1 | //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is part of the X86 Disassembler. |
10 | // It contains code to translate the data produced by the decoder into |
11 | // MCInsts. |
12 | // |
13 | // |
14 | // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and |
15 | // 64-bit X86 instruction sets. The main decode sequence for an assembly |
16 | // instruction in this disassembler is: |
17 | // |
18 | // 1. Read the prefix bytes and determine the attributes of the instruction. |
19 | // These attributes, recorded in enum attributeBits |
20 | // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM |
21 | // provides a mapping from bitmasks to contexts, which are represented by |
22 | // enum InstructionContext (ibid.). |
23 | // |
24 | // 2. Read the opcode, and determine what kind of opcode it is. The |
25 | // disassembler distinguishes four kinds of opcodes, which are enumerated in |
26 | // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte |
27 | // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a |
28 | // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. |
29 | // |
30 | // 3. Depending on the opcode type, look in one of four ClassDecision structures |
31 | // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which |
32 | // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get |
33 | // a ModRMDecision (ibid.). |
34 | // |
35 | // 4. Some instructions, such as escape opcodes or extended opcodes, or even |
36 | // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the |
37 | // ModR/M byte to complete decode. The ModRMDecision's type is an entry from |
38 | // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the |
39 | // ModR/M byte is required and how to interpret it. |
40 | // |
41 | // 5. After resolving the ModRMDecision, the disassembler has a unique ID |
42 | // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in |
43 | // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and |
44 | // meanings of its operands. |
45 | // |
46 | // 6. For each operand, its encoding is an entry from OperandEncoding |
47 | // (X86DisassemblerDecoderCommon.h) and its type is an entry from |
48 | // OperandType (ibid.). The encoding indicates how to read it from the |
49 | // instruction; the type indicates how to interpret the value once it has |
50 | // been read. For example, a register operand could be stored in the R/M |
51 | // field of the ModR/M byte, the REG field of the ModR/M byte, or added to |
52 | // the main opcode. This is orthogonal from its meaning (an GPR or an XMM |
53 | // register, for instance). Given this information, the operands can be |
54 | // extracted and interpreted. |
55 | // |
56 | // 7. As the last step, the disassembler translates the instruction information |
57 | // and operands into a format understandable by the client - in this case, an |
58 | // MCInst for use by the MC infrastructure. |
59 | // |
60 | // The disassembler is broken broadly into two parts: the table emitter that |
61 | // emits the instruction decode tables discussed above during compilation, and |
62 | // the disassembler itself. The table emitter is documented in more detail in |
63 | // utils/TableGen/X86DisassemblerEmitter.h. |
64 | // |
65 | // X86Disassembler.cpp contains the code responsible for step 7, and for |
66 | // invoking the decoder to execute steps 1-6. |
67 | // X86DisassemblerDecoderCommon.h contains the definitions needed by both the |
68 | // table emitter and the disassembler. |
69 | // X86DisassemblerDecoder.h contains the public interface of the decoder, |
70 | // factored out into C for possible use by other projects. |
71 | // X86DisassemblerDecoder.c contains the source code of the decoder, which is |
72 | // responsible for steps 1-6. |
73 | // |
74 | //===----------------------------------------------------------------------===// |
75 | |
76 | #include "MCTargetDesc/X86BaseInfo.h" |
77 | #include "MCTargetDesc/X86MCTargetDesc.h" |
78 | #include "TargetInfo/X86TargetInfo.h" |
79 | #include "X86DisassemblerDecoder.h" |
80 | #include "llvm/MC/MCContext.h" |
81 | #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
82 | #include "llvm/MC/MCExpr.h" |
83 | #include "llvm/MC/MCInst.h" |
84 | #include "llvm/MC/MCInstrInfo.h" |
85 | #include "llvm/MC/MCSubtargetInfo.h" |
86 | #include "llvm/MC/TargetRegistry.h" |
87 | #include "llvm/Support/Debug.h" |
88 | #include "llvm/Support/Format.h" |
89 | #include "llvm/Support/raw_ostream.h" |
90 | |
91 | using namespace llvm; |
92 | using namespace llvm::X86Disassembler; |
93 | |
94 | #define DEBUG_TYPE "x86-disassembler" |
95 | |
96 | #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); |
97 | |
98 | // Specifies whether a ModR/M byte is needed and (if so) which |
99 | // instruction each possible value of the ModR/M byte corresponds to. Once |
100 | // this information is known, we have narrowed down to a single instruction. |
101 | struct ModRMDecision { |
102 | uint8_t modrm_type; |
103 | uint16_t instructionIDs; |
104 | }; |
105 | |
106 | // Specifies which set of ModR/M->instruction tables to look at |
107 | // given a particular opcode. |
108 | struct OpcodeDecision { |
109 | ModRMDecision modRMDecisions[256]; |
110 | }; |
111 | |
112 | // Specifies which opcode->instruction tables to look at given |
113 | // a particular context (set of attributes). Since there are many possible |
114 | // contexts, the decoder first uses CONTEXTS_SYM to determine which context |
115 | // applies given a specific set of attributes. Hence there are only IC_max |
116 | // entries in this table, rather than 2^(ATTR_max). |
117 | struct ContextDecision { |
118 | OpcodeDecision opcodeDecisions[IC_max]; |
119 | }; |
120 | |
121 | #include "X86GenDisassemblerTables.inc" |
122 | |
123 | static InstrUID decode(OpcodeType type, InstructionContext insnContext, |
124 | uint8_t opcode, uint8_t modRM) { |
125 | const struct ModRMDecision *dec; |
126 | |
127 | switch (type) { |
128 | case ONEBYTE: |
129 | dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
130 | break; |
131 | case TWOBYTE: |
132 | dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
133 | break; |
134 | case THREEBYTE_38: |
135 | dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
136 | break; |
137 | case THREEBYTE_3A: |
138 | dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
139 | break; |
140 | case XOP8_MAP: |
141 | dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
142 | break; |
143 | case XOP9_MAP: |
144 | dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
145 | break; |
146 | case XOPA_MAP: |
147 | dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
148 | break; |
149 | case THREEDNOW_MAP: |
150 | dec = |
151 | &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
152 | break; |
153 | case MAP4: |
154 | dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
155 | break; |
156 | case MAP5: |
157 | dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
158 | break; |
159 | case MAP6: |
160 | dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
161 | break; |
162 | case MAP7: |
163 | dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
164 | break; |
165 | } |
166 | |
167 | switch (dec->modrm_type) { |
168 | default: |
169 | llvm_unreachable("Corrupt table! Unknown modrm_type" ); |
170 | return 0; |
171 | case MODRM_ONEENTRY: |
172 | return modRMTable[dec->instructionIDs]; |
173 | case MODRM_SPLITRM: |
174 | if (modFromModRM(modRM) == 0x3) |
175 | return modRMTable[dec->instructionIDs + 1]; |
176 | return modRMTable[dec->instructionIDs]; |
177 | case MODRM_SPLITREG: |
178 | if (modFromModRM(modRM) == 0x3) |
179 | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; |
180 | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
181 | case MODRM_SPLITMISC: |
182 | if (modFromModRM(modRM) == 0x3) |
183 | return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; |
184 | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
185 | case MODRM_FULL: |
186 | return modRMTable[dec->instructionIDs + modRM]; |
187 | } |
188 | } |
189 | |
190 | static bool peek(struct InternalInstruction *insn, uint8_t &byte) { |
191 | uint64_t offset = insn->readerCursor - insn->startLocation; |
192 | if (offset >= insn->bytes.size()) |
193 | return true; |
194 | byte = insn->bytes[offset]; |
195 | return false; |
196 | } |
197 | |
198 | template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { |
199 | auto r = insn->bytes; |
200 | uint64_t offset = insn->readerCursor - insn->startLocation; |
201 | if (offset + sizeof(T) > r.size()) |
202 | return true; |
203 | ptr = support::endian::read<T>(&r[offset], llvm::endianness::little); |
204 | insn->readerCursor += sizeof(T); |
205 | return false; |
206 | } |
207 | |
208 | static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { |
209 | return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; |
210 | } |
211 | |
212 | static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) { |
213 | return insn->mode == MODE_64BIT && prefix == 0xd5; |
214 | } |
215 | |
216 | // Consumes all of an instruction's prefix bytes, and marks the |
217 | // instruction as having them. Also sets the instruction's default operand, |
218 | // address, and other relevant data sizes to report operands correctly. |
219 | // |
220 | // insn must not be empty. |
221 | static int readPrefixes(struct InternalInstruction *insn) { |
222 | bool isPrefix = true; |
223 | uint8_t byte = 0; |
224 | uint8_t nextByte; |
225 | |
226 | LLVM_DEBUG(dbgs() << "readPrefixes()" ); |
227 | |
228 | while (isPrefix) { |
229 | // If we fail reading prefixes, just stop here and let the opcode reader |
230 | // deal with it. |
231 | if (consume(insn, ptr&: byte)) |
232 | break; |
233 | |
234 | // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then |
235 | // break and let it be disassembled as a normal "instruction". |
236 | if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK |
237 | break; |
238 | |
239 | if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, byte&: nextByte)) { |
240 | // If the byte is 0xf2 or 0xf3, and any of the following conditions are |
241 | // met: |
242 | // - it is followed by a LOCK (0xf0) prefix |
243 | // - it is followed by an xchg instruction |
244 | // then it should be disassembled as a xacquire/xrelease not repne/rep. |
245 | if (((nextByte == 0xf0) || |
246 | ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { |
247 | insn->xAcquireRelease = true; |
248 | if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support |
249 | break; |
250 | } |
251 | // Also if the byte is 0xf3, and the following condition is met: |
252 | // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or |
253 | // "mov mem, imm" (opcode 0xc6/0xc7) instructions. |
254 | // then it should be disassembled as an xrelease not rep. |
255 | if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || |
256 | nextByte == 0xc6 || nextByte == 0xc7)) { |
257 | insn->xAcquireRelease = true; |
258 | break; |
259 | } |
260 | if (isREX(insn, prefix: nextByte)) { |
261 | uint8_t nnextByte; |
262 | // Go to REX prefix after the current one |
263 | if (consume(insn, ptr&: nnextByte)) |
264 | return -1; |
265 | // We should be able to read next byte after REX prefix |
266 | if (peek(insn, byte&: nnextByte)) |
