1 | //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass implements an idiom recognizer that transforms simple loops into a |
10 | // non-loop form. In cases that this kicks in, it can be a significant |
11 | // performance win. |
12 | // |
13 | // If compiling for code size we avoid idiom recognition if the resulting |
14 | // code could be larger than the code for the original loop. One way this could |
15 | // happen is if the loop is not removable after idiom recognition due to the |
16 | // presence of non-idiom instructions. The initial implementation of the |
17 | // heuristics applies to idioms in multi-block loops. |
18 | // |
19 | //===----------------------------------------------------------------------===// |
20 | // |
21 | // TODO List: |
22 | // |
23 | // Future loop memory idioms to recognize: memcmp, etc. |
24 | // |
25 | // This could recognize common matrix multiplies and dot product idioms and |
26 | // replace them with calls to BLAS (if linked in??). |
27 | // |
28 | //===----------------------------------------------------------------------===// |
29 | |
30 | #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" |
31 | #include "llvm/ADT/APInt.h" |
32 | #include "llvm/ADT/ArrayRef.h" |
33 | #include "llvm/ADT/DenseMap.h" |
34 | #include "llvm/ADT/MapVector.h" |
35 | #include "llvm/ADT/SetVector.h" |
36 | #include "llvm/ADT/SmallPtrSet.h" |
37 | #include "llvm/ADT/SmallVector.h" |
38 | #include "llvm/ADT/Statistic.h" |
39 | #include "llvm/ADT/StringRef.h" |
40 | #include "llvm/Analysis/AliasAnalysis.h" |
41 | #include "llvm/Analysis/CmpInstAnalysis.h" |
42 | #include "llvm/Analysis/LoopInfo.h" |
43 | #include "llvm/Analysis/LoopPass.h" |
44 | #include "llvm/Analysis/MemoryLocation.h" |
45 | #include "llvm/Analysis/MemorySSA.h" |
46 | #include "llvm/Analysis/MemorySSAUpdater.h" |
47 | #include "llvm/Analysis/MustExecute.h" |
48 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
49 | #include "llvm/Analysis/ScalarEvolution.h" |
50 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
51 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
52 | #include "llvm/Analysis/TargetLibraryInfo.h" |
53 | #include "llvm/Analysis/TargetTransformInfo.h" |
54 | #include "llvm/Analysis/ValueTracking.h" |
55 | #include "llvm/IR/BasicBlock.h" |
56 | #include "llvm/IR/Constant.h" |
57 | #include "llvm/IR/Constants.h" |
58 | #include "llvm/IR/DataLayout.h" |
59 | #include "llvm/IR/DebugLoc.h" |
60 | #include "llvm/IR/DerivedTypes.h" |
61 | #include "llvm/IR/Dominators.h" |
62 | #include "llvm/IR/GlobalValue.h" |
63 | #include "llvm/IR/GlobalVariable.h" |
64 | #include "llvm/IR/IRBuilder.h" |
65 | #include "llvm/IR/InstrTypes.h" |
66 | #include "llvm/IR/Instruction.h" |
67 | #include "llvm/IR/Instructions.h" |
68 | #include "llvm/IR/IntrinsicInst.h" |
69 | #include "llvm/IR/Intrinsics.h" |
70 | #include "llvm/IR/LLVMContext.h" |
71 | #include "llvm/IR/Module.h" |
72 | #include "llvm/IR/PassManager.h" |
73 | #include "llvm/IR/PatternMatch.h" |
74 | #include "llvm/IR/Type.h" |
75 | #include "llvm/IR/User.h" |
76 | #include "llvm/IR/Value.h" |
77 | #include "llvm/IR/ValueHandle.h" |
78 | #include "llvm/Support/Casting.h" |
79 | #include "llvm/Support/CommandLine.h" |
80 | #include "llvm/Support/Debug.h" |
81 | #include "llvm/Support/InstructionCost.h" |
82 | #include "llvm/Support/raw_ostream.h" |
83 | #include "llvm/Transforms/Utils/BuildLibCalls.h" |
84 | #include "llvm/Transforms/Utils/Local.h" |
85 | #include "llvm/Transforms/Utils/LoopUtils.h" |
86 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
87 | #include <algorithm> |
88 | #include <cassert> |
89 | #include <cstdint> |
90 | #include <utility> |
91 | #include <vector> |
92 | |
93 | using namespace llvm; |
94 | using namespace SCEVPatternMatch; |
95 | |
96 | #define DEBUG_TYPE "loop-idiom" |
97 | |
98 | STATISTIC(NumMemSet, "Number of memset's formed from loop stores" ); |
99 | STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores" ); |
100 | STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores" ); |
101 | STATISTIC(NumStrLen, "Number of strlen's and wcslen's formed from loop loads" ); |
102 | STATISTIC( |
103 | NumShiftUntilBitTest, |
104 | "Number of uncountable loops recognized as 'shift until bitttest' idiom" ); |
105 | STATISTIC(NumShiftUntilZero, |
106 | "Number of uncountable loops recognized as 'shift until zero' idiom" ); |
107 | |
108 | bool DisableLIRP::All; |
109 | static cl::opt<bool, true> |
110 | DisableLIRPAll("disable-" DEBUG_TYPE "-all" , |
111 | cl::desc("Options to disable Loop Idiom Recognize Pass." ), |
112 | cl::location(L&: DisableLIRP::All), cl::init(Val: false), |
113 | cl::ReallyHidden); |
114 | |
115 | bool DisableLIRP::Memset; |
116 | static cl::opt<bool, true> |
117 | DisableLIRPMemset("disable-" DEBUG_TYPE "-memset" , |
118 | cl::desc("Proceed with loop idiom recognize pass, but do " |
119 | "not convert loop(s) to memset." ), |
120 | cl::location(L&: DisableLIRP::Memset), cl::init(Val: false), |
121 | cl::ReallyHidden); |
122 | |
123 | bool DisableLIRP::Memcpy; |
124 | static cl::opt<bool, true> |
125 | DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy" , |
126 | cl::desc("Proceed with loop idiom recognize pass, but do " |
127 | "not convert loop(s) to memcpy." ), |
128 | cl::location(L&: DisableLIRP::Memcpy), cl::init(Val: false), |
129 | cl::ReallyHidden); |
130 | |
131 | bool DisableLIRP::Strlen; |
132 | static cl::opt<bool, true> |
133 | DisableLIRPStrlen("disable-loop-idiom-strlen" , |
134 | cl::desc("Proceed with loop idiom recognize pass, but do " |
135 | "not convert loop(s) to strlen." ), |
136 | cl::location(L&: DisableLIRP::Strlen), cl::init(Val: false), |
137 | cl::ReallyHidden); |
138 | |
139 | bool DisableLIRP::Wcslen; |
140 | static cl::opt<bool, true> |
141 | EnableLIRPWcslen("disable-loop-idiom-wcslen" , |
142 | cl::desc("Proceed with loop idiom recognize pass, " |
143 | "enable conversion of loop(s) to wcslen." ), |
144 | cl::location(L&: DisableLIRP::Wcslen), cl::init(Val: false), |
145 | cl::ReallyHidden); |
146 | |
147 | static cl::opt<bool> UseLIRCodeSizeHeurs( |
148 | "use-lir-code-size-heurs" , |
149 | cl::desc("Use loop idiom recognition code size heuristics when compiling " |
150 | "with -Os/-Oz" ), |
151 | cl::init(Val: true), cl::Hidden); |
152 | |
153 | namespace { |
154 | |
155 | class LoopIdiomRecognize { |
156 | Loop *CurLoop = nullptr; |
157 | AliasAnalysis *AA; |
158 | DominatorTree *DT; |
159 | LoopInfo *LI; |
160 | ScalarEvolution *SE; |
161 | TargetLibraryInfo *TLI; |
162 | const TargetTransformInfo *TTI; |
163 | const DataLayout *DL; |
164 | OptimizationRemarkEmitter &ORE; |
165 | bool ApplyCodeSizeHeuristics; |
166 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
167 | |
168 | public: |
169 | explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, |
170 | LoopInfo *LI, ScalarEvolution *SE, |
171 | TargetLibraryInfo *TLI, |
172 | const TargetTransformInfo *TTI, MemorySSA *MSSA, |
173 | const DataLayout *DL, |
174 | OptimizationRemarkEmitter &ORE) |
175 | : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { |
176 | if (MSSA) |
177 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: MSSA); |
178 | } |
179 | |
180 | bool runOnLoop(Loop *L); |
181 | |
182 | private: |
183 | using StoreList = SmallVector<StoreInst *, 8>; |
184 | using StoreListMap = MapVector<Value *, StoreList>; |
185 | |
186 | StoreListMap StoreRefsForMemset; |
187 | StoreListMap StoreRefsForMemsetPattern; |
188 | StoreList StoreRefsForMemcpy; |
189 | bool HasMemset; |
190 | bool HasMemsetPattern; |
191 | bool HasMemcpy; |
192 | |
193 | /// Return code for isLegalStore() |
194 | enum LegalStoreKind { |
195 | None = 0, |
196 | Memset, |
197 | MemsetPattern, |
198 | Memcpy, |
199 | UnorderedAtomicMemcpy, |
200 | DontUse // Dummy retval never to be used. Allows catching errors in retval |
201 | // handling. |
202 | }; |
203 | |
204 | /// \name Countable Loop Idiom Handling |
205 | /// @{ |
206 | |
207 | bool runOnCountableLoop(); |
208 | bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
209 | SmallVectorImpl<BasicBlock *> &ExitBlocks); |
210 | |
211 | void collectStores(BasicBlock *BB); |
212 | LegalStoreKind isLegalStore(StoreInst *SI); |
213 | enum class ForMemset { No, Yes }; |
214 | bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, |
215 | ForMemset For); |
216 | |
217 | template <typename MemInst> |
218 | bool processLoopMemIntrinsic( |
219 | BasicBlock *BB, |
220 | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), |
221 | const SCEV *BECount); |
222 | bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); |
223 | bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); |
224 | |
225 | bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, |
226 | MaybeAlign StoreAlignment, Value *StoredVal, |
227 | Instruction *TheStore, |
228 | SmallPtrSetImpl<Instruction *> &Stores, |
229 | const SCEVAddRecExpr *Ev, const SCEV *BECount, |
230 | bool IsNegStride, bool IsLoopMemset = false); |
231 | bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); |
232 | bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, |
233 | const SCEV *StoreSize, MaybeAlign StoreAlign, |
234 | MaybeAlign LoadAlign, Instruction *TheStore, |
235 | Instruction *TheLoad, |
236 | const SCEVAddRecExpr *StoreEv, |
237 | const SCEVAddRecExpr *LoadEv, |
238 | const SCEV *BECount); |
239 | bool avoidLIRForMultiBlockLoop(bool IsMemset = false, |
240 | bool IsLoopMemset = false); |
241 | |
242 | /// @} |
243 | /// \name Noncountable Loop Idiom Handling |
244 | /// @{ |
245 | |
246 | bool runOnNoncountableLoop(); |
247 | |
248 | bool recognizePopcount(); |
249 | void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, |
250 | PHINode *CntPhi, Value *Var); |
251 | bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX, |
252 | bool ZeroCheck, size_t CanonicalSize); |
253 | bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX, |
254 | Instruction *DefX, PHINode *CntPhi, |
255 | Instruction *CntInst); |
256 | bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz |
257 | bool recognizeShiftUntilLessThan(); |
258 | void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, |
259 | Instruction *CntInst, PHINode *CntPhi, |
260 | Value *Var, Instruction *DefX, |
261 | const DebugLoc &DL, bool ZeroCheck, |
262 | bool IsCntPhiUsedOutsideLoop, |
263 | bool InsertSub = false); |
264 | |
265 | bool recognizeShiftUntilBitTest(); |
266 | bool recognizeShiftUntilZero(); |
267 | bool recognizeAndInsertStrLen(); |
268 | |
269 | /// @} |
270 | }; |
271 | } // end anonymous namespace |
272 | |
273 | PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, |
274 | LoopStandardAnalysisResults &AR, |
275 | LPMUpdater &) { |
276 | if (DisableLIRP::All) |
277 | return PreservedAnalyses::all(); |
278 | |
279 | const auto *DL = &L.getHeader()->getDataLayout(); |
280 | |
281 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis |
282 | // pass. Function analyses need to be preserved across loop transformations |
283 | // but ORE cannot be preserved (see comment before the pass definition). |
284 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
285 | |
286 | LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, |
287 | AR.MSSA, DL, ORE); |
288 | if (!LIR.runOnLoop(L: &L)) |
289 | return PreservedAnalyses::all(); |
290 | |
291 | auto PA = getLoopPassPreservedAnalyses(); |
292 | if (AR.MSSA) |
293 | PA.preserve<MemorySSAAnalysis>(); |
294 | return PA; |
295 | } |
296 | |
297 | static void deleteDeadInstruction(Instruction *I) { |
298 | I->replaceAllUsesWith(V: PoisonValue::get(T: I->getType())); |
299 | I->eraseFromParent(); |
300 | } |
301 | |
302 | //===----------------------------------------------------------------------===// |
303 | // |
304 | // Implementation of LoopIdiomRecognize |
305 | // |
306 | //===----------------------------------------------------------------------===// |
307 | |
308 | bool LoopIdiomRecognize::runOnLoop(Loop *L) { |
309 | CurLoop = L; |
310 | // If the loop could not be converted to canonical form, it must have an |
311 | // indirectbr in it, just give up. |
312 | if (!L->getLoopPreheader()) |
313 | return false; |
314 | |
315 | // Disable loop idiom recognition if the function's name is a common idiom. |
316 | StringRef Name = L->getHeader()->getParent()->getName(); |
317 | if (Name == "memset" || Name == "memcpy" || Name == "strlen" || |
318 | Name == "wcslen" ) |
319 | return false; |
320 | |
321 | // Determine if code size heuristics need to be applied. |
322 | ApplyCodeSizeHeuristics = |
323 | L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; |
324 | |
325 | HasMemset = TLI->has(F: LibFunc_memset); |
326 | HasMemsetPattern = TLI->has(F: LibFunc_memset_pattern16); |
327 | HasMemcpy = TLI->has(F: LibFunc_memcpy); |
328 | |
329 | if (HasMemset || HasMemsetPattern || HasMemcpy) |
330 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
331 | return runOnCountableLoop(); |
332 | |
333 | return runOnNoncountableLoop(); |
334 | } |
335 | |
336 | bool LoopIdiomRecognize::runOnCountableLoop() { |
337 | const SCEV *BECount = SE->getBackedgeTakenCount(L: CurLoop); |
338 | assert(!isa<SCEVCouldNotCompute>(BECount) && |
339 | "runOnCountableLoop() called on a loop without a predictable" |
340 | "backedge-taken count" ); |
341 | |
342 | // If this loop executes exactly one time, then it should be peeled, not |
343 | // optimized by this pass. |
344 | if (BECount->isZero()) |
345 | return false; |
346 | |
347 | SmallVector<BasicBlock *, 8> ExitBlocks; |
348 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
349 | |
350 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" |
351 | << CurLoop->getHeader()->getParent()->getName() |
352 | << "] Countable Loop %" << CurLoop->getHeader()->getName() |
353 | << "\n" ); |
354 | |
355 | // The following transforms hoist stores/memsets into the loop pre-header. |
356 | // Give up if the loop has instructions that may throw. |
357 | SimpleLoopSafetyInfo SafetyInfo; |
358 | SafetyInfo.computeLoopSafetyInfo(CurLoop); |
359 | if (SafetyInfo.anyBlockMayThrow()) |
360 | return false; |
361 | |
362 | bool MadeChange = false; |
363 | |
364 | // Scan all the blocks in the loop that are not in subloops. |
365 | for (auto *BB : CurLoop->getBlocks()) { |
366 | // Ignore blocks in subloops. |
367 | if (LI->getLoopFor(BB) != CurLoop) |
368 | continue; |
369 | |
370 | MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); |
371 | } |
372 | return MadeChange; |
373 | } |
374 | |
375 | static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { |
376 | const SCEVConstant *ConstStride = cast<SCEVConstant>(Val: StoreEv->getOperand(i: 1)); |
377 | return ConstStride->getAPInt(); |
378 | } |
379 | |
