| 1 | //===- InstCombinePHI.cpp -------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the visitPHINode function. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "InstCombineInternal.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/ADT/SmallPtrSet.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/Analysis/InstructionSimplify.h" |
| 18 | #include "llvm/Analysis/ValueTracking.h" |
| 19 | #include "llvm/IR/PatternMatch.h" |
| 20 | #include "llvm/Support/CommandLine.h" |
| 21 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 22 | #include "llvm/Transforms/Utils/Local.h" |
| 23 | #include <optional> |
| 24 | |
| 25 | using namespace llvm; |
| 26 | using namespace llvm::PatternMatch; |
| 27 | |
| 28 | #define DEBUG_TYPE "instcombine" |
| 29 | |
| 30 | static cl::opt<unsigned> |
| 31 | MaxNumPhis("instcombine-max-num-phis" , cl::init(Val: 512), |
| 32 | cl::desc("Maximum number phis to handle in intptr/ptrint folding" )); |
| 33 | |
| 34 | STATISTIC(NumPHIsOfInsertValues, |
| 35 | "Number of phi-of-insertvalue turned into insertvalue-of-phis" ); |
| 36 | STATISTIC(, |
| 37 | "Number of phi-of-extractvalue turned into extractvalue-of-phi" ); |
| 38 | STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd" ); |
| 39 | |
| 40 | /// The PHI arguments will be folded into a single operation with a PHI node |
| 41 | /// as input. The debug location of the single operation will be the merged |
| 42 | /// locations of the original PHI node arguments. |
| 43 | void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { |
| 44 | auto *FirstInst = cast<Instruction>(Val: PN.getIncomingValue(i: 0)); |
| 45 | Inst->setDebugLoc(FirstInst->getDebugLoc()); |
| 46 | // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc |
| 47 | // will be inefficient. |
| 48 | assert(!isa<CallInst>(Inst)); |
| 49 | |
| 50 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) { |
| 51 | auto *I = cast<Instruction>(Val: V); |
| 52 | Inst->applyMergedLocation(LocA: Inst->getDebugLoc(), LocB: I->getDebugLoc()); |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | /// If the phi is within a phi web, which is formed by the def-use chain |
| 57 | /// of phis and all the phis in the web are only used in the other phis. |
| 58 | /// In this case, these phis are dead and we will remove all of them. |
| 59 | bool InstCombinerImpl::foldDeadPhiWeb(PHINode &PN) { |
| 60 | SmallVector<PHINode *, 16> Stack; |
| 61 | SmallPtrSet<PHINode *, 16> Visited; |
| 62 | Stack.push_back(Elt: &PN); |
| 63 | while (!Stack.empty()) { |
| 64 | PHINode *Phi = Stack.pop_back_val(); |
| 65 | if (!Visited.insert(Ptr: Phi).second) |
| 66 | continue; |
| 67 | // Early stop if the set of PHIs is large |
| 68 | if (Visited.size() == 16) |
| 69 | return false; |
| 70 | for (User *Use : Phi->users()) { |
| 71 | if (PHINode *PhiUse = dyn_cast<PHINode>(Val: Use)) |
| 72 | Stack.push_back(Elt: PhiUse); |
| 73 | else |
| 74 | return false; |
| 75 | } |
| 76 | } |
| 77 | for (PHINode *Phi : Visited) |
| 78 | replaceInstUsesWith(I&: *Phi, V: PoisonValue::get(T: Phi->getType())); |
| 79 | for (PHINode *Phi : Visited) |
| 80 | eraseInstFromFunction(I&: *Phi); |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. |
| 85 | // If there is an existing pointer typed PHI that produces the same value as PN, |
| 86 | // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new |
| 87 | // PHI node: |
| 88 | // |
| 89 | // Case-1: |
| 90 | // bb1: |
| 91 | // int_init = PtrToInt(ptr_init) |
| 92 | // br label %bb2 |
| 93 | // bb2: |
| 94 | // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] |
| 95 | // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] |
| 96 | // ptr_val2 = IntToPtr(int_val) |
| 97 | // ... |
| 98 | // use(ptr_val2) |
| 99 | // ptr_val_inc = ... |
| 100 | // inc_val_inc = PtrToInt(ptr_val_inc) |
| 101 | // |
| 102 | // ==> |
| 103 | // bb1: |
| 104 | // br label %bb2 |
| 105 | // bb2: |
| 106 | // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] |
| 107 | // ... |
| 108 | // use(ptr_val) |
| 109 | // ptr_val_inc = ... |
| 110 | // |
| 111 | // Case-2: |
| 112 | // bb1: |
| 113 | // int_ptr = BitCast(ptr_ptr) |
| 114 | // int_init = Load(int_ptr) |
| 115 | // br label %bb2 |
| 116 | // bb2: |
| 117 | // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] |
| 118 | // ptr_val2 = IntToPtr(int_val) |
| 119 | // ... |
| 120 | // use(ptr_val2) |
| 121 | // ptr_val_inc = ... |
| 122 | // inc_val_inc = PtrToInt(ptr_val_inc) |
| 123 | // ==> |
| 124 | // bb1: |
| 125 | // ptr_init = Load(ptr_ptr) |
| 126 | // br label %bb2 |
| 127 | // bb2: |
| 128 | // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] |
| 129 | // ... |
| 130 | // use(ptr_val) |
| 131 | // ptr_val_inc = ... |
| 132 | // ... |
| 133 | // |
| 134 | bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) { |
| 135 | if (!PN.getType()->isIntegerTy()) |
| 136 | return false; |
| 137 | if (!PN.hasOneUse()) |
| 138 | return false; |
| 139 | |
| 140 | auto *IntToPtr = dyn_cast<IntToPtrInst>(Val: PN.user_back()); |
| 141 | if (!IntToPtr) |
| 142 | return false; |
| 143 | |
| 144 | // Check if the pointer is actually used as pointer: |
| 145 | auto HasPointerUse = [](Instruction *IIP) { |
| 146 | for (User *U : IIP->users()) { |
| 147 | Value *Ptr = nullptr; |
| 148 | if (LoadInst *LoadI = dyn_cast<LoadInst>(Val: U)) { |
| 149 | Ptr = LoadI->getPointerOperand(); |
| 150 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
| 151 | Ptr = SI->getPointerOperand(); |
| 152 | } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(Val: U)) { |
| 153 | Ptr = GI->getPointerOperand(); |
| 154 | } |
| 155 | |
| 156 | if (Ptr && Ptr == IIP) |
| 157 | return true; |
| 158 | } |
| 159 | return false; |
| 160 | }; |
| 161 | |
| 162 | if (!HasPointerUse(IntToPtr)) |
| 163 | return false; |
| 164 | |
| 165 | if (DL.getPointerSizeInBits(AS: IntToPtr->getAddressSpace()) != |
| 166 | DL.getTypeSizeInBits(Ty: IntToPtr->getOperand(i_nocapture: 0)->getType())) |
| 167 | return false; |
| 168 | |
| 169 | SmallVector<Value *, 4> AvailablePtrVals; |
| 170 | for (auto Incoming : zip(t: PN.blocks(), u: PN.incoming_values())) { |
| 171 | BasicBlock *BB = std::get<0>(t&: Incoming); |
| 172 | Value *Arg = std::get<1>(t&: Incoming); |
| 173 | |
| 174 | // Arg could be a constant, constant expr, etc., which we don't cover here. |
| 175 | if (!isa<Instruction>(Val: Arg) && !isa<Argument>(Val: Arg)) |
| 176 | return false; |
| 177 | |
| 178 | // First look backward: |
| 179 | if (auto *PI = dyn_cast<PtrToIntInst>(Val: Arg)) { |
| 180 | AvailablePtrVals.emplace_back(Args: PI->getOperand(i_nocapture: 0)); |
| 181 | continue; |
| 182 | } |
| 183 | |
| 184 | // Next look forward: |
| 185 | Value *ArgIntToPtr = nullptr; |
| 186 | for (User *U : Arg->users()) { |
| 187 | if (isa<IntToPtrInst>(Val: U) && U->getType() == IntToPtr->getType() && |
| 188 | (DT.dominates(Def: cast<Instruction>(Val: U), BB) || |
| 189 | cast<Instruction>(Val: U)->getParent() == BB)) { |
| 190 | ArgIntToPtr = U; |
| 191 | break; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | if (ArgIntToPtr) { |
| 196 | AvailablePtrVals.emplace_back(Args&: ArgIntToPtr); |
| 197 | continue; |
| 198 | } |
| 199 | |
| 200 | // If Arg is defined by a PHI, allow it. This will also create |
| 201 | // more opportunities iteratively. |
| 202 | if (isa<PHINode>(Val: Arg)) { |
| 203 | AvailablePtrVals.emplace_back(Args&: Arg); |
| 204 | continue; |
| 205 | } |
| 206 | |
| 207 | // For a single use integer load: |
| 208 | auto *LoadI = dyn_cast<LoadInst>(Val: Arg); |
| 209 | if (!LoadI) |
| 210 | return false; |
| 211 | |
| 212 | if (!LoadI->hasOneUse()) |
| 213 | return false; |
| 214 | |
| 215 | // Push the integer typed Load instruction into the available |
| 216 | // value set, and fix it up later when the pointer typed PHI |
| 217 | // is synthesized. |
| 218 | AvailablePtrVals.emplace_back(Args&: LoadI); |
| 219 | } |
| 220 | |
| 221 | // Now search for a matching PHI |
| 222 | auto *BB = PN.getParent(); |
| 223 | assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && |
| 224 | "Not enough available ptr typed incoming values" ); |
| 225 | PHINode *MatchingPtrPHI = nullptr; |
| 226 | unsigned NumPhis = 0; |
| 227 | for (PHINode &PtrPHI : BB->phis()) { |
| 228 | // FIXME: consider handling this in AggressiveInstCombine |
| 229 | if (NumPhis++ > MaxNumPhis) |
| 230 | return false; |
| 231 | if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType()) |
| 232 | continue; |
| 233 | if (any_of(Range: zip(t: PN.blocks(), u&: AvailablePtrVals), |
| 234 | P: [&](const auto &BlockAndValue) { |
| 235 | BasicBlock *BB = std::get<0>(BlockAndValue); |
| 236 | Value *V = std::get<1>(BlockAndValue); |
| 237 | return PtrPHI.getIncomingValueForBlock(BB) != V; |
| 238 | })) |
| 239 | continue; |
| 240 | MatchingPtrPHI = &PtrPHI; |
| 241 | break; |
| 242 | } |
| 243 | |
| 244 | if (MatchingPtrPHI) { |
| 245 | assert(MatchingPtrPHI->getType() == IntToPtr->getType() && |
| 246 | "Phi's Type does not match with IntToPtr" ); |
| 247 | // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, |
| 248 | // to make sure another transform can't undo it in the meantime. |
| 249 | replaceInstUsesWith(I&: *IntToPtr, V: MatchingPtrPHI); |
| 250 | eraseInstFromFunction(I&: *IntToPtr); |
| 251 | eraseInstFromFunction(I&: PN); |