267 | return -1; |
268 | --insn->readerCursor; |
269 | } |
270 | } |
271 | |
272 | switch (byte) { |
273 | case 0xf0: // LOCK |
274 | insn->hasLockPrefix = true; |
275 | break; |
276 | case 0xf2: // REPNE/REPNZ |
277 | case 0xf3: { // REP or REPE/REPZ |
278 | uint8_t nextByte; |
279 | if (peek(insn, byte&: nextByte)) |
280 | break; |
281 | // TODO: |
282 | // 1. There could be several 0x66 |
283 | // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then |
284 | // it's not mandatory prefix |
285 | // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need |
286 | // 0x0f exactly after it to be mandatory prefix |
287 | // 4. if (nextByte == 0xd5) it's REX2 and we need |
288 | // 0x0f exactly after it to be mandatory prefix |
289 | if (isREX(insn, prefix: nextByte) || isREX2(insn, prefix: nextByte) || nextByte == 0x0f || |
290 | nextByte == 0x66) |
291 | // The last of 0xf2 /0xf3 is mandatory prefix |
292 | insn->mandatoryPrefix = byte; |
293 | insn->repeatPrefix = byte; |
294 | break; |
295 | } |
296 | case 0x2e: // CS segment override -OR- Branch not taken |
297 | insn->segmentOverride = SEG_OVERRIDE_CS; |
298 | break; |
299 | case 0x36: // SS segment override -OR- Branch taken |
300 | insn->segmentOverride = SEG_OVERRIDE_SS; |
301 | break; |
302 | case 0x3e: // DS segment override |
303 | insn->segmentOverride = SEG_OVERRIDE_DS; |
304 | break; |
305 | case 0x26: // ES segment override |
306 | insn->segmentOverride = SEG_OVERRIDE_ES; |
307 | break; |
308 | case 0x64: // FS segment override |
309 | insn->segmentOverride = SEG_OVERRIDE_FS; |
310 | break; |
311 | case 0x65: // GS segment override |
312 | insn->segmentOverride = SEG_OVERRIDE_GS; |
313 | break; |
314 | case 0x66: { // Operand-size override { |
315 | uint8_t nextByte; |
316 | insn->hasOpSize = true; |
317 | if (peek(insn, byte&: nextByte)) |
318 | break; |
319 | // 0x66 can't overwrite existing mandatory prefix and should be ignored |
320 | if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, prefix: nextByte))) |
321 | insn->mandatoryPrefix = byte; |
322 | break; |
323 | } |
324 | case 0x67: // Address-size override |
325 | insn->hasAdSize = true; |
326 | break; |
327 | default: // Not a prefix byte |
328 | isPrefix = false; |
329 | break; |
330 | } |
331 | |
332 | if (isREX(insn, prefix: byte)) { |
333 | insn->rexPrefix = byte; |
334 | isPrefix = true; |
335 | LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx" , byte)); |
336 | } else if (isPrefix) { |
337 | insn->rexPrefix = 0; |
338 | } |
339 | |
340 | if (isPrefix) |
341 | LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx" , byte)); |
342 | } |
343 | |
344 | insn->vectorExtensionType = TYPE_NO_VEX_XOP; |
345 | |
346 | if (byte == 0x62) { |
347 | uint8_t byte1, byte2; |
348 | if (consume(insn, ptr&: byte1)) { |
349 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix" ); |
350 | return -1; |
351 | } |
352 | |
353 | if (peek(insn, byte&: byte2)) { |
354 | LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix" ); |
355 | return -1; |
356 | } |
357 | |
358 | if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) { |
359 | insn->vectorExtensionType = TYPE_EVEX; |
360 | } else { |
361 | --insn->readerCursor; // unconsume byte1 |
362 | --insn->readerCursor; // unconsume byte |
363 | } |
364 | |
365 | if (insn->vectorExtensionType == TYPE_EVEX) { |
366 | insn->vectorExtensionPrefix[0] = byte; |
367 | insn->vectorExtensionPrefix[1] = byte1; |
368 | if (consume(insn, ptr&: insn->vectorExtensionPrefix[2])) { |
369 | LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix" ); |
370 | return -1; |
371 | } |
372 | if (consume(insn, ptr&: insn->vectorExtensionPrefix[3])) { |
373 | LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix" ); |
374 | return -1; |
375 | } |
376 | |
377 | if (insn->mode == MODE_64BIT) { |
378 | // We simulate the REX prefix for simplicity's sake |
379 | insn->rexPrefix = 0x40 | |
380 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | |
381 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | |
382 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | |
383 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); |
384 | |
385 | // We simulate the REX2 prefix for simplicity's sake |
386 | insn->rex2ExtensionPrefix[1] = |
387 | (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) | |
388 | (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) | |
389 | (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4); |
390 | } |
391 | |
392 | LLVM_DEBUG( |
393 | dbgs() << format( |
394 | "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx" , |
395 | insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
396 | insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); |
397 | } |
398 | } else if (byte == 0xc4) { |
399 | uint8_t byte1; |
400 | if (peek(insn, byte&: byte1)) { |
401 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX" ); |
402 | return -1; |
403 | } |
404 | |
405 | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
406 | insn->vectorExtensionType = TYPE_VEX_3B; |
407 | else |
408 | --insn->readerCursor; |
409 | |
410 | if (insn->vectorExtensionType == TYPE_VEX_3B) { |
411 | insn->vectorExtensionPrefix[0] = byte; |
412 | consume(insn, ptr&: insn->vectorExtensionPrefix[1]); |
413 | consume(insn, ptr&: insn->vectorExtensionPrefix[2]); |
414 | |
415 | // We simulate the REX prefix for simplicity's sake |
416 | |
417 | if (insn->mode == MODE_64BIT) |
418 | insn->rexPrefix = 0x40 | |
419 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | |
420 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | |
421 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | |
422 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); |
423 | |
424 | LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx" , |
425 | insn->vectorExtensionPrefix[0], |
426 | insn->vectorExtensionPrefix[1], |
427 | insn->vectorExtensionPrefix[2])); |
428 | } |
429 | } else if (byte == 0xc5) { |
430 | uint8_t byte1; |
431 | if (peek(insn, byte&: byte1)) { |
432 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX" ); |
433 | return -1; |
434 | } |
435 | |
436 | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
437 | insn->vectorExtensionType = TYPE_VEX_2B; |
438 | else |
439 | --insn->readerCursor; |
440 | |
441 | if (insn->vectorExtensionType == TYPE_VEX_2B) { |
442 | insn->vectorExtensionPrefix[0] = byte; |
443 | consume(insn, ptr&: insn->vectorExtensionPrefix[1]); |
444 | |
445 | if (insn->mode == MODE_64BIT) |
446 | insn->rexPrefix = |
447 | 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); |
448 | |
449 | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
450 | default: |
451 | break; |
452 | case VEX_PREFIX_66: |
453 | insn->hasOpSize = true; |
454 | break; |
455 | } |
456 | |
457 | LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx" , |
458 | insn->vectorExtensionPrefix[0], |
459 | insn->vectorExtensionPrefix[1])); |
460 | } |
461 | } else if (byte == 0x8f) { |
462 | uint8_t byte1; |
463 | if (peek(insn, byte&: byte1)) { |
464 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP" ); |
465 | return -1; |
466 | } |
467 | |
468 | if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. |
469 | insn->vectorExtensionType = TYPE_XOP; |
470 | else |
471 | --insn->readerCursor; |
472 | |
473 | if (insn->vectorExtensionType == TYPE_XOP) { |
474 | insn->vectorExtensionPrefix[0] = byte; |
475 | consume(insn, ptr&: insn->vectorExtensionPrefix[1]); |
476 | consume(insn, ptr&: insn->vectorExtensionPrefix[2]); |
477 | |
478 | // We simulate the REX prefix for simplicity's sake |
479 | |
480 | if (insn->mode == MODE_64BIT) |
481 | insn->rexPrefix = 0x40 | |
482 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | |
483 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | |
484 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | |
485 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); |
486 | |
487 | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
488 | default: |
489 | break; |
490 | case VEX_PREFIX_66: |
491 | insn->hasOpSize = true; |
492 | break; |
493 | } |
494 | |
495 | LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx" , |
496 | insn->vectorExtensionPrefix[0], |
497 | insn->vectorExtensionPrefix[1], |
498 | insn->vectorExtensionPrefix[2])); |
499 | } |
500 | } else if (isREX2(insn, prefix: byte)) { |
501 | uint8_t byte1; |
502 | if (peek(insn, byte&: byte1)) { |
503 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2" ); |
504 | return -1; |
505 | } |
506 | insn->rex2ExtensionPrefix[0] = byte; |
507 | consume(insn, ptr&: insn->rex2ExtensionPrefix[1]); |
508 | |
509 | // We simulate the REX prefix for simplicity's sake |
510 | insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) | |
511 | (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) | |
512 | (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) | |
513 | (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0); |
514 | LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx" , |
515 | insn->rex2ExtensionPrefix[0], |
516 | insn->rex2ExtensionPrefix[1])); |
517 | } else |
518 | --insn->readerCursor; |
519 | |
520 | if (insn->mode == MODE_16BIT) { |
521 | insn->registerSize = (insn->hasOpSize ? 4 : 2); |
522 | insn->addressSize = (insn->hasAdSize ? 4 : 2); |
523 | insn->displacementSize = (insn->hasAdSize ? 4 : 2); |
524 | insn->immediateSize = (insn->hasOpSize ? 4 : 2); |
525 | } else if (insn->mode == MODE_32BIT) { |
526 | insn->registerSize = (insn->hasOpSize ? 2 : 4); |
527 | insn->addressSize = (insn->hasAdSize ? 2 : 4); |
528 | insn->displacementSize = (insn->hasAdSize ? 2 : 4); |
529 | insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
530 | } else if (insn->mode == MODE_64BIT) { |
531 | insn->displacementSize = 4; |
532 | if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { |
533 | insn->registerSize = 8; |
534 | insn->addressSize = (insn->hasAdSize ? 4 : 8); |
535 | insn->immediateSize = 4; |
536 | insn->hasOpSize = false; |
537 | } else { |
538 | insn->registerSize = (insn->hasOpSize ? 2 : 4); |
539 | insn->addressSize = (insn->hasAdSize ? 4 : 8); |
540 | insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
541 | } |
542 | } |
543 | |
544 | return 0; |
545 | } |
546 | |
547 | // Consumes the SIB byte to determine addressing information. |
548 | static int readSIB(struct InternalInstruction *insn) { |
549 | SIBBase sibBaseBase = SIB_BASE_NONE; |
550 | uint8_t index, base; |
551 | |
552 | LLVM_DEBUG(dbgs() << "readSIB()" ); |
553 | switch (insn->addressSize) { |
554 | case 2: |
555 | default: |
556 | llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode" ); |
557 | case 4: |
558 | insn->sibIndexBase = SIB_INDEX_EAX; |
559 | sibBaseBase = SIB_BASE_EAX; |
560 | break; |
561 | case 8: |
562 | insn->sibIndexBase = SIB_INDEX_RAX; |
563 | sibBaseBase = SIB_BASE_RAX; |
564 | break; |
565 | } |
566 | |
567 | if (consume(insn, ptr&: insn->sib)) |
568 | return -1; |
569 | |
570 | index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) | |
571 | (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
572 | |
573 | if (index == 0x4) { |
574 | insn->sibIndex = SIB_INDEX_NONE; |
575 | } else { |
576 | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); |
577 | } |
578 | |