380 | /// getMemSetPatternValue - If a strided store of the specified value is safe to |
381 | /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should |
382 | /// be passed in. Otherwise, return null. |
383 | /// |
384 | /// Note that we don't ever attempt to use memset_pattern8 or 4, because these |
385 | /// just replicate their input array and then pass on to memset_pattern16. |
386 | static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { |
387 | // FIXME: This could check for UndefValue because it can be merged into any |
388 | // other valid pattern. |
389 | |
390 | // If the value isn't a constant, we can't promote it to being in a constant |
391 | // array. We could theoretically do a store to an alloca or something, but |
392 | // that doesn't seem worthwhile. |
393 | Constant *C = dyn_cast<Constant>(Val: V); |
394 | if (!C || isa<ConstantExpr>(Val: C)) |
395 | return nullptr; |
396 | |
397 | // Only handle simple values that are a power of two bytes in size. |
398 | uint64_t Size = DL->getTypeSizeInBits(Ty: V->getType()); |
399 | if (Size == 0 || (Size & 7) || (Size & (Size - 1))) |
400 | return nullptr; |
401 | |
402 | // Don't care enough about darwin/ppc to implement this. |
403 | if (DL->isBigEndian()) |
404 | return nullptr; |
405 | |
406 | // Convert to size in bytes. |
407 | Size /= 8; |
408 | |
409 | // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see |
410 | // if the top and bottom are the same (e.g. for vectors and large integers). |
411 | if (Size > 16) |
412 | return nullptr; |
413 | |
414 | // If the constant is exactly 16 bytes, just use it. |
415 | if (Size == 16) |
416 | return C; |
417 | |
418 | // Otherwise, we'll use an array of the constants. |
419 | unsigned ArraySize = 16 / Size; |
420 | ArrayType *AT = ArrayType::get(ElementType: V->getType(), NumElements: ArraySize); |
421 | return ConstantArray::get(T: AT, V: std::vector<Constant *>(ArraySize, C)); |
422 | } |
423 | |
424 | LoopIdiomRecognize::LegalStoreKind |
425 | LoopIdiomRecognize::isLegalStore(StoreInst *SI) { |
426 | // Don't touch volatile stores. |
427 | if (SI->isVolatile()) |
428 | return LegalStoreKind::None; |
429 | // We only want simple or unordered-atomic stores. |
430 | if (!SI->isUnordered()) |
431 | return LegalStoreKind::None; |
432 | |
433 | // Avoid merging nontemporal stores. |
434 | if (SI->getMetadata(KindID: LLVMContext::MD_nontemporal)) |
435 | return LegalStoreKind::None; |
436 | |
437 | Value *StoredVal = SI->getValueOperand(); |
438 | Value *StorePtr = SI->getPointerOperand(); |
439 | |
440 | // Don't convert stores of non-integral pointer types to memsets (which stores |
441 | // integers). |
442 | if (DL->isNonIntegralPointerType(Ty: StoredVal->getType()->getScalarType())) |
443 | return LegalStoreKind::None; |
444 | |
445 | // Reject stores that are so large that they overflow an unsigned. |
446 | // When storing out scalable vectors we bail out for now, since the code |
447 | // below currently only works for constant strides. |
448 | TypeSize SizeInBits = DL->getTypeSizeInBits(Ty: StoredVal->getType()); |
449 | if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || |
450 | (SizeInBits.getFixedValue() >> 32) != 0) |
451 | return LegalStoreKind::None; |
452 | |
453 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
454 | // loop, which indicates a strided store. If we have something else, it's a |
455 | // random store we can't handle. |
456 | const SCEV *StoreEv = SE->getSCEV(V: StorePtr); |
457 | const SCEVConstant *Stride; |
458 | if (!match(S: StoreEv, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_SCEVConstant(V&: Stride), |
459 | L: m_SpecificLoop(L: CurLoop)))) |
460 | return LegalStoreKind::None; |
461 | |
462 | // See if the store can be turned into a memset. |
463 | |
464 | // If the stored value is a byte-wise value (like i32 -1), then it may be |
465 | // turned into a memset of i8 -1, assuming that all the consecutive bytes |
466 | // are stored. A store of i32 0x01020304 can never be turned into a memset, |
467 | // but it can be turned into memset_pattern if the target supports it. |
468 | Value *SplatValue = isBytewiseValue(V: StoredVal, DL: *DL); |
469 | |
470 | // Note: memset and memset_pattern on unordered-atomic is yet not supported |
471 | bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); |
472 | |
473 | // If we're allowed to form a memset, and the stored value would be |
474 | // acceptable for memset, use it. |
475 | if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && |
476 | // Verify that the stored value is loop invariant. If not, we can't |
477 | // promote the memset. |
478 | CurLoop->isLoopInvariant(V: SplatValue)) { |
479 | // It looks like we can use SplatValue. |
480 | return LegalStoreKind::Memset; |
481 | } |
482 | if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && |
483 | // Don't create memset_pattern16s with address spaces. |
484 | StorePtr->getType()->getPointerAddressSpace() == 0 && |
485 | getMemSetPatternValue(V: StoredVal, DL)) { |
486 | // It looks like we can use PatternValue! |
487 | return LegalStoreKind::MemsetPattern; |
488 | } |
489 | |
490 | // Otherwise, see if the store can be turned into a memcpy. |
491 | if (HasMemcpy && !DisableLIRP::Memcpy) { |
492 | // Check to see if the stride matches the size of the store. If so, then we |
493 | // know that every byte is touched in the loop. |
494 | unsigned StoreSize = DL->getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
495 | APInt StrideAP = Stride->getAPInt(); |
496 | if (StoreSize != StrideAP && StoreSize != -StrideAP) |
497 | return LegalStoreKind::None; |
498 | |
499 | // The store must be feeding a non-volatile load. |
500 | LoadInst *LI = dyn_cast<LoadInst>(Val: SI->getValueOperand()); |
501 | |
502 | // Only allow non-volatile loads |
503 | if (!LI || LI->isVolatile()) |
504 | return LegalStoreKind::None; |
505 | // Only allow simple or unordered-atomic loads |
506 | if (!LI->isUnordered()) |
507 | return LegalStoreKind::None; |
508 | |
509 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
510 | // loop, which indicates a strided load. If we have something else, it's a |
511 | // random load we can't handle. |
512 | const SCEV *LoadEv = SE->getSCEV(V: LI->getPointerOperand()); |
513 | |
514 | // The store and load must share the same stride. |
515 | if (!match(S: LoadEv, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_Specific(S: Stride), |
516 | L: m_SpecificLoop(L: CurLoop)))) |
517 | return LegalStoreKind::None; |
518 | |
519 | // Success. This store can be converted into a memcpy. |
520 | UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); |
521 | return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy |
522 | : LegalStoreKind::Memcpy; |
523 | } |
524 | // This store can't be transformed into a memset/memcpy. |
525 | return LegalStoreKind::None; |
526 | } |
527 | |
528 | void LoopIdiomRecognize::collectStores(BasicBlock *BB) { |
529 | StoreRefsForMemset.clear(); |
530 | StoreRefsForMemsetPattern.clear(); |
531 | StoreRefsForMemcpy.clear(); |
532 | for (Instruction &I : *BB) { |
533 | StoreInst *SI = dyn_cast<StoreInst>(Val: &I); |
534 | if (!SI) |
535 | continue; |
536 | |
537 | // Make sure this is a strided store with a constant stride. |
538 | switch (isLegalStore(SI)) { |
539 | case LegalStoreKind::None: |
540 | // Nothing to do |
541 | break; |
542 | case LegalStoreKind::Memset: { |
543 | // Find the base pointer. |
544 | Value *Ptr = getUnderlyingObject(V: SI->getPointerOperand()); |
545 | StoreRefsForMemset[Ptr].push_back(Elt: SI); |
546 | } break; |
547 | case LegalStoreKind::MemsetPattern: { |
548 | // Find the base pointer. |
549 | Value *Ptr = getUnderlyingObject(V: SI->getPointerOperand()); |
550 | StoreRefsForMemsetPattern[Ptr].push_back(Elt: SI); |
551 | } break; |
552 | case LegalStoreKind::Memcpy: |
553 | case LegalStoreKind::UnorderedAtomicMemcpy: |
554 | StoreRefsForMemcpy.push_back(Elt: SI); |
555 | break; |
556 | default: |
557 | assert(false && "unhandled return value" ); |
558 | break; |
559 | } |
560 | } |
561 | } |
562 | |
563 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
564 | /// with the specified backedge count. This block is known to be in the current |
565 | /// loop and not in any subloops. |
566 | bool LoopIdiomRecognize::runOnLoopBlock( |
567 | BasicBlock *BB, const SCEV *BECount, |
568 | SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
569 | // We can only promote stores in this block if they are unconditionally |
570 | // executed in the loop. For a block to be unconditionally executed, it has |
571 | // to dominate all the exit blocks of the loop. Verify this now. |
572 | for (BasicBlock *ExitBlock : ExitBlocks) |
573 | if (!DT->dominates(A: BB, B: ExitBlock)) |
574 | return false; |
575 | |
576 | bool MadeChange = false; |
577 | // Look for store instructions, which may be optimized to memset/memcpy. |
578 | collectStores(BB); |
579 | |
580 | // Look for a single store or sets of stores with a common base, which can be |
581 | // optimized into a memset (memset_pattern). The latter most commonly happens |
582 | // with structs and handunrolled loops. |
583 | for (auto &SL : StoreRefsForMemset) |
584 | MadeChange |= processLoopStores(SL&: SL.second, BECount, For: ForMemset::Yes); |
585 | |
586 | for (auto &SL : StoreRefsForMemsetPattern) |
587 | MadeChange |= processLoopStores(SL&: SL.second, BECount, For: ForMemset::No); |
588 | |
589 | // Optimize the store into a memcpy, if it feeds an similarly strided load. |
590 | for (auto &SI : StoreRefsForMemcpy) |
591 | MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); |
592 | |
593 | MadeChange |= processLoopMemIntrinsic<MemCpyInst>( |
594 | BB, Processor: &LoopIdiomRecognize::processLoopMemCpy, BECount); |
595 | MadeChange |= processLoopMemIntrinsic<MemSetInst>( |
596 | BB, Processor: &LoopIdiomRecognize::processLoopMemSet, BECount); |
597 | |
598 | return MadeChange; |
599 | } |
600 | |
601 | /// See if this store(s) can be promoted to a memset. |
602 | bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, |
603 | const SCEV *BECount, ForMemset For) { |
604 | // Try to find consecutive stores that can be transformed into memsets. |
605 | SetVector<StoreInst *> Heads, Tails; |
606 | SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; |
607 | |
608 | // Do a quadratic search on all of the given stores and find |
609 | // all of the pairs of stores that follow each other. |
610 | SmallVector<unsigned, 16> IndexQueue; |
611 | for (unsigned i = 0, e = SL.size(); i < e; ++i) { |
612 | assert(SL[i]->isSimple() && "Expected only non-volatile stores." ); |
613 | |
614 | Value *FirstStoredVal = SL[i]->getValueOperand(); |
615 | Value *FirstStorePtr = SL[i]->getPointerOperand(); |
616 | const SCEVAddRecExpr *FirstStoreEv = |
617 | cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: FirstStorePtr)); |
618 | APInt FirstStride = getStoreStride(StoreEv: FirstStoreEv); |
619 | unsigned FirstStoreSize = DL->getTypeStoreSize(Ty: SL[i]->getValueOperand()->getType()); |
620 | |
621 | // See if we can optimize just this store in isolation. |
622 | if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { |
623 | Heads.insert(X: SL[i]); |
624 | continue; |
625 | } |
626 | |
627 | Value *FirstSplatValue = nullptr; |
628 | Constant *FirstPatternValue = nullptr; |
629 | |
630 | if (For == ForMemset::Yes) |
631 | FirstSplatValue = isBytewiseValue(V: FirstStoredVal, DL: *DL); |
632 | else |
633 | FirstPatternValue = getMemSetPatternValue(V: FirstStoredVal, DL); |
634 | |
635 | assert((FirstSplatValue || FirstPatternValue) && |
636 | "Expected either splat value or pattern value." ); |
637 | |
638 | IndexQueue.clear(); |
639 | // If a store has multiple consecutive store candidates, search Stores |
640 | // array according to the sequence: from i+1 to e, then from i-1 to 0. |
641 | // This is because usually pairing with immediate succeeding or preceding |
642 | // candidate create the best chance to find memset opportunity. |
643 | unsigned j = 0; |
644 | for (j = i + 1; j < e; ++j) |
645 | IndexQueue.push_back(Elt: j); |
646 | for (j = i; j > 0; --j) |
647 | IndexQueue.push_back(Elt: j - 1); |
648 | |
649 | for (auto &k : IndexQueue) { |
650 | assert(SL[k]->isSimple() && "Expected only non-volatile stores." ); |
651 | Value *SecondStorePtr = SL[k]->getPointerOperand(); |
652 | const SCEVAddRecExpr *SecondStoreEv = |
653 | cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: SecondStorePtr)); |
654 | APInt SecondStride = getStoreStride(StoreEv: SecondStoreEv); |
655 | |
656 | if (FirstStride != SecondStride) |
657 | continue; |
658 | |
659 | Value *SecondStoredVal = SL[k]->getValueOperand(); |
660 | Value *SecondSplatValue = nullptr; |
661 | Constant *SecondPatternValue = nullptr; |
662 | |
663 | if (For == ForMemset::Yes) |
664 | SecondSplatValue = isBytewiseValue(V: SecondStoredVal, DL: *DL); |
665 | else |
666 | SecondPatternValue = getMemSetPatternValue(V: SecondStoredVal, DL); |
667 | |
668 | assert((SecondSplatValue || SecondPatternValue) && |
669 | "Expected either splat value or pattern value." ); |
670 | |
671 | if (isConsecutiveAccess(A: SL[i], B: SL[k], DL: *DL, SE&: *SE, CheckType: false)) { |
672 | if (For == ForMemset::Yes) { |
673 | if (isa<UndefValue>(Val: FirstSplatValue)) |
674 | FirstSplatValue = SecondSplatValue; |
675 | if (FirstSplatValue != SecondSplatValue) |
676 | continue; |
677 | } else { |
678 | if (isa<UndefValue>(Val: FirstPatternValue)) |
679 | FirstPatternValue = SecondPatternValue; |
680 | if (FirstPatternValue != SecondPatternValue) |
681 | continue; |
682 | } |
683 | Tails.insert(X: SL[k]); |
684 | Heads.insert(X: SL[i]); |
685 | ConsecutiveChain[SL[i]] = SL[k]; |
686 | break; |
687 | } |
688 | } |
689 | } |
690 | |
691 | // We may run into multiple chains that merge into a single chain. We mark the |
692 | // stores that we transformed so that we don't visit the same store twice. |
693 | SmallPtrSet<Value *, 16> TransformedStores; |
694 | bool Changed = false; |
695 | |
696 | // For stores that start but don't end a link in the chain: |
697 | for (StoreInst *I : Heads) { |
698 | if (Tails.count(key: I)) |
699 | continue; |
700 | |
701 | // We found a store instr that starts a chain. Now follow the chain and try |
702 | // to transform it. |
703 | SmallPtrSet<Instruction *, 8> AdjacentStores; |
704 | StoreInst *HeadStore = I; |
705 | unsigned StoreSize = 0; |
706 | |
707 | // Collect the chain into a list. |
708 | while (Tails.count(key: I) || Heads.count(key: I)) { |
709 | if (TransformedStores.count(Ptr: I)) |
710 | break; |
711 | AdjacentStores.insert(Ptr: I); |
712 | |
713 | StoreSize += DL->getTypeStoreSize(Ty: I->getValueOperand()->getType()); |
