| 1 | //===-- X86EncodingOptimization.cpp - X86 Encoding optimization -*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the implementation of the X86 encoding optimization |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "X86EncodingOptimization.h" |
| 14 | #include "MCTargetDesc/X86MCAsmInfo.h" |
| 15 | #include "X86BaseInfo.h" |
| 16 | #include "llvm/MC/MCExpr.h" |
| 17 | #include "llvm/MC/MCInst.h" |
| 18 | #include "llvm/MC/MCInstrDesc.h" |
| 19 | #include "llvm/Support/Casting.h" |
| 20 | |
| 21 | using namespace llvm; |
| 22 | |
| 23 | bool X86::optimizeInstFromVEX3ToVEX2(MCInst &MI, const MCInstrDesc &Desc) { |
| 24 | unsigned OpIdx1, OpIdx2; |
| 25 | unsigned Opcode = MI.getOpcode(); |
| 26 | unsigned NewOpc = 0; |
| 27 | #define FROM_TO(FROM, TO, IDX1, IDX2) \ |
| 28 | case X86::FROM: \ |
| 29 | NewOpc = X86::TO; \ |
| 30 | OpIdx1 = IDX1; \ |
| 31 | OpIdx2 = IDX2; \ |
| 32 | break; |
| 33 | #define TO_REV(FROM) FROM_TO(FROM, FROM##_REV, 0, 1) |
| 34 | switch (Opcode) { |
| 35 | default: { |
| 36 | // If the instruction is a commutable arithmetic instruction we might be |
| 37 | // able to commute the operands to get a 2 byte VEX prefix. |
| 38 | uint64_t TSFlags = Desc.TSFlags; |
| 39 | if (!Desc.isCommutable() || (TSFlags & X86II::EncodingMask) != X86II::VEX || |
| 40 | (TSFlags & X86II::OpMapMask) != X86II::TB || |
| 41 | (TSFlags & X86II::FormMask) != X86II::MRMSrcReg || |
| 42 | (TSFlags & X86II::REX_W) || !(TSFlags & X86II::VEX_4V) || |
| 43 | MI.getNumOperands() != 3) |
| 44 | return false; |
| 45 | // These two are not truly commutable. |
| 46 | if (Opcode == X86::VMOVHLPSrr || Opcode == X86::VUNPCKHPDrr) |
| 47 | return false; |
| 48 | OpIdx1 = 1; |
| 49 | OpIdx2 = 2; |
| 50 | break; |
| 51 | } |
| 52 | case X86::VCMPPDrri: |
| 53 | case X86::VCMPPDYrri: |
| 54 | case X86::VCMPPSrri: |
| 55 | case X86::VCMPPSYrri: |
| 56 | case X86::VCMPSDrri: |
| 57 | case X86::VCMPSSrri: { |
| 58 | switch (MI.getOperand(i: 3).getImm() & 0x7) { |
| 59 | default: |
| 60 | return false; |
| 61 | case 0x00: // EQUAL |
| 62 | case 0x03: // UNORDERED |
| 63 | case 0x04: // NOT EQUAL |
| 64 | case 0x07: // ORDERED |
| 65 | OpIdx1 = 1; |
| 66 | OpIdx2 = 2; |
| 67 | break; |
| 68 | } |
| 69 | break; |
| 70 | } |
| 71 | // Commute operands to get a smaller encoding by using VEX.R instead of |
| 72 | // VEX.B if one of the registers is extended, but other isn't. |