| 252 | return true; |
| 253 | } |
| 254 | |
| 255 | // If it requires a conversion for every PHI operand, do not do it. |
| 256 | if (all_of(Range&: AvailablePtrVals, P: [&](Value *V) { |
| 257 | return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(Val: V); |
| 258 | })) |
| 259 | return false; |
| 260 | |
| 261 | // If any of the operand that requires casting is a terminator |
| 262 | // instruction, do not do it. Similarly, do not do the transform if the value |
| 263 | // is PHI in a block with no insertion point, for example, a catchswitch |
| 264 | // block, since we will not be able to insert a cast after the PHI. |
| 265 | if (any_of(Range&: AvailablePtrVals, P: [&](Value *V) { |
| 266 | if (V->getType() == IntToPtr->getType()) |
| 267 | return false; |
| 268 | auto *Inst = dyn_cast<Instruction>(Val: V); |
| 269 | if (!Inst) |
| 270 | return false; |
| 271 | if (Inst->isTerminator()) |
| 272 | return true; |
| 273 | auto *BB = Inst->getParent(); |
| 274 | if (isa<PHINode>(Val: Inst) && BB->getFirstInsertionPt() == BB->end()) |
| 275 | return true; |
| 276 | return false; |
| 277 | })) |
| 278 | return false; |
| 279 | |
| 280 | PHINode *NewPtrPHI = PHINode::Create( |
| 281 | Ty: IntToPtr->getType(), NumReservedValues: PN.getNumIncomingValues(), NameStr: PN.getName() + ".ptr" ); |
| 282 | |
| 283 | InsertNewInstBefore(New: NewPtrPHI, Old: PN.getIterator()); |
| 284 | SmallDenseMap<Value *, Instruction *> Casts; |
| 285 | for (auto Incoming : zip(t: PN.blocks(), u&: AvailablePtrVals)) { |
| 286 | auto *IncomingBB = std::get<0>(t&: Incoming); |
| 287 | auto *IncomingVal = std::get<1>(t&: Incoming); |
| 288 | |
| 289 | if (IncomingVal->getType() == IntToPtr->getType()) { |
| 290 | NewPtrPHI->addIncoming(V: IncomingVal, BB: IncomingBB); |
| 291 | continue; |
| 292 | } |
| 293 | |
| 294 | #ifndef NDEBUG |
| 295 | LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); |
| 296 | assert((isa<PHINode>(IncomingVal) || |
| 297 | IncomingVal->getType()->isPointerTy() || |
| 298 | (LoadI && LoadI->hasOneUse())) && |
| 299 | "Can not replace LoadInst with multiple uses" ); |
| 300 | #endif |
| 301 | // Need to insert a BitCast. |
| 302 | // For an integer Load instruction with a single use, the load + IntToPtr |
| 303 | // cast will be simplified into a pointer load: |
| 304 | // %v = load i64, i64* %a.ip, align 8 |
| 305 | // %v.cast = inttoptr i64 %v to float ** |
| 306 | // ==> |
| 307 | // %v.ptrp = bitcast i64 * %a.ip to float ** |
| 308 | // %v.cast = load float *, float ** %v.ptrp, align 8 |
| 309 | Instruction *&CI = Casts[IncomingVal]; |
| 310 | if (!CI) { |
| 311 | CI = CastInst::CreateBitOrPointerCast(S: IncomingVal, Ty: IntToPtr->getType(), |
| 312 | Name: IncomingVal->getName() + ".ptr" ); |
| 313 | if (auto *IncomingI = dyn_cast<Instruction>(Val: IncomingVal)) { |
| 314 | BasicBlock::iterator InsertPos(IncomingI); |
| 315 | InsertPos++; |
| 316 | BasicBlock *BB = IncomingI->getParent(); |
| 317 | if (isa<PHINode>(Val: IncomingI)) |
| 318 | InsertPos = BB->getFirstInsertionPt(); |
| 319 | assert(InsertPos != BB->end() && "should have checked above" ); |
| 320 | InsertNewInstBefore(New: CI, Old: InsertPos); |
| 321 | } else { |
| 322 | auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); |
| 323 | InsertNewInstBefore(New: CI, Old: InsertBB->getFirstInsertionPt()); |
| 324 | } |
| 325 | } |
| 326 | NewPtrPHI->addIncoming(V: CI, BB: IncomingBB); |
| 327 | } |
| 328 | |
| 329 | // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, |
| 330 | // to make sure another transform can't undo it in the meantime. |
| 331 | replaceInstUsesWith(I&: *IntToPtr, V: NewPtrPHI); |
| 332 | eraseInstFromFunction(I&: *IntToPtr); |
| 333 | eraseInstFromFunction(I&: PN); |
| 334 | return true; |
| 335 | } |
| 336 | |
| 337 | // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and |
| 338 | // fold Phi-operand to bitcast. |
| 339 | Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) { |
| 340 | // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] ) |
| 341 | // Make sure all uses of phi are ptr2int. |
| 342 | if (!all_of(Range: PN.users(), P: [](User *U) { return isa<PtrToIntInst>(Val: U); })) |
| 343 | return nullptr; |
| 344 | |
| 345 | // Iterating over all operands to check presence of target pointers for |
| 346 | // optimization. |
| 347 | bool OperandWithRoundTripCast = false; |
| 348 | for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) { |
| 349 | if (auto *NewOp = |
| 350 | simplifyIntToPtrRoundTripCast(Val: PN.getIncomingValue(i: OpNum))) { |
| 351 | replaceOperand(I&: PN, OpNum, V: NewOp); |
| 352 | OperandWithRoundTripCast = true; |
| 353 | } |
| 354 | } |
| 355 | if (!OperandWithRoundTripCast) |
| 356 | return nullptr; |
| 357 | return &PN; |
| 358 | } |
| 359 | |
| 360 | /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)], |
| 361 | /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue. |
| 362 | Instruction * |
| 363 | InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) { |
| 364 | auto *FirstIVI = cast<InsertValueInst>(Val: PN.getIncomingValue(i: 0)); |
| 365 | |
| 366 | // Scan to see if all operands are `insertvalue`'s with the same indices, |
| 367 | // and all have a single use. |
| 368 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) { |
| 369 | auto *I = dyn_cast<InsertValueInst>(Val: V); |
| 370 | if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices()) |
| 371 | return nullptr; |
| 372 | } |
| 373 | |
| 374 | // For each operand of an `insertvalue` |
| 375 | std::array<PHINode *, 2> NewOperands; |
| 376 | for (int OpIdx : {0, 1}) { |
| 377 | auto *&NewOperand = NewOperands[OpIdx]; |
| 378 | // Create a new PHI node to receive the values the operand has in each |
| 379 | // incoming basic block. |
| 380 | NewOperand = PHINode::Create( |
| 381 | Ty: FirstIVI->getOperand(i_nocapture: OpIdx)->getType(), NumReservedValues: PN.getNumIncomingValues(), |
| 382 | NameStr: FirstIVI->getOperand(i_nocapture: OpIdx)->getName() + ".pn" ); |
| 383 | // And populate each operand's PHI with said values. |
| 384 | for (auto Incoming : zip(t: PN.blocks(), u: PN.incoming_values())) |
| 385 | NewOperand->addIncoming( |
| 386 | V: cast<InsertValueInst>(Val&: std::get<1>(t&: Incoming))->getOperand(i_nocapture: OpIdx), |
| 387 | BB: std::get<0>(t&: Incoming)); |
| 388 | InsertNewInstBefore(New: NewOperand, Old: PN.getIterator()); |
| 389 | } |
| 390 | |
| 391 | // And finally, create `insertvalue` over the newly-formed PHI nodes. |
| 392 | auto *NewIVI = InsertValueInst::Create(Agg: NewOperands[0], Val: NewOperands[1], |
| 393 | Idxs: FirstIVI->getIndices(), NameStr: PN.getName()); |
| 394 | |
| 395 | PHIArgMergedDebugLoc(Inst: NewIVI, PN); |
| 396 | ++NumPHIsOfInsertValues; |
| 397 | return NewIVI; |
| 398 | } |
| 399 | |
| 400 | /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)], |
| 401 | /// turn this into a phi[a,b] and a single extractvalue. |
| 402 | Instruction * |
| 403 | InstCombinerImpl::(PHINode &PN) { |
| 404 | auto *FirstEVI = cast<ExtractValueInst>(Val: PN.getIncomingValue(i: 0)); |
| 405 | |
| 406 | // Scan to see if all operands are `extractvalue`'s with the same indices, |
| 407 | // and all have a single use. |
| 408 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) { |
| 409 | auto *I = dyn_cast<ExtractValueInst>(Val: V); |
| 410 | if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() || |
| 411 | I->getAggregateOperand()->getType() != |
| 412 | FirstEVI->getAggregateOperand()->getType()) |
| 413 | return nullptr; |
| 414 | } |
| 415 | |
| 416 | // Create a new PHI node to receive the values the aggregate operand has |
| 417 | // in each incoming basic block. |
| 418 | auto *NewAggregateOperand = PHINode::Create( |
| 419 | Ty: FirstEVI->getAggregateOperand()->getType(), NumReservedValues: PN.getNumIncomingValues(), |
| 420 | NameStr: FirstEVI->getAggregateOperand()->getName() + ".pn" ); |
| 421 | // And populate the PHI with said values. |
| 422 | for (auto Incoming : zip(t: PN.blocks(), u: PN.incoming_values())) |
| 423 | NewAggregateOperand->addIncoming( |
| 424 | V: cast<ExtractValueInst>(Val&: std::get<1>(t&: Incoming))->getAggregateOperand(), |
| 425 | BB: std::get<0>(t&: Incoming)); |
| 426 | InsertNewInstBefore(New: NewAggregateOperand, Old: PN.getIterator()); |
| 427 | |
| 428 | // And finally, create `extractvalue` over the newly-formed PHI nodes. |
| 429 | auto *NewEVI = ExtractValueInst::Create(Agg: NewAggregateOperand, |
| 430 | Idxs: FirstEVI->getIndices(), NameStr: PN.getName()); |
| 431 | |
| 432 | PHIArgMergedDebugLoc(Inst: NewEVI, PN); |
| 433 | ++NumPHIsOfExtractValues; |
| 434 | return NewEVI; |
| 435 | } |
| 436 | |
| 437 | /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the |
| 438 | /// adds all have a single user, turn this into a phi and a single binop. |
| 439 | Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) { |
| 440 | Instruction *FirstInst = cast<Instruction>(Val: PN.getIncomingValue(i: 0)); |
| 441 | assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); |
| 442 | unsigned Opc = FirstInst->getOpcode(); |
| 443 | Value *LHSVal = FirstInst->getOperand(i: 0); |
| 444 | Value *RHSVal = FirstInst->getOperand(i: 1); |
| 445 | |
| 446 | Type *LHSType = LHSVal->getType(); |
| 447 | Type *RHSType = RHSVal->getType(); |
| 448 | |