714 | // Move to the next value in the chain. |
715 | I = ConsecutiveChain[I]; |
716 | } |
717 | |
718 | Value *StoredVal = HeadStore->getValueOperand(); |
719 | Value *StorePtr = HeadStore->getPointerOperand(); |
720 | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: StorePtr)); |
721 | APInt Stride = getStoreStride(StoreEv); |
722 | |
723 | // Check to see if the stride matches the size of the stores. If so, then |
724 | // we know that every byte is touched in the loop. |
725 | if (StoreSize != Stride && StoreSize != -Stride) |
726 | continue; |
727 | |
728 | bool IsNegStride = StoreSize == -Stride; |
729 | |
730 | Type *IntIdxTy = DL->getIndexType(PtrTy: StorePtr->getType()); |
731 | const SCEV *StoreSizeSCEV = SE->getConstant(Ty: IntIdxTy, V: StoreSize); |
732 | if (processLoopStridedStore(DestPtr: StorePtr, StoreSizeSCEV, |
733 | StoreAlignment: MaybeAlign(HeadStore->getAlign()), StoredVal, |
734 | TheStore: HeadStore, Stores&: AdjacentStores, Ev: StoreEv, BECount, |
735 | IsNegStride)) { |
736 | TransformedStores.insert_range(R&: AdjacentStores); |
737 | Changed = true; |
738 | } |
739 | } |
740 | |
741 | return Changed; |
742 | } |
743 | |
744 | /// processLoopMemIntrinsic - Template function for calling different processor |
745 | /// functions based on mem intrinsic type. |
746 | template <typename MemInst> |
747 | bool LoopIdiomRecognize::processLoopMemIntrinsic( |
748 | BasicBlock *BB, |
749 | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), |
750 | const SCEV *BECount) { |
751 | bool MadeChange = false; |
752 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { |
753 | Instruction *Inst = &*I++; |
754 | // Look for memory instructions, which may be optimized to a larger one. |
755 | if (MemInst *MI = dyn_cast<MemInst>(Inst)) { |
756 | WeakTrackingVH InstPtr(&*I); |
757 | if (!(this->*Processor)(MI, BECount)) |
758 | continue; |
759 | MadeChange = true; |
760 | |
761 | // If processing the instruction invalidated our iterator, start over from |
762 | // the top of the block. |
763 | if (!InstPtr) |
764 | I = BB->begin(); |
765 | } |
766 | } |
767 | return MadeChange; |
768 | } |
769 | |
770 | /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy |
771 | bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, |
772 | const SCEV *BECount) { |
773 | // We can only handle non-volatile memcpys with a constant size. |
774 | if (MCI->isVolatile() || !isa<ConstantInt>(Val: MCI->getLength())) |
775 | return false; |
776 | |
777 | // If we're not allowed to hack on memcpy, we fail. |
778 | if ((!HasMemcpy && !MCI->isForceInlined()) || DisableLIRP::Memcpy) |
779 | return false; |
780 | |
781 | Value *Dest = MCI->getDest(); |
782 | Value *Source = MCI->getSource(); |
783 | if (!Dest || !Source) |
784 | return false; |
785 | |
786 | // See if the load and store pointer expressions are AddRec like {base,+,1} on |
787 | // the current loop, which indicates a strided load and store. If we have |
788 | // something else, it's a random load or store we can't handle. |
789 | const SCEV *StoreEv = SE->getSCEV(V: Dest); |
790 | const SCEV *LoadEv = SE->getSCEV(V: Source); |
791 | const APInt *StoreStrideValue, *LoadStrideValue; |
792 | if (!match(S: StoreEv, |
793 | P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_APInt(C&: StoreStrideValue), |
794 | L: m_SpecificLoop(L: CurLoop))) || |
795 | !match(S: LoadEv, |
796 | P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_APInt(C&: LoadStrideValue), |
797 | L: m_SpecificLoop(L: CurLoop)))) |
798 | return false; |
799 | |
800 | // Reject memcpys that are so large that they overflow an unsigned. |
801 | uint64_t SizeInBytes = cast<ConstantInt>(Val: MCI->getLength())->getZExtValue(); |
802 | if ((SizeInBytes >> 32) != 0) |
803 | return false; |
804 | |
805 | // Huge stride value - give up |
806 | if (StoreStrideValue->getBitWidth() > 64 || |
807 | LoadStrideValue->getBitWidth() > 64) |
808 | return false; |
809 | |
810 | if (SizeInBytes != *StoreStrideValue && SizeInBytes != -*StoreStrideValue) { |
811 | ORE.emit(RemarkBuilder: [&]() { |
812 | return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal" , MCI) |
813 | << ore::NV("Inst" , "memcpy" ) << " in " |
814 | << ore::NV("Function" , MCI->getFunction()) |
815 | << " function will not be hoisted: " |
816 | << ore::NV("Reason" , "memcpy size is not equal to stride" ); |
817 | }); |
818 | return false; |
819 | } |
820 | |
821 | int64_t StoreStrideInt = StoreStrideValue->getSExtValue(); |
822 | int64_t LoadStrideInt = LoadStrideValue->getSExtValue(); |
823 | // Check if the load stride matches the store stride. |
824 | if (StoreStrideInt != LoadStrideInt) |
825 | return false; |
826 | |
827 | return processLoopStoreOfLoopLoad( |
828 | DestPtr: Dest, SourcePtr: Source, StoreSize: SE->getConstant(Ty: Dest->getType(), V: SizeInBytes), |
829 | StoreAlign: MCI->getDestAlign(), LoadAlign: MCI->getSourceAlign(), TheStore: MCI, TheLoad: MCI, |
830 | StoreEv: cast<SCEVAddRecExpr>(Val: StoreEv), LoadEv: cast<SCEVAddRecExpr>(Val: LoadEv), BECount); |
831 | } |
832 | |
833 | /// processLoopMemSet - See if this memset can be promoted to a large memset. |
834 | bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, |
835 | const SCEV *BECount) { |
836 | // We can only handle non-volatile memsets. |
837 | if (MSI->isVolatile()) |
838 | return false; |
839 | |
840 | // If we're not allowed to hack on memset, we fail. |
841 | if (!HasMemset || DisableLIRP::Memset) |
842 | return false; |
843 | |
844 | Value *Pointer = MSI->getDest(); |
845 | |
846 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
847 | // loop, which indicates a strided store. If we have something else, it's a |
848 | // random store we can't handle. |
849 | const SCEV *Ev = SE->getSCEV(V: Pointer); |
850 | const SCEV *PointerStrideSCEV; |
851 | if (!match(S: Ev, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_SCEV(V&: PointerStrideSCEV), |
852 | L: m_SpecificLoop(L: CurLoop)))) { |
853 | LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n" ); |
854 | return false; |
855 | } |
856 | |
857 | const SCEV *MemsetSizeSCEV = SE->getSCEV(V: MSI->getLength()); |
858 | |
859 | bool IsNegStride = false; |
860 | const bool IsConstantSize = isa<ConstantInt>(Val: MSI->getLength()); |
861 | |
862 | if (IsConstantSize) { |
863 | // Memset size is constant. |
864 | // Check if the pointer stride matches the memset size. If so, then |
865 | // we know that every byte is touched in the loop. |
866 | LLVM_DEBUG(dbgs() << " memset size is constant\n" ); |
867 | uint64_t SizeInBytes = cast<ConstantInt>(Val: MSI->getLength())->getZExtValue(); |
868 | const APInt *Stride; |
869 | if (!match(S: PointerStrideSCEV, P: m_scev_APInt(C&: Stride))) |
870 | return false; |
871 | |
872 | if (SizeInBytes != *Stride && SizeInBytes != -*Stride) |
873 | return false; |
874 | |
875 | IsNegStride = SizeInBytes == -*Stride; |
876 | } else { |
877 | // Memset size is non-constant. |
878 | // Check if the pointer stride matches the memset size. |
879 | // To be conservative, the pass would not promote pointers that aren't in |
880 | // address space zero. Also, the pass only handles memset length and stride |
881 | // that are invariant for the top level loop. |
882 | LLVM_DEBUG(dbgs() << " memset size is non-constant\n" ); |
883 | if (Pointer->getType()->getPointerAddressSpace() != 0) { |
884 | LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " |
885 | << "abort\n" ); |
886 | return false; |
887 | } |
888 | if (!SE->isLoopInvariant(S: MemsetSizeSCEV, L: CurLoop)) { |
889 | LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " |
890 | << "abort\n" ); |
891 | return false; |
892 | } |
893 | |
894 | // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV |
895 | IsNegStride = PointerStrideSCEV->isNonConstantNegative(); |
896 | const SCEV *PositiveStrideSCEV = |
897 | IsNegStride ? SE->getNegativeSCEV(V: PointerStrideSCEV) |
898 | : PointerStrideSCEV; |
899 | LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" |
900 | << " PositiveStrideSCEV: " << *PositiveStrideSCEV |
901 | << "\n" ); |
902 | |
903 | if (PositiveStrideSCEV != MemsetSizeSCEV) { |
904 | // If an expression is covered by the loop guard, compare again and |
905 | // proceed with optimization if equal. |
906 | const SCEV *FoldedPositiveStride = |
907 | SE->applyLoopGuards(Expr: PositiveStrideSCEV, L: CurLoop); |
908 | const SCEV *FoldedMemsetSize = |
909 | SE->applyLoopGuards(Expr: MemsetSizeSCEV, L: CurLoop); |
910 | |
911 | LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" |
912 | << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" |
913 | << " FoldedPositiveStride: " << *FoldedPositiveStride |
914 | << "\n" ); |
915 | |
916 | if (FoldedPositiveStride != FoldedMemsetSize) { |
917 | LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n" ); |
918 | return false; |
919 | } |
920 | } |
921 | } |
922 | |
923 | // Verify that the memset value is loop invariant. If not, we can't promote |
924 | // the memset. |
925 | Value *SplatValue = MSI->getValue(); |
926 | if (!SplatValue || !CurLoop->isLoopInvariant(V: SplatValue)) |
927 | return false; |
928 | |
929 | SmallPtrSet<Instruction *, 1> MSIs; |
930 | MSIs.insert(Ptr: MSI); |
931 | return processLoopStridedStore(DestPtr: Pointer, StoreSizeSCEV: SE->getSCEV(V: MSI->getLength()), |
932 | StoreAlignment: MSI->getDestAlign(), StoredVal: SplatValue, TheStore: MSI, Stores&: MSIs, |
933 | Ev: cast<SCEVAddRecExpr>(Val: Ev), BECount, IsNegStride, |
934 | /*IsLoopMemset=*/true); |
935 | } |
936 | |
937 | /// mayLoopAccessLocation - Return true if the specified loop might access the |
938 | /// specified pointer location, which is a loop-strided access. The 'Access' |
939 | /// argument specifies what the verboten forms of access are (read or write). |
940 | static bool |
941 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
942 | const SCEV *BECount, const SCEV *StoreSizeSCEV, |
943 | AliasAnalysis &AA, |
944 | SmallPtrSetImpl<Instruction *> &IgnoredInsts) { |
945 | // Get the location that may be stored across the loop. Since the access is |
946 | // strided positively through memory, we say that the modified location starts |
947 | // at the pointer and has infinite size. |
948 | LocationSize AccessSize = LocationSize::afterPointer(); |
949 | |
950 | // If the loop iterates a fixed number of times, we can refine the access size |
951 | // to be exactly the size of the memset, which is (BECount+1)*StoreSize |
952 | const APInt *BECst, *ConstSize; |
953 | if (match(S: BECount, P: m_scev_APInt(C&: BECst)) && |
954 | match(S: StoreSizeSCEV, P: m_scev_APInt(C&: ConstSize))) { |
955 | std::optional<uint64_t> BEInt = BECst->tryZExtValue(); |
956 | std::optional<uint64_t> SizeInt = ConstSize->tryZExtValue(); |
957 | // FIXME: Should this check for overflow? |
958 | if (BEInt && SizeInt) |
959 | AccessSize = LocationSize::precise(Value: (*BEInt + 1) * *SizeInt); |
960 | } |
961 | |
962 | // TODO: For this to be really effective, we have to dive into the pointer |
963 | // operand in the store. Store to &A[i] of 100 will always return may alias |
964 | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
965 | // which will then no-alias a store to &A[100]. |
966 | MemoryLocation StoreLoc(Ptr, AccessSize); |
967 | |
968 | for (BasicBlock *B : L->blocks()) |
969 | for (Instruction &I : *B) |
970 | if (!IgnoredInsts.contains(Ptr: &I) && |
971 | isModOrRefSet(MRI: AA.getModRefInfo(I: &I, OptLoc: StoreLoc) & Access)) |
972 | return true; |
973 | return false; |
974 | } |
975 | |
976 | // If we have a negative stride, Start refers to the end of the memory location |
977 | // we're trying to memset. Therefore, we need to recompute the base pointer, |
978 | // which is just Start - BECount*Size. |
979 | static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, |
980 | Type *IntPtr, const SCEV *StoreSizeSCEV, |
981 | ScalarEvolution *SE) { |
982 | const SCEV *Index = SE->getTruncateOrZeroExtend(V: BECount, Ty: IntPtr); |
983 | if (!StoreSizeSCEV->isOne()) { |
984 | // index = back edge count * store size |
985 | Index = SE->getMulExpr(LHS: Index, |
986 | RHS: SE->getTruncateOrZeroExtend(V: StoreSizeSCEV, Ty: IntPtr), |
987 | Flags: SCEV::FlagNUW); |
988 | } |
989 | // base pointer = start - index * store size |
990 | return SE->getMinusSCEV(LHS: Start, RHS: Index); |
991 | } |
992 | |
993 | /// Compute the number of bytes as a SCEV from the backedge taken count. |
994 | /// |
995 | /// This also maps the SCEV into the provided type and tries to handle the |
996 | /// computation in a way that will fold cleanly. |
997 | static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, |
998 | const SCEV *StoreSizeSCEV, Loop *CurLoop, |
999 | const DataLayout *DL, ScalarEvolution *SE) { |
1000 | const SCEV *TripCountSCEV = |
1001 | SE->getTripCountFromExitCount(ExitCount: BECount, EvalTy: IntPtr, L: CurLoop); |
1002 | return SE->getMulExpr(LHS: TripCountSCEV, |
1003 | RHS: SE->getTruncateOrZeroExtend(V: StoreSizeSCEV, Ty: IntPtr), |
1004 | Flags: SCEV::FlagNUW); |
1005 | } |
1006 | |
1007 | /// processLoopStridedStore - We see a strided store of some value. If we can |
1008 | /// transform this into a memset or memset_pattern in the loop preheader, do so. |
1009 | bool LoopIdiomRecognize::processLoopStridedStore( |
1010 | Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, |
1011 | Value *StoredVal, Instruction *TheStore, |
1012 | SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, |
1013 | const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { |
1014 | Module *M = TheStore->getModule(); |
1015 | |
1016 | // The trip count of the loop and the base pointer of the addrec SCEV is |
1017 | // guaranteed to be loop invariant, which means that it should dominate the |
1018 | // header. This allows us to insert code for it in the preheader. |
1019 | unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); |
1020 | BasicBlock * = CurLoop->getLoopPreheader(); |
1021 | IRBuilder<> Builder(Preheader->getTerminator()); |
1022 | SCEVExpander Expander(*SE, *DL, "loop-idiom" ); |
1023 | SCEVExpanderCleaner ExpCleaner(Expander); |
1024 | |
1025 | Type *DestInt8PtrTy = Builder.getPtrTy(AddrSpace: DestAS); |
1026 | Type *IntIdxTy = DL->getIndexType(PtrTy: DestPtr->getType()); |
1027 | |
1028 | bool Changed = false; |
1029 | const SCEV *Start = Ev->getStart(); |
1030 | // Handle negative strided loops. |
1031 | if (IsNegStride) |
1032 | Start = getStartForNegStride(Start, BECount, IntPtr: IntIdxTy, StoreSizeSCEV, SE); |
1033 | |
1034 | // TODO: ideally we should still be able to generate memset if SCEV expander |
1035 | // is taught to generate the dependencies at the latest point. |
1036 | if (!Expander.isSafeToExpand(S: Start)) |
