| 1 | //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass implements an idiom recognizer that transforms simple loops into a |
| 10 | // non-loop form. In cases that this kicks in, it can be a significant |
| 11 | // performance win. |
| 12 | // |
| 13 | // If compiling for code size we avoid idiom recognition if the resulting |
| 14 | // code could be larger than the code for the original loop. One way this could |
| 15 | // happen is if the loop is not removable after idiom recognition due to the |
| 16 | // presence of non-idiom instructions. The initial implementation of the |
| 17 | // heuristics applies to idioms in multi-block loops. |
| 18 | // |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | // |
| 21 | // TODO List: |
| 22 | // |
| 23 | // Future loop memory idioms to recognize: memcmp, etc. |
| 24 | // |
| 25 | // This could recognize common matrix multiplies and dot product idioms and |
| 26 | // replace them with calls to BLAS (if linked in??). |
| 27 | // |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | |
| 30 | #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" |
| 31 | #include "llvm/ADT/APInt.h" |
| 32 | #include "llvm/ADT/ArrayRef.h" |
| 33 | #include "llvm/ADT/DenseMap.h" |
| 34 | #include "llvm/ADT/MapVector.h" |
| 35 | #include "llvm/ADT/SetVector.h" |
| 36 | #include "llvm/ADT/SmallPtrSet.h" |
| 37 | #include "llvm/ADT/SmallVector.h" |
| 38 | #include "llvm/ADT/Statistic.h" |
| 39 | #include "llvm/ADT/StringRef.h" |
| 40 | #include "llvm/Analysis/AliasAnalysis.h" |
| 41 | #include "llvm/Analysis/CmpInstAnalysis.h" |
| 42 | #include "llvm/Analysis/LoopInfo.h" |
| 43 | #include "llvm/Analysis/LoopPass.h" |
| 44 | #include "llvm/Analysis/MemoryLocation.h" |
| 45 | #include "llvm/Analysis/MemorySSA.h" |
| 46 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 47 | #include "llvm/Analysis/MustExecute.h" |
| 48 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 49 | #include "llvm/Analysis/ScalarEvolution.h" |
| 50 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 51 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
| 52 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 53 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 54 | #include "llvm/Analysis/ValueTracking.h" |
| 55 | #include "llvm/IR/BasicBlock.h" |
| 56 | #include "llvm/IR/Constant.h" |
| 57 | #include "llvm/IR/Constants.h" |
| 58 | #include "llvm/IR/DataLayout.h" |
| 59 | #include "llvm/IR/DebugLoc.h" |
| 60 | #include "llvm/IR/DerivedTypes.h" |
| 61 | #include "llvm/IR/Dominators.h" |
| 62 | #include "llvm/IR/GlobalValue.h" |
| 63 | #include "llvm/IR/GlobalVariable.h" |
| 64 | #include "llvm/IR/IRBuilder.h" |
| 65 | #include "llvm/IR/InstrTypes.h" |
| 66 | #include "llvm/IR/Instruction.h" |
| 67 | #include "llvm/IR/Instructions.h" |
| 68 | #include "llvm/IR/IntrinsicInst.h" |
| 69 | #include "llvm/IR/Intrinsics.h" |
| 70 | #include "llvm/IR/LLVMContext.h" |
| 71 | #include "llvm/IR/Module.h" |
| 72 | #include "llvm/IR/PassManager.h" |
| 73 | #include "llvm/IR/PatternMatch.h" |
| 74 | #include "llvm/IR/Type.h" |
| 75 | #include "llvm/IR/User.h" |
| 76 | #include "llvm/IR/Value.h" |
| 77 | #include "llvm/IR/ValueHandle.h" |
| 78 | #include "llvm/Support/Casting.h" |
| 79 | #include "llvm/Support/CommandLine.h" |
| 80 | #include "llvm/Support/Debug.h" |
| 81 | #include "llvm/Support/InstructionCost.h" |
| 82 | #include "llvm/Support/raw_ostream.h" |
| 83 | #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| 84 | #include "llvm/Transforms/Utils/Local.h" |
| 85 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 86 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 87 | #include <algorithm> |
| 88 | #include <cassert> |
| 89 | #include <cstdint> |
| 90 | #include <utility> |
| 91 | #include <vector> |
| 92 | |
| 93 | using namespace llvm; |
| 94 | using namespace SCEVPatternMatch; |
| 95 | |
| 96 | #define DEBUG_TYPE "loop-idiom" |
| 97 | |
| 98 | STATISTIC(NumMemSet, "Number of memset's formed from loop stores" ); |
| 99 | STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores" ); |
| 100 | STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores" ); |
| 101 | STATISTIC(NumStrLen, "Number of strlen's and wcslen's formed from loop loads" ); |
| 102 | STATISTIC( |
| 103 | NumShiftUntilBitTest, |
| 104 | "Number of uncountable loops recognized as 'shift until bitttest' idiom" ); |
| 105 | STATISTIC(NumShiftUntilZero, |
| 106 | "Number of uncountable loops recognized as 'shift until zero' idiom" ); |
| 107 | |
| 108 | bool DisableLIRP::All; |
| 109 | static cl::opt<bool, true> |
| 110 | DisableLIRPAll("disable-" DEBUG_TYPE "-all" , |
| 111 | cl::desc("Options to disable Loop Idiom Recognize Pass." ), |
| 112 | cl::location(L&: DisableLIRP::All), cl::init(Val: false), |
| 113 | cl::ReallyHidden); |
| 114 | |
| 115 | bool DisableLIRP::Memset; |
| 116 | static cl::opt<bool, true> |
| 117 | DisableLIRPMemset("disable-" DEBUG_TYPE "-memset" , |
| 118 | cl::desc("Proceed with loop idiom recognize pass, but do " |
| 119 | "not convert loop(s) to memset." ), |
| 120 | cl::location(L&: DisableLIRP::Memset), cl::init(Val: false), |
| 121 | cl::ReallyHidden); |
| 122 | |
| 123 | bool DisableLIRP::Memcpy; |
| 124 | static cl::opt<bool, true> |
| 125 | DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy" , |
| 126 | cl::desc("Proceed with loop idiom recognize pass, but do " |
| 127 | "not convert loop(s) to memcpy." ), |
| 128 | cl::location(L&: DisableLIRP::Memcpy), cl::init(Val: false), |
| 129 | cl::ReallyHidden); |
| 130 | |
| 131 | bool DisableLIRP::Strlen; |
| 132 | static cl::opt<bool, true> |
| 133 | DisableLIRPStrlen("disable-loop-idiom-strlen" , |
| 134 | cl::desc("Proceed with loop idiom recognize pass, but do " |
| 135 | "not convert loop(s) to strlen." ), |
| 136 | cl::location(L&: DisableLIRP::Strlen), cl::init(Val: false), |
| 137 | cl::ReallyHidden); |
| 138 | |
| 139 | bool DisableLIRP::Wcslen; |
| 140 | static cl::opt<bool, true> |
| 141 | EnableLIRPWcslen("disable-loop-idiom-wcslen" , |
| 142 | cl::desc("Proceed with loop idiom recognize pass, " |
| 143 | "enable conversion of loop(s) to wcslen." ), |
| 144 | cl::location(L&: DisableLIRP::Wcslen), cl::init(Val: false), |
| 145 | cl::ReallyHidden); |
| 146 | |
| 147 | static cl::opt<bool> UseLIRCodeSizeHeurs( |
| 148 | "use-lir-code-size-heurs" , |
| 149 | cl::desc("Use loop idiom recognition code size heuristics when compiling " |
| 150 | "with -Os/-Oz" ), |
| 151 | cl::init(Val: true), cl::Hidden); |
| 152 | |
| 153 | namespace { |
| 154 | |
| 155 | class LoopIdiomRecognize { |
| 156 | Loop *CurLoop = nullptr; |
| 157 | AliasAnalysis *AA; |
| 158 | DominatorTree *DT; |
| 159 | LoopInfo *LI; |
| 160 | ScalarEvolution *SE; |
| 161 | TargetLibraryInfo *TLI; |
| 162 | const TargetTransformInfo *TTI; |
| 163 | const DataLayout *DL; |
| 164 | OptimizationRemarkEmitter &ORE; |
| 165 | bool ApplyCodeSizeHeuristics; |
| 166 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
| 167 | |
| 168 | public: |
| 169 | explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, |
| 170 | LoopInfo *LI, ScalarEvolution *SE, |
| 171 | TargetLibraryInfo *TLI, |
| 172 | const TargetTransformInfo *TTI, MemorySSA *MSSA, |
| 173 | const DataLayout *DL, |
| 174 | OptimizationRemarkEmitter &ORE) |
| 175 | : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { |
| 176 | if (MSSA) |
| 177 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: MSSA); |
| 178 | } |
| 179 | |
| 180 | bool runOnLoop(Loop *L); |
| 181 | |
| 182 | private: |
| 183 | using StoreList = SmallVector<StoreInst *, 8>; |
| 184 | using StoreListMap = MapVector<Value *, StoreList>; |
| 185 | |
| 186 | StoreListMap StoreRefsForMemset; |
| 187 | StoreListMap StoreRefsForMemsetPattern; |
| 188 | StoreList StoreRefsForMemcpy; |
| 189 | bool HasMemset; |
| 190 | bool HasMemsetPattern; |
| 191 | bool HasMemcpy; |
| 192 | |
| 193 | /// Return code for isLegalStore() |
| 194 | enum LegalStoreKind { |
| 195 | None = 0, |
| 196 | Memset, |
| 197 | MemsetPattern, |
| 198 | Memcpy, |
| 199 | UnorderedAtomicMemcpy, |
| 200 | DontUse // Dummy retval never to be used. Allows catching errors in retval |
| 201 | // handling. |
| 202 | }; |
| 203 | |
| 204 | /// \name Countable Loop Idiom Handling |
| 205 | /// @{ |
| 206 | |
| 207 | bool runOnCountableLoop(); |
| 208 | bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| 209 | SmallVectorImpl<BasicBlock *> &ExitBlocks); |
| 210 | |
| 211 | void collectStores(BasicBlock *BB); |
| 212 | LegalStoreKind isLegalStore(StoreInst *SI); |
| 213 | enum class ForMemset { No, Yes }; |
| 214 | bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, |
| 215 | ForMemset For); |
| 216 | |
| 217 | template <typename MemInst> |
| 218 | bool processLoopMemIntrinsic( |
| 219 | BasicBlock *BB, |
| 220 | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), |
| 221 | const SCEV *BECount); |
| 222 | bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); |
| 223 | bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); |
| 224 | |
| 225 | bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, |
| 226 | MaybeAlign StoreAlignment, Value *StoredVal, |
| 227 | Instruction *TheStore, |
| 228 | SmallPtrSetImpl<Instruction *> &Stores, |
| 229 | const SCEVAddRecExpr *Ev, const SCEV *BECount, |
| 230 | bool IsNegStride, bool IsLoopMemset = false); |
| 231 | bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); |
| 232 | bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, |
| 233 | const SCEV *StoreSize, MaybeAlign StoreAlign, |
| 234 | MaybeAlign LoadAlign, Instruction *TheStore, |
| 235 | Instruction *TheLoad, |
| 236 | const SCEVAddRecExpr *StoreEv, |
| 237 | const SCEVAddRecExpr *LoadEv, |
| 238 | const SCEV *BECount); |
| 239 | bool avoidLIRForMultiBlockLoop(bool IsMemset = false, |
| 240 | bool IsLoopMemset = false); |
| 241 | |
| 242 | /// @} |
| 243 | /// \name Noncountable Loop Idiom Handling |
| 244 | /// @{ |
| 245 | |
| 246 | bool runOnNoncountableLoop(); |
| 247 | |
| 248 | bool recognizePopcount(); |
| 249 | void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, |
| 250 | PHINode *CntPhi, Value *Var); |
| 251 | bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX, |
| 252 | bool ZeroCheck, size_t CanonicalSize); |
| 253 | bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX, |
| 254 | Instruction *DefX, PHINode *CntPhi, |
| 255 | Instruction *CntInst); |
| 256 | bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz |
| 257 | bool recognizeShiftUntilLessThan(); |
| 258 | void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, |
| 259 | Instruction *CntInst, PHINode *CntPhi, |
| 260 | Value *Var, Instruction *DefX, |
| 261 | const DebugLoc &DL, bool ZeroCheck, |
| 262 | bool IsCntPhiUsedOutsideLoop, |
| 263 | bool InsertSub = false); |
| 264 | |
| 265 | bool recognizeShiftUntilBitTest(); |
| 266 | bool recognizeShiftUntilZero(); |
| 267 | bool recognizeAndInsertStrLen(); |
| 268 | |
| 269 | /// @} |
| 270 | }; |
| 271 | } // end anonymous namespace |
| 272 | |
| 273 | PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, |
| 274 | LoopStandardAnalysisResults &AR, |
| 275 | LPMUpdater &) { |
| 276 | if (DisableLIRP::All) |
| 277 | return PreservedAnalyses::all(); |
| 278 | |
| 279 | const auto *DL = &L.getHeader()->getDataLayout(); |
| 280 | |
| 281 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis |
| 282 | // pass. Function analyses need to be preserved across loop transformations |
| 283 | // but ORE cannot be preserved (see comment before the pass definition). |
| 284 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
| 285 | |
| 286 | LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, |
| 287 | AR.MSSA, DL, ORE); |
| 288 | if (!LIR.runOnLoop(L: &L)) |
| 289 | return PreservedAnalyses::all(); |
| 290 | |
| 291 | auto PA = getLoopPassPreservedAnalyses(); |
| 292 | if (AR.MSSA) |
| 293 | PA.preserve<MemorySSAAnalysis>(); |
| 294 | return PA; |
| 295 | } |
| 296 | |
| 297 | static void deleteDeadInstruction(Instruction *I) { |
| 298 | I->replaceAllUsesWith(V: PoisonValue::get(T: I->getType())); |
| 299 | I->eraseFromParent(); |
| 300 | } |
| 301 | |
| 302 | //===----------------------------------------------------------------------===// |
| 303 | // |
| 304 | // Implementation of LoopIdiomRecognize |
| 305 | // |
| 306 | //===----------------------------------------------------------------------===// |
| 307 | |
| 308 | bool LoopIdiomRecognize::runOnLoop(Loop *L) { |
| 309 | CurLoop = L; |
| 310 | // If the loop could not be converted to canonical form, it must have an |
| 311 | // indirectbr in it, just give up. |
| 312 | if (!L->getLoopPreheader()) |
| 313 | return false; |
| 314 | |
| 315 | // Disable loop idiom recognition if the function's name is a common idiom. |
| 316 | StringRef Name = L->getHeader()->getParent()->getName(); |
| 317 | if (Name == "memset" || Name == "memcpy" || Name == "strlen" || |
| 318 | Name == "wcslen" ) |
| 319 | return false; |
| 320 | |
| 321 | // Determine if code size heuristics need to be applied. |
| 322 | ApplyCodeSizeHeuristics = |
| 323 | L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; |
| 324 | |
| 325 | HasMemset = TLI->has(F: LibFunc_memset); |
| 326 | HasMemsetPattern = TLI->has(F: LibFunc_memset_pattern16); |
| 327 | HasMemcpy = TLI->has(F: LibFunc_memcpy); |
| 328 | |
| 329 | if (HasMemset || HasMemsetPattern || HasMemcpy) |
| 330 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| 331 | return runOnCountableLoop(); |
| 332 | |
| 333 | return runOnNoncountableLoop(); |
| 334 | } |
| 335 | |
| 336 | bool LoopIdiomRecognize::runOnCountableLoop() { |
| 337 | const SCEV *BECount = SE->getBackedgeTakenCount(L: CurLoop); |
| 338 | assert(!isa<SCEVCouldNotCompute>(BECount) && |
| 339 | "runOnCountableLoop() called on a loop without a predictable" |
| 340 | "backedge-taken count" ); |
| 341 | |
| 342 | // If this loop executes exactly one time, then it should be peeled, not |
| 343 | // optimized by this pass. |
| 344 | if (BECount->isZero()) |
| 345 | return false; |
| 346 | |
| 347 | SmallVector<BasicBlock *, 8> ExitBlocks; |
| 348 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
| 349 | |
| 350 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" |
| 351 | << CurLoop->getHeader()->getParent()->getName() |
| 352 | << "] Countable Loop %" << CurLoop->getHeader()->getName() |
| 353 | << "\n" ); |
| 354 | |
| 355 | // The following transforms hoist stores/memsets into the loop pre-header. |
| 356 | // Give up if the loop has instructions that may throw. |
| 357 | SimpleLoopSafetyInfo SafetyInfo; |
| 358 | SafetyInfo.computeLoopSafetyInfo(CurLoop); |
| 359 | if (SafetyInfo.anyBlockMayThrow()) |
| 360 | return false; |
| 361 | |
| 362 | bool MadeChange = false; |
| 363 | |
| 364 | // Scan all the blocks in the loop that are not in subloops. |
| 365 | for (auto *BB : CurLoop->getBlocks()) { |
| 366 | // Ignore blocks in subloops. |
| 367 | if (LI->getLoopFor(BB) != CurLoop) |
| 368 | continue; |
| 369 | |
| 370 | MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); |
| 371 | } |
| 372 | return MadeChange; |
| 373 | } |
| 374 | |
| 375 | static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { |
| 376 | const SCEVConstant *ConstStride = cast<SCEVConstant>(Val: StoreEv->getOperand(i: 1)); |
| 377 | return ConstStride->getAPInt(); |
| 378 | } |
| 379 | |
| 380 | /// getMemSetPatternValue - If a strided store of the specified value is safe to |
| 381 | /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should |
| 382 | /// be passed in. Otherwise, return null. |
| 383 | /// |
| 384 | /// Note that we don't ever attempt to use memset_pattern8 or 4, because these |
| 385 | /// just replicate their input array and then pass on to memset_pattern16. |
| 386 | static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { |
| 387 | // FIXME: This could check for UndefValue because it can be merged into any |
| 388 | // other valid pattern. |
| 389 | |
| 390 | // If the value isn't a constant, we can't promote it to being in a constant |
| 391 | // array. We could theoretically do a store to an alloca or something, but |
| 392 | // that doesn't seem worthwhile. |
| 393 | Constant *C = dyn_cast<Constant>(Val: V); |
| 394 | if (!C || isa<ConstantExpr>(Val: C)) |
| 395 | return nullptr; |
| 396 | |
| 397 | // Only handle simple values that are a power of two bytes in size. |
| 398 | uint64_t Size = DL->getTypeSizeInBits(Ty: V->getType()); |
| 399 | if (Size == 0 || (Size & 7) || (Size & (Size - 1))) |
| 400 | return nullptr; |
| 401 | |
| 402 | // Don't care enough about darwin/ppc to implement this. |
| 403 | if (DL->isBigEndian()) |
| 404 | return nullptr; |
| 405 | |
| 406 | // Convert to size in bytes. |
| 407 | Size /= 8; |
| 408 | |
| 409 | // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see |
| 410 | // if the top and bottom are the same (e.g. for vectors and large integers). |
| 411 | if (Size > 16) |
| 412 | return nullptr; |
| 413 | |
| 414 | // If the constant is exactly 16 bytes, just use it. |
| 415 | if (Size == 16) |
| 416 | return C; |
| 417 | |
| 418 | // Otherwise, we'll use an array of the constants. |
| 419 | unsigned ArraySize = 16 / Size; |
| 420 | ArrayType *AT = ArrayType::get(ElementType: V->getType(), NumElements: ArraySize); |
| 421 | return ConstantArray::get(T: AT, V: std::vector<Constant *>(ArraySize, C)); |
| 422 | } |
| 423 | |
| 424 | LoopIdiomRecognize::LegalStoreKind |
| 425 | LoopIdiomRecognize::isLegalStore(StoreInst *SI) { |
| 426 | // Don't touch volatile stores. |
| 427 | if (SI->isVolatile()) |
| 428 | return LegalStoreKind::None; |
| 429 | // We only want simple or unordered-atomic stores. |
| 430 | if (!SI->isUnordered()) |
| 431 | return LegalStoreKind::None; |
| 432 | |
| 433 | // Avoid merging nontemporal stores. |
| 434 | if (SI->getMetadata(KindID: LLVMContext::MD_nontemporal)) |
| 435 | return LegalStoreKind::None; |
| 436 | |
| 437 | Value *StoredVal = SI->getValueOperand(); |
| 438 | Value *StorePtr = SI->getPointerOperand(); |
| 439 | |
| 440 | // Don't convert stores of non-integral pointer types to memsets (which stores |
| 441 | // integers). |
| 442 | if (DL->isNonIntegralPointerType(Ty: StoredVal->getType()->getScalarType())) |
| 443 | return LegalStoreKind::None; |
| 444 | |
| 445 | // Reject stores that are so large that they overflow an unsigned. |
| 446 | // When storing out scalable vectors we bail out for now, since the code |
| 447 | // below currently only works for constant strides. |
| 448 | TypeSize SizeInBits = DL->getTypeSizeInBits(Ty: StoredVal->getType()); |
| 449 | if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || |
