| 1 | //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the pass that finds instructions that can be |
| 10 | // re-written as LEA instructions in order to reduce pipeline delays. |
| 11 | // It replaces LEAs with ADD/INC/DEC when that is better for size/speed. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "X86.h" |
| 16 | #include "X86InstrInfo.h" |
| 17 | #include "X86Subtarget.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
| 19 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 20 | #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" |
| 21 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 22 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 23 | #include "llvm/CodeGen/MachineSizeOpts.h" |
| 24 | #include "llvm/CodeGen/Passes.h" |
| 25 | #include "llvm/CodeGen/TargetSchedule.h" |
| 26 | #include "llvm/Support/Debug.h" |
| 27 | #include "llvm/Support/raw_ostream.h" |
| 28 | using namespace llvm; |
| 29 | |
| 30 | #define FIXUPLEA_DESC "X86 LEA Fixup" |
| 31 | #define FIXUPLEA_NAME "x86-fixup-LEAs" |
| 32 | |
| 33 | #define DEBUG_TYPE FIXUPLEA_NAME |
| 34 | |
| 35 | STATISTIC(NumLEAs, "Number of LEA instructions created" ); |
| 36 | |
| 37 | namespace { |
| 38 | class FixupLEAPass : public MachineFunctionPass { |
| 39 | enum RegUsageState { RU_NotUsed, RU_Write, RU_Read }; |
| 40 | |
| 41 | /// Given a machine register, look for the instruction |
| 42 | /// which writes it in the current basic block. If found, |
| 43 | /// try to replace it with an equivalent LEA instruction. |
| 44 | /// If replacement succeeds, then also process the newly created |
| 45 | /// instruction. |
| 46 | void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I, |
| 47 | MachineBasicBlock &MBB); |
| 48 | |
| 49 | /// Given a memory access or LEA instruction |
| 50 | /// whose address mode uses a base and/or index register, look for |
| 51 | /// an opportunity to replace the instruction which sets the base or index |
| 52 | /// register with an equivalent LEA instruction. |
| 53 | void processInstruction(MachineBasicBlock::iterator &I, |
| 54 | MachineBasicBlock &MBB); |
| 55 | |
| 56 | /// Given a LEA instruction which is unprofitable |
| 57 | /// on SlowLEA targets try to replace it with an equivalent ADD instruction. |
| 58 | void processInstructionForSlowLEA(MachineBasicBlock::iterator &I, |
| 59 | MachineBasicBlock &MBB); |
| 60 | |
| 61 | /// Given a LEA instruction which is unprofitable |
| 62 | /// on SNB+ try to replace it with other instructions. |
| 63 | /// According to Intel's Optimization Reference Manual: |
| 64 | /// " For LEA instructions with three source operands and some specific |
| 65 | /// situations, instruction latency has increased to 3 cycles, and must |
| 66 | /// dispatch via port 1: |
| 67 | /// - LEA that has all three source operands: base, index, and offset |
| 68 | /// - LEA that uses base and index registers where the base is EBP, RBP, |
| 69 | /// or R13 |
| 70 | /// - LEA that uses RIP relative addressing mode |
| 71 | /// - LEA that uses 16-bit addressing mode " |
| 72 | /// This function currently handles the first 2 cases only. |
| 73 | void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I, |
| 74 | MachineBasicBlock &MBB, bool OptIncDec); |
| 75 | |
| 76 | /// Look for LEAs that are really two address LEAs that we might be able to |
| 77 | /// turn into regular ADD instructions. |
| 78 | bool optTwoAddrLEA(MachineBasicBlock::iterator &I, |
| 79 | MachineBasicBlock &MBB, bool OptIncDec, |
| 80 | bool UseLEAForSP) const; |
| 81 | |
| 82 | /// Look for and transform the sequence |
| 83 | /// lea (reg1, reg2), reg3 |
| 84 | /// sub reg3, reg4 |
| 85 | /// to |
| 86 | /// sub reg1, reg4 |
| 87 | /// sub reg2, reg4 |
| 88 | /// It can also optimize the sequence lea/add similarly. |
| 89 | bool optLEAALU(MachineBasicBlock::iterator &I, MachineBasicBlock &MBB) const; |
| 90 | |
| 91 | /// Step forwards in MBB, looking for an ADD/SUB instruction which uses |
| 92 | /// the dest register of LEA instruction I. |
| 93 | MachineBasicBlock::iterator searchALUInst(MachineBasicBlock::iterator &I, |
| 94 | MachineBasicBlock &MBB) const; |
| 95 | |
| 96 | /// Check instructions between LeaI and AluI (exclusively). |
| 97 | /// Set BaseIndexDef to true if base or index register from LeaI is defined. |
| 98 | /// Set AluDestRef to true if the dest register of AluI is used or defined. |
| 99 | /// *KilledBase is set to the killed base register usage. |
| 100 | /// *KilledIndex is set to the killed index register usage. |
| 101 | void checkRegUsage(MachineBasicBlock::iterator &LeaI, |
| 102 | MachineBasicBlock::iterator &AluI, bool &BaseIndexDef, |
| 103 | bool &AluDestRef, MachineOperand **KilledBase, |
| 104 | MachineOperand **KilledIndex) const; |
| 105 | |