1037 | return Changed; |
1038 | |
1039 | // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
1040 | // this into a memset in the loop preheader now if we want. However, this |
1041 | // would be unsafe to do if there is anything else in the loop that may read |
1042 | // or write to the aliased location. Check for any overlap by generating the |
1043 | // base pointer and checking the region. |
1044 | Value *BasePtr = |
1045 | Expander.expandCodeFor(SH: Start, Ty: DestInt8PtrTy, I: Preheader->getTerminator()); |
1046 | |
1047 | // From here on out, conservatively report to the pass manager that we've |
1048 | // changed the IR, even if we later clean up these added instructions. There |
1049 | // may be structural differences e.g. in the order of use lists not accounted |
1050 | // for in just a textual dump of the IR. This is written as a variable, even |
1051 | // though statically all the places this dominates could be replaced with |
1052 | // 'true', with the hope that anyone trying to be clever / "more precise" with |
1053 | // the return value will read this comment, and leave them alone. |
1054 | Changed = true; |
1055 | |
1056 | if (mayLoopAccessLocation(Ptr: BasePtr, Access: ModRefInfo::ModRef, L: CurLoop, BECount, |
1057 | StoreSizeSCEV, AA&: *AA, IgnoredInsts&: Stores)) |
1058 | return Changed; |
1059 | |
1060 | if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) |
1061 | return Changed; |
1062 | |
1063 | // Okay, everything looks good, insert the memset. |
1064 | |
1065 | const SCEV *NumBytesS = |
1066 | getNumBytes(BECount, IntPtr: IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); |
1067 | |
1068 | // TODO: ideally we should still be able to generate memset if SCEV expander |
1069 | // is taught to generate the dependencies at the latest point. |
1070 | if (!Expander.isSafeToExpand(S: NumBytesS)) |
1071 | return Changed; |
1072 | |
1073 | Value *NumBytes = |
1074 | Expander.expandCodeFor(SH: NumBytesS, Ty: IntIdxTy, I: Preheader->getTerminator()); |
1075 | |
1076 | AAMDNodes AATags = TheStore->getAAMetadata(); |
1077 | for (Instruction *Store : Stores) |
1078 | AATags = AATags.merge(Other: Store->getAAMetadata()); |
1079 | if (auto CI = dyn_cast<ConstantInt>(Val: NumBytes)) |
1080 | AATags = AATags.extendTo(Len: CI->getZExtValue()); |
1081 | else |
1082 | AATags = AATags.extendTo(Len: -1); |
1083 | |
1084 | CallInst *NewCall; |
1085 | if (Value *SplatValue = isBytewiseValue(V: StoredVal, DL: *DL)) { |
1086 | NewCall = Builder.CreateMemSet(Ptr: BasePtr, Val: SplatValue, Size: NumBytes, |
1087 | Align: MaybeAlign(StoreAlignment), |
1088 | /*isVolatile=*/false, AAInfo: AATags); |
1089 | } else if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_memset_pattern16)) { |
1090 | // Everything is emitted in default address space |
1091 | Type *Int8PtrTy = DestInt8PtrTy; |
1092 | |
1093 | StringRef FuncName = "memset_pattern16" ; |
1094 | FunctionCallee MSP = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_memset_pattern16, |
1095 | RetTy: Builder.getVoidTy(), Args: Int8PtrTy, Args: Int8PtrTy, Args: IntIdxTy); |
1096 | inferNonMandatoryLibFuncAttrs(M, Name: FuncName, TLI: *TLI); |
1097 | |
1098 | // Otherwise we should form a memset_pattern16. PatternValue is known to be |
1099 | // an constant array of 16-bytes. Plop the value into a mergable global. |
1100 | Constant *PatternValue = getMemSetPatternValue(V: StoredVal, DL); |
1101 | assert(PatternValue && "Expected pattern value." ); |
1102 | GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, |
1103 | GlobalValue::PrivateLinkage, |
1104 | PatternValue, ".memset_pattern" ); |
1105 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. |
1106 | GV->setAlignment(Align(16)); |
1107 | NewCall = Builder.CreateCall(Callee: MSP, Args: {BasePtr, GV, NumBytes}); |
1108 | NewCall->setAAMetadata(AATags); |
1109 | } else { |
1110 | // Neither a memset, nor memset_pattern16 |
1111 | return Changed; |
1112 | } |
1113 | |
1114 | NewCall->setDebugLoc(TheStore->getDebugLoc()); |
1115 | |
1116 | if (MSSAU) { |
1117 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( |
1118 | I: NewCall, Definition: nullptr, BB: NewCall->getParent(), Point: MemorySSA::BeforeTerminator); |
1119 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewMemAcc), RenameUses: true); |
1120 | } |
1121 | |
1122 | LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
1123 | << " from store to: " << *Ev << " at: " << *TheStore |
1124 | << "\n" ); |
1125 | |
1126 | ORE.emit(RemarkBuilder: [&]() { |
1127 | OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore" , |
1128 | NewCall->getDebugLoc(), Preheader); |
1129 | R << "Transformed loop-strided store in " |
1130 | << ore::NV("Function" , TheStore->getFunction()) |
1131 | << " function into a call to " |
1132 | << ore::NV("NewFunction" , NewCall->getCalledFunction()) |
1133 | << "() intrinsic" ; |
1134 | if (!Stores.empty()) |
1135 | R << ore::setExtraArgs(); |
1136 | for (auto *I : Stores) { |
1137 | R << ore::NV("FromBlock" , I->getParent()->getName()) |
1138 | << ore::NV("ToBlock" , Preheader->getName()); |
1139 | } |
1140 | return R; |
1141 | }); |
1142 | |
1143 | // Okay, the memset has been formed. Zap the original store and anything that |
1144 | // feeds into it. |
1145 | for (auto *I : Stores) { |
1146 | if (MSSAU) |
1147 | MSSAU->removeMemoryAccess(I, OptimizePhis: true); |
1148 | deleteDeadInstruction(I); |
1149 | } |
1150 | if (MSSAU && VerifyMemorySSA) |
1151 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
1152 | ++NumMemSet; |
1153 | ExpCleaner.markResultUsed(); |
1154 | return true; |
1155 | } |
1156 | |
1157 | /// If the stored value is a strided load in the same loop with the same stride |
1158 | /// this may be transformable into a memcpy. This kicks in for stuff like |
1159 | /// for (i) A[i] = B[i]; |
1160 | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, |
1161 | const SCEV *BECount) { |
1162 | assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores." ); |
1163 | |
1164 | Value *StorePtr = SI->getPointerOperand(); |
1165 | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: StorePtr)); |
1166 | unsigned StoreSize = DL->getTypeStoreSize(Ty: SI->getValueOperand()->getType()); |
1167 | |
1168 | // The store must be feeding a non-volatile load. |
1169 | LoadInst *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
1170 | assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads." ); |
1171 | |
1172 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
1173 | // loop, which indicates a strided load. If we have something else, it's a |
1174 | // random load we can't handle. |
1175 | Value *LoadPtr = LI->getPointerOperand(); |
1176 | const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: LoadPtr)); |
1177 | |
1178 | const SCEV *StoreSizeSCEV = SE->getConstant(Ty: StorePtr->getType(), V: StoreSize); |
1179 | return processLoopStoreOfLoopLoad(DestPtr: StorePtr, SourcePtr: LoadPtr, StoreSize: StoreSizeSCEV, |
1180 | StoreAlign: SI->getAlign(), LoadAlign: LI->getAlign(), TheStore: SI, TheLoad: LI, |
1181 | StoreEv, LoadEv, BECount); |
1182 | } |
1183 | |
1184 | namespace { |
1185 | class MemmoveVerifier { |
1186 | public: |
1187 | explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, |
1188 | const DataLayout &DL) |
1189 | : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( |
1190 | Ptr: LoadBasePtr.stripPointerCasts(), Offset&: LoadOff, DL)), |
1191 | BP2(llvm::GetPointerBaseWithConstantOffset( |
1192 | Ptr: StoreBasePtr.stripPointerCasts(), Offset&: StoreOff, DL)), |
1193 | IsSameObject(BP1 == BP2) {} |
1194 | |
1195 | bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, |
1196 | const Instruction &TheLoad, |
1197 | bool IsMemCpy) const { |
1198 | if (IsMemCpy) { |
1199 | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr |
1200 | // for negative stride. |
1201 | if ((!IsNegStride && LoadOff <= StoreOff) || |
1202 | (IsNegStride && LoadOff >= StoreOff)) |
1203 | return false; |
1204 | } else { |
1205 | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr |
1206 | // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. |
1207 | int64_t LoadSize = |
1208 | DL.getTypeSizeInBits(Ty: TheLoad.getType()).getFixedValue() / 8; |
1209 | if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) |
1210 | return false; |
1211 | if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || |
1212 | (IsNegStride && LoadOff + LoadSize > StoreOff)) |
1213 | return false; |
1214 | } |
1215 | return true; |
1216 | } |
1217 | |
1218 | private: |
1219 | const DataLayout &DL; |
1220 | int64_t LoadOff = 0; |
1221 | int64_t StoreOff = 0; |
1222 | const Value *BP1; |
1223 | const Value *BP2; |
1224 | |
1225 | public: |
1226 | const bool IsSameObject; |
1227 | }; |
1228 | } // namespace |
1229 | |
1230 | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( |
1231 | Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, |
1232 | MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, |
1233 | Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, |
1234 | const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { |
1235 | |
1236 | // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to |
1237 | // conservatively bail here, since otherwise we may have to transform |
1238 | // llvm.memcpy.inline into llvm.memcpy which is illegal. |
1239 | if (auto *MCI = dyn_cast<MemCpyInst>(Val: TheStore); MCI && MCI->isForceInlined()) |
1240 | return false; |
1241 | |
1242 | // The trip count of the loop and the base pointer of the addrec SCEV is |
1243 | // guaranteed to be loop invariant, which means that it should dominate the |
1244 | // header. This allows us to insert code for it in the preheader. |
1245 | BasicBlock * = CurLoop->getLoopPreheader(); |
1246 | IRBuilder<> Builder(Preheader->getTerminator()); |
1247 | SCEVExpander Expander(*SE, *DL, "loop-idiom" ); |
1248 | |
1249 | SCEVExpanderCleaner ExpCleaner(Expander); |
1250 | |
1251 | bool Changed = false; |
1252 | const SCEV *StrStart = StoreEv->getStart(); |
1253 | unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); |
1254 | Type *IntIdxTy = Builder.getIntNTy(N: DL->getIndexSizeInBits(AS: StrAS)); |
1255 | |
1256 | APInt Stride = getStoreStride(StoreEv); |
1257 | const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(Val: StoreSizeSCEV); |
1258 | |
1259 | // TODO: Deal with non-constant size; Currently expect constant store size |
1260 | assert(ConstStoreSize && "store size is expected to be a constant" ); |
1261 | |
1262 | int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); |
1263 | bool IsNegStride = StoreSize == -Stride; |
1264 | |
1265 | // Handle negative strided loops. |
1266 | if (IsNegStride) |
1267 | StrStart = |
1268 | getStartForNegStride(Start: StrStart, BECount, IntPtr: IntIdxTy, StoreSizeSCEV, SE); |
1269 | |
1270 | // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
1271 | // this into a memcpy in the loop preheader now if we want. However, this |
1272 | // would be unsafe to do if there is anything else in the loop that may read |
1273 | // or write the memory region we're storing to. This includes the load that |
1274 | // feeds the stores. Check for an alias by generating the base address and |
1275 | // checking everything. |
1276 | Value *StoreBasePtr = Expander.expandCodeFor( |
1277 | SH: StrStart, Ty: Builder.getPtrTy(AddrSpace: StrAS), I: Preheader->getTerminator()); |
1278 | |
1279 | // From here on out, conservatively report to the pass manager that we've |
1280 | // changed the IR, even if we later clean up these added instructions. There |
1281 | // may be structural differences e.g. in the order of use lists not accounted |
1282 | // for in just a textual dump of the IR. This is written as a variable, even |
1283 | // though statically all the places this dominates could be replaced with |
1284 | // 'true', with the hope that anyone trying to be clever / "more precise" with |
1285 | // the return value will read this comment, and leave them alone. |
1286 | Changed = true; |
1287 | |
1288 | SmallPtrSet<Instruction *, 2> IgnoredInsts; |
1289 | IgnoredInsts.insert(Ptr: TheStore); |
1290 | |
1291 | bool IsMemCpy = isa<MemCpyInst>(Val: TheStore); |
1292 | const StringRef = IsMemCpy ? "memcpy" : "load and store" ; |
1293 | |
1294 | bool LoopAccessStore = |
1295 | mayLoopAccessLocation(Ptr: StoreBasePtr, Access: ModRefInfo::ModRef, L: CurLoop, BECount, |
1296 | StoreSizeSCEV, AA&: *AA, IgnoredInsts); |
1297 | if (LoopAccessStore) { |
1298 | // For memmove case it's not enough to guarantee that loop doesn't access |
1299 | // TheStore and TheLoad. Additionally we need to make sure that TheStore is |
1300 | // the only user of TheLoad. |
1301 | if (!TheLoad->hasOneUse()) |
1302 | return Changed; |
1303 | IgnoredInsts.insert(Ptr: TheLoad); |
1304 | if (mayLoopAccessLocation(Ptr: StoreBasePtr, Access: ModRefInfo::ModRef, L: CurLoop, |
1305 | BECount, StoreSizeSCEV, AA&: *AA, IgnoredInsts)) { |
1306 | ORE.emit(RemarkBuilder: [&]() { |
1307 | return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore" , |
1308 | TheStore) |
1309 | << ore::NV("Inst" , InstRemark) << " in " |
1310 | << ore::NV("Function" , TheStore->getFunction()) |
1311 | << " function will not be hoisted: " |
1312 | << ore::NV("Reason" , "The loop may access store location" ); |
1313 | }); |
1314 | return Changed; |
1315 | } |
1316 | IgnoredInsts.erase(Ptr: TheLoad); |
1317 | } |
1318 | |
1319 | const SCEV *LdStart = LoadEv->getStart(); |
1320 | unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); |
1321 | |
1322 | // Handle negative strided loops. |
1323 | if (IsNegStride) |
1324 | LdStart = |
1325 | getStartForNegStride(Start: LdStart, BECount, IntPtr: IntIdxTy, StoreSizeSCEV, SE); |
1326 | |
1327 | // For a memcpy, we have to make sure that the input array is not being |
1328 | // mutated by the loop. |
1329 | Value *LoadBasePtr = Expander.expandCodeFor(SH: LdStart, Ty: Builder.getPtrTy(AddrSpace: LdAS), |
1330 | I: Preheader->getTerminator()); |
1331 | |
1332 | // If the store is a memcpy instruction, we must check if it will write to |
1333 | // the load memory locations. So remove it from the ignored stores. |
1334 | MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); |
1335 | if (IsMemCpy && !Verifier.IsSameObject) |
1336 | IgnoredInsts.erase(Ptr: TheStore); |
1337 | if (mayLoopAccessLocation(Ptr: LoadBasePtr, Access: ModRefInfo::Mod, L: CurLoop, BECount, |
1338 | StoreSizeSCEV, AA&: *AA, IgnoredInsts)) { |
1339 | ORE.emit(RemarkBuilder: [&]() { |
1340 | return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad" , TheLoad) |
1341 | << ore::NV("Inst" , InstRemark) << " in " |
1342 | << ore::NV("Function" , TheStore->getFunction()) |