| 450 | (SizeInBits.getFixedValue() >> 32) != 0) |
| 451 | return LegalStoreKind::None; |
| 452 | |
| 453 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 454 | // loop, which indicates a strided store. If we have something else, it's a |
| 455 | // random store we can't handle. |
| 456 | const SCEV *StoreEv = SE->getSCEV(V: StorePtr); |
| 457 | const SCEVConstant *Stride; |
| 458 | if (!match(S: StoreEv, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_SCEVConstant(V&: Stride), |
| 459 | L: m_SpecificLoop(L: CurLoop)))) |
| 460 | return LegalStoreKind::None; |
| 461 | |
| 462 | // See if the store can be turned into a memset. |
| 463 | |
| 464 | // If the stored value is a byte-wise value (like i32 -1), then it may be |
| 465 | // turned into a memset of i8 -1, assuming that all the consecutive bytes |
| 466 | // are stored. A store of i32 0x01020304 can never be turned into a memset, |
| 467 | // but it can be turned into memset_pattern if the target supports it. |
| 468 | Value *SplatValue = isBytewiseValue(V: StoredVal, DL: *DL); |
| 469 | |
| 470 | // Note: memset and memset_pattern on unordered-atomic is yet not supported |
| 471 | bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); |
| 472 | |
| 473 | // If we're allowed to form a memset, and the stored value would be |
| 474 | // acceptable for memset, use it. |
| 475 | if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && |
| 476 | // Verify that the stored value is loop invariant. If not, we can't |
| 477 | // promote the memset. |
| 478 | CurLoop->isLoopInvariant(V: SplatValue)) { |
| 479 | // It looks like we can use SplatValue. |
| 480 | return LegalStoreKind::Memset; |
| 481 | } |
| 482 | if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && |
| 483 | // Don't create memset_pattern16s with address spaces. |
| 484 | StorePtr->getType()->getPointerAddressSpace() == 0 && |
| 485 | getMemSetPatternValue(V: StoredVal, DL)) { |
| 486 | // It looks like we can use PatternValue! |
| 487 | return LegalStoreKind::MemsetPattern; |
| 488 | } |
| 489 | |
| 490 | // Otherwise, see if the store can be turned into a memcpy. |
| 491 | if (HasMemcpy && !DisableLIRP::Memcpy) { |
| 492 | // Check to see if the stride matches the size of the store. If so, then we |
| 493 | // know that every byte is touched in the loop. |
| 494 | unsigned StoreSize = DL->getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
| 495 | APInt StrideAP = Stride->getAPInt(); |
| 496 | if (StoreSize != StrideAP && StoreSize != -StrideAP) |
| 497 | return LegalStoreKind::None; |
| 498 | |
| 499 | // The store must be feeding a non-volatile load. |
| 500 | LoadInst *LI = dyn_cast<LoadInst>(Val: SI->getValueOperand()); |
| 501 | |
| 502 | // Only allow non-volatile loads |
| 503 | if (!LI || LI->isVolatile()) |
| 504 | return LegalStoreKind::None; |
| 505 | // Only allow simple or unordered-atomic loads |
| 506 | if (!LI->isUnordered()) |
| 507 | return LegalStoreKind::None; |
| 508 | |
| 509 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 510 | // loop, which indicates a strided load. If we have something else, it's a |
| 511 | // random load we can't handle. |
| 512 | const SCEV *LoadEv = SE->getSCEV(V: LI->getPointerOperand()); |
| 513 | |
| 514 | // The store and load must share the same stride. |
| 515 | if (!match(S: LoadEv, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_Specific(S: Stride), |
| 516 | L: m_SpecificLoop(L: CurLoop)))) |
| 517 | return LegalStoreKind::None; |
| 518 | |
| 519 | // Success. This store can be converted into a memcpy. |
| 520 | UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); |
| 521 | return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy |
| 522 | : LegalStoreKind::Memcpy; |
| 523 | } |
| 524 | // This store can't be transformed into a memset/memcpy. |
| 525 | return LegalStoreKind::None; |
| 526 | } |
| 527 | |
| 528 | void LoopIdiomRecognize::collectStores(BasicBlock *BB) { |
| 529 | StoreRefsForMemset.clear(); |
| 530 | StoreRefsForMemsetPattern.clear(); |
| 531 | StoreRefsForMemcpy.clear(); |
| 532 | for (Instruction &I : *BB) { |
| 533 | StoreInst *SI = dyn_cast<StoreInst>(Val: &I); |
| 534 | if (!SI) |
| 535 | continue; |
| 536 | |
| 537 | // Make sure this is a strided store with a constant stride. |
| 538 | switch (isLegalStore(SI)) { |
| 539 | case LegalStoreKind::None: |
| 540 | // Nothing to do |
| 541 | break; |
| 542 | case LegalStoreKind::Memset: { |
| 543 | // Find the base pointer. |
| 544 | Value *Ptr = getUnderlyingObject(V: SI->getPointerOperand()); |
| 545 | StoreRefsForMemset[Ptr].push_back(Elt: SI); |
| 546 | } break; |
| 547 | case LegalStoreKind::MemsetPattern: { |
| 548 | // Find the base pointer. |
| 549 | Value *Ptr = getUnderlyingObject(V: SI->getPointerOperand()); |
| 550 | StoreRefsForMemsetPattern[Ptr].push_back(Elt: SI); |
| 551 | } break; |
| 552 | case LegalStoreKind::Memcpy: |
| 553 | case LegalStoreKind::UnorderedAtomicMemcpy: |
| 554 | StoreRefsForMemcpy.push_back(Elt: SI); |
| 555 | break; |
| 556 | default: |
| 557 | assert(false && "unhandled return value" ); |
| 558 | break; |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| 564 | /// with the specified backedge count. This block is known to be in the current |
| 565 | /// loop and not in any subloops. |
| 566 | bool LoopIdiomRecognize::runOnLoopBlock( |
| 567 | BasicBlock *BB, const SCEV *BECount, |
| 568 | SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
| 569 | // We can only promote stores in this block if they are unconditionally |
| 570 | // executed in the loop. For a block to be unconditionally executed, it has |
| 571 | // to dominate all the exit blocks of the loop. Verify this now. |
| 572 | for (BasicBlock *ExitBlock : ExitBlocks) |
| 573 | if (!DT->dominates(A: BB, B: ExitBlock)) |
| 574 | return false; |
| 575 | |
| 576 | bool MadeChange = false; |
| 577 | // Look for store instructions, which may be optimized to memset/memcpy. |
| 578 | collectStores(BB); |
| 579 | |
| 580 | // Look for a single store or sets of stores with a common base, which can be |
| 581 | // optimized into a memset (memset_pattern). The latter most commonly happens |
| 582 | // with structs and handunrolled loops. |
| 583 | for (auto &SL : StoreRefsForMemset) |
| 584 | MadeChange |= processLoopStores(SL&: SL.second, BECount, For: ForMemset::Yes); |
| 585 | |
| 586 | for (auto &SL : StoreRefsForMemsetPattern) |
| 587 | MadeChange |= processLoopStores(SL&: SL.second, BECount, For: ForMemset::No); |
| 588 | |
| 589 | // Optimize the store into a memcpy, if it feeds an similarly strided load. |
| 590 | for (auto &SI : StoreRefsForMemcpy) |
| 591 | MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); |
| 592 | |
| 593 | MadeChange |= processLoopMemIntrinsic<MemCpyInst>( |
| 594 | BB, Processor: &LoopIdiomRecognize::processLoopMemCpy, BECount); |
| 595 | MadeChange |= processLoopMemIntrinsic<MemSetInst>( |
| 596 | BB, Processor: &LoopIdiomRecognize::processLoopMemSet, BECount); |
| 597 | |
| 598 | return MadeChange; |
| 599 | } |
| 600 | |
| 601 | /// See if this store(s) can be promoted to a memset. |
| 602 | bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, |
| 603 | const SCEV *BECount, ForMemset For) { |
| 604 | // Try to find consecutive stores that can be transformed into memsets. |
| 605 | SetVector<StoreInst *> Heads, Tails; |
| 606 | SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; |
| 607 | |
| 608 | // Do a quadratic search on all of the given stores and find |
| 609 | // all of the pairs of stores that follow each other. |
| 610 | SmallVector<unsigned, 16> IndexQueue; |
| 611 | for (unsigned i = 0, e = SL.size(); i < e; ++i) { |
| 612 | assert(SL[i]->isSimple() && "Expected only non-volatile stores." ); |
| 613 | |
| 614 | Value *FirstStoredVal = SL[i]->getValueOperand(); |
| 615 | Value *FirstStorePtr = SL[i]->getPointerOperand(); |
| 616 | const SCEVAddRecExpr *FirstStoreEv = |
| 617 | cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: FirstStorePtr)); |
| 618 | APInt FirstStride = getStoreStride(StoreEv: FirstStoreEv); |
| 619 | unsigned FirstStoreSize = DL->getTypeStoreSize(Ty: SL[i]->getValueOperand()->getType()); |
| 620 | |
| 621 | // See if we can optimize just this store in isolation. |
| 622 | if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { |
| 623 | Heads.insert(X: SL[i]); |
| 624 | continue; |
| 625 | } |
| 626 | |
| 627 | Value *FirstSplatValue = nullptr; |
| 628 | Constant *FirstPatternValue = nullptr; |
| 629 | |
| 630 | if (For == ForMemset::Yes) |
| 631 | FirstSplatValue = isBytewiseValue(V: FirstStoredVal, DL: *DL); |
| 632 | else |
| 633 | FirstPatternValue = getMemSetPatternValue(V: FirstStoredVal, DL); |
| 634 | |
| 635 | assert((FirstSplatValue || FirstPatternValue) && |
| 636 | "Expected either splat value or pattern value." ); |
| 637 | |
| 638 | IndexQueue.clear(); |
| 639 | // If a store has multiple consecutive store candidates, search Stores |
| 640 | // array according to the sequence: from i+1 to e, then from i-1 to 0. |
| 641 | // This is because usually pairing with immediate succeeding or preceding |
| 642 | // candidate create the best chance to find memset opportunity. |
| 643 | unsigned j = 0; |
| 644 | for (j = i + 1; j < e; ++j) |
| 645 | IndexQueue.push_back(Elt: j); |
| 646 | for (j = i; j > 0; --j) |
| 647 | IndexQueue.push_back(Elt: j - 1); |
| 648 | |
| 649 | for (auto &k : IndexQueue) { |
| 650 | assert(SL[k]->isSimple() && "Expected only non-volatile stores." ); |
| 651 | Value *SecondStorePtr = SL[k]->getPointerOperand(); |
| 652 | const SCEVAddRecExpr *SecondStoreEv = |
| 653 | cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: SecondStorePtr)); |
| 654 | APInt SecondStride = getStoreStride(StoreEv: SecondStoreEv); |
| 655 | |
| 656 | if (FirstStride != SecondStride) |
| 657 | continue; |
| 658 | |
| 659 | Value *SecondStoredVal = SL[k]->getValueOperand(); |
| 660 | Value *SecondSplatValue = nullptr; |
| 661 | Constant *SecondPatternValue = nullptr; |
| 662 | |
| 663 | if (For == ForMemset::Yes) |
| 664 | SecondSplatValue = isBytewiseValue(V: SecondStoredVal, DL: *DL); |
| 665 | else |
| 666 | SecondPatternValue = getMemSetPatternValue(V: SecondStoredVal, DL); |
| 667 | |
| 668 | assert((SecondSplatValue || SecondPatternValue) && |
| 669 | "Expected either splat value or pattern value." ); |
| 670 | |
| 671 | if (isConsecutiveAccess(A: SL[i], B: SL[k], DL: *DL, SE&: *SE, CheckType: false)) { |
| 672 | if (For == ForMemset::Yes) { |
| 673 | if (isa<UndefValue>(Val: FirstSplatValue)) |
| 674 | FirstSplatValue = SecondSplatValue; |
| 675 | if (FirstSplatValue != SecondSplatValue) |
| 676 | continue; |
| 677 | } else { |
| 678 | if (isa<UndefValue>(Val: FirstPatternValue)) |
| 679 | FirstPatternValue = SecondPatternValue; |
| 680 | if (FirstPatternValue != SecondPatternValue) |
| 681 | continue; |
| 682 | } |
| 683 | Tails.insert(X: SL[k]); |
| 684 | Heads.insert(X: SL[i]); |
| 685 | ConsecutiveChain[SL[i]] = SL[k]; |
| 686 | break; |
| 687 | } |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | // We may run into multiple chains that merge into a single chain. We mark the |
| 692 | // stores that we transformed so that we don't visit the same store twice. |
| 693 | SmallPtrSet<Value *, 16> TransformedStores; |
| 694 | bool Changed = false; |
| 695 | |
| 696 | // For stores that start but don't end a link in the chain: |
| 697 | for (StoreInst *I : Heads) { |
| 698 | if (Tails.count(key: I)) |
| 699 | continue; |
| 700 | |
| 701 | // We found a store instr that starts a chain. Now follow the chain and try |
| 702 | // to transform it. |
| 703 | SmallPtrSet<Instruction *, 8> AdjacentStores; |
| 704 | StoreInst *HeadStore = I; |
| 705 | unsigned StoreSize = 0; |
| 706 | |
| 707 | // Collect the chain into a list. |
| 708 | while (Tails.count(key: I) || Heads.count(key: I)) { |
| 709 | if (TransformedStores.count(Ptr: I)) |
| 710 | break; |
| 711 | AdjacentStores.insert(Ptr: I); |
| 712 | |
| 713 | StoreSize += DL->getTypeStoreSize(Ty: I->getValueOperand()->getType()); |
| 714 | // Move to the next value in the chain. |
| 715 | I = ConsecutiveChain[I]; |
| 716 | } |
| 717 | |
| 718 | Value *StoredVal = HeadStore->getValueOperand(); |
| 719 | Value *StorePtr = HeadStore->getPointerOperand(); |
| 720 | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: StorePtr)); |
| 721 | APInt Stride = getStoreStride(StoreEv); |
| 722 | |
| 723 | // Check to see if the stride matches the size of the stores. If so, then |
| 724 | // we know that every byte is touched in the loop. |
| 725 | if (StoreSize != Stride && StoreSize != -Stride) |
| 726 | continue; |
| 727 | |
| 728 | bool IsNegStride = StoreSize == -Stride; |
| 729 | |
| 730 | Type *IntIdxTy = DL->getIndexType(PtrTy: StorePtr->getType()); |
| 731 | const SCEV *StoreSizeSCEV = SE->getConstant(Ty: IntIdxTy, V: StoreSize); |
| 732 | if (processLoopStridedStore(DestPtr: StorePtr, StoreSizeSCEV, |
| 733 | StoreAlignment: MaybeAlign(HeadStore->getAlign()), StoredVal, |
| 734 | TheStore: HeadStore, Stores&: AdjacentStores, Ev: StoreEv, BECount, |
| 735 | IsNegStride)) { |
| 736 | TransformedStores.insert_range(R&: AdjacentStores); |
| 737 | Changed = true; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | return Changed; |
| 742 | } |
| 743 | |
| 744 | /// processLoopMemIntrinsic - Template function for calling different processor |
| 745 | /// functions based on mem intrinsic type. |
| 746 | template <typename MemInst> |
| 747 | bool LoopIdiomRecognize::processLoopMemIntrinsic( |
| 748 | BasicBlock *BB, |
| 749 | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), |
| 750 | const SCEV *BECount) { |
| 751 | bool MadeChange = false; |
| 752 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { |
| 753 | Instruction *Inst = &*I++; |
| 754 | // Look for memory instructions, which may be optimized to a larger one. |
| 755 | if (MemInst *MI = dyn_cast<MemInst>(Inst)) { |
| 756 | WeakTrackingVH InstPtr(&*I); |
| 757 | if (!(this->*Processor)(MI, BECount)) |
| 758 | continue; |
| 759 | MadeChange = true; |
| 760 | |
| 761 | // If processing the instruction invalidated our iterator, start over from |
| 762 | // the top of the block. |
| 763 | if (!InstPtr) |
| 764 | I = BB->begin(); |
| 765 | } |
| 766 | } |
| 767 | return MadeChange; |
| 768 | } |
| 769 | |
| 770 | /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy |
| 771 | bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, |
| 772 | const SCEV *BECount) { |
| 773 | // We can only handle non-volatile memcpys with a constant size. |
| 774 | if (MCI->isVolatile() || !isa<ConstantInt>(Val: MCI->getLength())) |
| 775 | return false; |
| 776 | |
| 777 | // If we're not allowed to hack on memcpy, we fail. |
| 778 | if ((!HasMemcpy && !MCI->isForceInlined()) || DisableLIRP::Memcpy) |
| 779 | return false; |
| 780 | |
| 781 | Value *Dest = MCI->getDest(); |
| 782 | Value *Source = MCI->getSource(); |
| 783 | if (!Dest || !Source) |
| 784 | return false; |
| 785 | |
| 786 | // See if the load and store pointer expressions are AddRec like {base,+,1} on |
| 787 | // the current loop, which indicates a strided load and store. If we have |
| 788 | // something else, it's a random load or store we can't handle. |
| 789 | const SCEV *StoreEv = SE->getSCEV(V: Dest); |
| 790 | const SCEV *LoadEv = SE->getSCEV(V: Source); |
| 791 | const APInt *StoreStrideValue, *LoadStrideValue; |
| 792 | if (!match(S: StoreEv, |
| 793 | P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_APInt(C&: StoreStrideValue), |
| 794 | L: m_SpecificLoop(L: CurLoop))) || |
| 795 | !match(S: LoadEv, |
| 796 | P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_APInt(C&: LoadStrideValue), |
| 797 | L: m_SpecificLoop(L: CurLoop)))) |
| 798 | return false; |
| 799 | |
| 800 | // Reject memcpys that are so large that they overflow an unsigned. |
| 801 | uint64_t SizeInBytes = cast<ConstantInt>(Val: MCI->getLength())->getZExtValue(); |
| 802 | if ((SizeInBytes >> 32) != 0) |
| 803 | return false; |
| 804 | |
| 805 | // Huge stride value - give up |
| 806 | if (StoreStrideValue->getBitWidth() > 64 || |
| 807 | LoadStrideValue->getBitWidth() > 64) |
| 808 | return false; |
| 809 | |
| 810 | if (SizeInBytes != *StoreStrideValue && SizeInBytes != -*StoreStrideValue) { |
| 811 | ORE.emit(RemarkBuilder: [&]() { |
| 812 | return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal" , MCI) |
| 813 | << ore::NV("Inst" , "memcpy" ) << " in " |
| 814 | << ore::NV("Function" , MCI->getFunction()) |
| 815 | << " function will not be hoisted: " |
| 816 | << ore::NV("Reason" , "memcpy size is not equal to stride" ); |
| 817 | }); |
| 818 | return false; |
| 819 | } |
| 820 | |
| 821 | int64_t StoreStrideInt = StoreStrideValue->getSExtValue(); |
| 822 | int64_t LoadStrideInt = LoadStrideValue->getSExtValue(); |
| 823 | // Check if the load stride matches the store stride. |
| 824 | if (StoreStrideInt != LoadStrideInt) |
| 825 | return false; |
| 826 | |
| 827 | return processLoopStoreOfLoopLoad( |
| 828 | DestPtr: Dest, SourcePtr: Source, StoreSize: SE->getConstant(Ty: Dest->getType(), V: SizeInBytes), |
| 829 | StoreAlign: MCI->getDestAlign(), LoadAlign: MCI->getSourceAlign(), TheStore: MCI, TheLoad: MCI, |
| 830 | StoreEv: cast<SCEVAddRecExpr>(Val: StoreEv), LoadEv: cast<SCEVAddRecExpr>(Val: LoadEv), BECount); |
| 831 | } |
| 832 | |
| 833 | /// processLoopMemSet - See if this memset can be promoted to a large memset. |
| 834 | bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, |
| 835 | const SCEV *BECount) { |
| 836 | // We can only handle non-volatile memsets. |
| 837 | if (MSI->isVolatile()) |
| 838 | return false; |
| 839 | |
| 840 | // If we're not allowed to hack on memset, we fail. |
| 841 | if (!HasMemset || DisableLIRP::Memset) |
| 842 | return false; |
| 843 | |
| 844 | Value *Pointer = MSI->getDest(); |
| 845 | |
| 846 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 847 | // loop, which indicates a strided store. If we have something else, it's a |
| 848 | // random store we can't handle. |
| 849 | const SCEV *Ev = SE->getSCEV(V: Pointer); |
| 850 | const SCEV *PointerStrideSCEV; |
| 851 | if (!match(S: Ev, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_SCEV(V&: PointerStrideSCEV), |
| 852 | L: m_SpecificLoop(L: CurLoop)))) { |
| 853 | LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n" ); |
| 854 | return false; |
| 855 | } |
| 856 | |
| 857 | const SCEV *MemsetSizeSCEV = SE->getSCEV(V: MSI->getLength()); |
| 858 | |
| 859 | bool IsNegStride = false; |
| 860 | const bool IsConstantSize = isa<ConstantInt>(Val: MSI->getLength()); |
| 861 | |
| 862 | if (IsConstantSize) { |