579 | insn->sibScale = 1 << scaleFromSIB(insn->sib); |
580 | |
581 | base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) | |
582 | (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
583 | |
584 | switch (base) { |
585 | case 0x5: |
586 | case 0xd: |
587 | switch (modFromModRM(insn->modRM)) { |
588 | case 0x0: |
589 | insn->eaDisplacement = EA_DISP_32; |
590 | insn->sibBase = SIB_BASE_NONE; |
591 | break; |
592 | case 0x1: |
593 | insn->eaDisplacement = EA_DISP_8; |
594 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
595 | break; |
596 | case 0x2: |
597 | insn->eaDisplacement = EA_DISP_32; |
598 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
599 | break; |
600 | default: |
601 | llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte" ); |
602 | } |
603 | break; |
604 | default: |
605 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
606 | break; |
607 | } |
608 | |
609 | return 0; |
610 | } |
611 | |
612 | static int readDisplacement(struct InternalInstruction *insn) { |
613 | int8_t d8; |
614 | int16_t d16; |
615 | int32_t d32; |
616 | LLVM_DEBUG(dbgs() << "readDisplacement()" ); |
617 | |
618 | insn->displacementOffset = insn->readerCursor - insn->startLocation; |
619 | switch (insn->eaDisplacement) { |
620 | case EA_DISP_NONE: |
621 | break; |
622 | case EA_DISP_8: |
623 | if (consume(insn, ptr&: d8)) |
624 | return -1; |
625 | insn->displacement = d8; |
626 | break; |
627 | case EA_DISP_16: |
628 | if (consume(insn, ptr&: d16)) |
629 | return -1; |
630 | insn->displacement = d16; |
631 | break; |
632 | case EA_DISP_32: |
633 | if (consume(insn, ptr&: d32)) |
634 | return -1; |
635 | insn->displacement = d32; |
636 | break; |
637 | } |
638 | |
639 | return 0; |
640 | } |
641 | |
642 | // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. |
643 | static int readModRM(struct InternalInstruction *insn) { |
644 | uint8_t mod, rm, reg; |
645 | LLVM_DEBUG(dbgs() << "readModRM()" ); |
646 | |
647 | if (insn->consumedModRM) |
648 | return 0; |
649 | |
650 | if (consume(insn, ptr&: insn->modRM)) |
651 | return -1; |
652 | insn->consumedModRM = true; |
653 | |
654 | mod = modFromModRM(insn->modRM); |
655 | rm = rmFromModRM(insn->modRM); |
656 | reg = regFromModRM(insn->modRM); |
657 | |
658 | // This goes by insn->registerSize to pick the correct register, which messes |
659 | // up if we're using (say) XMM or 8-bit register operands. That gets fixed in |
660 | // fixupReg(). |
661 | switch (insn->registerSize) { |
662 | case 2: |
663 | insn->regBase = MODRM_REG_AX; |
664 | insn->eaRegBase = EA_REG_AX; |
665 | break; |
666 | case 4: |
667 | insn->regBase = MODRM_REG_EAX; |
668 | insn->eaRegBase = EA_REG_EAX; |
669 | break; |
670 | case 8: |
671 | insn->regBase = MODRM_REG_RAX; |
672 | insn->eaRegBase = EA_REG_RAX; |
673 | break; |
674 | } |
675 | |
676 | reg |= (rFromREX(insn->rexPrefix) << 3) | |
677 | (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
678 | rm |= (bFromREX(insn->rexPrefix) << 3) | |
679 | (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
680 | |
681 | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) |
682 | reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
683 | |
684 | insn->reg = (Reg)(insn->regBase + reg); |
685 | |
686 | switch (insn->addressSize) { |
687 | case 2: { |
688 | EABase eaBaseBase = EA_BASE_BX_SI; |
689 | |
690 | switch (mod) { |
691 | case 0x0: |
692 | if (rm == 0x6) { |
693 | insn->eaBase = EA_BASE_NONE; |
694 | insn->eaDisplacement = EA_DISP_16; |
695 | if (readDisplacement(insn)) |
696 | return -1; |
697 | } else { |
698 | insn->eaBase = (EABase)(eaBaseBase + rm); |
699 | insn->eaDisplacement = EA_DISP_NONE; |
700 | } |
701 | break; |
702 | case 0x1: |
703 | insn->eaBase = (EABase)(eaBaseBase + rm); |
704 | insn->eaDisplacement = EA_DISP_8; |
705 | insn->displacementSize = 1; |
706 | if (readDisplacement(insn)) |
707 | return -1; |
708 | break; |
709 | case 0x2: |
710 | insn->eaBase = (EABase)(eaBaseBase + rm); |
711 | insn->eaDisplacement = EA_DISP_16; |
712 | if (readDisplacement(insn)) |
713 | return -1; |
714 | break; |
715 | case 0x3: |
716 | insn->eaBase = (EABase)(insn->eaRegBase + rm); |
717 | if (readDisplacement(insn)) |
718 | return -1; |
719 | break; |
720 | } |
721 | break; |
722 | } |
723 | case 4: |
724 | case 8: { |
725 | EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); |
726 | |
727 | switch (mod) { |
728 | case 0x0: |
729 | insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this |
730 | // In determining whether RIP-relative mode is used (rm=5), |
731 | // or whether a SIB byte is present (rm=4), |
732 | // the extension bits (REX.b and EVEX.x) are ignored. |
733 | switch (rm & 7) { |
734 | case 0x4: // SIB byte is present |
735 | insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); |
736 | if (readSIB(insn) || readDisplacement(insn)) |
737 | return -1; |
738 | break; |
739 | case 0x5: // RIP-relative |
740 | insn->eaBase = EA_BASE_NONE; |
741 | insn->eaDisplacement = EA_DISP_32; |
742 | if (readDisplacement(insn)) |
743 | return -1; |
744 | break; |
745 | default: |
746 | insn->eaBase = (EABase)(eaBaseBase + rm); |
747 | break; |
748 | } |
749 | break; |
750 | case 0x1: |
751 | insn->displacementSize = 1; |
752 | [[fallthrough]]; |
753 | case 0x2: |
754 | insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); |
755 | switch (rm & 7) { |
756 | case 0x4: // SIB byte is present |
757 | insn->eaBase = EA_BASE_sib; |
758 | if (readSIB(insn) || readDisplacement(insn)) |
759 | return -1; |
760 | break; |
761 | default: |
762 | insn->eaBase = (EABase)(eaBaseBase + rm); |
763 | if (readDisplacement(insn)) |
764 | return -1; |
765 | break; |
766 | } |
767 | break; |
768 | case 0x3: |
769 | insn->eaDisplacement = EA_DISP_NONE; |
770 | insn->eaBase = (EABase)(insn->eaRegBase + rm); |
771 | break; |
772 | } |
773 | break; |
774 | } |
775 | } // switch (insn->addressSize) |
776 | |
777 | return 0; |
778 | } |
779 | |
780 | #define GENERIC_FIXUP_FUNC(name, base, prefix) \ |
781 | static uint16_t name(struct InternalInstruction *insn, OperandType type, \ |
782 | uint8_t index, uint8_t *valid) { \ |
783 | *valid = 1; \ |
784 | switch (type) { \ |
785 | default: \ |
786 | debug("Unhandled register type"); \ |
787 | *valid = 0; \ |
788 | return 0; \ |
789 | case TYPE_Rv: \ |
790 | return base + index; \ |
791 | case TYPE_R8: \ |
792 | if (insn->rexPrefix && index >= 4 && index <= 7) \ |
793 | return prefix##_SPL + (index - 4); \ |
794 | else \ |
795 | return prefix##_AL + index; \ |
796 | case TYPE_R16: \ |
797 | return prefix##_AX + index; \ |
798 | case TYPE_R32: \ |
799 | return prefix##_EAX + index; \ |
800 | case TYPE_R64: \ |
801 | return prefix##_RAX + index; \ |
802 | case TYPE_ZMM: \ |
803 | return prefix##_ZMM0 + index; \ |
804 | case TYPE_YMM: \ |
805 | return prefix##_YMM0 + index; \ |
806 | case TYPE_XMM: \ |
807 | return prefix##_XMM0 + index; \ |
808 | case TYPE_TMM: \ |
809 | if (index > 7) \ |
810 | *valid = 0; \ |
811 | return prefix##_TMM0 + index; \ |
812 | case TYPE_TMM_PAIR: \ |
813 | if (index > 7) \ |
814 | *valid = 0; \ |
815 | return prefix##_TMM0_TMM1 + (index / 2); \ |
816 | case TYPE_VK: \ |
817 | index &= 0xf; \ |
818 | if (index > 7) \ |
819 | *valid = 0; \ |
820 | return prefix##_K0 + index; \ |
821 | case TYPE_VK_PAIR: \ |
822 | if (index > 7) \ |
823 | *valid = 0; \ |
824 | return prefix##_K0_K1 + (index / 2); \ |
825 | case TYPE_MM64: \ |
826 | return prefix##_MM0 + (index & 0x7); \ |
827 | case TYPE_SEGMENTREG: \ |
828 | if ((index & 7) > 5) \ |
829 | *valid = 0; \ |
830 | return prefix##_ES + (index & 7); \ |
831 | case TYPE_DEBUGREG: \ |
832 | if (index > 15) \ |
833 | *valid = 0; \ |
834 | return prefix##_DR0 + index; \ |
835 | case TYPE_CONTROLREG: \ |
836 | if (index > 15) \ |
837 | *valid = 0; \ |
838 | return prefix##_CR0 + index; \ |
839 | case TYPE_MVSIBX: \ |
840 | return prefix##_XMM0 + index; \ |
841 | case TYPE_MVSIBY: \ |
842 | return prefix##_YMM0 + index; \ |
843 | case TYPE_MVSIBZ: \ |
844 | return prefix##_ZMM0 + index; \ |
845 | } \ |
846 | } |
847 | |
848 | // Consult an operand type to determine the meaning of the reg or R/M field. If |
849 | // the operand is an XMM operand, for example, an operand would be XMM0 instead |
850 | // of AX, which readModRM() would otherwise misinterpret it as. |
851 | // |
852 | // @param insn - The instruction containing the operand. |
853 | // @param type - The operand type. |
854 | // @param index - The existing value of the field as reported by readModRM(). |
855 | // @param valid - The address of a uint8_t. The target is set to 1 if the |
856 | // field is valid for the register class; 0 if not. |
857 | // @return - The proper value. |
858 | GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG) |
859 | GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) |
860 | |
861 | // Consult an operand specifier to determine which of the fixup*Value functions |
862 | // to use in correcting readModRM()'ss interpretation. |
863 | // |
864 | // @param insn - See fixup*Value(). |
865 | // @param op - The operand specifier. |
866 | // @return - 0 if fixup was successful; -1 if the register returned was |
867 | // invalid for its class. |
868 | static int fixupReg(struct InternalInstruction *insn, |
869 | const struct OperandSpecifier *op) { |
870 | uint8_t valid; |
871 | LLVM_DEBUG(dbgs() << "fixupReg()" ); |
872 | |
873 | switch ((OperandEncoding)op->encoding) { |
874 | default: |
875 | debug("Expected a REG or R/M encoding in fixupReg" ); |
876 | return -1; |
877 | case ENCODING_VVVV: |
878 | insn->vvvv = |
879 | (Reg)fixupRegValue(insn, type: (OperandType)op->type, index: insn->vvvv, valid: &valid); |
880 | if (!valid) |
881 | return -1; |
882 | break; |
883 | case ENCODING_REG: |
884 | insn->reg = (Reg)fixupRegValue(insn, type: (OperandType)op->type, |
885 | index: insn->reg - insn->regBase, valid: &valid); |
886 | if (!valid) |
887 | return -1; |
888 | break; |
889 | CASE_ENCODING_RM: |
890 | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && |
891 | modFromModRM(insn->modRM) == 3) { |
892 | // EVEX_X can extend the register id to 32 for a non-GPR register that is |
893 | // encoded in RM. |
894 | // mode : MODE_64_BIT |
895 | // Only 8 vector registers are available in 32 bit mode |
896 | // mod : 3 |
897 | // RM encodes a register |
898 | switch (op->type) { |
899 | case TYPE_Rv: |
900 | case TYPE_R8: |
901 | case TYPE_R16: |
902 | case TYPE_R32: |
903 | case TYPE_R64: |
904 | break; |
905 | default: |
906 | insn->eaBase = |
907 | (EABase)(insn->eaBase + |
908 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4)); |
909 | break; |
910 | } |
911 | } |
912 | [[fallthrough]]; |
913 | case ENCODING_SIB: |
914 | if (insn->eaBase >= insn->eaRegBase) { |
915 | insn->eaBase = (EABase)fixupRMValue( |
916 | insn, type: (OperandType)op->type, index: insn->eaBase - insn->eaRegBase, valid: &valid); |
917 | if (!valid) |
918 | return -1; |
919 | } |
920 | break; |
921 | } |
922 | |
923 | return 0; |
924 | } |
925 | |
926 | // Read the opcode (except the ModR/M byte in the case of extended or escape |
927 | // opcodes). |
928 | static bool readOpcode(struct InternalInstruction *insn) { |
929 | uint8_t current; |
930 | LLVM_DEBUG(dbgs() << "readOpcode()" ); |
931 | |
932 | insn->opcodeType = ONEBYTE; |