1343 | << " function will not be hoisted: " |
1344 | << ore::NV("Reason" , "The loop may access load location" ); |
1345 | }); |
1346 | return Changed; |
1347 | } |
1348 | |
1349 | bool IsAtomic = TheStore->isAtomic() || TheLoad->isAtomic(); |
1350 | bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; |
1351 | |
1352 | if (IsAtomic) { |
1353 | // For now don't support unordered atomic memmove. |
1354 | if (UseMemMove) |
1355 | return Changed; |
1356 | |
1357 | // We cannot allow unaligned ops for unordered load/store, so reject |
1358 | // anything where the alignment isn't at least the element size. |
1359 | assert((StoreAlign && LoadAlign) && |
1360 | "Expect unordered load/store to have align." ); |
1361 | if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) |
1362 | return Changed; |
1363 | |
1364 | // If the element.atomic memcpy is not lowered into explicit |
1365 | // loads/stores later, then it will be lowered into an element-size |
1366 | // specific lib call. If the lib call doesn't exist for our store size, then |
1367 | // we shouldn't generate the memcpy. |
1368 | if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) |
1369 | return Changed; |
1370 | } |
1371 | |
1372 | if (UseMemMove) |
1373 | if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, TheLoad: *TheLoad, |
1374 | IsMemCpy)) |
1375 | return Changed; |
1376 | |
1377 | if (avoidLIRForMultiBlockLoop()) |
1378 | return Changed; |
1379 | |
1380 | // Okay, everything is safe, we can transform this! |
1381 | |
1382 | const SCEV *NumBytesS = |
1383 | getNumBytes(BECount, IntPtr: IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); |
1384 | |
1385 | Value *NumBytes = |
1386 | Expander.expandCodeFor(SH: NumBytesS, Ty: IntIdxTy, I: Preheader->getTerminator()); |
1387 | |
1388 | AAMDNodes AATags = TheLoad->getAAMetadata(); |
1389 | AAMDNodes StoreAATags = TheStore->getAAMetadata(); |
1390 | AATags = AATags.merge(Other: StoreAATags); |
1391 | if (auto CI = dyn_cast<ConstantInt>(Val: NumBytes)) |
1392 | AATags = AATags.extendTo(Len: CI->getZExtValue()); |
1393 | else |
1394 | AATags = AATags.extendTo(Len: -1); |
1395 | |
1396 | CallInst *NewCall = nullptr; |
1397 | // Check whether to generate an unordered atomic memcpy: |
1398 | // If the load or store are atomic, then they must necessarily be unordered |
1399 | // by previous checks. |
1400 | if (!IsAtomic) { |
1401 | if (UseMemMove) |
1402 | NewCall = Builder.CreateMemMove(Dst: StoreBasePtr, DstAlign: StoreAlign, Src: LoadBasePtr, |
1403 | SrcAlign: LoadAlign, Size: NumBytes, |
1404 | /*isVolatile=*/false, AAInfo: AATags); |
1405 | else |
1406 | NewCall = |
1407 | Builder.CreateMemCpy(Dst: StoreBasePtr, DstAlign: StoreAlign, Src: LoadBasePtr, SrcAlign: LoadAlign, |
1408 | Size: NumBytes, /*isVolatile=*/false, AAInfo: AATags); |
1409 | } else { |
1410 | // Create the call. |
1411 | // Note that unordered atomic loads/stores are *required* by the spec to |
1412 | // have an alignment but non-atomic loads/stores may not. |
1413 | NewCall = Builder.CreateElementUnorderedAtomicMemCpy( |
1414 | Dst: StoreBasePtr, DstAlign: *StoreAlign, Src: LoadBasePtr, SrcAlign: *LoadAlign, Size: NumBytes, ElementSize: StoreSize, |
1415 | AAInfo: AATags); |
1416 | } |
1417 | NewCall->setDebugLoc(TheStore->getDebugLoc()); |
1418 | |
1419 | if (MSSAU) { |
1420 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( |
1421 | I: NewCall, Definition: nullptr, BB: NewCall->getParent(), Point: MemorySSA::BeforeTerminator); |
1422 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewMemAcc), RenameUses: true); |
1423 | } |
1424 | |
1425 | LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" |
1426 | << " from load ptr=" << *LoadEv << " at: " << *TheLoad |
1427 | << "\n" |
1428 | << " from store ptr=" << *StoreEv << " at: " << *TheStore |
1429 | << "\n" ); |
1430 | |
1431 | ORE.emit(RemarkBuilder: [&]() { |
1432 | return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad" , |
1433 | NewCall->getDebugLoc(), Preheader) |
1434 | << "Formed a call to " |
1435 | << ore::NV("NewFunction" , NewCall->getCalledFunction()) |
1436 | << "() intrinsic from " << ore::NV("Inst" , InstRemark) |
1437 | << " instruction in " << ore::NV("Function" , TheStore->getFunction()) |
1438 | << " function" |
1439 | << ore::setExtraArgs() |
1440 | << ore::NV("FromBlock" , TheStore->getParent()->getName()) |
1441 | << ore::NV("ToBlock" , Preheader->getName()); |
1442 | }); |
1443 | |
1444 | // Okay, a new call to memcpy/memmove has been formed. Zap the original store |
1445 | // and anything that feeds into it. |
1446 | if (MSSAU) |
1447 | MSSAU->removeMemoryAccess(I: TheStore, OptimizePhis: true); |
1448 | deleteDeadInstruction(I: TheStore); |
1449 | if (MSSAU && VerifyMemorySSA) |
1450 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
1451 | if (UseMemMove) |
1452 | ++NumMemMove; |
1453 | else |
1454 | ++NumMemCpy; |
1455 | ExpCleaner.markResultUsed(); |
1456 | return true; |
1457 | } |
1458 | |
1459 | // When compiling for codesize we avoid idiom recognition for a multi-block loop |
1460 | // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. |
1461 | // |
1462 | bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, |
1463 | bool IsLoopMemset) { |
1464 | if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { |
1465 | if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { |
1466 | LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() |
1467 | << " : LIR " << (IsMemset ? "Memset" : "Memcpy" ) |
1468 | << " avoided: multi-block top-level loop\n" ); |
1469 | return true; |
1470 | } |
1471 | } |
1472 | |
1473 | return false; |
1474 | } |
1475 | |
1476 | bool LoopIdiomRecognize::runOnNoncountableLoop() { |
1477 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" |
1478 | << CurLoop->getHeader()->getParent()->getName() |
1479 | << "] Noncountable Loop %" |
1480 | << CurLoop->getHeader()->getName() << "\n" ); |
1481 | |
1482 | return recognizePopcount() || recognizeAndInsertFFS() || |
1483 | recognizeShiftUntilBitTest() || recognizeShiftUntilZero() || |
1484 | recognizeShiftUntilLessThan() || recognizeAndInsertStrLen(); |
1485 | } |
1486 | |
1487 | /// Check if the given conditional branch is based on the comparison between |
1488 | /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is |
1489 | /// true), the control yields to the loop entry. If the branch matches the |
1490 | /// behavior, the variable involved in the comparison is returned. This function |
1491 | /// will be called to see if the precondition and postcondition of the loop are |
1492 | /// in desirable form. |
1493 | static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, |
1494 | bool JmpOnZero = false) { |
1495 | if (!BI || !BI->isConditional()) |
1496 | return nullptr; |
1497 | |
1498 | ICmpInst *Cond = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
1499 | if (!Cond) |
1500 | return nullptr; |
1501 | |
1502 | auto *CmpZero = dyn_cast<ConstantInt>(Val: Cond->getOperand(i_nocapture: 1)); |
1503 | if (!CmpZero || !CmpZero->isZero()) |
1504 | return nullptr; |
1505 | |
1506 | BasicBlock *TrueSucc = BI->getSuccessor(i: 0); |
1507 | BasicBlock *FalseSucc = BI->getSuccessor(i: 1); |
1508 | if (JmpOnZero) |
1509 | std::swap(a&: TrueSucc, b&: FalseSucc); |
1510 | |
1511 | ICmpInst::Predicate Pred = Cond->getPredicate(); |
1512 | if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || |
1513 | (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) |
1514 | return Cond->getOperand(i_nocapture: 0); |
1515 | |
1516 | return nullptr; |
1517 | } |
1518 | |
1519 | namespace { |
1520 | |
1521 | class StrlenVerifier { |
1522 | public: |
1523 | explicit StrlenVerifier(const Loop *CurLoop, ScalarEvolution *SE, |
1524 | const TargetLibraryInfo *TLI) |
1525 | : CurLoop(CurLoop), SE(SE), TLI(TLI) {} |
1526 | |
1527 | bool isValidStrlenIdiom() { |
1528 | // Give up if the loop has multiple blocks, multiple backedges, or |
1529 | // multiple exit blocks |
1530 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1 || |
1531 | !CurLoop->getUniqueExitBlock()) |
1532 | return false; |
1533 | |
1534 | // It should have a preheader and a branch instruction. |
1535 | BasicBlock * = CurLoop->getLoopPreheader(); |
1536 | if (!Preheader) |
1537 | return false; |
1538 | |
1539 | BranchInst *EntryBI = dyn_cast<BranchInst>(Val: Preheader->getTerminator()); |
1540 | if (!EntryBI) |
1541 | return false; |
1542 | |
1543 | // The loop exit must be conditioned on an icmp with 0 the null terminator. |
1544 | // The icmp operand has to be a load on some SSA reg that increments |
1545 | // by 1 in the loop. |
1546 | BasicBlock *LoopBody = *CurLoop->block_begin(); |
1547 | |
1548 | // Skip if the body is too big as it most likely is not a strlen idiom. |
1549 | if (!LoopBody || LoopBody->size() >= 15) |
1550 | return false; |
1551 | |
1552 | BranchInst *LoopTerm = dyn_cast<BranchInst>(Val: LoopBody->getTerminator()); |
1553 | Value *LoopCond = matchCondition(BI: LoopTerm, LoopEntry: LoopBody); |
1554 | if (!LoopCond) |
1555 | return false; |
1556 | |
1557 | LoadInst *LoopLoad = dyn_cast<LoadInst>(Val: LoopCond); |
1558 | if (!LoopLoad || LoopLoad->getPointerAddressSpace() != 0) |
1559 | return false; |
1560 | |
1561 | OperandType = LoopLoad->getType(); |
1562 | if (!OperandType || !OperandType->isIntegerTy()) |
1563 | return false; |
1564 | |
1565 | // See if the pointer expression is an AddRec with constant step a of form |
1566 | // ({n,+,a}) where a is the width of the char type. |
1567 | Value *IncPtr = LoopLoad->getPointerOperand(); |
1568 | const SCEV *LoadEv = SE->getSCEV(V: IncPtr); |
1569 | const APInt *Step; |
1570 | if (!match(S: LoadEv, |
1571 | P: m_scev_AffineAddRec(Op0: m_SCEV(V&: LoadBaseEv), Op1: m_scev_APInt(C&: Step)))) |
1572 | return false; |
1573 | |
1574 | LLVM_DEBUG(dbgs() << "pointer load scev: " << *LoadEv << "\n" ); |
1575 | |
1576 | unsigned StepSize = Step->getZExtValue(); |
1577 | |
1578 | // Verify that StepSize is consistent with platform char width. |
1579 | OpWidth = OperandType->getIntegerBitWidth(); |
1580 | unsigned WcharSize = TLI->getWCharSize(M: *LoopLoad->getModule()); |
1581 | if (OpWidth != StepSize * 8) |
1582 | return false; |
1583 | if (OpWidth != 8 && OpWidth != 16 && OpWidth != 32) |
1584 | return false; |
1585 | if (OpWidth >= 16) |
1586 | if (OpWidth != WcharSize * 8) |
1587 | return false; |
1588 | |
1589 | // Scan every instruction in the loop to ensure there are no side effects. |
1590 | for (Instruction &I : *LoopBody) |
1591 | if (I.mayHaveSideEffects()) |
1592 | return false; |
1593 | |
1594 | BasicBlock *LoopExitBB = CurLoop->getExitBlock(); |
1595 | if (!LoopExitBB) |
1596 | return false; |
1597 | |
1598 | for (PHINode &PN : LoopExitBB->phis()) { |
1599 | if (!SE->isSCEVable(Ty: PN.getType())) |
1600 | return false; |
1601 | |
1602 | const SCEV *Ev = SE->getSCEV(V: &PN); |
1603 | if (!Ev) |
1604 | return false; |
1605 | |
1606 | LLVM_DEBUG(dbgs() << "loop exit phi scev: " << *Ev << "\n" ); |
1607 | |
1608 | // Since we verified that the loop trip count will be a valid strlen |
1609 | // idiom, we can expand all lcssa phi with {n,+,1} as (n + strlen) and use |
1610 | // SCEVExpander materialize the loop output. |
1611 | const SCEVAddRecExpr *AddRecEv = dyn_cast<SCEVAddRecExpr>(Val: Ev); |
1612 | if (!AddRecEv || !AddRecEv->isAffine()) |
1613 | return false; |
1614 | |
1615 | // We only want RecAddExpr with recurrence step that is constant. This |
1616 | // is good enough for all the idioms we want to recognize. Later we expand |
1617 | // and materialize the recurrence as {base,+,a} -> (base + a * strlen) |
1618 | if (!isa<SCEVConstant>(Val: AddRecEv->getStepRecurrence(SE&: *SE))) |
1619 | return false; |
1620 | } |
1621 | |
1622 | return true; |
1623 | } |
1624 | |
1625 | public: |
1626 | const Loop *CurLoop; |
1627 | ScalarEvolution *SE; |
1628 | const TargetLibraryInfo *TLI; |
1629 | |
1630 | unsigned OpWidth; |
1631 | ConstantInt *StepSizeCI; |
1632 | const SCEV *LoadBaseEv; |
1633 | Type *OperandType; |
1634 | }; |
1635 | |
1636 | } // namespace |
1637 | |
1638 | /// The Strlen Idiom we are trying to detect has the following structure |
1639 | /// |
1640 | /// preheader: |
1641 | /// ... |
1642 | /// br label %body, ... |
1643 | /// |
1644 | /// body: |
1645 | /// ... ; %0 is incremented by a gep |
1646 | /// %1 = load i8, ptr %0, align 1 |
1647 | /// %2 = icmp eq i8 %1, 0 |
1648 | /// br i1 %2, label %exit, label %body |
1649 | /// |
1650 | /// exit: |
1651 | /// %lcssa = phi [%0, %body], ... |
1652 | /// |
1653 | /// We expect the strlen idiom to have a load of a character type that |
1654 | /// is compared against '\0', and such load pointer operand must have scev |
1655 | /// expression of the form {%str,+,c} where c is a ConstantInt of the |
1656 | /// appropiate character width for the idiom, and %str is the base of the string |
1657 | /// And, that all lcssa phis have the form {...,+,n} where n is a constant, |
1658 | /// |
1659 | /// When transforming the output of the strlen idiom, the lccsa phi are |
1660 | /// expanded using SCEVExpander as {base scev,+,a} -> (base scev + a * strlen) |
1661 | /// and all subsequent uses are replaced. For example, |
1662 | /// |
1663 | /// \code{.c} |
1664 | /// const char* base = str; |
1665 | /// while (*str != '\0') |
1666 | /// ++str; |
1667 | /// size_t result = str - base; |
1668 | /// \endcode |
1669 | /// |
1670 | /// will be transformed as follows: The idiom will be replaced by a strlen |
1671 | /// computation to compute the address of the null terminator of the string. |
1672 | /// |
1673 | /// \code{.c} |
1674 | /// const char* base = str; |
1675 | /// const char* end = base + strlen(str); |
1676 | /// size_t result = end - base; |
1677 | /// \endcode |
1678 | /// |
1679 | /// In the case we index by an induction variable, as long as the induction |
1680 | /// variable has a constant int increment, we can replace all such indvars |
1681 | /// with the closed form computation of strlen |
1682 | /// |
1683 | /// \code{.c} |
1684 | /// size_t i = 0; |
1685 | /// while (str[i] != '\0') |
1686 | /// ++i; |
1687 | /// size_t result = i; |
1688 | /// \endcode |
1689 | /// |
1690 | /// Will be replaced by |
1691 | /// |
1692 | /// \code{.c} |
1693 | /// size_t i = 0 + strlen(str); |
1694 | /// size_t result = i; |
1695 | /// \endcode |
1696 | /// |
1697 | bool LoopIdiomRecognize::recognizeAndInsertStrLen() { |
1698 | if (DisableLIRP::All) |
1699 | return false; |
1700 | |
1701 | StrlenVerifier Verifier(CurLoop, SE, TLI); |
1702 | |
1703 | if (!Verifier.isValidStrlenIdiom()) |
1704 | return false; |
1705 | |
1706 | BasicBlock * = CurLoop->getLoopPreheader(); |
1707 | BasicBlock *LoopBody = *CurLoop->block_begin(); |
