| 1 | //===- InstCombineCasts.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the visit functions for cast operations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "InstCombineInternal.h" |
| 14 | #include "llvm/ADT/SetVector.h" |
| 15 | #include "llvm/Analysis/ConstantFolding.h" |
| 16 | #include "llvm/IR/DataLayout.h" |
| 17 | #include "llvm/IR/DebugInfo.h" |
| 18 | #include "llvm/IR/PatternMatch.h" |
| 19 | #include "llvm/Support/KnownBits.h" |
| 20 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 21 | #include <optional> |
| 22 | |
| 23 | using namespace llvm; |
| 24 | using namespace PatternMatch; |
| 25 | |
| 26 | #define DEBUG_TYPE "instcombine" |
| 27 | |
| 28 | /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns |
| 29 | /// true for, actually insert the code to evaluate the expression. |
| 30 | Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, |
| 31 | bool isSigned) { |
| 32 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
| 33 | return ConstantFoldIntegerCast(C, DestTy: Ty, IsSigned: isSigned, DL); |
| 34 | |
| 35 | // Otherwise, it must be an instruction. |
| 36 | Instruction *I = cast<Instruction>(Val: V); |
| 37 | Instruction *Res = nullptr; |
| 38 | unsigned Opc = I->getOpcode(); |
| 39 | switch (Opc) { |
| 40 | case Instruction::Add: |
| 41 | case Instruction::Sub: |
| 42 | case Instruction::Mul: |
| 43 | case Instruction::And: |
| 44 | case Instruction::Or: |
| 45 | case Instruction::Xor: |
| 46 | case Instruction::AShr: |
| 47 | case Instruction::LShr: |
| 48 | case Instruction::Shl: |
| 49 | case Instruction::UDiv: |
| 50 | case Instruction::URem: { |
| 51 | Value *LHS = EvaluateInDifferentType(V: I->getOperand(i: 0), Ty, isSigned); |
| 52 | Value *RHS = EvaluateInDifferentType(V: I->getOperand(i: 1), Ty, isSigned); |
| 53 | Res = BinaryOperator::Create(Op: (Instruction::BinaryOps)Opc, S1: LHS, S2: RHS); |
| 54 | if (Opc == Instruction::LShr || Opc == Instruction::AShr) |
| 55 | Res->setIsExact(I->isExact()); |
| 56 | break; |
| 57 | } |
| 58 | case Instruction::Trunc: |
| 59 | case Instruction::ZExt: |
| 60 | case Instruction::SExt: |
| 61 | // If the source type of the cast is the type we're trying for then we can |
| 62 | // just return the source. There's no need to insert it because it is not |
| 63 | // new. |
| 64 | if (I->getOperand(i: 0)->getType() == Ty) |
| 65 | return I->getOperand(i: 0); |
| 66 | |
| 67 | // Otherwise, must be the same type of cast, so just reinsert a new one. |
| 68 | // This also handles the case of zext(trunc(x)) -> zext(x). |
| 69 | Res = CastInst::CreateIntegerCast(S: I->getOperand(i: 0), Ty, |
| 70 | isSigned: Opc == Instruction::SExt); |
| 71 | break; |
| 72 | case Instruction::Select: { |
| 73 | Value *True = EvaluateInDifferentType(V: I->getOperand(i: 1), Ty, isSigned); |
| 74 | Value *False = EvaluateInDifferentType(V: I->getOperand(i: 2), Ty, isSigned); |
| 75 | Res = SelectInst::Create(C: I->getOperand(i: 0), S1: True, S2: False); |
| 76 | break; |
| 77 | } |
| 78 | case Instruction::PHI: { |
| 79 | PHINode *OPN = cast<PHINode>(Val: I); |
| 80 | PHINode *NPN = PHINode::Create(Ty, NumReservedValues: OPN->getNumIncomingValues()); |
| 81 | for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { |
| 82 | Value *V = |
| 83 | EvaluateInDifferentType(V: OPN->getIncomingValue(i), Ty, isSigned); |
| 84 | NPN->addIncoming(V, BB: OPN->getIncomingBlock(i)); |
| 85 | } |
| 86 | Res = NPN; |
| 87 | break; |
| 88 | } |
| 89 | case Instruction::FPToUI: |
| 90 | case Instruction::FPToSI: |
| 91 | Res = CastInst::Create( |
| 92 | static_cast<Instruction::CastOps>(Opc), S: I->getOperand(i: 0), Ty); |
| 93 | break; |
| 94 | case Instruction::Call: |
| 95 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 96 | switch (II->getIntrinsicID()) { |
| 97 | default: |
| 98 | llvm_unreachable("Unsupported call!" ); |
| 99 | case Intrinsic::vscale: { |
| 100 | Function *Fn = Intrinsic::getOrInsertDeclaration( |
| 101 | M: I->getModule(), id: Intrinsic::vscale, Tys: {Ty}); |
| 102 | Res = CallInst::Create(Ty: Fn->getFunctionType(), F: Fn); |
| 103 | break; |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | break; |
| 108 | case Instruction::ShuffleVector: { |
| 109 | auto *ScalarTy = cast<VectorType>(Val: Ty)->getElementType(); |
| 110 | auto *VTy = cast<VectorType>(Val: I->getOperand(i: 0)->getType()); |
| 111 | auto *FixedTy = VectorType::get(ElementType: ScalarTy, EC: VTy->getElementCount()); |
| 112 | Value *Op0 = EvaluateInDifferentType(V: I->getOperand(i: 0), Ty: FixedTy, isSigned); |
| 113 | Value *Op1 = EvaluateInDifferentType(V: I->getOperand(i: 1), Ty: FixedTy, isSigned); |
| 114 | Res = new ShuffleVectorInst(Op0, Op1, |
| 115 | cast<ShuffleVectorInst>(Val: I)->getShuffleMask()); |
| 116 | break; |
| 117 | } |
| 118 | default: |
| 119 | // TODO: Can handle more cases here. |
| 120 | llvm_unreachable("Unreachable!" ); |
| 121 | } |
| 122 | |
| 123 | Res->takeName(V: I); |
| 124 | return InsertNewInstWith(New: Res, Old: I->getIterator()); |
| 125 | } |
| 126 | |
| 127 | Instruction::CastOps |
| 128 | InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, |
| 129 | const CastInst *CI2) { |
| 130 | Type *SrcTy = CI1->getSrcTy(); |
| 131 | Type *MidTy = CI1->getDestTy(); |
| 132 | Type *DstTy = CI2->getDestTy(); |
| 133 | |
| 134 | Instruction::CastOps firstOp = CI1->getOpcode(); |
| 135 | Instruction::CastOps secondOp = CI2->getOpcode(); |
| 136 | Type *SrcIntPtrTy = |
| 137 | SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; |
| 138 | Type *MidIntPtrTy = |
| 139 | MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; |
| 140 | Type *DstIntPtrTy = |
| 141 | DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; |
| 142 | unsigned Res = CastInst::isEliminableCastPair(firstOpcode: firstOp, secondOpcode: secondOp, SrcTy, MidTy, |
| 143 | DstTy, SrcIntPtrTy, MidIntPtrTy, |
| 144 | DstIntPtrTy); |
| 145 | |
| 146 | // We don't want to form an inttoptr or ptrtoint that converts to an integer |
| 147 | // type that differs from the pointer size. |
| 148 | if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || |
| 149 | (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) |
| 150 | Res = 0; |
| 151 | |
| 152 | return Instruction::CastOps(Res); |
| 153 | } |
| 154 | |
| 155 | /// Implement the transforms common to all CastInst visitors. |
| 156 | Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { |
| 157 | Value *Src = CI.getOperand(i_nocapture: 0); |
| 158 | Type *Ty = CI.getType(); |
| 159 | |
| 160 | if (auto *SrcC = dyn_cast<Constant>(Val: Src)) |
| 161 | if (Constant *Res = ConstantFoldCastOperand(Opcode: CI.getOpcode(), C: SrcC, DestTy: Ty, DL)) |
| 162 | return replaceInstUsesWith(I&: CI, V: Res); |
| 163 | |
| 164 | // Try to eliminate a cast of a cast. |
| 165 | if (auto *CSrc = dyn_cast<CastInst>(Val: Src)) { // A->B->C cast |
| 166 | if (Instruction::CastOps NewOpc = isEliminableCastPair(CI1: CSrc, CI2: &CI)) { |
| 167 | // The first cast (CSrc) is eliminable so we need to fix up or replace |
| 168 | // the second cast (CI). CSrc will then have a good chance of being dead. |
| 169 | auto *Res = CastInst::Create(NewOpc, S: CSrc->getOperand(i_nocapture: 0), Ty); |
| 170 | // Point debug users of the dying cast to the new one. |
| 171 | if (CSrc->hasOneUse()) |
| 172 | replaceAllDbgUsesWith(From&: *CSrc, To&: *Res, DomPoint&: CI, DT); |
| 173 | return Res; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | if (auto *Sel = dyn_cast<SelectInst>(Val: Src)) { |
| 178 | // We are casting a select. Try to fold the cast into the select if the |
| 179 | // select does not have a compare instruction with matching operand types |
| 180 | // or the select is likely better done in a narrow type. |
| 181 | // Creating a select with operands that are different sizes than its |
| 182 | // condition may inhibit other folds and lead to worse codegen. |
| 183 | auto *Cmp = dyn_cast<CmpInst>(Val: Sel->getCondition()); |
| 184 | if (!Cmp || Cmp->getOperand(i_nocapture: 0)->getType() != Sel->getType() || |
| 185 | (CI.getOpcode() == Instruction::Trunc && |
| 186 | shouldChangeType(From: CI.getSrcTy(), To: CI.getType()))) { |
| 187 | |
| 188 | // If it's a bitcast involving vectors, make sure it has the same number |
| 189 | // of elements on both sides. |
| 190 | if (CI.getOpcode() != Instruction::BitCast || |
| 191 | match(V: &CI, P: m_ElementWiseBitCast(Op: m_Value()))) { |
| 192 | if (Instruction *NV = FoldOpIntoSelect(Op&: CI, SI: Sel)) { |
| 193 | replaceAllDbgUsesWith(From&: *Sel, To&: *NV, DomPoint&: CI, DT); |
| 194 | return NV; |
| 195 | } |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | // If we are casting a PHI, then fold the cast into the PHI. |
| 201 | if (auto *PN = dyn_cast<PHINode>(Val: Src)) { |
| 202 | // Don't do this if it would create a PHI node with an illegal type from a |
| 203 | // legal type. |
| 204 | if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || |
| 205 | shouldChangeType(From: CI.getSrcTy(), To: CI.getType())) |
| 206 | if (Instruction *NV = foldOpIntoPhi(I&: CI, PN)) |
| 207 | return NV; |
| 208 | } |
| 209 | |
| 210 | // Canonicalize a unary shuffle after the cast if neither operation changes |
| 211 | // the size or element size of the input vector. |
| 212 | // TODO: We could allow size-changing ops if that doesn't harm codegen. |
| 213 | // cast (shuffle X, Mask) --> shuffle (cast X), Mask |
| 214 | Value *X; |
| 215 | ArrayRef<int> Mask; |
| 216 | if (match(V: Src, P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: X), v2: m_Undef(), mask: m_Mask(Mask))))) { |
| 217 | // TODO: Allow scalable vectors? |
| 218 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
| 219 | auto *DestTy = dyn_cast<FixedVectorType>(Val: Ty); |
| 220 | if (SrcTy && DestTy && |
| 221 | SrcTy->getNumElements() == DestTy->getNumElements() && |
| 222 | SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { |
| 223 | Value *CastX = Builder.CreateCast(Op: CI.getOpcode(), V: X, DestTy); |
| 224 | return new ShuffleVectorInst(CastX, Mask); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | return nullptr; |
| 229 | } |
| 230 | |
| 231 | /// Constants and extensions/truncates from the destination type are always |
| 232 | /// free to be evaluated in that type. This is a helper for canEvaluate*. |
| 233 | static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { |
| 234 | if (isa<Constant>(Val: V)) |
| 235 | return match(V, P: m_ImmConstant()); |
| 236 | |
| 237 | Value *X; |
| 238 | if ((match(V, P: m_ZExtOrSExt(Op: m_Value(V&: X))) || match(V, P: m_Trunc(Op: m_Value(V&: X)))) && |
| 239 | X->getType() == Ty) |
| 240 | return true; |
| 241 | |
| 242 | return false; |
| 243 | } |
| 244 | |
| 245 | /// Filter out values that we can not evaluate in the destination type for free. |
| 246 | /// This is a helper for canEvaluate*. |
| 247 | static bool canNotEvaluateInType(Value *V, Type *Ty) { |
| 248 | if (!isa<Instruction>(Val: V)) |
| 249 | return true; |
| 250 | // We don't extend or shrink something that has multiple uses -- doing so |
| 251 | // would require duplicating the instruction which isn't profitable. |
| 252 | if (!V->hasOneUse()) |
| 253 | return true; |
| 254 | |
| 255 | return false; |
| 256 | } |
| 257 | |
| 258 | /// Return true if we can evaluate the specified expression tree as type Ty |
| 259 | /// instead of its larger type, and arrive with the same value. |
| 260 | /// This is used by code that tries to eliminate truncates. |
| 261 | /// |
| 262 | /// Ty will always be a type smaller than V. We should return true if trunc(V) |
| 263 | /// can be computed by computing V in the smaller type. If V is an instruction, |
| 264 | /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only |
| 265 | /// makes sense if x and y can be efficiently truncated. |
| 266 | /// |
| 267 | /// This function works on both vectors and scalars. |
| 268 | /// |
| 269 | static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, |
| 270 | Instruction *CxtI) { |
| 271 | if (canAlwaysEvaluateInType(V, Ty)) |
| 272 | return true; |
| 273 | if (canNotEvaluateInType(V, Ty)) |
| 274 | return false; |
| 275 | |
| 276 | auto *I = cast<Instruction>(Val: V); |
| 277 | Type *OrigTy = V->getType(); |
| 278 | switch (I->getOpcode()) { |
| 279 | case Instruction::Add: |
| 280 | case Instruction::Sub: |
| 281 | case Instruction::Mul: |
| 282 | case Instruction::And: |
| 283 | case Instruction::Or: |
| 284 | case Instruction::Xor: |
| 285 | // These operators can all arbitrarily be extended or truncated. |
| 286 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 287 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 288 | |
| 289 | case Instruction::UDiv: |
| 290 | case Instruction::URem: { |
| 291 | // UDiv and URem can be truncated if all the truncated bits are zero. |
| 292 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 293 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 294 | assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!" ); |
| 295 | APInt Mask = APInt::getBitsSetFrom(numBits: OrigBitWidth, loBit: BitWidth); |
| 296 | // Do not preserve the original context instruction. Simplifying div/rem |
| 297 | // based on later context may introduce a trap. |
| 298 | if (IC.MaskedValueIsZero(V: I->getOperand(i: 0), Mask, CxtI: I) && |
| 299 | IC.MaskedValueIsZero(V: I->getOperand(i: 1), Mask, CxtI: I)) { |
| 300 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI: I) && |
| 301 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI: I); |
| 302 | } |
| 303 | break; |
| 304 | } |
| 305 | case Instruction::Shl: { |
| 306 | // If we are truncating the result of this SHL, and if it's a shift of an |
| 307 | // inrange amount, we can always perform a SHL in a smaller type. |
| 308 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 309 | KnownBits AmtKnownBits = |
| 310 | llvm::computeKnownBits(V: I->getOperand(i: 1), DL: IC.getDataLayout()); |
| 311 | if (AmtKnownBits.getMaxValue().ult(RHS: BitWidth)) |
| 312 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 313 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 314 | break; |
| 315 | } |
| 316 | case Instruction::LShr: { |
| 317 | // If this is a truncate of a logical shr, we can truncate it to a smaller |
| 318 | // lshr iff we know that the bits we would otherwise be shifting in are |
| 319 | // already zeros. |
| 320 | // TODO: It is enough to check that the bits we would be shifting in are |
| 321 | // zero - use AmtKnownBits.getMaxValue(). |
| 322 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 323 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 324 | KnownBits AmtKnownBits = IC.computeKnownBits(V: I->getOperand(i: 1), CxtI); |
| 325 | APInt MaxShiftAmt = AmtKnownBits.getMaxValue(); |
| 326 | APInt ShiftedBits = APInt::getBitsSetFrom(numBits: OrigBitWidth, loBit: BitWidth); |
| 327 | if (MaxShiftAmt.ult(RHS: BitWidth)) { |
| 328 | // If the only user is a trunc then we can narrow the shift if any new |
| 329 | // MSBs are not going to be used. |
| 330 | if (auto *Trunc = dyn_cast<TruncInst>(Val: V->user_back())) { |
| 331 | auto DemandedBits = Trunc->getType()->getScalarSizeInBits(); |
| 332 | if ((MaxShiftAmt + DemandedBits).ule(RHS: BitWidth)) |
| 333 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 334 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 335 | } |
| 336 | if (IC.MaskedValueIsZero(V: I->getOperand(i: 0), Mask: ShiftedBits, CxtI)) |
| 337 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 338 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 339 | } |
| 340 | break; |
| 341 | } |
| 342 | case Instruction::AShr: { |
| 343 | // If this is a truncate of an arithmetic shr, we can truncate it to a |
| 344 | // smaller ashr iff we know that all the bits from the sign bit of the |
| 345 | // original type and the sign bit of the truncate type are similar. |
| 346 | // TODO: It is enough to check that the bits we would be shifting in are |
| 347 | // similar to sign bit of the truncate type. |
| 348 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 349 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 350 | KnownBits AmtKnownBits = |
| 351 | llvm::computeKnownBits(V: I->getOperand(i: 1), DL: IC.getDataLayout()); |
| 352 | unsigned ShiftedBits = OrigBitWidth - BitWidth; |
| 353 | if (AmtKnownBits.getMaxValue().ult(RHS: BitWidth) && |
| 354 | ShiftedBits < IC.ComputeNumSignBits(Op: I->getOperand(i: 0), CxtI)) |
| 355 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 356 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 357 | break; |
| 358 | } |
| 359 | case Instruction::Trunc: |
| 360 | // trunc(trunc(x)) -> trunc(x) |
| 361 | return true; |
| 362 | case Instruction::ZExt: |
| 363 | case Instruction::SExt: |
| 364 | // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest |
| 365 | // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest |
| 366 | return true; |
| 367 | case Instruction::Select: { |
| 368 | SelectInst *SI = cast<SelectInst>(Val: I); |
| 369 | return canEvaluateTruncated(V: SI->getTrueValue(), Ty, IC, CxtI) && |
| 370 | canEvaluateTruncated(V: SI->getFalseValue(), Ty, IC, CxtI); |
| 371 | } |
| 372 | case Instruction::PHI: { |
| 373 | // We can change a phi if we can change all operands. Note that we never |
| 374 | // get into trouble with cyclic PHIs here because we only consider |
| 375 | // instructions with a single use. |
| 376 | PHINode *PN = cast<PHINode>(Val: I); |
| 377 | for (Value *IncValue : PN->incoming_values()) |
| 378 | if (!canEvaluateTruncated(V: IncValue, Ty, IC, CxtI)) |
| 379 | return false; |
| 380 | return true; |
| 381 | } |
| 382 | case Instruction::FPToUI: |
| 383 | case Instruction::FPToSI: { |