| 863 | // Memset size is constant. |
| 864 | // Check if the pointer stride matches the memset size. If so, then |
| 865 | // we know that every byte is touched in the loop. |
| 866 | LLVM_DEBUG(dbgs() << " memset size is constant\n" ); |
| 867 | uint64_t SizeInBytes = cast<ConstantInt>(Val: MSI->getLength())->getZExtValue(); |
| 868 | const APInt *Stride; |
| 869 | if (!match(S: PointerStrideSCEV, P: m_scev_APInt(C&: Stride))) |
| 870 | return false; |
| 871 | |
| 872 | if (SizeInBytes != *Stride && SizeInBytes != -*Stride) |
| 873 | return false; |
| 874 | |
| 875 | IsNegStride = SizeInBytes == -*Stride; |
| 876 | } else { |
| 877 | // Memset size is non-constant. |
| 878 | // Check if the pointer stride matches the memset size. |
| 879 | // To be conservative, the pass would not promote pointers that aren't in |
| 880 | // address space zero. Also, the pass only handles memset length and stride |
| 881 | // that are invariant for the top level loop. |
| 882 | LLVM_DEBUG(dbgs() << " memset size is non-constant\n" ); |
| 883 | if (Pointer->getType()->getPointerAddressSpace() != 0) { |
| 884 | LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " |
| 885 | << "abort\n" ); |
| 886 | return false; |
| 887 | } |
| 888 | if (!SE->isLoopInvariant(S: MemsetSizeSCEV, L: CurLoop)) { |
| 889 | LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " |
| 890 | << "abort\n" ); |
| 891 | return false; |
| 892 | } |
| 893 | |
| 894 | // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV |
| 895 | IsNegStride = PointerStrideSCEV->isNonConstantNegative(); |
| 896 | const SCEV *PositiveStrideSCEV = |
| 897 | IsNegStride ? SE->getNegativeSCEV(V: PointerStrideSCEV) |
| 898 | : PointerStrideSCEV; |
| 899 | LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" |
| 900 | << " PositiveStrideSCEV: " << *PositiveStrideSCEV |
| 901 | << "\n" ); |
| 902 | |
| 903 | if (PositiveStrideSCEV != MemsetSizeSCEV) { |
| 904 | // If an expression is covered by the loop guard, compare again and |
| 905 | // proceed with optimization if equal. |
| 906 | const SCEV *FoldedPositiveStride = |
| 907 | SE->applyLoopGuards(Expr: PositiveStrideSCEV, L: CurLoop); |
| 908 | const SCEV *FoldedMemsetSize = |
| 909 | SE->applyLoopGuards(Expr: MemsetSizeSCEV, L: CurLoop); |
| 910 | |
| 911 | LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" |
| 912 | << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" |
| 913 | << " FoldedPositiveStride: " << *FoldedPositiveStride |
| 914 | << "\n" ); |
| 915 | |
| 916 | if (FoldedPositiveStride != FoldedMemsetSize) { |
| 917 | LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n" ); |
| 918 | return false; |
| 919 | } |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | // Verify that the memset value is loop invariant. If not, we can't promote |
| 924 | // the memset. |
| 925 | Value *SplatValue = MSI->getValue(); |
| 926 | if (!SplatValue || !CurLoop->isLoopInvariant(V: SplatValue)) |
| 927 | return false; |
| 928 | |
| 929 | SmallPtrSet<Instruction *, 1> MSIs; |
| 930 | MSIs.insert(Ptr: MSI); |
| 931 | return processLoopStridedStore(DestPtr: Pointer, StoreSizeSCEV: SE->getSCEV(V: MSI->getLength()), |
| 932 | StoreAlignment: MSI->getDestAlign(), StoredVal: SplatValue, TheStore: MSI, Stores&: MSIs, |
| 933 | Ev: cast<SCEVAddRecExpr>(Val: Ev), BECount, IsNegStride, |
| 934 | /*IsLoopMemset=*/true); |
| 935 | } |
| 936 | |
| 937 | /// mayLoopAccessLocation - Return true if the specified loop might access the |
| 938 | /// specified pointer location, which is a loop-strided access. The 'Access' |
| 939 | /// argument specifies what the verboten forms of access are (read or write). |
| 940 | static bool |
| 941 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
| 942 | const SCEV *BECount, const SCEV *StoreSizeSCEV, |
| 943 | AliasAnalysis &AA, |
| 944 | SmallPtrSetImpl<Instruction *> &IgnoredInsts) { |
| 945 | // Get the location that may be stored across the loop. Since the access is |
| 946 | // strided positively through memory, we say that the modified location starts |
| 947 | // at the pointer and has infinite size. |
| 948 | LocationSize AccessSize = LocationSize::afterPointer(); |
| 949 | |
| 950 | // If the loop iterates a fixed number of times, we can refine the access size |
| 951 | // to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| 952 | const APInt *BECst, *ConstSize; |
| 953 | if (match(S: BECount, P: m_scev_APInt(C&: BECst)) && |
| 954 | match(S: StoreSizeSCEV, P: m_scev_APInt(C&: ConstSize))) { |
| 955 | std::optional<uint64_t> BEInt = BECst->tryZExtValue(); |
| 956 | std::optional<uint64_t> SizeInt = ConstSize->tryZExtValue(); |
| 957 | // FIXME: Should this check for overflow? |
| 958 | if (BEInt && SizeInt) |
| 959 | AccessSize = LocationSize::precise(Value: (*BEInt + 1) * *SizeInt); |
| 960 | } |
| 961 | |
| 962 | // TODO: For this to be really effective, we have to dive into the pointer |
| 963 | // operand in the store. Store to &A[i] of 100 will always return may alias |
| 964 | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| 965 | // which will then no-alias a store to &A[100]. |
| 966 | MemoryLocation StoreLoc(Ptr, AccessSize); |
| 967 | |
| 968 | for (BasicBlock *B : L->blocks()) |
| 969 | for (Instruction &I : *B) |
| 970 | if (!IgnoredInsts.contains(Ptr: &I) && |
| 971 | isModOrRefSet(MRI: AA.getModRefInfo(I: &I, OptLoc: StoreLoc) & Access)) |
| 972 | return true; |
| 973 | return false; |
| 974 | } |
| 975 | |
| 976 | // If we have a negative stride, Start refers to the end of the memory location |
| 977 | // we're trying to memset. Therefore, we need to recompute the base pointer, |
| 978 | // which is just Start - BECount*Size. |
| 979 | static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, |
| 980 | Type *IntPtr, const SCEV *StoreSizeSCEV, |
| 981 | ScalarEvolution *SE) { |
| 982 | const SCEV *Index = SE->getTruncateOrZeroExtend(V: BECount, Ty: IntPtr); |
| 983 | if (!StoreSizeSCEV->isOne()) { |
| 984 | // index = back edge count * store size |
| 985 | Index = SE->getMulExpr(LHS: Index, |
| 986 | RHS: SE->getTruncateOrZeroExtend(V: StoreSizeSCEV, Ty: IntPtr), |
| 987 | Flags: SCEV::FlagNUW); |
| 988 | } |
| 989 | // base pointer = start - index * store size |
| 990 | return SE->getMinusSCEV(LHS: Start, RHS: Index); |
| 991 | } |
| 992 | |
| 993 | /// Compute the number of bytes as a SCEV from the backedge taken count. |
| 994 | /// |
| 995 | /// This also maps the SCEV into the provided type and tries to handle the |
| 996 | /// computation in a way that will fold cleanly. |
| 997 | static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, |
| 998 | const SCEV *StoreSizeSCEV, Loop *CurLoop, |
| 999 | const DataLayout *DL, ScalarEvolution *SE) { |
| 1000 | const SCEV *TripCountSCEV = |
| 1001 | SE->getTripCountFromExitCount(ExitCount: BECount, EvalTy: IntPtr, L: CurLoop); |
| 1002 | return SE->getMulExpr(LHS: TripCountSCEV, |
| 1003 | RHS: SE->getTruncateOrZeroExtend(V: StoreSizeSCEV, Ty: IntPtr), |
| 1004 | Flags: SCEV::FlagNUW); |
| 1005 | } |
| 1006 | |
| 1007 | /// processLoopStridedStore - We see a strided store of some value. If we can |
| 1008 | /// transform this into a memset or memset_pattern in the loop preheader, do so. |
| 1009 | bool LoopIdiomRecognize::processLoopStridedStore( |
| 1010 | Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, |
| 1011 | Value *StoredVal, Instruction *TheStore, |
| 1012 | SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, |
| 1013 | const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { |
| 1014 | Module *M = TheStore->getModule(); |
| 1015 | |
| 1016 | // The trip count of the loop and the base pointer of the addrec SCEV is |
| 1017 | // guaranteed to be loop invariant, which means that it should dominate the |
| 1018 | // header. This allows us to insert code for it in the preheader. |
| 1019 | unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); |
| 1020 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 1021 | IRBuilder<> Builder(Preheader->getTerminator()); |
| 1022 | SCEVExpander Expander(*SE, *DL, "loop-idiom" ); |
| 1023 | SCEVExpanderCleaner ExpCleaner(Expander); |
| 1024 | |
| 1025 | Type *DestInt8PtrTy = Builder.getPtrTy(AddrSpace: DestAS); |
| 1026 | Type *IntIdxTy = DL->getIndexType(PtrTy: DestPtr->getType()); |
| 1027 | |
| 1028 | bool Changed = false; |
| 1029 | const SCEV *Start = Ev->getStart(); |
| 1030 | // Handle negative strided loops. |
| 1031 | if (IsNegStride) |
| 1032 | Start = getStartForNegStride(Start, BECount, IntPtr: IntIdxTy, StoreSizeSCEV, SE); |
| 1033 | |
| 1034 | // TODO: ideally we should still be able to generate memset if SCEV expander |
| 1035 | // is taught to generate the dependencies at the latest point. |
| 1036 | if (!Expander.isSafeToExpand(S: Start)) |
| 1037 | return Changed; |
| 1038 | |
| 1039 | // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
| 1040 | // this into a memset in the loop preheader now if we want. However, this |
| 1041 | // would be unsafe to do if there is anything else in the loop that may read |
| 1042 | // or write to the aliased location. Check for any overlap by generating the |
| 1043 | // base pointer and checking the region. |
| 1044 | Value *BasePtr = |
| 1045 | Expander.expandCodeFor(SH: Start, Ty: DestInt8PtrTy, I: Preheader->getTerminator()); |
| 1046 | |
| 1047 | // From here on out, conservatively report to the pass manager that we've |
| 1048 | // changed the IR, even if we later clean up these added instructions. There |
| 1049 | // may be structural differences e.g. in the order of use lists not accounted |
| 1050 | // for in just a textual dump of the IR. This is written as a variable, even |
| 1051 | // though statically all the places this dominates could be replaced with |
| 1052 | // 'true', with the hope that anyone trying to be clever / "more precise" with |
| 1053 | // the return value will read this comment, and leave them alone. |
| 1054 | Changed = true; |
| 1055 | |
| 1056 | if (mayLoopAccessLocation(Ptr: BasePtr, Access: ModRefInfo::ModRef, L: CurLoop, BECount, |
| 1057 | StoreSizeSCEV, AA&: *AA, IgnoredInsts&: Stores)) |
| 1058 | return Changed; |
| 1059 | |
| 1060 | if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) |
| 1061 | return Changed; |
| 1062 | |
| 1063 | // Okay, everything looks good, insert the memset. |
| 1064 | |
| 1065 | const SCEV *NumBytesS = |
| 1066 | getNumBytes(BECount, IntPtr: IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); |
| 1067 | |
| 1068 | // TODO: ideally we should still be able to generate memset if SCEV expander |
| 1069 | // is taught to generate the dependencies at the latest point. |
| 1070 | if (!Expander.isSafeToExpand(S: NumBytesS)) |
| 1071 | return Changed; |
| 1072 | |
| 1073 | Value *NumBytes = |
| 1074 | Expander.expandCodeFor(SH: NumBytesS, Ty: IntIdxTy, I: Preheader->getTerminator()); |
| 1075 | |
| 1076 | AAMDNodes AATags = TheStore->getAAMetadata(); |
| 1077 | for (Instruction *Store : Stores) |
| 1078 | AATags = AATags.merge(Other: Store->getAAMetadata()); |
| 1079 | if (auto CI = dyn_cast<ConstantInt>(Val: NumBytes)) |
| 1080 | AATags = AATags.extendTo(Len: CI->getZExtValue()); |
| 1081 | else |
| 1082 | AATags = AATags.extendTo(Len: -1); |
| 1083 | |
| 1084 | CallInst *NewCall; |
| 1085 | if (Value *SplatValue = isBytewiseValue(V: StoredVal, DL: *DL)) { |
| 1086 | NewCall = Builder.CreateMemSet(Ptr: BasePtr, Val: SplatValue, Size: NumBytes, |
| 1087 | Align: MaybeAlign(StoreAlignment), |
| 1088 | /*isVolatile=*/false, AAInfo: AATags); |
| 1089 | } else if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_memset_pattern16)) { |
| 1090 | // Everything is emitted in default address space |
| 1091 | Type *Int8PtrTy = DestInt8PtrTy; |
| 1092 | |
| 1093 | StringRef FuncName = "memset_pattern16" ; |
| 1094 | FunctionCallee MSP = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_memset_pattern16, |
| 1095 | RetTy: Builder.getVoidTy(), Args: Int8PtrTy, Args: Int8PtrTy, Args: IntIdxTy); |
| 1096 | inferNonMandatoryLibFuncAttrs(M, Name: FuncName, TLI: *TLI); |
| 1097 | |
| 1098 | // Otherwise we should form a memset_pattern16. PatternValue is known to be |
| 1099 | // an constant array of 16-bytes. Plop the value into a mergable global. |
| 1100 | Constant *PatternValue = getMemSetPatternValue(V: StoredVal, DL); |
| 1101 | assert(PatternValue && "Expected pattern value." ); |
| 1102 | GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, |
| 1103 | GlobalValue::PrivateLinkage, |
| 1104 | PatternValue, ".memset_pattern" ); |
| 1105 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. |
| 1106 | GV->setAlignment(Align(16)); |
| 1107 | NewCall = Builder.CreateCall(Callee: MSP, Args: {BasePtr, GV, NumBytes}); |
| 1108 | NewCall->setAAMetadata(AATags); |
| 1109 | } else { |
| 1110 | // Neither a memset, nor memset_pattern16 |
| 1111 | return Changed; |
| 1112 | } |
| 1113 | |
| 1114 | NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| 1115 | |
| 1116 | if (MSSAU) { |
| 1117 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( |
| 1118 | I: NewCall, Definition: nullptr, BB: NewCall->getParent(), Point: MemorySSA::BeforeTerminator); |
| 1119 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewMemAcc), RenameUses: true); |
| 1120 | } |
| 1121 | |
| 1122 | LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
| 1123 | << " from store to: " << *Ev << " at: " << *TheStore |
| 1124 | << "\n" ); |
| 1125 | |
| 1126 | ORE.emit(RemarkBuilder: [&]() { |
| 1127 | OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore" , |
| 1128 | NewCall->getDebugLoc(), Preheader); |
| 1129 | R << "Transformed loop-strided store in " |
| 1130 | << ore::NV("Function" , TheStore->getFunction()) |
| 1131 | << " function into a call to " |
| 1132 | << ore::NV("NewFunction" , NewCall->getCalledFunction()) |
| 1133 | << "() intrinsic" ; |
| 1134 | if (!Stores.empty()) |
| 1135 | R << ore::setExtraArgs(); |
| 1136 | for (auto *I : Stores) { |
| 1137 | R << ore::NV("FromBlock" , I->getParent()->getName()) |
| 1138 | << ore::NV("ToBlock" , Preheader->getName()); |
| 1139 | } |
| 1140 | return R; |
| 1141 | }); |
| 1142 | |
| 1143 | // Okay, the memset has been formed. Zap the original store and anything that |
| 1144 | // feeds into it. |
| 1145 | for (auto *I : Stores) { |
| 1146 | if (MSSAU) |
| 1147 | MSSAU->removeMemoryAccess(I, OptimizePhis: true); |
| 1148 | deleteDeadInstruction(I); |
| 1149 | } |
| 1150 | if (MSSAU && VerifyMemorySSA) |
| 1151 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 1152 | ++NumMemSet; |
| 1153 | ExpCleaner.markResultUsed(); |
| 1154 | return true; |
| 1155 | } |
| 1156 | |
| 1157 | /// If the stored value is a strided load in the same loop with the same stride |
| 1158 | /// this may be transformable into a memcpy. This kicks in for stuff like |
| 1159 | /// for (i) A[i] = B[i]; |
| 1160 | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, |
| 1161 | const SCEV *BECount) { |
| 1162 | assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores." ); |
| 1163 | |
| 1164 | Value *StorePtr = SI->getPointerOperand(); |
| 1165 | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: StorePtr)); |
| 1166 | unsigned StoreSize = DL->getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
| 1167 | |
| 1168 | // The store must be feeding a non-volatile load. |
| 1169 | LoadInst *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
| 1170 | assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads." ); |
| 1171 | |
| 1172 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1173 | // loop, which indicates a strided load. If we have something else, it's a |
| 1174 | // random load we can't handle. |
| 1175 | Value *LoadPtr = LI->getPointerOperand(); |
| 1176 | const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: LoadPtr)); |
| 1177 | |
| 1178 | const SCEV *StoreSizeSCEV = SE->getConstant(Ty: StorePtr->getType(), V: StoreSize); |
| 1179 | return processLoopStoreOfLoopLoad(DestPtr: StorePtr, SourcePtr: LoadPtr, StoreSize: StoreSizeSCEV, |
| 1180 | StoreAlign: SI->getAlign(), LoadAlign: LI->getAlign(), TheStore: SI, TheLoad: LI, |
| 1181 | StoreEv, LoadEv, BECount); |
| 1182 | } |
| 1183 | |
| 1184 | namespace { |
| 1185 | class MemmoveVerifier { |
| 1186 | public: |
| 1187 | explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, |
| 1188 | const DataLayout &DL) |
| 1189 | : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( |
| 1190 | Ptr: LoadBasePtr.stripPointerCasts(), Offset&: LoadOff, DL)), |
| 1191 | BP2(llvm::GetPointerBaseWithConstantOffset( |
| 1192 | Ptr: StoreBasePtr.stripPointerCasts(), Offset&: StoreOff, DL)), |
| 1193 | IsSameObject(BP1 == BP2) {} |
| 1194 | |
| 1195 | bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, |
| 1196 | const Instruction &TheLoad, |
| 1197 | bool IsMemCpy) const { |
| 1198 | if (IsMemCpy) { |
| 1199 | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr |
| 1200 | // for negative stride. |
| 1201 | if ((!IsNegStride && LoadOff <= StoreOff) || |
| 1202 | (IsNegStride && LoadOff >= StoreOff)) |
| 1203 | return false; |
| 1204 | } else { |
| 1205 | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr |
| 1206 | // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. |
| 1207 | int64_t LoadSize = |
| 1208 | DL.getTypeSizeInBits(Ty: TheLoad.getType()).getFixedValue() / 8; |
| 1209 | if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) |
| 1210 | return false; |
| 1211 | if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || |
| 1212 | (IsNegStride && LoadOff + LoadSize > StoreOff)) |
| 1213 | return false; |
| 1214 | } |
| 1215 | return true; |
| 1216 | } |
| 1217 | |
| 1218 | private: |
| 1219 | const DataLayout &DL; |
| 1220 | int64_t LoadOff = 0; |
| 1221 | int64_t StoreOff = 0; |
| 1222 | const Value *BP1; |
| 1223 | const Value *BP2; |
| 1224 | |
| 1225 | public: |
| 1226 | const bool IsSameObject; |
| 1227 | }; |
| 1228 | } // namespace |
| 1229 | |
| 1230 | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( |
| 1231 | Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, |
| 1232 | MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, |
| 1233 | Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, |
| 1234 | const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { |
| 1235 | |
| 1236 | // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to |
| 1237 | // conservatively bail here, since otherwise we may have to transform |
| 1238 | // llvm.memcpy.inline into llvm.memcpy which is illegal. |
| 1239 | if (auto *MCI = dyn_cast<MemCpyInst>(Val: TheStore); MCI && MCI->isForceInlined()) |
| 1240 | return false; |
| 1241 | |
| 1242 | // The trip count of the loop and the base pointer of the addrec SCEV is |