| 449 | // Scan to see if all operands are the same opcode, and all have one user. |
| 450 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) { |
| 451 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 452 | if (!I || I->getOpcode() != Opc || !I->hasOneUser() || |
| 453 | // Verify type of the LHS matches so we don't fold cmp's of different |
| 454 | // types. |
| 455 | I->getOperand(i: 0)->getType() != LHSType || |
| 456 | I->getOperand(i: 1)->getType() != RHSType) |
| 457 | return nullptr; |
| 458 | |
| 459 | // If they are CmpInst instructions, check their predicates |
| 460 | if (CmpInst *CI = dyn_cast<CmpInst>(Val: I)) |
| 461 | if (CI->getPredicate() != cast<CmpInst>(Val: FirstInst)->getPredicate()) |
| 462 | return nullptr; |
| 463 | |
| 464 | // Keep track of which operand needs a phi node. |
| 465 | if (I->getOperand(i: 0) != LHSVal) LHSVal = nullptr; |
| 466 | if (I->getOperand(i: 1) != RHSVal) RHSVal = nullptr; |
| 467 | } |
| 468 | |
| 469 | // If both LHS and RHS would need a PHI, don't do this transformation, |
| 470 | // because it would increase the number of PHIs entering the block, |
| 471 | // which leads to higher register pressure. This is especially |
| 472 | // bad when the PHIs are in the header of a loop. |
| 473 | if (!LHSVal && !RHSVal) |
| 474 | return nullptr; |
| 475 | |
| 476 | // Otherwise, this is safe to transform! |
| 477 | |
| 478 | Value *InLHS = FirstInst->getOperand(i: 0); |
| 479 | Value *InRHS = FirstInst->getOperand(i: 1); |
| 480 | PHINode *NewLHS = nullptr, *NewRHS = nullptr; |
| 481 | if (!LHSVal) { |
| 482 | NewLHS = PHINode::Create(Ty: LHSType, NumReservedValues: PN.getNumIncomingValues(), |
| 483 | NameStr: FirstInst->getOperand(i: 0)->getName() + ".pn" ); |
| 484 | NewLHS->addIncoming(V: InLHS, BB: PN.getIncomingBlock(i: 0)); |
| 485 | InsertNewInstBefore(New: NewLHS, Old: PN.getIterator()); |
| 486 | LHSVal = NewLHS; |
| 487 | } |
| 488 | |
| 489 | if (!RHSVal) { |
| 490 | NewRHS = PHINode::Create(Ty: RHSType, NumReservedValues: PN.getNumIncomingValues(), |
| 491 | NameStr: FirstInst->getOperand(i: 1)->getName() + ".pn" ); |
| 492 | NewRHS->addIncoming(V: InRHS, BB: PN.getIncomingBlock(i: 0)); |
| 493 | InsertNewInstBefore(New: NewRHS, Old: PN.getIterator()); |
| 494 | RHSVal = NewRHS; |
| 495 | } |
| 496 | |
| 497 | // Add all operands to the new PHIs. |
| 498 | if (NewLHS || NewRHS) { |
| 499 | for (auto Incoming : drop_begin(RangeOrContainer: zip(t: PN.blocks(), u: PN.incoming_values()))) { |
| 500 | BasicBlock *InBB = std::get<0>(t&: Incoming); |
| 501 | Value *InVal = std::get<1>(t&: Incoming); |
| 502 | Instruction *InInst = cast<Instruction>(Val: InVal); |
| 503 | if (NewLHS) { |
| 504 | Value *NewInLHS = InInst->getOperand(i: 0); |
| 505 | NewLHS->addIncoming(V: NewInLHS, BB: InBB); |
| 506 | } |
| 507 | if (NewRHS) { |
| 508 | Value *NewInRHS = InInst->getOperand(i: 1); |
| 509 | NewRHS->addIncoming(V: NewInRHS, BB: InBB); |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | if (CmpInst *CIOp = dyn_cast<CmpInst>(Val: FirstInst)) { |
| 515 | CmpInst *NewCI = CmpInst::Create(Op: CIOp->getOpcode(), Pred: CIOp->getPredicate(), |
| 516 | S1: LHSVal, S2: RHSVal); |
| 517 | PHIArgMergedDebugLoc(Inst: NewCI, PN); |
| 518 | return NewCI; |
| 519 | } |
| 520 | |
| 521 | BinaryOperator *BinOp = cast<BinaryOperator>(Val: FirstInst); |
| 522 | BinaryOperator *NewBinOp = |
| 523 | BinaryOperator::Create(Op: BinOp->getOpcode(), S1: LHSVal, S2: RHSVal); |
| 524 | |
| 525 | NewBinOp->copyIRFlags(V: PN.getIncomingValue(i: 0)); |
| 526 | |
| 527 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) |
| 528 | NewBinOp->andIRFlags(V); |
| 529 | |
| 530 | PHIArgMergedDebugLoc(Inst: NewBinOp, PN); |
| 531 | return NewBinOp; |
| 532 | } |
| 533 | |
| 534 | Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) { |
| 535 | GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(Val: PN.getIncomingValue(i: 0)); |
| 536 | |
| 537 | SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), |
| 538 | FirstInst->op_end()); |
| 539 | // This is true if all GEP bases are allocas and if all indices into them are |
| 540 | // constants. |
| 541 | bool AllBasePointersAreAllocas = true; |
| 542 | |
| 543 | // We don't want to replace this phi if the replacement would require |
| 544 | // more than one phi, which leads to higher register pressure. This is |
| 545 | // especially bad when the PHIs are in the header of a loop. |
| 546 | bool NeededPhi = false; |
| 547 | |
| 548 | // Remember flags of the first phi-operand getelementptr. |
| 549 | GEPNoWrapFlags NW = FirstInst->getNoWrapFlags(); |
| 550 | |
| 551 | // Scan to see if all operands are the same opcode, and all have one user. |
| 552 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) { |
| 553 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: V); |
| 554 | if (!GEP || !GEP->hasOneUser() || |
| 555 | GEP->getSourceElementType() != FirstInst->getSourceElementType() || |
| 556 | GEP->getNumOperands() != FirstInst->getNumOperands()) |
| 557 | return nullptr; |
| 558 | |
| 559 | NW &= GEP->getNoWrapFlags(); |
| 560 | |
| 561 | // Keep track of whether or not all GEPs are of alloca pointers. |
| 562 | if (AllBasePointersAreAllocas && |
| 563 | (!isa<AllocaInst>(Val: GEP->getOperand(i_nocapture: 0)) || |
| 564 | !GEP->hasAllConstantIndices())) |
| 565 | AllBasePointersAreAllocas = false; |
| 566 | |
| 567 | // Compare the operand lists. |
| 568 | for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) { |
| 569 | if (FirstInst->getOperand(i_nocapture: Op) == GEP->getOperand(i_nocapture: Op)) |
| 570 | continue; |
| 571 | |
| 572 | // Don't merge two GEPs when two operands differ (introducing phi nodes) |
| 573 | // if one of the PHIs has a constant for the index. The index may be |
| 574 | // substantially cheaper to compute for the constants, so making it a |
| 575 | // variable index could pessimize the path. This also handles the case |
| 576 | // for struct indices, which must always be constant. |
| 577 | if (isa<Constant>(Val: FirstInst->getOperand(i_nocapture: Op)) || |
| 578 | isa<Constant>(Val: GEP->getOperand(i_nocapture: Op))) |
| 579 | return nullptr; |
| 580 | |
| 581 | if (FirstInst->getOperand(i_nocapture: Op)->getType() != |
| 582 | GEP->getOperand(i_nocapture: Op)->getType()) |
| 583 | return nullptr; |
| 584 | |
| 585 | // If we already needed a PHI for an earlier operand, and another operand |
| 586 | // also requires a PHI, we'd be introducing more PHIs than we're |
| 587 | // eliminating, which increases register pressure on entry to the PHI's |
| 588 | // block. |
| 589 | if (NeededPhi) |
| 590 | return nullptr; |
| 591 | |
| 592 | FixedOperands[Op] = nullptr; // Needs a PHI. |
| 593 | NeededPhi = true; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | // If all of the base pointers of the PHI'd GEPs are from allocas, don't |
| 598 | // bother doing this transformation. At best, this will just save a bit of |
| 599 | // offset calculation, but all the predecessors will have to materialize the |
| 600 | // stack address into a register anyway. We'd actually rather *clone* the |
| 601 | // load up into the predecessors so that we have a load of a gep of an alloca, |
| 602 | // which can usually all be folded into the load. |
| 603 | if (AllBasePointersAreAllocas) |
| 604 | return nullptr; |
| 605 | |
| 606 | // Otherwise, this is safe to transform. Insert PHI nodes for each operand |
| 607 | // that is variable. |
| 608 | SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); |
| 609 | |
| 610 | bool HasAnyPHIs = false; |
| 611 | for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) { |
| 612 | if (FixedOperands[I]) |
| 613 | continue; // operand doesn't need a phi. |
| 614 | Value *FirstOp = FirstInst->getOperand(i_nocapture: I); |
| 615 | PHINode *NewPN = |
| 616 | PHINode::Create(Ty: FirstOp->getType(), NumReservedValues: E, NameStr: FirstOp->getName() + ".pn" ); |
| 617 | InsertNewInstBefore(New: NewPN, Old: PN.getIterator()); |
| 618 | |
| 619 | NewPN->addIncoming(V: FirstOp, BB: PN.getIncomingBlock(i: 0)); |
| 620 | OperandPhis[I] = NewPN; |
| 621 | FixedOperands[I] = NewPN; |
| 622 | HasAnyPHIs = true; |
| 623 | } |
| 624 | |
| 625 | // Add all operands to the new PHIs. |
| 626 | if (HasAnyPHIs) { |
| 627 | for (auto Incoming : drop_begin(RangeOrContainer: zip(t: PN.blocks(), u: PN.incoming_values()))) { |
| 628 | BasicBlock *InBB = std::get<0>(t&: Incoming); |
| 629 | Value *InVal = std::get<1>(t&: Incoming); |
| 630 | GetElementPtrInst *InGEP = cast<GetElementPtrInst>(Val: InVal); |
| 631 | |
| 632 | for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op) |
| 633 | if (PHINode *OpPhi = OperandPhis[Op]) |
| 634 | OpPhi->addIncoming(V: InGEP->getOperand(i_nocapture: Op), BB: InBB); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | Value *Base = FixedOperands[0]; |
| 639 | GetElementPtrInst *NewGEP = |
| 640 | GetElementPtrInst::Create(PointeeType: FirstInst->getSourceElementType(), Ptr: Base, |
| 641 | IdxList: ArrayRef(FixedOperands).slice(N: 1), NW); |
| 642 | PHIArgMergedDebugLoc(Inst: NewGEP, PN); |
| 643 | return NewGEP; |
| 644 | } |
| 645 | |
| 646 | /// Return true if we know that it is safe to sink the load out of the block |
| 647 | /// that defines it. This means that it must be obvious the value of the load is |