| 73 | FROM_TO(VMOVZPQILo2PQIrr, VMOVPQI2QIrr, 0, 1) |
| 74 | TO_REV(VMOVAPDrr) |
| 75 | TO_REV(VMOVAPDYrr) |
| 76 | TO_REV(VMOVAPSrr) |
| 77 | TO_REV(VMOVAPSYrr) |
| 78 | TO_REV(VMOVDQArr) |
| 79 | TO_REV(VMOVDQAYrr) |
| 80 | TO_REV(VMOVDQUrr) |
| 81 | TO_REV(VMOVDQUYrr) |
| 82 | TO_REV(VMOVUPDrr) |
| 83 | TO_REV(VMOVUPDYrr) |
| 84 | TO_REV(VMOVUPSrr) |
| 85 | TO_REV(VMOVUPSYrr) |
| 86 | #undef TO_REV |
| 87 | #define TO_REV(FROM) FROM_TO(FROM, FROM##_REV, 0, 2) |
| 88 | TO_REV(VMOVSDrr) |
| 89 | TO_REV(VMOVSSrr) |
| 90 | #undef TO_REV |
| 91 | #undef FROM_TO |
| 92 | } |
| 93 | if (X86II::isX86_64ExtendedReg(Reg: MI.getOperand(i: OpIdx1).getReg()) || |
| 94 | !X86II::isX86_64ExtendedReg(Reg: MI.getOperand(i: OpIdx2).getReg())) |
| 95 | return false; |
| 96 | if (NewOpc) |
| 97 | MI.setOpcode(NewOpc); |
| 98 | else |
| 99 | std::swap(a&: MI.getOperand(i: OpIdx1), b&: MI.getOperand(i: OpIdx2)); |
| 100 | return true; |
| 101 | } |
| 102 | |
| 103 | // NOTE: We may write this as an InstAlias if it's only used by AsmParser. See |
| 104 | // validateTargetOperandClass. |
| 105 | bool X86::optimizeShiftRotateWithImmediateOne(MCInst &MI) { |
| 106 | unsigned NewOpc; |
| 107 | #define TO_IMM1(FROM) \ |
| 108 | case X86::FROM##i: \ |
| 109 | NewOpc = X86::FROM##1; \ |
| 110 | break; \ |
| 111 | case X86::FROM##i_EVEX: \ |
| 112 | NewOpc = X86::FROM##1_EVEX; \ |
| 113 | break; \ |
| 114 | case X86::FROM##i_ND: \ |
| 115 | NewOpc = X86::FROM##1_ND; \ |
| 116 | break; |
| 117 | switch (MI.getOpcode()) { |
| 118 | default: |
| 119 | return false; |
| 120 | TO_IMM1(RCR8r) |
| 121 | TO_IMM1(RCR16r) |
| 122 | TO_IMM1(RCR32r) |
| 123 | TO_IMM1(RCR64r) |
| 124 | TO_IMM1(RCL8r) |
| 125 | TO_IMM1(RCL16r) |
| 126 | TO_IMM1(RCL32r) |
| 127 | TO_IMM1(RCL64r) |
| 128 | TO_IMM1(RCR8m) |
| 129 | TO_IMM1(RCR16m) |
| 130 | TO_IMM1(RCR32m) |
| 131 | TO_IMM1(RCR64m) |
| 132 | TO_IMM1(RCL8m) |
| 133 | TO_IMM1(RCL16m) |
| 134 | TO_IMM1(RCL32m) |
| 135 | TO_IMM1(RCL64m) |
| 136 | #undef TO_IMM1 |
| 137 | #define TO_IMM1(FROM) \ |
| 138 | case X86::FROM##i: \ |
| 139 | NewOpc = X86::FROM##1; \ |
| 140 | break; \ |
| 141 | case X86::FROM##i_EVEX: \ |
| 142 | NewOpc = X86::FROM##1_EVEX; \ |
| 143 | break; \ |
| 144 | case X86::FROM##i_NF: \ |
| 145 | NewOpc = X86::FROM##1_NF; \ |
| 146 | break; \ |
| 147 | case X86::FROM##i_ND: \ |