| 384 | // If the integer type can hold the max FP value, it is safe to cast |
| 385 | // directly to that type. Otherwise, we may create poison via overflow |
| 386 | // that did not exist in the original code. |
| 387 | Type *InputTy = I->getOperand(i: 0)->getType()->getScalarType(); |
| 388 | const fltSemantics &Semantics = InputTy->getFltSemantics(); |
| 389 | uint32_t MinBitWidth = |
| 390 | APFloatBase::semanticsIntSizeInBits(Semantics, |
| 391 | I->getOpcode() == Instruction::FPToSI); |
| 392 | return Ty->getScalarSizeInBits() >= MinBitWidth; |
| 393 | } |
| 394 | case Instruction::ShuffleVector: |
| 395 | return canEvaluateTruncated(V: I->getOperand(i: 0), Ty, IC, CxtI) && |
| 396 | canEvaluateTruncated(V: I->getOperand(i: 1), Ty, IC, CxtI); |
| 397 | default: |
| 398 | // TODO: Can handle more cases here. |
| 399 | break; |
| 400 | } |
| 401 | |
| 402 | return false; |
| 403 | } |
| 404 | |
| 405 | /// Given a vector that is bitcast to an integer, optionally logically |
| 406 | /// right-shifted, and truncated, convert it to an extractelement. |
| 407 | /// Example (big endian): |
| 408 | /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 |
| 409 | /// ---> |
| 410 | /// extractelement <4 x i32> %X, 1 |
| 411 | static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, |
| 412 | InstCombinerImpl &IC) { |
| 413 | Value *TruncOp = Trunc.getOperand(i_nocapture: 0); |
| 414 | Type *DestType = Trunc.getType(); |
| 415 | if (!TruncOp->hasOneUse() || !isa<IntegerType>(Val: DestType)) |
| 416 | return nullptr; |
| 417 | |
| 418 | Value *VecInput = nullptr; |
| 419 | ConstantInt *ShiftVal = nullptr; |
| 420 | if (!match(V: TruncOp, P: m_CombineOr(L: m_BitCast(Op: m_Value(V&: VecInput)), |
| 421 | R: m_LShr(L: m_BitCast(Op: m_Value(V&: VecInput)), |
| 422 | R: m_ConstantInt(CI&: ShiftVal)))) || |
| 423 | !isa<VectorType>(Val: VecInput->getType())) |
| 424 | return nullptr; |
| 425 | |
| 426 | VectorType *VecType = cast<VectorType>(Val: VecInput->getType()); |
| 427 | unsigned VecWidth = VecType->getPrimitiveSizeInBits(); |
| 428 | unsigned DestWidth = DestType->getPrimitiveSizeInBits(); |
| 429 | unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; |
| 430 | |
| 431 | if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) |
| 432 | return nullptr; |
| 433 | |
| 434 | // If the element type of the vector doesn't match the result type, |
| 435 | // bitcast it to a vector type that we can extract from. |
| 436 | unsigned NumVecElts = VecWidth / DestWidth; |
| 437 | if (VecType->getElementType() != DestType) { |
| 438 | VecType = FixedVectorType::get(ElementType: DestType, NumElts: NumVecElts); |
| 439 | VecInput = IC.Builder.CreateBitCast(V: VecInput, DestTy: VecType, Name: "bc" ); |
| 440 | } |
| 441 | |
| 442 | unsigned Elt = ShiftAmount / DestWidth; |
| 443 | if (IC.getDataLayout().isBigEndian()) |
| 444 | Elt = NumVecElts - 1 - Elt; |
| 445 | |
| 446 | return ExtractElementInst::Create(Vec: VecInput, Idx: IC.Builder.getInt32(C: Elt)); |
| 447 | } |
| 448 | |
| 449 | /// Whenever an element is extracted from a vector, optionally shifted down, and |
| 450 | /// then truncated, canonicalize by converting it to a bitcast followed by an |
| 451 | /// extractelement. |
| 452 | /// |
| 453 | /// Examples (little endian): |
| 454 | /// trunc (extractelement <4 x i64> %X, 0) to i32 |
| 455 | /// ---> |
| 456 | /// extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 |
| 457 | /// |
| 458 | /// trunc (lshr (extractelement <4 x i32> %X, 0), 8) to i8 |
| 459 | /// ---> |
| 460 | /// extractelement <16 x i8> (bitcast <4 x i32> %X to <16 x i8>), i32 1 |
| 461 | static Instruction *foldVecExtTruncToExtElt(TruncInst &Trunc, |
| 462 | InstCombinerImpl &IC) { |
| 463 | Value *Src = Trunc.getOperand(i_nocapture: 0); |
| 464 | Type *SrcType = Src->getType(); |
| 465 | Type *DstType = Trunc.getType(); |
| 466 | |
| 467 | // Only attempt this if we have simple aliasing of the vector elements. |
| 468 | // A badly fit destination size would result in an invalid cast. |
| 469 | unsigned SrcBits = SrcType->getScalarSizeInBits(); |
| 470 | unsigned DstBits = DstType->getScalarSizeInBits(); |
| 471 | unsigned TruncRatio = SrcBits / DstBits; |
| 472 | if ((SrcBits % DstBits) != 0) |
| 473 | return nullptr; |
| 474 | |
| 475 | Value *VecOp; |
| 476 | ConstantInt *Cst; |
| 477 | const APInt *ShiftAmount = nullptr; |
| 478 | if (!match(V: Src, P: m_OneUse(SubPattern: m_ExtractElt(Val: m_Value(V&: VecOp), Idx: m_ConstantInt(CI&: Cst)))) && |
| 479 | !match(V: Src, |
| 480 | P: m_OneUse(SubPattern: m_LShr(L: m_ExtractElt(Val: m_Value(V&: VecOp), Idx: m_ConstantInt(CI&: Cst)), |
| 481 | R: m_APInt(Res&: ShiftAmount))))) |
| 482 | return nullptr; |
| 483 | |
| 484 | auto *VecOpTy = cast<VectorType>(Val: VecOp->getType()); |
| 485 | auto VecElts = VecOpTy->getElementCount(); |
| 486 | |
| 487 | uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; |
| 488 | uint64_t VecOpIdx = Cst->getZExtValue(); |
| 489 | uint64_t NewIdx = IC.getDataLayout().isBigEndian() |
| 490 | ? (VecOpIdx + 1) * TruncRatio - 1 |
| 491 | : VecOpIdx * TruncRatio; |
| 492 | |
| 493 | // Adjust index by the whole number of truncated elements. |
| 494 | if (ShiftAmount) { |
| 495 | // Check shift amount is in range and shifts a whole number of truncated |
| 496 | // elements. |
| 497 | if (ShiftAmount->uge(RHS: SrcBits) || ShiftAmount->urem(RHS: DstBits) != 0) |
| 498 | return nullptr; |
| 499 | |
| 500 | uint64_t IdxOfs = ShiftAmount->udiv(RHS: DstBits).getZExtValue(); |
| 501 | NewIdx = IC.getDataLayout().isBigEndian() ? (NewIdx - IdxOfs) |
| 502 | : (NewIdx + IdxOfs); |
| 503 | } |
| 504 | |
| 505 | assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && |
| 506 | NewIdx <= std::numeric_limits<uint32_t>::max() && "overflow 32-bits" ); |
| 507 | |
| 508 | auto *BitCastTo = |
| 509 | VectorType::get(ElementType: DstType, NumElements: BitCastNumElts, Scalable: VecElts.isScalable()); |
| 510 | Value *BitCast = IC.Builder.CreateBitCast(V: VecOp, DestTy: BitCastTo); |
| 511 | return ExtractElementInst::Create(Vec: BitCast, Idx: IC.Builder.getInt32(C: NewIdx)); |
| 512 | } |
| 513 | |
| 514 | /// Funnel/Rotate left/right may occur in a wider type than necessary because of |
| 515 | /// type promotion rules. Try to narrow the inputs and convert to funnel shift. |
| 516 | Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { |
| 517 | assert((isa<VectorType>(Trunc.getSrcTy()) || |
| 518 | shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && |
| 519 | "Don't narrow to an illegal scalar type" ); |
| 520 | |
| 521 | // Bail out on strange types. It is possible to handle some of these patterns |
| 522 | // even with non-power-of-2 sizes, but it is not a likely scenario. |
| 523 | Type *DestTy = Trunc.getType(); |
| 524 | unsigned NarrowWidth = DestTy->getScalarSizeInBits(); |
| 525 | unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); |
| 526 | if (!isPowerOf2_32(Value: NarrowWidth)) |
| 527 | return nullptr; |
| 528 | |
| 529 | // First, find an or'd pair of opposite shifts: |
| 530 | // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) |
| 531 | BinaryOperator *Or0, *Or1; |
| 532 | if (!match(V: Trunc.getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_Or(L: m_BinOp(I&: Or0), R: m_BinOp(I&: Or1))))) |
| 533 | return nullptr; |
| 534 | |
| 535 | Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; |
| 536 | if (!match(V: Or0, P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: ShVal0), R: m_Value(V&: ShAmt0)))) || |
| 537 | !match(V: Or1, P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: ShVal1), R: m_Value(V&: ShAmt1)))) || |
| 538 | Or0->getOpcode() == Or1->getOpcode()) |
| 539 | return nullptr; |
| 540 | |
| 541 | // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). |
| 542 | if (Or0->getOpcode() == BinaryOperator::LShr) { |
| 543 | std::swap(a&: Or0, b&: Or1); |
| 544 | std::swap(a&: ShVal0, b&: ShVal1); |
| 545 | std::swap(a&: ShAmt0, b&: ShAmt1); |
| 546 | } |
| 547 | assert(Or0->getOpcode() == BinaryOperator::Shl && |
| 548 | Or1->getOpcode() == BinaryOperator::LShr && |
| 549 | "Illegal or(shift,shift) pair" ); |
| 550 | |
| 551 | // Match the shift amount operands for a funnel/rotate pattern. This always |
| 552 | // matches a subtraction on the R operand. |
| 553 | auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { |
| 554 | // The shift amounts may add up to the narrow bit width: |
| 555 | // (shl ShVal0, L) | (lshr ShVal1, Width - L) |
| 556 | // If this is a funnel shift (different operands are shifted), then the |
| 557 | // shift amount can not over-shift (create poison) in the narrow type. |
| 558 | unsigned MaxShiftAmountWidth = Log2_32(Value: NarrowWidth); |
| 559 | APInt HiBitMask = ~APInt::getLowBitsSet(numBits: WideWidth, loBitsSet: MaxShiftAmountWidth); |
| 560 | if (ShVal0 == ShVal1 || MaskedValueIsZero(V: L, Mask: HiBitMask)) |
| 561 | if (match(V: R, P: m_OneUse(SubPattern: m_Sub(L: m_SpecificInt(V: Width), R: m_Specific(V: L))))) |
| 562 | return L; |
| 563 | |
| 564 | // The following patterns currently only work for rotation patterns. |
| 565 | // TODO: Add more general funnel-shift compatible patterns. |
| 566 | if (ShVal0 != ShVal1) |
| 567 | return nullptr; |
| 568 | |
| 569 | // The shift amount may be masked with negation: |
| 570 | // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) |
| 571 | Value *X; |
| 572 | unsigned Mask = Width - 1; |
| 573 | if (match(V: L, P: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask))) && |
| 574 | match(V: R, P: m_And(L: m_Neg(V: m_Specific(V: X)), R: m_SpecificInt(V: Mask)))) |
| 575 | return X; |
| 576 | |
| 577 | // Same as above, but the shift amount may be extended after masking: |
| 578 | if (match(V: L, P: m_ZExt(Op: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask)))) && |
| 579 | match(V: R, P: m_ZExt(Op: m_And(L: m_Neg(V: m_Specific(V: X)), R: m_SpecificInt(V: Mask))))) |
| 580 | return X; |
| 581 | |
| 582 | return nullptr; |
| 583 | }; |
| 584 | |
| 585 | Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); |
| 586 | bool IsFshl = true; // Sub on LSHR. |
| 587 | if (!ShAmt) { |
| 588 | ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); |
| 589 | IsFshl = false; // Sub on SHL. |
| 590 | } |
| 591 | if (!ShAmt) |
| 592 | return nullptr; |
| 593 | |
| 594 | // The right-shifted value must have high zeros in the wide type (for example |
| 595 | // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are |
| 596 | // truncated, so those do not matter. |
| 597 | APInt HiBitMask = APInt::getHighBitsSet(numBits: WideWidth, hiBitsSet: WideWidth - NarrowWidth); |
| 598 | if (!MaskedValueIsZero(V: ShVal1, Mask: HiBitMask, CxtI: &Trunc)) |
| 599 | return nullptr; |
| 600 | |
| 601 | // Adjust the width of ShAmt for narrowed funnel shift operation: |
| 602 | // - Zero-extend if ShAmt is narrower than the destination type. |
| 603 | // - Truncate if ShAmt is wider, discarding non-significant high-order bits. |
| 604 | // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal), |
| 605 | // zext/trunc(ShAmt)). |
| 606 | Value *NarrowShAmt = Builder.CreateZExtOrTrunc(V: ShAmt, DestTy); |
| 607 | |
| 608 | Value *X, *Y; |
| 609 | X = Y = Builder.CreateTrunc(V: ShVal0, DestTy); |
| 610 | if (ShVal0 != ShVal1) |
| 611 | Y = Builder.CreateTrunc(V: ShVal1, DestTy); |
| 612 | Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; |
| 613 | Function *F = |
| 614 | Intrinsic::getOrInsertDeclaration(M: Trunc.getModule(), id: IID, Tys: DestTy); |
| 615 | return CallInst::Create(Func: F, Args: {X, Y, NarrowShAmt}); |
| 616 | } |
| 617 | |
| 618 | /// Try to narrow the width of math or bitwise logic instructions by pulling a |
| 619 | /// truncate ahead of binary operators. |
| 620 | Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { |
| 621 | Type *SrcTy = Trunc.getSrcTy(); |
| 622 | Type *DestTy = Trunc.getType(); |
| 623 | unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| 624 | unsigned DestWidth = DestTy->getScalarSizeInBits(); |
| 625 | |
| 626 | if (!isa<VectorType>(Val: SrcTy) && !shouldChangeType(From: SrcTy, To: DestTy)) |
| 627 | return nullptr; |
| 628 | |
| 629 | BinaryOperator *BinOp; |
| 630 | if (!match(V: Trunc.getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BinOp(I&: BinOp)))) |
| 631 | return nullptr; |
| 632 | |
| 633 | Value *BinOp0 = BinOp->getOperand(i_nocapture: 0); |
| 634 | Value *BinOp1 = BinOp->getOperand(i_nocapture: 1); |
| 635 | switch (BinOp->getOpcode()) { |
| 636 | case Instruction::And: |
| 637 | case Instruction::Or: |
| 638 | case Instruction::Xor: |
| 639 | case Instruction::Add: |
| 640 | case Instruction::Sub: |
| 641 | case Instruction::Mul: { |
| 642 | Constant *C; |
| 643 | if (match(V: BinOp0, P: m_Constant(C))) { |
| 644 | // trunc (binop C, X) --> binop (trunc C', X) |
| 645 | Constant *NarrowC = ConstantExpr::getTrunc(C, Ty: DestTy); |
| 646 | Value *TruncX = Builder.CreateTrunc(V: BinOp1, DestTy); |
| 647 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: NarrowC, S2: TruncX); |
| 648 | } |
| 649 | if (match(V: BinOp1, P: m_Constant(C))) { |
| 650 | // trunc (binop X, C) --> binop (trunc X, C') |
| 651 | Constant *NarrowC = ConstantExpr::getTrunc(C, Ty: DestTy); |
| 652 | Value *TruncX = Builder.CreateTrunc(V: BinOp0, DestTy); |
| 653 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: TruncX, S2: NarrowC); |
| 654 | } |
| 655 | Value *X; |
| 656 | if (match(V: BinOp0, P: m_ZExtOrSExt(Op: m_Value(V&: X))) && X->getType() == DestTy) { |
| 657 | // trunc (binop (ext X), Y) --> binop X, (trunc Y) |
| 658 | Value *NarrowOp1 = Builder.CreateTrunc(V: BinOp1, DestTy); |
| 659 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: X, S2: NarrowOp1); |
| 660 | } |
| 661 | if (match(V: BinOp1, P: m_ZExtOrSExt(Op: m_Value(V&: X))) && X->getType() == DestTy) { |
| 662 | // trunc (binop Y, (ext X)) --> binop (trunc Y), X |
| 663 | Value *NarrowOp0 = Builder.CreateTrunc(V: BinOp0, DestTy); |
| 664 | return BinaryOperator::Create(Op: BinOp->getOpcode(), S1: NarrowOp0, S2: X); |
| 665 | } |
| 666 | break; |
| 667 | } |
| 668 | case Instruction::LShr: |
| 669 | case Instruction::AShr: { |
| 670 | // trunc (*shr (trunc A), C) --> trunc(*shr A, C) |
| 671 | Value *A; |
| 672 | Constant *C; |
| 673 | if (match(V: BinOp0, P: m_Trunc(Op: m_Value(V&: A))) && match(V: BinOp1, P: m_Constant(C))) { |
| 674 | unsigned MaxShiftAmt = SrcWidth - DestWidth; |
| 675 | // If the shift is small enough, all zero/sign bits created by the shift |
| 676 | // are removed by the trunc. |
| 677 | if (match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULE, |
| 678 | Threshold: APInt(SrcWidth, MaxShiftAmt)))) { |
| 679 | auto *OldShift = cast<Instruction>(Val: Trunc.getOperand(i_nocapture: 0)); |
| 680 | bool IsExact = OldShift->isExact(); |
| 681 | if (Constant *ShAmt = ConstantFoldIntegerCast(C, DestTy: A->getType(), |
| 682 | /*IsSigned*/ true, DL)) { |
| 683 | ShAmt = Constant::mergeUndefsWith(C: ShAmt, Other: C); |
| 684 | Value *Shift = |
| 685 | OldShift->getOpcode() == Instruction::AShr |
| 686 | ? Builder.CreateAShr(LHS: A, RHS: ShAmt, Name: OldShift->getName(), isExact: IsExact) |
| 687 | : Builder.CreateLShr(LHS: A, RHS: ShAmt, Name: OldShift->getName(), isExact: IsExact); |
| 688 | return CastInst::CreateTruncOrBitCast(S: Shift, Ty: DestTy); |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | break; |
| 693 | } |
| 694 | default: break; |
| 695 | } |
| 696 | |
| 697 | if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) |
| 698 | return NarrowOr; |
| 699 | |
| 700 | return nullptr; |
| 701 | } |
| 702 | |
| 703 | /// Try to narrow the width of a splat shuffle. This could be generalized to any |
| 704 | /// shuffle with a constant operand, but we limit the transform to avoid |
| 705 | /// creating a shuffle type that targets may not be able to lower effectively. |
| 706 | static Instruction *shrinkSplatShuffle(TruncInst &Trunc, |
| 707 | InstCombiner::BuilderTy &Builder) { |
| 708 | auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: Trunc.getOperand(i_nocapture: 0)); |
| 709 | if (Shuf && Shuf->hasOneUse() && match(V: Shuf->getOperand(i_nocapture: 1), P: m_Undef()) && |
| 710 | all_equal(Range: Shuf->getShuffleMask()) && |
| 711 | Shuf->getType() == Shuf->getOperand(i_nocapture: 0)->getType()) { |
| 712 | // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask |
| 713 | // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask |
| 714 | Value *NarrowOp = Builder.CreateTrunc(V: Shuf->getOperand(i_nocapture: 0), DestTy: Trunc.getType()); |
| 715 | return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); |
| 716 | } |
| 717 | |
| 718 | return nullptr; |
| 719 | } |
| 720 | |
| 721 | /// Try to narrow the width of an insert element. This could be generalized for |
| 722 | /// any vector constant, but we limit the transform to insertion into undef to |
| 723 | /// avoid potential backend problems from unsupported insertion widths. This |
| 724 | /// could also be extended to handle the case of inserting a scalar constant |
| 725 | /// into a vector variable. |
| 726 | static Instruction *shrinkInsertElt(CastInst &Trunc, |
| 727 | InstCombiner::BuilderTy &Builder) { |
| 728 | Instruction::CastOps Opcode = Trunc.getOpcode(); |
| 729 | assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && |
| 730 | "Unexpected instruction for shrinking" ); |
| 731 | |
| 732 | auto *InsElt = dyn_cast<InsertElementInst>(Val: Trunc.getOperand(i_nocapture: 0)); |
| 733 | if (!InsElt || !InsElt->hasOneUse()) |
| 734 | return nullptr; |
| 735 | |
| 736 | Type *DestTy = Trunc.getType(); |
| 737 | Type *DestScalarTy = DestTy->getScalarType(); |
| 738 | Value *VecOp = InsElt->getOperand(i_nocapture: 0); |
| 739 | Value *ScalarOp = InsElt->getOperand(i_nocapture: 1); |