| 1243 | // guaranteed to be loop invariant, which means that it should dominate the |
| 1244 | // header. This allows us to insert code for it in the preheader. |
| 1245 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 1246 | IRBuilder<> Builder(Preheader->getTerminator()); |
| 1247 | SCEVExpander Expander(*SE, *DL, "loop-idiom" ); |
| 1248 | |
| 1249 | SCEVExpanderCleaner ExpCleaner(Expander); |
| 1250 | |
| 1251 | bool Changed = false; |
| 1252 | const SCEV *StrStart = StoreEv->getStart(); |
| 1253 | unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); |
| 1254 | Type *IntIdxTy = Builder.getIntNTy(N: DL->getIndexSizeInBits(AS: StrAS)); |
| 1255 | |
| 1256 | APInt Stride = getStoreStride(StoreEv); |
| 1257 | const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(Val: StoreSizeSCEV); |
| 1258 | |
| 1259 | // TODO: Deal with non-constant size; Currently expect constant store size |
| 1260 | assert(ConstStoreSize && "store size is expected to be a constant" ); |
| 1261 | |
| 1262 | int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); |
| 1263 | bool IsNegStride = StoreSize == -Stride; |
| 1264 | |
| 1265 | // Handle negative strided loops. |
| 1266 | if (IsNegStride) |
| 1267 | StrStart = |
| 1268 | getStartForNegStride(Start: StrStart, BECount, IntPtr: IntIdxTy, StoreSizeSCEV, SE); |
| 1269 | |
| 1270 | // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| 1271 | // this into a memcpy in the loop preheader now if we want. However, this |
| 1272 | // would be unsafe to do if there is anything else in the loop that may read |
| 1273 | // or write the memory region we're storing to. This includes the load that |
| 1274 | // feeds the stores. Check for an alias by generating the base address and |
| 1275 | // checking everything. |
| 1276 | Value *StoreBasePtr = Expander.expandCodeFor( |
| 1277 | SH: StrStart, Ty: Builder.getPtrTy(AddrSpace: StrAS), I: Preheader->getTerminator()); |
| 1278 | |
| 1279 | // From here on out, conservatively report to the pass manager that we've |
| 1280 | // changed the IR, even if we later clean up these added instructions. There |
| 1281 | // may be structural differences e.g. in the order of use lists not accounted |
| 1282 | // for in just a textual dump of the IR. This is written as a variable, even |
| 1283 | // though statically all the places this dominates could be replaced with |
| 1284 | // 'true', with the hope that anyone trying to be clever / "more precise" with |
| 1285 | // the return value will read this comment, and leave them alone. |
| 1286 | Changed = true; |
| 1287 | |
| 1288 | SmallPtrSet<Instruction *, 2> IgnoredInsts; |
| 1289 | IgnoredInsts.insert(Ptr: TheStore); |
| 1290 | |
| 1291 | bool IsMemCpy = isa<MemCpyInst>(Val: TheStore); |
| 1292 | const StringRef = IsMemCpy ? "memcpy" : "load and store" ; |
| 1293 | |
| 1294 | bool LoopAccessStore = |
| 1295 | mayLoopAccessLocation(Ptr: StoreBasePtr, Access: ModRefInfo::ModRef, L: CurLoop, BECount, |
| 1296 | StoreSizeSCEV, AA&: *AA, IgnoredInsts); |
| 1297 | if (LoopAccessStore) { |
| 1298 | // For memmove case it's not enough to guarantee that loop doesn't access |
| 1299 | // TheStore and TheLoad. Additionally we need to make sure that TheStore is |
| 1300 | // the only user of TheLoad. |
| 1301 | if (!TheLoad->hasOneUse()) |
| 1302 | return Changed; |
| 1303 | IgnoredInsts.insert(Ptr: TheLoad); |
| 1304 | if (mayLoopAccessLocation(Ptr: StoreBasePtr, Access: ModRefInfo::ModRef, L: CurLoop, |
| 1305 | BECount, StoreSizeSCEV, AA&: *AA, IgnoredInsts)) { |
| 1306 | ORE.emit(RemarkBuilder: [&]() { |
| 1307 | return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore" , |
| 1308 | TheStore) |
| 1309 | << ore::NV("Inst" , InstRemark) << " in " |
| 1310 | << ore::NV("Function" , TheStore->getFunction()) |
| 1311 | << " function will not be hoisted: " |
| 1312 | << ore::NV("Reason" , "The loop may access store location" ); |
| 1313 | }); |
| 1314 | return Changed; |
| 1315 | } |
| 1316 | IgnoredInsts.erase(Ptr: TheLoad); |
| 1317 | } |
| 1318 | |
| 1319 | const SCEV *LdStart = LoadEv->getStart(); |
| 1320 | unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); |
| 1321 | |
| 1322 | // Handle negative strided loops. |
| 1323 | if (IsNegStride) |
| 1324 | LdStart = |
| 1325 | getStartForNegStride(Start: LdStart, BECount, IntPtr: IntIdxTy, StoreSizeSCEV, SE); |
| 1326 | |
| 1327 | // For a memcpy, we have to make sure that the input array is not being |
| 1328 | // mutated by the loop. |
| 1329 | Value *LoadBasePtr = Expander.expandCodeFor(SH: LdStart, Ty: Builder.getPtrTy(AddrSpace: LdAS), |
| 1330 | I: Preheader->getTerminator()); |
| 1331 | |
| 1332 | // If the store is a memcpy instruction, we must check if it will write to |
| 1333 | // the load memory locations. So remove it from the ignored stores. |
| 1334 | MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); |
| 1335 | if (IsMemCpy && !Verifier.IsSameObject) |
| 1336 | IgnoredInsts.erase(Ptr: TheStore); |
| 1337 | if (mayLoopAccessLocation(Ptr: LoadBasePtr, Access: ModRefInfo::Mod, L: CurLoop, BECount, |
| 1338 | StoreSizeSCEV, AA&: *AA, IgnoredInsts)) { |
| 1339 | ORE.emit(RemarkBuilder: [&]() { |
| 1340 | return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad" , TheLoad) |
| 1341 | << ore::NV("Inst" , InstRemark) << " in " |
| 1342 | << ore::NV("Function" , TheStore->getFunction()) |
| 1343 | << " function will not be hoisted: " |
| 1344 | << ore::NV("Reason" , "The loop may access load location" ); |
| 1345 | }); |
| 1346 | return Changed; |
| 1347 | } |
| 1348 | |
| 1349 | bool IsAtomic = TheStore->isAtomic() || TheLoad->isAtomic(); |
| 1350 | bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; |
| 1351 | |
| 1352 | if (IsAtomic) { |
| 1353 | // For now don't support unordered atomic memmove. |
| 1354 | if (UseMemMove) |
| 1355 | return Changed; |
| 1356 | |
| 1357 | // We cannot allow unaligned ops for unordered load/store, so reject |
| 1358 | // anything where the alignment isn't at least the element size. |
| 1359 | assert((StoreAlign && LoadAlign) && |
| 1360 | "Expect unordered load/store to have align." ); |
| 1361 | if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) |
| 1362 | return Changed; |
| 1363 | |
| 1364 | // If the element.atomic memcpy is not lowered into explicit |
| 1365 | // loads/stores later, then it will be lowered into an element-size |
| 1366 | // specific lib call. If the lib call doesn't exist for our store size, then |
| 1367 | // we shouldn't generate the memcpy. |
| 1368 | if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) |
| 1369 | return Changed; |
| 1370 | } |
| 1371 | |
| 1372 | if (UseMemMove) |
| 1373 | if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, TheLoad: *TheLoad, |
| 1374 | IsMemCpy)) |
| 1375 | return Changed; |
| 1376 | |
| 1377 | if (avoidLIRForMultiBlockLoop()) |
| 1378 | return Changed; |
| 1379 | |
| 1380 | // Okay, everything is safe, we can transform this! |
| 1381 | |
| 1382 | const SCEV *NumBytesS = |
| 1383 | getNumBytes(BECount, IntPtr: IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); |
| 1384 | |
| 1385 | Value *NumBytes = |
| 1386 | Expander.expandCodeFor(SH: NumBytesS, Ty: IntIdxTy, I: Preheader->getTerminator()); |
| 1387 | |
| 1388 | AAMDNodes AATags = TheLoad->getAAMetadata(); |
| 1389 | AAMDNodes StoreAATags = TheStore->getAAMetadata(); |
| 1390 | AATags = AATags.merge(Other: StoreAATags); |
| 1391 | if (auto CI = dyn_cast<ConstantInt>(Val: NumBytes)) |
| 1392 | AATags = AATags.extendTo(Len: CI->getZExtValue()); |
| 1393 | else |
| 1394 | AATags = AATags.extendTo(Len: -1); |
| 1395 | |
| 1396 | CallInst *NewCall = nullptr; |
| 1397 | // Check whether to generate an unordered atomic memcpy: |
| 1398 | // If the load or store are atomic, then they must necessarily be unordered |
| 1399 | // by previous checks. |
| 1400 | if (!IsAtomic) { |
| 1401 | if (UseMemMove) |
| 1402 | NewCall = Builder.CreateMemMove(Dst: StoreBasePtr, DstAlign: StoreAlign, Src: LoadBasePtr, |
| 1403 | SrcAlign: LoadAlign, Size: NumBytes, |
| 1404 | /*isVolatile=*/false, AAInfo: AATags); |
| 1405 | else |
| 1406 | NewCall = |
| 1407 | Builder.CreateMemCpy(Dst: StoreBasePtr, DstAlign: StoreAlign, Src: LoadBasePtr, SrcAlign: LoadAlign, |
| 1408 | Size: NumBytes, /*isVolatile=*/false, AAInfo: AATags); |
| 1409 | } else { |
| 1410 | // Create the call. |
| 1411 | // Note that unordered atomic loads/stores are *required* by the spec to |
| 1412 | // have an alignment but non-atomic loads/stores may not. |
| 1413 | NewCall = Builder.CreateElementUnorderedAtomicMemCpy( |
| 1414 | Dst: StoreBasePtr, DstAlign: *StoreAlign, Src: LoadBasePtr, SrcAlign: *LoadAlign, Size: NumBytes, ElementSize: StoreSize, |
| 1415 | AAInfo: AATags); |
| 1416 | } |
| 1417 | NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| 1418 | |
| 1419 | if (MSSAU) { |
| 1420 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( |
| 1421 | I: NewCall, Definition: nullptr, BB: NewCall->getParent(), Point: MemorySSA::BeforeTerminator); |
| 1422 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewMemAcc), RenameUses: true); |
| 1423 | } |
| 1424 | |
| 1425 | LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" |
| 1426 | << " from load ptr=" << *LoadEv << " at: " << *TheLoad |
| 1427 | << "\n" |
| 1428 | << " from store ptr=" << *StoreEv << " at: " << *TheStore |
| 1429 | << "\n" ); |
| 1430 | |
| 1431 | ORE.emit(RemarkBuilder: [&]() { |
| 1432 | return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad" , |
| 1433 | NewCall->getDebugLoc(), Preheader) |
| 1434 | << "Formed a call to " |
| 1435 | << ore::NV("NewFunction" , NewCall->getCalledFunction()) |
| 1436 | << "() intrinsic from " << ore::NV("Inst" , InstRemark) |
| 1437 | << " instruction in " << ore::NV("Function" , TheStore->getFunction()) |
| 1438 | << " function" |
| 1439 | << ore::setExtraArgs() |
| 1440 | << ore::NV("FromBlock" , TheStore->getParent()->getName()) |
| 1441 | << ore::NV("ToBlock" , Preheader->getName()); |
| 1442 | }); |
| 1443 | |
| 1444 | // Okay, a new call to memcpy/memmove has been formed. Zap the original store |
| 1445 | // and anything that feeds into it. |
| 1446 | if (MSSAU) |
| 1447 | MSSAU->removeMemoryAccess(I: TheStore, OptimizePhis: true); |
| 1448 | deleteDeadInstruction(I: TheStore); |
| 1449 | if (MSSAU && VerifyMemorySSA) |
| 1450 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 1451 | if (UseMemMove) |
| 1452 | ++NumMemMove; |
| 1453 | else |
| 1454 | ++NumMemCpy; |
| 1455 | ExpCleaner.markResultUsed(); |
| 1456 | return true; |
| 1457 | } |
| 1458 | |
| 1459 | // When compiling for codesize we avoid idiom recognition for a multi-block loop |
| 1460 | // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. |
| 1461 | // |
| 1462 | bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, |
| 1463 | bool IsLoopMemset) { |
| 1464 | if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { |
| 1465 | if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { |
| 1466 | LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() |
| 1467 | << " : LIR " << (IsMemset ? "Memset" : "Memcpy" ) |
| 1468 | << " avoided: multi-block top-level loop\n" ); |
| 1469 | return true; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | return false; |
| 1474 | } |
| 1475 | |
| 1476 | bool LoopIdiomRecognize::runOnNoncountableLoop() { |
| 1477 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" |
| 1478 | << CurLoop->getHeader()->getParent()->getName() |
| 1479 | << "] Noncountable Loop %" |
| 1480 | << CurLoop->getHeader()->getName() << "\n" ); |
| 1481 | |
| 1482 | return recognizePopcount() || recognizeAndInsertFFS() || |
| 1483 | recognizeShiftUntilBitTest() || recognizeShiftUntilZero() || |
| 1484 | recognizeShiftUntilLessThan() || recognizeAndInsertStrLen(); |
| 1485 | } |
| 1486 | |
| 1487 | /// Check if the given conditional branch is based on the comparison between |
| 1488 | /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is |
| 1489 | /// true), the control yields to the loop entry. If the branch matches the |
| 1490 | /// behavior, the variable involved in the comparison is returned. This function |
| 1491 | /// will be called to see if the precondition and postcondition of the loop are |
| 1492 | /// in desirable form. |
| 1493 | static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, |
| 1494 | bool JmpOnZero = false) { |
| 1495 | if (!BI || !BI->isConditional()) |
| 1496 | return nullptr; |
| 1497 | |
| 1498 | ICmpInst *Cond = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
| 1499 | if (!Cond) |
| 1500 | return nullptr; |
| 1501 | |
| 1502 | auto *CmpZero = dyn_cast<ConstantInt>(Val: Cond->getOperand(i_nocapture: 1)); |
| 1503 | if (!CmpZero || !CmpZero->isZero()) |
| 1504 | return nullptr; |
| 1505 | |
| 1506 | BasicBlock *TrueSucc = BI->getSuccessor(i: 0); |
| 1507 | BasicBlock *FalseSucc = BI->getSuccessor(i: 1); |
| 1508 | if (JmpOnZero) |
| 1509 | std::swap(a&: TrueSucc, b&: FalseSucc); |
| 1510 | |
| 1511 | ICmpInst::Predicate Pred = Cond->getPredicate(); |
| 1512 | if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || |
| 1513 | (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) |
| 1514 | return Cond->getOperand(i_nocapture: 0); |
| 1515 | |
| 1516 | return nullptr; |
| 1517 | } |
| 1518 | |
| 1519 | namespace { |
| 1520 | |
| 1521 | class StrlenVerifier { |
| 1522 | public: |
| 1523 | explicit StrlenVerifier(const Loop *CurLoop, ScalarEvolution *SE, |
| 1524 | const TargetLibraryInfo *TLI) |
| 1525 | : CurLoop(CurLoop), SE(SE), TLI(TLI) {} |
| 1526 | |
| 1527 | bool isValidStrlenIdiom() { |
| 1528 | // Give up if the loop has multiple blocks, multiple backedges, or |
| 1529 | // multiple exit blocks |
| 1530 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1 || |
| 1531 | !CurLoop->getUniqueExitBlock()) |
| 1532 | return false; |
| 1533 | |
| 1534 | // It should have a preheader and a branch instruction. |
| 1535 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 1536 | if (!Preheader) |
| 1537 | return false; |
| 1538 | |
| 1539 | BranchInst *EntryBI = dyn_cast<BranchInst>(Val: Preheader->getTerminator()); |
| 1540 | if (!EntryBI) |
| 1541 | return false; |
| 1542 | |
| 1543 | // The loop exit must be conditioned on an icmp with 0 the null terminator. |
| 1544 | // The icmp operand has to be a load on some SSA reg that increments |
| 1545 | // by 1 in the loop. |
| 1546 | BasicBlock *LoopBody = *CurLoop->block_begin(); |
| 1547 | |
| 1548 | // Skip if the body is too big as it most likely is not a strlen idiom. |
| 1549 | if (!LoopBody || LoopBody->size() >= 15) |
| 1550 | return false; |
| 1551 | |
| 1552 | BranchInst *LoopTerm = dyn_cast<BranchInst>(Val: LoopBody->getTerminator()); |
| 1553 | Value *LoopCond = matchCondition(BI: LoopTerm, LoopEntry: LoopBody); |
| 1554 | if (!LoopCond) |
| 1555 | return false; |
| 1556 | |
| 1557 | LoadInst *LoopLoad = dyn_cast<LoadInst>(Val: LoopCond); |
| 1558 | if (!LoopLoad || LoopLoad->getPointerAddressSpace() != 0) |
| 1559 | return false; |
| 1560 | |
| 1561 | OperandType = LoopLoad->getType(); |
| 1562 | if (!OperandType || !OperandType->isIntegerTy()) |
| 1563 | return false; |
| 1564 | |
| 1565 | // See if the pointer expression is an AddRec with constant step a of form |
| 1566 | // ({n,+,a}) where a is the width of the char type. |
| 1567 | Value *IncPtr = LoopLoad->getPointerOperand(); |
| 1568 | const SCEV *LoadEv = SE->getSCEV(V: IncPtr); |
| 1569 | const APInt *Step; |
| 1570 | if (!match(S: LoadEv, |
| 1571 | P: m_scev_AffineAddRec(Op0: m_SCEV(V&: LoadBaseEv), Op1: m_scev_APInt(C&: Step)))) |
| 1572 | return false; |
| 1573 | |
| 1574 | LLVM_DEBUG(dbgs() << "pointer load scev: " << *LoadEv << "\n" ); |
| 1575 | |
| 1576 | unsigned StepSize = Step->getZExtValue(); |
| 1577 | |
| 1578 | // Verify that StepSize is consistent with platform char width. |
| 1579 | OpWidth = OperandType->getIntegerBitWidth(); |
| 1580 | unsigned WcharSize = TLI->getWCharSize(M: *LoopLoad->getModule()); |
| 1581 | if (OpWidth != StepSize * 8) |
| 1582 | return false; |
| 1583 | if (OpWidth != 8 && OpWidth != 16 && OpWidth != 32) |
| 1584 | return false; |
| 1585 | if (OpWidth >= 16) |
| 1586 | if (OpWidth != WcharSize * 8) |
| 1587 | return false; |
| 1588 | |
| 1589 | // Scan every instruction in the loop to ensure there are no side effects. |
| 1590 | for (Instruction &I : *LoopBody) |
| 1591 | if (I.mayHaveSideEffects()) |
| 1592 | return false; |
| 1593 | |
| 1594 | BasicBlock *LoopExitBB = CurLoop->getExitBlock(); |
| 1595 | if (!LoopExitBB) |
| 1596 | return false; |
| 1597 | |
| 1598 | for (PHINode &PN : LoopExitBB->phis()) { |
| 1599 | if (!SE->isSCEVable(Ty: PN.getType())) |
| 1600 | return false; |
| 1601 | |
| 1602 | const SCEV *Ev = SE->getSCEV(V: &PN); |
| 1603 | if (!Ev) |
| 1604 | return false; |
| 1605 | |
| 1606 | LLVM_DEBUG(dbgs() << "loop exit phi scev: " << *Ev << "\n" ); |
| 1607 | |
| 1608 | // Since we verified that the loop trip count will be a valid strlen |
| 1609 | // idiom, we can expand all lcssa phi with {n,+,1} as (n + strlen) and use |
| 1610 | // SCEVExpander materialize the loop output. |
| 1611 | const SCEVAddRecExpr *AddRecEv = dyn_cast<SCEVAddRecExpr>(Val: Ev); |
| 1612 | if (!AddRecEv || !AddRecEv->isAffine()) |
| 1613 | return false; |
| 1614 | |
| 1615 | // We only want RecAddExpr with recurrence step that is constant. This |
| 1616 | // is good enough for all the idioms we want to recognize. Later we expand |
| 1617 | // and materialize the recurrence as {base,+,a} -> (base + a * strlen) |
| 1618 | if (!isa<SCEVConstant>(Val: AddRecEv->getStepRecurrence(SE&: *SE))) |
| 1619 | return false; |
| 1620 | } |
| 1621 | |
| 1622 | return true; |
| 1623 | } |
| 1624 | |
| 1625 | public: |
| 1626 | const Loop *CurLoop; |
| 1627 | ScalarEvolution *SE; |
| 1628 | const TargetLibraryInfo *TLI; |
| 1629 | |
| 1630 | unsigned OpWidth; |
| 1631 | ConstantInt *StepSizeCI; |
| 1632 | const SCEV *LoadBaseEv; |
| 1633 | Type *OperandType; |
| 1634 | }; |
| 1635 | |
| 1636 | } // namespace |
| 1637 | |
| 1638 | /// The Strlen Idiom we are trying to detect has the following structure |
| 1639 | /// |
| 1640 | /// preheader: |
| 1641 | /// ... |
| 1642 | /// br label %body, ... |
| 1643 | /// |
| 1644 | /// body: |
| 1645 | /// ... ; %0 is incremented by a gep |
| 1646 | /// %1 = load i8, ptr %0, align 1 |
| 1647 | /// %2 = icmp eq i8 %1, 0 |
| 1648 | /// br i1 %2, label %exit, label %body |
| 1649 | /// |
| 1650 | /// exit: |
| 1651 | /// %lcssa = phi [%0, %body], ... |
| 1652 | /// |
| 1653 | /// We expect the strlen idiom to have a load of a character type that |