| 106 | /// Determine if an instruction references a machine register |
| 107 | /// and, if so, whether it reads or writes the register. |
| 108 | RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I); |
| 109 | |
| 110 | /// Step backwards through a basic block, looking |
| 111 | /// for an instruction which writes a register within |
| 112 | /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles. |
| 113 | MachineBasicBlock::iterator searchBackwards(MachineOperand &p, |
| 114 | MachineBasicBlock::iterator &I, |
| 115 | MachineBasicBlock &MBB); |
| 116 | |
| 117 | /// if an instruction can be converted to an |
| 118 | /// equivalent LEA, insert the new instruction into the basic block |
| 119 | /// and return a pointer to it. Otherwise, return zero. |
| 120 | MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB, |
| 121 | MachineBasicBlock::iterator &MBBI) const; |
| 122 | |
| 123 | public: |
| 124 | static char ID; |
| 125 | |
| 126 | StringRef getPassName() const override { return FIXUPLEA_DESC; } |
| 127 | |
| 128 | FixupLEAPass() : MachineFunctionPass(ID) { } |
| 129 | |
| 130 | /// Loop over all of the basic blocks, |
| 131 | /// replacing instructions by equivalent LEA instructions |
| 132 | /// if needed and when possible. |
| 133 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 134 | |
| 135 | // This pass runs after regalloc and doesn't support VReg operands. |
| 136 | MachineFunctionProperties getRequiredProperties() const override { |
| 137 | return MachineFunctionProperties().setNoVRegs(); |
| 138 | } |
| 139 | |
| 140 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 141 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 142 | AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); |
| 143 | MachineFunctionPass::getAnalysisUsage(AU); |
| 144 | } |
| 145 | |
| 146 | private: |
| 147 | TargetSchedModel TSM; |
| 148 | const X86InstrInfo *TII = nullptr; |
| 149 | const X86RegisterInfo *TRI = nullptr; |
| 150 | }; |
| 151 | } |
| 152 | |
| 153 | char FixupLEAPass::ID = 0; |
| 154 | |
| 155 | INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false) |
| 156 | |
| 157 | MachineInstr * |
| 158 | FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB, |
| 159 | MachineBasicBlock::iterator &MBBI) const { |
| 160 | MachineInstr &MI = *MBBI; |
| 161 | switch (MI.getOpcode()) { |
| 162 | case X86::MOV32rr: |
| 163 | case X86::MOV64rr: { |
| 164 | const MachineOperand &Src = MI.getOperand(i: 1); |
| 165 | const MachineOperand &Dest = MI.getOperand(i: 0); |
| 166 | MachineInstr *NewMI = |
| 167 | BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), |
| 168 | MCID: TII->get(Opcode: MI.getOpcode() == X86::MOV32rr ? X86::LEA32r |
| 169 | : X86::LEA64r)) |
| 170 | .add(MO: Dest) |
| 171 | .add(MO: Src) |
| 172 | .addImm(Val: 1) |
| 173 | .addReg(RegNo: 0) |
| 174 | .addImm(Val: 0) |
| 175 | .addReg(RegNo: 0); |
| 176 | return NewMI; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | if (!MI.isConvertibleTo3Addr()) |
| 181 | return nullptr; |
| 182 | |
| 183 | switch (MI.getOpcode()) { |
| 184 | default: |
| 185 | // Only convert instructions that we've verified are safe. |
| 186 | return nullptr; |
| 187 | case X86::ADD64ri32: |
| 188 | case X86::ADD64ri32_DB: |
| 189 | case X86::ADD32ri: |
| 190 | case X86::ADD32ri_DB: |
| 191 | if (!MI.getOperand(i: 2).isImm()) { |
| 192 | // convertToThreeAddress will call getImm() |
| 193 | // which requires isImm() to be true |
| 194 | return nullptr; |
| 195 | } |
| 196 | break; |
| 197 | case X86::SHL64ri: |
| 198 | case X86::SHL32ri: |
| 199 | case X86::INC64r: |
| 200 | case X86::INC32r: |
| 201 | case X86::DEC64r: |
| 202 | case X86::DEC32r: |
| 203 | case X86::ADD64rr: |
| 204 | case X86::ADD64rr_DB: |
| 205 | case X86::ADD32rr: |
| 206 | case X86::ADD32rr_DB: |
| 207 | // These instructions are all fine to convert. |
| 208 | break; |
| 209 | } |
| 210 | return TII->convertToThreeAddress(MI, LV: nullptr, LIS: nullptr); |
| 211 | } |
| 212 | |
| 213 | FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); } |
| 214 | |
| 215 | static bool isLEA(unsigned Opcode) { |
| 216 | return Opcode == X86::LEA32r || Opcode == X86::LEA64r || |
| 217 | Opcode == X86::LEA64_32r; |
| 218 | } |
| 219 | |
| 220 | bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) { |
| 221 | if (skipFunction(F: MF.getFunction())) |
| 222 | return false; |
| 223 | |
| 224 | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); |
| 225 | bool IsSlowLEA = ST.slowLEA(); |
| 226 | bool IsSlow3OpsLEA = ST.slow3OpsLEA(); |
| 227 | bool LEAUsesAG = ST.leaUsesAG(); |
| 228 | |
| 229 | bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize(); |
| 230 | bool UseLEAForSP = ST.useLeaForSP(); |
| 231 | |
| 232 | TSM.init(TSInfo: &ST); |
| 233 | TII = ST.getInstrInfo(); |