| 740 | Value *Index = InsElt->getOperand(i_nocapture: 2); |
| 741 | |
| 742 | if (match(V: VecOp, P: m_Undef())) { |
| 743 | // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index |
| 744 | // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index |
| 745 | UndefValue *NarrowUndef = UndefValue::get(T: DestTy); |
| 746 | Value *NarrowOp = Builder.CreateCast(Op: Opcode, V: ScalarOp, DestTy: DestScalarTy); |
| 747 | return InsertElementInst::Create(Vec: NarrowUndef, NewElt: NarrowOp, Idx: Index); |
| 748 | } |
| 749 | |
| 750 | return nullptr; |
| 751 | } |
| 752 | |
| 753 | Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { |
| 754 | if (Instruction *Result = commonCastTransforms(CI&: Trunc)) |
| 755 | return Result; |
| 756 | |
| 757 | Value *Src = Trunc.getOperand(i_nocapture: 0); |
| 758 | Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); |
| 759 | unsigned DestWidth = DestTy->getScalarSizeInBits(); |
| 760 | unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| 761 | |
| 762 | // Attempt to truncate the entire input expression tree to the destination |
| 763 | // type. Only do this if the dest type is a simple type, don't convert the |
| 764 | // expression tree to something weird like i93 unless the source is also |
| 765 | // strange. |
| 766 | if ((DestTy->isVectorTy() || shouldChangeType(From: SrcTy, To: DestTy)) && |
| 767 | canEvaluateTruncated(V: Src, Ty: DestTy, IC&: *this, CxtI: &Trunc)) { |
| 768 | |
| 769 | // If this cast is a truncate, evaluting in a different type always |
| 770 | // eliminates the cast, so it is always a win. |
| 771 | LLVM_DEBUG( |
| 772 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 773 | " to avoid cast: " |
| 774 | << Trunc << '\n'); |
| 775 | Value *Res = EvaluateInDifferentType(V: Src, Ty: DestTy, isSigned: false); |
| 776 | assert(Res->getType() == DestTy); |
| 777 | return replaceInstUsesWith(I&: Trunc, V: Res); |
| 778 | } |
| 779 | |
| 780 | // For integer types, check if we can shorten the entire input expression to |
| 781 | // DestWidth * 2, which won't allow removing the truncate, but reducing the |
| 782 | // width may enable further optimizations, e.g. allowing for larger |
| 783 | // vectorization factors. |
| 784 | if (auto *DestITy = dyn_cast<IntegerType>(Val: DestTy)) { |
| 785 | if (DestWidth * 2 < SrcWidth) { |
| 786 | auto *NewDestTy = DestITy->getExtendedType(); |
| 787 | if (shouldChangeType(From: SrcTy, To: NewDestTy) && |
| 788 | canEvaluateTruncated(V: Src, Ty: NewDestTy, IC&: *this, CxtI: &Trunc)) { |
| 789 | LLVM_DEBUG( |
| 790 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 791 | " to reduce the width of operand of" |
| 792 | << Trunc << '\n'); |
| 793 | Value *Res = EvaluateInDifferentType(V: Src, Ty: NewDestTy, isSigned: false); |
| 794 | return new TruncInst(Res, DestTy); |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | // See if we can simplify any instructions used by the input whose sole |
| 800 | // purpose is to compute bits we don't care about. |
| 801 | if (SimplifyDemandedInstructionBits(Inst&: Trunc)) |
| 802 | return &Trunc; |
| 803 | |
| 804 | if (DestWidth == 1) { |
| 805 | Value *Zero = Constant::getNullValue(Ty: SrcTy); |
| 806 | |
| 807 | Value *X; |
| 808 | const APInt *C1; |
| 809 | Constant *C2; |
| 810 | if (match(V: Src, P: m_OneUse(SubPattern: m_Shr(L: m_Shl(L: m_Power2(V&: C1), R: m_Value(V&: X)), |
| 811 | R: m_ImmConstant(C&: C2))))) { |
| 812 | // trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2 |
| 813 | Constant *Log2C1 = ConstantInt::get(Ty: SrcTy, V: C1->exactLogBase2()); |
| 814 | Constant *CmpC = ConstantExpr::getSub(C1: C2, C2: Log2C1); |
| 815 | return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC); |
| 816 | } |
| 817 | |
| 818 | if (match(V: Src, P: m_Shr(L: m_Value(V&: X), R: m_SpecificInt(V: SrcWidth - 1)))) { |
| 819 | // trunc (ashr X, BW-1) to i1 --> icmp slt X, 0 |
| 820 | // trunc (lshr X, BW-1) to i1 --> icmp slt X, 0 |
| 821 | return new ICmpInst(ICmpInst::ICMP_SLT, X, Zero); |
| 822 | } |
| 823 | |
| 824 | Constant *C; |
| 825 | if (match(V: Src, P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: X), R: m_ImmConstant(C))))) { |
| 826 | // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 |
| 827 | Constant *One = ConstantInt::get(Ty: SrcTy, V: APInt(SrcWidth, 1)); |
| 828 | Value *MaskC = Builder.CreateShl(LHS: One, RHS: C); |
| 829 | Value *And = Builder.CreateAnd(LHS: X, RHS: MaskC); |
| 830 | return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| 831 | } |
| 832 | if (match(V: Src, P: m_OneUse(SubPattern: m_c_Or(L: m_LShr(L: m_Value(V&: X), R: m_ImmConstant(C)), |
| 833 | R: m_Deferred(V: X))))) { |
| 834 | // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 |
| 835 | Constant *One = ConstantInt::get(Ty: SrcTy, V: APInt(SrcWidth, 1)); |
| 836 | Value *MaskC = Builder.CreateShl(LHS: One, RHS: C); |
| 837 | Value *And = Builder.CreateAnd(LHS: X, RHS: Builder.CreateOr(LHS: MaskC, RHS: One)); |
| 838 | return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| 839 | } |
| 840 | |
| 841 | { |
| 842 | const APInt *C; |
| 843 | if (match(V: Src, P: m_Shl(L: m_APInt(Res&: C), R: m_Value(V&: X))) && (*C)[0] == 1) { |
| 844 | // trunc (C << X) to i1 --> X == 0, where C is odd |
| 845 | return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | if (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) { |
| 850 | Value *X, *Y; |
| 851 | if (match(V: Src, P: m_Xor(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 852 | return new ICmpInst(ICmpInst::ICMP_NE, X, Y); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | Value *A, *B; |
| 857 | Constant *C; |
| 858 | if (match(V: Src, P: m_LShr(L: m_SExt(Op: m_Value(V&: A)), R: m_Constant(C)))) { |
| 859 | unsigned AWidth = A->getType()->getScalarSizeInBits(); |
| 860 | unsigned MaxShiftAmt = SrcWidth - std::max(a: DestWidth, b: AWidth); |
| 861 | auto *OldSh = cast<Instruction>(Val: Src); |
| 862 | bool IsExact = OldSh->isExact(); |
| 863 | |
| 864 | // If the shift is small enough, all zero bits created by the shift are |
| 865 | // removed by the trunc. |
| 866 | if (match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULE, |
| 867 | Threshold: APInt(SrcWidth, MaxShiftAmt)))) { |
| 868 | auto GetNewShAmt = [&](unsigned Width) { |
| 869 | Constant *MaxAmt = ConstantInt::get(Ty: SrcTy, V: Width - 1, IsSigned: false); |
| 870 | Constant *Cmp = |
| 871 | ConstantFoldCompareInstOperands(Predicate: ICmpInst::ICMP_ULT, LHS: C, RHS: MaxAmt, DL); |
| 872 | Constant *ShAmt = ConstantFoldSelectInstruction(Cond: Cmp, V1: C, V2: MaxAmt); |
| 873 | return ConstantFoldCastOperand(Opcode: Instruction::Trunc, C: ShAmt, DestTy: A->getType(), |
| 874 | DL); |
| 875 | }; |
| 876 | |
| 877 | // trunc (lshr (sext A), C) --> ashr A, C |
| 878 | if (A->getType() == DestTy) { |
| 879 | Constant *ShAmt = GetNewShAmt(DestWidth); |
| 880 | ShAmt = Constant::mergeUndefsWith(C: ShAmt, Other: C); |
| 881 | return IsExact ? BinaryOperator::CreateExactAShr(V1: A, V2: ShAmt) |
| 882 | : BinaryOperator::CreateAShr(V1: A, V2: ShAmt); |
| 883 | } |
| 884 | // The types are mismatched, so create a cast after shifting: |
| 885 | // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) |
| 886 | if (Src->hasOneUse()) { |
| 887 | Constant *ShAmt = GetNewShAmt(AWidth); |
| 888 | Value *Shift = Builder.CreateAShr(LHS: A, RHS: ShAmt, Name: "" , isExact: IsExact); |
| 889 | return CastInst::CreateIntegerCast(S: Shift, Ty: DestTy, isSigned: true); |
| 890 | } |
| 891 | } |
| 892 | // TODO: Mask high bits with 'and'. |
| 893 | } |
| 894 | |
| 895 | if (Instruction *I = narrowBinOp(Trunc)) |
| 896 | return I; |
| 897 | |
| 898 | if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) |
| 899 | return I; |
| 900 | |
| 901 | if (Instruction *I = shrinkInsertElt(Trunc, Builder)) |
| 902 | return I; |
| 903 | |
| 904 | if (Src->hasOneUse() && |
| 905 | (isa<VectorType>(Val: SrcTy) || shouldChangeType(From: SrcTy, To: DestTy))) { |
| 906 | // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the |
| 907 | // dest type is native and cst < dest size. |
| 908 | if (match(V: Src, P: m_Shl(L: m_Value(V&: A), R: m_Constant(C))) && |
| 909 | !match(V: A, P: m_Shr(L: m_Value(), R: m_Constant()))) { |
| 910 | // Skip shifts of shift by constants. It undoes a combine in |
| 911 | // FoldShiftByConstant and is the extend in reg pattern. |
| 912 | APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); |
| 913 | if (match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULT, Threshold))) { |
| 914 | Value *NewTrunc = Builder.CreateTrunc(V: A, DestTy, Name: A->getName() + ".tr" ); |
| 915 | return BinaryOperator::Create(Op: Instruction::Shl, S1: NewTrunc, |
| 916 | S2: ConstantExpr::getTrunc(C, Ty: DestTy)); |
| 917 | } |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | if (Instruction *I = foldVecTruncToExtElt(Trunc, IC&: *this)) |
| 922 | return I; |
| 923 | |
| 924 | if (Instruction *I = foldVecExtTruncToExtElt(Trunc, IC&: *this)) |
| 925 | return I; |
| 926 | |
| 927 | // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) |
| 928 | if (match(V: Src, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::ctlz>(Op0: m_ZExt(Op: m_Value(V&: A)), |
| 929 | Op1: m_Value(V&: B))))) { |
| 930 | unsigned AWidth = A->getType()->getScalarSizeInBits(); |
| 931 | if (AWidth == DestWidth && AWidth > Log2_32(Value: SrcWidth)) { |
| 932 | Value *WidthDiff = ConstantInt::get(Ty: A->getType(), V: SrcWidth - AWidth); |
| 933 | Value *NarrowCtlz = |
| 934 | Builder.CreateIntrinsic(ID: Intrinsic::ctlz, Types: {Trunc.getType()}, Args: {A, B}); |
| 935 | return BinaryOperator::CreateAdd(V1: NarrowCtlz, V2: WidthDiff); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | if (match(V: Src, P: m_VScale())) { |
| 940 | if (Trunc.getFunction() && |
| 941 | Trunc.getFunction()->hasFnAttribute(Kind: Attribute::VScaleRange)) { |
| 942 | Attribute Attr = |
| 943 | Trunc.getFunction()->getFnAttribute(Kind: Attribute::VScaleRange); |
| 944 | if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) |
| 945 | if (Log2_32(Value: *MaxVScale) < DestWidth) |
| 946 | return replaceInstUsesWith(I&: Trunc, V: Builder.CreateVScale(Ty: DestTy)); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | if (DestWidth == 1 && |
| 951 | (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) && |
| 952 | isKnownNonZero(V: Src, Q: SQ.getWithInstruction(I: &Trunc))) |
| 953 | return replaceInstUsesWith(I&: Trunc, V: ConstantInt::getTrue(Ty: DestTy)); |
| 954 | |
| 955 | bool Changed = false; |
| 956 | if (!Trunc.hasNoSignedWrap() && |
| 957 | ComputeMaxSignificantBits(Op: Src, CxtI: &Trunc) <= DestWidth) { |
| 958 | Trunc.setHasNoSignedWrap(true); |
| 959 | Changed = true; |
| 960 | } |
| 961 | if (!Trunc.hasNoUnsignedWrap() && |
| 962 | MaskedValueIsZero(V: Src, Mask: APInt::getBitsSetFrom(numBits: SrcWidth, loBit: DestWidth), |
| 963 | CxtI: &Trunc)) { |
| 964 | Trunc.setHasNoUnsignedWrap(true); |
| 965 | Changed = true; |
| 966 | } |
| 967 | |
| 968 | return Changed ? &Trunc : nullptr; |
| 969 | } |
| 970 | |
| 971 | Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, |
| 972 | ZExtInst &Zext) { |
| 973 | // If we are just checking for a icmp eq of a single bit and zext'ing it |
| 974 | // to an integer, then shift the bit to the appropriate place and then |
| 975 | // cast to integer to avoid the comparison. |
| 976 | |
| 977 | // FIXME: This set of transforms does not check for extra uses and/or creates |
| 978 | // an extra instruction (an optional final cast is not included |
| 979 | // in the transform comments). We may also want to favor icmp over |
| 980 | // shifts in cases of equal instructions because icmp has better |
| 981 | // analysis in general (invert the transform). |
| 982 | |
| 983 | const APInt *Op1CV; |
| 984 | if (match(V: Cmp->getOperand(i_nocapture: 1), P: m_APInt(Res&: Op1CV))) { |
| 985 | |
| 986 | // zext (x <s 0) to i32 --> x>>u31 true if signbit set. |
| 987 | if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { |
| 988 | Value *In = Cmp->getOperand(i_nocapture: 0); |
| 989 | Value *Sh = ConstantInt::get(Ty: In->getType(), |
| 990 | V: In->getType()->getScalarSizeInBits() - 1); |
| 991 | In = Builder.CreateLShr(LHS: In, RHS: Sh, Name: In->getName() + ".lobit" ); |
| 992 | if (In->getType() != Zext.getType()) |
| 993 | In = Builder.CreateIntCast(V: In, DestTy: Zext.getType(), isSigned: false /*ZExt*/); |
| 994 | |
| 995 | return replaceInstUsesWith(I&: Zext, V: In); |
| 996 | } |
| 997 | |
| 998 | // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. |
| 999 | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| 1000 | // zext (X != 0) to i32 --> X iff X has only the low bit set. |
| 1001 | // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. |
| 1002 | |
| 1003 | if (Op1CV->isZero() && Cmp->isEquality()) { |
| 1004 | // Exactly 1 possible 1? But not the high-bit because that is |
| 1005 | // canonicalized to this form. |
| 1006 | KnownBits Known = computeKnownBits(V: Cmp->getOperand(i_nocapture: 0), CxtI: &Zext); |
| 1007 | APInt KnownZeroMask(~Known.Zero); |
| 1008 | uint32_t ShAmt = KnownZeroMask.logBase2(); |
| 1009 | bool IsExpectShAmt = KnownZeroMask.isPowerOf2() && |
| 1010 | (Zext.getType()->getScalarSizeInBits() != ShAmt + 1); |
| 1011 | if (IsExpectShAmt && |
| 1012 | (Cmp->getOperand(i_nocapture: 0)->getType() == Zext.getType() || |
| 1013 | Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) { |
| 1014 | Value *In = Cmp->getOperand(i_nocapture: 0); |
| 1015 | if (ShAmt) { |
| 1016 | // Perform a logical shr by shiftamt. |
| 1017 | // Insert the shift to put the result in the low bit. |
| 1018 | In = Builder.CreateLShr(LHS: In, RHS: ConstantInt::get(Ty: In->getType(), V: ShAmt), |
| 1019 | Name: In->getName() + ".lobit" ); |
| 1020 | } |
| 1021 | |
| 1022 | // Toggle the low bit for "X == 0". |
| 1023 | if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) |
| 1024 | In = Builder.CreateXor(LHS: In, RHS: ConstantInt::get(Ty: In->getType(), V: 1)); |
| 1025 | |
| 1026 | if (Zext.getType() == In->getType()) |
| 1027 | return replaceInstUsesWith(I&: Zext, V: In); |
| 1028 | |
| 1029 | Value *IntCast = Builder.CreateIntCast(V: In, DestTy: Zext.getType(), isSigned: false); |
| 1030 | return replaceInstUsesWith(I&: Zext, V: IntCast); |
| 1031 | } |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | if (Cmp->isEquality()) { |
| 1036 | // Test if a bit is clear/set using a shifted-one mask: |
| 1037 | // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 |
| 1038 | // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 |
| 1039 | Value *X, *ShAmt; |
| 1040 | if (Cmp->hasOneUse() && match(V: Cmp->getOperand(i_nocapture: 1), P: m_ZeroInt()) && |
| 1041 | match(V: Cmp->getOperand(i_nocapture: 0), |
| 1042 | P: m_OneUse(SubPattern: m_c_And(L: m_Shl(L: m_One(), R: m_Value(V&: ShAmt)), R: m_Value(V&: X))))) { |
| 1043 | auto *And = cast<BinaryOperator>(Val: Cmp->getOperand(i_nocapture: 0)); |
| 1044 | Value *Shift = And->getOperand(i_nocapture: X == And->getOperand(i_nocapture: 0) ? 1 : 0); |
| 1045 | if (Zext.getType() == And->getType() || |
| 1046 | Cmp->getPredicate() != ICmpInst::ICMP_EQ || Shift->hasOneUse()) { |
| 1047 | if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) |
| 1048 | X = Builder.CreateNot(V: X); |
| 1049 | Value *Lshr = Builder.CreateLShr(LHS: X, RHS: ShAmt); |
| 1050 | Value *And1 = |
| 1051 | Builder.CreateAnd(LHS: Lshr, RHS: ConstantInt::get(Ty: X->getType(), V: 1)); |
| 1052 | return replaceInstUsesWith( |
| 1053 | I&: Zext, V: Builder.CreateZExtOrTrunc(V: And1, DestTy: Zext.getType())); |
| 1054 | } |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | return nullptr; |
| 1059 | } |
| 1060 | |
| 1061 | /// Determine if the specified value can be computed in the specified wider type |
| 1062 | /// and produce the same low bits. If not, return false. |
| 1063 | /// |
| 1064 | /// If this function returns true, it can also return a non-zero number of bits |
| 1065 | /// (in BitsToClear) which indicates that the value it computes is correct for |
| 1066 | /// the zero extend, but that the additional BitsToClear bits need to be zero'd |
| 1067 | /// out. For example, to promote something like: |
| 1068 | /// |
| 1069 | /// %B = trunc i64 %A to i32 |
| 1070 | /// %C = lshr i32 %B, 8 |
| 1071 | /// %E = zext i32 %C to i64 |
| 1072 | /// |
| 1073 | /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be |
| 1074 | /// set to 8 to indicate that the promoted value needs to have bits 24-31 |
| 1075 | /// cleared in addition to bits 32-63. Since an 'and' will be generated to |
| 1076 | /// clear the top bits anyway, doing this has no extra cost. |
| 1077 | /// |
| 1078 | /// This function works on both vectors and scalars. |
| 1079 | static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, |
| 1080 | InstCombinerImpl &IC, Instruction *CxtI) { |
| 1081 | BitsToClear = 0; |
| 1082 | if (canAlwaysEvaluateInType(V, Ty)) |
| 1083 | return true; |
| 1084 | if (canNotEvaluateInType(V, Ty)) |
| 1085 | return false; |
| 1086 | |
| 1087 | auto *I = cast<Instruction>(Val: V); |
| 1088 | unsigned Tmp; |
| 1089 | switch (I->getOpcode()) { |
| 1090 | case Instruction::ZExt: // zext(zext(x)) -> zext(x). |
| 1091 | case Instruction::SExt: // zext(sext(x)) -> sext(x). |
| 1092 | case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) |
| 1093 | return true; |
| 1094 | case Instruction::And: |
| 1095 | case Instruction::Or: |
| 1096 | case Instruction::Xor: |
| 1097 | case Instruction::Add: |
| 1098 | case Instruction::Sub: |
| 1099 | case Instruction::Mul: |
| 1100 | if (!canEvaluateZExtd(V: I->getOperand(i: 0), Ty, BitsToClear, IC, CxtI) || |