| 1654 | /// is compared against '\0', and such load pointer operand must have scev |
| 1655 | /// expression of the form {%str,+,c} where c is a ConstantInt of the |
| 1656 | /// appropiate character width for the idiom, and %str is the base of the string |
| 1657 | /// And, that all lcssa phis have the form {...,+,n} where n is a constant, |
| 1658 | /// |
| 1659 | /// When transforming the output of the strlen idiom, the lccsa phi are |
| 1660 | /// expanded using SCEVExpander as {base scev,+,a} -> (base scev + a * strlen) |
| 1661 | /// and all subsequent uses are replaced. For example, |
| 1662 | /// |
| 1663 | /// \code{.c} |
| 1664 | /// const char* base = str; |
| 1665 | /// while (*str != '\0') |
| 1666 | /// ++str; |
| 1667 | /// size_t result = str - base; |
| 1668 | /// \endcode |
| 1669 | /// |
| 1670 | /// will be transformed as follows: The idiom will be replaced by a strlen |
| 1671 | /// computation to compute the address of the null terminator of the string. |
| 1672 | /// |
| 1673 | /// \code{.c} |
| 1674 | /// const char* base = str; |
| 1675 | /// const char* end = base + strlen(str); |
| 1676 | /// size_t result = end - base; |
| 1677 | /// \endcode |
| 1678 | /// |
| 1679 | /// In the case we index by an induction variable, as long as the induction |
| 1680 | /// variable has a constant int increment, we can replace all such indvars |
| 1681 | /// with the closed form computation of strlen |
| 1682 | /// |
| 1683 | /// \code{.c} |
| 1684 | /// size_t i = 0; |
| 1685 | /// while (str[i] != '\0') |
| 1686 | /// ++i; |
| 1687 | /// size_t result = i; |
| 1688 | /// \endcode |
| 1689 | /// |
| 1690 | /// Will be replaced by |
| 1691 | /// |
| 1692 | /// \code{.c} |
| 1693 | /// size_t i = 0 + strlen(str); |
| 1694 | /// size_t result = i; |
| 1695 | /// \endcode |
| 1696 | /// |
| 1697 | bool LoopIdiomRecognize::recognizeAndInsertStrLen() { |
| 1698 | if (DisableLIRP::All) |
| 1699 | return false; |
| 1700 | |
| 1701 | StrlenVerifier Verifier(CurLoop, SE, TLI); |
| 1702 | |
| 1703 | if (!Verifier.isValidStrlenIdiom()) |
| 1704 | return false; |
| 1705 | |
| 1706 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 1707 | BasicBlock *LoopBody = *CurLoop->block_begin(); |
| 1708 | BasicBlock *LoopExitBB = CurLoop->getExitBlock(); |
| 1709 | BranchInst *LoopTerm = dyn_cast<BranchInst>(Val: LoopBody->getTerminator()); |
| 1710 | assert(Preheader && LoopBody && LoopExitBB && LoopTerm && |
| 1711 | "Should be verified to be valid by StrlenVerifier" ); |
| 1712 | |
| 1713 | if (Verifier.OpWidth == 8) { |
| 1714 | if (DisableLIRP::Strlen) |
| 1715 | return false; |
| 1716 | if (!isLibFuncEmittable(M: Preheader->getModule(), TLI, TheLibFunc: LibFunc_strlen)) |
| 1717 | return false; |
| 1718 | } else { |
| 1719 | if (DisableLIRP::Wcslen) |
| 1720 | return false; |
| 1721 | if (!isLibFuncEmittable(M: Preheader->getModule(), TLI, TheLibFunc: LibFunc_wcslen)) |
| 1722 | return false; |
| 1723 | } |
| 1724 | |
| 1725 | IRBuilder<> Builder(Preheader->getTerminator()); |
| 1726 | Builder.SetCurrentDebugLocation(CurLoop->getStartLoc()); |
| 1727 | SCEVExpander Expander(*SE, Preheader->getModule()->getDataLayout(), |
| 1728 | "strlen_idiom" ); |
| 1729 | Value *MaterialzedBase = Expander.expandCodeFor( |
| 1730 | SH: Verifier.LoadBaseEv, Ty: Verifier.LoadBaseEv->getType(), |
| 1731 | I: Builder.GetInsertPoint()); |
| 1732 | |
| 1733 | Value *StrLenFunc = nullptr; |
| 1734 | if (Verifier.OpWidth == 8) { |
| 1735 | StrLenFunc = emitStrLen(Ptr: MaterialzedBase, B&: Builder, DL: *DL, TLI); |
| 1736 | } else { |
| 1737 | StrLenFunc = emitWcsLen(Ptr: MaterialzedBase, B&: Builder, DL: *DL, TLI); |
| 1738 | } |
| 1739 | assert(StrLenFunc && "Failed to emit strlen function." ); |
| 1740 | |
| 1741 | const SCEV *StrlenEv = SE->getSCEV(V: StrLenFunc); |
| 1742 | SmallVector<PHINode *, 4> Cleanup; |
| 1743 | for (PHINode &PN : LoopExitBB->phis()) { |
| 1744 | // We can now materialize the loop output as all phi have scev {base,+,a}. |
| 1745 | // We expand the phi as: |
| 1746 | // %strlen = call i64 @strlen(%str) |
| 1747 | // %phi.new = base expression + step * %strlen |
| 1748 | const SCEV *Ev = SE->getSCEV(V: &PN); |
| 1749 | const SCEVAddRecExpr *AddRecEv = dyn_cast<SCEVAddRecExpr>(Val: Ev); |
| 1750 | const SCEVConstant *Step = |
| 1751 | dyn_cast<SCEVConstant>(Val: AddRecEv->getStepRecurrence(SE&: *SE)); |
| 1752 | const SCEV *Base = AddRecEv->getStart(); |
| 1753 | |
| 1754 | // It is safe to truncate to base since if base is narrower than size_t |
| 1755 | // the equivalent user code will have to truncate anyways. |
| 1756 | const SCEV *NewEv = SE->getAddExpr( |
| 1757 | LHS: Base, RHS: SE->getMulExpr(LHS: Step, RHS: SE->getTruncateOrSignExtend( |
| 1758 | V: StrlenEv, Ty: Base->getType()))); |
| 1759 | |
| 1760 | Value *MaterializedPHI = Expander.expandCodeFor(SH: NewEv, Ty: NewEv->getType(), |
| 1761 | I: Builder.GetInsertPoint()); |
| 1762 | Expander.clear(); |
| 1763 | PN.replaceAllUsesWith(V: MaterializedPHI); |
| 1764 | Cleanup.push_back(Elt: &PN); |
| 1765 | } |
| 1766 | |
| 1767 | // All LCSSA Loop Phi are dead, the left over dead loop body can be cleaned |
| 1768 | // up by later passes |
| 1769 | for (PHINode *PN : Cleanup) |
| 1770 | RecursivelyDeleteDeadPHINode(PN); |
| 1771 | |
| 1772 | // LoopDeletion only delete invariant loops with known trip-count. We can |
| 1773 | // update the condition so it will reliablely delete the invariant loop |
| 1774 | assert(LoopTerm->getNumSuccessors() == 2 && |
| 1775 | (LoopTerm->getSuccessor(0) == LoopBody || |
| 1776 | LoopTerm->getSuccessor(1) == LoopBody) && |
| 1777 | "loop body must have a successor that is it self" ); |
| 1778 | ConstantInt *NewLoopCond = LoopTerm->getSuccessor(i: 0) == LoopBody |
| 1779 | ? Builder.getFalse() |
| 1780 | : Builder.getTrue(); |
| 1781 | LoopTerm->setCondition(NewLoopCond); |
| 1782 | SE->forgetLoop(L: CurLoop); |
| 1783 | |
| 1784 | ++NumStrLen; |
| 1785 | LLVM_DEBUG(dbgs() << " Formed strlen idiom: " << *StrLenFunc << "\n" ); |
| 1786 | ORE.emit(RemarkBuilder: [&]() { |
| 1787 | return OptimizationRemark(DEBUG_TYPE, "recognizeAndInsertStrLen" , |
| 1788 | CurLoop->getStartLoc(), Preheader) |
| 1789 | << "Transformed " << StrLenFunc->getName() << " loop idiom" ; |
| 1790 | }); |
| 1791 | |
| 1792 | return true; |
| 1793 | } |
| 1794 | |
| 1795 | /// Check if the given conditional branch is based on an unsigned less-than |
| 1796 | /// comparison between a variable and a constant, and if the comparison is false |
| 1797 | /// the control yields to the loop entry. If the branch matches the behaviour, |
| 1798 | /// the variable involved in the comparison is returned. |
| 1799 | static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry, |
| 1800 | APInt &Threshold) { |
| 1801 | if (!BI || !BI->isConditional()) |
| 1802 | return nullptr; |
| 1803 | |
| 1804 | ICmpInst *Cond = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
| 1805 | if (!Cond) |
| 1806 | return nullptr; |
| 1807 | |
| 1808 | ConstantInt *CmpConst = dyn_cast<ConstantInt>(Val: Cond->getOperand(i_nocapture: 1)); |
| 1809 | if (!CmpConst) |
| 1810 | return nullptr; |
| 1811 | |
| 1812 | BasicBlock *FalseSucc = BI->getSuccessor(i: 1); |
| 1813 | ICmpInst::Predicate Pred = Cond->getPredicate(); |
| 1814 | |
| 1815 | if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) { |
| 1816 | Threshold = CmpConst->getValue(); |
| 1817 | return Cond->getOperand(i_nocapture: 0); |
| 1818 | } |
| 1819 | |
| 1820 | return nullptr; |
| 1821 | } |
| 1822 | |
| 1823 | // Check if the recurrence variable `VarX` is in the right form to create |
| 1824 | // the idiom. Returns the value coerced to a PHINode if so. |
| 1825 | static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, |
| 1826 | BasicBlock *LoopEntry) { |
| 1827 | auto *PhiX = dyn_cast<PHINode>(Val: VarX); |
| 1828 | if (PhiX && PhiX->getParent() == LoopEntry && |
| 1829 | (PhiX->getOperand(i_nocapture: 0) == DefX || PhiX->getOperand(i_nocapture: 1) == DefX)) |
| 1830 | return PhiX; |
| 1831 | return nullptr; |
| 1832 | } |
| 1833 | |
| 1834 | /// Return true if the idiom is detected in the loop. |
| 1835 | /// |
| 1836 | /// Additionally: |
| 1837 | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) |
| 1838 | /// or nullptr if there is no such. |
| 1839 | /// 2) \p CntPhi is set to the corresponding phi node |
| 1840 | /// or nullptr if there is no such. |
| 1841 | /// 3) \p InitX is set to the value whose CTLZ could be used. |
| 1842 | /// 4) \p DefX is set to the instruction calculating Loop exit condition. |
| 1843 | /// 5) \p Threshold is set to the constant involved in the unsigned less-than |
| 1844 | /// comparison. |
| 1845 | /// |
| 1846 | /// The core idiom we are trying to detect is: |
| 1847 | /// \code |
| 1848 | /// if (x0 < 2) |
| 1849 | /// goto loop-exit // the precondition of the loop |
| 1850 | /// cnt0 = init-val |
| 1851 | /// do { |
| 1852 | /// x = phi (x0, x.next); //PhiX |
| 1853 | /// cnt = phi (cnt0, cnt.next) |
| 1854 | /// |
| 1855 | /// cnt.next = cnt + 1; |
| 1856 | /// ... |
| 1857 | /// x.next = x >> 1; // DefX |
| 1858 | /// } while (x >= 4) |
| 1859 | /// loop-exit: |
| 1860 | /// \endcode |
| 1861 | static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL, |
| 1862 | Intrinsic::ID &IntrinID, |
| 1863 | Value *&InitX, Instruction *&CntInst, |
| 1864 | PHINode *&CntPhi, Instruction *&DefX, |
| 1865 | APInt &Threshold) { |
| 1866 | BasicBlock *LoopEntry; |
| 1867 | |
| 1868 | DefX = nullptr; |
| 1869 | CntInst = nullptr; |
| 1870 | CntPhi = nullptr; |
| 1871 | LoopEntry = *(CurLoop->block_begin()); |
| 1872 | |
| 1873 | // step 1: Check if the loop-back branch is in desirable form. |
| 1874 | if (Value *T = matchShiftULTCondition( |
| 1875 | BI: dyn_cast<BranchInst>(Val: LoopEntry->getTerminator()), LoopEntry, |
| 1876 | Threshold)) |
| 1877 | DefX = dyn_cast<Instruction>(Val: T); |
| 1878 | else |
| 1879 | return false; |
| 1880 | |
| 1881 | // step 2: Check the recurrence of variable X |
| 1882 | if (!DefX || !isa<PHINode>(Val: DefX)) |
| 1883 | return false; |
| 1884 | |
| 1885 | PHINode *VarPhi = cast<PHINode>(Val: DefX); |
| 1886 | int Idx = VarPhi->getBasicBlockIndex(BB: LoopEntry); |
| 1887 | if (Idx == -1) |
| 1888 | return false; |
| 1889 | |
| 1890 | DefX = dyn_cast<Instruction>(Val: VarPhi->getIncomingValue(i: Idx)); |
| 1891 | if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(i: 0) != VarPhi) |
| 1892 | return false; |
| 1893 | |
| 1894 | // step 3: detect instructions corresponding to "x.next = x >> 1" |
| 1895 | if (DefX->getOpcode() != Instruction::LShr) |
| 1896 | return false; |
| 1897 | |
| 1898 | IntrinID = Intrinsic::ctlz; |
| 1899 | ConstantInt *Shft = dyn_cast<ConstantInt>(Val: DefX->getOperand(i: 1)); |
| 1900 | if (!Shft || !Shft->isOne()) |
| 1901 | return false; |
| 1902 | |
| 1903 | InitX = VarPhi->getIncomingValueForBlock(BB: CurLoop->getLoopPreheader()); |
| 1904 | |
| 1905 | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 |
| 1906 | // or cnt.next = cnt + -1. |
| 1907 | // TODO: We can skip the step. If loop trip count is known (CTLZ), |
| 1908 | // then all uses of "cnt.next" could be optimized to the trip count |
| 1909 | // plus "cnt0". Currently it is not optimized. |
| 1910 | // This step could be used to detect POPCNT instruction: |
| 1911 | // cnt.next = cnt + (x.next & 1) |
| 1912 | for (Instruction &Inst : |
| 1913 | llvm::make_range(x: LoopEntry->getFirstNonPHIIt(), y: LoopEntry->end())) { |
| 1914 | if (Inst.getOpcode() != Instruction::Add) |
| 1915 | continue; |
| 1916 | |
| 1917 | ConstantInt *Inc = dyn_cast<ConstantInt>(Val: Inst.getOperand(i: 1)); |
| 1918 | if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) |
| 1919 | continue; |
| 1920 | |
| 1921 | PHINode *Phi = getRecurrenceVar(VarX: Inst.getOperand(i: 0), DefX: &Inst, LoopEntry); |
| 1922 | if (!Phi) |
| 1923 | continue; |
| 1924 | |
| 1925 | CntInst = &Inst; |
| 1926 | CntPhi = Phi; |
| 1927 | break; |
| 1928 | } |
| 1929 | if (!CntInst) |
| 1930 | return false; |
| 1931 | |
| 1932 | return true; |
| 1933 | } |
| 1934 | |
| 1935 | /// Return true iff the idiom is detected in the loop. |
| 1936 | /// |
| 1937 | /// Additionally: |
| 1938 | /// 1) \p CntInst is set to the instruction counting the population bit. |
| 1939 | /// 2) \p CntPhi is set to the corresponding phi node. |
| 1940 | /// 3) \p Var is set to the value whose population bits are being counted. |
| 1941 | /// |
| 1942 | /// The core idiom we are trying to detect is: |
| 1943 | /// \code |
| 1944 | /// if (x0 != 0) |
| 1945 | /// goto loop-exit // the precondition of the loop |
| 1946 | /// cnt0 = init-val; |
| 1947 | /// do { |
| 1948 | /// x1 = phi (x0, x2); |
| 1949 | /// cnt1 = phi(cnt0, cnt2); |
| 1950 | /// |
| 1951 | /// cnt2 = cnt1 + 1; |
| 1952 | /// ... |
| 1953 | /// x2 = x1 & (x1 - 1); |
| 1954 | /// ... |
| 1955 | /// } while(x != 0); |
| 1956 | /// |
| 1957 | /// loop-exit: |
| 1958 | /// \endcode |
| 1959 | static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, |
| 1960 | Instruction *&CntInst, PHINode *&CntPhi, |
| 1961 | Value *&Var) { |
| 1962 | // step 1: Check to see if the look-back branch match this pattern: |
| 1963 | // "if (a!=0) goto loop-entry". |
| 1964 | BasicBlock *LoopEntry; |
| 1965 | Instruction *DefX2, *CountInst; |
| 1966 | Value *VarX1, *VarX0; |
| 1967 | PHINode *PhiX, *CountPhi; |
| 1968 | |
| 1969 | DefX2 = CountInst = nullptr; |
| 1970 | VarX1 = VarX0 = nullptr; |
| 1971 | PhiX = CountPhi = nullptr; |
| 1972 | LoopEntry = *(CurLoop->block_begin()); |
| 1973 | |
| 1974 | // step 1: Check if the loop-back branch is in desirable form. |
| 1975 | { |
| 1976 | if (Value *T = matchCondition( |
| 1977 | BI: dyn_cast<BranchInst>(Val: LoopEntry->getTerminator()), LoopEntry)) |
| 1978 | DefX2 = dyn_cast<Instruction>(Val: T); |
| 1979 | else |
| 1980 | return false; |
| 1981 | } |
| 1982 | |
| 1983 | // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" |
| 1984 | { |
| 1985 | if (!DefX2 || DefX2->getOpcode() != Instruction::And) |
| 1986 | return false; |
| 1987 | |
| 1988 | BinaryOperator *SubOneOp; |
| 1989 | |
| 1990 | if ((SubOneOp = dyn_cast<BinaryOperator>(Val: DefX2->getOperand(i: 0)))) |
| 1991 | VarX1 = DefX2->getOperand(i: 1); |
| 1992 | else { |
| 1993 | VarX1 = DefX2->getOperand(i: 0); |
| 1994 | SubOneOp = dyn_cast<BinaryOperator>(Val: DefX2->getOperand(i: 1)); |
| 1995 | } |
| 1996 | if (!SubOneOp || SubOneOp->getOperand(i_nocapture: 0) != VarX1) |
| 1997 | return false; |
| 1998 | |
| 1999 | ConstantInt *Dec = dyn_cast<ConstantInt>(Val: SubOneOp->getOperand(i_nocapture: 1)); |
| 2000 | if (!Dec || |
| 2001 | !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || |
| 2002 | (SubOneOp->getOpcode() == Instruction::Add && |
| 2003 | Dec->isMinusOne()))) { |
| 2004 | return false; |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | // step 3: Check the recurrence of variable X |
| 2009 | PhiX = getRecurrenceVar(VarX: VarX1, DefX: DefX2, LoopEntry); |
| 2010 | if (!PhiX) |
| 2011 | return false; |
| 2012 | |
| 2013 | // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 |
| 2014 | { |
| 2015 | CountInst = nullptr; |
| 2016 | for (Instruction &Inst : |
| 2017 | llvm::make_range(x: LoopEntry->getFirstNonPHIIt(), y: LoopEntry->end())) { |
| 2018 | if (Inst.getOpcode() != Instruction::Add) |
| 2019 | continue; |
| 2020 | |
| 2021 | ConstantInt *Inc = dyn_cast<ConstantInt>(Val: Inst.getOperand(i: 1)); |
| 2022 | if (!Inc || !Inc->isOne()) |
| 2023 | continue; |
| 2024 | |
| 2025 | PHINode *Phi = getRecurrenceVar(VarX: Inst.getOperand(i: 0), DefX: &Inst, LoopEntry); |
| 2026 | if (!Phi) |
| 2027 | continue; |
| 2028 | |
| 2029 | // Check if the result of the instruction is live of the loop. |
| 2030 | bool LiveOutLoop = false; |
| 2031 | for (User *U : Inst.users()) { |
| 2032 | if ((cast<Instruction>(Val: U))->getParent() != LoopEntry) { |
| 2033 | LiveOutLoop = true; |
| 2034 | break; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | if (LiveOutLoop) { |
| 2039 | CountInst = &Inst; |
| 2040 | CountPhi = Phi; |
| 2041 | break; |
| 2042 | } |
| 2043 | } |
| 2044 | |
| 2045 | if (!CountInst) |
| 2046 | return false; |
| 2047 | } |
| 2048 | |
| 2049 | // step 5: check if the precondition is in this form: |
| 2050 | // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" |
| 2051 | { |
| 2052 | auto *PreCondBr = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
| 2053 | Value *T = matchCondition(BI: PreCondBr, LoopEntry: CurLoop->getLoopPreheader()); |
| 2054 | if (T != PhiX->getOperand(i_nocapture: 0) && T != PhiX->getOperand(i_nocapture: 1)) |
| 2055 | return false; |
| 2056 | |
| 2057 | CntInst = CountInst; |
| 2058 | CntPhi = CountPhi; |
| 2059 | Var = T; |
| 2060 | } |
| 2061 | |
| 2062 | return true; |
| 2063 | } |
| 2064 | |
| 2065 | /// Return true if the idiom is detected in the loop. |
| 2066 | /// |
| 2067 | /// Additionally: |
| 2068 | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) |
| 2069 | /// or nullptr if there is no such. |
| 2070 | /// 2) \p CntPhi is set to the corresponding phi node |
| 2071 | /// or nullptr if there is no such. |
| 2072 | /// 3) \p Var is set to the value whose CTLZ could be used. |
| 2073 | /// 4) \p DefX is set to the instruction calculating Loop exit condition. |
| 2074 | /// |
| 2075 | /// The core idiom we are trying to detect is: |
| 2076 | /// \code |
| 2077 | /// if (x0 == 0) |
| 2078 | /// goto loop-exit // the precondition of the loop |
| 2079 | /// cnt0 = init-val; |
| 2080 | /// do { |
| 2081 | /// x = phi (x0, x.next); //PhiX |
| 2082 | /// cnt = phi(cnt0, cnt.next); |
| 2083 | /// |
| 2084 | /// cnt.next = cnt + 1; |
| 2085 | /// ... |
| 2086 | /// x.next = x >> 1; // DefX |
| 2087 | /// ... |
| 2088 | /// } while(x.next != 0); |
| 2089 | /// |
| 2090 | /// loop-exit: |
| 2091 | /// \endcode |
| 2092 | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, |
| 2093 | Intrinsic::ID &IntrinID, Value *&InitX, |
| 2094 | Instruction *&CntInst, PHINode *&CntPhi, |
| 2095 | Instruction *&DefX) { |
| 2096 | BasicBlock *LoopEntry; |
| 2097 | Value *VarX = nullptr; |
| 2098 | |
| 2099 | DefX = nullptr; |
| 2100 | CntInst = nullptr; |
| 2101 | CntPhi = nullptr; |
| 2102 | LoopEntry = *(CurLoop->block_begin()); |
| 2103 | |
| 2104 | // step 1: Check if the loop-back branch is in desirable form. |
| 2105 | if (Value *T = matchCondition( |
| 2106 | BI: dyn_cast<BranchInst>(Val: LoopEntry->getTerminator()), LoopEntry)) |
| 2107 | DefX = dyn_cast<Instruction>(Val: T); |
| 2108 | else |
| 2109 | return false; |
| 2110 | |
| 2111 | // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" |
| 2112 | if (!DefX || !DefX->isShift()) |
| 2113 | return false; |