| 234 | TRI = ST.getRegisterInfo(); |
| 235 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 236 | auto *MBFI = (PSI && PSI->hasProfileSummary()) |
| 237 | ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() |
| 238 | : nullptr; |
| 239 | |
| 240 | LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n" ;); |
| 241 | for (MachineBasicBlock &MBB : MF) { |
| 242 | // First pass. Try to remove or optimize existing LEAs. |
| 243 | bool OptIncDecPerBB = |
| 244 | OptIncDec || llvm::shouldOptimizeForSize(MBB: &MBB, PSI, MBFI); |
| 245 | for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) { |
| 246 | if (!isLEA(Opcode: I->getOpcode())) |
| 247 | continue; |
| 248 | |
| 249 | if (optTwoAddrLEA(I, MBB, OptIncDec: OptIncDecPerBB, UseLEAForSP)) |
| 250 | continue; |
| 251 | |
| 252 | if (IsSlowLEA) |
| 253 | processInstructionForSlowLEA(I, MBB); |
| 254 | else if (IsSlow3OpsLEA) |
| 255 | processInstrForSlow3OpLEA(I, MBB, OptIncDec: OptIncDecPerBB); |
| 256 | } |
| 257 | |
| 258 | // Second pass for creating LEAs. This may reverse some of the |
| 259 | // transformations above. |
| 260 | if (LEAUsesAG) { |
| 261 | for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) |
| 262 | processInstruction(I, MBB); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n" ;); |
| 267 | |
| 268 | return true; |
| 269 | } |
| 270 | |
| 271 | FixupLEAPass::RegUsageState |
| 272 | FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) { |
| 273 | RegUsageState RegUsage = RU_NotUsed; |
| 274 | MachineInstr &MI = *I; |
| 275 | |
| 276 | for (const MachineOperand &MO : MI.operands()) { |
| 277 | if (MO.isReg() && MO.getReg() == p.getReg()) { |
| 278 | if (MO.isDef()) |
| 279 | return RU_Write; |
| 280 | RegUsage = RU_Read; |
| 281 | } |
| 282 | } |
| 283 | return RegUsage; |
| 284 | } |
| 285 | |
| 286 | /// getPreviousInstr - Given a reference to an instruction in a basic |
| 287 | /// block, return a reference to the previous instruction in the block, |
| 288 | /// wrapping around to the last instruction of the block if the block |
| 289 | /// branches to itself. |
| 290 | static inline bool getPreviousInstr(MachineBasicBlock::iterator &I, |
| 291 | MachineBasicBlock &MBB) { |
| 292 | if (I == MBB.begin()) { |
| 293 | if (MBB.isPredecessor(MBB: &MBB)) { |
| 294 | I = --MBB.end(); |
| 295 | return true; |
| 296 | } else |
| 297 | return false; |
| 298 | } |
| 299 | --I; |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | MachineBasicBlock::iterator |
| 304 | FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I, |
| 305 | MachineBasicBlock &MBB) { |
| 306 | int InstrDistance = 1; |
| 307 | MachineBasicBlock::iterator CurInst; |
| 308 | static const int INSTR_DISTANCE_THRESHOLD = 5; |
| 309 | |
| 310 | CurInst = I; |
| 311 | bool Found; |
| 312 | Found = getPreviousInstr(I&: CurInst, MBB); |
| 313 | while (Found && I != CurInst) { |
| 314 | if (CurInst->isCall() || CurInst->isInlineAsm()) |
| 315 | break; |
| 316 | if (InstrDistance > INSTR_DISTANCE_THRESHOLD) |
| 317 | break; // too far back to make a difference |
| 318 | if (usesRegister(p, I: CurInst) == RU_Write) { |
| 319 | return CurInst; |
| 320 | } |
| 321 | InstrDistance += TSM.computeInstrLatency(MI: &*CurInst); |
| 322 | Found = getPreviousInstr(I&: CurInst, MBB); |
| 323 | } |
| 324 | return MachineBasicBlock::iterator(); |
| 325 | } |
| 326 | |
| 327 | static inline bool isInefficientLEAReg(Register Reg) { |
| 328 | return Reg == X86::EBP || Reg == X86::RBP || |
| 329 | Reg == X86::R13D || Reg == X86::R13; |
| 330 | } |
| 331 | |
| 332 | /// Returns true if this LEA uses base and index registers, and the base |
| 333 | /// register is known to be inefficient for the subtarget. |
| 334 | // TODO: use a variant scheduling class to model the latency profile |
| 335 | // of LEA instructions, and implement this logic as a scheduling predicate. |
| 336 | static inline bool hasInefficientLEABaseReg(const MachineOperand &Base, |
| 337 | const MachineOperand &Index) { |
| 338 | return Base.isReg() && isInefficientLEAReg(Reg: Base.getReg()) && Index.isReg() && |
| 339 | Index.getReg().isValid(); |
| 340 | } |
| 341 | |
| 342 | static inline bool hasLEAOffset(const MachineOperand &Offset) { |
| 343 | return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal() || |
| 344 | Offset.isBlockAddress(); |
| 345 | } |
| 346 | |
| 347 | static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) { |
| 348 | switch (LEAOpcode) { |
| 349 | default: |
| 350 | llvm_unreachable("Unexpected LEA instruction" ); |
| 351 | case X86::LEA32r: |
| 352 | case X86::LEA64_32r: |
| 353 | return X86::ADD32rr; |
| 354 | case X86::LEA64r: |
| 355 | return X86::ADD64rr; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | static inline unsigned getSUBrrFromLEA(unsigned LEAOpcode) { |