| 1101 | !canEvaluateZExtd(V: I->getOperand(i: 1), Ty, BitsToClear&: Tmp, IC, CxtI)) |
| 1102 | return false; |
| 1103 | // These can all be promoted if neither operand has 'bits to clear'. |
| 1104 | if (BitsToClear == 0 && Tmp == 0) |
| 1105 | return true; |
| 1106 | |
| 1107 | // If the operation is an AND/OR/XOR and the bits to clear are zero in the |
| 1108 | // other side, BitsToClear is ok. |
| 1109 | if (Tmp == 0 && I->isBitwiseLogicOp()) { |
| 1110 | // We use MaskedValueIsZero here for generality, but the case we care |
| 1111 | // about the most is constant RHS. |
| 1112 | unsigned VSize = V->getType()->getScalarSizeInBits(); |
| 1113 | if (IC.MaskedValueIsZero(V: I->getOperand(i: 1), |
| 1114 | Mask: APInt::getHighBitsSet(numBits: VSize, hiBitsSet: BitsToClear), |
| 1115 | CxtI)) { |
| 1116 | // If this is an And instruction and all of the BitsToClear are |
| 1117 | // known to be zero we can reset BitsToClear. |
| 1118 | if (I->getOpcode() == Instruction::And) |
| 1119 | BitsToClear = 0; |
| 1120 | return true; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | // Otherwise, we don't know how to analyze this BitsToClear case yet. |
| 1125 | return false; |
| 1126 | |
| 1127 | case Instruction::Shl: { |
| 1128 | // We can promote shl(x, cst) if we can promote x. Since shl overwrites the |
| 1129 | // upper bits we can reduce BitsToClear by the shift amount. |
| 1130 | const APInt *Amt; |
| 1131 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: Amt))) { |
| 1132 | if (!canEvaluateZExtd(V: I->getOperand(i: 0), Ty, BitsToClear, IC, CxtI)) |
| 1133 | return false; |
| 1134 | uint64_t ShiftAmt = Amt->getZExtValue(); |
| 1135 | BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; |
| 1136 | return true; |
| 1137 | } |
| 1138 | return false; |
| 1139 | } |
| 1140 | case Instruction::LShr: { |
| 1141 | // We can promote lshr(x, cst) if we can promote x. This requires the |
| 1142 | // ultimate 'and' to clear out the high zero bits we're clearing out though. |
| 1143 | const APInt *Amt; |
| 1144 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: Amt))) { |
| 1145 | if (!canEvaluateZExtd(V: I->getOperand(i: 0), Ty, BitsToClear, IC, CxtI)) |
| 1146 | return false; |
| 1147 | BitsToClear += Amt->getZExtValue(); |
| 1148 | if (BitsToClear > V->getType()->getScalarSizeInBits()) |
| 1149 | BitsToClear = V->getType()->getScalarSizeInBits(); |
| 1150 | return true; |
| 1151 | } |
| 1152 | // Cannot promote variable LSHR. |
| 1153 | return false; |
| 1154 | } |
| 1155 | case Instruction::Select: |
| 1156 | if (!canEvaluateZExtd(V: I->getOperand(i: 1), Ty, BitsToClear&: Tmp, IC, CxtI) || |
| 1157 | !canEvaluateZExtd(V: I->getOperand(i: 2), Ty, BitsToClear, IC, CxtI) || |
| 1158 | // TODO: If important, we could handle the case when the BitsToClear are |
| 1159 | // known zero in the disagreeing side. |
| 1160 | Tmp != BitsToClear) |
| 1161 | return false; |
| 1162 | return true; |
| 1163 | |
| 1164 | case Instruction::PHI: { |
| 1165 | // We can change a phi if we can change all operands. Note that we never |
| 1166 | // get into trouble with cyclic PHIs here because we only consider |
| 1167 | // instructions with a single use. |
| 1168 | PHINode *PN = cast<PHINode>(Val: I); |
| 1169 | if (!canEvaluateZExtd(V: PN->getIncomingValue(i: 0), Ty, BitsToClear, IC, CxtI)) |
| 1170 | return false; |
| 1171 | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) |
| 1172 | if (!canEvaluateZExtd(V: PN->getIncomingValue(i), Ty, BitsToClear&: Tmp, IC, CxtI) || |
| 1173 | // TODO: If important, we could handle the case when the BitsToClear |
| 1174 | // are known zero in the disagreeing input. |
| 1175 | Tmp != BitsToClear) |
| 1176 | return false; |
| 1177 | return true; |
| 1178 | } |
| 1179 | case Instruction::Call: |
| 1180 | // llvm.vscale() can always be executed in larger type, because the |
| 1181 | // value is automatically zero-extended. |
| 1182 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) |
| 1183 | if (II->getIntrinsicID() == Intrinsic::vscale) |
| 1184 | return true; |
| 1185 | return false; |
| 1186 | default: |
| 1187 | // TODO: Can handle more cases here. |
| 1188 | return false; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) { |
| 1193 | // If this zero extend is only used by a truncate, let the truncate be |
| 1194 | // eliminated before we try to optimize this zext. |
| 1195 | if (Zext.hasOneUse() && isa<TruncInst>(Val: Zext.user_back()) && |
| 1196 | !isa<Constant>(Val: Zext.getOperand(i_nocapture: 0))) |
| 1197 | return nullptr; |
| 1198 | |
| 1199 | // If one of the common conversion will work, do it. |
| 1200 | if (Instruction *Result = commonCastTransforms(CI&: Zext)) |
| 1201 | return Result; |
| 1202 | |
| 1203 | Value *Src = Zext.getOperand(i_nocapture: 0); |
| 1204 | Type *SrcTy = Src->getType(), *DestTy = Zext.getType(); |
| 1205 | |
| 1206 | // zext nneg bool x -> 0 |
| 1207 | if (SrcTy->isIntOrIntVectorTy(BitWidth: 1) && Zext.hasNonNeg()) |
| 1208 | return replaceInstUsesWith(I&: Zext, V: Constant::getNullValue(Ty: Zext.getType())); |
| 1209 | |
| 1210 | // Try to extend the entire expression tree to the wide destination type. |
| 1211 | unsigned BitsToClear; |
| 1212 | if (shouldChangeType(From: SrcTy, To: DestTy) && |
| 1213 | canEvaluateZExtd(V: Src, Ty: DestTy, BitsToClear, IC&: *this, CxtI: &Zext)) { |
| 1214 | assert(BitsToClear <= SrcTy->getScalarSizeInBits() && |
| 1215 | "Can't clear more bits than in SrcTy" ); |
| 1216 | |
| 1217 | // Okay, we can transform this! Insert the new expression now. |
| 1218 | LLVM_DEBUG( |
| 1219 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 1220 | " to avoid zero extend: " |
| 1221 | << Zext << '\n'); |
| 1222 | Value *Res = EvaluateInDifferentType(V: Src, Ty: DestTy, isSigned: false); |
| 1223 | assert(Res->getType() == DestTy); |
| 1224 | |
| 1225 | // Preserve debug values referring to Src if the zext is its last use. |
| 1226 | if (auto *SrcOp = dyn_cast<Instruction>(Val: Src)) |
| 1227 | if (SrcOp->hasOneUse()) |
| 1228 | replaceAllDbgUsesWith(From&: *SrcOp, To&: *Res, DomPoint&: Zext, DT); |
| 1229 | |
| 1230 | uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear; |
| 1231 | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| 1232 | |
| 1233 | // If the high bits are already filled with zeros, just replace this |
| 1234 | // cast with the result. |
| 1235 | if (MaskedValueIsZero( |
| 1236 | V: Res, Mask: APInt::getHighBitsSet(numBits: DestBitSize, hiBitsSet: DestBitSize - SrcBitsKept), |
| 1237 | CxtI: &Zext)) |
| 1238 | return replaceInstUsesWith(I&: Zext, V: Res); |
| 1239 | |
| 1240 | // We need to emit an AND to clear the high bits. |
| 1241 | Constant *C = ConstantInt::get(Ty: Res->getType(), |
| 1242 | V: APInt::getLowBitsSet(numBits: DestBitSize, loBitsSet: SrcBitsKept)); |
| 1243 | return BinaryOperator::CreateAnd(V1: Res, V2: C); |
| 1244 | } |
| 1245 | |
| 1246 | // If this is a TRUNC followed by a ZEXT then we are dealing with integral |
| 1247 | // types and if the sizes are just right we can convert this into a logical |
| 1248 | // 'and' which will be much cheaper than the pair of casts. |
| 1249 | if (auto *CSrc = dyn_cast<TruncInst>(Val: Src)) { // A->B->C cast |
| 1250 | // TODO: Subsume this into EvaluateInDifferentType. |
| 1251 | |
| 1252 | // Get the sizes of the types involved. We know that the intermediate type |
| 1253 | // will be smaller than A or C, but don't know the relation between A and C. |
| 1254 | Value *A = CSrc->getOperand(i_nocapture: 0); |
| 1255 | unsigned SrcSize = A->getType()->getScalarSizeInBits(); |
| 1256 | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); |
| 1257 | unsigned DstSize = DestTy->getScalarSizeInBits(); |
| 1258 | // If we're actually extending zero bits, then if |
| 1259 | // SrcSize < DstSize: zext(a & mask) |
| 1260 | // SrcSize == DstSize: a & mask |
| 1261 | // SrcSize > DstSize: trunc(a) & mask |
| 1262 | if (SrcSize < DstSize) { |
| 1263 | APInt AndValue(APInt::getLowBitsSet(numBits: SrcSize, loBitsSet: MidSize)); |
| 1264 | Constant *AndConst = ConstantInt::get(Ty: A->getType(), V: AndValue); |
| 1265 | Value *And = Builder.CreateAnd(LHS: A, RHS: AndConst, Name: CSrc->getName() + ".mask" ); |
| 1266 | return new ZExtInst(And, DestTy); |
| 1267 | } |
| 1268 | |
| 1269 | if (SrcSize == DstSize) { |
| 1270 | APInt AndValue(APInt::getLowBitsSet(numBits: SrcSize, loBitsSet: MidSize)); |
| 1271 | return BinaryOperator::CreateAnd(V1: A, V2: ConstantInt::get(Ty: A->getType(), |
| 1272 | V: AndValue)); |
| 1273 | } |
| 1274 | if (SrcSize > DstSize) { |
| 1275 | Value *Trunc = Builder.CreateTrunc(V: A, DestTy); |
| 1276 | APInt AndValue(APInt::getLowBitsSet(numBits: DstSize, loBitsSet: MidSize)); |
| 1277 | return BinaryOperator::CreateAnd(V1: Trunc, |
| 1278 | V2: ConstantInt::get(Ty: Trunc->getType(), |
| 1279 | V: AndValue)); |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Src)) |
| 1284 | return transformZExtICmp(Cmp, Zext); |
| 1285 | |
| 1286 | // zext(trunc(X) & C) -> (X & zext(C)). |
| 1287 | Constant *C; |
| 1288 | Value *X; |
| 1289 | if (match(V: Src, P: m_OneUse(SubPattern: m_And(L: m_Trunc(Op: m_Value(V&: X)), R: m_Constant(C)))) && |
| 1290 | X->getType() == DestTy) |
| 1291 | return BinaryOperator::CreateAnd(V1: X, V2: Builder.CreateZExt(V: C, DestTy)); |
| 1292 | |
| 1293 | // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). |
| 1294 | Value *And; |
| 1295 | if (match(V: Src, P: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: And), R: m_Constant(C)))) && |
| 1296 | match(V: And, P: m_OneUse(SubPattern: m_And(L: m_Trunc(Op: m_Value(V&: X)), R: m_Specific(V: C)))) && |
| 1297 | X->getType() == DestTy) { |
| 1298 | Value *ZC = Builder.CreateZExt(V: C, DestTy); |
| 1299 | return BinaryOperator::CreateXor(V1: Builder.CreateAnd(LHS: X, RHS: ZC), V2: ZC); |
| 1300 | } |
| 1301 | |
| 1302 | // If we are truncating, masking, and then zexting back to the original type, |
| 1303 | // that's just a mask. This is not handled by canEvaluateZextd if the |
| 1304 | // intermediate values have extra uses. This could be generalized further for |
| 1305 | // a non-constant mask operand. |
| 1306 | // zext (and (trunc X), C) --> and X, (zext C) |
| 1307 | if (match(V: Src, P: m_And(L: m_Trunc(Op: m_Value(V&: X)), R: m_Constant(C))) && |
| 1308 | X->getType() == DestTy) { |
| 1309 | Value *ZextC = Builder.CreateZExt(V: C, DestTy); |
| 1310 | return BinaryOperator::CreateAnd(V1: X, V2: ZextC); |
| 1311 | } |
| 1312 | |
| 1313 | if (match(V: Src, P: m_VScale())) { |
| 1314 | if (Zext.getFunction() && |
| 1315 | Zext.getFunction()->hasFnAttribute(Kind: Attribute::VScaleRange)) { |
| 1316 | Attribute Attr = |
| 1317 | Zext.getFunction()->getFnAttribute(Kind: Attribute::VScaleRange); |
| 1318 | if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { |
| 1319 | unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); |
| 1320 | if (Log2_32(Value: *MaxVScale) < TypeWidth) |
| 1321 | return replaceInstUsesWith(I&: Zext, V: Builder.CreateVScale(Ty: DestTy)); |
| 1322 | } |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | if (!Zext.hasNonNeg()) { |
| 1327 | // If this zero extend is only used by a shift, add nneg flag. |
| 1328 | if (Zext.hasOneUse() && |
| 1329 | SrcTy->getScalarSizeInBits() > |
| 1330 | Log2_64_Ceil(Value: DestTy->getScalarSizeInBits()) && |
| 1331 | match(V: Zext.user_back(), P: m_Shift(L: m_Value(), R: m_Specific(V: &Zext)))) { |
| 1332 | Zext.setNonNeg(); |
| 1333 | return &Zext; |
| 1334 | } |
| 1335 | |
| 1336 | if (isKnownNonNegative(V: Src, SQ: SQ.getWithInstruction(I: &Zext))) { |
| 1337 | Zext.setNonNeg(); |
| 1338 | return &Zext; |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | return nullptr; |
| 1343 | } |
| 1344 | |
| 1345 | /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. |
| 1346 | Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp, |
| 1347 | SExtInst &Sext) { |
| 1348 | Value *Op0 = Cmp->getOperand(i_nocapture: 0), *Op1 = Cmp->getOperand(i_nocapture: 1); |
| 1349 | ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| 1350 | |
| 1351 | // Don't bother if Op1 isn't of vector or integer type. |
| 1352 | if (!Op1->getType()->isIntOrIntVectorTy()) |
| 1353 | return nullptr; |
| 1354 | |
| 1355 | if (Pred == ICmpInst::ICMP_SLT && match(V: Op1, P: m_ZeroInt())) { |
| 1356 | // sext (x <s 0) --> ashr x, 31 (all ones if negative) |
| 1357 | Value *Sh = ConstantInt::get(Ty: Op0->getType(), |
| 1358 | V: Op0->getType()->getScalarSizeInBits() - 1); |
| 1359 | Value *In = Builder.CreateAShr(LHS: Op0, RHS: Sh, Name: Op0->getName() + ".lobit" ); |
| 1360 | if (In->getType() != Sext.getType()) |
| 1361 | In = Builder.CreateIntCast(V: In, DestTy: Sext.getType(), isSigned: true /*SExt*/); |
| 1362 | |
| 1363 | return replaceInstUsesWith(I&: Sext, V: In); |
| 1364 | } |
| 1365 | |
| 1366 | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Val: Op1)) { |
| 1367 | // If we know that only one bit of the LHS of the icmp can be set and we |
| 1368 | // have an equality comparison with zero or a power of 2, we can transform |
| 1369 | // the icmp and sext into bitwise/integer operations. |
| 1370 | if (Cmp->hasOneUse() && |
| 1371 | Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ |
| 1372 | KnownBits Known = computeKnownBits(V: Op0, CxtI: &Sext); |
| 1373 | |
| 1374 | APInt KnownZeroMask(~Known.Zero); |
| 1375 | if (KnownZeroMask.isPowerOf2()) { |
| 1376 | Value *In = Cmp->getOperand(i_nocapture: 0); |
| 1377 | |
| 1378 | // If the icmp tests for a known zero bit we can constant fold it. |
| 1379 | if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { |
| 1380 | Value *V = Pred == ICmpInst::ICMP_NE ? |
| 1381 | ConstantInt::getAllOnesValue(Ty: Sext.getType()) : |
| 1382 | ConstantInt::getNullValue(Ty: Sext.getType()); |
| 1383 | return replaceInstUsesWith(I&: Sext, V); |
| 1384 | } |
| 1385 | |
| 1386 | if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { |
| 1387 | // sext ((x & 2^n) == 0) -> (x >> n) - 1 |
| 1388 | // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 |
| 1389 | unsigned ShiftAmt = KnownZeroMask.countr_zero(); |
| 1390 | // Perform a right shift to place the desired bit in the LSB. |
| 1391 | if (ShiftAmt) |
| 1392 | In = Builder.CreateLShr(LHS: In, |
| 1393 | RHS: ConstantInt::get(Ty: In->getType(), V: ShiftAmt)); |
| 1394 | |
| 1395 | // At this point "In" is either 1 or 0. Subtract 1 to turn |
| 1396 | // {1, 0} -> {0, -1}. |
| 1397 | In = Builder.CreateAdd(LHS: In, |
| 1398 | RHS: ConstantInt::getAllOnesValue(Ty: In->getType()), |
| 1399 | Name: "sext" ); |
| 1400 | } else { |
| 1401 | // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 |
| 1402 | // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 |
| 1403 | unsigned ShiftAmt = KnownZeroMask.countl_zero(); |
| 1404 | // Perform a left shift to place the desired bit in the MSB. |
| 1405 | if (ShiftAmt) |
| 1406 | In = Builder.CreateShl(LHS: In, |
| 1407 | RHS: ConstantInt::get(Ty: In->getType(), V: ShiftAmt)); |
| 1408 | |
| 1409 | // Distribute the bit over the whole bit width. |
| 1410 | In = Builder.CreateAShr(LHS: In, RHS: ConstantInt::get(Ty: In->getType(), |
| 1411 | V: KnownZeroMask.getBitWidth() - 1), Name: "sext" ); |
| 1412 | } |
| 1413 | |
| 1414 | if (Sext.getType() == In->getType()) |
| 1415 | return replaceInstUsesWith(I&: Sext, V: In); |
| 1416 | return CastInst::CreateIntegerCast(S: In, Ty: Sext.getType(), isSigned: true/*SExt*/); |
| 1417 | } |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | return nullptr; |
| 1422 | } |
| 1423 | |
| 1424 | /// Return true if we can take the specified value and return it as type Ty |
| 1425 | /// without inserting any new casts and without changing the value of the common |
| 1426 | /// low bits. This is used by code that tries to promote integer operations to |
| 1427 | /// a wider types will allow us to eliminate the extension. |
| 1428 | /// |
| 1429 | /// This function works on both vectors and scalars. |
| 1430 | /// |
| 1431 | static bool canEvaluateSExtd(Value *V, Type *Ty) { |
| 1432 | assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && |
| 1433 | "Can't sign extend type to a smaller type" ); |
| 1434 | if (canAlwaysEvaluateInType(V, Ty)) |
| 1435 | return true; |
| 1436 | if (canNotEvaluateInType(V, Ty)) |
| 1437 | return false; |
| 1438 | |
| 1439 | auto *I = cast<Instruction>(Val: V); |
| 1440 | switch (I->getOpcode()) { |
| 1441 | case Instruction::SExt: // sext(sext(x)) -> sext(x) |
| 1442 | case Instruction::ZExt: // sext(zext(x)) -> zext(x) |
| 1443 | case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) |
| 1444 | return true; |
| 1445 | case Instruction::And: |
| 1446 | case Instruction::Or: |
| 1447 | case Instruction::Xor: |
| 1448 | case Instruction::Add: |
| 1449 | case Instruction::Sub: |
| 1450 | case Instruction::Mul: |
| 1451 | // These operators can all arbitrarily be extended if their inputs can. |
| 1452 | return canEvaluateSExtd(V: I->getOperand(i: 0), Ty) && |
| 1453 | canEvaluateSExtd(V: I->getOperand(i: 1), Ty); |
| 1454 | |
| 1455 | //case Instruction::Shl: TODO |
| 1456 | //case Instruction::LShr: TODO |
| 1457 | |
| 1458 | case Instruction::Select: |
| 1459 | return canEvaluateSExtd(V: I->getOperand(i: 1), Ty) && |
| 1460 | canEvaluateSExtd(V: I->getOperand(i: 2), Ty); |
| 1461 | |
| 1462 | case Instruction::PHI: { |
| 1463 | // We can change a phi if we can change all operands. Note that we never |
| 1464 | // get into trouble with cyclic PHIs here because we only consider |
| 1465 | // instructions with a single use. |
| 1466 | PHINode *PN = cast<PHINode>(Val: I); |
| 1467 | for (Value *IncValue : PN->incoming_values()) |
| 1468 | if (!canEvaluateSExtd(V: IncValue, Ty)) return false; |
| 1469 | return true; |
| 1470 | } |
| 1471 | default: |