933 | if (insn->vectorExtensionType == TYPE_EVEX) { |
934 | switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { |
935 | default: |
936 | LLVM_DEBUG( |
937 | dbgs() << format("Unhandled mmm field for instruction (0x%hhx)" , |
938 | mmmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); |
939 | return true; |
940 | case VEX_LOB_0F: |
941 | insn->opcodeType = TWOBYTE; |
942 | return consume(insn, ptr&: insn->opcode); |
943 | case VEX_LOB_0F38: |
944 | insn->opcodeType = THREEBYTE_38; |
945 | return consume(insn, ptr&: insn->opcode); |
946 | case VEX_LOB_0F3A: |
947 | insn->opcodeType = THREEBYTE_3A; |
948 | return consume(insn, ptr&: insn->opcode); |
949 | case VEX_LOB_MAP4: |
950 | insn->opcodeType = MAP4; |
951 | return consume(insn, ptr&: insn->opcode); |
952 | case VEX_LOB_MAP5: |
953 | insn->opcodeType = MAP5; |
954 | return consume(insn, ptr&: insn->opcode); |
955 | case VEX_LOB_MAP6: |
956 | insn->opcodeType = MAP6; |
957 | return consume(insn, ptr&: insn->opcode); |
958 | case VEX_LOB_MAP7: |
959 | insn->opcodeType = MAP7; |
960 | return consume(insn, ptr&: insn->opcode); |
961 | } |
962 | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
963 | switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { |
964 | default: |
965 | LLVM_DEBUG( |
966 | dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)" , |
967 | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); |
968 | return true; |
969 | case VEX_LOB_0F: |
970 | insn->opcodeType = TWOBYTE; |
971 | return consume(insn, ptr&: insn->opcode); |
972 | case VEX_LOB_0F38: |
973 | insn->opcodeType = THREEBYTE_38; |
974 | return consume(insn, ptr&: insn->opcode); |
975 | case VEX_LOB_0F3A: |
976 | insn->opcodeType = THREEBYTE_3A; |
977 | return consume(insn, ptr&: insn->opcode); |
978 | case VEX_LOB_MAP5: |
979 | insn->opcodeType = MAP5; |
980 | return consume(insn, ptr&: insn->opcode); |
981 | case VEX_LOB_MAP6: |
982 | insn->opcodeType = MAP6; |
983 | return consume(insn, ptr&: insn->opcode); |
984 | case VEX_LOB_MAP7: |
985 | insn->opcodeType = MAP7; |
986 | return consume(insn, ptr&: insn->opcode); |
987 | } |
988 | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
989 | insn->opcodeType = TWOBYTE; |
990 | return consume(insn, ptr&: insn->opcode); |
991 | } else if (insn->vectorExtensionType == TYPE_XOP) { |
992 | switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { |
993 | default: |
994 | LLVM_DEBUG( |
995 | dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)" , |
996 | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); |
997 | return true; |
998 | case XOP_MAP_SELECT_8: |
999 | insn->opcodeType = XOP8_MAP; |
1000 | return consume(insn, ptr&: insn->opcode); |
1001 | case XOP_MAP_SELECT_9: |
1002 | insn->opcodeType = XOP9_MAP; |
1003 | return consume(insn, ptr&: insn->opcode); |
1004 | case XOP_MAP_SELECT_A: |
1005 | insn->opcodeType = XOPA_MAP; |
1006 | return consume(insn, ptr&: insn->opcode); |
1007 | } |
1008 | } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) { |
1009 | // m bit indicates opcode map 1 |
1010 | insn->opcodeType = TWOBYTE; |
1011 | return consume(insn, ptr&: insn->opcode); |
1012 | } |
1013 | |
1014 | if (consume(insn, ptr&: current)) |
1015 | return true; |
1016 | |
1017 | if (current == 0x0f) { |
1018 | LLVM_DEBUG( |
1019 | dbgs() << format("Found a two-byte escape prefix (0x%hhx)" , current)); |
1020 | if (consume(insn, ptr&: current)) |
1021 | return true; |
1022 | |
1023 | if (current == 0x38) { |
1024 | LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)" , |
1025 | current)); |
1026 | if (consume(insn, ptr&: current)) |
1027 | return true; |
1028 | |
1029 | insn->opcodeType = THREEBYTE_38; |
1030 | } else if (current == 0x3a) { |
1031 | LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)" , |
1032 | current)); |
1033 | if (consume(insn, ptr&: current)) |
1034 | return true; |
1035 | |
1036 | insn->opcodeType = THREEBYTE_3A; |
1037 | } else if (current == 0x0f) { |
1038 | LLVM_DEBUG( |
1039 | dbgs() << format("Found a 3dnow escape prefix (0x%hhx)" , current)); |
1040 | |
1041 | // Consume operands before the opcode to comply with the 3DNow encoding |
1042 | if (readModRM(insn)) |
1043 | return true; |
1044 | |
1045 | if (consume(insn, ptr&: current)) |
1046 | return true; |
1047 | |
1048 | insn->opcodeType = THREEDNOW_MAP; |
1049 | } else { |
1050 | LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix" ); |
1051 | insn->opcodeType = TWOBYTE; |
1052 | } |
1053 | } else if (insn->mandatoryPrefix) |
1054 | // The opcode with mandatory prefix must start with opcode escape. |
1055 | // If not it's legacy repeat prefix |
1056 | insn->mandatoryPrefix = 0; |
1057 | |
1058 | // At this point we have consumed the full opcode. |
1059 | // Anything we consume from here on must be unconsumed. |
1060 | insn->opcode = current; |
1061 | |
1062 | return false; |
1063 | } |
1064 | |
1065 | // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). |
1066 | static bool is16BitEquivalent(const char *orig, const char *equiv) { |
1067 | for (int i = 0;; i++) { |
1068 | if (orig[i] == '\0' && equiv[i] == '\0') |
1069 | return true; |
1070 | if (orig[i] == '\0' || equiv[i] == '\0') |
1071 | return false; |
1072 | if (orig[i] != equiv[i]) { |
1073 | if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') |
1074 | continue; |
1075 | if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') |
1076 | continue; |
1077 | if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') |
1078 | continue; |
1079 | return false; |
1080 | } |
1081 | } |
1082 | } |
1083 | |
1084 | // Determine whether this instruction is a 64-bit instruction. |
1085 | static bool is64Bit(const char *name) { |
1086 | for (int i = 0;; ++i) { |
1087 | if (name[i] == '\0') |
1088 | return false; |
1089 | if (name[i] == '6' && name[i + 1] == '4') |
1090 | return true; |
1091 | } |
1092 | } |
1093 | |
1094 | // Determine the ID of an instruction, consuming the ModR/M byte as appropriate |
1095 | // for extended and escape opcodes, and using a supplied attribute mask. |
1096 | static int getInstructionIDWithAttrMask(uint16_t *instructionID, |
1097 | struct InternalInstruction *insn, |
1098 | uint16_t attrMask) { |
1099 | auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); |
1100 | const ContextDecision *decision; |
1101 | switch (insn->opcodeType) { |
1102 | case ONEBYTE: |
1103 | decision = &ONEBYTE_SYM; |
1104 | break; |
1105 | case TWOBYTE: |
1106 | decision = &TWOBYTE_SYM; |
1107 | break; |
1108 | case THREEBYTE_38: |
1109 | decision = &THREEBYTE38_SYM; |
1110 | break; |
1111 | case THREEBYTE_3A: |
1112 | decision = &THREEBYTE3A_SYM; |
1113 | break; |
1114 | case XOP8_MAP: |
1115 | decision = &XOP8_MAP_SYM; |
1116 | break; |
1117 | case XOP9_MAP: |
1118 | decision = &XOP9_MAP_SYM; |
1119 | break; |
1120 | case XOPA_MAP: |
1121 | decision = &XOPA_MAP_SYM; |
1122 | break; |
1123 | case THREEDNOW_MAP: |
1124 | decision = &THREEDNOW_MAP_SYM; |
1125 | break; |
1126 | case MAP4: |
1127 | decision = &MAP4_SYM; |
1128 | break; |
1129 | case MAP5: |
1130 | decision = &MAP5_SYM; |
1131 | break; |
1132 | case MAP6: |
1133 | decision = &MAP6_SYM; |
1134 | break; |
1135 | case MAP7: |
1136 | decision = &MAP7_SYM; |
1137 | break; |
1138 | } |
1139 | |
1140 | if (decision->opcodeDecisions[insnCtx] |
1141 | .modRMDecisions[insn->opcode] |
1142 | .modrm_type != MODRM_ONEENTRY) { |
1143 | if (readModRM(insn)) |
1144 | return -1; |
1145 | *instructionID = |
1146 | decode(type: insn->opcodeType, insnContext: insnCtx, opcode: insn->opcode, modRM: insn->modRM); |
1147 | } else { |
1148 | *instructionID = decode(type: insn->opcodeType, insnContext: insnCtx, opcode: insn->opcode, modRM: 0); |
1149 | } |
1150 | |
1151 | return 0; |
1152 | } |
1153 | |
1154 | static bool isCCMPOrCTEST(InternalInstruction *insn) { |
1155 | if (insn->opcodeType != MAP4) |
1156 | return false; |
1157 | if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7) |
1158 | return true; |
1159 | switch (insn->opcode & 0xfe) { |
1160 | default: |
1161 | return false; |
1162 | case 0x38: |
1163 | case 0x3a: |
1164 | case 0x84: |
1165 | return true; |
1166 | case 0x80: |
1167 | return regFromModRM(insn->modRM) == 7; |
1168 | case 0xf6: |
1169 | return regFromModRM(insn->modRM) == 0; |
1170 | } |
1171 | } |
1172 | |
1173 | static bool isNF(InternalInstruction *insn) { |
1174 | if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1175 | return false; |
1176 | if (insn->opcodeType == MAP4) |
1177 | return true; |
1178 | // Below NF instructions are not in map4. |
1179 | if (insn->opcodeType == THREEBYTE_38 && |
1180 | ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) { |
1181 | switch (insn->opcode) { |
1182 | case 0xf2: // ANDN |
1183 | case 0xf3: // BLSI, BLSR, BLSMSK |
1184 | case 0xf5: // BZHI |
1185 | case 0xf7: // BEXTR |
1186 | return true; |
1187 | default: |
1188 | break; |
1189 | } |
1190 | } |
1191 | return false; |
1192 | } |
1193 | |
1194 | // Determine the ID of an instruction, consuming the ModR/M byte as appropriate |
1195 | // for extended and escape opcodes. Determines the attributes and context for |
1196 | // the instruction before doing so. |
1197 | static int getInstructionID(struct InternalInstruction *insn, |
1198 | const MCInstrInfo *mii) { |
1199 | uint16_t attrMask; |
1200 | uint16_t instructionID; |
1201 | |
1202 | LLVM_DEBUG(dbgs() << "getID()" ); |
1203 | |
1204 | attrMask = ATTR_NONE; |
1205 | |
1206 | if (insn->mode == MODE_64BIT) |
1207 | attrMask |= ATTR_64BIT; |
1208 | |
1209 | if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
1210 | attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; |
1211 | |
1212 | if (insn->vectorExtensionType == TYPE_EVEX) { |
1213 | switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { |
1214 | case VEX_PREFIX_66: |
1215 | attrMask |= ATTR_OPSIZE; |
1216 | break; |
1217 | case VEX_PREFIX_F3: |
1218 | attrMask |= ATTR_XS; |
1219 | break; |
1220 | case VEX_PREFIX_F2: |
1221 | attrMask |= ATTR_XD; |
1222 | break; |
1223 | } |
1224 | |
1225 | if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1226 | attrMask |= ATTR_EVEXKZ; |
1227 | if (isNF(insn) && !readModRM(insn) && |
1228 | !isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa. |
1229 | attrMask |= ATTR_EVEXNF; |
1230 | // aaa is not used a opmask in MAP4 |
1231 | else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) && |
1232 | (insn->opcodeType != MAP4)) |
1233 | attrMask |= ATTR_EVEXK; |
1234 | if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) { |
1235 | attrMask |= ATTR_EVEXB; |
1236 | if (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) && !readModRM(insn) && |
1237 | modFromModRM(insn->modRM) == 3) |
1238 | attrMask |= ATTR_EVEXU; |
1239 | } |
1240 | if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1241 | attrMask |= ATTR_VEXL; |
1242 | if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1243 | attrMask |= ATTR_EVEXL2; |
1244 | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
1245 | switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { |
1246 | case VEX_PREFIX_66: |
1247 | attrMask |= ATTR_OPSIZE; |
1248 | break; |
1249 | case VEX_PREFIX_F3: |
1250 | attrMask |= ATTR_XS; |
1251 | break; |
1252 | case VEX_PREFIX_F2: |
1253 | attrMask |= ATTR_XD; |