| 148 | NewOpc = X86::FROM##1_ND; \ |
| 149 | break; \ |
| 150 | case X86::FROM##i_NF_ND: \ |
| 151 | NewOpc = X86::FROM##1_NF_ND; \ |
| 152 | break; |
| 153 | TO_IMM1(ROR8r) |
| 154 | TO_IMM1(ROR16r) |
| 155 | TO_IMM1(ROR32r) |
| 156 | TO_IMM1(ROR64r) |
| 157 | TO_IMM1(ROL8r) |
| 158 | TO_IMM1(ROL16r) |
| 159 | TO_IMM1(ROL32r) |
| 160 | TO_IMM1(ROL64r) |
| 161 | TO_IMM1(SAR8r) |
| 162 | TO_IMM1(SAR16r) |
| 163 | TO_IMM1(SAR32r) |
| 164 | TO_IMM1(SAR64r) |
| 165 | TO_IMM1(SHR8r) |
| 166 | TO_IMM1(SHR16r) |
| 167 | TO_IMM1(SHR32r) |
| 168 | TO_IMM1(SHR64r) |
| 169 | TO_IMM1(SHL8r) |
| 170 | TO_IMM1(SHL16r) |
| 171 | TO_IMM1(SHL32r) |
| 172 | TO_IMM1(SHL64r) |
| 173 | TO_IMM1(ROR8m) |
| 174 | TO_IMM1(ROR16m) |
| 175 | TO_IMM1(ROR32m) |
| 176 | TO_IMM1(ROR64m) |
| 177 | TO_IMM1(ROL8m) |
| 178 | TO_IMM1(ROL16m) |
| 179 | TO_IMM1(ROL32m) |
| 180 | TO_IMM1(ROL64m) |
| 181 | TO_IMM1(SAR8m) |
| 182 | TO_IMM1(SAR16m) |
| 183 | TO_IMM1(SAR32m) |
| 184 | TO_IMM1(SAR64m) |
| 185 | TO_IMM1(SHR8m) |
| 186 | TO_IMM1(SHR16m) |
| 187 | TO_IMM1(SHR32m) |
| 188 | TO_IMM1(SHR64m) |
| 189 | TO_IMM1(SHL8m) |
| 190 | TO_IMM1(SHL16m) |
| 191 | TO_IMM1(SHL32m) |
| 192 | TO_IMM1(SHL64m) |
| 193 | #undef TO_IMM1 |
| 194 | } |
| 195 | MCOperand &LastOp = MI.getOperand(i: MI.getNumOperands() - 1); |
| 196 | if (!LastOp.isImm() || LastOp.getImm() != 1) |
| 197 | return false; |
| 198 | MI.setOpcode(NewOpc); |
| 199 | MI.erase(I: &LastOp); |
| 200 | return true; |
| 201 | } |
| 202 | |
| 203 | bool X86::optimizeVPCMPWithImmediateOneOrSix(MCInst &MI) { |
| 204 | unsigned Opc1; |
| 205 | unsigned Opc2; |
| 206 | #define FROM_TO(FROM, TO1, TO2) \ |
| 207 | case X86::FROM: \ |
| 208 | Opc1 = X86::TO1; \ |
| 209 | Opc2 = X86::TO2; \ |
| 210 | break; |
| 211 | switch (MI.getOpcode()) { |
| 212 | default: |
| 213 | return false; |
| 214 | FROM_TO(VPCMPBZ128rmi, VPCMPEQBZ128rm, VPCMPGTBZ128rm) |
| 215 | FROM_TO(VPCMPBZ128rmik, VPCMPEQBZ128rmk, VPCMPGTBZ128rmk) |
| 216 | FROM_TO(VPCMPBZ128rri, VPCMPEQBZ128rr, VPCMPGTBZ128rr) |
| 217 | FROM_TO(VPCMPBZ128rrik, VPCMPEQBZ128rrk, VPCMPGTBZ128rrk) |
| 218 | FROM_TO(VPCMPBZ256rmi, VPCMPEQBZ256rm, VPCMPGTBZ256rm) |
| 219 | FROM_TO(VPCMPBZ256rmik, VPCMPEQBZ256rmk, VPCMPGTBZ256rmk) |
| 220 | FROM_TO(VPCMPBZ256rri, VPCMPEQBZ256rr, VPCMPGTBZ256rr) |
| 221 | FROM_TO(VPCMPBZ256rrik, VPCMPEQBZ256rrk, VPCMPGTBZ256rrk) |