| 1472 | // TODO: Can handle more cases here. |
| 1473 | break; |
| 1474 | } |
| 1475 | |
| 1476 | return false; |
| 1477 | } |
| 1478 | |
| 1479 | Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) { |
| 1480 | // If this sign extend is only used by a truncate, let the truncate be |
| 1481 | // eliminated before we try to optimize this sext. |
| 1482 | if (Sext.hasOneUse() && isa<TruncInst>(Val: Sext.user_back())) |
| 1483 | return nullptr; |
| 1484 | |
| 1485 | if (Instruction *I = commonCastTransforms(CI&: Sext)) |
| 1486 | return I; |
| 1487 | |
| 1488 | Value *Src = Sext.getOperand(i_nocapture: 0); |
| 1489 | Type *SrcTy = Src->getType(), *DestTy = Sext.getType(); |
| 1490 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| 1491 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| 1492 | |
| 1493 | // If the value being extended is zero or positive, use a zext instead. |
| 1494 | if (isKnownNonNegative(V: Src, SQ: SQ.getWithInstruction(I: &Sext))) { |
| 1495 | auto CI = CastInst::Create(Instruction::ZExt, S: Src, Ty: DestTy); |
| 1496 | CI->setNonNeg(true); |
| 1497 | return CI; |
| 1498 | } |
| 1499 | |
| 1500 | // Try to extend the entire expression tree to the wide destination type. |
| 1501 | if (shouldChangeType(From: SrcTy, To: DestTy) && canEvaluateSExtd(V: Src, Ty: DestTy)) { |
| 1502 | // Okay, we can transform this! Insert the new expression now. |
| 1503 | LLVM_DEBUG( |
| 1504 | dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| 1505 | " to avoid sign extend: " |
| 1506 | << Sext << '\n'); |
| 1507 | Value *Res = EvaluateInDifferentType(V: Src, Ty: DestTy, isSigned: true); |
| 1508 | assert(Res->getType() == DestTy); |
| 1509 | |
| 1510 | // If the high bits are already filled with sign bit, just replace this |
| 1511 | // cast with the result. |
| 1512 | if (ComputeNumSignBits(Op: Res, CxtI: &Sext) > DestBitSize - SrcBitSize) |
| 1513 | return replaceInstUsesWith(I&: Sext, V: Res); |
| 1514 | |
| 1515 | // We need to emit a shl + ashr to do the sign extend. |
| 1516 | Value *ShAmt = ConstantInt::get(Ty: DestTy, V: DestBitSize-SrcBitSize); |
| 1517 | return BinaryOperator::CreateAShr(V1: Builder.CreateShl(LHS: Res, RHS: ShAmt, Name: "sext" ), |
| 1518 | V2: ShAmt); |
| 1519 | } |
| 1520 | |
| 1521 | Value *X; |
| 1522 | if (match(V: Src, P: m_Trunc(Op: m_Value(V&: X)))) { |
| 1523 | // If the input has more sign bits than bits truncated, then convert |
| 1524 | // directly to final type. |
| 1525 | unsigned XBitSize = X->getType()->getScalarSizeInBits(); |
| 1526 | if (ComputeNumSignBits(Op: X, CxtI: &Sext) > XBitSize - SrcBitSize) |
| 1527 | return CastInst::CreateIntegerCast(S: X, Ty: DestTy, /* isSigned */ true); |
| 1528 | |
| 1529 | // If input is a trunc from the destination type, then convert into shifts. |
| 1530 | if (Src->hasOneUse() && X->getType() == DestTy) { |
| 1531 | // sext (trunc X) --> ashr (shl X, C), C |
| 1532 | Constant *ShAmt = ConstantInt::get(Ty: DestTy, V: DestBitSize - SrcBitSize); |
| 1533 | return BinaryOperator::CreateAShr(V1: Builder.CreateShl(LHS: X, RHS: ShAmt), V2: ShAmt); |
| 1534 | } |
| 1535 | |
| 1536 | // If we are replacing shifted-in high zero bits with sign bits, convert |
| 1537 | // the logic shift to arithmetic shift and eliminate the cast to |
| 1538 | // intermediate type: |
| 1539 | // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) |
| 1540 | Value *Y; |
| 1541 | if (Src->hasOneUse() && |
| 1542 | match(V: X, P: m_LShr(L: m_Value(V&: Y), |
| 1543 | R: m_SpecificIntAllowPoison(V: XBitSize - SrcBitSize)))) { |
| 1544 | Value *Ashr = Builder.CreateAShr(LHS: Y, RHS: XBitSize - SrcBitSize); |
| 1545 | return CastInst::CreateIntegerCast(S: Ashr, Ty: DestTy, /* isSigned */ true); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Src)) |
| 1550 | return transformSExtICmp(Cmp, Sext); |
| 1551 | |
| 1552 | // If the input is a shl/ashr pair of a same constant, then this is a sign |
| 1553 | // extension from a smaller value. If we could trust arbitrary bitwidth |
| 1554 | // integers, we could turn this into a truncate to the smaller bit and then |
| 1555 | // use a sext for the whole extension. Since we don't, look deeper and check |
| 1556 | // for a truncate. If the source and dest are the same type, eliminate the |
| 1557 | // trunc and extend and just do shifts. For example, turn: |
| 1558 | // %a = trunc i32 %i to i8 |
| 1559 | // %b = shl i8 %a, C |
| 1560 | // %c = ashr i8 %b, C |
| 1561 | // %d = sext i8 %c to i32 |
| 1562 | // into: |
| 1563 | // %a = shl i32 %i, 32-(8-C) |
| 1564 | // %d = ashr i32 %a, 32-(8-C) |
| 1565 | Value *A = nullptr; |
| 1566 | // TODO: Eventually this could be subsumed by EvaluateInDifferentType. |
| 1567 | Constant *BA = nullptr, *CA = nullptr; |
| 1568 | if (match(V: Src, P: m_AShr(L: m_Shl(L: m_Trunc(Op: m_Value(V&: A)), R: m_Constant(C&: BA)), |
| 1569 | R: m_ImmConstant(C&: CA))) && |
| 1570 | BA->isElementWiseEqual(Y: CA) && A->getType() == DestTy) { |
| 1571 | Constant *WideCurrShAmt = |
| 1572 | ConstantFoldCastOperand(Opcode: Instruction::SExt, C: CA, DestTy, DL); |
| 1573 | assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail" ); |
| 1574 | Constant *NumLowbitsLeft = ConstantExpr::getSub( |
| 1575 | C1: ConstantInt::get(Ty: DestTy, V: SrcTy->getScalarSizeInBits()), C2: WideCurrShAmt); |
| 1576 | Constant *NewShAmt = ConstantExpr::getSub( |
| 1577 | C1: ConstantInt::get(Ty: DestTy, V: DestTy->getScalarSizeInBits()), |
| 1578 | C2: NumLowbitsLeft); |
| 1579 | NewShAmt = |
| 1580 | Constant::mergeUndefsWith(C: Constant::mergeUndefsWith(C: NewShAmt, Other: BA), Other: CA); |
| 1581 | A = Builder.CreateShl(LHS: A, RHS: NewShAmt, Name: Sext.getName()); |
| 1582 | return BinaryOperator::CreateAShr(V1: A, V2: NewShAmt); |
| 1583 | } |
| 1584 | |
| 1585 | // Splatting a bit of constant-index across a value: |
| 1586 | // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 |
| 1587 | // If the dest type is different, use a cast (adjust use check). |
| 1588 | if (match(V: Src, P: m_OneUse(SubPattern: m_AShr(L: m_Trunc(Op: m_Value(V&: X)), |
| 1589 | R: m_SpecificInt(V: SrcBitSize - 1))))) { |
| 1590 | Type *XTy = X->getType(); |
| 1591 | unsigned XBitSize = XTy->getScalarSizeInBits(); |
| 1592 | Constant *ShlAmtC = ConstantInt::get(Ty: XTy, V: XBitSize - SrcBitSize); |
| 1593 | Constant *AshrAmtC = ConstantInt::get(Ty: XTy, V: XBitSize - 1); |
| 1594 | if (XTy == DestTy) |
| 1595 | return BinaryOperator::CreateAShr(V1: Builder.CreateShl(LHS: X, RHS: ShlAmtC), |
| 1596 | V2: AshrAmtC); |
| 1597 | if (cast<BinaryOperator>(Val: Src)->getOperand(i_nocapture: 0)->hasOneUse()) { |
| 1598 | Value *Ashr = Builder.CreateAShr(LHS: Builder.CreateShl(LHS: X, RHS: ShlAmtC), RHS: AshrAmtC); |
| 1599 | return CastInst::CreateIntegerCast(S: Ashr, Ty: DestTy, /* isSigned */ true); |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | if (match(V: Src, P: m_VScale())) { |
| 1604 | if (Sext.getFunction() && |
| 1605 | Sext.getFunction()->hasFnAttribute(Kind: Attribute::VScaleRange)) { |
| 1606 | Attribute Attr = |
| 1607 | Sext.getFunction()->getFnAttribute(Kind: Attribute::VScaleRange); |
| 1608 | if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) |
| 1609 | if (Log2_32(Value: *MaxVScale) < (SrcBitSize - 1)) |
| 1610 | return replaceInstUsesWith(I&: Sext, V: Builder.CreateVScale(Ty: DestTy)); |
| 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | return nullptr; |
| 1615 | } |
| 1616 | |
| 1617 | /// Return a Constant* for the specified floating-point constant if it fits |
| 1618 | /// in the specified FP type without changing its value. |
| 1619 | static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { |
| 1620 | bool losesInfo; |
| 1621 | APFloat F = CFP->getValueAPF(); |
| 1622 | (void)F.convert(ToSemantics: Sem, RM: APFloat::rmNearestTiesToEven, losesInfo: &losesInfo); |
| 1623 | return !losesInfo; |
| 1624 | } |
| 1625 | |
| 1626 | static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) { |
| 1627 | if (CFP->getType() == Type::getPPC_FP128Ty(C&: CFP->getContext())) |
| 1628 | return nullptr; // No constant folding of this. |
| 1629 | // See if the value can be truncated to bfloat and then reextended. |
| 1630 | if (PreferBFloat && fitsInFPType(CFP, Sem: APFloat::BFloat())) |
| 1631 | return Type::getBFloatTy(C&: CFP->getContext()); |
| 1632 | // See if the value can be truncated to half and then reextended. |
| 1633 | if (!PreferBFloat && fitsInFPType(CFP, Sem: APFloat::IEEEhalf())) |
| 1634 | return Type::getHalfTy(C&: CFP->getContext()); |
| 1635 | // See if the value can be truncated to float and then reextended. |
| 1636 | if (fitsInFPType(CFP, Sem: APFloat::IEEEsingle())) |
| 1637 | return Type::getFloatTy(C&: CFP->getContext()); |
| 1638 | if (CFP->getType()->isDoubleTy()) |
| 1639 | return nullptr; // Won't shrink. |
| 1640 | if (fitsInFPType(CFP, Sem: APFloat::IEEEdouble())) |
| 1641 | return Type::getDoubleTy(C&: CFP->getContext()); |
| 1642 | // Don't try to shrink to various long double types. |
| 1643 | return nullptr; |
| 1644 | } |
| 1645 | |
| 1646 | // Determine if this is a vector of ConstantFPs and if so, return the minimal |
| 1647 | // type we can safely truncate all elements to. |
| 1648 | static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) { |
| 1649 | auto *CV = dyn_cast<Constant>(Val: V); |
| 1650 | auto *CVVTy = dyn_cast<FixedVectorType>(Val: V->getType()); |
| 1651 | if (!CV || !CVVTy) |
| 1652 | return nullptr; |
| 1653 | |
| 1654 | Type *MinType = nullptr; |
| 1655 | |
| 1656 | unsigned NumElts = CVVTy->getNumElements(); |
| 1657 | |
| 1658 | // For fixed-width vectors we find the minimal type by looking |
| 1659 | // through the constant values of the vector. |
| 1660 | for (unsigned i = 0; i != NumElts; ++i) { |
| 1661 | if (isa<UndefValue>(Val: CV->getAggregateElement(Elt: i))) |
| 1662 | continue; |
| 1663 | |
| 1664 | auto *CFP = dyn_cast_or_null<ConstantFP>(Val: CV->getAggregateElement(Elt: i)); |
| 1665 | if (!CFP) |
| 1666 | return nullptr; |
| 1667 | |
| 1668 | Type *T = shrinkFPConstant(CFP, PreferBFloat); |
| 1669 | if (!T) |
| 1670 | return nullptr; |
| 1671 | |
| 1672 | // If we haven't found a type yet or this type has a larger mantissa than |
| 1673 | // our previous type, this is our new minimal type. |
| 1674 | if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) |
| 1675 | MinType = T; |
| 1676 | } |
| 1677 | |
| 1678 | // Make a vector type from the minimal type. |
| 1679 | return MinType ? FixedVectorType::get(ElementType: MinType, NumElts) : nullptr; |
| 1680 | } |
| 1681 | |
| 1682 | /// Find the minimum FP type we can safely truncate to. |
| 1683 | static Type *getMinimumFPType(Value *V, bool PreferBFloat) { |
| 1684 | if (auto *FPExt = dyn_cast<FPExtInst>(Val: V)) |
| 1685 | return FPExt->getOperand(i_nocapture: 0)->getType(); |
| 1686 | |
| 1687 | // If this value is a constant, return the constant in the smallest FP type |
| 1688 | // that can accurately represent it. This allows us to turn |
| 1689 | // (float)((double)X+2.0) into x+2.0f. |
| 1690 | if (auto *CFP = dyn_cast<ConstantFP>(Val: V)) |
| 1691 | if (Type *T = shrinkFPConstant(CFP, PreferBFloat)) |
| 1692 | return T; |
| 1693 | |
| 1694 | // Try to shrink scalable and fixed splat vectors. |
| 1695 | if (auto *FPC = dyn_cast<Constant>(Val: V)) |
| 1696 | if (isa<VectorType>(Val: V->getType())) |
| 1697 | if (auto *Splat = dyn_cast_or_null<ConstantFP>(Val: FPC->getSplatValue())) |
| 1698 | if (Type *T = shrinkFPConstant(CFP: Splat, PreferBFloat)) |
| 1699 | return T; |
| 1700 | |
| 1701 | // Try to shrink a vector of FP constants. This returns nullptr on scalable |
| 1702 | // vectors |
| 1703 | if (Type *T = shrinkFPConstantVector(V, PreferBFloat)) |
| 1704 | return T; |
| 1705 | |
| 1706 | return V->getType(); |
| 1707 | } |
| 1708 | |
| 1709 | /// Return true if the cast from integer to FP can be proven to be exact for all |
| 1710 | /// possible inputs (the conversion does not lose any precision). |
| 1711 | static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { |
| 1712 | CastInst::CastOps Opcode = I.getOpcode(); |
| 1713 | assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && |
| 1714 | "Unexpected cast" ); |
| 1715 | Value *Src = I.getOperand(i_nocapture: 0); |
| 1716 | Type *SrcTy = Src->getType(); |
| 1717 | Type *FPTy = I.getType(); |
| 1718 | bool IsSigned = Opcode == Instruction::SIToFP; |
| 1719 | int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; |
| 1720 | |
| 1721 | // Easy case - if the source integer type has less bits than the FP mantissa, |
| 1722 | // then the cast must be exact. |
| 1723 | int DestNumSigBits = FPTy->getFPMantissaWidth(); |
| 1724 | if (SrcSize <= DestNumSigBits) |
| 1725 | return true; |
| 1726 | |
| 1727 | // Cast from FP to integer and back to FP is independent of the intermediate |
| 1728 | // integer width because of poison on overflow. |
| 1729 | Value *F; |
| 1730 | if (match(V: Src, P: m_FPToSI(Op: m_Value(V&: F))) || match(V: Src, P: m_FPToUI(Op: m_Value(V&: F)))) { |
| 1731 | // If this is uitofp (fptosi F), the source needs an extra bit to avoid |
| 1732 | // potential rounding of negative FP input values. |
| 1733 | int SrcNumSigBits = F->getType()->getFPMantissaWidth(); |
| 1734 | if (!IsSigned && match(V: Src, P: m_FPToSI(Op: m_Value()))) |
| 1735 | SrcNumSigBits++; |
| 1736 | |
| 1737 | // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal |
| 1738 | // significant bits than the destination (and make sure neither type is |
| 1739 | // weird -- ppc_fp128). |
| 1740 | if (SrcNumSigBits > 0 && DestNumSigBits > 0 && |
| 1741 | SrcNumSigBits <= DestNumSigBits) |
| 1742 | return true; |
| 1743 | } |
| 1744 | |
| 1745 | // TODO: |
| 1746 | // Try harder to find if the source integer type has less significant bits. |
| 1747 | // For example, compute number of sign bits. |
| 1748 | KnownBits SrcKnown = IC.computeKnownBits(V: Src, CxtI: &I); |
| 1749 | int SigBits = (int)SrcTy->getScalarSizeInBits() - |
| 1750 | SrcKnown.countMinLeadingZeros() - |
| 1751 | SrcKnown.countMinTrailingZeros(); |
| 1752 | if (SigBits <= DestNumSigBits) |
| 1753 | return true; |
| 1754 | |
| 1755 | return false; |
| 1756 | } |
| 1757 | |
| 1758 | Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { |
| 1759 | if (Instruction *I = commonCastTransforms(CI&: FPT)) |
| 1760 | return I; |
| 1761 | |
| 1762 | // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to |
| 1763 | // simplify this expression to avoid one or more of the trunc/extend |
| 1764 | // operations if we can do so without changing the numerical results. |
| 1765 | // |
| 1766 | // The exact manner in which the widths of the operands interact to limit |
| 1767 | // what we can and cannot do safely varies from operation to operation, and |
| 1768 | // is explained below in the various case statements. |
| 1769 | Type *Ty = FPT.getType(); |
| 1770 | auto *BO = dyn_cast<BinaryOperator>(Val: FPT.getOperand(i_nocapture: 0)); |
| 1771 | if (BO && BO->hasOneUse()) { |
| 1772 | Type *LHSMinType = |
| 1773 | getMinimumFPType(V: BO->getOperand(i_nocapture: 0), /*PreferBFloat=*/Ty->isBFloatTy()); |
| 1774 | Type *RHSMinType = |
| 1775 | getMinimumFPType(V: BO->getOperand(i_nocapture: 1), /*PreferBFloat=*/Ty->isBFloatTy()); |
| 1776 | unsigned OpWidth = BO->getType()->getFPMantissaWidth(); |
| 1777 | unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); |
| 1778 | unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); |
| 1779 | unsigned SrcWidth = std::max(a: LHSWidth, b: RHSWidth); |
| 1780 | unsigned DstWidth = Ty->getFPMantissaWidth(); |
| 1781 | switch (BO->getOpcode()) { |
| 1782 | default: break; |
| 1783 | case Instruction::FAdd: |
| 1784 | case Instruction::FSub: |
| 1785 | // For addition and subtraction, the infinitely precise result can |
| 1786 | // essentially be arbitrarily wide; proving that double rounding |
| 1787 | // will not occur because the result of OpI is exact (as we will for |
| 1788 | // FMul, for example) is hopeless. However, we *can* nonetheless |
| 1789 | // frequently know that double rounding cannot occur (or that it is |
| 1790 | // innocuous) by taking advantage of the specific structure of |
| 1791 | // infinitely-precise results that admit double rounding. |
| 1792 | // |
| 1793 | // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient |
| 1794 | // to represent both sources, we can guarantee that the double |
| 1795 | // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, |
| 1796 | // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." |
| 1797 | // for proof of this fact). |
| 1798 | // |
| 1799 | // Note: Figueroa does not consider the case where DstFormat != |
| 1800 | // SrcFormat. It's possible (likely even!) that this analysis |
| 1801 | // could be tightened for those cases, but they are rare (the main |
| 1802 | // case of interest here is (float)((double)float + float)). |
| 1803 | if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { |
| 1804 | Value *LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: Ty); |
| 1805 | Value *RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: Ty); |
| 1806 | Instruction *RI = BinaryOperator::Create(Op: BO->getOpcode(), S1: LHS, S2: RHS); |
| 1807 | RI->copyFastMathFlags(I: BO); |
| 1808 | return RI; |
| 1809 | } |
| 1810 | break; |
| 1811 | case Instruction::FMul: |
| 1812 | // For multiplication, the infinitely precise result has at most |
| 1813 | // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient |
| 1814 | // that such a value can be exactly represented, then no double |
| 1815 | // rounding can possibly occur; we can safely perform the operation |
| 1816 | // in the destination format if it can represent both sources. |