| 2114 | IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : |
| 2115 | Intrinsic::ctlz; |
| 2116 | ConstantInt *Shft = dyn_cast<ConstantInt>(Val: DefX->getOperand(i: 1)); |
| 2117 | if (!Shft || !Shft->isOne()) |
| 2118 | return false; |
| 2119 | VarX = DefX->getOperand(i: 0); |
| 2120 | |
| 2121 | // step 3: Check the recurrence of variable X |
| 2122 | PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); |
| 2123 | if (!PhiX) |
| 2124 | return false; |
| 2125 | |
| 2126 | InitX = PhiX->getIncomingValueForBlock(BB: CurLoop->getLoopPreheader()); |
| 2127 | |
| 2128 | // Make sure the initial value can't be negative otherwise the ashr in the |
| 2129 | // loop might never reach zero which would make the loop infinite. |
| 2130 | if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(V: InitX, SQ: DL)) |
| 2131 | return false; |
| 2132 | |
| 2133 | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 |
| 2134 | // or cnt.next = cnt + -1. |
| 2135 | // TODO: We can skip the step. If loop trip count is known (CTLZ), |
| 2136 | // then all uses of "cnt.next" could be optimized to the trip count |
| 2137 | // plus "cnt0". Currently it is not optimized. |
| 2138 | // This step could be used to detect POPCNT instruction: |
| 2139 | // cnt.next = cnt + (x.next & 1) |
| 2140 | for (Instruction &Inst : |
| 2141 | llvm::make_range(x: LoopEntry->getFirstNonPHIIt(), y: LoopEntry->end())) { |
| 2142 | if (Inst.getOpcode() != Instruction::Add) |
| 2143 | continue; |
| 2144 | |
| 2145 | ConstantInt *Inc = dyn_cast<ConstantInt>(Val: Inst.getOperand(i: 1)); |
| 2146 | if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) |
| 2147 | continue; |
| 2148 | |
| 2149 | PHINode *Phi = getRecurrenceVar(VarX: Inst.getOperand(i: 0), DefX: &Inst, LoopEntry); |
| 2150 | if (!Phi) |
| 2151 | continue; |
| 2152 | |
| 2153 | CntInst = &Inst; |
| 2154 | CntPhi = Phi; |
| 2155 | break; |
| 2156 | } |
| 2157 | if (!CntInst) |
| 2158 | return false; |
| 2159 | |
| 2160 | return true; |
| 2161 | } |
| 2162 | |
| 2163 | // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always |
| 2164 | // profitable if we delete the loop. |
| 2165 | bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID, |
| 2166 | Value *InitX, bool ZeroCheck, |
| 2167 | size_t CanonicalSize) { |
| 2168 | const Value *Args[] = {InitX, |
| 2169 | ConstantInt::getBool(Context&: InitX->getContext(), V: ZeroCheck)}; |
| 2170 | |
| 2171 | // @llvm.dbg doesn't count as they have no semantic effect. |
| 2172 | auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); |
| 2173 | uint32_t = |
| 2174 | std::distance(first: InstWithoutDebugIt.begin(), last: InstWithoutDebugIt.end()); |
| 2175 | |
| 2176 | IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); |
| 2177 | InstructionCost Cost = TTI->getIntrinsicInstrCost( |
| 2178 | ICA: Attrs, CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
| 2179 | if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic) |
| 2180 | return false; |
| 2181 | |
| 2182 | return true; |
| 2183 | } |
| 2184 | |
| 2185 | /// Convert CTLZ / CTTZ idiom loop into countable loop. |
| 2186 | /// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise, |
| 2187 | /// returns false. |
| 2188 | bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID, |
| 2189 | Value *InitX, Instruction *DefX, |
| 2190 | PHINode *CntPhi, |
| 2191 | Instruction *CntInst) { |
| 2192 | bool IsCntPhiUsedOutsideLoop = false; |
| 2193 | for (User *U : CntPhi->users()) |
| 2194 | if (!CurLoop->contains(Inst: cast<Instruction>(Val: U))) { |
| 2195 | IsCntPhiUsedOutsideLoop = true; |
| 2196 | break; |
| 2197 | } |
| 2198 | bool IsCntInstUsedOutsideLoop = false; |
| 2199 | for (User *U : CntInst->users()) |
| 2200 | if (!CurLoop->contains(Inst: cast<Instruction>(Val: U))) { |
| 2201 | IsCntInstUsedOutsideLoop = true; |
| 2202 | break; |
| 2203 | } |
| 2204 | // If both CntInst and CntPhi are used outside the loop the profitability |
| 2205 | // is questionable. |
| 2206 | if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) |
| 2207 | return false; |
| 2208 | |
| 2209 | // For some CPUs result of CTLZ(X) intrinsic is undefined |
| 2210 | // when X is 0. If we can not guarantee X != 0, we need to check this |
| 2211 | // when expand. |
| 2212 | bool ZeroCheck = false; |
| 2213 | // It is safe to assume Preheader exist as it was checked in |
| 2214 | // parent function RunOnLoop. |
| 2215 | BasicBlock *PH = CurLoop->getLoopPreheader(); |
| 2216 | |
| 2217 | // If we are using the count instruction outside the loop, make sure we |
| 2218 | // have a zero check as a precondition. Without the check the loop would run |
| 2219 | // one iteration for before any check of the input value. This means 0 and 1 |
| 2220 | // would have identical behavior in the original loop and thus |
| 2221 | if (!IsCntPhiUsedOutsideLoop) { |
| 2222 | auto *PreCondBB = PH->getSinglePredecessor(); |
| 2223 | if (!PreCondBB) |
| 2224 | return false; |
| 2225 | auto *PreCondBI = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
| 2226 | if (!PreCondBI) |
| 2227 | return false; |
| 2228 | if (matchCondition(BI: PreCondBI, LoopEntry: PH) != InitX) |
| 2229 | return false; |
| 2230 | ZeroCheck = true; |
| 2231 | } |
| 2232 | |
| 2233 | // FFS idiom loop has only 6 instructions: |
| 2234 | // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] |
| 2235 | // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] |
| 2236 | // %shr = ashr %n.addr.0, 1 |
| 2237 | // %tobool = icmp eq %shr, 0 |
| 2238 | // %inc = add nsw %i.0, 1 |
| 2239 | // br i1 %tobool |
| 2240 | size_t IdiomCanonicalSize = 6; |
| 2241 | if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, CanonicalSize: IdiomCanonicalSize)) |
| 2242 | return false; |
| 2243 | |
| 2244 | transformLoopToCountable(IntrinID, PreCondBB: PH, CntInst, CntPhi, Var: InitX, DefX, |
| 2245 | DL: DefX->getDebugLoc(), ZeroCheck, |
| 2246 | IsCntPhiUsedOutsideLoop); |
| 2247 | return true; |
| 2248 | } |
| 2249 | |
| 2250 | /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop |
| 2251 | /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new |
| 2252 | /// trip count returns true; otherwise, returns false. |
| 2253 | bool LoopIdiomRecognize::recognizeAndInsertFFS() { |
| 2254 | // Give up if the loop has multiple blocks or multiple backedges. |
| 2255 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| 2256 | return false; |
| 2257 | |
| 2258 | Intrinsic::ID IntrinID; |
| 2259 | Value *InitX; |
| 2260 | Instruction *DefX = nullptr; |
| 2261 | PHINode *CntPhi = nullptr; |
| 2262 | Instruction *CntInst = nullptr; |
| 2263 | |
| 2264 | if (!detectShiftUntilZeroIdiom(CurLoop, DL: *DL, IntrinID, InitX, CntInst, CntPhi, |
| 2265 | DefX)) |
| 2266 | return false; |
| 2267 | |
| 2268 | return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); |
| 2269 | } |
| 2270 | |
| 2271 | bool LoopIdiomRecognize::recognizeShiftUntilLessThan() { |
| 2272 | // Give up if the loop has multiple blocks or multiple backedges. |
| 2273 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| 2274 | return false; |
| 2275 | |
| 2276 | Intrinsic::ID IntrinID; |
| 2277 | Value *InitX; |
| 2278 | Instruction *DefX = nullptr; |
| 2279 | PHINode *CntPhi = nullptr; |
| 2280 | Instruction *CntInst = nullptr; |
| 2281 | |
| 2282 | APInt LoopThreshold; |
| 2283 | if (!detectShiftUntilLessThanIdiom(CurLoop, DL: *DL, IntrinID, InitX, CntInst, |
| 2284 | CntPhi, DefX, Threshold&: LoopThreshold)) |
| 2285 | return false; |
| 2286 | |
| 2287 | if (LoopThreshold == 2) { |
| 2288 | // Treat as regular FFS. |
| 2289 | return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); |
| 2290 | } |
| 2291 | |
| 2292 | // Look for Floor Log2 Idiom. |
| 2293 | if (LoopThreshold != 4) |
| 2294 | return false; |
| 2295 | |
| 2296 | // Abort if CntPhi is used outside of the loop. |
| 2297 | for (User *U : CntPhi->users()) |
| 2298 | if (!CurLoop->contains(Inst: cast<Instruction>(Val: U))) |
| 2299 | return false; |
| 2300 | |
| 2301 | // It is safe to assume Preheader exist as it was checked in |
| 2302 | // parent function RunOnLoop. |
| 2303 | BasicBlock *PH = CurLoop->getLoopPreheader(); |
| 2304 | auto *PreCondBB = PH->getSinglePredecessor(); |
| 2305 | if (!PreCondBB) |
| 2306 | return false; |
| 2307 | auto *PreCondBI = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
| 2308 | if (!PreCondBI) |
| 2309 | return false; |
| 2310 | |
| 2311 | APInt PreLoopThreshold; |
| 2312 | if (matchShiftULTCondition(BI: PreCondBI, LoopEntry: PH, Threshold&: PreLoopThreshold) != InitX || |
| 2313 | PreLoopThreshold != 2) |
| 2314 | return false; |
| 2315 | |
| 2316 | bool ZeroCheck = true; |
| 2317 | |
| 2318 | // the loop has only 6 instructions: |
| 2319 | // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] |
| 2320 | // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] |
| 2321 | // %shr = ashr %n.addr.0, 1 |
| 2322 | // %tobool = icmp ult %n.addr.0, C |
| 2323 | // %inc = add nsw %i.0, 1 |
| 2324 | // br i1 %tobool |
| 2325 | size_t IdiomCanonicalSize = 6; |
| 2326 | if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, CanonicalSize: IdiomCanonicalSize)) |
| 2327 | return false; |
| 2328 | |
| 2329 | // log2(x) = w − 1 − clz(x) |
| 2330 | transformLoopToCountable(IntrinID, PreCondBB: PH, CntInst, CntPhi, Var: InitX, DefX, |
| 2331 | DL: DefX->getDebugLoc(), ZeroCheck, |
| 2332 | /*IsCntPhiUsedOutsideLoop=*/false, |
| 2333 | /*InsertSub=*/true); |
| 2334 | return true; |
| 2335 | } |
| 2336 | |
| 2337 | /// Recognizes a population count idiom in a non-countable loop. |
| 2338 | /// |
| 2339 | /// If detected, transforms the relevant code to issue the popcount intrinsic |
| 2340 | /// function call, and returns true; otherwise, returns false. |
| 2341 | bool LoopIdiomRecognize::recognizePopcount() { |
| 2342 | if (TTI->getPopcntSupport(IntTyWidthInBit: 32) != TargetTransformInfo::PSK_FastHardware) |
| 2343 | return false; |
| 2344 | |
| 2345 | // Counting population are usually conducted by few arithmetic instructions. |
| 2346 | // Such instructions can be easily "absorbed" by vacant slots in a |
| 2347 | // non-compact loop. Therefore, recognizing popcount idiom only makes sense |
| 2348 | // in a compact loop. |
| 2349 | |
| 2350 | // Give up if the loop has multiple blocks or multiple backedges. |
| 2351 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| 2352 | return false; |
| 2353 | |
| 2354 | BasicBlock *LoopBody = *(CurLoop->block_begin()); |
| 2355 | if (LoopBody->size() >= 20) { |
| 2356 | // The loop is too big, bail out. |
| 2357 | return false; |
| 2358 | } |
| 2359 | |
| 2360 | // It should have a preheader containing nothing but an unconditional branch. |
| 2361 | BasicBlock *PH = CurLoop->getLoopPreheader(); |
| 2362 | if (!PH || &PH->front() != PH->getTerminator()) |
| 2363 | return false; |
| 2364 | auto *EntryBI = dyn_cast<BranchInst>(Val: PH->getTerminator()); |
| 2365 | if (!EntryBI || EntryBI->isConditional()) |
| 2366 | return false; |
| 2367 | |
| 2368 | // It should have a precondition block where the generated popcount intrinsic |
| 2369 | // function can be inserted. |
| 2370 | auto *PreCondBB = PH->getSinglePredecessor(); |
| 2371 | if (!PreCondBB) |
| 2372 | return false; |
| 2373 | auto *PreCondBI = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
| 2374 | if (!PreCondBI || PreCondBI->isUnconditional()) |
| 2375 | return false; |
| 2376 | |
| 2377 | Instruction *CntInst; |
| 2378 | PHINode *CntPhi; |
| 2379 | Value *Val; |
| 2380 | if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Var&: Val)) |
| 2381 | return false; |
| 2382 | |
| 2383 | transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Var: Val); |
| 2384 | return true; |
| 2385 | } |
| 2386 | |
| 2387 | static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
| 2388 | const DebugLoc &DL) { |
| 2389 | Value *Ops[] = {Val}; |
| 2390 | Type *Tys[] = {Val->getType()}; |
| 2391 | |
| 2392 | CallInst *CI = IRBuilder.CreateIntrinsic(ID: Intrinsic::ctpop, Types: Tys, Args: Ops); |
| 2393 | CI->setDebugLoc(DL); |
| 2394 | |
| 2395 | return CI; |
| 2396 | } |
| 2397 | |
| 2398 | static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
| 2399 | const DebugLoc &DL, bool ZeroCheck, |
| 2400 | Intrinsic::ID IID) { |
| 2401 | Value *Ops[] = {Val, IRBuilder.getInt1(V: ZeroCheck)}; |
| 2402 | Type *Tys[] = {Val->getType()}; |
| 2403 | |
| 2404 | CallInst *CI = IRBuilder.CreateIntrinsic(ID: IID, Types: Tys, Args: Ops); |
| 2405 | CI->setDebugLoc(DL); |
| 2406 | |
| 2407 | return CI; |
| 2408 | } |
| 2409 | |
| 2410 | /// Transform the following loop (Using CTLZ, CTTZ is similar): |
| 2411 | /// loop: |
| 2412 | /// CntPhi = PHI [Cnt0, CntInst] |
| 2413 | /// PhiX = PHI [InitX, DefX] |
| 2414 | /// CntInst = CntPhi + 1 |
| 2415 | /// DefX = PhiX >> 1 |
| 2416 | /// LOOP_BODY |
| 2417 | /// Br: loop if (DefX != 0) |
| 2418 | /// Use(CntPhi) or Use(CntInst) |
| 2419 | /// |
| 2420 | /// Into: |
| 2421 | /// If CntPhi used outside the loop: |
| 2422 | /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) |
| 2423 | /// Count = CountPrev + 1 |
| 2424 | /// else |
| 2425 | /// Count = BitWidth(InitX) - CTLZ(InitX) |
| 2426 | /// loop: |
| 2427 | /// CntPhi = PHI [Cnt0, CntInst] |
| 2428 | /// PhiX = PHI [InitX, DefX] |
| 2429 | /// PhiCount = PHI [Count, Dec] |
| 2430 | /// CntInst = CntPhi + 1 |
| 2431 | /// DefX = PhiX >> 1 |
| 2432 | /// Dec = PhiCount - 1 |
| 2433 | /// LOOP_BODY |
| 2434 | /// Br: loop if (Dec != 0) |
| 2435 | /// Use(CountPrev + Cnt0) // Use(CntPhi) |
| 2436 | /// or |
| 2437 | /// Use(Count + Cnt0) // Use(CntInst) |
| 2438 | /// |
| 2439 | /// If LOOP_BODY is empty the loop will be deleted. |
| 2440 | /// If CntInst and DefX are not used in LOOP_BODY they will be removed. |
| 2441 | void LoopIdiomRecognize::transformLoopToCountable( |
| 2442 | Intrinsic::ID IntrinID, BasicBlock *, Instruction *CntInst, |
| 2443 | PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, |
| 2444 | bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) { |
| 2445 | BranchInst * = cast<BranchInst>(Val: Preheader->getTerminator()); |
| 2446 | |
| 2447 | // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block |
| 2448 | IRBuilder<> Builder(PreheaderBr); |
| 2449 | Builder.SetCurrentDebugLocation(DL); |
| 2450 | |
| 2451 | // If there are no uses of CntPhi crate: |
| 2452 | // Count = BitWidth - CTLZ(InitX); |
| 2453 | // NewCount = Count; |
| 2454 | // If there are uses of CntPhi create: |
| 2455 | // NewCount = BitWidth - CTLZ(InitX >> 1); |
| 2456 | // Count = NewCount + 1; |
| 2457 | Value *InitXNext; |
| 2458 | if (IsCntPhiUsedOutsideLoop) { |
| 2459 | if (DefX->getOpcode() == Instruction::AShr) |
| 2460 | InitXNext = Builder.CreateAShr(LHS: InitX, RHS: 1); |
| 2461 | else if (DefX->getOpcode() == Instruction::LShr) |
| 2462 | InitXNext = Builder.CreateLShr(LHS: InitX, RHS: 1); |
| 2463 | else if (DefX->getOpcode() == Instruction::Shl) // cttz |
| 2464 | InitXNext = Builder.CreateShl(LHS: InitX, RHS: 1); |
| 2465 | else |
| 2466 | llvm_unreachable("Unexpected opcode!" ); |
| 2467 | } else |
| 2468 | InitXNext = InitX; |
| 2469 | Value *Count = |
| 2470 | createFFSIntrinsic(IRBuilder&: Builder, Val: InitXNext, DL, ZeroCheck, IID: IntrinID); |
| 2471 | Type *CountTy = Count->getType(); |
| 2472 | Count = Builder.CreateSub( |
| 2473 | LHS: ConstantInt::get(Ty: CountTy, V: CountTy->getIntegerBitWidth()), RHS: Count); |
| 2474 | if (InsertSub) |
| 2475 | Count = Builder.CreateSub(LHS: Count, RHS: ConstantInt::get(Ty: CountTy, V: 1)); |
| 2476 | Value *NewCount = Count; |
| 2477 | if (IsCntPhiUsedOutsideLoop) |
| 2478 | Count = Builder.CreateAdd(LHS: Count, RHS: ConstantInt::get(Ty: CountTy, V: 1)); |
| 2479 | |
| 2480 | NewCount = Builder.CreateZExtOrTrunc(V: NewCount, DestTy: CntInst->getType()); |
| 2481 | |
| 2482 | Value *CntInitVal = CntPhi->getIncomingValueForBlock(BB: Preheader); |
| 2483 | if (cast<ConstantInt>(Val: CntInst->getOperand(i: 1))->isOne()) { |
| 2484 | // If the counter was being incremented in the loop, add NewCount to the |
| 2485 | // counter's initial value, but only if the initial value is not zero. |
| 2486 | ConstantInt *InitConst = dyn_cast<ConstantInt>(Val: CntInitVal); |
| 2487 | if (!InitConst || !InitConst->isZero()) |
| 2488 | NewCount = Builder.CreateAdd(LHS: NewCount, RHS: CntInitVal); |
| 2489 | } else { |
| 2490 | // If the count was being decremented in the loop, subtract NewCount from |
| 2491 | // the counter's initial value. |
| 2492 | NewCount = Builder.CreateSub(LHS: CntInitVal, RHS: NewCount); |
| 2493 | } |
| 2494 | |
| 2495 | // Step 2: Insert new IV and loop condition: |
| 2496 | // loop: |
| 2497 | // ... |
| 2498 | // PhiCount = PHI [Count, Dec] |
| 2499 | // ... |
| 2500 | // Dec = PhiCount - 1 |
| 2501 | // ... |
| 2502 | // Br: loop if (Dec != 0) |
| 2503 | BasicBlock *Body = *(CurLoop->block_begin()); |
| 2504 | auto *LbBr = cast<BranchInst>(Val: Body->getTerminator()); |
| 2505 | ICmpInst *LbCond = cast<ICmpInst>(Val: LbBr->getCondition()); |
| 2506 | |
| 2507 | PHINode *TcPhi = PHINode::Create(Ty: CountTy, NumReservedValues: 2, NameStr: "tcphi" ); |
| 2508 | TcPhi->insertBefore(InsertPos: Body->begin()); |
| 2509 | |
| 2510 | Builder.SetInsertPoint(LbCond); |
| 2511 | Instruction *TcDec = cast<Instruction>(Val: Builder.CreateSub( |
| 2512 | LHS: TcPhi, RHS: ConstantInt::get(Ty: CountTy, V: 1), Name: "tcdec" , HasNUW: false, HasNSW: true)); |
| 2513 | |
| 2514 | TcPhi->addIncoming(V: Count, BB: Preheader); |
| 2515 | TcPhi->addIncoming(V: TcDec, BB: Body); |
| 2516 | |
| 2517 | CmpInst::Predicate Pred = |
| 2518 | (LbBr->getSuccessor(i: 0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; |
| 2519 | LbCond->setPredicate(Pred); |
| 2520 | LbCond->setOperand(i_nocapture: 0, Val_nocapture: TcDec); |
| 2521 | LbCond->setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty: CountTy, V: 0)); |
| 2522 | |
| 2523 | // Step 3: All the references to the original counter outside |
| 2524 | // the loop are replaced with the NewCount |
| 2525 | if (IsCntPhiUsedOutsideLoop) |
| 2526 | CntPhi->replaceUsesOutsideBlock(V: NewCount, BB: Body); |
| 2527 | else |
| 2528 | CntInst->replaceUsesOutsideBlock(V: NewCount, BB: Body); |
| 2529 | |
| 2530 | // step 4: Forget the "non-computable" trip-count SCEV associated with the |
| 2531 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
| 2532 | SE->forgetLoop(L: CurLoop); |
| 2533 | } |
| 2534 | |
| 2535 | void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, |
| 2536 | Instruction *CntInst, |
| 2537 | PHINode *CntPhi, Value *Var) { |
| 2538 | BasicBlock *PreHead = CurLoop->getLoopPreheader(); |