1708 | BasicBlock *LoopExitBB = CurLoop->getExitBlock(); |
1709 | BranchInst *LoopTerm = dyn_cast<BranchInst>(Val: LoopBody->getTerminator()); |
1710 | assert(Preheader && LoopBody && LoopExitBB && LoopTerm && |
1711 | "Should be verified to be valid by StrlenVerifier" ); |
1712 | |
1713 | if (Verifier.OpWidth == 8) { |
1714 | if (DisableLIRP::Strlen) |
1715 | return false; |
1716 | if (!isLibFuncEmittable(M: Preheader->getModule(), TLI, TheLibFunc: LibFunc_strlen)) |
1717 | return false; |
1718 | } else { |
1719 | if (DisableLIRP::Wcslen) |
1720 | return false; |
1721 | if (!isLibFuncEmittable(M: Preheader->getModule(), TLI, TheLibFunc: LibFunc_wcslen)) |
1722 | return false; |
1723 | } |
1724 | |
1725 | IRBuilder<> Builder(Preheader->getTerminator()); |
1726 | Builder.SetCurrentDebugLocation(CurLoop->getStartLoc()); |
1727 | SCEVExpander Expander(*SE, Preheader->getModule()->getDataLayout(), |
1728 | "strlen_idiom" ); |
1729 | Value *MaterialzedBase = Expander.expandCodeFor( |
1730 | SH: Verifier.LoadBaseEv, Ty: Verifier.LoadBaseEv->getType(), |
1731 | I: Builder.GetInsertPoint()); |
1732 | |
1733 | Value *StrLenFunc = nullptr; |
1734 | if (Verifier.OpWidth == 8) { |
1735 | StrLenFunc = emitStrLen(Ptr: MaterialzedBase, B&: Builder, DL: *DL, TLI); |
1736 | } else { |
1737 | StrLenFunc = emitWcsLen(Ptr: MaterialzedBase, B&: Builder, DL: *DL, TLI); |
1738 | } |
1739 | assert(StrLenFunc && "Failed to emit strlen function." ); |
1740 | |
1741 | const SCEV *StrlenEv = SE->getSCEV(V: StrLenFunc); |
1742 | SmallVector<PHINode *, 4> Cleanup; |
1743 | for (PHINode &PN : LoopExitBB->phis()) { |
1744 | // We can now materialize the loop output as all phi have scev {base,+,a}. |
1745 | // We expand the phi as: |
1746 | // %strlen = call i64 @strlen(%str) |
1747 | // %phi.new = base expression + step * %strlen |
1748 | const SCEV *Ev = SE->getSCEV(V: &PN); |
1749 | const SCEVAddRecExpr *AddRecEv = dyn_cast<SCEVAddRecExpr>(Val: Ev); |
1750 | const SCEVConstant *Step = |
1751 | dyn_cast<SCEVConstant>(Val: AddRecEv->getStepRecurrence(SE&: *SE)); |
1752 | const SCEV *Base = AddRecEv->getStart(); |
1753 | |
1754 | // It is safe to truncate to base since if base is narrower than size_t |
1755 | // the equivalent user code will have to truncate anyways. |
1756 | const SCEV *NewEv = SE->getAddExpr( |
1757 | LHS: Base, RHS: SE->getMulExpr(LHS: Step, RHS: SE->getTruncateOrSignExtend( |
1758 | V: StrlenEv, Ty: Base->getType()))); |
1759 | |
1760 | Value *MaterializedPHI = Expander.expandCodeFor(SH: NewEv, Ty: NewEv->getType(), |
1761 | I: Builder.GetInsertPoint()); |
1762 | Expander.clear(); |
1763 | PN.replaceAllUsesWith(V: MaterializedPHI); |
1764 | Cleanup.push_back(Elt: &PN); |
1765 | } |
1766 | |
1767 | // All LCSSA Loop Phi are dead, the left over dead loop body can be cleaned |
1768 | // up by later passes |
1769 | for (PHINode *PN : Cleanup) |
1770 | RecursivelyDeleteDeadPHINode(PN); |
1771 | |
1772 | // LoopDeletion only delete invariant loops with known trip-count. We can |
1773 | // update the condition so it will reliablely delete the invariant loop |
1774 | assert(LoopTerm->getNumSuccessors() == 2 && |
1775 | (LoopTerm->getSuccessor(0) == LoopBody || |
1776 | LoopTerm->getSuccessor(1) == LoopBody) && |
1777 | "loop body must have a successor that is it self" ); |
1778 | ConstantInt *NewLoopCond = LoopTerm->getSuccessor(i: 0) == LoopBody |
1779 | ? Builder.getFalse() |
1780 | : Builder.getTrue(); |
1781 | LoopTerm->setCondition(NewLoopCond); |
1782 | SE->forgetLoop(L: CurLoop); |
1783 | |
1784 | ++NumStrLen; |
1785 | LLVM_DEBUG(dbgs() << " Formed strlen idiom: " << *StrLenFunc << "\n" ); |
1786 | ORE.emit(RemarkBuilder: [&]() { |
1787 | return OptimizationRemark(DEBUG_TYPE, "recognizeAndInsertStrLen" , |
1788 | CurLoop->getStartLoc(), Preheader) |
1789 | << "Transformed " << StrLenFunc->getName() << " loop idiom" ; |
1790 | }); |
1791 | |
1792 | return true; |
1793 | } |
1794 | |
1795 | /// Check if the given conditional branch is based on an unsigned less-than |
1796 | /// comparison between a variable and a constant, and if the comparison is false |
1797 | /// the control yields to the loop entry. If the branch matches the behaviour, |
1798 | /// the variable involved in the comparison is returned. |
1799 | static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry, |
1800 | APInt &Threshold) { |
1801 | if (!BI || !BI->isConditional()) |
1802 | return nullptr; |
1803 | |
1804 | ICmpInst *Cond = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
1805 | if (!Cond) |
1806 | return nullptr; |
1807 | |
1808 | ConstantInt *CmpConst = dyn_cast<ConstantInt>(Val: Cond->getOperand(i_nocapture: 1)); |
1809 | if (!CmpConst) |
1810 | return nullptr; |
1811 | |
1812 | BasicBlock *FalseSucc = BI->getSuccessor(i: 1); |
1813 | ICmpInst::Predicate Pred = Cond->getPredicate(); |
1814 | |
1815 | if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) { |
1816 | Threshold = CmpConst->getValue(); |
1817 | return Cond->getOperand(i_nocapture: 0); |
1818 | } |
1819 | |
1820 | return nullptr; |
1821 | } |
1822 | |
1823 | // Check if the recurrence variable `VarX` is in the right form to create |
1824 | // the idiom. Returns the value coerced to a PHINode if so. |
1825 | static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, |
1826 | BasicBlock *LoopEntry) { |
1827 | auto *PhiX = dyn_cast<PHINode>(Val: VarX); |
1828 | if (PhiX && PhiX->getParent() == LoopEntry && |
1829 | (PhiX->getOperand(i_nocapture: 0) == DefX || PhiX->getOperand(i_nocapture: 1) == DefX)) |
1830 | return PhiX; |
1831 | return nullptr; |
1832 | } |
1833 | |
1834 | /// Return true if the idiom is detected in the loop. |
1835 | /// |
1836 | /// Additionally: |
1837 | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) |
1838 | /// or nullptr if there is no such. |
1839 | /// 2) \p CntPhi is set to the corresponding phi node |
1840 | /// or nullptr if there is no such. |
1841 | /// 3) \p InitX is set to the value whose CTLZ could be used. |
1842 | /// 4) \p DefX is set to the instruction calculating Loop exit condition. |
1843 | /// 5) \p Threshold is set to the constant involved in the unsigned less-than |
1844 | /// comparison. |
1845 | /// |
1846 | /// The core idiom we are trying to detect is: |
1847 | /// \code |
1848 | /// if (x0 < 2) |
1849 | /// goto loop-exit // the precondition of the loop |
1850 | /// cnt0 = init-val |
1851 | /// do { |
1852 | /// x = phi (x0, x.next); //PhiX |
1853 | /// cnt = phi (cnt0, cnt.next) |
1854 | /// |
1855 | /// cnt.next = cnt + 1; |
1856 | /// ... |
1857 | /// x.next = x >> 1; // DefX |
1858 | /// } while (x >= 4) |
1859 | /// loop-exit: |
1860 | /// \endcode |
1861 | static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL, |
1862 | Intrinsic::ID &IntrinID, |
1863 | Value *&InitX, Instruction *&CntInst, |
1864 | PHINode *&CntPhi, Instruction *&DefX, |
1865 | APInt &Threshold) { |
1866 | BasicBlock *LoopEntry; |
1867 | |
1868 | DefX = nullptr; |
1869 | CntInst = nullptr; |
1870 | CntPhi = nullptr; |
1871 | LoopEntry = *(CurLoop->block_begin()); |
1872 | |
1873 | // step 1: Check if the loop-back branch is in desirable form. |
1874 | if (Value *T = matchShiftULTCondition( |
1875 | BI: dyn_cast<BranchInst>(Val: LoopEntry->getTerminator()), LoopEntry, |
1876 | Threshold)) |
1877 | DefX = dyn_cast<Instruction>(Val: T); |
1878 | else |
1879 | return false; |
1880 | |
1881 | // step 2: Check the recurrence of variable X |
1882 | if (!DefX || !isa<PHINode>(Val: DefX)) |
1883 | return false; |
1884 | |
1885 | PHINode *VarPhi = cast<PHINode>(Val: DefX); |
1886 | int Idx = VarPhi->getBasicBlockIndex(BB: LoopEntry); |
1887 | if (Idx == -1) |
1888 | return false; |
1889 | |
1890 | DefX = dyn_cast<Instruction>(Val: VarPhi->getIncomingValue(i: Idx)); |
1891 | if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(i: 0) != VarPhi) |
1892 | return false; |
1893 | |
1894 | // step 3: detect instructions corresponding to "x.next = x >> 1" |
1895 | if (DefX->getOpcode() != Instruction::LShr) |
1896 | return false; |
1897 | |
1898 | IntrinID = Intrinsic::ctlz; |
1899 | ConstantInt *Shft = dyn_cast<ConstantInt>(Val: DefX->getOperand(i: 1)); |
1900 | if (!Shft || !Shft->isOne()) |
1901 | return false; |
1902 | |
1903 | InitX = VarPhi->getIncomingValueForBlock(BB: CurLoop->getLoopPreheader()); |
1904 | |
1905 | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 |
1906 | // or cnt.next = cnt + -1. |
1907 | // TODO: We can skip the step. If loop trip count is known (CTLZ), |
1908 | // then all uses of "cnt.next" could be optimized to the trip count |
1909 | // plus "cnt0". Currently it is not optimized. |
1910 | // This step could be used to detect POPCNT instruction: |
1911 | // cnt.next = cnt + (x.next & 1) |
1912 | for (Instruction &Inst : |
1913 | llvm::make_range(x: LoopEntry->getFirstNonPHIIt(), y: LoopEntry->end())) { |
1914 | if (Inst.getOpcode() != Instruction::Add) |
1915 | continue; |
1916 | |
1917 | ConstantInt *Inc = dyn_cast<ConstantInt>(Val: Inst.getOperand(i: 1)); |
1918 | if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) |
1919 | continue; |
1920 | |
1921 | PHINode *Phi = getRecurrenceVar(VarX: Inst.getOperand(i: 0), DefX: &Inst, LoopEntry); |
1922 | if (!Phi) |
1923 | continue; |
1924 | |
1925 | CntInst = &Inst; |
1926 | CntPhi = Phi; |
1927 | break; |
1928 | } |
1929 | if (!CntInst) |
1930 | return false; |
1931 | |
1932 | return true; |
1933 | } |
1934 | |
1935 | /// Return true iff the idiom is detected in the loop. |
1936 | /// |
1937 | /// Additionally: |
1938 | /// 1) \p CntInst is set to the instruction counting the population bit. |
1939 | /// 2) \p CntPhi is set to the corresponding phi node. |
1940 | /// 3) \p Var is set to the value whose population bits are being counted. |
1941 | /// |
1942 | /// The core idiom we are trying to detect is: |
1943 | /// \code |
1944 | /// if (x0 != 0) |
1945 | /// goto loop-exit // the precondition of the loop |
1946 | /// cnt0 = init-val; |
1947 | /// do { |
1948 | /// x1 = phi (x0, x2); |
1949 | /// cnt1 = phi(cnt0, cnt2); |
1950 | /// |
1951 | /// cnt2 = cnt1 + 1; |
1952 | /// ... |
1953 | /// x2 = x1 & (x1 - 1); |
1954 | /// ... |
1955 | /// } while(x != 0); |
1956 | /// |
1957 | /// loop-exit: |
1958 | /// \endcode |
1959 | static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, |
1960 | Instruction *&CntInst, PHINode *&CntPhi, |
1961 | Value *&Var) { |
1962 | // step 1: Check to see if the look-back branch match this pattern: |
1963 | // "if (a!=0) goto loop-entry". |
1964 | BasicBlock *LoopEntry; |
1965 | Instruction *DefX2, *CountInst; |
1966 | Value *VarX1, *VarX0; |
1967 | PHINode *PhiX, *CountPhi; |
1968 | |
1969 | DefX2 = CountInst = nullptr; |
1970 | VarX1 = VarX0 = nullptr; |
1971 | PhiX = CountPhi = nullptr; |
1972 | LoopEntry = *(CurLoop->block_begin()); |
1973 | |
1974 | // step 1: Check if the loop-back branch is in desirable form. |
1975 | { |
1976 | if (Value *T = matchCondition( |
1977 | BI: dyn_cast<BranchInst>(Val: LoopEntry->getTerminator()), LoopEntry)) |
1978 | DefX2 = dyn_cast<Instruction>(Val: T); |
1979 | else |
1980 | return false; |
1981 | } |
1982 | |
1983 | // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" |
1984 | { |
1985 | if (!DefX2 || DefX2->getOpcode() != Instruction::And) |
1986 | return false; |
1987 | |
1988 | BinaryOperator *SubOneOp; |
1989 | |
1990 | if ((SubOneOp = dyn_cast<BinaryOperator>(Val: DefX2->getOperand(i: 0)))) |
1991 | VarX1 = DefX2->getOperand(i: 1); |
1992 | else { |
1993 | VarX1 = DefX2->getOperand(i: 0); |
1994 | SubOneOp = dyn_cast<BinaryOperator>(Val: DefX2->getOperand(i: 1)); |
1995 | } |
1996 | if (!SubOneOp || SubOneOp->getOperand(i_nocapture: 0) != VarX1) |
1997 | return false; |
1998 | |
1999 | ConstantInt *Dec = dyn_cast<ConstantInt>(Val: SubOneOp->getOperand(i_nocapture: 1)); |
2000 | if (!Dec || |
2001 | !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || |
2002 | (SubOneOp->getOpcode() == Instruction::Add && |
2003 | Dec->isMinusOne()))) { |
2004 | return false; |
2005 | } |
2006 | } |
2007 | |
2008 | // step 3: Check the recurrence of variable X |
2009 | PhiX = getRecurrenceVar(VarX: VarX1, DefX: DefX2, LoopEntry); |
2010 | if (!PhiX) |
2011 | return false; |
2012 | |
2013 | // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 |
2014 | { |
2015 | CountInst = nullptr; |
2016 | for (Instruction &Inst : |
2017 | llvm::make_range(x: LoopEntry->getFirstNonPHIIt(), y: LoopEntry->end())) { |
2018 | if (Inst.getOpcode() != Instruction::Add) |
2019 | continue; |
2020 | |
2021 | ConstantInt *Inc = dyn_cast<ConstantInt>(Val: Inst.getOperand(i: 1)); |
2022 | if (!Inc || !Inc->isOne()) |
2023 | continue; |
2024 | |
2025 | PHINode *Phi = getRecurrenceVar(VarX: Inst.getOperand(i: 0), DefX: &Inst, LoopEntry); |
2026 | if (!Phi) |
2027 | continue; |
2028 | |
2029 | // Check if the result of the instruction is live of the loop. |
2030 | bool LiveOutLoop = false; |
2031 | for (User *U : Inst.users()) { |
2032 | if ((cast<Instruction>(Val: U))->getParent() != LoopEntry) { |
2033 | LiveOutLoop = true; |
2034 | break; |
2035 | } |
2036 | } |
2037 | |
2038 | if (LiveOutLoop) { |
2039 | CountInst = &Inst; |
2040 | CountPhi = Phi; |
2041 | break; |
2042 | } |
2043 | } |
2044 | |
2045 | if (!CountInst) |
2046 | return false; |
2047 | } |
2048 | |
2049 | // step 5: check if the precondition is in this form: |
2050 | // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" |
2051 | { |
2052 | auto *PreCondBr = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
2053 | Value *T = matchCondition(BI: PreCondBr, LoopEntry: CurLoop->getLoopPreheader()); |
2054 | if (T != PhiX->getOperand(i_nocapture: 0) && T != PhiX->getOperand(i_nocapture: 1)) |
2055 | return false; |
2056 | |
2057 | CntInst = CountInst; |
2058 | CntPhi = CountPhi; |
2059 | Var = T; |
2060 | } |
2061 | |
2062 | return true; |
2063 | } |
2064 | |
2065 | /// Return true if the idiom is detected in the loop. |
2066 | /// |
2067 | /// Additionally: |
2068 | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) |
2069 | /// or nullptr if there is no such. |
2070 | /// 2) \p CntPhi is set to the corresponding phi node |
2071 | /// or nullptr if there is no such. |
2072 | /// 3) \p Var is set to the value whose CTLZ could be used. |
2073 | /// 4) \p DefX is set to the instruction calculating Loop exit condition. |
2074 | /// |
2075 | /// The core idiom we are trying to detect is: |
2076 | /// \code |
2077 | /// if (x0 == 0) |
2078 | /// goto loop-exit // the precondition of the loop |
2079 | /// cnt0 = init-val; |
2080 | /// do { |
2081 | /// x = phi (x0, x.next); //PhiX |
2082 | /// cnt = phi(cnt0, cnt.next); |
2083 | /// |
2084 | /// cnt.next = cnt + 1; |
2085 | /// ... |
2086 | /// x.next = x >> 1; // DefX |