| 222 | FROM_TO(VPCMPBZrmi, VPCMPEQBZrm, VPCMPGTBZrm) |
| 223 | FROM_TO(VPCMPBZrmik, VPCMPEQBZrmk, VPCMPGTBZrmk) |
| 224 | FROM_TO(VPCMPBZrri, VPCMPEQBZrr, VPCMPGTBZrr) |
| 225 | FROM_TO(VPCMPBZrrik, VPCMPEQBZrrk, VPCMPGTBZrrk) |
| 226 | FROM_TO(VPCMPDZ128rmi, VPCMPEQDZ128rm, VPCMPGTDZ128rm) |
| 227 | FROM_TO(VPCMPDZ128rmbi, VPCMPEQDZ128rmb, VPCMPGTDZ128rmb) |
| 228 | FROM_TO(VPCMPDZ128rmbik, VPCMPEQDZ128rmbk, VPCMPGTDZ128rmbk) |
| 229 | FROM_TO(VPCMPDZ128rmik, VPCMPEQDZ128rmk, VPCMPGTDZ128rmk) |
| 230 | FROM_TO(VPCMPDZ128rri, VPCMPEQDZ128rr, VPCMPGTDZ128rr) |
| 231 | FROM_TO(VPCMPDZ128rrik, VPCMPEQDZ128rrk, VPCMPGTDZ128rrk) |
| 232 | FROM_TO(VPCMPDZ256rmi, VPCMPEQDZ256rm, VPCMPGTDZ256rm) |
| 233 | FROM_TO(VPCMPDZ256rmbi, VPCMPEQDZ256rmb, VPCMPGTDZ256rmb) |
| 234 | FROM_TO(VPCMPDZ256rmbik, VPCMPEQDZ256rmbk, VPCMPGTDZ256rmbk) |
| 235 | FROM_TO(VPCMPDZ256rmik, VPCMPEQDZ256rmk, VPCMPGTDZ256rmk) |
| 236 | FROM_TO(VPCMPDZ256rri, VPCMPEQDZ256rr, VPCMPGTDZ256rr) |
| 237 | FROM_TO(VPCMPDZ256rrik, VPCMPEQDZ256rrk, VPCMPGTDZ256rrk) |
| 238 | FROM_TO(VPCMPDZrmi, VPCMPEQDZrm, VPCMPGTDZrm) |
| 239 | FROM_TO(VPCMPDZrmbi, VPCMPEQDZrmb, VPCMPGTDZrmb) |
| 240 | FROM_TO(VPCMPDZrmbik, VPCMPEQDZrmbk, VPCMPGTDZrmbk) |
| 241 | FROM_TO(VPCMPDZrmik, VPCMPEQDZrmk, VPCMPGTDZrmk) |
| 242 | FROM_TO(VPCMPDZrri, VPCMPEQDZrr, VPCMPGTDZrr) |
| 243 | FROM_TO(VPCMPDZrrik, VPCMPEQDZrrk, VPCMPGTDZrrk) |
| 244 | FROM_TO(VPCMPQZ128rmi, VPCMPEQQZ128rm, VPCMPGTQZ128rm) |
| 245 | FROM_TO(VPCMPQZ128rmbi, VPCMPEQQZ128rmb, VPCMPGTQZ128rmb) |
| 246 | FROM_TO(VPCMPQZ128rmbik, VPCMPEQQZ128rmbk, VPCMPGTQZ128rmbk) |
| 247 | FROM_TO(VPCMPQZ128rmik, VPCMPEQQZ128rmk, VPCMPGTQZ128rmk) |
| 248 | FROM_TO(VPCMPQZ128rri, VPCMPEQQZ128rr, VPCMPGTQZ128rr) |
| 249 | FROM_TO(VPCMPQZ128rrik, VPCMPEQQZ128rrk, VPCMPGTQZ128rrk) |
| 250 | FROM_TO(VPCMPQZ256rmi, VPCMPEQQZ256rm, VPCMPGTQZ256rm) |
| 251 | FROM_TO(VPCMPQZ256rmbi, VPCMPEQQZ256rmb, VPCMPGTQZ256rmb) |
| 252 | FROM_TO(VPCMPQZ256rmbik, VPCMPEQQZ256rmbk, VPCMPGTQZ256rmbk) |
| 253 | FROM_TO(VPCMPQZ256rmik, VPCMPEQQZ256rmk, VPCMPGTQZ256rmk) |
| 254 | FROM_TO(VPCMPQZ256rri, VPCMPEQQZ256rr, VPCMPGTQZ256rr) |
| 255 | FROM_TO(VPCMPQZ256rrik, VPCMPEQQZ256rrk, VPCMPGTQZ256rrk) |
| 256 | FROM_TO(VPCMPQZrmi, VPCMPEQQZrm, VPCMPGTQZrm) |
| 257 | FROM_TO(VPCMPQZrmbi, VPCMPEQQZrmb, VPCMPGTQZrmb) |
| 258 | FROM_TO(VPCMPQZrmbik, VPCMPEQQZrmbk, VPCMPGTQZrmbk) |