1254 | break; |
1255 | } |
1256 | |
1257 | if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) |
1258 | attrMask |= ATTR_VEXL; |
1259 | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
1260 | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
1261 | case VEX_PREFIX_66: |
1262 | attrMask |= ATTR_OPSIZE; |
1263 | if (insn->hasAdSize) |
1264 | attrMask |= ATTR_ADSIZE; |
1265 | break; |
1266 | case VEX_PREFIX_F3: |
1267 | attrMask |= ATTR_XS; |
1268 | break; |
1269 | case VEX_PREFIX_F2: |
1270 | attrMask |= ATTR_XD; |
1271 | break; |
1272 | } |
1273 | |
1274 | if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) |
1275 | attrMask |= ATTR_VEXL; |
1276 | } else if (insn->vectorExtensionType == TYPE_XOP) { |
1277 | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
1278 | case VEX_PREFIX_66: |
1279 | attrMask |= ATTR_OPSIZE; |
1280 | break; |
1281 | case VEX_PREFIX_F3: |
1282 | attrMask |= ATTR_XS; |
1283 | break; |
1284 | case VEX_PREFIX_F2: |
1285 | attrMask |= ATTR_XD; |
1286 | break; |
1287 | } |
1288 | |
1289 | if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) |
1290 | attrMask |= ATTR_VEXL; |
1291 | } else { |
1292 | return -1; |
1293 | } |
1294 | } else if (!insn->mandatoryPrefix) { |
1295 | // If we don't have mandatory prefix we should use legacy prefixes here |
1296 | if (insn->hasOpSize && (insn->mode != MODE_16BIT)) |
1297 | attrMask |= ATTR_OPSIZE; |
1298 | if (insn->hasAdSize) |
1299 | attrMask |= ATTR_ADSIZE; |
1300 | if (insn->opcodeType == ONEBYTE) { |
1301 | if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) |
1302 | // Special support for PAUSE |
1303 | attrMask |= ATTR_XS; |
1304 | } else { |
1305 | if (insn->repeatPrefix == 0xf2) |
1306 | attrMask |= ATTR_XD; |
1307 | else if (insn->repeatPrefix == 0xf3) |
1308 | attrMask |= ATTR_XS; |
1309 | } |
1310 | } else { |
1311 | switch (insn->mandatoryPrefix) { |
1312 | case 0xf2: |
1313 | attrMask |= ATTR_XD; |
1314 | break; |
1315 | case 0xf3: |
1316 | attrMask |= ATTR_XS; |
1317 | break; |
1318 | case 0x66: |
1319 | if (insn->mode != MODE_16BIT) |
1320 | attrMask |= ATTR_OPSIZE; |
1321 | if (insn->hasAdSize) |
1322 | attrMask |= ATTR_ADSIZE; |
1323 | break; |
1324 | case 0x67: |
1325 | attrMask |= ATTR_ADSIZE; |
1326 | break; |
1327 | } |
1328 | } |
1329 | |
1330 | if (insn->rexPrefix & 0x08) { |
1331 | attrMask |= ATTR_REXW; |
1332 | attrMask &= ~ATTR_ADSIZE; |
1333 | } |
1334 | |
1335 | // Absolute jump and pushp/popp need special handling |
1336 | if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE && |
1337 | (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50)) |
1338 | attrMask |= ATTR_REX2; |
1339 | |
1340 | if (insn->mode == MODE_16BIT) { |
1341 | // JCXZ/JECXZ need special handling for 16-bit mode because the meaning |
1342 | // of the AdSize prefix is inverted w.r.t. 32-bit mode. |
1343 | if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) |
1344 | attrMask ^= ATTR_ADSIZE; |
1345 | // If we're in 16-bit mode and this is one of the relative jumps and opsize |
1346 | // prefix isn't present, we need to force the opsize attribute since the |
1347 | // prefix is inverted relative to 32-bit mode. |
1348 | if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && |
1349 | (insn->opcode == 0xE8 || insn->opcode == 0xE9)) |
1350 | attrMask |= ATTR_OPSIZE; |
1351 | |
1352 | if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && |
1353 | insn->opcode >= 0x80 && insn->opcode <= 0x8F) |
1354 | attrMask |= ATTR_OPSIZE; |
1355 | } |
1356 | |
1357 | |
1358 | if (getInstructionIDWithAttrMask(instructionID: &instructionID, insn, attrMask)) |
1359 | return -1; |
1360 | |
1361 | // The following clauses compensate for limitations of the tables. |
1362 | |
1363 | if (insn->mode != MODE_64BIT && |
1364 | insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
1365 | // The tables can't distinquish between cases where the W-bit is used to |
1366 | // select register size and cases where its a required part of the opcode. |
1367 | if ((insn->vectorExtensionType == TYPE_EVEX && |
1368 | wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || |
1369 | (insn->vectorExtensionType == TYPE_VEX_3B && |
1370 | wFromVEX3of3(insn->vectorExtensionPrefix[2])) || |
1371 | (insn->vectorExtensionType == TYPE_XOP && |
1372 | wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { |
1373 | |
1374 | uint16_t instructionIDWithREXW; |
1375 | if (getInstructionIDWithAttrMask(instructionID: &instructionIDWithREXW, insn, |
1376 | attrMask: attrMask | ATTR_REXW)) { |
1377 | insn->instructionID = instructionID; |
1378 | insn->spec = &INSTRUCTIONS_SYM[instructionID]; |
1379 | return 0; |
1380 | } |
1381 | |
1382 | auto SpecName = mii->getName(Opcode: instructionIDWithREXW); |
1383 | // If not a 64-bit instruction. Switch the opcode. |
1384 | if (!is64Bit(name: SpecName.data())) { |
1385 | insn->instructionID = instructionIDWithREXW; |
1386 | insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; |
1387 | return 0; |
1388 | } |
1389 | } |
1390 | } |
1391 | |
1392 | // Absolute moves, umonitor, and movdir64b need special handling. |
1393 | // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are |
1394 | // inverted w.r.t. |
1395 | // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in |
1396 | // any position. |
1397 | if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || |
1398 | (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || |
1399 | (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) || |
1400 | (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) { |
1401 | // Make sure we observed the prefixes in any position. |
1402 | if (insn->hasAdSize) |
1403 | attrMask |= ATTR_ADSIZE; |
1404 | if (insn->hasOpSize) |
1405 | attrMask |= ATTR_OPSIZE; |
1406 | |
1407 | // In 16-bit, invert the attributes. |
1408 | if (insn->mode == MODE_16BIT) { |
1409 | attrMask ^= ATTR_ADSIZE; |
1410 | |
1411 | // The OpSize attribute is only valid with the absolute moves. |
1412 | if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) |
1413 | attrMask ^= ATTR_OPSIZE; |
1414 | } |
1415 | |
1416 | if (getInstructionIDWithAttrMask(instructionID: &instructionID, insn, attrMask)) |
1417 | return -1; |
1418 | |
1419 | insn->instructionID = instructionID; |
1420 | insn->spec = &INSTRUCTIONS_SYM[instructionID]; |
1421 | return 0; |
1422 | } |
1423 | |
1424 | if ((insn->mode == MODE_16BIT || insn->hasOpSize) && |
1425 | !(attrMask & ATTR_OPSIZE)) { |
1426 | // The instruction tables make no distinction between instructions that |
1427 | // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a |
1428 | // particular spot (i.e., many MMX operations). In general we're |
1429 | // conservative, but in the specific case where OpSize is present but not in |
1430 | // the right place we check if there's a 16-bit operation. |
1431 | const struct InstructionSpecifier *spec; |
1432 | uint16_t instructionIDWithOpsize; |
1433 | llvm::StringRef specName, specWithOpSizeName; |
1434 | |
1435 | spec = &INSTRUCTIONS_SYM[instructionID]; |
1436 | |
1437 | if (getInstructionIDWithAttrMask(instructionID: &instructionIDWithOpsize, insn, |
1438 | attrMask: attrMask | ATTR_OPSIZE)) { |
1439 | // ModRM required with OpSize but not present. Give up and return the |
1440 | // version without OpSize set. |
1441 | insn->instructionID = instructionID; |
1442 | insn->spec = spec; |
1443 | return 0; |
1444 | } |
1445 | |
1446 | specName = mii->getName(Opcode: instructionID); |
1447 | specWithOpSizeName = mii->getName(Opcode: instructionIDWithOpsize); |
1448 | |
1449 | if (is16BitEquivalent(orig: specName.data(), equiv: specWithOpSizeName.data()) && |
1450 | (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { |
1451 | insn->instructionID = instructionIDWithOpsize; |
1452 | insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; |
1453 | } else { |
1454 | insn->instructionID = instructionID; |
1455 | insn->spec = spec; |
1456 | } |
1457 | return 0; |
1458 | } |
1459 | |
1460 | if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && |
1461 | insn->rexPrefix & 0x01) { |
1462 | // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode |
1463 | // as XCHG %r8, %eax. |
1464 | const struct InstructionSpecifier *spec; |
1465 | uint16_t instructionIDWithNewOpcode; |
1466 | const struct InstructionSpecifier *specWithNewOpcode; |
1467 | |
1468 | spec = &INSTRUCTIONS_SYM[instructionID]; |
1469 | |
1470 | // Borrow opcode from one of the other XCHGar opcodes |
1471 | insn->opcode = 0x91; |
1472 | |
1473 | if (getInstructionIDWithAttrMask(instructionID: &instructionIDWithNewOpcode, insn, |
1474 | attrMask)) { |
1475 | insn->opcode = 0x90; |
1476 | |
1477 | insn->instructionID = instructionID; |
1478 | insn->spec = spec; |
1479 | return 0; |
1480 | } |
1481 | |
1482 | specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; |
1483 | |
1484 | // Change back |
1485 | insn->opcode = 0x90; |
1486 | |
1487 | insn->instructionID = instructionIDWithNewOpcode; |
1488 | insn->spec = specWithNewOpcode; |
1489 | |
1490 | return 0; |
1491 | } |
1492 | |
1493 | insn->instructionID = instructionID; |
1494 | insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; |
1495 | |
1496 | return 0; |
1497 | } |
1498 | |
1499 | // Read an operand from the opcode field of an instruction and interprets it |
1500 | // appropriately given the operand width. Handles AddRegFrm instructions. |
1501 | // |
1502 | // @param insn - the instruction whose opcode field is to be read. |
1503 | // @param size - The width (in bytes) of the register being specified. |
1504 | // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means |
1505 | // RAX. |
1506 | // @return - 0 on success; nonzero otherwise. |
1507 | static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { |
1508 | LLVM_DEBUG(dbgs() << "readOpcodeRegister()" ); |
1509 | |
1510 | if (size == 0) |
1511 | size = insn->registerSize; |
1512 | |
1513 | auto setOpcodeRegister = [&](unsigned base) { |
1514 | insn->opcodeRegister = |
1515 | (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) | |
1516 | (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) | |
1517 | (insn->opcode & 7))); |
1518 | }; |
1519 | |
1520 | switch (size) { |
1521 | case 1: |
1522 | setOpcodeRegister(MODRM_REG_AL); |
1523 | if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && |
1524 | insn->opcodeRegister < MODRM_REG_AL + 0x8) { |
1525 | insn->opcodeRegister = |
1526 | (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); |
1527 | } |
1528 | |
1529 | break; |
1530 | case 2: |
1531 | setOpcodeRegister(MODRM_REG_AX); |
1532 | break; |
1533 | case 4: |
1534 | setOpcodeRegister(MODRM_REG_EAX); |
1535 | break; |
1536 | case 8: |
1537 | setOpcodeRegister(MODRM_REG_RAX); |
1538 | break; |
1539 | } |
1540 | |
1541 | return 0; |
1542 | } |
1543 | |
1544 | // Consume an immediate operand from an instruction, given the desired operand |
1545 | // size. |
1546 | // |
1547 | // @param insn - The instruction whose operand is to be read. |
1548 | // @param size - The width (in bytes) of the operand. |
1549 | // @return - 0 if the immediate was successfully consumed; nonzero |
1550 | // otherwise. |
1551 | static int readImmediate(struct InternalInstruction *insn, uint8_t size) { |
1552 | uint8_t imm8; |
1553 | uint16_t imm16; |