| 648 | /// not changed from the point of the load to the end of the block it is in. |
| 649 | /// |
| 650 | /// Finally, it is safe, but not profitable, to sink a load targeting a |
| 651 | /// non-address-taken alloca. Doing so will cause us to not promote the alloca |
| 652 | /// to a register. |
| 653 | static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { |
| 654 | BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); |
| 655 | |
| 656 | for (++BBI; BBI != E; ++BBI) |
| 657 | if (BBI->mayWriteToMemory()) { |
| 658 | // Calls that only access inaccessible memory do not block sinking the |
| 659 | // load. |
| 660 | if (auto *CB = dyn_cast<CallBase>(Val&: BBI)) |
| 661 | if (CB->onlyAccessesInaccessibleMemory()) |
| 662 | continue; |
| 663 | return false; |
| 664 | } |
| 665 | |
| 666 | // Check for non-address taken alloca. If not address-taken already, it isn't |
| 667 | // profitable to do this xform. |
| 668 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: L->getOperand(i_nocapture: 0))) { |
| 669 | bool IsAddressTaken = false; |
| 670 | for (User *U : AI->users()) { |
| 671 | if (isa<LoadInst>(Val: U)) continue; |
| 672 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
| 673 | // If storing TO the alloca, then the address isn't taken. |
| 674 | if (SI->getOperand(i_nocapture: 1) == AI) continue; |
| 675 | } |
| 676 | IsAddressTaken = true; |
| 677 | break; |
| 678 | } |
| 679 | |
| 680 | if (!IsAddressTaken && AI->isStaticAlloca()) |
| 681 | return false; |
| 682 | } |
| 683 | |
| 684 | // If this load is a load from a GEP with a constant offset from an alloca, |
| 685 | // then we don't want to sink it. In its present form, it will be |
| 686 | // load [constant stack offset]. Sinking it will cause us to have to |
| 687 | // materialize the stack addresses in each predecessor in a register only to |
| 688 | // do a shared load from register in the successor. |
| 689 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: L->getOperand(i_nocapture: 0))) |
| 690 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: GEP->getOperand(i_nocapture: 0))) |
| 691 | if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) |
| 692 | return false; |
| 693 | |
| 694 | return true; |
| 695 | } |
| 696 | |
| 697 | Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) { |
| 698 | LoadInst *FirstLI = cast<LoadInst>(Val: PN.getIncomingValue(i: 0)); |
| 699 | |
| 700 | // Can't forward swifterror through a phi. |
| 701 | if (FirstLI->getOperand(i_nocapture: 0)->isSwiftError()) |
| 702 | return nullptr; |
| 703 | |
| 704 | // FIXME: This is overconservative; this transform is allowed in some cases |
| 705 | // for atomic operations. |
| 706 | if (FirstLI->isAtomic()) |
| 707 | return nullptr; |
| 708 | |
| 709 | // When processing loads, we need to propagate two bits of information to the |
| 710 | // sunk load: whether it is volatile, and what its alignment is. |
| 711 | bool IsVolatile = FirstLI->isVolatile(); |
| 712 | Align LoadAlignment = FirstLI->getAlign(); |
| 713 | const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); |
| 714 | |
| 715 | // We can't sink the load if the loaded value could be modified between the |
| 716 | // load and the PHI. |
| 717 | if (FirstLI->getParent() != PN.getIncomingBlock(i: 0) || |
| 718 | !isSafeAndProfitableToSinkLoad(L: FirstLI)) |
| 719 | return nullptr; |
| 720 | |
| 721 | // If the PHI is of volatile loads and the load block has multiple |
| 722 | // successors, sinking it would remove a load of the volatile value from |
| 723 | // the path through the other successor. |
| 724 | if (IsVolatile && |
| 725 | FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) |
| 726 | return nullptr; |
| 727 | |
| 728 | for (auto Incoming : drop_begin(RangeOrContainer: zip(t: PN.blocks(), u: PN.incoming_values()))) { |
| 729 | BasicBlock *InBB = std::get<0>(t&: Incoming); |
| 730 | Value *InVal = std::get<1>(t&: Incoming); |
| 731 | LoadInst *LI = dyn_cast<LoadInst>(Val: InVal); |
| 732 | if (!LI || !LI->hasOneUser() || LI->isAtomic()) |
| 733 | return nullptr; |
| 734 | |
| 735 | // Make sure all arguments are the same type of operation. |
| 736 | if (LI->isVolatile() != IsVolatile || |
| 737 | LI->getPointerAddressSpace() != LoadAddrSpace) |
| 738 | return nullptr; |
| 739 | |
| 740 | // Can't forward swifterror through a phi. |
| 741 | if (LI->getOperand(i_nocapture: 0)->isSwiftError()) |
| 742 | return nullptr; |
| 743 | |
| 744 | // We can't sink the load if the loaded value could be modified between |
| 745 | // the load and the PHI. |
| 746 | if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(L: LI)) |
| 747 | return nullptr; |
| 748 | |
| 749 | LoadAlignment = std::min(a: LoadAlignment, b: LI->getAlign()); |
| 750 | |
| 751 | // If the PHI is of volatile loads and the load block has multiple |
| 752 | // successors, sinking it would remove a load of the volatile value from |
| 753 | // the path through the other successor. |
| 754 | if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) |
| 755 | return nullptr; |
| 756 | } |
| 757 | |
| 758 | // Okay, they are all the same operation. Create a new PHI node of the |
| 759 | // correct type, and PHI together all of the LHS's of the instructions. |
| 760 | PHINode *NewPN = PHINode::Create(Ty: FirstLI->getOperand(i_nocapture: 0)->getType(), |
| 761 | NumReservedValues: PN.getNumIncomingValues(), |
| 762 | NameStr: PN.getName()+".in" ); |
| 763 | |
| 764 | Value *InVal = FirstLI->getOperand(i_nocapture: 0); |
| 765 | NewPN->addIncoming(V: InVal, BB: PN.getIncomingBlock(i: 0)); |
| 766 | LoadInst *NewLI = |
| 767 | new LoadInst(FirstLI->getType(), NewPN, "" , IsVolatile, LoadAlignment); |
| 768 | NewLI->copyMetadata(SrcInst: *FirstLI); |
| 769 | |
| 770 | // Add all operands to the new PHI and combine TBAA metadata. |
| 771 | for (auto Incoming : drop_begin(RangeOrContainer: zip(t: PN.blocks(), u: PN.incoming_values()))) { |
| 772 | BasicBlock *BB = std::get<0>(t&: Incoming); |
| 773 | Value *V = std::get<1>(t&: Incoming); |
| 774 | LoadInst *LI = cast<LoadInst>(Val: V); |
| 775 | combineMetadataForCSE(K: NewLI, J: LI, DoesKMove: true); |
| 776 | Value *NewInVal = LI->getOperand(i_nocapture: 0); |
| 777 | if (NewInVal != InVal) |
| 778 | InVal = nullptr; |
| 779 | NewPN->addIncoming(V: NewInVal, BB); |
| 780 | } |
| 781 | |
| 782 | if (InVal) { |
| 783 | // The new PHI unions all of the same values together. This is really |
| 784 | // common, so we handle it intelligently here for compile-time speed. |
| 785 | NewLI->setOperand(i_nocapture: 0, Val_nocapture: InVal); |
| 786 | delete NewPN; |
| 787 | } else { |
| 788 | InsertNewInstBefore(New: NewPN, Old: PN.getIterator()); |
| 789 | } |
| 790 | |
| 791 | // If this was a volatile load that we are merging, make sure to loop through |
| 792 | // and mark all the input loads as non-volatile. If we don't do this, we will |
| 793 | // insert a new volatile load and the old ones will not be deletable. |
| 794 | if (IsVolatile) |
| 795 | for (Value *IncValue : PN.incoming_values()) |
| 796 | cast<LoadInst>(Val: IncValue)->setVolatile(false); |
| 797 | |
| 798 | PHIArgMergedDebugLoc(Inst: NewLI, PN); |
| 799 | return NewLI; |
| 800 | } |
| 801 | |
| 802 | /// TODO: This function could handle other cast types, but then it might |
| 803 | /// require special-casing a cast from the 'i1' type. See the comment in |
| 804 | /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. |
| 805 | Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) { |
| 806 | // We cannot create a new instruction after the PHI if the terminator is an |
| 807 | // EHPad because there is no valid insertion point. |
| 808 | if (Instruction *TI = Phi.getParent()->getTerminator()) |
| 809 | if (TI->isEHPad()) |
| 810 | return nullptr; |
| 811 | |
| 812 | // Early exit for the common case of a phi with two operands. These are |
| 813 | // handled elsewhere. See the comment below where we check the count of zexts |
| 814 | // and constants for more details. |
| 815 | unsigned NumIncomingValues = Phi.getNumIncomingValues(); |
| 816 | if (NumIncomingValues < 3) |
| 817 | return nullptr; |
| 818 | |
| 819 | // Find the narrower type specified by the first zext. |
| 820 | Type *NarrowType = nullptr; |
| 821 | for (Value *V : Phi.incoming_values()) { |
| 822 | if (auto *Zext = dyn_cast<ZExtInst>(Val: V)) { |
| 823 | NarrowType = Zext->getSrcTy(); |
| 824 | break; |
| 825 | } |
| 826 | } |
| 827 | if (!NarrowType) |
| 828 | return nullptr; |
| 829 | |
| 830 | // Walk the phi operands checking that we only have zexts or constants that |
| 831 | // we can shrink for free. Store the new operands for the new phi. |
| 832 | SmallVector<Value *, 4> NewIncoming; |
| 833 | unsigned NumZexts = 0; |
| 834 | unsigned NumConsts = 0; |
| 835 | for (Value *V : Phi.incoming_values()) { |
| 836 | if (auto *Zext = dyn_cast<ZExtInst>(Val: V)) { |
| 837 | // All zexts must be identical and have one user. |
| 838 | if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser()) |
| 839 | return nullptr; |
| 840 | NewIncoming.push_back(Elt: Zext->getOperand(i_nocapture: 0)); |
| 841 | NumZexts++; |
| 842 | } else if (auto *C = dyn_cast<Constant>(Val: V)) { |
| 843 | // Make sure that constants can fit in the new type. |