2087 | /// ... |
2088 | /// } while(x.next != 0); |
2089 | /// |
2090 | /// loop-exit: |
2091 | /// \endcode |
2092 | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, |
2093 | Intrinsic::ID &IntrinID, Value *&InitX, |
2094 | Instruction *&CntInst, PHINode *&CntPhi, |
2095 | Instruction *&DefX) { |
2096 | BasicBlock *LoopEntry; |
2097 | Value *VarX = nullptr; |
2098 | |
2099 | DefX = nullptr; |
2100 | CntInst = nullptr; |
2101 | CntPhi = nullptr; |
2102 | LoopEntry = *(CurLoop->block_begin()); |
2103 | |
2104 | // step 1: Check if the loop-back branch is in desirable form. |
2105 | if (Value *T = matchCondition( |
2106 | BI: dyn_cast<BranchInst>(Val: LoopEntry->getTerminator()), LoopEntry)) |
2107 | DefX = dyn_cast<Instruction>(Val: T); |
2108 | else |
2109 | return false; |
2110 | |
2111 | // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" |
2112 | if (!DefX || !DefX->isShift()) |
2113 | return false; |
2114 | IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : |
2115 | Intrinsic::ctlz; |
2116 | ConstantInt *Shft = dyn_cast<ConstantInt>(Val: DefX->getOperand(i: 1)); |
2117 | if (!Shft || !Shft->isOne()) |
2118 | return false; |
2119 | VarX = DefX->getOperand(i: 0); |
2120 | |
2121 | // step 3: Check the recurrence of variable X |
2122 | PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); |
2123 | if (!PhiX) |
2124 | return false; |
2125 | |
2126 | InitX = PhiX->getIncomingValueForBlock(BB: CurLoop->getLoopPreheader()); |
2127 | |
2128 | // Make sure the initial value can't be negative otherwise the ashr in the |
2129 | // loop might never reach zero which would make the loop infinite. |
2130 | if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(V: InitX, SQ: DL)) |
2131 | return false; |
2132 | |
2133 | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 |
2134 | // or cnt.next = cnt + -1. |
2135 | // TODO: We can skip the step. If loop trip count is known (CTLZ), |
2136 | // then all uses of "cnt.next" could be optimized to the trip count |
2137 | // plus "cnt0". Currently it is not optimized. |
2138 | // This step could be used to detect POPCNT instruction: |
2139 | // cnt.next = cnt + (x.next & 1) |
2140 | for (Instruction &Inst : |
2141 | llvm::make_range(x: LoopEntry->getFirstNonPHIIt(), y: LoopEntry->end())) { |
2142 | if (Inst.getOpcode() != Instruction::Add) |
2143 | continue; |
2144 | |
2145 | ConstantInt *Inc = dyn_cast<ConstantInt>(Val: Inst.getOperand(i: 1)); |
2146 | if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) |
2147 | continue; |
2148 | |
2149 | PHINode *Phi = getRecurrenceVar(VarX: Inst.getOperand(i: 0), DefX: &Inst, LoopEntry); |
2150 | if (!Phi) |
2151 | continue; |
2152 | |
2153 | CntInst = &Inst; |
2154 | CntPhi = Phi; |
2155 | break; |
2156 | } |
2157 | if (!CntInst) |
2158 | return false; |
2159 | |
2160 | return true; |
2161 | } |
2162 | |
2163 | // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always |
2164 | // profitable if we delete the loop. |
2165 | bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID, |
2166 | Value *InitX, bool ZeroCheck, |
2167 | size_t CanonicalSize) { |
2168 | const Value *Args[] = {InitX, |
2169 | ConstantInt::getBool(Context&: InitX->getContext(), V: ZeroCheck)}; |
2170 | |
2171 | // @llvm.dbg doesn't count as they have no semantic effect. |
2172 | auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); |
2173 | uint32_t = |
2174 | std::distance(first: InstWithoutDebugIt.begin(), last: InstWithoutDebugIt.end()); |
2175 | |
2176 | IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); |
2177 | InstructionCost Cost = TTI->getIntrinsicInstrCost( |
2178 | ICA: Attrs, CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
2179 | if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic) |
2180 | return false; |
2181 | |
2182 | return true; |
2183 | } |
2184 | |
2185 | /// Convert CTLZ / CTTZ idiom loop into countable loop. |
2186 | /// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise, |
2187 | /// returns false. |
2188 | bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID, |
2189 | Value *InitX, Instruction *DefX, |
2190 | PHINode *CntPhi, |
2191 | Instruction *CntInst) { |
2192 | bool IsCntPhiUsedOutsideLoop = false; |
2193 | for (User *U : CntPhi->users()) |
2194 | if (!CurLoop->contains(Inst: cast<Instruction>(Val: U))) { |
2195 | IsCntPhiUsedOutsideLoop = true; |
2196 | break; |
2197 | } |
2198 | bool IsCntInstUsedOutsideLoop = false; |
2199 | for (User *U : CntInst->users()) |
2200 | if (!CurLoop->contains(Inst: cast<Instruction>(Val: U))) { |
2201 | IsCntInstUsedOutsideLoop = true; |
2202 | break; |
2203 | } |
2204 | // If both CntInst and CntPhi are used outside the loop the profitability |
2205 | // is questionable. |
2206 | if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) |
2207 | return false; |
2208 | |
2209 | // For some CPUs result of CTLZ(X) intrinsic is undefined |
2210 | // when X is 0. If we can not guarantee X != 0, we need to check this |
2211 | // when expand. |
2212 | bool ZeroCheck = false; |
2213 | // It is safe to assume Preheader exist as it was checked in |
2214 | // parent function RunOnLoop. |
2215 | BasicBlock *PH = CurLoop->getLoopPreheader(); |
2216 | |
2217 | // If we are using the count instruction outside the loop, make sure we |
2218 | // have a zero check as a precondition. Without the check the loop would run |
2219 | // one iteration for before any check of the input value. This means 0 and 1 |
2220 | // would have identical behavior in the original loop and thus |
2221 | if (!IsCntPhiUsedOutsideLoop) { |
2222 | auto *PreCondBB = PH->getSinglePredecessor(); |
2223 | if (!PreCondBB) |
2224 | return false; |
2225 | auto *PreCondBI = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
2226 | if (!PreCondBI) |
2227 | return false; |
2228 | if (matchCondition(BI: PreCondBI, LoopEntry: PH) != InitX) |
2229 | return false; |
2230 | ZeroCheck = true; |
2231 | } |
2232 | |
2233 | // FFS idiom loop has only 6 instructions: |
2234 | // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] |
2235 | // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] |
2236 | // %shr = ashr %n.addr.0, 1 |
2237 | // %tobool = icmp eq %shr, 0 |
2238 | // %inc = add nsw %i.0, 1 |
2239 | // br i1 %tobool |
2240 | size_t IdiomCanonicalSize = 6; |
2241 | if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, CanonicalSize: IdiomCanonicalSize)) |
2242 | return false; |
2243 | |
2244 | transformLoopToCountable(IntrinID, PreCondBB: PH, CntInst, CntPhi, Var: InitX, DefX, |
2245 | DL: DefX->getDebugLoc(), ZeroCheck, |
2246 | IsCntPhiUsedOutsideLoop); |
2247 | return true; |
2248 | } |
2249 | |
2250 | /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop |
2251 | /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new |
2252 | /// trip count returns true; otherwise, returns false. |
2253 | bool LoopIdiomRecognize::recognizeAndInsertFFS() { |
2254 | // Give up if the loop has multiple blocks or multiple backedges. |
2255 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
2256 | return false; |
2257 | |
2258 | Intrinsic::ID IntrinID; |
2259 | Value *InitX; |
2260 | Instruction *DefX = nullptr; |
2261 | PHINode *CntPhi = nullptr; |
2262 | Instruction *CntInst = nullptr; |
2263 | |
2264 | if (!detectShiftUntilZeroIdiom(CurLoop, DL: *DL, IntrinID, InitX, CntInst, CntPhi, |
2265 | DefX)) |
2266 | return false; |
2267 | |
2268 | return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); |
2269 | } |
2270 | |
2271 | bool LoopIdiomRecognize::recognizeShiftUntilLessThan() { |
2272 | // Give up if the loop has multiple blocks or multiple backedges. |
2273 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
2274 | return false; |
2275 | |
2276 | Intrinsic::ID IntrinID; |
2277 | Value *InitX; |
2278 | Instruction *DefX = nullptr; |
2279 | PHINode *CntPhi = nullptr; |
2280 | Instruction *CntInst = nullptr; |
2281 | |
2282 | APInt LoopThreshold; |
2283 | if (!detectShiftUntilLessThanIdiom(CurLoop, DL: *DL, IntrinID, InitX, CntInst, |
2284 | CntPhi, DefX, Threshold&: LoopThreshold)) |
2285 | return false; |
2286 | |
2287 | if (LoopThreshold == 2) { |
2288 | // Treat as regular FFS. |
2289 | return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); |
2290 | } |
2291 | |
2292 | // Look for Floor Log2 Idiom. |
2293 | if (LoopThreshold != 4) |
2294 | return false; |
2295 | |
2296 | // Abort if CntPhi is used outside of the loop. |
2297 | for (User *U : CntPhi->users()) |
2298 | if (!CurLoop->contains(Inst: cast<Instruction>(Val: U))) |
2299 | return false; |
2300 | |
2301 | // It is safe to assume Preheader exist as it was checked in |
2302 | // parent function RunOnLoop. |
2303 | BasicBlock *PH = CurLoop->getLoopPreheader(); |
2304 | auto *PreCondBB = PH->getSinglePredecessor(); |
2305 | if (!PreCondBB) |
2306 | return false; |
2307 | auto *PreCondBI = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
2308 | if (!PreCondBI) |
2309 | return false; |
2310 | |
2311 | APInt PreLoopThreshold; |
2312 | if (matchShiftULTCondition(BI: PreCondBI, LoopEntry: PH, Threshold&: PreLoopThreshold) != InitX || |
2313 | PreLoopThreshold != 2) |
2314 | return false; |
2315 | |
2316 | bool ZeroCheck = true; |
2317 | |
2318 | // the loop has only 6 instructions: |
2319 | // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] |
2320 | // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] |
2321 | // %shr = ashr %n.addr.0, 1 |
2322 | // %tobool = icmp ult %n.addr.0, C |
2323 | // %inc = add nsw %i.0, 1 |
2324 | // br i1 %tobool |
2325 | size_t IdiomCanonicalSize = 6; |
2326 | if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, CanonicalSize: IdiomCanonicalSize)) |
2327 | return false; |
2328 | |
2329 | // log2(x) = w − 1 − clz(x) |
2330 | transformLoopToCountable(IntrinID, PreCondBB: PH, CntInst, CntPhi, Var: InitX, DefX, |
2331 | DL: DefX->getDebugLoc(), ZeroCheck, |
2332 | /*IsCntPhiUsedOutsideLoop=*/false, |
2333 | /*InsertSub=*/true); |
2334 | return true; |
2335 | } |
2336 | |
2337 | /// Recognizes a population count idiom in a non-countable loop. |
2338 | /// |
2339 | /// If detected, transforms the relevant code to issue the popcount intrinsic |
2340 | /// function call, and returns true; otherwise, returns false. |
2341 | bool LoopIdiomRecognize::recognizePopcount() { |
2342 | if (TTI->getPopcntSupport(IntTyWidthInBit: 32) != TargetTransformInfo::PSK_FastHardware) |
2343 | return false; |
2344 | |
2345 | // Counting population are usually conducted by few arithmetic instructions. |
2346 | // Such instructions can be easily "absorbed" by vacant slots in a |
2347 | // non-compact loop. Therefore, recognizing popcount idiom only makes sense |
2348 | // in a compact loop. |
2349 | |
2350 | // Give up if the loop has multiple blocks or multiple backedges. |
2351 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
2352 | return false; |
2353 | |
2354 | BasicBlock *LoopBody = *(CurLoop->block_begin()); |
2355 | if (LoopBody->size() >= 20) { |
2356 | // The loop is too big, bail out. |
2357 | return false; |
2358 | } |
2359 | |
2360 | // It should have a preheader containing nothing but an unconditional branch. |
2361 | BasicBlock *PH = CurLoop->getLoopPreheader(); |
2362 | if (!PH || &PH->front() != PH->getTerminator()) |
2363 | return false; |
2364 | auto *EntryBI = dyn_cast<BranchInst>(Val: PH->getTerminator()); |
2365 | if (!EntryBI || EntryBI->isConditional()) |
2366 | return false; |
2367 | |
2368 | // It should have a precondition block where the generated popcount intrinsic |
2369 | // function can be inserted. |
2370 | auto *PreCondBB = PH->getSinglePredecessor(); |
2371 | if (!PreCondBB) |
2372 | return false; |
2373 | auto *PreCondBI = dyn_cast<BranchInst>(Val: PreCondBB->getTerminator()); |
2374 | if (!PreCondBI || PreCondBI->isUnconditional()) |
2375 | return false; |
2376 | |
2377 | Instruction *CntInst; |
2378 | PHINode *CntPhi; |
2379 | Value *Val; |
2380 | if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Var&: Val)) |
2381 | return false; |
2382 | |
2383 | transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Var: Val); |
2384 | return true; |
2385 | } |
2386 | |
2387 | static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
2388 | const DebugLoc &DL) { |
2389 | Value *Ops[] = {Val}; |
2390 | Type *Tys[] = {Val->getType()}; |
2391 | |
2392 | CallInst *CI = IRBuilder.CreateIntrinsic(ID: Intrinsic::ctpop, Types: Tys, Args: Ops); |
2393 | CI->setDebugLoc(DL); |
2394 | |
2395 | return CI; |
2396 | } |
2397 | |
2398 | static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
2399 | const DebugLoc &DL, bool ZeroCheck, |
2400 | Intrinsic::ID IID) { |
2401 | Value *Ops[] = {Val, IRBuilder.getInt1(V: ZeroCheck)}; |
2402 | Type *Tys[] = {Val->getType()}; |
2403 | |
2404 | CallInst *CI = IRBuilder.CreateIntrinsic(ID: IID, Types: Tys, Args: Ops); |
2405 | CI->setDebugLoc(DL); |
2406 | |
2407 | return CI; |
2408 | } |
2409 | |
2410 | /// Transform the following loop (Using CTLZ, CTTZ is similar): |
2411 | /// loop: |
2412 | /// CntPhi = PHI [Cnt0, CntInst] |
2413 | /// PhiX = PHI [InitX, DefX] |
2414 | /// CntInst = CntPhi + 1 |
2415 | /// DefX = PhiX >> 1 |
2416 | /// LOOP_BODY |
2417 | /// Br: loop if (DefX != 0) |
2418 | /// Use(CntPhi) or Use(CntInst) |
2419 | /// |
2420 | /// Into: |
2421 | /// If CntPhi used outside the loop: |
2422 | /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) |
2423 | /// Count = CountPrev + 1 |
2424 | /// else |
2425 | /// Count = BitWidth(InitX) - CTLZ(InitX) |
2426 | /// loop: |
2427 | /// CntPhi = PHI [Cnt0, CntInst] |
2428 | /// PhiX = PHI [InitX, DefX] |
2429 | /// PhiCount = PHI [Count, Dec] |
2430 | /// CntInst = CntPhi + 1 |
2431 | /// DefX = PhiX >> 1 |
2432 | /// Dec = PhiCount - 1 |
2433 | /// LOOP_BODY |
2434 | /// Br: loop if (Dec != 0) |
2435 | /// Use(CountPrev + Cnt0) // Use(CntPhi) |
2436 | /// or |
2437 | /// Use(Count + Cnt0) // Use(CntInst) |
2438 | /// |
2439 | /// If LOOP_BODY is empty the loop will be deleted. |
2440 | /// If CntInst and DefX are not used in LOOP_BODY they will be removed. |
2441 | void LoopIdiomRecognize::transformLoopToCountable( |
2442 | Intrinsic::ID IntrinID, BasicBlock *, Instruction *CntInst, |
2443 | PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, |
2444 | bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) { |
2445 | BranchInst * = cast<BranchInst>(Val: Preheader->getTerminator()); |
2446 | |
2447 | // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block |
2448 | IRBuilder<> Builder(PreheaderBr); |
2449 | Builder.SetCurrentDebugLocation(DL); |
2450 | |
2451 | // If there are no uses of CntPhi crate: |
2452 | // Count = BitWidth - CTLZ(InitX); |
2453 | // NewCount = Count; |
2454 | // If there are uses of CntPhi create: |