| 1817 | if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { |
| 1818 | Value *LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: Ty); |
| 1819 | Value *RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: Ty); |
| 1820 | return BinaryOperator::CreateFMulFMF(V1: LHS, V2: RHS, FMFSource: BO); |
| 1821 | } |
| 1822 | break; |
| 1823 | case Instruction::FDiv: |
| 1824 | // For division, we use again use the bound from Figueroa's |
| 1825 | // dissertation. I am entirely certain that this bound can be |
| 1826 | // tightened in the unbalanced operand case by an analysis based on |
| 1827 | // the diophantine rational approximation bound, but the well-known |
| 1828 | // condition used here is a good conservative first pass. |
| 1829 | // TODO: Tighten bound via rigorous analysis of the unbalanced case. |
| 1830 | if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { |
| 1831 | Value *LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: Ty); |
| 1832 | Value *RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: Ty); |
| 1833 | return BinaryOperator::CreateFDivFMF(V1: LHS, V2: RHS, FMFSource: BO); |
| 1834 | } |
| 1835 | break; |
| 1836 | case Instruction::FRem: { |
| 1837 | // Remainder is straightforward. Remainder is always exact, so the |
| 1838 | // type of OpI doesn't enter into things at all. We simply evaluate |
| 1839 | // in whichever source type is larger, then convert to the |
| 1840 | // destination type. |
| 1841 | if (SrcWidth == OpWidth) |
| 1842 | break; |
| 1843 | Value *LHS, *RHS; |
| 1844 | if (LHSWidth == SrcWidth) { |
| 1845 | LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: LHSMinType); |
| 1846 | RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: LHSMinType); |
| 1847 | } else { |
| 1848 | LHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 0), DestTy: RHSMinType); |
| 1849 | RHS = Builder.CreateFPTrunc(V: BO->getOperand(i_nocapture: 1), DestTy: RHSMinType); |
| 1850 | } |
| 1851 | |
| 1852 | Value *ExactResult = Builder.CreateFRemFMF(L: LHS, R: RHS, FMFSource: BO); |
| 1853 | return CastInst::CreateFPCast(S: ExactResult, Ty); |
| 1854 | } |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | // (fptrunc (fneg x)) -> (fneg (fptrunc x)) |
| 1859 | Value *X; |
| 1860 | Instruction *Op = dyn_cast<Instruction>(Val: FPT.getOperand(i_nocapture: 0)); |
| 1861 | if (Op && Op->hasOneUse()) { |
| 1862 | FastMathFlags FMF = FPT.getFastMathFlags(); |
| 1863 | if (auto *FPMO = dyn_cast<FPMathOperator>(Val: Op)) |
| 1864 | FMF &= FPMO->getFastMathFlags(); |
| 1865 | |
| 1866 | if (match(V: Op, P: m_FNeg(X: m_Value(V&: X)))) { |
| 1867 | Value *InnerTrunc = Builder.CreateFPTruncFMF(V: X, DestTy: Ty, FMFSource: FMF); |
| 1868 | Value *Neg = Builder.CreateFNegFMF(V: InnerTrunc, FMFSource: FMF); |
| 1869 | return replaceInstUsesWith(I&: FPT, V: Neg); |
| 1870 | } |
| 1871 | |
| 1872 | // If we are truncating a select that has an extended operand, we can |
| 1873 | // narrow the other operand and do the select as a narrow op. |
| 1874 | Value *Cond, *X, *Y; |
| 1875 | if (match(V: Op, P: m_Select(C: m_Value(V&: Cond), L: m_FPExt(Op: m_Value(V&: X)), R: m_Value(V&: Y))) && |
| 1876 | X->getType() == Ty) { |
| 1877 | // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) |
| 1878 | Value *NarrowY = Builder.CreateFPTruncFMF(V: Y, DestTy: Ty, FMFSource: FMF); |
| 1879 | Value *Sel = |
| 1880 | Builder.CreateSelectFMF(C: Cond, True: X, False: NarrowY, FMFSource: FMF, Name: "narrow.sel" , MDFrom: Op); |
| 1881 | return replaceInstUsesWith(I&: FPT, V: Sel); |
| 1882 | } |
| 1883 | if (match(V: Op, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: Y), R: m_FPExt(Op: m_Value(V&: X)))) && |
| 1884 | X->getType() == Ty) { |
| 1885 | // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X |
| 1886 | Value *NarrowY = Builder.CreateFPTruncFMF(V: Y, DestTy: Ty, FMFSource: FMF); |
| 1887 | Value *Sel = |
| 1888 | Builder.CreateSelectFMF(C: Cond, True: NarrowY, False: X, FMFSource: FMF, Name: "narrow.sel" , MDFrom: Op); |
| 1889 | return replaceInstUsesWith(I&: FPT, V: Sel); |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | if (auto *II = dyn_cast<IntrinsicInst>(Val: FPT.getOperand(i_nocapture: 0))) { |
| 1894 | switch (II->getIntrinsicID()) { |
| 1895 | default: break; |
| 1896 | case Intrinsic::ceil: |
| 1897 | case Intrinsic::fabs: |
| 1898 | case Intrinsic::floor: |
| 1899 | case Intrinsic::nearbyint: |
| 1900 | case Intrinsic::rint: |
| 1901 | case Intrinsic::round: |
| 1902 | case Intrinsic::roundeven: |
| 1903 | case Intrinsic::trunc: { |
| 1904 | Value *Src = II->getArgOperand(i: 0); |
| 1905 | if (!Src->hasOneUse()) |
| 1906 | break; |
| 1907 | |
| 1908 | // Except for fabs, this transformation requires the input of the unary FP |
| 1909 | // operation to be itself an fpext from the type to which we're |
| 1910 | // truncating. |
| 1911 | if (II->getIntrinsicID() != Intrinsic::fabs) { |
| 1912 | FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Val: Src); |
| 1913 | if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) |
| 1914 | break; |
| 1915 | } |
| 1916 | |
| 1917 | // Do unary FP operation on smaller type. |
| 1918 | // (fptrunc (fabs x)) -> (fabs (fptrunc x)) |
| 1919 | Value *InnerTrunc = Builder.CreateFPTrunc(V: Src, DestTy: Ty); |
| 1920 | Function *Overload = Intrinsic::getOrInsertDeclaration( |
| 1921 | M: FPT.getModule(), id: II->getIntrinsicID(), Tys: Ty); |
| 1922 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 1923 | II->getOperandBundlesAsDefs(Defs&: OpBundles); |
| 1924 | CallInst *NewCI = |
| 1925 | CallInst::Create(Func: Overload, Args: {InnerTrunc}, Bundles: OpBundles, NameStr: II->getName()); |
| 1926 | // A normal value may be converted to an infinity. It means that we cannot |
| 1927 | // propagate ninf from the intrinsic. So we propagate FMF from fptrunc. |
| 1928 | NewCI->copyFastMathFlags(I: &FPT); |
| 1929 | return NewCI; |
| 1930 | } |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | if (Instruction *I = shrinkInsertElt(Trunc&: FPT, Builder)) |
| 1935 | return I; |
| 1936 | |
| 1937 | Value *Src = FPT.getOperand(i_nocapture: 0); |
| 1938 | if (isa<SIToFPInst>(Val: Src) || isa<UIToFPInst>(Val: Src)) { |
| 1939 | auto *FPCast = cast<CastInst>(Val: Src); |
| 1940 | if (isKnownExactCastIntToFP(I&: *FPCast, IC&: *this)) |
| 1941 | return CastInst::Create(FPCast->getOpcode(), S: FPCast->getOperand(i_nocapture: 0), Ty); |
| 1942 | } |
| 1943 | |
| 1944 | return nullptr; |
| 1945 | } |
| 1946 | |
| 1947 | Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { |
| 1948 | // If the source operand is a cast from integer to FP and known exact, then |
| 1949 | // cast the integer operand directly to the destination type. |
| 1950 | Type *Ty = FPExt.getType(); |
| 1951 | Value *Src = FPExt.getOperand(i_nocapture: 0); |
| 1952 | if (isa<SIToFPInst>(Val: Src) || isa<UIToFPInst>(Val: Src)) { |
| 1953 | auto *FPCast = cast<CastInst>(Val: Src); |
| 1954 | if (isKnownExactCastIntToFP(I&: *FPCast, IC&: *this)) |
| 1955 | return CastInst::Create(FPCast->getOpcode(), S: FPCast->getOperand(i_nocapture: 0), Ty); |
| 1956 | } |
| 1957 | |
| 1958 | return commonCastTransforms(CI&: FPExt); |
| 1959 | } |
| 1960 | |
| 1961 | /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) |
| 1962 | /// This is safe if the intermediate type has enough bits in its mantissa to |
| 1963 | /// accurately represent all values of X. For example, this won't work with |
| 1964 | /// i64 -> float -> i64. |
| 1965 | Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { |
| 1966 | if (!isa<UIToFPInst>(Val: FI.getOperand(i_nocapture: 0)) && !isa<SIToFPInst>(Val: FI.getOperand(i_nocapture: 0))) |
| 1967 | return nullptr; |
| 1968 | |
| 1969 | auto *OpI = cast<CastInst>(Val: FI.getOperand(i_nocapture: 0)); |
| 1970 | Value *X = OpI->getOperand(i_nocapture: 0); |
| 1971 | Type *XType = X->getType(); |
| 1972 | Type *DestType = FI.getType(); |
| 1973 | bool IsOutputSigned = isa<FPToSIInst>(Val: FI); |
| 1974 | |
| 1975 | // Since we can assume the conversion won't overflow, our decision as to |
| 1976 | // whether the input will fit in the float should depend on the minimum |
| 1977 | // of the input range and output range. |
| 1978 | |
| 1979 | // This means this is also safe for a signed input and unsigned output, since |
| 1980 | // a negative input would lead to undefined behavior. |
| 1981 | if (!isKnownExactCastIntToFP(I&: *OpI, IC&: *this)) { |
| 1982 | // The first cast may not round exactly based on the source integer width |
| 1983 | // and FP width, but the overflow UB rules can still allow this to fold. |
| 1984 | // If the destination type is narrow, that means the intermediate FP value |
| 1985 | // must be large enough to hold the source value exactly. |
| 1986 | // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. |
| 1987 | int OutputSize = (int)DestType->getScalarSizeInBits(); |
| 1988 | if (OutputSize > OpI->getType()->getFPMantissaWidth()) |
| 1989 | return nullptr; |
| 1990 | } |
| 1991 | |
| 1992 | if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { |
| 1993 | bool IsInputSigned = isa<SIToFPInst>(Val: OpI); |
| 1994 | if (IsInputSigned && IsOutputSigned) |
| 1995 | return new SExtInst(X, DestType); |
| 1996 | return new ZExtInst(X, DestType); |
| 1997 | } |
| 1998 | if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) |
| 1999 | return new TruncInst(X, DestType); |
| 2000 | |
| 2001 | assert(XType == DestType && "Unexpected types for int to FP to int casts" ); |
| 2002 | return replaceInstUsesWith(I&: FI, V: X); |
| 2003 | } |
| 2004 | |
| 2005 | static Instruction *foldFPtoI(Instruction &FI, InstCombiner &IC) { |
| 2006 | // fpto{u/s}i non-norm --> 0 |
| 2007 | FPClassTest Mask = |
| 2008 | FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal; |
| 2009 | KnownFPClass FPClass = computeKnownFPClass( |
| 2010 | V: FI.getOperand(i: 0), InterestedClasses: Mask, SQ: IC.getSimplifyQuery().getWithInstruction(I: &FI)); |
| 2011 | if (FPClass.isKnownNever(Mask)) |
| 2012 | return IC.replaceInstUsesWith(I&: FI, V: ConstantInt::getNullValue(Ty: FI.getType())); |
| 2013 | |
| 2014 | return nullptr; |
| 2015 | } |
| 2016 | |
| 2017 | Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { |
| 2018 | if (Instruction *I = foldItoFPtoI(FI)) |
| 2019 | return I; |
| 2020 | |
| 2021 | if (Instruction *I = foldFPtoI(FI, IC&: *this)) |
| 2022 | return I; |
| 2023 | |
| 2024 | return commonCastTransforms(CI&: FI); |
| 2025 | } |
| 2026 | |
| 2027 | Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { |
| 2028 | if (Instruction *I = foldItoFPtoI(FI)) |
| 2029 | return I; |
| 2030 | |
| 2031 | if (Instruction *I = foldFPtoI(FI, IC&: *this)) |
| 2032 | return I; |
| 2033 | |
| 2034 | return commonCastTransforms(CI&: FI); |
| 2035 | } |
| 2036 | |
| 2037 | Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { |
| 2038 | if (Instruction *R = commonCastTransforms(CI)) |
| 2039 | return R; |
| 2040 | if (!CI.hasNonNeg() && isKnownNonNegative(V: CI.getOperand(i_nocapture: 0), SQ)) { |
| 2041 | CI.setNonNeg(); |
| 2042 | return &CI; |
| 2043 | } |
| 2044 | return nullptr; |
| 2045 | } |
| 2046 | |
| 2047 | Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { |
| 2048 | if (Instruction *R = commonCastTransforms(CI)) |
| 2049 | return R; |
| 2050 | if (isKnownNonNegative(V: CI.getOperand(i_nocapture: 0), SQ)) { |
| 2051 | auto *UI = |
| 2052 | CastInst::Create(Instruction::UIToFP, S: CI.getOperand(i_nocapture: 0), Ty: CI.getType()); |
| 2053 | UI->setNonNeg(true); |
| 2054 | return UI; |
| 2055 | } |
| 2056 | return nullptr; |
| 2057 | } |
| 2058 | |
| 2059 | Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { |
| 2060 | // If the source integer type is not the intptr_t type for this target, do a |
| 2061 | // trunc or zext to the intptr_t type, then inttoptr of it. This allows the |
| 2062 | // cast to be exposed to other transforms. |
| 2063 | unsigned AS = CI.getAddressSpace(); |
| 2064 | if (CI.getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() != |
| 2065 | DL.getPointerSizeInBits(AS)) { |
| 2066 | Type *Ty = CI.getOperand(i_nocapture: 0)->getType()->getWithNewType( |
| 2067 | EltTy: DL.getIntPtrType(C&: CI.getContext(), AddressSpace: AS)); |
| 2068 | Value *P = Builder.CreateZExtOrTrunc(V: CI.getOperand(i_nocapture: 0), DestTy: Ty); |
| 2069 | return new IntToPtrInst(P, CI.getType()); |
| 2070 | } |
| 2071 | |
| 2072 | if (Instruction *I = commonCastTransforms(CI)) |
| 2073 | return I; |
| 2074 | |
| 2075 | return nullptr; |
| 2076 | } |
| 2077 | |
| 2078 | Value *InstCombinerImpl::foldPtrToIntOfGEP(Type *IntTy, Value *Ptr) { |
| 2079 | // Look through chain of one-use GEPs. |
| 2080 | Type *PtrTy = Ptr->getType(); |
| 2081 | SmallVector<GEPOperator *> GEPs; |
| 2082 | while (true) { |
| 2083 | auto *GEP = dyn_cast<GEPOperator>(Val: Ptr); |
| 2084 | if (!GEP || !GEP->hasOneUse()) |
| 2085 | break; |
| 2086 | GEPs.push_back(Elt: GEP); |
| 2087 | Ptr = GEP->getPointerOperand(); |
| 2088 | } |
| 2089 | |
| 2090 | // Don't handle case where GEP converts from pointer to vector. |
| 2091 | if (GEPs.empty() || PtrTy != Ptr->getType()) |
| 2092 | return nullptr; |
| 2093 | |
| 2094 | // Check whether we know the integer value of the base pointer. |
| 2095 | Value *Res; |
| 2096 | Type *IdxTy = DL.getIndexType(PtrTy); |
| 2097 | if (match(V: Ptr, P: m_OneUse(SubPattern: m_IntToPtr(Op: m_Value(V&: Res)))) && |
| 2098 | Res->getType() == IntTy && IntTy == IdxTy) { |
| 2099 | // pass |
| 2100 | } else if (isa<ConstantPointerNull>(Val: Ptr)) { |
| 2101 | Res = Constant::getNullValue(Ty: IdxTy); |
| 2102 | } else { |
| 2103 | return nullptr; |
| 2104 | } |
| 2105 | |
| 2106 | // Perform the entire operation on integers instead. |
| 2107 | for (GEPOperator *GEP : reverse(C&: GEPs)) { |
| 2108 | Value *Offset = EmitGEPOffset(GEP); |
| 2109 | Res = Builder.CreateAdd(LHS: Res, RHS: Offset, Name: "" , HasNUW: GEP->hasNoUnsignedWrap()); |
| 2110 | } |
| 2111 | return Builder.CreateZExtOrTrunc(V: Res, DestTy: IntTy); |
| 2112 | } |
| 2113 | |
| 2114 | Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { |
| 2115 | // If the destination integer type is not the intptr_t type for this target, |
| 2116 | // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast |
| 2117 | // to be exposed to other transforms. |
| 2118 | Value *SrcOp = CI.getPointerOperand(); |
| 2119 | Type *SrcTy = SrcOp->getType(); |
| 2120 | Type *Ty = CI.getType(); |
| 2121 | unsigned AS = CI.getPointerAddressSpace(); |
| 2122 | unsigned TySize = Ty->getScalarSizeInBits(); |
| 2123 | unsigned PtrSize = DL.getPointerSizeInBits(AS); |
| 2124 | if (TySize != PtrSize) { |
| 2125 | Type *IntPtrTy = |
| 2126 | SrcTy->getWithNewType(EltTy: DL.getIntPtrType(C&: CI.getContext(), AddressSpace: AS)); |
| 2127 | Value *P = Builder.CreatePtrToInt(V: SrcOp, DestTy: IntPtrTy); |
| 2128 | return CastInst::CreateIntegerCast(S: P, Ty, /*isSigned=*/false); |
| 2129 | } |
| 2130 | |
| 2131 | // (ptrtoint (ptrmask P, M)) |
| 2132 | // -> (and (ptrtoint P), M) |
| 2133 | // This is generally beneficial as `and` is better supported than `ptrmask`. |
| 2134 | Value *Ptr, *Mask; |
| 2135 | if (match(V: SrcOp, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::ptrmask>(Op0: m_Value(V&: Ptr), |
| 2136 | Op1: m_Value(V&: Mask)))) && |
| 2137 | Mask->getType() == Ty) |
| 2138 | return BinaryOperator::CreateAnd(V1: Builder.CreatePtrToInt(V: Ptr, DestTy: Ty), V2: Mask); |
| 2139 | |
| 2140 | if (Value *V = foldPtrToIntOfGEP(IntTy: Ty, Ptr: SrcOp)) |
| 2141 | return replaceInstUsesWith(I&: CI, V); |
| 2142 | |
| 2143 | Value *Vec, *Scalar, *Index; |
| 2144 | if (match(V: SrcOp, P: m_OneUse(SubPattern: m_InsertElt(Val: m_IntToPtr(Op: m_Value(V&: Vec)), |
| 2145 | Elt: m_Value(V&: Scalar), Idx: m_Value(V&: Index)))) && |
| 2146 | Vec->getType() == Ty) { |
| 2147 | assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type" ); |
| 2148 | // Convert the scalar to int followed by insert to eliminate one cast: |
| 2149 | // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index |
| 2150 | Value *NewCast = Builder.CreatePtrToInt(V: Scalar, DestTy: Ty->getScalarType()); |
| 2151 | return InsertElementInst::Create(Vec, NewElt: NewCast, Idx: Index); |
| 2152 | } |
| 2153 | |
| 2154 | return commonCastTransforms(CI); |
| 2155 | } |
| 2156 | |
| 2157 | /// This input value (which is known to have vector type) is being zero extended |
| 2158 | /// or truncated to the specified vector type. Since the zext/trunc is done |
| 2159 | /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, |
| 2160 | /// endianness will impact which end of the vector that is extended or |
| 2161 | /// truncated. |
| 2162 | /// |
| 2163 | /// A vector is always stored with index 0 at the lowest address, which |
| 2164 | /// corresponds to the most significant bits for a big endian stored integer and |
| 2165 | /// the least significant bits for little endian. A trunc/zext of an integer |
| 2166 | /// impacts the big end of the integer. Thus, we need to add/remove elements at |
| 2167 | /// the front of the vector for big endian targets, and the back of the vector |
| 2168 | /// for little endian targets. |
| 2169 | /// |
| 2170 | /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. |
| 2171 | /// |
| 2172 | /// The source and destination vector types may have different element types. |
| 2173 | static Instruction * |
| 2174 | optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, |
| 2175 | InstCombinerImpl &IC) { |
| 2176 | // We can only do this optimization if the output is a multiple of the input |
| 2177 | // element size, or the input is a multiple of the output element size. |
| 2178 | // Convert the input type to have the same element type as the output. |