| 844 | Constant *Trunc = getLosslessUnsignedTrunc(C, TruncTy: NarrowType); |
| 845 | if (!Trunc) |
| 846 | return nullptr; |
| 847 | NewIncoming.push_back(Elt: Trunc); |
| 848 | NumConsts++; |
| 849 | } else { |
| 850 | // If it's not a cast or a constant, bail out. |
| 851 | return nullptr; |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | // The more common cases of a phi with no constant operands or just one |
| 856 | // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() |
| 857 | // respectively. foldOpIntoPhi() wants to do the opposite transform that is |
| 858 | // performed here. It tries to replicate a cast in the phi operand's basic |
| 859 | // block to expose other folding opportunities. Thus, InstCombine will |
| 860 | // infinite loop without this check. |
| 861 | if (NumConsts == 0 || NumZexts < 2) |
| 862 | return nullptr; |
| 863 | |
| 864 | // All incoming values are zexts or constants that are safe to truncate. |
| 865 | // Create a new phi node of the narrow type, phi together all of the new |
| 866 | // operands, and zext the result back to the original type. |
| 867 | PHINode *NewPhi = PHINode::Create(Ty: NarrowType, NumReservedValues: NumIncomingValues, |
| 868 | NameStr: Phi.getName() + ".shrunk" ); |
| 869 | for (unsigned I = 0; I != NumIncomingValues; ++I) |
| 870 | NewPhi->addIncoming(V: NewIncoming[I], BB: Phi.getIncomingBlock(i: I)); |
| 871 | |
| 872 | InsertNewInstBefore(New: NewPhi, Old: Phi.getIterator()); |
| 873 | auto *CI = CastInst::CreateZExtOrBitCast(S: NewPhi, Ty: Phi.getType()); |
| 874 | |
| 875 | // We use a dropped location here because the new ZExt is necessarily a merge |
| 876 | // of ZExtInsts and at least one constant from incoming branches; the presence |
| 877 | // of the constant means we have no viable DebugLoc from that branch, and |
| 878 | // therefore we must use a dropped location. |
| 879 | CI->setDebugLoc(DebugLoc::getDropped()); |
| 880 | return CI; |
| 881 | } |
| 882 | |
| 883 | /// If all operands to a PHI node are the same "unary" operator and they all are |
| 884 | /// only used by the PHI, PHI together their inputs, and do the operation once, |
| 885 | /// to the result of the PHI. |
| 886 | Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) { |
| 887 | // We cannot create a new instruction after the PHI if the terminator is an |
| 888 | // EHPad because there is no valid insertion point. |
| 889 | if (Instruction *TI = PN.getParent()->getTerminator()) |
| 890 | if (TI->isEHPad()) |
| 891 | return nullptr; |
| 892 | |
| 893 | Instruction *FirstInst = cast<Instruction>(Val: PN.getIncomingValue(i: 0)); |
| 894 | |
| 895 | if (isa<GetElementPtrInst>(Val: FirstInst)) |
| 896 | return foldPHIArgGEPIntoPHI(PN); |
| 897 | if (isa<LoadInst>(Val: FirstInst)) |
| 898 | return foldPHIArgLoadIntoPHI(PN); |
| 899 | if (isa<InsertValueInst>(Val: FirstInst)) |
| 900 | return foldPHIArgInsertValueInstructionIntoPHI(PN); |
| 901 | if (isa<ExtractValueInst>(Val: FirstInst)) |
| 902 | return foldPHIArgExtractValueInstructionIntoPHI(PN); |
| 903 | |
| 904 | // Scan the instruction, looking for input operations that can be folded away. |
| 905 | // If all input operands to the phi are the same instruction (e.g. a cast from |
| 906 | // the same type or "+42") we can pull the operation through the PHI, reducing |
| 907 | // code size and simplifying code. |
| 908 | Constant *ConstantOp = nullptr; |
| 909 | Type *CastSrcTy = nullptr; |
| 910 | |
| 911 | if (isa<CastInst>(Val: FirstInst)) { |
| 912 | CastSrcTy = FirstInst->getOperand(i: 0)->getType(); |
| 913 | |
| 914 | // Be careful about transforming integer PHIs. We don't want to pessimize |
| 915 | // the code by turning an i32 into an i1293. |
| 916 | if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { |
| 917 | if (!shouldChangeType(From: PN.getType(), To: CastSrcTy)) |
| 918 | return nullptr; |
| 919 | } |
| 920 | } else if (isa<BinaryOperator>(Val: FirstInst) || isa<CmpInst>(Val: FirstInst)) { |
| 921 | // Can fold binop, compare or shift here if the RHS is a constant, |
| 922 | // otherwise call FoldPHIArgBinOpIntoPHI. |
| 923 | ConstantOp = dyn_cast<Constant>(Val: FirstInst->getOperand(i: 1)); |
| 924 | if (!ConstantOp) |
| 925 | return foldPHIArgBinOpIntoPHI(PN); |
| 926 | } else { |
| 927 | return nullptr; // Cannot fold this operation. |
| 928 | } |
| 929 | |
| 930 | // Check to see if all arguments are the same operation. |
| 931 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) { |
| 932 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 933 | if (!I || !I->hasOneUser() || !I->isSameOperationAs(I: FirstInst)) |
| 934 | return nullptr; |
| 935 | if (CastSrcTy) { |
| 936 | if (I->getOperand(i: 0)->getType() != CastSrcTy) |
| 937 | return nullptr; // Cast operation must match. |
| 938 | } else if (I->getOperand(i: 1) != ConstantOp) { |
| 939 | return nullptr; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | // Okay, they are all the same operation. Create a new PHI node of the |
| 944 | // correct type, and PHI together all of the LHS's of the instructions. |
| 945 | PHINode *NewPN = PHINode::Create(Ty: FirstInst->getOperand(i: 0)->getType(), |
| 946 | NumReservedValues: PN.getNumIncomingValues(), |
| 947 | NameStr: PN.getName()+".in" ); |
| 948 | |
| 949 | Value *InVal = FirstInst->getOperand(i: 0); |
| 950 | NewPN->addIncoming(V: InVal, BB: PN.getIncomingBlock(i: 0)); |
| 951 | |
| 952 | // Add all operands to the new PHI. |
| 953 | for (auto Incoming : drop_begin(RangeOrContainer: zip(t: PN.blocks(), u: PN.incoming_values()))) { |
| 954 | BasicBlock *BB = std::get<0>(t&: Incoming); |
| 955 | Value *V = std::get<1>(t&: Incoming); |
| 956 | Value *NewInVal = cast<Instruction>(Val: V)->getOperand(i: 0); |
| 957 | if (NewInVal != InVal) |
| 958 | InVal = nullptr; |
| 959 | NewPN->addIncoming(V: NewInVal, BB); |
| 960 | } |
| 961 | |
| 962 | Value *PhiVal; |
| 963 | if (InVal) { |
| 964 | // The new PHI unions all of the same values together. This is really |
| 965 | // common, so we handle it intelligently here for compile-time speed. |
| 966 | PhiVal = InVal; |
| 967 | delete NewPN; |
| 968 | } else { |
| 969 | InsertNewInstBefore(New: NewPN, Old: PN.getIterator()); |
| 970 | PhiVal = NewPN; |
| 971 | } |
| 972 | |
| 973 | // Insert and return the new operation. |
| 974 | if (CastInst *FirstCI = dyn_cast<CastInst>(Val: FirstInst)) { |
| 975 | CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), S: PhiVal, |
| 976 | Ty: PN.getType()); |
| 977 | PHIArgMergedDebugLoc(Inst: NewCI, PN); |
| 978 | return NewCI; |
| 979 | } |
| 980 | |
| 981 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: FirstInst)) { |
| 982 | BinOp = BinaryOperator::Create(Op: BinOp->getOpcode(), S1: PhiVal, S2: ConstantOp); |
| 983 | BinOp->copyIRFlags(V: PN.getIncomingValue(i: 0)); |
| 984 | |
| 985 | for (Value *V : drop_begin(RangeOrContainer: PN.incoming_values())) |
| 986 | BinOp->andIRFlags(V); |
| 987 | |
| 988 | PHIArgMergedDebugLoc(Inst: BinOp, PN); |
| 989 | return BinOp; |
| 990 | } |
| 991 | |
| 992 | CmpInst *CIOp = cast<CmpInst>(Val: FirstInst); |
| 993 | CmpInst *NewCI = CmpInst::Create(Op: CIOp->getOpcode(), Pred: CIOp->getPredicate(), |
| 994 | S1: PhiVal, S2: ConstantOp); |
| 995 | PHIArgMergedDebugLoc(Inst: NewCI, PN); |
| 996 | return NewCI; |
| 997 | } |
| 998 | |
| 999 | /// Return true if this phi node is always equal to NonPhiInVal. |
| 1000 | /// This happens with mutually cyclic phi nodes like: |
| 1001 | /// z = some value; x = phi (y, z); y = phi (x, z) |
| 1002 | static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal, |
| 1003 | SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) { |
| 1004 | // See if we already saw this PHI node. |
| 1005 | if (!ValueEqualPHIs.insert(Ptr: PN).second) |
| 1006 | return true; |
| 1007 | |
| 1008 | // Don't scan crazily complex things. |
| 1009 | if (ValueEqualPHIs.size() == 16) |
| 1010 | return false; |
| 1011 | |
| 1012 | // Scan the operands to see if they are either phi nodes or are equal to |
| 1013 | // the value. |
| 1014 | for (Value *Op : PN->incoming_values()) { |
| 1015 | if (PHINode *OpPN = dyn_cast<PHINode>(Val: Op)) { |
| 1016 | if (!PHIsEqualValue(PN: OpPN, NonPhiInVal, ValueEqualPHIs)) { |
| 1017 | if (NonPhiInVal) |
| 1018 | return false; |
| 1019 | NonPhiInVal = OpPN; |
| 1020 | } |
| 1021 | } else if (Op != NonPhiInVal) |
| 1022 | return false; |
| 1023 | } |
| 1024 | |
| 1025 | return true; |
| 1026 | } |
| 1027 | |
| 1028 | /// Return an existing non-zero constant if this phi node has one, otherwise |
| 1029 | /// return constant 1. |
| 1030 | static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) { |
| 1031 | assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi" ); |
| 1032 | for (Value *V : PN.operands()) |
| 1033 | if (auto *ConstVA = dyn_cast<ConstantInt>(Val: V)) |
| 1034 | if (!ConstVA->isZero()) |
| 1035 | return ConstVA; |
| 1036 | return ConstantInt::get(Ty: cast<IntegerType>(Val: PN.getType()), V: 1); |
| 1037 | } |
| 1038 | |
| 1039 | namespace { |
| 1040 | struct PHIUsageRecord { |
| 1041 | unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) |
| 1042 | unsigned Shift; // The amount shifted. |
| 1043 | Instruction *Inst; // The trunc instruction. |
| 1044 | |
| 1045 | PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User) |