| 259 | FROM_TO(VPCMPQZrmik, VPCMPEQQZrmk, VPCMPGTQZrmk) |
| 260 | FROM_TO(VPCMPQZrri, VPCMPEQQZrr, VPCMPGTQZrr) |
| 261 | FROM_TO(VPCMPQZrrik, VPCMPEQQZrrk, VPCMPGTQZrrk) |
| 262 | FROM_TO(VPCMPWZ128rmi, VPCMPEQWZ128rm, VPCMPGTWZ128rm) |
| 263 | FROM_TO(VPCMPWZ128rmik, VPCMPEQWZ128rmk, VPCMPGTWZ128rmk) |
| 264 | FROM_TO(VPCMPWZ128rri, VPCMPEQWZ128rr, VPCMPGTWZ128rr) |
| 265 | FROM_TO(VPCMPWZ128rrik, VPCMPEQWZ128rrk, VPCMPGTWZ128rrk) |
| 266 | FROM_TO(VPCMPWZ256rmi, VPCMPEQWZ256rm, VPCMPGTWZ256rm) |
| 267 | FROM_TO(VPCMPWZ256rmik, VPCMPEQWZ256rmk, VPCMPGTWZ256rmk) |
| 268 | FROM_TO(VPCMPWZ256rri, VPCMPEQWZ256rr, VPCMPGTWZ256rr) |
| 269 | FROM_TO(VPCMPWZ256rrik, VPCMPEQWZ256rrk, VPCMPGTWZ256rrk) |
| 270 | FROM_TO(VPCMPWZrmi, VPCMPEQWZrm, VPCMPGTWZrm) |
| 271 | FROM_TO(VPCMPWZrmik, VPCMPEQWZrmk, VPCMPGTWZrmk) |
| 272 | FROM_TO(VPCMPWZrri, VPCMPEQWZrr, VPCMPGTWZrr) |
| 273 | FROM_TO(VPCMPWZrrik, VPCMPEQWZrrk, VPCMPGTWZrrk) |
| 274 | #undef FROM_TO |
| 275 | } |
| 276 | MCOperand &LastOp = MI.getOperand(i: MI.getNumOperands() - 1); |
| 277 | int64_t Imm = LastOp.getImm(); |
| 278 | unsigned NewOpc; |
| 279 | if (Imm == 0) |
| 280 | NewOpc = Opc1; |
| 281 | else if(Imm == 6) |
| 282 | NewOpc = Opc2; |
| 283 | else |
| 284 | return false; |
| 285 | MI.setOpcode(NewOpc); |
| 286 | MI.erase(I: &LastOp); |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | bool X86::optimizeMOVSX(MCInst &MI) { |
| 291 | unsigned NewOpc; |
| 292 | #define FROM_TO(FROM, TO, R0, R1) \ |
| 293 | case X86::FROM: \ |
| 294 | if (MI.getOperand(0).getReg() != X86::R0 || \ |
| 295 | MI.getOperand(1).getReg() != X86::R1) \ |
| 296 | return false; \ |
| 297 | NewOpc = X86::TO; \ |
| 298 | break; |
| 299 | switch (MI.getOpcode()) { |
| 300 | default: |
| 301 | return false; |
| 302 | FROM_TO(MOVSX16rr8, CBW, AX, AL) // movsbw %al, %ax --> cbtw |
| 303 | FROM_TO(MOVSX32rr16, CWDE, EAX, AX) // movswl %ax, %eax --> cwtl |
| 304 | FROM_TO(MOVSX64rr32, CDQE, RAX, EAX) // movslq %eax, %rax --> cltq |
| 305 | #undef FROM_TO |
| 306 | } |
| 307 | MI.clear(); |
| 308 | MI.setOpcode(NewOpc); |
| 309 | return true; |
| 310 | } |
| 311 | |
| 312 | bool X86::optimizeINCDEC(MCInst &MI, bool In64BitMode) { |
| 313 | if (In64BitMode) |
| 314 | return false; |
| 315 | unsigned NewOpc; |
| 316 | // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions. |
| 317 | #define FROM_TO(FROM, TO) \ |