1554 | uint32_t imm32; |
1555 | uint64_t imm64; |
1556 | |
1557 | LLVM_DEBUG(dbgs() << "readImmediate()" ); |
1558 | |
1559 | assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates" ); |
1560 | |
1561 | insn->immediateSize = size; |
1562 | insn->immediateOffset = insn->readerCursor - insn->startLocation; |
1563 | |
1564 | switch (size) { |
1565 | case 1: |
1566 | if (consume(insn, ptr&: imm8)) |
1567 | return -1; |
1568 | insn->immediates[insn->numImmediatesConsumed] = imm8; |
1569 | break; |
1570 | case 2: |
1571 | if (consume(insn, ptr&: imm16)) |
1572 | return -1; |
1573 | insn->immediates[insn->numImmediatesConsumed] = imm16; |
1574 | break; |
1575 | case 4: |
1576 | if (consume(insn, ptr&: imm32)) |
1577 | return -1; |
1578 | insn->immediates[insn->numImmediatesConsumed] = imm32; |
1579 | break; |
1580 | case 8: |
1581 | if (consume(insn, ptr&: imm64)) |
1582 | return -1; |
1583 | insn->immediates[insn->numImmediatesConsumed] = imm64; |
1584 | break; |
1585 | default: |
1586 | llvm_unreachable("invalid size" ); |
1587 | } |
1588 | |
1589 | insn->numImmediatesConsumed++; |
1590 | |
1591 | return 0; |
1592 | } |
1593 | |
1594 | // Consume vvvv from an instruction if it has a VEX prefix. |
1595 | static int readVVVV(struct InternalInstruction *insn) { |
1596 | LLVM_DEBUG(dbgs() << "readVVVV()" ); |
1597 | |
1598 | int vvvv; |
1599 | if (insn->vectorExtensionType == TYPE_EVEX) |
1600 | vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | |
1601 | vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); |
1602 | else if (insn->vectorExtensionType == TYPE_VEX_3B) |
1603 | vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); |
1604 | else if (insn->vectorExtensionType == TYPE_VEX_2B) |
1605 | vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); |
1606 | else if (insn->vectorExtensionType == TYPE_XOP) |
1607 | vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); |
1608 | else |
1609 | return -1; |
1610 | |
1611 | if (insn->mode != MODE_64BIT) |
1612 | vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. |
1613 | |
1614 | insn->vvvv = static_cast<Reg>(vvvv); |
1615 | return 0; |
1616 | } |
1617 | |
1618 | // Read an mask register from the opcode field of an instruction. |
1619 | // |
1620 | // @param insn - The instruction whose opcode field is to be read. |
1621 | // @return - 0 on success; nonzero otherwise. |
1622 | static int readMaskRegister(struct InternalInstruction *insn) { |
1623 | LLVM_DEBUG(dbgs() << "readMaskRegister()" ); |
1624 | |
1625 | if (insn->vectorExtensionType != TYPE_EVEX) |
1626 | return -1; |
1627 | |
1628 | insn->writemask = |
1629 | static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); |
1630 | return 0; |
1631 | } |
1632 | |
1633 | // Consults the specifier for an instruction and consumes all |
1634 | // operands for that instruction, interpreting them as it goes. |
1635 | static int readOperands(struct InternalInstruction *insn) { |
1636 | int hasVVVV, needVVVV; |
1637 | int sawRegImm = 0; |
1638 | |
1639 | LLVM_DEBUG(dbgs() << "readOperands()" ); |
1640 | |
1641 | // If non-zero vvvv specified, make sure one of the operands uses it. |
1642 | hasVVVV = !readVVVV(insn); |
1643 | needVVVV = hasVVVV && (insn->vvvv != 0); |
1644 | |
1645 | for (const auto &Op : x86OperandSets[insn->spec->operands]) { |
1646 | switch (Op.encoding) { |
1647 | case ENCODING_NONE: |
1648 | case ENCODING_SI: |
1649 | case ENCODING_DI: |
1650 | break; |
1651 | CASE_ENCODING_VSIB: |
1652 | // VSIB can use the V2 bit so check only the other bits. |
1653 | if (needVVVV) |
1654 | needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); |
1655 | if (readModRM(insn)) |
1656 | return -1; |
1657 | |
1658 | // Reject if SIB wasn't used. |
1659 | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) |
1660 | return -1; |
1661 | |
1662 | // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. |
1663 | if (insn->sibIndex == SIB_INDEX_NONE) |
1664 | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); |
1665 | |
1666 | // If EVEX.v2 is set this is one of the 16-31 registers. |
1667 | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && |
1668 | v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1669 | insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); |
1670 | |
1671 | // Adjust the index register to the correct size. |
1672 | switch ((OperandType)Op.type) { |
1673 | default: |
1674 | debug("Unhandled VSIB index type" ); |
1675 | return -1; |
1676 | case TYPE_MVSIBX: |
1677 | insn->sibIndex = |
1678 | (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); |
1679 | break; |
1680 | case TYPE_MVSIBY: |
1681 | insn->sibIndex = |
1682 | (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); |
1683 | break; |
1684 | case TYPE_MVSIBZ: |
1685 | insn->sibIndex = |
1686 | (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); |
1687 | break; |
1688 | } |
1689 | |
1690 | // Apply the AVX512 compressed displacement scaling factor. |
1691 | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
1692 | insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); |
1693 | break; |
1694 | case ENCODING_SIB: |
1695 | // Reject if SIB wasn't used. |
1696 | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) |
1697 | return -1; |
1698 | if (readModRM(insn)) |
1699 | return -1; |
1700 | if (fixupReg(insn, op: &Op)) |
1701 | return -1; |
1702 | break; |
1703 | case ENCODING_REG: |
1704 | CASE_ENCODING_RM: |
1705 | if (readModRM(insn)) |
1706 | return -1; |
1707 | if (fixupReg(insn, op: &Op)) |
1708 | return -1; |
1709 | // Apply the AVX512 compressed displacement scaling factor. |
1710 | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
1711 | insn->displacement *= 1 << (Op.encoding - ENCODING_RM); |
1712 | break; |
1713 | case ENCODING_IB: |
1714 | if (sawRegImm) { |
1715 | // Saw a register immediate so don't read again and instead split the |
1716 | // previous immediate. FIXME: This is a hack. |
1717 | insn->immediates[insn->numImmediatesConsumed] = |
1718 | insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; |
1719 | ++insn->numImmediatesConsumed; |
1720 | break; |
1721 | } |
1722 | if (readImmediate(insn, size: 1)) |
1723 | return -1; |
1724 | if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) |
1725 | sawRegImm = 1; |
1726 | break; |
1727 | case ENCODING_IW: |
1728 | if (readImmediate(insn, size: 2)) |
1729 | return -1; |
1730 | break; |
1731 | case ENCODING_ID: |
1732 | if (readImmediate(insn, size: 4)) |
1733 | return -1; |
1734 | break; |
1735 | case ENCODING_IO: |
1736 | if (readImmediate(insn, size: 8)) |
1737 | return -1; |
1738 | break; |
1739 | case ENCODING_Iv: |
1740 | if (readImmediate(insn, size: insn->immediateSize)) |
1741 | return -1; |
1742 | break; |
1743 | case ENCODING_Ia: |
1744 | if (readImmediate(insn, size: insn->addressSize)) |
1745 | return -1; |
1746 | break; |
1747 | case ENCODING_IRC: |
1748 | insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | |
1749 | lFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
1750 | break; |
1751 | case ENCODING_RB: |
1752 | if (readOpcodeRegister(insn, size: 1)) |
1753 | return -1; |
1754 | break; |
1755 | case ENCODING_RW: |
1756 | if (readOpcodeRegister(insn, size: 2)) |
1757 | return -1; |
1758 | break; |
1759 | case ENCODING_RD: |
1760 | if (readOpcodeRegister(insn, size: 4)) |
1761 | return -1; |
1762 | break; |
1763 | case ENCODING_RO: |
1764 | if (readOpcodeRegister(insn, size: 8)) |
1765 | return -1; |
1766 | break; |
1767 | case ENCODING_Rv: |
1768 | if (readOpcodeRegister(insn, size: 0)) |
1769 | return -1; |
1770 | break; |
1771 | case ENCODING_CF: |
1772 | insn->immediates[1] = oszcFromEVEX3of4(insn->vectorExtensionPrefix[2]); |
1773 | needVVVV = false; // oszc shares the same bits with VVVV |
1774 | break; |
1775 | case ENCODING_CC: |
1776 | if (isCCMPOrCTEST(insn)) |
1777 | insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
1778 | else |
1779 | insn->immediates[1] = insn->opcode & 0xf; |
1780 | break; |
1781 | case ENCODING_FP: |
1782 | break; |
1783 | case ENCODING_VVVV: |
1784 | needVVVV = 0; // Mark that we have found a VVVV operand. |
1785 | if (!hasVVVV) |
1786 | return -1; |
1787 | if (insn->mode != MODE_64BIT) |
1788 | insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); |
1789 | if (fixupReg(insn, op: &Op)) |
1790 | return -1; |
1791 | break; |
1792 | case ENCODING_WRITEMASK: |
1793 | if (readMaskRegister(insn)) |
1794 | return -1; |
1795 | break; |
1796 | case ENCODING_DUP: |
1797 | break; |
1798 | default: |
1799 | LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding." ); |
1800 | return -1; |
1801 | } |
1802 | } |
1803 | |
1804 | // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail |
1805 | if (needVVVV) |
1806 | return -1; |
1807 | |
1808 | return 0; |
1809 | } |
1810 | |
1811 | namespace llvm { |
1812 | |
1813 | // Fill-ins to make the compiler happy. These constants are never actually |
1814 | // assigned; they are just filler to make an automatically-generated switch |
1815 | // statement work. |
1816 | namespace X86 { |
1817 | enum { |
1818 | BX_SI = 500, |
1819 | BX_DI = 501, |
1820 | BP_SI = 502, |
1821 | BP_DI = 503, |
1822 | sib = 504, |
1823 | sib64 = 505 |
1824 | }; |
1825 | } // namespace X86 |
1826 | |
1827 | } // namespace llvm |
1828 | |
1829 | static bool translateInstruction(MCInst &target, |
1830 | InternalInstruction &source, |
1831 | const MCDisassembler *Dis); |
1832 | |
1833 | namespace { |
1834 | |
1835 | /// Generic disassembler for all X86 platforms. All each platform class should |
1836 | /// have to do is subclass the constructor, and provide a different |
1837 | /// disassemblerMode value. |
1838 | class X86GenericDisassembler : public MCDisassembler { |
1839 | std::unique_ptr<const MCInstrInfo> MII; |
1840 | public: |
1841 | X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, |
1842 | std::unique_ptr<const MCInstrInfo> MII); |
1843 | public: |
1844 | DecodeStatus getInstruction(MCInst &instr, uint64_t &size, |
1845 | ArrayRef<uint8_t> Bytes, uint64_t Address, |
1846 | raw_ostream &cStream) const override; |
1847 | |
1848 | private: |
1849 | DisassemblerMode fMode; |
1850 | }; |
1851 | |
1852 | } // namespace |
1853 | |
1854 | X86GenericDisassembler::X86GenericDisassembler( |
1855 | const MCSubtargetInfo &STI, |
1856 | MCContext &Ctx, |
1857 | std::unique_ptr<const MCInstrInfo> MII) |
1858 | : MCDisassembler(STI, Ctx), MII(std::move(MII)) { |
1859 | const FeatureBitset &FB = STI.getFeatureBits(); |
1860 | if (FB[X86::Is16Bit]) { |
1861 | fMode = MODE_16BIT; |
1862 | return; |
1863 | } else if (FB[X86::Is32Bit]) { |
1864 | fMode = MODE_32BIT; |
1865 | return; |
1866 | } else if (FB[X86::Is64Bit]) { |
1867 | fMode = MODE_64BIT; |
1868 | return; |
1869 | } |
1870 | |
1871 | llvm_unreachable("Invalid CPU mode" ); |
1872 | } |
1873 | |
1874 | MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( |
1875 | MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, |
1876 | raw_ostream &CStream) const { |
1877 | CommentStream = &CStream; |
1878 | |
1879 | InternalInstruction Insn; |
1880 | memset(s: &Insn, c: 0, n: sizeof(InternalInstruction)); |
1881 | Insn.bytes = Bytes; |
1882 | Insn.startLocation = Address; |
1883 | Insn.readerCursor = Address; |
1884 | Insn.mode = fMode; |
1885 | |
