT: MVT::i32)); |
| 2041 | |
| 2042 | EVT VT = Node->getValueType(ResNo: 0); |
| 2043 | if (VT == MVT::i32 && IPM.Bit == 31) { |
| 2044 | unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA; |
| 2045 | Result = CurDAG->getNode(Opcode: ShiftOp, DL, VT: MVT::i32, N1: Result, |
| 2046 | N2: CurDAG->getConstant(Val: IPM.Bit, DL, VT: MVT::i32)); |
| 2047 | } else { |
| 2048 | if (VT != MVT::i32) |
| 2049 | Result = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL, VT, Operand: Result); |
| 2050 | |
| 2051 | if (TrueOp->getSExtValue() == 1) { |
| 2052 | // The SHR/AND sequence should get optimized to an RISBG. |
| 2053 | Result = CurDAG->getNode(Opcode: ISD::SRL, DL, VT, N1: Result, |
| 2054 | N2: CurDAG->getConstant(Val: IPM.Bit, DL, VT: MVT::i32)); |
| 2055 | Result = CurDAG->getNode(Opcode: ISD::AND, DL, VT, N1: Result, |
| 2056 | N2: CurDAG->getConstant(Val: 1, DL, VT)); |
| 2057 | } else { |
| 2058 | // Sign-extend from IPM.Bit using a pair of shifts. |
| 2059 | int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit; |
| 2060 | int SraAmt = VT.getSizeInBits() - 1; |
| 2061 | Result = CurDAG->getNode(Opcode: ISD::SHL, DL, VT, N1: Result, |
| 2062 | N2: CurDAG->getConstant(Val: ShlAmt, DL, VT: MVT::i32)); |
| 2063 | Result = CurDAG->getNode(Opcode: ISD::SRA, DL, VT, N1: Result, |
| 2064 | N2: CurDAG->getConstant(Val: SraAmt, DL, VT: MVT::i32)); |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | return Result; |
| 2069 | } |
| 2070 | |
| 2071 | bool SystemZDAGToDAGISel::shouldSelectForReassoc(SDNode *N) const { |
| 2072 | EVT VT = N->getValueType(ResNo: 0); |
| 2073 | assert(VT.isFloatingPoint() && "Expected FP SDNode" ); |
| 2074 | return N->getFlags().hasAllowReassociation() && |
| 2075 | N->getFlags().hasNoSignedZeros() && Subtarget->hasVector() && |
| 2076 | (VT != MVT::f32 || Subtarget->hasVectorEnhancements1()) && |
| 2077 | !N->isStrictFPOpcode(); |
| 2078 | } |
| 2079 | |
| 2080 | void SystemZDAGToDAGISel::PreprocessISelDAG() { |
| 2081 | // If we have conditional immediate loads, we always prefer |
| 2082 | // using those over an IPM sequence. |
| 2083 | if (Subtarget->hasLoadStoreOnCond2()) |
| 2084 | return; |
| 2085 | |
| 2086 | bool MadeChange = false; |
| 2087 | |
| 2088 | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), |
| 2089 | E = CurDAG->allnodes_end(); |
| 2090 | I != E;) { |
| 2091 | SDNode *N = &*I++; |
| 2092 | if (N->use_empty()) |
| 2093 | continue; |
| 2094 | |
| 2095 | SDValue Res; |
| 2096 | switch (N->getOpcode()) { |
| 2097 | default: break; |
| 2098 | case SystemZISD::SELECT_CCMASK: |
| 2099 | Res = expandSelectBoolean(Node: N); |
| 2100 | break; |
| 2101 | } |
| 2102 | |
| 2103 | if (Res) { |
| 2104 | LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: " ); |
| 2105 | LLVM_DEBUG(N->dump(CurDAG)); |
| 2106 | LLVM_DEBUG(dbgs() << "\nNew: " ); |
| 2107 | LLVM_DEBUG(Res.getNode()->dump(CurDAG)); |
| 2108 | LLVM_DEBUG(dbgs() << "\n" ); |
| 2109 | |
| 2110 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Res); |
| 2111 | MadeChange = true; |
| 2112 | } |
| 2113 | } |
| 2114 | |
| 2115 | if (MadeChange) |
| 2116 | CurDAG->RemoveDeadNodes(); |
| 2117 | } |
| 2118 | |