| 2179 | VectorType *SrcTy = cast<VectorType>(Val: InVal->getType()); |
| 2180 | |
| 2181 | if (SrcTy->getElementType() != DestTy->getElementType()) { |
| 2182 | // The input types don't need to be identical, but for now they must be the |
| 2183 | // same size. There is no specific reason we couldn't handle things like |
| 2184 | // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten |
| 2185 | // there yet. |
| 2186 | if (SrcTy->getElementType()->getPrimitiveSizeInBits() != |
| 2187 | DestTy->getElementType()->getPrimitiveSizeInBits()) |
| 2188 | return nullptr; |
| 2189 | |
| 2190 | SrcTy = |
| 2191 | FixedVectorType::get(ElementType: DestTy->getElementType(), |
| 2192 | NumElts: cast<FixedVectorType>(Val: SrcTy)->getNumElements()); |
| 2193 | InVal = IC.Builder.CreateBitCast(V: InVal, DestTy: SrcTy); |
| 2194 | } |
| 2195 | |
| 2196 | bool IsBigEndian = IC.getDataLayout().isBigEndian(); |
| 2197 | unsigned SrcElts = cast<FixedVectorType>(Val: SrcTy)->getNumElements(); |
| 2198 | unsigned DestElts = cast<FixedVectorType>(Val: DestTy)->getNumElements(); |
| 2199 | |
| 2200 | assert(SrcElts != DestElts && "Element counts should be different." ); |
| 2201 | |
| 2202 | // Now that the element types match, get the shuffle mask and RHS of the |
| 2203 | // shuffle to use, which depends on whether we're increasing or decreasing the |
| 2204 | // size of the input. |
| 2205 | auto ShuffleMaskStorage = llvm::to_vector<16>(Range: llvm::seq<int>(Begin: 0, End: SrcElts)); |
| 2206 | ArrayRef<int> ShuffleMask; |
| 2207 | Value *V2; |
| 2208 | |
| 2209 | if (SrcElts > DestElts) { |
| 2210 | // If we're shrinking the number of elements (rewriting an integer |
| 2211 | // truncate), just shuffle in the elements corresponding to the least |
| 2212 | // significant bits from the input and use poison as the second shuffle |
| 2213 | // input. |
| 2214 | V2 = PoisonValue::get(T: SrcTy); |
| 2215 | // Make sure the shuffle mask selects the "least significant bits" by |
| 2216 | // keeping elements from back of the src vector for big endian, and from the |
| 2217 | // front for little endian. |
| 2218 | ShuffleMask = ShuffleMaskStorage; |
| 2219 | if (IsBigEndian) |
| 2220 | ShuffleMask = ShuffleMask.take_back(N: DestElts); |
| 2221 | else |
| 2222 | ShuffleMask = ShuffleMask.take_front(N: DestElts); |
| 2223 | } else { |
| 2224 | // If we're increasing the number of elements (rewriting an integer zext), |
| 2225 | // shuffle in all of the elements from InVal. Fill the rest of the result |
| 2226 | // elements with zeros from a constant zero. |
| 2227 | V2 = Constant::getNullValue(Ty: SrcTy); |
| 2228 | // Use first elt from V2 when indicating zero in the shuffle mask. |
| 2229 | uint32_t NullElt = SrcElts; |
| 2230 | // Extend with null values in the "most significant bits" by adding elements |
| 2231 | // in front of the src vector for big endian, and at the back for little |
| 2232 | // endian. |
| 2233 | unsigned DeltaElts = DestElts - SrcElts; |
| 2234 | if (IsBigEndian) |
| 2235 | ShuffleMaskStorage.insert(I: ShuffleMaskStorage.begin(), NumToInsert: DeltaElts, Elt: NullElt); |
| 2236 | else |
| 2237 | ShuffleMaskStorage.append(NumInputs: DeltaElts, Elt: NullElt); |
| 2238 | ShuffleMask = ShuffleMaskStorage; |
| 2239 | } |
| 2240 | |
| 2241 | return new ShuffleVectorInst(InVal, V2, ShuffleMask); |
| 2242 | } |
| 2243 | |
| 2244 | static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { |
| 2245 | return Value % Ty->getPrimitiveSizeInBits() == 0; |
| 2246 | } |
| 2247 | |
| 2248 | static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { |
| 2249 | return Value / Ty->getPrimitiveSizeInBits(); |
| 2250 | } |
| 2251 | |
| 2252 | /// V is a value which is inserted into a vector of VecEltTy. |
| 2253 | /// Look through the value to see if we can decompose it into |
| 2254 | /// insertions into the vector. See the example in the comment for |
| 2255 | /// OptimizeIntegerToVectorInsertions for the pattern this handles. |
| 2256 | /// The type of V is always a non-zero multiple of VecEltTy's size. |
| 2257 | /// Shift is the number of bits between the lsb of V and the lsb of |
| 2258 | /// the vector. |
| 2259 | /// |
| 2260 | /// This returns false if the pattern can't be matched or true if it can, |
| 2261 | /// filling in Elements with the elements found here. |
| 2262 | static bool collectInsertionElements(Value *V, unsigned Shift, |
| 2263 | SmallVectorImpl<Value *> &Elements, |
| 2264 | Type *VecEltTy, bool isBigEndian) { |
| 2265 | assert(isMultipleOfTypeSize(Shift, VecEltTy) && |
| 2266 | "Shift should be a multiple of the element type size" ); |
| 2267 | |
| 2268 | // Undef values never contribute useful bits to the result. |
| 2269 | if (isa<UndefValue>(Val: V)) return true; |
| 2270 | |
| 2271 | // If we got down to a value of the right type, we win, try inserting into the |
| 2272 | // right element. |
| 2273 | if (V->getType() == VecEltTy) { |
| 2274 | // Inserting null doesn't actually insert any elements. |
| 2275 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
| 2276 | if (C->isNullValue()) |
| 2277 | return true; |
| 2278 | |
| 2279 | unsigned ElementIndex = getTypeSizeIndex(Value: Shift, Ty: VecEltTy); |
| 2280 | if (isBigEndian) |
| 2281 | ElementIndex = Elements.size() - ElementIndex - 1; |
| 2282 | |
| 2283 | // Fail if multiple elements are inserted into this slot. |
| 2284 | if (Elements[ElementIndex]) |
| 2285 | return false; |
| 2286 | |
| 2287 | Elements[ElementIndex] = V; |
| 2288 | return true; |
| 2289 | } |
| 2290 | |
| 2291 | if (Constant *C = dyn_cast<Constant>(Val: V)) { |
| 2292 | // Figure out the # elements this provides, and bitcast it or slice it up |
| 2293 | // as required. |
| 2294 | unsigned NumElts = getTypeSizeIndex(Value: C->getType()->getPrimitiveSizeInBits(), |
| 2295 | Ty: VecEltTy); |
| 2296 | // If the constant is the size of a vector element, we just need to bitcast |
| 2297 | // it to the right type so it gets properly inserted. |
| 2298 | if (NumElts == 1) |
| 2299 | return collectInsertionElements(V: ConstantExpr::getBitCast(C, Ty: VecEltTy), |
| 2300 | Shift, Elements, VecEltTy, isBigEndian); |
| 2301 | |
| 2302 | // Okay, this is a constant that covers multiple elements. Slice it up into |
| 2303 | // pieces and insert each element-sized piece into the vector. |
| 2304 | if (!isa<IntegerType>(Val: C->getType())) |
| 2305 | C = ConstantExpr::getBitCast(C, Ty: IntegerType::get(C&: V->getContext(), |
| 2306 | NumBits: C->getType()->getPrimitiveSizeInBits())); |
| 2307 | unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); |
| 2308 | Type *ElementIntTy = IntegerType::get(C&: C->getContext(), NumBits: ElementSize); |
| 2309 | |
| 2310 | for (unsigned i = 0; i != NumElts; ++i) { |
| 2311 | unsigned ShiftI = i * ElementSize; |
| 2312 | Constant *Piece = ConstantFoldBinaryInstruction( |
| 2313 | Opcode: Instruction::LShr, V1: C, V2: ConstantInt::get(Ty: C->getType(), V: ShiftI)); |
| 2314 | if (!Piece) |
| 2315 | return false; |
| 2316 | |
| 2317 | Piece = ConstantExpr::getTrunc(C: Piece, Ty: ElementIntTy); |
| 2318 | if (!collectInsertionElements(V: Piece, Shift: ShiftI + Shift, Elements, VecEltTy, |
| 2319 | isBigEndian)) |
| 2320 | return false; |
| 2321 | } |
| 2322 | return true; |
| 2323 | } |
| 2324 | |
| 2325 | if (!V->hasOneUse()) return false; |
| 2326 | |
| 2327 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 2328 | if (!I) return false; |
| 2329 | switch (I->getOpcode()) { |
| 2330 | default: return false; // Unhandled case. |
| 2331 | case Instruction::BitCast: |
| 2332 | if (I->getOperand(i: 0)->getType()->isVectorTy()) |
| 2333 | return false; |
| 2334 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2335 | isBigEndian); |
| 2336 | case Instruction::ZExt: |
| 2337 | if (!isMultipleOfTypeSize( |
| 2338 | Value: I->getOperand(i: 0)->getType()->getPrimitiveSizeInBits(), |
| 2339 | Ty: VecEltTy)) |
| 2340 | return false; |
| 2341 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2342 | isBigEndian); |
| 2343 | case Instruction::Or: |
| 2344 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2345 | isBigEndian) && |
| 2346 | collectInsertionElements(V: I->getOperand(i: 1), Shift, Elements, VecEltTy, |
| 2347 | isBigEndian); |
| 2348 | case Instruction::Shl: { |
| 2349 | // Must be shifting by a constant that is a multiple of the element size. |
| 2350 | ConstantInt *CI = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1)); |
| 2351 | if (!CI) return false; |
| 2352 | Shift += CI->getZExtValue(); |
| 2353 | if (!isMultipleOfTypeSize(Value: Shift, Ty: VecEltTy)) return false; |
| 2354 | return collectInsertionElements(V: I->getOperand(i: 0), Shift, Elements, VecEltTy, |
| 2355 | isBigEndian); |
| 2356 | } |
| 2357 | |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | |
| 2362 | /// If the input is an 'or' instruction, we may be doing shifts and ors to |
| 2363 | /// assemble the elements of the vector manually. |
| 2364 | /// Try to rip the code out and replace it with insertelements. This is to |
| 2365 | /// optimize code like this: |
| 2366 | /// |
| 2367 | /// %tmp37 = bitcast float %inc to i32 |
| 2368 | /// %tmp38 = zext i32 %tmp37 to i64 |
| 2369 | /// %tmp31 = bitcast float %inc5 to i32 |
| 2370 | /// %tmp32 = zext i32 %tmp31 to i64 |
| 2371 | /// %tmp33 = shl i64 %tmp32, 32 |
| 2372 | /// %ins35 = or i64 %tmp33, %tmp38 |
| 2373 | /// %tmp43 = bitcast i64 %ins35 to <2 x float> |
| 2374 | /// |
| 2375 | /// Into two insertelements that do "buildvector{%inc, %inc5}". |
| 2376 | static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, |
| 2377 | InstCombinerImpl &IC) { |
| 2378 | auto *DestVecTy = cast<FixedVectorType>(Val: CI.getType()); |
| 2379 | Value *IntInput = CI.getOperand(i_nocapture: 0); |
| 2380 | |
| 2381 | // if the int input is just an undef value do not try to optimize to vector |
| 2382 | // insertions as it will prevent undef propagation |
| 2383 | if (isa<UndefValue>(Val: IntInput)) |
| 2384 | return nullptr; |
| 2385 | |
| 2386 | SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); |
| 2387 | if (!collectInsertionElements(V: IntInput, Shift: 0, Elements, |
| 2388 | VecEltTy: DestVecTy->getElementType(), |
| 2389 | isBigEndian: IC.getDataLayout().isBigEndian())) |
| 2390 | return nullptr; |
| 2391 | |
| 2392 | // If we succeeded, we know that all of the element are specified by Elements |
| 2393 | // or are zero if Elements has a null entry. Recast this as a set of |
| 2394 | // insertions. |
| 2395 | Value *Result = Constant::getNullValue(Ty: CI.getType()); |
| 2396 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| 2397 | if (!Elements[i]) continue; // Unset element. |
| 2398 | |
| 2399 | Result = IC.Builder.CreateInsertElement(Vec: Result, NewElt: Elements[i], |
| 2400 | Idx: IC.Builder.getInt32(C: i)); |
| 2401 | } |
| 2402 | |
| 2403 | return Result; |
| 2404 | } |
| 2405 | |
| 2406 | /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the |
| 2407 | /// vector followed by extract element. The backend tends to handle bitcasts of |
| 2408 | /// vectors better than bitcasts of scalars because vector registers are |
| 2409 | /// usually not type-specific like scalar integer or scalar floating-point. |
| 2410 | static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, |
| 2411 | InstCombinerImpl &IC) { |
| 2412 | Value *VecOp, *Index; |
| 2413 | if (!match(V: BitCast.getOperand(i_nocapture: 0), |
| 2414 | P: m_OneUse(SubPattern: m_ExtractElt(Val: m_Value(V&: VecOp), Idx: m_Value(V&: Index))))) |
| 2415 | return nullptr; |
| 2416 | |
| 2417 | // The bitcast must be to a vectorizable type, otherwise we can't make a new |
| 2418 | // type to extract from. |
| 2419 | Type *DestType = BitCast.getType(); |
| 2420 | VectorType *VecType = cast<VectorType>(Val: VecOp->getType()); |
| 2421 | if (VectorType::isValidElementType(ElemTy: DestType)) { |
| 2422 | auto *NewVecType = VectorType::get(ElementType: DestType, Other: VecType); |
| 2423 | auto *NewBC = IC.Builder.CreateBitCast(V: VecOp, DestTy: NewVecType, Name: "bc" ); |
| 2424 | return ExtractElementInst::Create(Vec: NewBC, Idx: Index); |
| 2425 | } |
| 2426 | |
| 2427 | // Only solve DestType is vector to avoid inverse transform in visitBitCast. |
| 2428 | // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) |
| 2429 | auto *FixedVType = dyn_cast<FixedVectorType>(Val: VecType); |
| 2430 | if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) |
| 2431 | return CastInst::Create(Instruction::BitCast, S: VecOp, Ty: DestType); |
| 2432 | |
| 2433 | return nullptr; |
| 2434 | } |
| 2435 | |
| 2436 | /// Change the type of a bitwise logic operation if we can eliminate a bitcast. |
| 2437 | static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, |
| 2438 | InstCombiner::BuilderTy &Builder) { |
| 2439 | Type *DestTy = BitCast.getType(); |
| 2440 | BinaryOperator *BO; |
| 2441 | |
| 2442 | if (!match(V: BitCast.getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BinOp(I&: BO))) || |
| 2443 | !BO->isBitwiseLogicOp()) |
| 2444 | return nullptr; |
| 2445 | |
| 2446 | // FIXME: This transform is restricted to vector types to avoid backend |
| 2447 | // problems caused by creating potentially illegal operations. If a fix-up is |
| 2448 | // added to handle that situation, we can remove this check. |
| 2449 | if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) |
| 2450 | return nullptr; |
| 2451 | |
| 2452 | if (DestTy->isFPOrFPVectorTy()) { |
| 2453 | Value *X, *Y; |
| 2454 | // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) |
| 2455 | if (match(V: BO->getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && |
| 2456 | match(V: BO->getOperand(i_nocapture: 1), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: Y))))) { |
| 2457 | if (X->getType()->isFPOrFPVectorTy() && |
| 2458 | Y->getType()->isIntOrIntVectorTy()) { |
| 2459 | Value *CastedOp = |
| 2460 | Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 0), DestTy: Y->getType()); |
| 2461 | Value *NewBO = Builder.CreateBinOp(Opc: BO->getOpcode(), LHS: CastedOp, RHS: Y); |
| 2462 | return CastInst::CreateBitOrPointerCast(S: NewBO, Ty: DestTy); |
| 2463 | } |
| 2464 | if (X->getType()->isIntOrIntVectorTy() && |
| 2465 | Y->getType()->isFPOrFPVectorTy()) { |
| 2466 | Value *CastedOp = |
| 2467 | Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 1), DestTy: X->getType()); |
| 2468 | Value *NewBO = Builder.CreateBinOp(Opc: BO->getOpcode(), LHS: CastedOp, RHS: X); |
| 2469 | return CastInst::CreateBitOrPointerCast(S: NewBO, Ty: DestTy); |
| 2470 | } |
| 2471 | } |
| 2472 | return nullptr; |
| 2473 | } |
| 2474 | |
| 2475 | if (!DestTy->isIntOrIntVectorTy()) |
| 2476 | return nullptr; |
| 2477 | |
| 2478 | Value *X; |
| 2479 | if (match(V: BO->getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && |
| 2480 | X->getType() == DestTy && !isa<Constant>(Val: X)) { |
| 2481 | // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) |
| 2482 | Value *CastedOp1 = Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 1), DestTy); |
| 2483 | return BinaryOperator::Create(Op: BO->getOpcode(), S1: X, S2: CastedOp1); |
| 2484 | } |
| 2485 | |
| 2486 | if (match(V: BO->getOperand(i_nocapture: 1), P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && |
| 2487 | X->getType() == DestTy && !isa<Constant>(Val: X)) { |
| 2488 | // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) |
| 2489 | Value *CastedOp0 = Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 0), DestTy); |
| 2490 | return BinaryOperator::Create(Op: BO->getOpcode(), S1: CastedOp0, S2: X); |
| 2491 | } |
| 2492 | |
| 2493 | // Canonicalize vector bitcasts to come before vector bitwise logic with a |
| 2494 | // constant. This eases recognition of special constants for later ops. |
| 2495 | // Example: |
| 2496 | // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b |
| 2497 | Constant *C; |
| 2498 | if (match(V: BO->getOperand(i_nocapture: 1), P: m_Constant(C))) { |
| 2499 | // bitcast (logic X, C) --> logic (bitcast X, C') |
| 2500 | Value *CastedOp0 = Builder.CreateBitCast(V: BO->getOperand(i_nocapture: 0), DestTy); |
| 2501 | Value *CastedC = Builder.CreateBitCast(V: C, DestTy); |
| 2502 | return BinaryOperator::Create(Op: BO->getOpcode(), S1: CastedOp0, S2: CastedC); |
| 2503 | } |
| 2504 | |
| 2505 | return nullptr; |
| 2506 | } |
| 2507 | |
| 2508 | /// Change the type of a select if we can eliminate a bitcast. |
| 2509 | static Instruction *foldBitCastSelect(BitCastInst &BitCast, |
| 2510 | InstCombiner::BuilderTy &Builder) { |
| 2511 | Value *Cond, *TVal, *FVal; |
| 2512 | if (!match(V: BitCast.getOperand(i_nocapture: 0), |
| 2513 | P: m_OneUse(SubPattern: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TVal), R: m_Value(V&: FVal))))) |
| 2514 | return nullptr; |
| 2515 | |
| 2516 | // A vector select must maintain the same number of elements in its operands. |
| 2517 | Type *CondTy = Cond->getType(); |
| 2518 | Type *DestTy = BitCast.getType(); |
| 2519 | if (auto *CondVTy = dyn_cast<VectorType>(Val: CondTy)) |
| 2520 | if (!DestTy->isVectorTy() || |
| 2521 | CondVTy->getElementCount() != |
| 2522 | cast<VectorType>(Val: DestTy)->getElementCount()) |
| 2523 | return nullptr; |
| 2524 | |
| 2525 | // FIXME: This transform is restricted from changing the select between |
| 2526 | // scalars and vectors to avoid backend problems caused by creating |
| 2527 | // potentially illegal operations. If a fix-up is added to handle that |
| 2528 | // situation, we can remove this check. |
| 2529 | if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) |
| 2530 | return nullptr; |
| 2531 | |
| 2532 | auto *Sel = cast<Instruction>(Val: BitCast.getOperand(i_nocapture: 0)); |
| 2533 | Value *X; |