| 360 | switch (LEAOpcode) { |
| 361 | default: |
| 362 | llvm_unreachable("Unexpected LEA instruction" ); |
| 363 | case X86::LEA32r: |
| 364 | case X86::LEA64_32r: |
| 365 | return X86::SUB32rr; |
| 366 | case X86::LEA64r: |
| 367 | return X86::SUB64rr; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | static inline unsigned getADDriFromLEA(unsigned LEAOpcode, |
| 372 | const MachineOperand &Offset) { |
| 373 | switch (LEAOpcode) { |
| 374 | default: |
| 375 | llvm_unreachable("Unexpected LEA instruction" ); |
| 376 | case X86::LEA32r: |
| 377 | case X86::LEA64_32r: |
| 378 | return X86::ADD32ri; |
| 379 | case X86::LEA64r: |
| 380 | return X86::ADD64ri32; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) { |
| 385 | switch (LEAOpcode) { |
| 386 | default: |
| 387 | llvm_unreachable("Unexpected LEA instruction" ); |
| 388 | case X86::LEA32r: |
| 389 | case X86::LEA64_32r: |
| 390 | return IsINC ? X86::INC32r : X86::DEC32r; |
| 391 | case X86::LEA64r: |
| 392 | return IsINC ? X86::INC64r : X86::DEC64r; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | MachineBasicBlock::iterator |
| 397 | FixupLEAPass::searchALUInst(MachineBasicBlock::iterator &I, |
| 398 | MachineBasicBlock &MBB) const { |
| 399 | const int InstrDistanceThreshold = 5; |
| 400 | int InstrDistance = 1; |
| 401 | MachineBasicBlock::iterator CurInst = std::next(x: I); |
| 402 | |
| 403 | unsigned LEAOpcode = I->getOpcode(); |
| 404 | unsigned AddOpcode = getADDrrFromLEA(LEAOpcode); |
| 405 | unsigned SubOpcode = getSUBrrFromLEA(LEAOpcode); |
| 406 | Register DestReg = I->getOperand(i: 0).getReg(); |
| 407 | |
| 408 | while (CurInst != MBB.end()) { |
| 409 | if (CurInst->isCall() || CurInst->isInlineAsm()) |
| 410 | break; |
| 411 | if (InstrDistance > InstrDistanceThreshold) |
| 412 | break; |
| 413 | |
| 414 | // Check if the lea dest register is used in an add/sub instruction only. |
| 415 | for (unsigned I = 0, E = CurInst->getNumOperands(); I != E; ++I) { |
| 416 | MachineOperand &Opnd = CurInst->getOperand(i: I); |
| 417 | if (Opnd.isReg()) { |
| 418 | if (Opnd.getReg() == DestReg) { |
| 419 | if (Opnd.isDef() || !Opnd.isKill()) |
| 420 | return MachineBasicBlock::iterator(); |
| 421 | |
| 422 | unsigned AluOpcode = CurInst->getOpcode(); |
| 423 | if (AluOpcode != AddOpcode && AluOpcode != SubOpcode) |
| 424 | return MachineBasicBlock::iterator(); |
| 425 | |
| 426 | MachineOperand &Opnd2 = CurInst->getOperand(i: 3 - I); |
| 427 | MachineOperand AluDest = CurInst->getOperand(i: 0); |
| 428 | if (Opnd2.getReg() != AluDest.getReg()) |
| 429 | return MachineBasicBlock::iterator(); |
| 430 | |
| 431 | // X - (Y + Z) may generate different flags than (X - Y) - Z when |
| 432 | // there is overflow. So we can't change the alu instruction if the |
| 433 | // flags register is live. |
| 434 | if (!CurInst->registerDefIsDead(Reg: X86::EFLAGS, TRI)) |
| 435 | return MachineBasicBlock::iterator(); |
| 436 | |
| 437 | return CurInst; |
| 438 | } |
| 439 | if (TRI->regsOverlap(RegA: DestReg, RegB: Opnd.getReg())) |
| 440 | return MachineBasicBlock::iterator(); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | InstrDistance++; |
| 445 | ++CurInst; |
| 446 | } |
| 447 | return MachineBasicBlock::iterator(); |
| 448 | } |
| 449 | |
| 450 | void FixupLEAPass::checkRegUsage(MachineBasicBlock::iterator &LeaI, |
| 451 | MachineBasicBlock::iterator &AluI, |
| 452 | bool &BaseIndexDef, bool &AluDestRef, |
| 453 | MachineOperand **KilledBase, |
| 454 | MachineOperand **KilledIndex) const { |
| 455 | BaseIndexDef = AluDestRef = false; |
| 456 | *KilledBase = *KilledIndex = nullptr; |
| 457 | Register BaseReg = LeaI->getOperand(i: 1 + X86::AddrBaseReg).getReg(); |
| 458 | Register IndexReg = LeaI->getOperand(i: 1 + X86::AddrIndexReg).getReg(); |
| 459 | Register AluDestReg = AluI->getOperand(i: 0).getReg(); |
| 460 | |
| 461 | for (MachineInstr &CurInst : llvm::make_range(x: std::next(x: LeaI), y: AluI)) { |
| 462 | for (MachineOperand &Opnd : CurInst.operands()) { |
| 463 | if (!Opnd.isReg()) |
| 464 | continue; |
| 465 | Register Reg = Opnd.getReg(); |
| 466 | if (TRI->regsOverlap(RegA: Reg, RegB: AluDestReg)) |
| 467 | AluDestRef = true; |
| 468 | if (TRI->regsOverlap(RegA: Reg, RegB: BaseReg)) { |
| 469 | if (Opnd.isDef()) |
| 470 | BaseIndexDef = true; |
| 471 | else if (Opnd.isKill()) |
| 472 | *KilledBase = &Opnd; |
| 473 | } |
| 474 | if (TRI->regsOverlap(RegA: Reg, RegB: IndexReg)) { |
| 475 | if (Opnd.isDef()) |
| 476 | BaseIndexDef = true; |
| 477 | else if (Opnd.isKill()) |
| 478 | *KilledIndex = &Opnd; |
| 479 | } |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | bool FixupLEAPass::optLEAALU(MachineBasicBlock::iterator &I, |
| 485 | MachineBasicBlock &MBB) const { |
| 486 | // Look for an add/sub instruction which uses the result of lea. |