| 2539 | auto *PreCondBr = cast<BranchInst>(Val: PreCondBB->getTerminator()); |
| 2540 | const DebugLoc &DL = CntInst->getDebugLoc(); |
| 2541 | |
| 2542 | // Assuming before transformation, the loop is following: |
| 2543 | // if (x) // the precondition |
| 2544 | // do { cnt++; x &= x - 1; } while(x); |
| 2545 | |
| 2546 | // Step 1: Insert the ctpop instruction at the end of the precondition block |
| 2547 | IRBuilder<> Builder(PreCondBr); |
| 2548 | Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; |
| 2549 | { |
| 2550 | PopCnt = createPopcntIntrinsic(IRBuilder&: Builder, Val: Var, DL); |
| 2551 | NewCount = PopCntZext = |
| 2552 | Builder.CreateZExtOrTrunc(V: PopCnt, DestTy: cast<IntegerType>(Val: CntPhi->getType())); |
| 2553 | |
| 2554 | if (NewCount != PopCnt) |
| 2555 | (cast<Instruction>(Val: NewCount))->setDebugLoc(DL); |
| 2556 | |
| 2557 | // TripCnt is exactly the number of iterations the loop has |
| 2558 | TripCnt = NewCount; |
| 2559 | |
| 2560 | // If the population counter's initial value is not zero, insert Add Inst. |
| 2561 | Value *CntInitVal = CntPhi->getIncomingValueForBlock(BB: PreHead); |
| 2562 | ConstantInt *InitConst = dyn_cast<ConstantInt>(Val: CntInitVal); |
| 2563 | if (!InitConst || !InitConst->isZero()) { |
| 2564 | NewCount = Builder.CreateAdd(LHS: NewCount, RHS: CntInitVal); |
| 2565 | (cast<Instruction>(Val: NewCount))->setDebugLoc(DL); |
| 2566 | } |
| 2567 | } |
| 2568 | |
| 2569 | // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to |
| 2570 | // "if (NewCount == 0) loop-exit". Without this change, the intrinsic |
| 2571 | // function would be partial dead code, and downstream passes will drag |
| 2572 | // it back from the precondition block to the preheader. |
| 2573 | { |
| 2574 | ICmpInst *PreCond = cast<ICmpInst>(Val: PreCondBr->getCondition()); |
| 2575 | |
| 2576 | Value *Opnd0 = PopCntZext; |
| 2577 | Value *Opnd1 = ConstantInt::get(Ty: PopCntZext->getType(), V: 0); |
| 2578 | if (PreCond->getOperand(i_nocapture: 0) != Var) |
| 2579 | std::swap(a&: Opnd0, b&: Opnd1); |
| 2580 | |
| 2581 | ICmpInst *NewPreCond = cast<ICmpInst>( |
| 2582 | Val: Builder.CreateICmp(P: PreCond->getPredicate(), LHS: Opnd0, RHS: Opnd1)); |
| 2583 | PreCondBr->setCondition(NewPreCond); |
| 2584 | |
| 2585 | RecursivelyDeleteTriviallyDeadInstructions(V: PreCond, TLI); |
| 2586 | } |
| 2587 | |
| 2588 | // Step 3: Note that the population count is exactly the trip count of the |
| 2589 | // loop in question, which enable us to convert the loop from noncountable |
| 2590 | // loop into a countable one. The benefit is twofold: |
| 2591 | // |
| 2592 | // - If the loop only counts population, the entire loop becomes dead after |
| 2593 | // the transformation. It is a lot easier to prove a countable loop dead |
| 2594 | // than to prove a noncountable one. (In some C dialects, an infinite loop |
| 2595 | // isn't dead even if it computes nothing useful. In general, DCE needs |
| 2596 | // to prove a noncountable loop finite before safely delete it.) |
| 2597 | // |
| 2598 | // - If the loop also performs something else, it remains alive. |
| 2599 | // Since it is transformed to countable form, it can be aggressively |
| 2600 | // optimized by some optimizations which are in general not applicable |
| 2601 | // to a noncountable loop. |
| 2602 | // |
| 2603 | // After this step, this loop (conceptually) would look like following: |
| 2604 | // newcnt = __builtin_ctpop(x); |
| 2605 | // t = newcnt; |
| 2606 | // if (x) |
| 2607 | // do { cnt++; x &= x-1; t--) } while (t > 0); |
| 2608 | BasicBlock *Body = *(CurLoop->block_begin()); |
| 2609 | { |
| 2610 | auto *LbBr = cast<BranchInst>(Val: Body->getTerminator()); |
| 2611 | ICmpInst *LbCond = cast<ICmpInst>(Val: LbBr->getCondition()); |
| 2612 | Type *Ty = TripCnt->getType(); |
| 2613 | |
| 2614 | PHINode *TcPhi = PHINode::Create(Ty, NumReservedValues: 2, NameStr: "tcphi" ); |
| 2615 | TcPhi->insertBefore(InsertPos: Body->begin()); |
| 2616 | |
| 2617 | Builder.SetInsertPoint(LbCond); |
| 2618 | Instruction *TcDec = cast<Instruction>( |
| 2619 | Val: Builder.CreateSub(LHS: TcPhi, RHS: ConstantInt::get(Ty, V: 1), |
| 2620 | Name: "tcdec" , HasNUW: false, HasNSW: true)); |
| 2621 | |
| 2622 | TcPhi->addIncoming(V: TripCnt, BB: PreHead); |
| 2623 | TcPhi->addIncoming(V: TcDec, BB: Body); |
| 2624 | |
| 2625 | CmpInst::Predicate Pred = |
| 2626 | (LbBr->getSuccessor(i: 0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; |
| 2627 | LbCond->setPredicate(Pred); |
| 2628 | LbCond->setOperand(i_nocapture: 0, Val_nocapture: TcDec); |
| 2629 | LbCond->setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty, V: 0)); |
| 2630 | } |
| 2631 | |
| 2632 | // Step 4: All the references to the original population counter outside |
| 2633 | // the loop are replaced with the NewCount -- the value returned from |
| 2634 | // __builtin_ctpop(). |
| 2635 | CntInst->replaceUsesOutsideBlock(V: NewCount, BB: Body); |
| 2636 | |
| 2637 | // step 5: Forget the "non-computable" trip-count SCEV associated with the |
| 2638 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
| 2639 | SE->forgetLoop(L: CurLoop); |
| 2640 | } |
| 2641 | |
| 2642 | /// Match loop-invariant value. |
| 2643 | template <typename SubPattern_t> struct match_LoopInvariant { |
| 2644 | SubPattern_t SubPattern; |
| 2645 | const Loop *L; |
| 2646 | |
| 2647 | match_LoopInvariant(const SubPattern_t &SP, const Loop *L) |
| 2648 | : SubPattern(SP), L(L) {} |
| 2649 | |
| 2650 | template <typename ITy> bool match(ITy *V) const { |
| 2651 | return L->isLoopInvariant(V) && SubPattern.match(V); |
| 2652 | } |
| 2653 | }; |
| 2654 | |
| 2655 | /// Matches if the value is loop-invariant. |
| 2656 | template <typename Ty> |
| 2657 | inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { |
| 2658 | return match_LoopInvariant<Ty>(M, L); |
| 2659 | } |
| 2660 | |
| 2661 | /// Return true if the idiom is detected in the loop. |
| 2662 | /// |
| 2663 | /// The core idiom we are trying to detect is: |
| 2664 | /// \code |
| 2665 | /// entry: |
| 2666 | /// <...> |
| 2667 | /// %bitmask = shl i32 1, %bitpos |
| 2668 | /// br label %loop |
| 2669 | /// |
| 2670 | /// loop: |
| 2671 | /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] |
| 2672 | /// %x.curr.bitmasked = and i32 %x.curr, %bitmask |
| 2673 | /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 |
| 2674 | /// %x.next = shl i32 %x.curr, 1 |
| 2675 | /// <...> |
| 2676 | /// br i1 %x.curr.isbitunset, label %loop, label %end |
| 2677 | /// |
| 2678 | /// end: |
| 2679 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
| 2680 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
| 2681 | /// <...> |
| 2682 | /// \endcode |
| 2683 | static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, |
| 2684 | Value *&BitMask, Value *&BitPos, |
| 2685 | Value *&CurrX, Instruction *&NextX) { |
| 2686 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| 2687 | " Performing shift-until-bittest idiom detection.\n" ); |
| 2688 | |
| 2689 | // Give up if the loop has multiple blocks or multiple backedges. |
| 2690 | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { |
| 2691 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n" ); |
| 2692 | return false; |
| 2693 | } |
| 2694 | |
| 2695 | BasicBlock * = CurLoop->getHeader(); |
| 2696 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 2697 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
| 2698 | |
| 2699 | using namespace PatternMatch; |
| 2700 | |
| 2701 | // Step 1: Check if the loop backedge is in desirable form. |
| 2702 | |
| 2703 | CmpPredicate Pred; |
| 2704 | Value *CmpLHS, *CmpRHS; |
| 2705 | BasicBlock *TrueBB, *FalseBB; |
| 2706 | if (!match(V: LoopHeaderBB->getTerminator(), |
| 2707 | P: m_Br(C: m_ICmp(Pred, L: m_Value(V&: CmpLHS), R: m_Value(V&: CmpRHS)), |
| 2708 | T: m_BasicBlock(V&: TrueBB), F: m_BasicBlock(V&: FalseBB)))) { |
| 2709 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n" ); |
| 2710 | return false; |
| 2711 | } |
| 2712 | |
| 2713 | // Step 2: Check if the backedge's condition is in desirable form. |
| 2714 | |
| 2715 | auto MatchVariableBitMask = [&]() { |
| 2716 | return ICmpInst::isEquality(P: Pred) && match(V: CmpRHS, P: m_Zero()) && |
| 2717 | match(V: CmpLHS, |
| 2718 | P: m_c_And(L: m_Value(V&: CurrX), |
| 2719 | R: m_CombineAnd( |
| 2720 | L: m_Value(V&: BitMask), |
| 2721 | R: m_LoopInvariant(M: m_Shl(L: m_One(), R: m_Value(V&: BitPos)), |
| 2722 | L: CurLoop)))); |
| 2723 | }; |
| 2724 | |
| 2725 | auto MatchDecomposableConstantBitMask = [&]() { |
| 2726 | auto Res = llvm::decomposeBitTestICmp( |
| 2727 | LHS: CmpLHS, RHS: CmpRHS, Pred, /*LookThroughTrunc=*/true, |
| 2728 | /*AllowNonZeroC=*/false, /*DecomposeAnd=*/true); |
| 2729 | if (Res && Res->Mask.isPowerOf2()) { |
| 2730 | assert(ICmpInst::isEquality(Res->Pred)); |
| 2731 | Pred = Res->Pred; |
| 2732 | CurrX = Res->X; |
| 2733 | BitMask = ConstantInt::get(Ty: CurrX->getType(), V: Res->Mask); |
| 2734 | BitPos = ConstantInt::get(Ty: CurrX->getType(), V: Res->Mask.logBase2()); |
| 2735 | return true; |
| 2736 | } |
| 2737 | return false; |
| 2738 | }; |
| 2739 | |
| 2740 | if (!MatchVariableBitMask() && !MatchDecomposableConstantBitMask()) { |
| 2741 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n" ); |
| 2742 | return false; |
| 2743 | } |
| 2744 | |
| 2745 | // Step 3: Check if the recurrence is in desirable form. |
| 2746 | auto *CurrXPN = dyn_cast<PHINode>(Val: CurrX); |
| 2747 | if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { |
| 2748 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n" ); |
| 2749 | return false; |
| 2750 | } |
| 2751 | |
| 2752 | BaseX = CurrXPN->getIncomingValueForBlock(BB: LoopPreheaderBB); |
| 2753 | NextX = |
| 2754 | dyn_cast<Instruction>(Val: CurrXPN->getIncomingValueForBlock(BB: LoopHeaderBB)); |
| 2755 | |
| 2756 | assert(CurLoop->isLoopInvariant(BaseX) && |
| 2757 | "Expected BaseX to be available in the preheader!" ); |
| 2758 | |
| 2759 | if (!NextX || !match(V: NextX, P: m_Shl(L: m_Specific(V: CurrX), R: m_One()))) { |
| 2760 | // FIXME: support right-shift? |
| 2761 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n" ); |
| 2762 | return false; |
| 2763 | } |
| 2764 | |
| 2765 | // Step 4: Check if the backedge's destinations are in desirable form. |
| 2766 | |
| 2767 | assert(ICmpInst::isEquality(Pred) && |
| 2768 | "Should only get equality predicates here." ); |
| 2769 | |
| 2770 | // cmp-br is commutative, so canonicalize to a single variant. |
| 2771 | if (Pred != ICmpInst::Predicate::ICMP_EQ) { |
| 2772 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
| 2773 | std::swap(a&: TrueBB, b&: FalseBB); |
| 2774 | } |
| 2775 | |
| 2776 | // We expect to exit loop when comparison yields false, |
| 2777 | // so when it yields true we should branch back to loop header. |
| 2778 | if (TrueBB != LoopHeaderBB) { |
| 2779 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n" ); |
| 2780 | return false; |
| 2781 | } |
| 2782 | |
| 2783 | // Okay, idiom checks out. |
| 2784 | return true; |
| 2785 | } |
| 2786 | |
| 2787 | /// Look for the following loop: |
| 2788 | /// \code |
| 2789 | /// entry: |
| 2790 | /// <...> |
| 2791 | /// %bitmask = shl i32 1, %bitpos |
| 2792 | /// br label %loop |
| 2793 | /// |
| 2794 | /// loop: |
| 2795 | /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] |
| 2796 | /// %x.curr.bitmasked = and i32 %x.curr, %bitmask |
| 2797 | /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 |
| 2798 | /// %x.next = shl i32 %x.curr, 1 |
| 2799 | /// <...> |
| 2800 | /// br i1 %x.curr.isbitunset, label %loop, label %end |
| 2801 | /// |
| 2802 | /// end: |
| 2803 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
| 2804 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
| 2805 | /// <...> |
| 2806 | /// \endcode |
| 2807 | /// |
| 2808 | /// And transform it into: |
| 2809 | /// \code |
| 2810 | /// entry: |
| 2811 | /// %bitmask = shl i32 1, %bitpos |
| 2812 | /// %lowbitmask = add i32 %bitmask, -1 |
| 2813 | /// %mask = or i32 %lowbitmask, %bitmask |
| 2814 | /// %x.masked = and i32 %x, %mask |
| 2815 | /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, |
| 2816 | /// i1 true) |
| 2817 | /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros |
| 2818 | /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 |
| 2819 | /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos |
| 2820 | /// %tripcount = add i32 %backedgetakencount, 1 |
| 2821 | /// %x.curr = shl i32 %x, %backedgetakencount |
| 2822 | /// %x.next = shl i32 %x, %tripcount |
| 2823 | /// br label %loop |
| 2824 | /// |
| 2825 | /// loop: |
| 2826 | /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] |
| 2827 | /// %loop.iv.next = add nuw i32 %loop.iv, 1 |
| 2828 | /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount |
| 2829 | /// <...> |
| 2830 | /// br i1 %loop.ivcheck, label %end, label %loop |
| 2831 | /// |
| 2832 | /// end: |
| 2833 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
| 2834 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
| 2835 | /// <...> |
| 2836 | /// \endcode |
| 2837 | bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { |
| 2838 | bool MadeChange = false; |
| 2839 | |
| 2840 | Value *X, *BitMask, *BitPos, *XCurr; |
| 2841 | Instruction *XNext; |
| 2842 | if (!detectShiftUntilBitTestIdiom(CurLoop, BaseX&: X, BitMask, BitPos, CurrX&: XCurr, |
| 2843 | NextX&: XNext)) { |
| 2844 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| 2845 | " shift-until-bittest idiom detection failed.\n" ); |
| 2846 | return MadeChange; |
| 2847 | } |
| 2848 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n" ); |
| 2849 | |
| 2850 | // Ok, it is the idiom we were looking for, we *could* transform this loop, |
| 2851 | // but is it profitable to transform? |
| 2852 | |
| 2853 | BasicBlock * = CurLoop->getHeader(); |
| 2854 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 2855 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
| 2856 | |
| 2857 | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); |
| 2858 | assert(SuccessorBB && "There is only a single successor." ); |
| 2859 | |
| 2860 | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); |
| 2861 | Builder.SetCurrentDebugLocation(cast<Instruction>(Val: XCurr)->getDebugLoc()); |
| 2862 | |
| 2863 | Intrinsic::ID IntrID = Intrinsic::ctlz; |
| 2864 | Type *Ty = X->getType(); |
| 2865 | unsigned Bitwidth = Ty->getScalarSizeInBits(); |
| 2866 | |
| 2867 | TargetTransformInfo::TargetCostKind CostKind = |
| 2868 | TargetTransformInfo::TCK_SizeAndLatency; |
| 2869 | |
| 2870 | // The rewrite is considered to be unprofitable iff and only iff the |
| 2871 | // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* |
| 2872 | // making the loop countable, even if nothing else changes. |
| 2873 | IntrinsicCostAttributes Attrs( |
| 2874 | IntrID, Ty, {PoisonValue::get(T: Ty), /*is_zero_poison=*/Builder.getTrue()}); |
| 2875 | InstructionCost Cost = TTI->getIntrinsicInstrCost(ICA: Attrs, CostKind); |
| 2876 | if (Cost > TargetTransformInfo::TCC_Basic) { |
| 2877 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| 2878 | " Intrinsic is too costly, not beneficial\n" ); |
| 2879 | return MadeChange; |
| 2880 | } |
| 2881 | if (TTI->getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind) > |
| 2882 | TargetTransformInfo::TCC_Basic) { |
| 2883 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n" ); |
| 2884 | return MadeChange; |
| 2885 | } |
| 2886 | |
| 2887 | // Ok, transform appears worthwhile. |
| 2888 | MadeChange = true; |
| 2889 | |
| 2890 | if (!isGuaranteedNotToBeUndefOrPoison(V: BitPos)) { |
| 2891 | // BitMask may be computed from BitPos, Freeze BitPos so we can increase |
| 2892 | // it's use count. |
| 2893 | std::optional<BasicBlock::iterator> InsertPt = std::nullopt; |
| 2894 | if (auto *BitPosI = dyn_cast<Instruction>(Val: BitPos)) |
| 2895 | InsertPt = BitPosI->getInsertionPointAfterDef(); |
| 2896 | else |
| 2897 | InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); |
| 2898 | if (!InsertPt) |
| 2899 | return false; |
| 2900 | FreezeInst *BitPosFrozen = |
| 2901 | new FreezeInst(BitPos, BitPos->getName() + ".fr" , *InsertPt); |
| 2902 | BitPos->replaceUsesWithIf(New: BitPosFrozen, ShouldReplace: [BitPosFrozen](Use &U) { |
| 2903 | return U.getUser() != BitPosFrozen; |
| 2904 | }); |
| 2905 | BitPos = BitPosFrozen; |
| 2906 | } |
| 2907 | |
| 2908 | // Step 1: Compute the loop trip count. |
| 2909 | |
| 2910 | Value *LowBitMask = Builder.CreateAdd(LHS: BitMask, RHS: Constant::getAllOnesValue(Ty), |
| 2911 | Name: BitPos->getName() + ".lowbitmask" ); |
| 2912 | Value *Mask = |
| 2913 | Builder.CreateOr(LHS: LowBitMask, RHS: BitMask, Name: BitPos->getName() + ".mask" ); |
| 2914 | Value *XMasked = Builder.CreateAnd(LHS: X, RHS: Mask, Name: X->getName() + ".masked" ); |
| 2915 | CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( |
| 2916 | ID: IntrID, Types: Ty, Args: {XMasked, /*is_zero_poison=*/Builder.getTrue()}, |
| 2917 | /*FMFSource=*/nullptr, Name: XMasked->getName() + ".numleadingzeros" ); |
| 2918 | Value *XMaskedNumActiveBits = Builder.CreateSub( |
| 2919 | LHS: ConstantInt::get(Ty, V: Ty->getScalarSizeInBits()), RHS: XMaskedNumLeadingZeros, |
| 2920 | Name: XMasked->getName() + ".numactivebits" , /*HasNUW=*/true, |
| 2921 | /*HasNSW=*/Bitwidth != 2); |
| 2922 | Value *XMaskedLeadingOnePos = |
| 2923 | Builder.CreateAdd(LHS: XMaskedNumActiveBits, RHS: Constant::getAllOnesValue(Ty), |
| 2924 | Name: XMasked->getName() + ".leadingonepos" , /*HasNUW=*/false, |
| 2925 | /*HasNSW=*/Bitwidth > 2); |
| 2926 | |
| 2927 | Value *LoopBackedgeTakenCount = Builder.CreateSub( |
| 2928 | LHS: BitPos, RHS: XMaskedLeadingOnePos, Name: CurLoop->getName() + ".backedgetakencount" , |
| 2929 | /*HasNUW=*/true, /*HasNSW=*/true); |
| 2930 | // We know loop's backedge-taken count, but what's loop's trip count? |
| 2931 | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. |
| 2932 | Value *LoopTripCount = |
| 2933 | Builder.CreateAdd(LHS: LoopBackedgeTakenCount, RHS: ConstantInt::get(Ty, V: 1), |
| 2934 | Name: CurLoop->getName() + ".tripcount" , /*HasNUW=*/true, |
| 2935 | /*HasNSW=*/Bitwidth != 2); |
| 2936 | |
| 2937 | // Step 2: Compute the recurrence's final value without a loop. |
| 2938 | |
| 2939 | // NewX is always safe to compute, because `LoopBackedgeTakenCount` |
| 2940 | // will always be smaller than `bitwidth(X)`, i.e. we never get poison. |
| 2941 | Value *NewX = Builder.CreateShl(LHS: X, RHS: LoopBackedgeTakenCount); |
| 2942 | NewX->takeName(V: XCurr); |
| 2943 | if (auto *I = dyn_cast<Instruction>(Val: NewX)) |
| 2944 | I->copyIRFlags(V: XNext, /*IncludeWrapFlags=*/true); |