| 2534 | if (match(V: TVal, P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && X->getType() == DestTy && |
| 2535 | !isa<Constant>(Val: X)) { |
| 2536 | // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) |
| 2537 | Value *CastedVal = Builder.CreateBitCast(V: FVal, DestTy); |
| 2538 | return SelectInst::Create(C: Cond, S1: X, S2: CastedVal, NameStr: "" , InsertBefore: nullptr, MDFrom: Sel); |
| 2539 | } |
| 2540 | |
| 2541 | if (match(V: FVal, P: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X)))) && X->getType() == DestTy && |
| 2542 | !isa<Constant>(Val: X)) { |
| 2543 | // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) |
| 2544 | Value *CastedVal = Builder.CreateBitCast(V: TVal, DestTy); |
| 2545 | return SelectInst::Create(C: Cond, S1: CastedVal, S2: X, NameStr: "" , InsertBefore: nullptr, MDFrom: Sel); |
| 2546 | } |
| 2547 | |
| 2548 | return nullptr; |
| 2549 | } |
| 2550 | |
| 2551 | /// Check if all users of CI are StoreInsts. |
| 2552 | static bool hasStoreUsersOnly(CastInst &CI) { |
| 2553 | for (User *U : CI.users()) { |
| 2554 | if (!isa<StoreInst>(Val: U)) |
| 2555 | return false; |
| 2556 | } |
| 2557 | return true; |
| 2558 | } |
| 2559 | |
| 2560 | /// This function handles following case |
| 2561 | /// |
| 2562 | /// A -> B cast |
| 2563 | /// PHI |
| 2564 | /// B -> A cast |
| 2565 | /// |
| 2566 | /// All the related PHI nodes can be replaced by new PHI nodes with type A. |
| 2567 | /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. |
| 2568 | Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, |
| 2569 | PHINode *PN) { |
| 2570 | // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. |
| 2571 | if (hasStoreUsersOnly(CI)) |
| 2572 | return nullptr; |
| 2573 | |
| 2574 | Value *Src = CI.getOperand(i_nocapture: 0); |
| 2575 | Type *SrcTy = Src->getType(); // Type B |
| 2576 | Type *DestTy = CI.getType(); // Type A |
| 2577 | |
| 2578 | SmallVector<PHINode *, 4> PhiWorklist; |
| 2579 | SmallSetVector<PHINode *, 4> OldPhiNodes; |
| 2580 | |
| 2581 | // Find all of the A->B casts and PHI nodes. |
| 2582 | // We need to inspect all related PHI nodes, but PHIs can be cyclic, so |
| 2583 | // OldPhiNodes is used to track all known PHI nodes, before adding a new |
| 2584 | // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. |
| 2585 | PhiWorklist.push_back(Elt: PN); |
| 2586 | OldPhiNodes.insert(X: PN); |
| 2587 | while (!PhiWorklist.empty()) { |
| 2588 | auto *OldPN = PhiWorklist.pop_back_val(); |
| 2589 | for (Value *IncValue : OldPN->incoming_values()) { |
| 2590 | if (isa<Constant>(Val: IncValue)) |
| 2591 | continue; |
| 2592 | |
| 2593 | if (auto *LI = dyn_cast<LoadInst>(Val: IncValue)) { |
| 2594 | // If there is a sequence of one or more load instructions, each loaded |
| 2595 | // value is used as address of later load instruction, bitcast is |
| 2596 | // necessary to change the value type, don't optimize it. For |
| 2597 | // simplicity we give up if the load address comes from another load. |
| 2598 | Value *Addr = LI->getOperand(i_nocapture: 0); |
| 2599 | if (Addr == &CI || isa<LoadInst>(Val: Addr)) |
| 2600 | return nullptr; |
| 2601 | // Don't tranform "load <256 x i32>, <256 x i32>*" to |
| 2602 | // "load x86_amx, x86_amx*", because x86_amx* is invalid. |
| 2603 | // TODO: Remove this check when bitcast between vector and x86_amx |
| 2604 | // is replaced with a specific intrinsic. |
| 2605 | if (DestTy->isX86_AMXTy()) |
| 2606 | return nullptr; |
| 2607 | if (LI->hasOneUse() && LI->isSimple()) |
| 2608 | continue; |
| 2609 | // If a LoadInst has more than one use, changing the type of loaded |
| 2610 | // value may create another bitcast. |
| 2611 | return nullptr; |
| 2612 | } |
| 2613 | |
| 2614 | if (auto *PNode = dyn_cast<PHINode>(Val: IncValue)) { |
| 2615 | if (OldPhiNodes.insert(X: PNode)) |
| 2616 | PhiWorklist.push_back(Elt: PNode); |
| 2617 | continue; |
| 2618 | } |
| 2619 | |
| 2620 | auto *BCI = dyn_cast<BitCastInst>(Val: IncValue); |
| 2621 | // We can't handle other instructions. |
| 2622 | if (!BCI) |
| 2623 | return nullptr; |
| 2624 | |
| 2625 | // Verify it's a A->B cast. |
| 2626 | Type *TyA = BCI->getOperand(i_nocapture: 0)->getType(); |
| 2627 | Type *TyB = BCI->getType(); |
| 2628 | if (TyA != DestTy || TyB != SrcTy) |
| 2629 | return nullptr; |
| 2630 | } |
| 2631 | } |
| 2632 | |
| 2633 | // Check that each user of each old PHI node is something that we can |
| 2634 | // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. |
| 2635 | for (auto *OldPN : OldPhiNodes) { |
| 2636 | for (User *V : OldPN->users()) { |
| 2637 | if (auto *SI = dyn_cast<StoreInst>(Val: V)) { |
| 2638 | if (!SI->isSimple() || SI->getOperand(i_nocapture: 0) != OldPN) |
| 2639 | return nullptr; |
| 2640 | } else if (auto *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 2641 | // Verify it's a B->A cast. |
| 2642 | Type *TyB = BCI->getOperand(i_nocapture: 0)->getType(); |
| 2643 | Type *TyA = BCI->getType(); |
| 2644 | if (TyA != DestTy || TyB != SrcTy) |
| 2645 | return nullptr; |
| 2646 | } else if (auto *PHI = dyn_cast<PHINode>(Val: V)) { |
| 2647 | // As long as the user is another old PHI node, then even if we don't |
| 2648 | // rewrite it, the PHI web we're considering won't have any users |
| 2649 | // outside itself, so it'll be dead. |
| 2650 | if (!OldPhiNodes.contains(key: PHI)) |
| 2651 | return nullptr; |
| 2652 | } else { |
| 2653 | return nullptr; |
| 2654 | } |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | // For each old PHI node, create a corresponding new PHI node with a type A. |
| 2659 | SmallDenseMap<PHINode *, PHINode *> NewPNodes; |
| 2660 | for (auto *OldPN : OldPhiNodes) { |
| 2661 | Builder.SetInsertPoint(OldPN); |
| 2662 | PHINode *NewPN = Builder.CreatePHI(Ty: DestTy, NumReservedValues: OldPN->getNumOperands()); |
| 2663 | NewPNodes[OldPN] = NewPN; |
| 2664 | } |
| 2665 | |
| 2666 | // Fill in the operands of new PHI nodes. |
| 2667 | for (auto *OldPN : OldPhiNodes) { |
| 2668 | PHINode *NewPN = NewPNodes[OldPN]; |
| 2669 | for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { |
| 2670 | Value *V = OldPN->getOperand(i_nocapture: j); |
| 2671 | Value *NewV = nullptr; |
| 2672 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
| 2673 | NewV = ConstantExpr::getBitCast(C, Ty: DestTy); |
| 2674 | } else if (auto *LI = dyn_cast<LoadInst>(Val: V)) { |
| 2675 | // Explicitly perform load combine to make sure no opposing transform |
| 2676 | // can remove the bitcast in the meantime and trigger an infinite loop. |
| 2677 | Builder.SetInsertPoint(LI); |
| 2678 | NewV = combineLoadToNewType(LI&: *LI, NewTy: DestTy); |
| 2679 | // Remove the old load and its use in the old phi, which itself becomes |
| 2680 | // dead once the whole transform finishes. |
| 2681 | replaceInstUsesWith(I&: *LI, V: PoisonValue::get(T: LI->getType())); |
| 2682 | eraseInstFromFunction(I&: *LI); |
| 2683 | } else if (auto *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 2684 | NewV = BCI->getOperand(i_nocapture: 0); |
| 2685 | } else if (auto *PrevPN = dyn_cast<PHINode>(Val: V)) { |
| 2686 | NewV = NewPNodes[PrevPN]; |
| 2687 | } |
| 2688 | assert(NewV); |
| 2689 | NewPN->addIncoming(V: NewV, BB: OldPN->getIncomingBlock(i: j)); |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | // Traverse all accumulated PHI nodes and process its users, |
| 2694 | // which are Stores and BitcCasts. Without this processing |
| 2695 | // NewPHI nodes could be replicated and could lead to extra |
| 2696 | // moves generated after DeSSA. |
| 2697 | // If there is a store with type B, change it to type A. |
| 2698 | |
| 2699 | |
| 2700 | // Replace users of BitCast B->A with NewPHI. These will help |
| 2701 | // later to get rid off a closure formed by OldPHI nodes. |
| 2702 | Instruction *RetVal = nullptr; |
| 2703 | for (auto *OldPN : OldPhiNodes) { |
| 2704 | PHINode *NewPN = NewPNodes[OldPN]; |
| 2705 | for (User *V : make_early_inc_range(Range: OldPN->users())) { |
| 2706 | if (auto *SI = dyn_cast<StoreInst>(Val: V)) { |
| 2707 | assert(SI->isSimple() && SI->getOperand(0) == OldPN); |
| 2708 | Builder.SetInsertPoint(SI); |
| 2709 | auto *NewBC = |
| 2710 | cast<BitCastInst>(Val: Builder.CreateBitCast(V: NewPN, DestTy: SrcTy)); |
| 2711 | SI->setOperand(i_nocapture: 0, Val_nocapture: NewBC); |
| 2712 | Worklist.push(I: SI); |
| 2713 | assert(hasStoreUsersOnly(*NewBC)); |
| 2714 | } |
| 2715 | else if (auto *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 2716 | Type *TyB = BCI->getOperand(i_nocapture: 0)->getType(); |
| 2717 | Type *TyA = BCI->getType(); |
| 2718 | assert(TyA == DestTy && TyB == SrcTy); |
| 2719 | (void) TyA; |
| 2720 | (void) TyB; |
| 2721 | Instruction *I = replaceInstUsesWith(I&: *BCI, V: NewPN); |
| 2722 | if (BCI == &CI) |
| 2723 | RetVal = I; |
| 2724 | } else if (auto *PHI = dyn_cast<PHINode>(Val: V)) { |
| 2725 | assert(OldPhiNodes.contains(PHI)); |
| 2726 | (void) PHI; |
| 2727 | } else { |
| 2728 | llvm_unreachable("all uses should be handled" ); |
| 2729 | } |
| 2730 | } |
| 2731 | } |
| 2732 | |
| 2733 | return RetVal; |
| 2734 | } |
| 2735 | |
| 2736 | /// Fold (bitcast (or (and (bitcast X to int), signmask), nneg Y) to fp) to |
| 2737 | /// copysign((bitcast Y to fp), X) |
| 2738 | static Value *foldCopySignIdioms(BitCastInst &CI, |
| 2739 | InstCombiner::BuilderTy &Builder, |
| 2740 | const SimplifyQuery &SQ) { |
| 2741 | Value *X, *Y; |
| 2742 | Type *FTy = CI.getType(); |
| 2743 | if (!FTy->isFPOrFPVectorTy()) |
| 2744 | return nullptr; |
| 2745 | if (!match(V: &CI, P: m_ElementWiseBitCast(Op: m_c_Or( |
| 2746 | L: m_And(L: m_ElementWiseBitCast(Op: m_Value(V&: X)), R: m_SignMask()), |
| 2747 | R: m_Value(V&: Y))))) |
| 2748 | return nullptr; |
| 2749 | if (X->getType() != FTy) |
| 2750 | return nullptr; |
| 2751 | if (!isKnownNonNegative(V: Y, SQ)) |
| 2752 | return nullptr; |
| 2753 | |
| 2754 | return Builder.CreateCopySign(LHS: Builder.CreateBitCast(V: Y, DestTy: FTy), RHS: X); |
| 2755 | } |
| 2756 | |
| 2757 | Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { |
| 2758 | // If the operands are integer typed then apply the integer transforms, |
| 2759 | // otherwise just apply the common ones. |
| 2760 | Value *Src = CI.getOperand(i_nocapture: 0); |
| 2761 | Type *SrcTy = Src->getType(); |
| 2762 | Type *DestTy = CI.getType(); |
| 2763 | |
| 2764 | // Get rid of casts from one type to the same type. These are useless and can |
| 2765 | // be replaced by the operand. |
| 2766 | if (DestTy == Src->getType()) |
| 2767 | return replaceInstUsesWith(I&: CI, V: Src); |
| 2768 | |
| 2769 | if (isa<FixedVectorType>(Val: DestTy)) { |
| 2770 | if (isa<IntegerType>(Val: SrcTy)) { |
| 2771 | // If this is a cast from an integer to vector, check to see if the input |
| 2772 | // is a trunc or zext of a bitcast from vector. If so, we can replace all |
| 2773 | // the casts with a shuffle and (potentially) a bitcast. |
| 2774 | if (isa<TruncInst>(Val: Src) || isa<ZExtInst>(Val: Src)) { |
| 2775 | CastInst *SrcCast = cast<CastInst>(Val: Src); |
| 2776 | if (BitCastInst *BCIn = dyn_cast<BitCastInst>(Val: SrcCast->getOperand(i_nocapture: 0))) |
| 2777 | if (isa<VectorType>(Val: BCIn->getOperand(i_nocapture: 0)->getType())) |
| 2778 | if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( |
| 2779 | InVal: BCIn->getOperand(i_nocapture: 0), DestTy: cast<VectorType>(Val: DestTy), IC&: *this)) |
| 2780 | return I; |
| 2781 | } |
| 2782 | |
| 2783 | // If the input is an 'or' instruction, we may be doing shifts and ors to |
| 2784 | // assemble the elements of the vector manually. Try to rip the code out |
| 2785 | // and replace it with insertelements. |
| 2786 | if (Value *V = optimizeIntegerToVectorInsertions(CI, IC&: *this)) |
| 2787 | return replaceInstUsesWith(I&: CI, V); |
| 2788 | } |
| 2789 | } |
| 2790 | |
| 2791 | if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(Val: SrcTy)) { |
| 2792 | if (SrcVTy->getNumElements() == 1) { |
| 2793 | // If our destination is not a vector, then make this a straight |
| 2794 | // scalar-scalar cast. |
| 2795 | if (!DestTy->isVectorTy()) { |
| 2796 | Value *Elem = |
| 2797 | Builder.CreateExtractElement(Vec: Src, |
| 2798 | Idx: Constant::getNullValue(Ty: Type::getInt32Ty(C&: CI.getContext()))); |
| 2799 | return CastInst::Create(Instruction::BitCast, S: Elem, Ty: DestTy); |
| 2800 | } |
| 2801 | |
| 2802 | // Otherwise, see if our source is an insert. If so, then use the scalar |
| 2803 | // component directly: |
| 2804 | // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> |
| 2805 | if (auto *InsElt = dyn_cast<InsertElementInst>(Val: Src)) |
| 2806 | return new BitCastInst(InsElt->getOperand(i_nocapture: 1), DestTy); |
| 2807 | } |
| 2808 | |
| 2809 | // Convert an artificial vector insert into more analyzable bitwise logic. |
| 2810 | unsigned BitWidth = DestTy->getScalarSizeInBits(); |
| 2811 | Value *X, *Y; |
| 2812 | uint64_t IndexC; |
| 2813 | if (match(V: Src, P: m_OneUse(SubPattern: m_InsertElt(Val: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: X))), |
| 2814 | Elt: m_Value(V&: Y), Idx: m_ConstantInt(V&: IndexC)))) && |
| 2815 | DestTy->isIntegerTy() && X->getType() == DestTy && |
| 2816 | Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { |
| 2817 | // Adjust for big endian - the LSBs are at the high index. |
| 2818 | if (DL.isBigEndian()) |
| 2819 | IndexC = SrcVTy->getNumElements() - 1 - IndexC; |
| 2820 | |
| 2821 | // We only handle (endian-normalized) insert to index 0. Any other insert |
| 2822 | // would require a left-shift, so that is an extra instruction. |
| 2823 | if (IndexC == 0) { |
| 2824 | // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) |
| 2825 | unsigned EltWidth = Y->getType()->getScalarSizeInBits(); |
| 2826 | APInt MaskC = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - EltWidth); |
| 2827 | Value *AndX = Builder.CreateAnd(LHS: X, RHS: MaskC); |
| 2828 | Value *ZextY = Builder.CreateZExt(V: Y, DestTy); |
| 2829 | return BinaryOperator::CreateOr(V1: AndX, V2: ZextY); |
| 2830 | } |
| 2831 | } |
| 2832 | } |
| 2833 | |
| 2834 | if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: Src)) { |
| 2835 | // Okay, we have (bitcast (shuffle ..)). Check to see if this is |
| 2836 | // a bitcast to a vector with the same # elts. |
| 2837 | Value *ShufOp0 = Shuf->getOperand(i_nocapture: 0); |
| 2838 | Value *ShufOp1 = Shuf->getOperand(i_nocapture: 1); |
| 2839 | auto ShufElts = cast<VectorType>(Val: Shuf->getType())->getElementCount(); |
| 2840 | auto SrcVecElts = cast<VectorType>(Val: ShufOp0->getType())->getElementCount(); |
| 2841 | if (Shuf->hasOneUse() && DestTy->isVectorTy() && |
| 2842 | cast<VectorType>(Val: DestTy)->getElementCount() == ShufElts && |
| 2843 | ShufElts == SrcVecElts) { |
| 2844 | BitCastInst *Tmp; |
| 2845 | // If either of the operands is a cast from CI.getType(), then |
| 2846 | // evaluating the shuffle in the casted destination's type will allow |
| 2847 | // us to eliminate at least one cast. |
| 2848 | if (((Tmp = dyn_cast<BitCastInst>(Val: ShufOp0)) && |
| 2849 | Tmp->getOperand(i_nocapture: 0)->getType() == DestTy) || |
| 2850 | ((Tmp = dyn_cast<BitCastInst>(Val: ShufOp1)) && |
| 2851 | Tmp->getOperand(i_nocapture: 0)->getType() == DestTy)) { |
| 2852 | Value *LHS = Builder.CreateBitCast(V: ShufOp0, DestTy); |
| 2853 | Value *RHS = Builder.CreateBitCast(V: ShufOp1, DestTy); |
| 2854 | // Return a new shuffle vector. Use the same element ID's, as we |
| 2855 | // know the vector types match #elts. |
| 2856 | return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); |
| 2857 | } |
| 2858 | } |
| 2859 | |
| 2860 | // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized |
| 2861 | // as a byte/bit swap: |
| 2862 | // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) |
| 2863 | // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) |
| 2864 | if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && |
| 2865 | Shuf->hasOneUse() && Shuf->isReverse()) { |
| 2866 | unsigned IntrinsicNum = 0; |
| 2867 | if (DL.isLegalInteger(Width: DestTy->getScalarSizeInBits()) && |
| 2868 | SrcTy->getScalarSizeInBits() == 8) { |
| 2869 | IntrinsicNum = Intrinsic::bswap; |
| 2870 | } else if (SrcTy->getScalarSizeInBits() == 1) { |
| 2871 | IntrinsicNum = Intrinsic::bitreverse; |
| 2872 | } |
| 2873 | if (IntrinsicNum != 0) { |
| 2874 | assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask" ); |
| 2875 | assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op" ); |
| 2876 | Function *BswapOrBitreverse = Intrinsic::getOrInsertDeclaration( |
| 2877 | M: CI.getModule(), id: IntrinsicNum, Tys: DestTy); |
| 2878 | Value *ScalarX = Builder.CreateBitCast(V: ShufOp0, DestTy); |
| 2879 | return CallInst::Create(Func: BswapOrBitreverse, Args: {ScalarX}); |
| 2880 | } |
| 2881 | } |
| 2882 | } |
| 2883 | |
| 2884 | // Handle the A->B->A cast, and there is an intervening PHI node. |
| 2885 | if (PHINode *PN = dyn_cast<PHINode>(Val: Src)) |
| 2886 | if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) |
| 2887 | return I; |
| 2888 | |
| 2889 | if (Instruction *I = canonicalizeBitCastExtElt(BitCast&: CI, IC&: *this)) |
| 2890 | return I; |
| 2891 | |
| 2892 | if (Instruction *I = foldBitCastBitwiseLogic(BitCast&: CI, Builder)) |
| 2893 | return I; |
| 2894 | |
| 2895 | if (Instruction *I = foldBitCastSelect(BitCast&: CI, Builder)) |
| 2896 | return I; |
| 2897 | |
| 2898 | if (Value *V = foldCopySignIdioms(CI, Builder, SQ: SQ.getWithInstruction(I: &CI))) |
| 2899 | return replaceInstUsesWith(I&: CI, V); |
| 2900 | |
| 2901 | return commonCastTransforms(CI); |
| 2902 | } |
| 2903 | |
| 2904 | Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { |
| 2905 | return commonCastTransforms(CI); |
| 2906 | } |
| 2907 | |