| 1046 | : PHIId(Pn), Shift(Sh), Inst(User) {} |
| 1047 | |
| 1048 | bool operator<(const PHIUsageRecord &RHS) const { |
| 1049 | if (PHIId < RHS.PHIId) return true; |
| 1050 | if (PHIId > RHS.PHIId) return false; |
| 1051 | if (Shift < RHS.Shift) return true; |
| 1052 | if (Shift > RHS.Shift) return false; |
| 1053 | return Inst->getType()->getPrimitiveSizeInBits() < |
| 1054 | RHS.Inst->getType()->getPrimitiveSizeInBits(); |
| 1055 | } |
| 1056 | }; |
| 1057 | |
| 1058 | struct LoweredPHIRecord { |
| 1059 | PHINode *PN; // The PHI that was lowered. |
| 1060 | unsigned Shift; // The amount shifted. |
| 1061 | unsigned Width; // The width extracted. |
| 1062 | |
| 1063 | LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty) |
| 1064 | : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} |
| 1065 | |
| 1066 | // Ctor form used by DenseMap. |
| 1067 | LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {} |
| 1068 | }; |
| 1069 | } // namespace |
| 1070 | |
| 1071 | namespace llvm { |
| 1072 | template<> |
| 1073 | struct DenseMapInfo<LoweredPHIRecord> { |
| 1074 | static inline LoweredPHIRecord getEmptyKey() { |
| 1075 | return LoweredPHIRecord(nullptr, 0); |
| 1076 | } |
| 1077 | static inline LoweredPHIRecord getTombstoneKey() { |
| 1078 | return LoweredPHIRecord(nullptr, 1); |
| 1079 | } |
| 1080 | static unsigned getHashValue(const LoweredPHIRecord &Val) { |
| 1081 | return DenseMapInfo<PHINode*>::getHashValue(PtrVal: Val.PN) ^ (Val.Shift>>3) ^ |
| 1082 | (Val.Width>>3); |
| 1083 | } |
| 1084 | static bool isEqual(const LoweredPHIRecord &LHS, |
| 1085 | const LoweredPHIRecord &RHS) { |
| 1086 | return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && |
| 1087 | LHS.Width == RHS.Width; |
| 1088 | } |
| 1089 | }; |
| 1090 | } // namespace llvm |
| 1091 | |
| 1092 | |
| 1093 | /// This is an integer PHI and we know that it has an illegal type: see if it is |
| 1094 | /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into |
| 1095 | /// the various pieces being extracted. This sort of thing is introduced when |
| 1096 | /// SROA promotes an aggregate to large integer values. |
| 1097 | /// |
| 1098 | /// TODO: The user of the trunc may be an bitcast to float/double/vector or an |
| 1099 | /// inttoptr. We should produce new PHIs in the right type. |
| 1100 | /// |
| 1101 | Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { |
| 1102 | // PHIUsers - Keep track of all of the truncated values extracted from a set |
| 1103 | // of PHIs, along with their offset. These are the things we want to rewrite. |
| 1104 | SmallVector<PHIUsageRecord, 16> PHIUsers; |
| 1105 | |
| 1106 | // PHIs are often mutually cyclic, so we keep track of a whole set of PHI |
| 1107 | // nodes which are extracted from. PHIsToSlice is a set we use to avoid |
| 1108 | // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to |
| 1109 | // check the uses of (to ensure they are all extracts). |
| 1110 | SmallVector<PHINode*, 8> PHIsToSlice; |
| 1111 | SmallPtrSet<PHINode*, 8> PHIsInspected; |
| 1112 | |
| 1113 | PHIsToSlice.push_back(Elt: &FirstPhi); |
| 1114 | PHIsInspected.insert(Ptr: &FirstPhi); |
| 1115 | |
| 1116 | for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { |
| 1117 | PHINode *PN = PHIsToSlice[PHIId]; |
| 1118 | |
| 1119 | // Scan the input list of the PHI. If any input is an invoke, and if the |
| 1120 | // input is defined in the predecessor, then we won't be split the critical |
| 1121 | // edge which is required to insert a truncate. Because of this, we have to |
| 1122 | // bail out. |
| 1123 | for (auto Incoming : zip(t: PN->blocks(), u: PN->incoming_values())) { |
| 1124 | BasicBlock *BB = std::get<0>(t&: Incoming); |
| 1125 | Value *V = std::get<1>(t&: Incoming); |
| 1126 | InvokeInst *II = dyn_cast<InvokeInst>(Val: V); |
| 1127 | if (!II) |
| 1128 | continue; |
| 1129 | if (II->getParent() != BB) |
| 1130 | continue; |
| 1131 | |
| 1132 | // If we have a phi, and if it's directly in the predecessor, then we have |
| 1133 | // a critical edge where we need to put the truncate. Since we can't |
| 1134 | // split the edge in instcombine, we have to bail out. |
| 1135 | return nullptr; |
| 1136 | } |
| 1137 | |
| 1138 | // If the incoming value is a PHI node before a catchswitch, we cannot |
| 1139 | // extract the value within that BB because we cannot insert any non-PHI |
| 1140 | // instructions in the BB. |
| 1141 | for (auto *Pred : PN->blocks()) |
| 1142 | if (Pred->getFirstInsertionPt() == Pred->end()) |
| 1143 | return nullptr; |
| 1144 | |
| 1145 | for (User *U : PN->users()) { |
| 1146 | Instruction *UserI = cast<Instruction>(Val: U); |
| 1147 | |
| 1148 | // If the user is a PHI, inspect its uses recursively. |
| 1149 | if (PHINode *UserPN = dyn_cast<PHINode>(Val: UserI)) { |
| 1150 | if (PHIsInspected.insert(Ptr: UserPN).second) |
| 1151 | PHIsToSlice.push_back(Elt: UserPN); |
| 1152 | continue; |
| 1153 | } |
| 1154 | |
| 1155 | // Truncates are always ok. |
| 1156 | if (isa<TruncInst>(Val: UserI)) { |
| 1157 | PHIUsers.push_back(Elt: PHIUsageRecord(PHIId, 0, UserI)); |
| 1158 | continue; |
| 1159 | } |
| 1160 | |
| 1161 | // Otherwise it must be a lshr which can only be used by one trunc. |
| 1162 | if (UserI->getOpcode() != Instruction::LShr || |
| 1163 | !UserI->hasOneUse() || !isa<TruncInst>(Val: UserI->user_back()) || |
| 1164 | !isa<ConstantInt>(Val: UserI->getOperand(i: 1))) |
| 1165 | return nullptr; |
| 1166 | |
| 1167 | // Bail on out of range shifts. |
| 1168 | unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); |
| 1169 | if (cast<ConstantInt>(Val: UserI->getOperand(i: 1))->getValue().uge(RHS: SizeInBits)) |
| 1170 | return nullptr; |
| 1171 | |
| 1172 | unsigned Shift = cast<ConstantInt>(Val: UserI->getOperand(i: 1))->getZExtValue(); |
| 1173 | PHIUsers.push_back(Elt: PHIUsageRecord(PHIId, Shift, UserI->user_back())); |
| 1174 | } |
| 1175 | } |
| 1176 | |
| 1177 | // If we have no users, they must be all self uses, just nuke the PHI. |
| 1178 | if (PHIUsers.empty()) |
| 1179 | return replaceInstUsesWith(I&: FirstPhi, V: PoisonValue::get(T: FirstPhi.getType())); |
| 1180 | |
| 1181 | // If this phi node is transformable, create new PHIs for all the pieces |
| 1182 | // extracted out of it. First, sort the users by their offset and size. |
| 1183 | array_pod_sort(Start: PHIUsers.begin(), End: PHIUsers.end()); |
| 1184 | |
| 1185 | LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; |
| 1186 | for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs() |
| 1187 | << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n'); |
| 1188 | |
| 1189 | // PredValues - This is a temporary used when rewriting PHI nodes. It is |
| 1190 | // hoisted out here to avoid construction/destruction thrashing. |
| 1191 | DenseMap<BasicBlock*, Value*> PredValues; |
| 1192 | |
| 1193 | // ExtractedVals - Each new PHI we introduce is saved here so we don't |
| 1194 | // introduce redundant PHIs. |
| 1195 | DenseMap<LoweredPHIRecord, PHINode*> ; |
| 1196 | |
| 1197 | for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { |
| 1198 | unsigned PHIId = PHIUsers[UserI].PHIId; |
| 1199 | PHINode *PN = PHIsToSlice[PHIId]; |
| 1200 | unsigned Offset = PHIUsers[UserI].Shift; |
| 1201 | Type *Ty = PHIUsers[UserI].Inst->getType(); |
| 1202 | |
| 1203 | PHINode *EltPHI; |
| 1204 | |
| 1205 | // If we've already lowered a user like this, reuse the previously lowered |
| 1206 | // value. |
| 1207 | if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { |
| 1208 | |
| 1209 | // Otherwise, Create the new PHI node for this user. |
| 1210 | EltPHI = PHINode::Create(Ty, NumReservedValues: PN->getNumIncomingValues(), |
| 1211 | NameStr: PN->getName() + ".off" + Twine(Offset), |
| 1212 | InsertBefore: PN->getIterator()); |
| 1213 | assert(EltPHI->getType() != PN->getType() && |
| 1214 | "Truncate didn't shrink phi?" ); |
| 1215 | |
| 1216 | for (auto Incoming : zip(t: PN->blocks(), u: PN->incoming_values())) { |
| 1217 | BasicBlock *Pred = std::get<0>(t&: Incoming); |
| 1218 | Value *InVal = std::get<1>(t&: Incoming); |
| 1219 | Value *&PredVal = PredValues[Pred]; |
| 1220 | |
| 1221 | // If we already have a value for this predecessor, reuse it. |
| 1222 | if (PredVal) { |
| 1223 | EltPHI->addIncoming(V: PredVal, BB: Pred); |
| 1224 | continue; |
| 1225 | } |
| 1226 | |
| 1227 | // Handle the PHI self-reuse case. |
| 1228 | if (InVal == PN) { |
| 1229 | PredVal = EltPHI; |
| 1230 | EltPHI->addIncoming(V: PredVal, BB: Pred); |
| 1231 | continue; |
| 1232 | } |
| 1233 | |
| 1234 | if (PHINode *InPHI = dyn_cast<PHINode>(Val: PN)) { |
| 1235 | // If the incoming value was a PHI, and if it was one of the PHIs we |
| 1236 | // already rewrote it, just use the lowered value. |
| 1237 | if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { |
| 1238 | PredVal = Res; |
| 1239 | EltPHI->addIncoming(V: PredVal, BB: Pred); |
| 1240 | continue; |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | // Otherwise, do an extract in the predecessor. |
| 1245 | Builder.SetInsertPoint(Pred->getTerminator()); |
| 1246 | Value *Res = InVal; |
| 1247 | if (Offset) |
| 1248 | Res = Builder.CreateLShr( |
| 1249 | LHS: Res, RHS: ConstantInt::get(Ty: InVal->getType(), V: Offset), Name: "extract" ); |