| 487 | MachineBasicBlock::iterator AluI = searchALUInst(I, MBB); |
| 488 | if (AluI == MachineBasicBlock::iterator()) |
| 489 | return false; |
| 490 | |
| 491 | // Check if there are any related register usage between lea and alu. |
| 492 | bool BaseIndexDef, AluDestRef; |
| 493 | MachineOperand *KilledBase, *KilledIndex; |
| 494 | checkRegUsage(LeaI&: I, AluI, BaseIndexDef, AluDestRef, KilledBase: &KilledBase, KilledIndex: &KilledIndex); |
| 495 | |
| 496 | MachineBasicBlock::iterator InsertPos = AluI; |
| 497 | if (BaseIndexDef) { |
| 498 | if (AluDestRef) |
| 499 | return false; |
| 500 | InsertPos = I; |
| 501 | KilledBase = KilledIndex = nullptr; |
| 502 | } |
| 503 | |
| 504 | // Check if there are same registers. |
| 505 | Register AluDestReg = AluI->getOperand(i: 0).getReg(); |
| 506 | Register BaseReg = I->getOperand(i: 1 + X86::AddrBaseReg).getReg(); |
| 507 | Register IndexReg = I->getOperand(i: 1 + X86::AddrIndexReg).getReg(); |
| 508 | if (I->getOpcode() == X86::LEA64_32r) { |
| 509 | BaseReg = TRI->getSubReg(Reg: BaseReg, Idx: X86::sub_32bit); |
| 510 | IndexReg = TRI->getSubReg(Reg: IndexReg, Idx: X86::sub_32bit); |
| 511 | } |
| 512 | if (AluDestReg == IndexReg) { |
| 513 | if (BaseReg == IndexReg) |
| 514 | return false; |
| 515 | std::swap(a&: BaseReg, b&: IndexReg); |
| 516 | std::swap(a&: KilledBase, b&: KilledIndex); |
| 517 | } |
| 518 | if (BaseReg == IndexReg) |
| 519 | KilledBase = nullptr; |
| 520 | |
| 521 | // Now it's safe to change instructions. |
| 522 | MachineInstr *NewMI1, *NewMI2; |
| 523 | unsigned NewOpcode = AluI->getOpcode(); |
| 524 | NewMI1 = BuildMI(BB&: MBB, I: InsertPos, MIMD: AluI->getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), |
| 525 | DestReg: AluDestReg) |
| 526 | .addReg(RegNo: AluDestReg, flags: RegState::Kill) |
| 527 | .addReg(RegNo: BaseReg, flags: KilledBase ? RegState::Kill : 0); |
| 528 | NewMI1->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 529 | NewMI2 = BuildMI(BB&: MBB, I: InsertPos, MIMD: AluI->getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), |
| 530 | DestReg: AluDestReg) |
| 531 | .addReg(RegNo: AluDestReg, flags: RegState::Kill) |
| 532 | .addReg(RegNo: IndexReg, flags: KilledIndex ? RegState::Kill : 0); |
| 533 | NewMI2->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 534 | |
| 535 | // Clear the old Kill flags. |
| 536 | if (KilledBase) |
| 537 | KilledBase->setIsKill(false); |
| 538 | if (KilledIndex) |
| 539 | KilledIndex->setIsKill(false); |
| 540 | |
| 541 | MBB.getParent()->substituteDebugValuesForInst(Old: *AluI, New&: *NewMI2, MaxOperand: 1); |
| 542 | MBB.erase(I); |
| 543 | MBB.erase(I: AluI); |
| 544 | I = NewMI1; |
| 545 | return true; |
| 546 | } |
| 547 | |
| 548 | bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I, |
| 549 | MachineBasicBlock &MBB, bool OptIncDec, |
| 550 | bool UseLEAForSP) const { |
| 551 | MachineInstr &MI = *I; |
| 552 | |
| 553 | const MachineOperand &Base = MI.getOperand(i: 1 + X86::AddrBaseReg); |
| 554 | const MachineOperand &Scale = MI.getOperand(i: 1 + X86::AddrScaleAmt); |
| 555 | const MachineOperand &Index = MI.getOperand(i: 1 + X86::AddrIndexReg); |
| 556 | const MachineOperand &Disp = MI.getOperand(i: 1 + X86::AddrDisp); |
| 557 | const MachineOperand &Segment = MI.getOperand(i: 1 + X86::AddrSegmentReg); |
| 558 | |
| 559 | if (Segment.getReg().isValid() || !Disp.isImm() || Scale.getImm() > 1 || |
| 560 | MBB.computeRegisterLiveness(TRI, Reg: X86::EFLAGS, Before: I) != |
| 561 | MachineBasicBlock::LQR_Dead) |
| 562 | return false; |
| 563 | |
| 564 | Register DestReg = MI.getOperand(i: 0).getReg(); |
| 565 | Register BaseReg = Base.getReg(); |
| 566 | Register IndexReg = Index.getReg(); |
| 567 | |
| 568 | // Don't change stack adjustment LEAs. |
| 569 | if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP)) |
| 570 | return false; |
| 571 | |
| 572 | // LEA64_32 has 64-bit operands but 32-bit result. |
| 573 | if (MI.getOpcode() == X86::LEA64_32r) { |
| 574 | if (BaseReg) |
| 575 | BaseReg = TRI->getSubReg(Reg: BaseReg, Idx: X86::sub_32bit); |
| 576 | if (IndexReg) |
| 577 | IndexReg = TRI->getSubReg(Reg: IndexReg, Idx: X86::sub_32bit); |
| 578 | } |
| 579 | |
| 580 | MachineInstr *NewMI = nullptr; |
| 581 | |
| 582 | // Case 1. |
| 583 | // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1 |
| 584 | // which can be turned into add %reg2, %reg1 |
| 585 | if (BaseReg.isValid() && IndexReg.isValid() && Disp.getImm() == 0 && |
| 586 | (DestReg == BaseReg || DestReg == IndexReg)) { |
| 587 | unsigned NewOpcode = getADDrrFromLEA(LEAOpcode: MI.getOpcode()); |
| 588 | if (DestReg != BaseReg) |
| 589 | std::swap(a&: BaseReg, b&: IndexReg); |
| 590 | |
| 591 | if (MI.getOpcode() == X86::LEA64_32r) { |
| 592 | // TODO: Do we need the super register implicit use? |