| 318 | case X86::FROM: \ |
| 319 | NewOpc = X86::TO; \ |
| 320 | break; |
| 321 | switch (MI.getOpcode()) { |
| 322 | default: |
| 323 | return false; |
| 324 | FROM_TO(DEC16r, DEC16r_alt) |
| 325 | FROM_TO(DEC32r, DEC32r_alt) |
| 326 | FROM_TO(INC16r, INC16r_alt) |
| 327 | FROM_TO(INC32r, INC32r_alt) |
| 328 | } |
| 329 | MI.setOpcode(NewOpc); |
| 330 | return true; |
| 331 | } |
| 332 | |
| 333 | static bool isARegister(MCRegister Reg) { |
| 334 | return Reg == X86::AL || Reg == X86::AX || Reg == X86::EAX || Reg == X86::RAX; |
| 335 | } |
| 336 | |
| 337 | /// Simplify things like MOV32rm to MOV32o32a. |
| 338 | bool X86::optimizeMOV(MCInst &MI, bool In64BitMode) { |
| 339 | // Don't make these simplifications in 64-bit mode; other assemblers don't |
| 340 | // perform them because they make the code larger. |
| 341 | if (In64BitMode) |
| 342 | return false; |
| 343 | unsigned NewOpc; |
| 344 | // We don't currently select the correct instruction form for instructions |
| 345 | // which have a short %eax, etc. form. Handle this by custom lowering, for |
| 346 | // now. |
| 347 | // |
| 348 | // Note, we are currently not handling the following instructions: |
| 349 | // MOV64ao8, MOV64o8a |
| 350 | // XCHG16ar, XCHG32ar, XCHG64ar |
| 351 | switch (MI.getOpcode()) { |
| 352 | default: |
| 353 | return false; |
| 354 | FROM_TO(MOV8mr_NOREX, MOV8o32a) |
| 355 | FROM_TO(MOV8mr, MOV8o32a) |
| 356 | FROM_TO(MOV8rm_NOREX, MOV8ao32) |
| 357 | FROM_TO(MOV8rm, MOV8ao32) |
| 358 | FROM_TO(MOV16mr, MOV16o32a) |
| 359 | FROM_TO(MOV16rm, MOV16ao32) |
| 360 | FROM_TO(MOV32mr, MOV32o32a) |
| 361 | FROM_TO(MOV32rm, MOV32ao32) |
| 362 | } |
| 363 | bool IsStore = MI.getOperand(i: 0).isReg() && MI.getOperand(i: 1).isReg(); |
| 364 | unsigned AddrBase = IsStore; |
| 365 | unsigned RegOp = IsStore ? 0 : 5; |
| 366 | unsigned AddrOp = AddrBase + 3; |
| 367 | // Check whether the destination register can be fixed. |
| 368 | MCRegister Reg = MI.getOperand(i: RegOp).getReg(); |
| 369 | if (!isARegister(Reg)) |
| 370 | return false; |
| 371 | // Check whether this is an absolute address. |
| 372 | // FIXME: We know TLVP symbol refs aren't, but there should be a better way |
| 373 | // to do this here. |
| 374 | bool Absolute = true; |
| 375 | if (MI.getOperand(i: AddrOp).isExpr()) { |
| 376 | const MCExpr *MCE = MI.getOperand(i: AddrOp).getExpr(); |