| 2945 | |
| 2946 | Value *NewXNext; |
| 2947 | // Rewriting XNext is more complicated, however, because `X << LoopTripCount` |
| 2948 | // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen |
| 2949 | // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know |
| 2950 | // that isn't the case, we'll need to emit an alternative, safe IR. |
| 2951 | if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || |
| 2952 | PatternMatch::match( |
| 2953 | V: BitPos, P: PatternMatch::m_SpecificInt_ICMP( |
| 2954 | Predicate: ICmpInst::ICMP_NE, Threshold: APInt(Ty->getScalarSizeInBits(), |
| 2955 | Ty->getScalarSizeInBits() - 1)))) |
| 2956 | NewXNext = Builder.CreateShl(LHS: X, RHS: LoopTripCount); |
| 2957 | else { |
| 2958 | // Otherwise, just additionally shift by one. It's the smallest solution, |
| 2959 | // alternatively, we could check that NewX is INT_MIN (or BitPos is ) |
| 2960 | // and select 0 instead. |
| 2961 | NewXNext = Builder.CreateShl(LHS: NewX, RHS: ConstantInt::get(Ty, V: 1)); |
| 2962 | } |
| 2963 | |
| 2964 | NewXNext->takeName(V: XNext); |
| 2965 | if (auto *I = dyn_cast<Instruction>(Val: NewXNext)) |
| 2966 | I->copyIRFlags(V: XNext, /*IncludeWrapFlags=*/true); |
| 2967 | |
| 2968 | // Step 3: Adjust the successor basic block to recieve the computed |
| 2969 | // recurrence's final value instead of the recurrence itself. |
| 2970 | |
| 2971 | XCurr->replaceUsesOutsideBlock(V: NewX, BB: LoopHeaderBB); |
| 2972 | XNext->replaceUsesOutsideBlock(V: NewXNext, BB: LoopHeaderBB); |
| 2973 | |
| 2974 | // Step 4: Rewrite the loop into a countable form, with canonical IV. |
| 2975 | |
| 2976 | // The new canonical induction variable. |
| 2977 | Builder.SetInsertPoint(TheBB: LoopHeaderBB, IP: LoopHeaderBB->begin()); |
| 2978 | auto *IV = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: CurLoop->getName() + ".iv" ); |
| 2979 | |
| 2980 | // The induction itself. |
| 2981 | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. |
| 2982 | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); |
| 2983 | auto *IVNext = |
| 2984 | Builder.CreateAdd(LHS: IV, RHS: ConstantInt::get(Ty, V: 1), Name: IV->getName() + ".next" , |
| 2985 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
| 2986 | |
| 2987 | // The loop trip count check. |
| 2988 | auto *IVCheck = Builder.CreateICmpEQ(LHS: IVNext, RHS: LoopTripCount, |
| 2989 | Name: CurLoop->getName() + ".ivcheck" ); |
| 2990 | Builder.CreateCondBr(Cond: IVCheck, True: SuccessorBB, False: LoopHeaderBB); |
| 2991 | LoopHeaderBB->getTerminator()->eraseFromParent(); |
| 2992 | |
| 2993 | // Populate the IV PHI. |
| 2994 | IV->addIncoming(V: ConstantInt::get(Ty, V: 0), BB: LoopPreheaderBB); |
| 2995 | IV->addIncoming(V: IVNext, BB: LoopHeaderBB); |
| 2996 | |
| 2997 | // Step 5: Forget the "non-computable" trip-count SCEV associated with the |
| 2998 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
| 2999 | |
| 3000 | SE->forgetLoop(L: CurLoop); |
| 3001 | |
| 3002 | // Other passes will take care of actually deleting the loop if possible. |
| 3003 | |
| 3004 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n" ); |
| 3005 | |
| 3006 | ++NumShiftUntilBitTest; |
| 3007 | return MadeChange; |
| 3008 | } |
| 3009 | |
| 3010 | /// Return true if the idiom is detected in the loop. |
| 3011 | /// |
| 3012 | /// The core idiom we are trying to detect is: |
| 3013 | /// \code |
| 3014 | /// entry: |
| 3015 | /// <...> |
| 3016 | /// %start = <...> |
| 3017 | /// %extraoffset = <...> |
| 3018 | /// <...> |
| 3019 | /// br label %for.cond |
| 3020 | /// |
| 3021 | /// loop: |
| 3022 | /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] |
| 3023 | /// %nbits = add nsw i8 %iv, %extraoffset |
| 3024 | /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits |
| 3025 | /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 |
| 3026 | /// %iv.next = add i8 %iv, 1 |
| 3027 | /// <...> |
| 3028 | /// br i1 %val.shifted.iszero, label %end, label %loop |
| 3029 | /// |
| 3030 | /// end: |
| 3031 | /// %iv.res = phi i8 [ %iv, %loop ] <...> |
| 3032 | /// %nbits.res = phi i8 [ %nbits, %loop ] <...> |
| 3033 | /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> |
| 3034 | /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> |
| 3035 | /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> |
| 3036 | /// <...> |
| 3037 | /// \endcode |
| 3038 | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, |
| 3039 | Instruction *&ValShiftedIsZero, |
| 3040 | Intrinsic::ID &IntrinID, Instruction *&IV, |
| 3041 | Value *&Start, Value *&Val, |
| 3042 | const SCEV *&, |
| 3043 | bool &InvertedCond) { |
| 3044 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| 3045 | " Performing shift-until-zero idiom detection.\n" ); |
| 3046 | |
| 3047 | // Give up if the loop has multiple blocks or multiple backedges. |
| 3048 | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { |
| 3049 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n" ); |
| 3050 | return false; |
| 3051 | } |
| 3052 | |
| 3053 | Instruction *ValShifted, *NBits, *IVNext; |
| 3054 | Value *; |
| 3055 | |
| 3056 | BasicBlock * = CurLoop->getHeader(); |
| 3057 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 3058 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
| 3059 | |
| 3060 | using namespace PatternMatch; |
| 3061 | |
| 3062 | // Step 1: Check if the loop backedge, condition is in desirable form. |
| 3063 | |
| 3064 | CmpPredicate Pred; |
| 3065 | BasicBlock *TrueBB, *FalseBB; |
| 3066 | if (!match(V: LoopHeaderBB->getTerminator(), |
| 3067 | P: m_Br(C: m_Instruction(I&: ValShiftedIsZero), T: m_BasicBlock(V&: TrueBB), |
| 3068 | F: m_BasicBlock(V&: FalseBB))) || |
| 3069 | !match(V: ValShiftedIsZero, |
| 3070 | P: m_ICmp(Pred, L: m_Instruction(I&: ValShifted), R: m_Zero())) || |
| 3071 | !ICmpInst::isEquality(P: Pred)) { |
| 3072 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n" ); |
| 3073 | return false; |
| 3074 | } |
| 3075 | |
| 3076 | // Step 2: Check if the comparison's operand is in desirable form. |
| 3077 | // FIXME: Val could be a one-input PHI node, which we should look past. |
| 3078 | if (!match(V: ValShifted, P: m_Shift(L: m_LoopInvariant(M: m_Value(V&: Val), L: CurLoop), |
| 3079 | R: m_Instruction(I&: NBits)))) { |
| 3080 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n" ); |
| 3081 | return false; |
| 3082 | } |
| 3083 | IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz |
| 3084 | : Intrinsic::ctlz; |
| 3085 | |
| 3086 | // Step 3: Check if the shift amount is in desirable form. |
| 3087 | |
| 3088 | if (match(V: NBits, P: m_c_Add(L: m_Instruction(I&: IV), |
| 3089 | R: m_LoopInvariant(M: m_Value(V&: ExtraOffset), L: CurLoop))) && |
| 3090 | (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) |
| 3091 | ExtraOffsetExpr = SE->getNegativeSCEV(V: SE->getSCEV(V: ExtraOffset)); |
| 3092 | else if (match(V: NBits, |
| 3093 | P: m_Sub(L: m_Instruction(I&: IV), |
| 3094 | R: m_LoopInvariant(M: m_Value(V&: ExtraOffset), L: CurLoop))) && |
| 3095 | NBits->hasNoSignedWrap()) |
| 3096 | ExtraOffsetExpr = SE->getSCEV(V: ExtraOffset); |
| 3097 | else { |
| 3098 | IV = NBits; |
| 3099 | ExtraOffsetExpr = SE->getZero(Ty: NBits->getType()); |
| 3100 | } |
| 3101 | |
| 3102 | // Step 4: Check if the recurrence is in desirable form. |
| 3103 | auto *IVPN = dyn_cast<PHINode>(Val: IV); |
| 3104 | if (!IVPN || IVPN->getParent() != LoopHeaderBB) { |
| 3105 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n" ); |
| 3106 | return false; |
| 3107 | } |
| 3108 | |
| 3109 | Start = IVPN->getIncomingValueForBlock(BB: LoopPreheaderBB); |
| 3110 | IVNext = dyn_cast<Instruction>(Val: IVPN->getIncomingValueForBlock(BB: LoopHeaderBB)); |
| 3111 | |
| 3112 | if (!IVNext || !match(V: IVNext, P: m_Add(L: m_Specific(V: IVPN), R: m_One()))) { |
| 3113 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n" ); |
| 3114 | return false; |
| 3115 | } |
| 3116 | |
| 3117 | // Step 4: Check if the backedge's destinations are in desirable form. |
| 3118 | |
| 3119 | assert(ICmpInst::isEquality(Pred) && |
| 3120 | "Should only get equality predicates here." ); |
| 3121 | |
| 3122 | // cmp-br is commutative, so canonicalize to a single variant. |
| 3123 | InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; |
| 3124 | if (InvertedCond) { |
| 3125 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
| 3126 | std::swap(a&: TrueBB, b&: FalseBB); |
| 3127 | } |
| 3128 | |
| 3129 | // We expect to exit loop when comparison yields true, |
| 3130 | // so when it yields false we should branch back to loop header. |
| 3131 | if (FalseBB != LoopHeaderBB) { |
| 3132 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n" ); |
| 3133 | return false; |
| 3134 | } |
| 3135 | |
| 3136 | // The new, countable, loop will certainly only run a known number of |
| 3137 | // iterations, It won't be infinite. But the old loop might be infinite |
| 3138 | // under certain conditions. For logical shifts, the value will become zero |
| 3139 | // after at most bitwidth(%Val) loop iterations. However, for arithmetic |
| 3140 | // right-shift, iff the sign bit was set, the value will never become zero, |
| 3141 | // and the loop may never finish. |
| 3142 | if (ValShifted->getOpcode() == Instruction::AShr && |
| 3143 | !isMustProgress(L: CurLoop) && !SE->isKnownNonNegative(S: SE->getSCEV(V: Val))) { |
| 3144 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n" ); |
| 3145 | return false; |
| 3146 | } |
| 3147 | |
| 3148 | // Okay, idiom checks out. |
| 3149 | return true; |
| 3150 | } |
| 3151 | |
| 3152 | /// Look for the following loop: |
| 3153 | /// \code |
| 3154 | /// entry: |
| 3155 | /// <...> |
| 3156 | /// %start = <...> |
| 3157 | /// %extraoffset = <...> |
| 3158 | /// <...> |
| 3159 | /// br label %for.cond |
| 3160 | /// |
| 3161 | /// loop: |
| 3162 | /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] |
| 3163 | /// %nbits = add nsw i8 %iv, %extraoffset |
| 3164 | /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits |
| 3165 | /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 |
| 3166 | /// %iv.next = add i8 %iv, 1 |
| 3167 | /// <...> |
| 3168 | /// br i1 %val.shifted.iszero, label %end, label %loop |
| 3169 | /// |
| 3170 | /// end: |
| 3171 | /// %iv.res = phi i8 [ %iv, %loop ] <...> |
| 3172 | /// %nbits.res = phi i8 [ %nbits, %loop ] <...> |
| 3173 | /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> |
| 3174 | /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> |
| 3175 | /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> |
| 3176 | /// <...> |
| 3177 | /// \endcode |
| 3178 | /// |
| 3179 | /// And transform it into: |
| 3180 | /// \code |
| 3181 | /// entry: |
| 3182 | /// <...> |
| 3183 | /// %start = <...> |
| 3184 | /// %extraoffset = <...> |
| 3185 | /// <...> |
| 3186 | /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) |
| 3187 | /// %val.numactivebits = sub i8 8, %val.numleadingzeros |
| 3188 | /// %extraoffset.neg = sub i8 0, %extraoffset |
| 3189 | /// %tmp = add i8 %val.numactivebits, %extraoffset.neg |
| 3190 | /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) |
| 3191 | /// %loop.tripcount = sub i8 %iv.final, %start |
| 3192 | /// br label %loop |
| 3193 | /// |
| 3194 | /// loop: |
| 3195 | /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] |
| 3196 | /// %loop.iv.next = add i8 %loop.iv, 1 |
| 3197 | /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount |
| 3198 | /// %iv = add i8 %loop.iv, %start |
| 3199 | /// <...> |
| 3200 | /// br i1 %loop.ivcheck, label %end, label %loop |
| 3201 | /// |
| 3202 | /// end: |
| 3203 | /// %iv.res = phi i8 [ %iv.final, %loop ] <...> |
| 3204 | /// <...> |
| 3205 | /// \endcode |
| 3206 | bool LoopIdiomRecognize::recognizeShiftUntilZero() { |
| 3207 | bool MadeChange = false; |
| 3208 | |
| 3209 | Instruction *ValShiftedIsZero; |
| 3210 | Intrinsic::ID IntrID; |
| 3211 | Instruction *IV; |
| 3212 | Value *Start, *Val; |
| 3213 | const SCEV *; |
| 3214 | bool InvertedCond; |
| 3215 | if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrinID&: IntrID, IV, |
| 3216 | Start, Val, ExtraOffsetExpr, InvertedCond)) { |
| 3217 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| 3218 | " shift-until-zero idiom detection failed.\n" ); |
| 3219 | return MadeChange; |
| 3220 | } |
| 3221 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n" ); |
| 3222 | |
| 3223 | // Ok, it is the idiom we were looking for, we *could* transform this loop, |
| 3224 | // but is it profitable to transform? |
| 3225 | |
| 3226 | BasicBlock * = CurLoop->getHeader(); |
| 3227 | BasicBlock * = CurLoop->getLoopPreheader(); |
| 3228 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
| 3229 | |
| 3230 | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); |
| 3231 | assert(SuccessorBB && "There is only a single successor." ); |
| 3232 | |
| 3233 | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); |
| 3234 | Builder.SetCurrentDebugLocation(IV->getDebugLoc()); |
| 3235 | |
| 3236 | Type *Ty = Val->getType(); |
| 3237 | unsigned Bitwidth = Ty->getScalarSizeInBits(); |
| 3238 | |
| 3239 | TargetTransformInfo::TargetCostKind CostKind = |
| 3240 | TargetTransformInfo::TCK_SizeAndLatency; |
| 3241 | |
| 3242 | // The rewrite is considered to be unprofitable iff and only iff the |
| 3243 | // intrinsic we'll use are not cheap. Note that we are okay with *just* |
| 3244 | // making the loop countable, even if nothing else changes. |
| 3245 | IntrinsicCostAttributes Attrs( |
| 3246 | IntrID, Ty, {PoisonValue::get(T: Ty), /*is_zero_poison=*/Builder.getFalse()}); |
| 3247 | InstructionCost Cost = TTI->getIntrinsicInstrCost(ICA: Attrs, CostKind); |
| 3248 | if (Cost > TargetTransformInfo::TCC_Basic) { |
| 3249 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| 3250 | " Intrinsic is too costly, not beneficial\n" ); |
| 3251 | return MadeChange; |
| 3252 | } |
| 3253 | |
| 3254 | // Ok, transform appears worthwhile. |
| 3255 | MadeChange = true; |
| 3256 | |
| 3257 | bool OffsetIsZero = ExtraOffsetExpr->isZero(); |
| 3258 | |
| 3259 | // Step 1: Compute the loop's final IV value / trip count. |
| 3260 | |
| 3261 | CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( |
| 3262 | ID: IntrID, Types: Ty, Args: {Val, /*is_zero_poison=*/Builder.getFalse()}, |
| 3263 | /*FMFSource=*/nullptr, Name: Val->getName() + ".numleadingzeros" ); |
| 3264 | Value *ValNumActiveBits = Builder.CreateSub( |
| 3265 | LHS: ConstantInt::get(Ty, V: Ty->getScalarSizeInBits()), RHS: ValNumLeadingZeros, |
| 3266 | Name: Val->getName() + ".numactivebits" , /*HasNUW=*/true, |
| 3267 | /*HasNSW=*/Bitwidth != 2); |
| 3268 | |
| 3269 | SCEVExpander Expander(*SE, *DL, "loop-idiom" ); |
| 3270 | Expander.setInsertPoint(&*Builder.GetInsertPoint()); |
| 3271 | Value * = Expander.expandCodeFor(SH: ExtraOffsetExpr); |
| 3272 | |
| 3273 | Value *ValNumActiveBitsOffset = Builder.CreateAdd( |
| 3274 | LHS: ValNumActiveBits, RHS: ExtraOffset, Name: ValNumActiveBits->getName() + ".offset" , |
| 3275 | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); |
| 3276 | Value *IVFinal = Builder.CreateIntrinsic(ID: Intrinsic::smax, Types: {Ty}, |
| 3277 | Args: {ValNumActiveBitsOffset, Start}, |
| 3278 | /*FMFSource=*/nullptr, Name: "iv.final" ); |
| 3279 | |
| 3280 | auto *LoopBackedgeTakenCount = cast<Instruction>(Val: Builder.CreateSub( |
| 3281 | LHS: IVFinal, RHS: Start, Name: CurLoop->getName() + ".backedgetakencount" , |
| 3282 | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); |
| 3283 | // FIXME: or when the offset was `add nuw` |
| 3284 | |
| 3285 | // We know loop's backedge-taken count, but what's loop's trip count? |
| 3286 | Value *LoopTripCount = |
| 3287 | Builder.CreateAdd(LHS: LoopBackedgeTakenCount, RHS: ConstantInt::get(Ty, V: 1), |
| 3288 | Name: CurLoop->getName() + ".tripcount" , /*HasNUW=*/true, |
| 3289 | /*HasNSW=*/Bitwidth != 2); |
| 3290 | |
| 3291 | // Step 2: Adjust the successor basic block to recieve the original |
| 3292 | // induction variable's final value instead of the orig. IV itself. |
| 3293 | |
| 3294 | IV->replaceUsesOutsideBlock(V: IVFinal, BB: LoopHeaderBB); |
| 3295 | |
| 3296 | // Step 3: Rewrite the loop into a countable form, with canonical IV. |
| 3297 | |
| 3298 | // The new canonical induction variable. |
| 3299 | Builder.SetInsertPoint(TheBB: LoopHeaderBB, IP: LoopHeaderBB->begin()); |
| 3300 | auto *CIV = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: CurLoop->getName() + ".iv" ); |
| 3301 | |
| 3302 | // The induction itself. |
| 3303 | Builder.SetInsertPoint(TheBB: LoopHeaderBB, IP: LoopHeaderBB->getFirstNonPHIIt()); |
| 3304 | auto *CIVNext = |
| 3305 | Builder.CreateAdd(LHS: CIV, RHS: ConstantInt::get(Ty, V: 1), Name: CIV->getName() + ".next" , |
| 3306 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
| 3307 | |
| 3308 | // The loop trip count check. |
| 3309 | auto *CIVCheck = Builder.CreateICmpEQ(LHS: CIVNext, RHS: LoopTripCount, |
| 3310 | Name: CurLoop->getName() + ".ivcheck" ); |
| 3311 | auto *NewIVCheck = CIVCheck; |
| 3312 | if (InvertedCond) { |
| 3313 | NewIVCheck = Builder.CreateNot(V: CIVCheck); |
| 3314 | NewIVCheck->takeName(V: ValShiftedIsZero); |
| 3315 | } |
| 3316 | |
| 3317 | // The original IV, but rebased to be an offset to the CIV. |
| 3318 | auto *IVDePHId = Builder.CreateAdd(LHS: CIV, RHS: Start, Name: "" , /*HasNUW=*/false, |
| 3319 | /*HasNSW=*/true); // FIXME: what about NUW? |
| 3320 | IVDePHId->takeName(V: IV); |
| 3321 | |
| 3322 | // The loop terminator. |
| 3323 | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); |
| 3324 | Builder.CreateCondBr(Cond: CIVCheck, True: SuccessorBB, False: LoopHeaderBB); |
| 3325 | LoopHeaderBB->getTerminator()->eraseFromParent(); |
| 3326 | |
| 3327 | // Populate the IV PHI. |
| 3328 | CIV->addIncoming(V: ConstantInt::get(Ty, V: 0), BB: LoopPreheaderBB); |
| 3329 | CIV->addIncoming(V: CIVNext, BB: LoopHeaderBB); |
| 3330 | |
| 3331 | // Step 4: Forget the "non-computable" trip-count SCEV associated with the |
| 3332 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
| 3333 | |
| 3334 | SE->forgetLoop(L: CurLoop); |
| 3335 | |
| 3336 | // Step 5: Try to cleanup the loop's body somewhat. |
| 3337 | IV->replaceAllUsesWith(V: IVDePHId); |
| 3338 | IV->eraseFromParent(); |
| 3339 | |
| 3340 | ValShiftedIsZero->replaceAllUsesWith(V: NewIVCheck); |
| 3341 | ValShiftedIsZero->eraseFromParent(); |
| 3342 | |
| 3343 | // Other passes will take care of actually deleting the loop if possible. |
| 3344 | |
| 3345 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n" ); |
| 3346 | |
| 3347 | ++NumShiftUntilZero; |
| 3348 | return MadeChange; |
| 3349 | } |
| 3350 | |