| 593 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), DestReg) |
| 594 | .addReg(RegNo: BaseReg).addReg(RegNo: IndexReg) |
| 595 | .addReg(RegNo: Base.getReg(), flags: RegState::Implicit) |
| 596 | .addReg(RegNo: Index.getReg(), flags: RegState::Implicit); |
| 597 | } else { |
| 598 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), DestReg) |
| 599 | .addReg(RegNo: BaseReg).addReg(RegNo: IndexReg); |
| 600 | } |
| 601 | } else if (DestReg == BaseReg && !IndexReg) { |
| 602 | // Case 2. |
| 603 | // This is an LEA with only a base register and a displacement, |
| 604 | // We can use ADDri or INC/DEC. |
| 605 | |
| 606 | // Does this LEA have one these forms: |
| 607 | // lea %reg, 1(%reg) |
| 608 | // lea %reg, -1(%reg) |
| 609 | if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) { |
| 610 | bool IsINC = Disp.getImm() == 1; |
| 611 | unsigned NewOpcode = getINCDECFromLEA(LEAOpcode: MI.getOpcode(), IsINC); |
| 612 | |
| 613 | if (MI.getOpcode() == X86::LEA64_32r) { |
| 614 | // TODO: Do we need the super register implicit use? |
| 615 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), DestReg) |
| 616 | .addReg(RegNo: BaseReg).addReg(RegNo: Base.getReg(), flags: RegState::Implicit); |
| 617 | } else { |
| 618 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), DestReg) |
| 619 | .addReg(RegNo: BaseReg); |
| 620 | } |
| 621 | } else { |
| 622 | unsigned NewOpcode = getADDriFromLEA(LEAOpcode: MI.getOpcode(), Offset: Disp); |
| 623 | if (MI.getOpcode() == X86::LEA64_32r) { |
| 624 | // TODO: Do we need the super register implicit use? |
| 625 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), DestReg) |
| 626 | .addReg(RegNo: BaseReg).addImm(Val: Disp.getImm()) |
| 627 | .addReg(RegNo: Base.getReg(), flags: RegState::Implicit); |
| 628 | } else { |
| 629 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpcode), DestReg) |
| 630 | .addReg(RegNo: BaseReg).addImm(Val: Disp.getImm()); |
| 631 | } |
| 632 | } |
| 633 | } else if (BaseReg.isValid() && IndexReg.isValid() && Disp.getImm() == 0) { |
| 634 | // Case 3. |
| 635 | // Look for and transform the sequence |
| 636 | // lea (reg1, reg2), reg3 |
| 637 | // sub reg3, reg4 |
| 638 | return optLEAALU(I, MBB); |
| 639 | } else |
| 640 | return false; |
| 641 | |
| 642 | MBB.getParent()->substituteDebugValuesForInst(Old: *I, New&: *NewMI, MaxOperand: 1); |
| 643 | MBB.erase(I); |
| 644 | I = NewMI; |
| 645 | return true; |
| 646 | } |
| 647 | |
| 648 | void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I, |
| 649 | MachineBasicBlock &MBB) { |
| 650 | // Process a load, store, or LEA instruction. |
| 651 | MachineInstr &MI = *I; |
| 652 | const MCInstrDesc &Desc = MI.getDesc(); |
| 653 | int AddrOffset = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags); |
| 654 | if (AddrOffset >= 0) { |
| 655 | AddrOffset += X86II::getOperandBias(Desc); |
| 656 | MachineOperand &p = MI.getOperand(i: AddrOffset + X86::AddrBaseReg); |
| 657 | if (p.isReg() && p.getReg() != X86::ESP) { |
| 658 | seekLEAFixup(p, I, MBB); |
| 659 | } |
| 660 | MachineOperand &q = MI.getOperand(i: AddrOffset + X86::AddrIndexReg); |
| 661 | if (q.isReg() && q.getReg() != X86::ESP) { |
| 662 | seekLEAFixup(p&: q, I, MBB); |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | void FixupLEAPass::seekLEAFixup(MachineOperand &p, |
| 668 | MachineBasicBlock::iterator &I, |
| 669 | MachineBasicBlock &MBB) { |
| 670 | MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB); |
| 671 | if (MBI != MachineBasicBlock::iterator()) { |
| 672 | MachineInstr *NewMI = postRAConvertToLEA(MBB, MBBI&: MBI); |
| 673 | if (NewMI) { |
| 674 | ++NumLEAs; |
| 675 | LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:" ; MBI->dump();); |
| 676 | // now to replace with an equivalent LEA... |
| 677 | LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: " ; NewMI->dump();); |
| 678 | MBB.getParent()->substituteDebugValuesForInst(Old: *MBI, New&: *NewMI, MaxOperand: 1); |
| 679 | MBB.erase(I: MBI); |
| 680 | MachineBasicBlock::iterator J = |
| 681 | static_cast<MachineBasicBlock::iterator>(NewMI); |
| 682 | processInstruction(I&: J, MBB); |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I, |
| 688 | MachineBasicBlock &MBB) { |
| 689 | MachineInstr &MI = *I; |
| 690 | const unsigned Opcode = MI.getOpcode(); |
| 691 | |
| 692 | const MachineOperand &Dst = MI.getOperand(i: 0); |
| 693 | const MachineOperand &Base = MI.getOperand(i: 1 + X86::AddrBaseReg); |
| 694 | const MachineOperand &Scale = MI.getOperand(i: 1 + X86::AddrScaleAmt); |
| 695 | const MachineOperand &Index = MI.getOperand(i: 1 + X86::AddrIndexReg); |
| 696 | const MachineOperand &Offset = MI.getOperand(i: 1 + X86::AddrDisp); |
| 697 | const MachineOperand &Segment = MI.getOperand(i: 1 + X86::AddrSegmentReg); |