| 377 | if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val: MCE)) |
| 378 | if (SRE->getSpecifier() == X86::S_TLVP) |
| 379 | Absolute = false; |
| 380 | } |
| 381 | if (Absolute && (MI.getOperand(i: AddrBase + X86::AddrBaseReg).getReg() || |
| 382 | MI.getOperand(i: AddrBase + X86::AddrScaleAmt).getImm() != 1 || |
| 383 | MI.getOperand(i: AddrBase + X86::AddrIndexReg).getReg())) |
| 384 | return false; |
| 385 | // If so, rewrite the instruction. |
| 386 | MCOperand Saved = MI.getOperand(i: AddrOp); |
| 387 | MCOperand Seg = MI.getOperand(i: AddrBase + X86::AddrSegmentReg); |
| 388 | MI.clear(); |
| 389 | MI.setOpcode(NewOpc); |
| 390 | MI.addOperand(Op: Saved); |
| 391 | MI.addOperand(Op: Seg); |
| 392 | return true; |
| 393 | } |
| 394 | |
| 395 | /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with |
| 396 | /// a short fixed-register form. |
| 397 | static bool optimizeToFixedRegisterForm(MCInst &MI) { |
| 398 | unsigned NewOpc; |
| 399 | switch (MI.getOpcode()) { |
| 400 | default: |
| 401 | return false; |
| 402 | FROM_TO(ADC8ri, ADC8i8) |
| 403 | FROM_TO(ADC16ri, ADC16i16) |
| 404 | FROM_TO(ADC32ri, ADC32i32) |
| 405 | FROM_TO(ADC64ri32, ADC64i32) |
| 406 | FROM_TO(ADD8ri, ADD8i8) |
| 407 | FROM_TO(ADD16ri, ADD16i16) |
| 408 | FROM_TO(ADD32ri, ADD32i32) |
| 409 | FROM_TO(ADD64ri32, ADD64i32) |
| 410 | FROM_TO(AND8ri, AND8i8) |
| 411 | FROM_TO(AND16ri, AND16i16) |
| 412 | FROM_TO(AND32ri, AND32i32) |
| 413 | FROM_TO(AND64ri32, AND64i32) |
| 414 | FROM_TO(CMP8ri, CMP8i8) |
| 415 | FROM_TO(CMP16ri, CMP16i16) |
| 416 | FROM_TO(CMP32ri, CMP32i32) |
| 417 | FROM_TO(CMP64ri32, CMP64i32) |
| 418 | FROM_TO(OR8ri, OR8i8) |
| 419 | FROM_TO(OR16ri, OR16i16) |
| 420 | FROM_TO(OR32ri, OR32i32) |
| 421 | FROM_TO(OR64ri32, OR64i32) |
| 422 | FROM_TO(SBB8ri, SBB8i8) |
| 423 | FROM_TO(SBB16ri, SBB16i16) |
| 424 | FROM_TO(SBB32ri, SBB32i32) |
| 425 | FROM_TO(SBB64ri32, SBB64i32) |
| 426 | FROM_TO(SUB8ri, SUB8i8) |
| 427 | FROM_TO(SUB16ri, SUB16i16) |
| 428 | FROM_TO(SUB32ri, SUB32i32) |
| 429 | FROM_TO(SUB64ri32, SUB64i32) |
| 430 | FROM_TO(TEST8ri, TEST8i8) |
| 431 | FROM_TO(TEST16ri, TEST16i16) |
| 432 | FROM_TO(TEST32ri, TEST32i32) |
| 433 | FROM_TO(TEST64ri32, TEST64i32) |
| 434 | FROM_TO(XOR8ri, XOR8i8) |
| 435 | FROM_TO(XOR16ri, XOR16i16) |
| 436 | FROM_TO(XOR32ri, XOR32i32) |
| 437 | FROM_TO(XOR64ri32, XOR64i32) |
| 438 | } |