1886 | if (Bytes.empty() || readPrefixes(insn: &Insn) || readOpcode(insn: &Insn) || |
1887 | getInstructionID(insn: &Insn, mii: MII.get()) || Insn.instructionID == 0 || |
1888 | readOperands(insn: &Insn)) { |
1889 | Size = Insn.readerCursor - Address; |
1890 | return Fail; |
1891 | } |
1892 | |
1893 | Insn.operands = x86OperandSets[Insn.spec->operands]; |
1894 | Insn.length = Insn.readerCursor - Insn.startLocation; |
1895 | Size = Insn.length; |
1896 | if (Size > 15) |
1897 | LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit" ); |
1898 | |
1899 | bool Ret = translateInstruction(target&: Instr, source&: Insn, Dis: this); |
1900 | if (!Ret) { |
1901 | unsigned Flags = X86::IP_NO_PREFIX; |
1902 | if (Insn.hasAdSize) |
1903 | Flags |= X86::IP_HAS_AD_SIZE; |
1904 | if (!Insn.mandatoryPrefix) { |
1905 | if (Insn.hasOpSize) |
1906 | Flags |= X86::IP_HAS_OP_SIZE; |
1907 | if (Insn.repeatPrefix == 0xf2) |
1908 | Flags |= X86::IP_HAS_REPEAT_NE; |
1909 | else if (Insn.repeatPrefix == 0xf3 && |
1910 | // It should not be 'pause' f3 90 |
1911 | Insn.opcode != 0x90) |
1912 | Flags |= X86::IP_HAS_REPEAT; |
1913 | if (Insn.hasLockPrefix) |
1914 | Flags |= X86::IP_HAS_LOCK; |
1915 | } |
1916 | Instr.setFlags(Flags); |
1917 | } |
1918 | return (!Ret) ? Success : Fail; |
1919 | } |
1920 | |
1921 | // |
1922 | // Private code that translates from struct InternalInstructions to MCInsts. |
1923 | // |
1924 | |
1925 | /// translateRegister - Translates an internal register to the appropriate LLVM |
1926 | /// register, and appends it as an operand to an MCInst. |
1927 | /// |
1928 | /// @param mcInst - The MCInst to append to. |
1929 | /// @param reg - The Reg to append. |
1930 | static void translateRegister(MCInst &mcInst, Reg reg) { |
1931 | #define ENTRY(x) X86::x, |
1932 | static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; |
1933 | #undef ENTRY |
1934 | |
1935 | MCPhysReg llvmRegnum = llvmRegnums[reg]; |
1936 | mcInst.addOperand(Op: MCOperand::createReg(Reg: llvmRegnum)); |
1937 | } |
1938 | |
1939 | static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { |
1940 | 0, // SEG_OVERRIDE_NONE |
1941 | X86::CS, |
1942 | X86::SS, |
1943 | X86::DS, |
1944 | X86::ES, |
1945 | X86::FS, |
1946 | X86::GS |
1947 | }; |
1948 | |
1949 | /// translateSrcIndex - Appends a source index operand to an MCInst. |
1950 | /// |
1951 | /// @param mcInst - The MCInst to append to. |
1952 | /// @param insn - The internal instruction. |
1953 | static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { |
1954 | unsigned baseRegNo; |
1955 | |
1956 | if (insn.mode == MODE_64BIT) |
1957 | baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; |
1958 | else if (insn.mode == MODE_32BIT) |
1959 | baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; |
1960 | else { |
1961 | assert(insn.mode == MODE_16BIT); |
1962 | baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; |
1963 | } |
1964 | MCOperand baseReg = MCOperand::createReg(Reg: baseRegNo); |
1965 | mcInst.addOperand(Op: baseReg); |
1966 | |
1967 | MCOperand segmentReg; |
1968 | segmentReg = MCOperand::createReg(Reg: segmentRegnums[insn.segmentOverride]); |
1969 | mcInst.addOperand(Op: segmentReg); |
1970 | return false; |
1971 | } |
1972 | |
1973 | /// translateDstIndex - Appends a destination index operand to an MCInst. |
1974 | /// |
1975 | /// @param mcInst - The MCInst to append to. |
1976 | /// @param insn - The internal instruction. |
1977 | |
1978 | static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { |
1979 | unsigned baseRegNo; |
1980 | |
1981 | if (insn.mode == MODE_64BIT) |
1982 | baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; |
1983 | else if (insn.mode == MODE_32BIT) |
1984 | baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; |
1985 | else { |
1986 | assert(insn.mode == MODE_16BIT); |
1987 | baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; |
1988 | } |
1989 | MCOperand baseReg = MCOperand::createReg(Reg: baseRegNo); |
1990 | mcInst.addOperand(Op: baseReg); |
1991 | return false; |
1992 | } |
1993 | |
1994 | /// translateImmediate - Appends an immediate operand to an MCInst. |
1995 | /// |
1996 | /// @param mcInst - The MCInst to append to. |
1997 | /// @param immediate - The immediate value to append. |
1998 | /// @param operand - The operand, as stored in the descriptor table. |
1999 | /// @param insn - The internal instruction. |
2000 | static void translateImmediate(MCInst &mcInst, uint64_t immediate, |
2001 | const OperandSpecifier &operand, |
2002 | InternalInstruction &insn, |
2003 | const MCDisassembler *Dis) { |
2004 | // Sign-extend the immediate if necessary. |
2005 | |
2006 | OperandType type = (OperandType)operand.type; |
2007 | |
2008 | bool isBranch = false; |
2009 | uint64_t pcrel = 0; |
2010 | if (type == TYPE_REL) { |
2011 | isBranch = true; |
2012 | pcrel = insn.startLocation + insn.length; |
2013 | switch (operand.encoding) { |
2014 | default: |
2015 | break; |
2016 | case ENCODING_Iv: |
2017 | switch (insn.displacementSize) { |
2018 | default: |
2019 | break; |
2020 | case 1: |
2021 | if(immediate & 0x80) |
2022 | immediate |= ~(0xffull); |
2023 | break; |
2024 | case 2: |
2025 | if(immediate & 0x8000) |
2026 | immediate |= ~(0xffffull); |
2027 | break; |
2028 | case 4: |
2029 | if(immediate & 0x80000000) |
2030 | immediate |= ~(0xffffffffull); |
2031 | break; |
2032 | case 8: |
2033 | break; |
2034 | } |
2035 | break; |
2036 | case ENCODING_IB: |
2037 | if(immediate & 0x80) |
2038 | immediate |= ~(0xffull); |
2039 | break; |
2040 | case ENCODING_IW: |
2041 | if(immediate & 0x8000) |
2042 | immediate |= ~(0xffffull); |
2043 | break; |
2044 | case ENCODING_ID: |
2045 | if(immediate & 0x80000000) |
2046 | immediate |= ~(0xffffffffull); |
2047 | break; |
2048 | } |
2049 | } |
2050 | // By default sign-extend all X86 immediates based on their encoding. |
2051 | else if (type == TYPE_IMM) { |
2052 | switch (operand.encoding) { |
2053 | default: |
2054 | break; |
2055 | case ENCODING_IB: |
2056 | if(immediate & 0x80) |
2057 | immediate |= ~(0xffull); |
2058 | break; |
2059 | case ENCODING_IW: |
2060 | if(immediate & 0x8000) |
2061 | immediate |= ~(0xffffull); |
2062 | break; |
2063 | case ENCODING_ID: |
2064 | if(immediate & 0x80000000) |
2065 | immediate |= ~(0xffffffffull); |
2066 | break; |
2067 | case ENCODING_IO: |
2068 | break; |
2069 | } |
2070 | } |
2071 | |
2072 | switch (type) { |
2073 | case TYPE_XMM: |
2074 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::XMM0 + (immediate >> 4))); |
2075 | return; |
2076 | case TYPE_YMM: |
2077 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::YMM0 + (immediate >> 4))); |
2078 | return; |
2079 | case TYPE_ZMM: |
2080 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::ZMM0 + (immediate >> 4))); |
2081 | return; |
2082 | default: |
2083 | // operand is 64 bits wide. Do nothing. |
2084 | break; |
2085 | } |
2086 | |
2087 | if (!Dis->tryAddingSymbolicOperand( |
2088 | Inst&: mcInst, Value: immediate + pcrel, Address: insn.startLocation, IsBranch: isBranch, |
2089 | Offset: insn.immediateOffset, OpSize: insn.immediateSize, InstSize: insn.length)) |
2090 | mcInst.addOperand(Op: MCOperand::createImm(Val: immediate)); |
2091 | |
2092 | if (type == TYPE_MOFFS) { |
2093 | MCOperand segmentReg; |
2094 | segmentReg = MCOperand::createReg(Reg: segmentRegnums[insn.segmentOverride]); |
2095 | mcInst.addOperand(Op: segmentReg); |
2096 | } |
2097 | } |
2098 | |
2099 | /// translateRMRegister - Translates a register stored in the R/M field of the |
2100 | /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. |
2101 | /// @param mcInst - The MCInst to append to. |
2102 | /// @param insn - The internal instruction to extract the R/M field |
2103 | /// from. |
2104 | /// @return - 0 on success; -1 otherwise |
2105 | static bool translateRMRegister(MCInst &mcInst, |
2106 | InternalInstruction &insn) { |
2107 | if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { |
2108 | debug("A R/M register operand may not have a SIB byte" ); |
2109 | return true; |
2110 | } |
2111 | |
2112 | switch (insn.eaBase) { |
2113 | default: |
2114 | debug("Unexpected EA base register" ); |
2115 | return true; |
2116 | case EA_BASE_NONE: |
2117 | debug("EA_BASE_NONE for ModR/M base" ); |
2118 | return true; |
2119 | #define ENTRY(x) case EA_BASE_##x: |
2120 | ALL_EA_BASES |
2121 | #undef ENTRY |
2122 | debug("A R/M register operand may not have a base; " |
2123 | "the operand must be a register." ); |
2124 | return true; |
2125 | #define ENTRY(x) \ |
2126 | case EA_REG_##x: \ |
2127 | mcInst.addOperand(MCOperand::createReg(X86::x)); break; |
2128 | ALL_REGS |
2129 | #undef ENTRY |
2130 | } |
2131 | |
2132 | return false; |
2133 | } |
2134 | |
2135 | /// translateRMMemory - Translates a memory operand stored in the Mod and R/M |
2136 | /// fields of an internal instruction (and possibly its SIB byte) to a memory |
2137 | /// operand in LLVM's format, and appends it to an MCInst. |
2138 | /// |
2139 | /// @param mcInst - The MCInst to append to. |
2140 | /// @param insn - The instruction to extract Mod, R/M, and SIB fields |
2141 | /// from. |
2142 | /// @param ForceSIB - The instruction must use SIB. |
2143 | /// @return - 0 on success; nonzero otherwise |
2144 | static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, |
2145 | const MCDisassembler *Dis, |
2146 | bool ForceSIB = false) { |
2147 | // Addresses in an MCInst are represented as five operands: |
2148 | // 1. basereg (register) The R/M base, or (if there is a SIB) the |
2149 | // SIB base |
2150 | // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified |
2151 | // scale amount |
2152 | // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) |
2153 | // the index (which is multiplied by the |
2154 | // scale amount) |
2155 | // 4. displacement (immediate) 0, or the displacement if there is one |
2156 | // 5. segmentreg (register) x86_registerNONE for now, but could be set |
2157 | // if we have segment overrides |
2158 | |
2159 | MCOperand baseReg; |
2160 | MCOperand scaleAmount; |
2161 | MCOperand indexReg; |
2162 | MCOperand displacement; |
2163 | MCOperand segmentReg; |
2164 | uint64_t pcrel = 0; |
2165 | |
2166 | if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { |
2167 | if (insn.sibBase != SIB_BASE_NONE) { |
2168 | switch (insn.sibBase) { |
2169 | default: |
2170 | debug("Unexpected sibBase" ); |
2171 | return true; |
2172 | #define ENTRY(x) \ |
2173 | case SIB_BASE_##x: \ |
2174 | baseReg = MCOperand::createReg(X86::x); break; |
2175 | ALL_SIB_BASES |
2176 | #undef ENTRY |
2177 | } |
2178 | } else { |
2179 | baseReg = MCOperand::createReg(Reg: X86::NoRegister); |
2180 | } |
2181 | |
2182 | if (insn.sibIndex != SIB_INDEX_NONE) { |
2183 | switch (insn.sibIndex) { |
2184 | default: |
2185 | debug("Unexpected sibIndex" ); |
2186 | return true; |
2187 | #define ENTRY(x) \ |
2188 | case SIB_INDEX_##x: \ |
2189 | indexReg = MCOperand::createReg(X86::x); break; |
2190 | EA_BASES_32BIT |
2191 | EA_BASES_64BIT |
2192 | REGS_XMM |
2193 | REGS_YMM |
2194 | REGS_ZMM |
2195 | #undef ENTRY |
2196 | } |
2197 | } else { |
2198 | // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, |
2199 | // but no index is used and modrm alone should have been enough. |