| 698 | |
| 699 | if (Segment.getReg().isValid() || !Offset.isImm() || |
| 700 | MBB.computeRegisterLiveness(TRI, Reg: X86::EFLAGS, Before: I, Neighborhood: 4) != |
| 701 | MachineBasicBlock::LQR_Dead) |
| 702 | return; |
| 703 | const Register DstR = Dst.getReg(); |
| 704 | const Register SrcR1 = Base.getReg(); |
| 705 | const Register SrcR2 = Index.getReg(); |
| 706 | if ((!SrcR1 || SrcR1 != DstR) && (!SrcR2 || SrcR2 != DstR)) |
| 707 | return; |
| 708 | if (Scale.getImm() > 1) |
| 709 | return; |
| 710 | LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:" ; I->dump();); |
| 711 | LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: " ;); |
| 712 | MachineInstr *NewMI = nullptr; |
| 713 | // Make ADD instruction for two registers writing to LEA's destination |
| 714 | if (SrcR1 && SrcR2) { |
| 715 | const MCInstrDesc &ADDrr = TII->get(Opcode: getADDrrFromLEA(LEAOpcode: Opcode)); |
| 716 | const MachineOperand &Src = SrcR1 == DstR ? Index : Base; |
| 717 | NewMI = |
| 718 | BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: ADDrr, DestReg: DstR).addReg(RegNo: DstR).add(MO: Src); |
| 719 | LLVM_DEBUG(NewMI->dump();); |
| 720 | } |
| 721 | // Make ADD instruction for immediate |
| 722 | if (Offset.getImm() != 0) { |
| 723 | const MCInstrDesc &ADDri = |
| 724 | TII->get(Opcode: getADDriFromLEA(LEAOpcode: Opcode, Offset)); |
| 725 | const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index; |
| 726 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: ADDri, DestReg: DstR) |
| 727 | .add(MO: SrcR) |
| 728 | .addImm(Val: Offset.getImm()); |
| 729 | LLVM_DEBUG(NewMI->dump();); |
| 730 | } |
| 731 | if (NewMI) { |
| 732 | MBB.getParent()->substituteDebugValuesForInst(Old: *I, New&: *NewMI, MaxOperand: 1); |
| 733 | MBB.erase(I); |
| 734 | I = NewMI; |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I, |
| 739 | MachineBasicBlock &MBB, |
| 740 | bool OptIncDec) { |
| 741 | MachineInstr &MI = *I; |
| 742 | const unsigned LEAOpcode = MI.getOpcode(); |
| 743 | |
| 744 | const MachineOperand &Dest = MI.getOperand(i: 0); |
| 745 | const MachineOperand &Base = MI.getOperand(i: 1 + X86::AddrBaseReg); |
| 746 | const MachineOperand &Scale = MI.getOperand(i: 1 + X86::AddrScaleAmt); |
| 747 | const MachineOperand &Index = MI.getOperand(i: 1 + X86::AddrIndexReg); |
| 748 | const MachineOperand &Offset = MI.getOperand(i: 1 + X86::AddrDisp); |
| 749 | const MachineOperand &Segment = MI.getOperand(i: 1 + X86::AddrSegmentReg); |
| 750 | |
| 751 | if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) || |
| 752 | MBB.computeRegisterLiveness(TRI, Reg: X86::EFLAGS, Before: I, Neighborhood: 4) != |
| 753 | MachineBasicBlock::LQR_Dead || |
| 754 | Segment.getReg().isValid()) |
| 755 | return; |
| 756 | |
| 757 | Register DestReg = Dest.getReg(); |
| 758 | Register BaseReg = Base.getReg(); |
| 759 | Register IndexReg = Index.getReg(); |
| 760 | |
| 761 | if (MI.getOpcode() == X86::LEA64_32r) { |
| 762 | if (BaseReg) |
| 763 | BaseReg = TRI->getSubReg(Reg: BaseReg, Idx: X86::sub_32bit); |
| 764 | if (IndexReg) |
| 765 | IndexReg = TRI->getSubReg(Reg: IndexReg, Idx: X86::sub_32bit); |
| 766 | } |
| 767 | |
| 768 | bool IsScale1 = Scale.getImm() == 1; |
| 769 | bool IsInefficientBase = isInefficientLEAReg(Reg: BaseReg); |
| 770 | bool IsInefficientIndex = isInefficientLEAReg(Reg: IndexReg); |
| 771 | |
| 772 | // Skip these cases since it takes more than 2 instructions |
| 773 | // to replace the LEA instruction. |
| 774 | if (IsInefficientBase && DestReg == BaseReg && !IsScale1) |
| 775 | return; |
| 776 | |
| 777 | LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:" ; MI.dump();); |
| 778 | LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: " ;); |
| 779 | |
| 780 | MachineInstr *NewMI = nullptr; |
| 781 | bool BaseOrIndexIsDst = DestReg == BaseReg || DestReg == IndexReg; |
| 782 | // First try and remove the base while sticking with LEA iff base == index and |
| 783 | // scale == 1. We can handle: |
| 784 | // 1. lea D(%base,%index,1) -> lea D(,%index,2) |
| 785 | // 2. lea D(%r13/%rbp,%index) -> lea D(,%index,2) |
| 786 | // Only do this if the LEA would otherwise be split into 2-instruction |
| 787 | // (either it has a an Offset or neither base nor index are dst) |
| 788 | if (IsScale1 && BaseReg == IndexReg && |
| 789 | (hasLEAOffset(Offset) || (IsInefficientBase && !BaseOrIndexIsDst))) { |
| 790 | NewMI = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: LEAOpcode)) |
| 791 | .add(MO: Dest) |
| 792 | .addReg(RegNo: 0) |
| 793 | .addImm(Val: 2) |
| 794 | .add(MO: Index) |
| 795 | .add(MO: Offset) |
| 796 | .add(MO: Segment); |
| 797 | LLVM_DEBUG(NewMI->dump();); |
| 798 | |
| 799 | MBB.getParent()->substituteDebugValuesForInst(Old: *I, New&: *NewMI, MaxOperand: 1); |