| 439 | // Check whether the destination register can be fixed. |
| 440 | MCRegister Reg = MI.getOperand(i: 0).getReg(); |
| 441 | if (!isARegister(Reg)) |
| 442 | return false; |
| 443 | |
| 444 | // If so, rewrite the instruction. |
| 445 | MCOperand Saved = MI.getOperand(i: MI.getNumOperands() - 1); |
| 446 | MI.clear(); |
| 447 | MI.setOpcode(NewOpc); |
| 448 | MI.addOperand(Op: Saved); |
| 449 | return true; |
| 450 | } |
| 451 | |
| 452 | unsigned X86::getOpcodeForShortImmediateForm(unsigned Opcode) { |
| 453 | #define ENTRY(LONG, SHORT) \ |
| 454 | case X86::LONG: \ |
| 455 | return X86::SHORT; |
| 456 | switch (Opcode) { |
| 457 | default: |
| 458 | return Opcode; |
| 459 | #include "X86EncodingOptimizationForImmediate.def" |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | unsigned X86::getOpcodeForLongImmediateForm(unsigned Opcode) { |
| 464 | #define ENTRY(LONG, SHORT) \ |
| 465 | case X86::SHORT: \ |
| 466 | return X86::LONG; |
| 467 | switch (Opcode) { |
| 468 | default: |
| 469 | return Opcode; |
| 470 | #include "X86EncodingOptimizationForImmediate.def" |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | static bool optimizeToShortImmediateForm(MCInst &MI) { |
| 475 | unsigned NewOpc; |
| 476 | #define ENTRY(LONG, SHORT) \ |
| 477 | case X86::LONG: \ |
| 478 | NewOpc = X86::SHORT; \ |
| 479 | break; |
| 480 | switch (MI.getOpcode()) { |
| 481 | default: |
| 482 | return false; |
| 483 | #include "X86EncodingOptimizationForImmediate.def" |
| 484 | } |
| 485 | unsigned SkipOperands = X86::isCCMPCC(Opcode: MI.getOpcode()) ? 2 : 0; |
| 486 | MCOperand &LastOp = MI.getOperand(i: MI.getNumOperands() - 1 - SkipOperands); |
| 487 | if (LastOp.isExpr()) { |
| 488 | const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val: LastOp.getExpr()); |
| 489 | if (!SRE || SRE->getSpecifier() != X86::S_ABS8) |
| 490 | return false; |
| 491 | } else if (LastOp.isImm()) { |
| 492 | if (!isInt<8>(x: LastOp.getImm())) |
| 493 | return false; |
| 494 | } |
| 495 | MI.setOpcode(NewOpc); |
| 496 | return true; |
| 497 | } |
| 498 | |
| 499 | bool X86::optimizeToFixedRegisterOrShortImmediateForm(MCInst &MI) { |
| 500 | // We may optimize twice here. |
| 501 | bool ShortImm = optimizeToShortImmediateForm(MI); |
| 502 | bool FixedReg = optimizeToFixedRegisterForm(MI); |
| 503 | return ShortImm || FixedReg; |
| 504 | } |
| 505 | |