| 1250 | Res = Builder.CreateTrunc(V: Res, DestTy: Ty, Name: "extract.t" ); |
| 1251 | PredVal = Res; |
| 1252 | EltPHI->addIncoming(V: Res, BB: Pred); |
| 1253 | |
| 1254 | // If the incoming value was a PHI, and if it was one of the PHIs we are |
| 1255 | // rewriting, we will ultimately delete the code we inserted. This |
| 1256 | // means we need to revisit that PHI to make sure we extract out the |
| 1257 | // needed piece. |
| 1258 | if (PHINode *OldInVal = dyn_cast<PHINode>(Val: InVal)) |
| 1259 | if (PHIsInspected.count(Ptr: OldInVal)) { |
| 1260 | unsigned RefPHIId = |
| 1261 | find(Range&: PHIsToSlice, Val: OldInVal) - PHIsToSlice.begin(); |
| 1262 | PHIUsers.push_back( |
| 1263 | Elt: PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Val: Res))); |
| 1264 | ++UserE; |
| 1265 | } |
| 1266 | } |
| 1267 | PredValues.clear(); |
| 1268 | |
| 1269 | LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " |
| 1270 | << *EltPHI << '\n'); |
| 1271 | ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; |
| 1272 | } |
| 1273 | |
| 1274 | // Replace the use of this piece with the PHI node. |
| 1275 | replaceInstUsesWith(I&: *PHIUsers[UserI].Inst, V: EltPHI); |
| 1276 | } |
| 1277 | |
| 1278 | // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) |
| 1279 | // with poison. |
| 1280 | Value *Poison = PoisonValue::get(T: FirstPhi.getType()); |
| 1281 | for (PHINode *PHI : drop_begin(RangeOrContainer&: PHIsToSlice)) |
| 1282 | replaceInstUsesWith(I&: *PHI, V: Poison); |
| 1283 | return replaceInstUsesWith(I&: FirstPhi, V: Poison); |
| 1284 | } |
| 1285 | |
| 1286 | static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN, |
| 1287 | const DominatorTree &DT) { |
| 1288 | // Simplify the following patterns: |
| 1289 | // if (cond) |
| 1290 | // / \ |
| 1291 | // ... ... |
| 1292 | // \ / |
| 1293 | // phi [true] [false] |
| 1294 | // and |
| 1295 | // switch (cond) |
| 1296 | // case v1: / \ case v2: |
| 1297 | // ... ... |
| 1298 | // \ / |
| 1299 | // phi [v1] [v2] |
| 1300 | // Make sure all inputs are constants. |
| 1301 | if (!all_of(Range: PN.operands(), P: [](Value *V) { return isa<ConstantInt>(Val: V); })) |
| 1302 | return nullptr; |
| 1303 | |
| 1304 | BasicBlock *BB = PN.getParent(); |
| 1305 | // Do not bother with unreachable instructions. |
| 1306 | if (!DT.isReachableFromEntry(A: BB)) |
| 1307 | return nullptr; |
| 1308 | |
| 1309 | // Determine which value the condition of the idom has for which successor. |
| 1310 | LLVMContext &Context = PN.getContext(); |
| 1311 | auto *IDom = DT.getNode(BB)->getIDom()->getBlock(); |
| 1312 | Value *Cond; |
| 1313 | SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue; |
| 1314 | SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount; |
| 1315 | auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) { |
| 1316 | SuccForValue[C] = Succ; |
| 1317 | ++SuccCount[Succ]; |
| 1318 | }; |
| 1319 | if (auto *BI = dyn_cast<BranchInst>(Val: IDom->getTerminator())) { |
| 1320 | if (BI->isUnconditional()) |
| 1321 | return nullptr; |
| 1322 | |
| 1323 | Cond = BI->getCondition(); |
| 1324 | AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(i: 0)); |
| 1325 | AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(i: 1)); |
| 1326 | } else if (auto *SI = dyn_cast<SwitchInst>(Val: IDom->getTerminator())) { |
| 1327 | Cond = SI->getCondition(); |
| 1328 | ++SuccCount[SI->getDefaultDest()]; |
| 1329 | for (auto Case : SI->cases()) |
| 1330 | AddSucc(Case.getCaseValue(), Case.getCaseSuccessor()); |
| 1331 | } else { |
| 1332 | return nullptr; |
| 1333 | } |
| 1334 | |
| 1335 | if (Cond->getType() != PN.getType()) |
| 1336 | return nullptr; |
| 1337 | |
| 1338 | // Check that edges outgoing from the idom's terminators dominate respective |
| 1339 | // inputs of the Phi. |
| 1340 | std::optional<bool> Invert; |
| 1341 | for (auto Pair : zip(t: PN.incoming_values(), u: PN.blocks())) { |
| 1342 | auto *Input = cast<ConstantInt>(Val&: std::get<0>(t&: Pair)); |
| 1343 | BasicBlock *Pred = std::get<1>(t&: Pair); |
| 1344 | auto IsCorrectInput = [&](ConstantInt *Input) { |
| 1345 | // The input needs to be dominated by the corresponding edge of the idom. |
| 1346 | // This edge cannot be a multi-edge, as that would imply that multiple |
| 1347 | // different condition values follow the same edge. |
| 1348 | auto It = SuccForValue.find(Val: Input); |
| 1349 | return It != SuccForValue.end() && SuccCount[It->second] == 1 && |
| 1350 | DT.dominates(BBE1: BasicBlockEdge(IDom, It->second), |
| 1351 | BBE2: BasicBlockEdge(Pred, BB)); |
| 1352 | }; |
| 1353 | |
| 1354 | // Depending on the constant, the condition may need to be inverted. |
| 1355 | bool NeedsInvert; |
| 1356 | if (IsCorrectInput(Input)) |
| 1357 | NeedsInvert = false; |
| 1358 | else if (IsCorrectInput(cast<ConstantInt>(Val: ConstantExpr::getNot(C: Input)))) |
| 1359 | NeedsInvert = true; |
| 1360 | else |
| 1361 | return nullptr; |
| 1362 | |
| 1363 | // Make sure the inversion requirement is always the same. |
| 1364 | if (Invert && *Invert != NeedsInvert) |
| 1365 | return nullptr; |
| 1366 | |
| 1367 | Invert = NeedsInvert; |
| 1368 | } |
| 1369 | |
| 1370 | if (!*Invert) |
| 1371 | return Cond; |
| 1372 | |
| 1373 | // This Phi is actually opposite to branching condition of IDom. We invert |
| 1374 | // the condition that will potentially open up some opportunities for |
| 1375 | // sinking. |
| 1376 | auto InsertPt = BB->getFirstInsertionPt(); |
| 1377 | if (InsertPt != BB->end()) { |
| 1378 | Self.Builder.SetInsertPoint(TheBB: &*BB, IP: InsertPt); |
| 1379 | return Self.Builder.CreateNot(V: Cond); |
| 1380 | } |
| 1381 | |
| 1382 | return nullptr; |
| 1383 | } |
| 1384 | |
| 1385 | // Fold iv = phi(start, iv.next = iv2.next op start) |
| 1386 | // where iv2 = phi(iv2.start, iv2.next = iv2 + iv2.step) |
| 1387 | // and iv2.start op start = start |
| 1388 | // to iv = iv2 op start |
| 1389 | static Value *foldDependentIVs(PHINode &PN, IRBuilderBase &Builder) { |
| 1390 | BasicBlock *BB = PN.getParent(); |
| 1391 | if (PN.getNumIncomingValues() != 2) |
| 1392 | return nullptr; |
| 1393 | |
| 1394 | Value *Start; |
| 1395 | Instruction *IvNext; |
| 1396 | BinaryOperator *Iv2Next; |
| 1397 | auto MatchOuterIV = [&](Value *V1, Value *V2) { |
| 1398 | if (match(V: V2, P: m_c_BinOp(L: m_Specific(V: V1), R: m_BinOp(I&: Iv2Next))) || |
| 1399 | match(V: V2, P: m_GEP(Ops: m_Specific(V: V1), Ops: m_BinOp(I&: Iv2Next)))) { |
| 1400 | Start = V1; |
| 1401 | IvNext = cast<Instruction>(Val: V2); |
| 1402 | return true; |
| 1403 | } |
| 1404 | return false; |
| 1405 | }; |
| 1406 | |
| 1407 | if (!MatchOuterIV(PN.getIncomingValue(i: 0), PN.getIncomingValue(i: 1)) && |
| 1408 | !MatchOuterIV(PN.getIncomingValue(i: 1), PN.getIncomingValue(i: 0))) |
| 1409 | return nullptr; |
| 1410 | |
| 1411 | PHINode *Iv2; |
| 1412 | Value *Iv2Start, *Iv2Step; |
| 1413 | if (!matchSimpleRecurrence(I: Iv2Next, P&: Iv2, Start&: Iv2Start, Step&: Iv2Step) || |
| 1414 | Iv2->getParent() != BB) |
| 1415 | return nullptr; |
| 1416 | |
| 1417 | auto *BO = dyn_cast<BinaryOperator>(Val: IvNext); |
| 1418 | Constant *Identity = |
| 1419 | BO ? ConstantExpr::getBinOpIdentity(Opcode: BO->getOpcode(), Ty: Iv2Start->getType()) |
| 1420 | : Constant::getNullValue(Ty: Iv2Start->getType()); |
| 1421 | if (Iv2Start != Identity) |
| 1422 | return nullptr; |
| 1423 | |
| 1424 | Builder.SetInsertPoint(TheBB: &*BB, IP: BB->getFirstInsertionPt()); |
| 1425 | if (!BO) { |
| 1426 | auto *GEP = cast<GEPOperator>(Val: IvNext); |
| 1427 | return Builder.CreateGEP(Ty: GEP->getSourceElementType(), Ptr: Start, IdxList: Iv2, Name: "" , |
| 1428 | NW: cast<GEPOperator>(Val: IvNext)->getNoWrapFlags()); |
| 1429 | } |
| 1430 | |
| 1431 | assert(BO->isCommutative() && "Must be commutative" ); |
| 1432 | Value *Res = Builder.CreateBinOp(Opc: BO->getOpcode(), LHS: Iv2, RHS: Start); |
| 1433 | cast<Instruction>(Val: Res)->copyIRFlags(V: BO); |
| 1434 | return Res; |
| 1435 | } |
| 1436 | |
| 1437 | // PHINode simplification |
| 1438 | // |
| 1439 | Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) { |
| 1440 | if (Value *V = simplifyInstruction(I: &PN, Q: SQ.getWithInstruction(I: &PN))) |
| 1441 | return replaceInstUsesWith(I&: PN, V); |
| 1442 | |
| 1443 | if (Instruction *Result = foldPHIArgZextsIntoPHI(Phi&: PN)) |
| 1444 | return Result; |
| 1445 | |
| 1446 | if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN)) |
| 1447 | return Result; |
| 1448 | |
| 1449 | // If all PHI operands are the same operation, pull them through the PHI, |
| 1450 | // reducing code size. |
| 1451 | auto *Inst0 = dyn_cast<Instruction>(Val: PN.getIncomingValue(i: 0)); |
| 1452 | auto *Inst1 = dyn_cast<Instruction>(Val: PN.getIncomingValue(i: 1)); |
| 1453 | if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() && |
| 1454 | Inst0->hasOneUser()) |
| 1455 | if (Instruction *Result = foldPHIArgOpIntoPHI(PN)) |
| 1456 | return Result; |
| 1457 | |
| 1458 | // If the incoming values are pointer casts of the same original value, |
| 1459 | // replace the phi with a single cast iff we can insert a non-PHI instruction. |
| 1460 | if (PN.getType()->isPointerTy() && |
| 1461 | PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) { |
| 1462 | Value *IV0 = PN.getIncomingValue(i: 0); |
| 1463 | Value *IV0Stripped = IV0->stripPointerCasts(); |