| 800 | MBB.erase(I); |
| 801 | I = NewMI; |
| 802 | return; |
| 803 | } else if (IsScale1 && BaseOrIndexIsDst) { |
| 804 | // Try to replace LEA with one or two (for the 3-op LEA case) |
| 805 | // add instructions: |
| 806 | // 1.lea (%base,%index,1), %base => add %index,%base |
| 807 | // 2.lea (%base,%index,1), %index => add %base,%index |
| 808 | |
| 809 | unsigned NewOpc = getADDrrFromLEA(LEAOpcode: MI.getOpcode()); |
| 810 | if (DestReg != BaseReg) |
| 811 | std::swap(a&: BaseReg, b&: IndexReg); |
| 812 | |
| 813 | if (MI.getOpcode() == X86::LEA64_32r) { |
| 814 | // TODO: Do we need the super register implicit use? |
| 815 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg) |
| 816 | .addReg(RegNo: BaseReg) |
| 817 | .addReg(RegNo: IndexReg) |
| 818 | .addReg(RegNo: Base.getReg(), flags: RegState::Implicit) |
| 819 | .addReg(RegNo: Index.getReg(), flags: RegState::Implicit); |
| 820 | } else { |
| 821 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg) |
| 822 | .addReg(RegNo: BaseReg) |
| 823 | .addReg(RegNo: IndexReg); |
| 824 | } |
| 825 | } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) { |
| 826 | // If the base is inefficient try switching the index and base operands, |
| 827 | // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction: |
| 828 | // lea offset(%base,%index,scale),%dst => |
| 829 | // lea (%base,%index,scale); add offset,%dst |
| 830 | NewMI = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: LEAOpcode)) |
| 831 | .add(MO: Dest) |
| 832 | .add(MO: IsInefficientBase ? Index : Base) |
| 833 | .add(MO: Scale) |
| 834 | .add(MO: IsInefficientBase ? Base : Index) |
| 835 | .addImm(Val: 0) |
| 836 | .add(MO: Segment); |
| 837 | LLVM_DEBUG(NewMI->dump();); |
| 838 | } |
| 839 | |
| 840 | // If either replacement succeeded above, add the offset if needed, then |
| 841 | // replace the instruction. |
| 842 | if (NewMI) { |
| 843 | // Create ADD instruction for the Offset in case of 3-Ops LEA. |
| 844 | if (hasLEAOffset(Offset)) { |
| 845 | if (OptIncDec && Offset.isImm() && |
| 846 | (Offset.getImm() == 1 || Offset.getImm() == -1)) { |
| 847 | unsigned NewOpc = |
| 848 | getINCDECFromLEA(LEAOpcode: MI.getOpcode(), IsINC: Offset.getImm() == 1); |
| 849 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg) |
| 850 | .addReg(RegNo: DestReg); |
| 851 | LLVM_DEBUG(NewMI->dump();); |
| 852 | } else { |
| 853 | unsigned NewOpc = getADDriFromLEA(LEAOpcode: MI.getOpcode(), Offset); |
| 854 | NewMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg) |
| 855 | .addReg(RegNo: DestReg) |
| 856 | .add(MO: Offset); |
| 857 | LLVM_DEBUG(NewMI->dump();); |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | MBB.getParent()->substituteDebugValuesForInst(Old: *I, New&: *NewMI, MaxOperand: 1); |
| 862 | MBB.erase(I); |
| 863 | I = NewMI; |
| 864 | return; |
| 865 | } |
| 866 | |
| 867 | // Handle the rest of the cases with inefficient base register: |
| 868 | assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!" ); |
| 869 | assert(IsInefficientBase && "efficient base should be handled already!" ); |
| 870 | |
| 871 | // FIXME: Handle LEA64_32r. |
| 872 | if (LEAOpcode == X86::LEA64_32r) |
| 873 | return; |
| 874 | |
| 875 | // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst |
| 876 | if (IsScale1 && !hasLEAOffset(Offset)) { |
| 877 | bool BIK = Base.isKill() && BaseReg != IndexReg; |
| 878 | TII->copyPhysReg(MBB, MI, DL: MI.getDebugLoc(), DestReg, SrcReg: BaseReg, KillSrc: BIK); |
| 879 | LLVM_DEBUG(MI.getPrevNode()->dump();); |
| 880 | |
| 881 | unsigned NewOpc = getADDrrFromLEA(LEAOpcode: MI.getOpcode()); |
| 882 | NewMI = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg) |
| 883 | .addReg(RegNo: DestReg) |
| 884 | .add(MO: Index); |
| 885 | LLVM_DEBUG(NewMI->dump();); |
| 886 | |
| 887 | MBB.getParent()->substituteDebugValuesForInst(Old: *I, New&: *NewMI, MaxOperand: 1); |
| 888 | MBB.erase(I); |
| 889 | I = NewMI; |
| 890 | return; |
| 891 | } |
| 892 | |
| 893 | // lea offset(%base,%index,scale), %dst => |
| 894 | // lea offset( ,%index,scale), %dst; add %base,%dst |
| 895 | NewMI = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: LEAOpcode)) |
| 896 | .add(MO: Dest) |
| 897 | .addReg(RegNo: 0) |
| 898 | .add(MO: Scale) |
| 899 | .add(MO: Index) |
| 900 | .add(MO: Offset) |
| 901 | .add(MO: Segment); |
| 902 | LLVM_DEBUG(NewMI->dump();); |
| 903 | |
| 904 | unsigned NewOpc = getADDrrFromLEA(LEAOpcode: MI.getOpcode()); |
| 905 | NewMI = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg) |
| 906 | .addReg(RegNo: DestReg) |
| 907 | .add(MO: Base); |
| 908 | LLVM_DEBUG(NewMI->dump();); |
| 909 | |
| 910 | MBB.getParent()->substituteDebugValuesForInst(Old: *I, New&: *NewMI, MaxOperand: 1); |
| 911 | MBB.erase(I); |
| 912 | I = NewMI; |
| 913 | } |
| 914 | |