2200 | // -No base register in 32-bit mode. In 64-bit mode this is used to |
2201 | // avoid rip-relative addressing. |
2202 | // -Any base register used other than ESP/RSP/R12D/R12. Using these as a |
2203 | // base always requires a SIB byte. |
2204 | // -A scale other than 1 is used. |
2205 | if (!ForceSIB && |
2206 | (insn.sibScale != 1 || |
2207 | (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || |
2208 | (insn.sibBase != SIB_BASE_NONE && |
2209 | insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && |
2210 | insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { |
2211 | indexReg = MCOperand::createReg(Reg: insn.addressSize == 4 ? X86::EIZ : |
2212 | X86::RIZ); |
2213 | } else |
2214 | indexReg = MCOperand::createReg(Reg: X86::NoRegister); |
2215 | } |
2216 | |
2217 | scaleAmount = MCOperand::createImm(Val: insn.sibScale); |
2218 | } else { |
2219 | switch (insn.eaBase) { |
2220 | case EA_BASE_NONE: |
2221 | if (insn.eaDisplacement == EA_DISP_NONE) { |
2222 | debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base" ); |
2223 | return true; |
2224 | } |
2225 | if (insn.mode == MODE_64BIT){ |
2226 | pcrel = insn.startLocation + insn.length; |
2227 | Dis->tryAddingPcLoadReferenceComment(Value: insn.displacement + pcrel, |
2228 | Address: insn.startLocation + |
2229 | insn.displacementOffset); |
2230 | // Section 2.2.1.6 |
2231 | baseReg = MCOperand::createReg(Reg: insn.addressSize == 4 ? X86::EIP : |
2232 | X86::RIP); |
2233 | } |
2234 | else |
2235 | baseReg = MCOperand::createReg(Reg: X86::NoRegister); |
2236 | |
2237 | indexReg = MCOperand::createReg(Reg: X86::NoRegister); |
2238 | break; |
2239 | case EA_BASE_BX_SI: |
2240 | baseReg = MCOperand::createReg(Reg: X86::BX); |
2241 | indexReg = MCOperand::createReg(Reg: X86::SI); |
2242 | break; |
2243 | case EA_BASE_BX_DI: |
2244 | baseReg = MCOperand::createReg(Reg: X86::BX); |
2245 | indexReg = MCOperand::createReg(Reg: X86::DI); |
2246 | break; |
2247 | case EA_BASE_BP_SI: |
2248 | baseReg = MCOperand::createReg(Reg: X86::BP); |
2249 | indexReg = MCOperand::createReg(Reg: X86::SI); |
2250 | break; |
2251 | case EA_BASE_BP_DI: |
2252 | baseReg = MCOperand::createReg(Reg: X86::BP); |
2253 | indexReg = MCOperand::createReg(Reg: X86::DI); |
2254 | break; |
2255 | default: |
2256 | indexReg = MCOperand::createReg(Reg: X86::NoRegister); |
2257 | switch (insn.eaBase) { |
2258 | default: |
2259 | debug("Unexpected eaBase" ); |
2260 | return true; |
2261 | // Here, we will use the fill-ins defined above. However, |
2262 | // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and |
2263 | // sib and sib64 were handled in the top-level if, so they're only |
2264 | // placeholders to keep the compiler happy. |
2265 | #define ENTRY(x) \ |
2266 | case EA_BASE_##x: \ |
2267 | baseReg = MCOperand::createReg(X86::x); break; |
2268 | ALL_EA_BASES |
2269 | #undef ENTRY |
2270 | #define ENTRY(x) case EA_REG_##x: |
2271 | ALL_REGS |
2272 | #undef ENTRY |
2273 | debug("A R/M memory operand may not be a register; " |
2274 | "the base field must be a base." ); |
2275 | return true; |
2276 | } |
2277 | } |
2278 | |
2279 | scaleAmount = MCOperand::createImm(Val: 1); |
2280 | } |
2281 | |
2282 | displacement = MCOperand::createImm(Val: insn.displacement); |
2283 | |
2284 | segmentReg = MCOperand::createReg(Reg: segmentRegnums[insn.segmentOverride]); |
2285 | |
2286 | mcInst.addOperand(Op: baseReg); |
2287 | mcInst.addOperand(Op: scaleAmount); |
2288 | mcInst.addOperand(Op: indexReg); |
2289 | |
2290 | const uint8_t dispSize = |
2291 | (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize; |
2292 | |
2293 | if (!Dis->tryAddingSymbolicOperand( |
2294 | Inst&: mcInst, Value: insn.displacement + pcrel, Address: insn.startLocation, IsBranch: false, |
2295 | Offset: insn.displacementOffset, OpSize: dispSize, InstSize: insn.length)) |
2296 | mcInst.addOperand(Op: displacement); |
2297 | mcInst.addOperand(Op: segmentReg); |
2298 | return false; |
2299 | } |
2300 | |
2301 | /// translateRM - Translates an operand stored in the R/M (and possibly SIB) |
2302 | /// byte of an instruction to LLVM form, and appends it to an MCInst. |
2303 | /// |
2304 | /// @param mcInst - The MCInst to append to. |
2305 | /// @param operand - The operand, as stored in the descriptor table. |
2306 | /// @param insn - The instruction to extract Mod, R/M, and SIB fields |
2307 | /// from. |
2308 | /// @return - 0 on success; nonzero otherwise |
2309 | static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, |
2310 | InternalInstruction &insn, const MCDisassembler *Dis) { |
2311 | switch (operand.type) { |
2312 | default: |
2313 | debug("Unexpected type for a R/M operand" ); |
2314 | return true; |
2315 | case TYPE_R8: |
2316 | case TYPE_R16: |
2317 | case TYPE_R32: |
2318 | case TYPE_R64: |
2319 | case TYPE_Rv: |
2320 | case TYPE_MM64: |
2321 | case TYPE_XMM: |
2322 | case TYPE_YMM: |
2323 | case TYPE_ZMM: |
2324 | case TYPE_TMM: |
2325 | case TYPE_TMM_PAIR: |
2326 | case TYPE_VK_PAIR: |
2327 | case TYPE_VK: |
2328 | case TYPE_DEBUGREG: |
2329 | case TYPE_CONTROLREG: |
2330 | case TYPE_BNDR: |
2331 | return translateRMRegister(mcInst, insn); |
2332 | case TYPE_M: |
2333 | case TYPE_MVSIBX: |
2334 | case TYPE_MVSIBY: |
2335 | case TYPE_MVSIBZ: |
2336 | return translateRMMemory(mcInst, insn, Dis); |
2337 | case TYPE_MSIB: |
2338 | return translateRMMemory(mcInst, insn, Dis, ForceSIB: true); |
2339 | } |
2340 | } |
2341 | |
2342 | /// translateFPRegister - Translates a stack position on the FPU stack to its |
2343 | /// LLVM form, and appends it to an MCInst. |
2344 | /// |
2345 | /// @param mcInst - The MCInst to append to. |
2346 | /// @param stackPos - The stack position to translate. |
2347 | static void translateFPRegister(MCInst &mcInst, |
2348 | uint8_t stackPos) { |
2349 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::ST0 + stackPos)); |
2350 | } |
2351 | |
2352 | /// translateMaskRegister - Translates a 3-bit mask register number to |
2353 | /// LLVM form, and appends it to an MCInst. |
2354 | /// |
2355 | /// @param mcInst - The MCInst to append to. |
2356 | /// @param maskRegNum - Number of mask register from 0 to 7. |
2357 | /// @return - false on success; true otherwise. |
2358 | static bool translateMaskRegister(MCInst &mcInst, |
2359 | uint8_t maskRegNum) { |
2360 | if (maskRegNum >= 8) { |
2361 | debug("Invalid mask register number" ); |
2362 | return true; |
2363 | } |
2364 | |
2365 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::K0 + maskRegNum)); |
2366 | return false; |
2367 | } |
2368 | |
2369 | /// translateOperand - Translates an operand stored in an internal instruction |
2370 | /// to LLVM's format and appends it to an MCInst. |
2371 | /// |
2372 | /// @param mcInst - The MCInst to append to. |
2373 | /// @param operand - The operand, as stored in the descriptor table. |
2374 | /// @param insn - The internal instruction. |
2375 | /// @return - false on success; true otherwise. |
2376 | static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, |
2377 | InternalInstruction &insn, |
2378 | const MCDisassembler *Dis) { |
2379 | switch (operand.encoding) { |
2380 | default: |
2381 | debug("Unhandled operand encoding during translation" ); |
2382 | return true; |
2383 | case ENCODING_REG: |
2384 | translateRegister(mcInst, reg: insn.reg); |
2385 | return false; |
2386 | case ENCODING_WRITEMASK: |
2387 | return translateMaskRegister(mcInst, maskRegNum: insn.writemask); |
2388 | case ENCODING_SIB: |
2389 | CASE_ENCODING_RM: |
2390 | CASE_ENCODING_VSIB: |
2391 | return translateRM(mcInst, operand, insn, Dis); |
2392 | case ENCODING_IB: |
2393 | case ENCODING_IW: |
2394 | case ENCODING_ID: |
2395 | case ENCODING_IO: |
2396 | case ENCODING_Iv: |
2397 | case ENCODING_Ia: |
2398 | translateImmediate(mcInst, |
2399 | immediate: insn.immediates[insn.numImmediatesTranslated++], |
2400 | operand, |
2401 | insn, |
2402 | Dis); |
2403 | return false; |
2404 | case ENCODING_IRC: |
2405 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.RC)); |
2406 | return false; |
2407 | case ENCODING_SI: |
2408 | return translateSrcIndex(mcInst, insn); |
2409 | case ENCODING_DI: |
2410 | return translateDstIndex(mcInst, insn); |
2411 | case ENCODING_RB: |
2412 | case ENCODING_RW: |
2413 | case ENCODING_RD: |
2414 | case ENCODING_RO: |
2415 | case ENCODING_Rv: |
2416 | translateRegister(mcInst, reg: insn.opcodeRegister); |
2417 | return false; |
2418 | case ENCODING_CF: |
2419 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.immediates[1])); |
2420 | return false; |
2421 | case ENCODING_CC: |
2422 | if (isCCMPOrCTEST(insn: &insn)) |
2423 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.immediates[2])); |
2424 | else |
2425 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.immediates[1])); |
2426 | return false; |
2427 | case ENCODING_FP: |
2428 | translateFPRegister(mcInst, stackPos: insn.modRM & 7); |
2429 | return false; |
2430 | case ENCODING_VVVV: |
2431 | translateRegister(mcInst, reg: insn.vvvv); |
2432 | return false; |
2433 | case ENCODING_DUP: |
2434 | return translateOperand(mcInst, operand: insn.operands[operand.type - TYPE_DUP0], |
2435 | insn, Dis); |
2436 | } |
2437 | } |
2438 | |
2439 | /// translateInstruction - Translates an internal instruction and all its |
2440 | /// operands to an MCInst. |
2441 | /// |
2442 | /// @param mcInst - The MCInst to populate with the instruction's data. |
2443 | /// @param insn - The internal instruction. |
2444 | /// @return - false on success; true otherwise. |
2445 | static bool translateInstruction(MCInst &mcInst, |
2446 | InternalInstruction &insn, |
2447 | const MCDisassembler *Dis) { |
2448 | if (!insn.spec) { |
2449 | debug("Instruction has no specification" ); |
2450 | return true; |
2451 | } |
2452 | |
2453 | mcInst.clear(); |
2454 | mcInst.setOpcode(insn.instructionID); |
2455 | // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 |
2456 | // prefix bytes should be disassembled as xrelease and xacquire then set the |
2457 | // opcode to those instead of the rep and repne opcodes. |
2458 | if (insn.xAcquireRelease) { |
2459 | if(mcInst.getOpcode() == X86::REP_PREFIX) |
2460 | mcInst.setOpcode(X86::XRELEASE_PREFIX); |
2461 | else if(mcInst.getOpcode() == X86::REPNE_PREFIX) |
2462 | mcInst.setOpcode(X86::XACQUIRE_PREFIX); |
2463 | } |
2464 | |
2465 | insn.numImmediatesTranslated = 0; |
2466 | |
2467 | for (const auto &Op : insn.operands) { |
2468 | if (Op.encoding != ENCODING_NONE) { |
2469 | if (translateOperand(mcInst, operand: Op, insn, Dis)) { |
2470 | return true; |
2471 | } |
2472 | } |
2473 | } |
2474 | |
2475 | return false; |
2476 | } |
2477 | |
2478 | static MCDisassembler *createX86Disassembler(const Target &T, |
2479 | const MCSubtargetInfo &STI, |
2480 | MCContext &Ctx) { |
2481 | std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); |
2482 | return new X86GenericDisassembler(STI, Ctx, std::move(MII)); |
2483 | } |
2484 | |
2485 | extern "C" LLVM_C_ABI void LLVMInitializeX86Disassembler() { |
2486 | // Register the disassembler. |
2487 | TargetRegistry::RegisterMCDisassembler(T&: getTheX86_32Target(), |
2488 | Fn: createX86Disassembler); |
2489 | TargetRegistry::RegisterMCDisassembler(T&: getTheX86_64Target(), |
2490 | Fn: createX86Disassembler); |
2491 | } |
2492 | |