| 1464 | // Set to keep track of values known to be equal to IV0Stripped after |
| 1465 | // stripping pointer casts. |
| 1466 | SmallPtrSet<Value *, 4> CheckedIVs; |
| 1467 | CheckedIVs.insert(Ptr: IV0); |
| 1468 | if (IV0 != IV0Stripped && |
| 1469 | all_of(Range: PN.incoming_values(), P: [&CheckedIVs, IV0Stripped](Value *IV) { |
| 1470 | return !CheckedIVs.insert(Ptr: IV).second || |
| 1471 | IV0Stripped == IV->stripPointerCasts(); |
| 1472 | })) { |
| 1473 | return CastInst::CreatePointerCast(S: IV0Stripped, Ty: PN.getType()); |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | if (foldDeadPhiWeb(PN)) |
| 1478 | return nullptr; |
| 1479 | |
| 1480 | // Optimization when the phi only has one use |
| 1481 | if (PN.hasOneUse()) { |
| 1482 | if (foldIntegerTypedPHI(PN)) |
| 1483 | return nullptr; |
| 1484 | |
| 1485 | // If this phi has a single use, and if that use just computes a value for |
| 1486 | // the next iteration of a loop, delete the phi. This occurs with unused |
| 1487 | // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this |
| 1488 | // common case here is good because the only other things that catch this |
| 1489 | // are induction variable analysis (sometimes) and ADCE, which is only run |
| 1490 | // late. |
| 1491 | Instruction *PHIUser = cast<Instruction>(Val: PN.user_back()); |
| 1492 | if (PHIUser->hasOneUse() && |
| 1493 | (isa<BinaryOperator>(Val: PHIUser) || isa<UnaryOperator>(Val: PHIUser) || |
| 1494 | isa<GetElementPtrInst>(Val: PHIUser)) && |
| 1495 | PHIUser->user_back() == &PN) { |
| 1496 | return replaceInstUsesWith(I&: PN, V: PoisonValue::get(T: PN.getType())); |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | // When a PHI is used only to be compared with zero, it is safe to replace |
| 1501 | // an incoming value proved as known nonzero with any non-zero constant. |
| 1502 | // For example, in the code below, the incoming value %v can be replaced |
| 1503 | // with any non-zero constant based on the fact that the PHI is only used to |
| 1504 | // be compared with zero and %v is a known non-zero value: |
| 1505 | // %v = select %cond, 1, 2 |
| 1506 | // %p = phi [%v, BB] ... |
| 1507 | // icmp eq, %p, 0 |
| 1508 | // FIXME: To be simple, handle only integer type for now. |
| 1509 | // This handles a small number of uses to keep the complexity down, and an |
| 1510 | // icmp(or(phi)) can equally be replaced with any non-zero constant as the |
| 1511 | // "or" will only add bits. |
| 1512 | if (!PN.hasNUsesOrMore(N: 3)) { |
| 1513 | SmallVector<Instruction *> DropPoisonFlags; |
| 1514 | bool AllUsesOfPhiEndsInCmp = all_of(Range: PN.users(), P: [&](User *U) { |
| 1515 | auto *CmpInst = dyn_cast<ICmpInst>(Val: U); |
| 1516 | if (!CmpInst) { |
| 1517 | // This is always correct as OR only add bits and we are checking |
| 1518 | // against 0. |
| 1519 | if (U->hasOneUse() && match(V: U, P: m_c_Or(L: m_Specific(V: &PN), R: m_Value()))) { |
| 1520 | DropPoisonFlags.push_back(Elt: cast<Instruction>(Val: U)); |
| 1521 | CmpInst = dyn_cast<ICmpInst>(Val: U->user_back()); |
| 1522 | } |
| 1523 | } |
| 1524 | if (!CmpInst || !isa<IntegerType>(Val: PN.getType()) || |
| 1525 | !CmpInst->isEquality() || !match(V: CmpInst->getOperand(i_nocapture: 1), P: m_Zero())) { |
| 1526 | return false; |
| 1527 | } |
| 1528 | return true; |
| 1529 | }); |
| 1530 | // All uses of PHI results in a compare with zero. |
| 1531 | if (AllUsesOfPhiEndsInCmp) { |
| 1532 | ConstantInt *NonZeroConst = nullptr; |
| 1533 | bool MadeChange = false; |
| 1534 | for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { |
| 1535 | Instruction *CtxI = PN.getIncomingBlock(i: I)->getTerminator(); |
| 1536 | Value *VA = PN.getIncomingValue(i: I); |
| 1537 | if (isKnownNonZero(V: VA, Q: getSimplifyQuery().getWithInstruction(I: CtxI))) { |
| 1538 | if (!NonZeroConst) |
| 1539 | NonZeroConst = getAnyNonZeroConstInt(PN); |
| 1540 | if (NonZeroConst != VA) { |
| 1541 | replaceOperand(I&: PN, OpNum: I, V: NonZeroConst); |
| 1542 | // The "disjoint" flag may no longer hold after the transform. |
| 1543 | for (Instruction *I : DropPoisonFlags) |
| 1544 | I->dropPoisonGeneratingFlags(); |
| 1545 | MadeChange = true; |
| 1546 | } |
| 1547 | } |
| 1548 | } |
| 1549 | if (MadeChange) |
| 1550 | return &PN; |
| 1551 | } |
| 1552 | } |
| 1553 | |
| 1554 | // We sometimes end up with phi cycles that non-obviously end up being the |
| 1555 | // same value, for example: |
| 1556 | // z = some value; x = phi (y, z); y = phi (x, z) |
| 1557 | // where the phi nodes don't necessarily need to be in the same block. Do a |
| 1558 | // quick check to see if the PHI node only contains a single non-phi value, if |
| 1559 | // so, scan to see if the phi cycle is actually equal to that value. If the |
| 1560 | // phi has no non-phi values then allow the "NonPhiInVal" to be set later if |
| 1561 | // one of the phis itself does not have a single input. |
| 1562 | { |
| 1563 | unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); |
| 1564 | // Scan for the first non-phi operand. |
| 1565 | while (InValNo != NumIncomingVals && |
| 1566 | isa<PHINode>(Val: PN.getIncomingValue(i: InValNo))) |
| 1567 | ++InValNo; |
| 1568 | |
| 1569 | Value *NonPhiInVal = |
| 1570 | InValNo != NumIncomingVals ? PN.getIncomingValue(i: InValNo) : nullptr; |
| 1571 | |
| 1572 | // Scan the rest of the operands to see if there are any conflicts, if so |
| 1573 | // there is no need to recursively scan other phis. |
| 1574 | if (NonPhiInVal) |
| 1575 | for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { |
| 1576 | Value *OpVal = PN.getIncomingValue(i: InValNo); |
| 1577 | if (OpVal != NonPhiInVal && !isa<PHINode>(Val: OpVal)) |
| 1578 | break; |
| 1579 | } |
| 1580 | |
| 1581 | // If we scanned over all operands, then we have one unique value plus |
| 1582 | // phi values. Scan PHI nodes to see if they all merge in each other or |
| 1583 | // the value. |
| 1584 | if (InValNo == NumIncomingVals) { |
| 1585 | SmallPtrSet<PHINode *, 16> ValueEqualPHIs; |
| 1586 | if (PHIsEqualValue(PN: &PN, NonPhiInVal, ValueEqualPHIs)) |
| 1587 | return replaceInstUsesWith(I&: PN, V: NonPhiInVal); |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | // If there are multiple PHIs, sort their operands so that they all list |
| 1592 | // the blocks in the same order. This will help identical PHIs be eliminated |
| 1593 | // by other passes. Other passes shouldn't depend on this for correctness |
| 1594 | // however. |
| 1595 | auto Res = PredOrder.try_emplace(Key: PN.getParent()); |
| 1596 | if (!Res.second) { |
| 1597 | const auto &Preds = Res.first->second; |
| 1598 | for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { |
| 1599 | BasicBlock *BBA = PN.getIncomingBlock(i: I); |
| 1600 | BasicBlock *BBB = Preds[I]; |
| 1601 | if (BBA != BBB) { |
| 1602 | Value *VA = PN.getIncomingValue(i: I); |
| 1603 | unsigned J = PN.getBasicBlockIndex(BB: BBB); |
| 1604 | Value *VB = PN.getIncomingValue(i: J); |
| 1605 | PN.setIncomingBlock(i: I, BB: BBB); |
| 1606 | PN.setIncomingValue(i: I, V: VB); |
| 1607 | PN.setIncomingBlock(i: J, BB: BBA); |
| 1608 | PN.setIncomingValue(i: J, V: VA); |
| 1609 | // NOTE: Instcombine normally would want us to "return &PN" if we |
| 1610 | // modified any of the operands of an instruction. However, since we |
| 1611 | // aren't adding or removing uses (just rearranging them) we don't do |
| 1612 | // this in this case. |
| 1613 | } |
| 1614 | } |
| 1615 | } else { |
| 1616 | // Remember the block order of the first encountered phi node. |
| 1617 | append_range(C&: Res.first->second, R: PN.blocks()); |
| 1618 | } |
| 1619 | |
| 1620 | // Is there an identical PHI node in this basic block? |
| 1621 | for (PHINode &IdenticalPN : PN.getParent()->phis()) { |
| 1622 | // Ignore the PHI node itself. |
| 1623 | if (&IdenticalPN == &PN) |
| 1624 | continue; |
| 1625 | // Note that even though we've just canonicalized this PHI, due to the |
| 1626 | // worklist visitation order, there are no guarantess that *every* PHI |
| 1627 | // has been canonicalized, so we can't just compare operands ranges. |
| 1628 | if (!PN.isIdenticalToWhenDefined(I: &IdenticalPN)) |
| 1629 | continue; |
| 1630 | // Just use that PHI instead then. |
| 1631 | ++NumPHICSEs; |
| 1632 | return replaceInstUsesWith(I&: PN, V: &IdenticalPN); |
| 1633 | } |
| 1634 | |
| 1635 | // If this is an integer PHI and we know that it has an illegal type, see if |
| 1636 | // it is only used by trunc or trunc(lshr) operations. If so, we split the |
| 1637 | // PHI into the various pieces being extracted. This sort of thing is |
| 1638 | // introduced when SROA promotes an aggregate to a single large integer type. |
| 1639 | if (PN.getType()->isIntegerTy() && |
| 1640 | !DL.isLegalInteger(Width: PN.getType()->getPrimitiveSizeInBits())) |
| 1641 | if (Instruction *Res = SliceUpIllegalIntegerPHI(FirstPhi&: PN)) |
| 1642 | return Res; |
| 1643 | |
| 1644 | // Ultimately, try to replace this Phi with a dominating condition. |
| 1645 | if (auto *V = simplifyUsingControlFlow(Self&: *this, PN, DT)) |
| 1646 | return replaceInstUsesWith(I&: PN, V); |
| 1647 | |
| 1648 | if (Value *Res = foldDependentIVs(PN, Builder)) |
| 1649 | return replaceInstUsesWith(I&: PN, V: Res); |
| 1650 | |
| 1651 | return nullptr; |
| 1652 | } |
| 1653 | |