2455 | // NewCount = BitWidth - CTLZ(InitX >> 1); |
2456 | // Count = NewCount + 1; |
2457 | Value *InitXNext; |
2458 | if (IsCntPhiUsedOutsideLoop) { |
2459 | if (DefX->getOpcode() == Instruction::AShr) |
2460 | InitXNext = Builder.CreateAShr(LHS: InitX, RHS: 1); |
2461 | else if (DefX->getOpcode() == Instruction::LShr) |
2462 | InitXNext = Builder.CreateLShr(LHS: InitX, RHS: 1); |
2463 | else if (DefX->getOpcode() == Instruction::Shl) // cttz |
2464 | InitXNext = Builder.CreateShl(LHS: InitX, RHS: 1); |
2465 | else |
2466 | llvm_unreachable("Unexpected opcode!" ); |
2467 | } else |
2468 | InitXNext = InitX; |
2469 | Value *Count = |
2470 | createFFSIntrinsic(IRBuilder&: Builder, Val: InitXNext, DL, ZeroCheck, IID: IntrinID); |
2471 | Type *CountTy = Count->getType(); |
2472 | Count = Builder.CreateSub( |
2473 | LHS: ConstantInt::get(Ty: CountTy, V: CountTy->getIntegerBitWidth()), RHS: Count); |
2474 | if (InsertSub) |
2475 | Count = Builder.CreateSub(LHS: Count, RHS: ConstantInt::get(Ty: CountTy, V: 1)); |
2476 | Value *NewCount = Count; |
2477 | if (IsCntPhiUsedOutsideLoop) |
2478 | Count = Builder.CreateAdd(LHS: Count, RHS: ConstantInt::get(Ty: CountTy, V: 1)); |
2479 | |
2480 | NewCount = Builder.CreateZExtOrTrunc(V: NewCount, DestTy: CntInst->getType()); |
2481 | |
2482 | Value *CntInitVal = CntPhi->getIncomingValueForBlock(BB: Preheader); |
2483 | if (cast<ConstantInt>(Val: CntInst->getOperand(i: 1))->isOne()) { |
2484 | // If the counter was being incremented in the loop, add NewCount to the |
2485 | // counter's initial value, but only if the initial value is not zero. |
2486 | ConstantInt *InitConst = dyn_cast<ConstantInt>(Val: CntInitVal); |
2487 | if (!InitConst || !InitConst->isZero()) |
2488 | NewCount = Builder.CreateAdd(LHS: NewCount, RHS: CntInitVal); |
2489 | } else { |
2490 | // If the count was being decremented in the loop, subtract NewCount from |
2491 | // the counter's initial value. |
2492 | NewCount = Builder.CreateSub(LHS: CntInitVal, RHS: NewCount); |
2493 | } |
2494 | |
2495 | // Step 2: Insert new IV and loop condition: |
2496 | // loop: |
2497 | // ... |
2498 | // PhiCount = PHI [Count, Dec] |
2499 | // ... |
2500 | // Dec = PhiCount - 1 |
2501 | // ... |
2502 | // Br: loop if (Dec != 0) |
2503 | BasicBlock *Body = *(CurLoop->block_begin()); |
2504 | auto *LbBr = cast<BranchInst>(Val: Body->getTerminator()); |
2505 | ICmpInst *LbCond = cast<ICmpInst>(Val: LbBr->getCondition()); |
2506 | |
2507 | PHINode *TcPhi = PHINode::Create(Ty: CountTy, NumReservedValues: 2, NameStr: "tcphi" ); |
2508 | TcPhi->insertBefore(InsertPos: Body->begin()); |
2509 | |
2510 | Builder.SetInsertPoint(LbCond); |
2511 | Instruction *TcDec = cast<Instruction>(Val: Builder.CreateSub( |
2512 | LHS: TcPhi, RHS: ConstantInt::get(Ty: CountTy, V: 1), Name: "tcdec" , HasNUW: false, HasNSW: true)); |
2513 | |
2514 | TcPhi->addIncoming(V: Count, BB: Preheader); |
2515 | TcPhi->addIncoming(V: TcDec, BB: Body); |
2516 | |
2517 | CmpInst::Predicate Pred = |
2518 | (LbBr->getSuccessor(i: 0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; |
2519 | LbCond->setPredicate(Pred); |
2520 | LbCond->setOperand(i_nocapture: 0, Val_nocapture: TcDec); |
2521 | LbCond->setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty: CountTy, V: 0)); |
2522 | |
2523 | // Step 3: All the references to the original counter outside |
2524 | // the loop are replaced with the NewCount |
2525 | if (IsCntPhiUsedOutsideLoop) |
2526 | CntPhi->replaceUsesOutsideBlock(V: NewCount, BB: Body); |
2527 | else |
2528 | CntInst->replaceUsesOutsideBlock(V: NewCount, BB: Body); |
2529 | |
2530 | // step 4: Forget the "non-computable" trip-count SCEV associated with the |
2531 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
2532 | SE->forgetLoop(L: CurLoop); |
2533 | } |
2534 | |
2535 | void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, |
2536 | Instruction *CntInst, |
2537 | PHINode *CntPhi, Value *Var) { |
2538 | BasicBlock *PreHead = CurLoop->getLoopPreheader(); |
2539 | auto *PreCondBr = cast<BranchInst>(Val: PreCondBB->getTerminator()); |
2540 | const DebugLoc &DL = CntInst->getDebugLoc(); |
2541 | |
2542 | // Assuming before transformation, the loop is following: |
2543 | // if (x) // the precondition |
2544 | // do { cnt++; x &= x - 1; } while(x); |
2545 | |
2546 | // Step 1: Insert the ctpop instruction at the end of the precondition block |
2547 | IRBuilder<> Builder(PreCondBr); |
2548 | Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; |
2549 | { |
2550 | PopCnt = createPopcntIntrinsic(IRBuilder&: Builder, Val: Var, DL); |
2551 | NewCount = PopCntZext = |
2552 | Builder.CreateZExtOrTrunc(V: PopCnt, DestTy: cast<IntegerType>(Val: CntPhi->getType())); |
2553 | |
2554 | if (NewCount != PopCnt) |
2555 | (cast<Instruction>(Val: NewCount))->setDebugLoc(DL); |
2556 | |
2557 | // TripCnt is exactly the number of iterations the loop has |
2558 | TripCnt = NewCount; |
2559 | |
2560 | // If the population counter's initial value is not zero, insert Add Inst. |
2561 | Value *CntInitVal = CntPhi->getIncomingValueForBlock(BB: PreHead); |
2562 | ConstantInt *InitConst = dyn_cast<ConstantInt>(Val: CntInitVal); |
2563 | if (!InitConst || !InitConst->isZero()) { |
2564 | NewCount = Builder.CreateAdd(LHS: NewCount, RHS: CntInitVal); |
2565 | (cast<Instruction>(Val: NewCount))->setDebugLoc(DL); |
2566 | } |
2567 | } |
2568 | |
2569 | // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to |
2570 | // "if (NewCount == 0) loop-exit". Without this change, the intrinsic |
2571 | // function would be partial dead code, and downstream passes will drag |
2572 | // it back from the precondition block to the preheader. |
2573 | { |
2574 | ICmpInst *PreCond = cast<ICmpInst>(Val: PreCondBr->getCondition()); |
2575 | |
2576 | Value *Opnd0 = PopCntZext; |
2577 | Value *Opnd1 = ConstantInt::get(Ty: PopCntZext->getType(), V: 0); |
2578 | if (PreCond->getOperand(i_nocapture: 0) != Var) |
2579 | std::swap(a&: Opnd0, b&: Opnd1); |
2580 | |
2581 | ICmpInst *NewPreCond = cast<ICmpInst>( |
2582 | Val: Builder.CreateICmp(P: PreCond->getPredicate(), LHS: Opnd0, RHS: Opnd1)); |
2583 | PreCondBr->setCondition(NewPreCond); |
2584 | |
2585 | RecursivelyDeleteTriviallyDeadInstructions(V: PreCond, TLI); |
2586 | } |
2587 | |
2588 | // Step 3: Note that the population count is exactly the trip count of the |
2589 | // loop in question, which enable us to convert the loop from noncountable |
2590 | // loop into a countable one. The benefit is twofold: |
2591 | // |
2592 | // - If the loop only counts population, the entire loop becomes dead after |
2593 | // the transformation. It is a lot easier to prove a countable loop dead |
2594 | // than to prove a noncountable one. (In some C dialects, an infinite loop |
2595 | // isn't dead even if it computes nothing useful. In general, DCE needs |
2596 | // to prove a noncountable loop finite before safely delete it.) |
2597 | // |
2598 | // - If the loop also performs something else, it remains alive. |
2599 | // Since it is transformed to countable form, it can be aggressively |
2600 | // optimized by some optimizations which are in general not applicable |
2601 | // to a noncountable loop. |
2602 | // |
2603 | // After this step, this loop (conceptually) would look like following: |
2604 | // newcnt = __builtin_ctpop(x); |
2605 | // t = newcnt; |
2606 | // if (x) |
2607 | // do { cnt++; x &= x-1; t--) } while (t > 0); |
2608 | BasicBlock *Body = *(CurLoop->block_begin()); |
2609 | { |
2610 | auto *LbBr = cast<BranchInst>(Val: Body->getTerminator()); |
2611 | ICmpInst *LbCond = cast<ICmpInst>(Val: LbBr->getCondition()); |
2612 | Type *Ty = TripCnt->getType(); |
2613 | |
2614 | PHINode *TcPhi = PHINode::Create(Ty, NumReservedValues: 2, NameStr: "tcphi" ); |
2615 | TcPhi->insertBefore(InsertPos: Body->begin()); |
2616 | |
2617 | Builder.SetInsertPoint(LbCond); |
2618 | Instruction *TcDec = cast<Instruction>( |
2619 | Val: Builder.CreateSub(LHS: TcPhi, RHS: ConstantInt::get(Ty, V: 1), |
2620 | Name: "tcdec" , HasNUW: false, HasNSW: true)); |
2621 | |
2622 | TcPhi->addIncoming(V: TripCnt, BB: PreHead); |
2623 | TcPhi->addIncoming(V: TcDec, BB: Body); |
2624 | |
2625 | CmpInst::Predicate Pred = |
2626 | (LbBr->getSuccessor(i: 0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; |
2627 | LbCond->setPredicate(Pred); |
2628 | LbCond->setOperand(i_nocapture: 0, Val_nocapture: TcDec); |
2629 | LbCond->setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty, V: 0)); |
2630 | } |
2631 | |
2632 | // Step 4: All the references to the original population counter outside |
2633 | // the loop are replaced with the NewCount -- the value returned from |
2634 | // __builtin_ctpop(). |
2635 | CntInst->replaceUsesOutsideBlock(V: NewCount, BB: Body); |
2636 | |
2637 | // step 5: Forget the "non-computable" trip-count SCEV associated with the |
2638 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
2639 | SE->forgetLoop(L: CurLoop); |
2640 | } |
2641 | |
2642 | /// Match loop-invariant value. |
2643 | template <typename SubPattern_t> struct match_LoopInvariant { |
2644 | SubPattern_t SubPattern; |
2645 | const Loop *L; |
2646 | |
2647 | match_LoopInvariant(const SubPattern_t &SP, const Loop *L) |
2648 | : SubPattern(SP), L(L) {} |
2649 | |
2650 | template <typename ITy> bool match(ITy *V) const { |
2651 | return L->isLoopInvariant(V) && SubPattern.match(V); |
2652 | } |
2653 | }; |
2654 | |
2655 | /// Matches if the value is loop-invariant. |
2656 | template <typename Ty> |
2657 | inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { |
2658 | return match_LoopInvariant<Ty>(M, L); |
2659 | } |
2660 | |
2661 | /// Return true if the idiom is detected in the loop. |
2662 | /// |
2663 | /// The core idiom we are trying to detect is: |
2664 | /// \code |
2665 | /// entry: |
2666 | /// <...> |
2667 | /// %bitmask = shl i32 1, %bitpos |
2668 | /// br label %loop |
2669 | /// |
2670 | /// loop: |
2671 | /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] |
2672 | /// %x.curr.bitmasked = and i32 %x.curr, %bitmask |
2673 | /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 |
2674 | /// %x.next = shl i32 %x.curr, 1 |
2675 | /// <...> |
2676 | /// br i1 %x.curr.isbitunset, label %loop, label %end |
2677 | /// |
2678 | /// end: |
2679 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
2680 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
2681 | /// <...> |
2682 | /// \endcode |
2683 | static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, |
2684 | Value *&BitMask, Value *&BitPos, |
2685 | Value *&CurrX, Instruction *&NextX) { |
2686 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
2687 | " Performing shift-until-bittest idiom detection.\n" ); |
2688 | |
2689 | // Give up if the loop has multiple blocks or multiple backedges. |
2690 | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { |
2691 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n" ); |
2692 | return false; |
2693 | } |
2694 | |
2695 | BasicBlock * = CurLoop->getHeader(); |
2696 | BasicBlock * = CurLoop->getLoopPreheader(); |
2697 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
2698 | |
2699 | using namespace PatternMatch; |
2700 | |
2701 | // Step 1: Check if the loop backedge is in desirable form. |
2702 | |
2703 | CmpPredicate Pred; |
2704 | Value *CmpLHS, *CmpRHS; |
2705 | BasicBlock *TrueBB, *FalseBB; |
2706 | if (!match(V: LoopHeaderBB->getTerminator(), |
2707 | P: m_Br(C: m_ICmp(Pred, L: m_Value(V&: CmpLHS), R: m_Value(V&: CmpRHS)), |
2708 | T: m_BasicBlock(V&: TrueBB), F: m_BasicBlock(V&: FalseBB)))) { |
2709 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n" ); |
2710 | return false; |
2711 | } |
2712 | |
2713 | // Step 2: Check if the backedge's condition is in desirable form. |
2714 | |
2715 | auto MatchVariableBitMask = [&]() { |
2716 | return ICmpInst::isEquality(P: Pred) && match(V: CmpRHS, P: m_Zero()) && |
2717 | match(V: CmpLHS, |
2718 | P: m_c_And(L: m_Value(V&: CurrX), |
2719 | R: m_CombineAnd( |
2720 | L: m_Value(V&: BitMask), |
2721 | R: m_LoopInvariant(M: m_Shl(L: m_One(), R: m_Value(V&: BitPos)), |
2722 | L: CurLoop)))); |
2723 | }; |
2724 | |
2725 | auto MatchDecomposableConstantBitMask = [&]() { |
2726 | auto Res = llvm::decomposeBitTestICmp( |
2727 | LHS: CmpLHS, RHS: CmpRHS, Pred, /*LookThroughTrunc=*/true, |
2728 | /*AllowNonZeroC=*/false, /*DecomposeAnd=*/true); |
2729 | if (Res && Res->Mask.isPowerOf2()) { |
2730 | assert(ICmpInst::isEquality(Res->Pred)); |
2731 | Pred = Res->Pred; |
2732 | CurrX = Res->X; |
2733 | BitMask = ConstantInt::get(Ty: CurrX->getType(), V: Res->Mask); |
2734 | BitPos = ConstantInt::get(Ty: CurrX->getType(), V: Res->Mask.logBase2()); |
2735 | return true; |
2736 | } |
2737 | return false; |
2738 | }; |
2739 | |
2740 | if (!MatchVariableBitMask() && !MatchDecomposableConstantBitMask()) { |
2741 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n" ); |
2742 | return false; |
2743 | } |
2744 | |
2745 | // Step 3: Check if the recurrence is in desirable form. |
2746 | auto *CurrXPN = dyn_cast<PHINode>(Val: CurrX); |
2747 | if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { |
2748 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n" ); |
2749 | return false; |
2750 | } |
2751 | |
2752 | BaseX = CurrXPN->getIncomingValueForBlock(BB: LoopPreheaderBB); |
2753 | NextX = |
2754 | dyn_cast<Instruction>(Val: CurrXPN->getIncomingValueForBlock(BB: LoopHeaderBB)); |
2755 | |
2756 | assert(CurLoop->isLoopInvariant(BaseX) && |
2757 | "Expected BaseX to be available in the preheader!" ); |
2758 | |
2759 | if (!NextX || !match(V: NextX, P: m_Shl(L: m_Specific(V: CurrX), R: m_One()))) { |
2760 | // FIXME: support right-shift? |
2761 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n" ); |
2762 | return false; |
2763 | } |
2764 | |
2765 | // Step 4: Check if the backedge's destinations are in desirable form. |
2766 | |
2767 | assert(ICmpInst::isEquality(Pred) && |
2768 | "Should only get equality predicates here." ); |
2769 | |
2770 | // cmp-br is commutative, so canonicalize to a single variant. |
2771 | if (Pred != ICmpInst::Predicate::ICMP_EQ) { |
2772 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
2773 | std::swap(a&: TrueBB, b&: FalseBB); |
2774 | } |
2775 | |
2776 | // We expect to exit loop when comparison yields false, |
2777 | // so when it yields true we should branch back to loop header. |
2778 | if (TrueBB != LoopHeaderBB) { |
2779 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n" ); |
2780 | return false; |
2781 | } |
2782 | |
2783 | // Okay, idiom checks out. |
2784 | return true; |
2785 | } |
2786 | |
2787 | /// Look for the following loop: |
2788 | /// \code |
2789 | /// entry: |
2790 | /// <...> |
2791 | /// %bitmask = shl i32 1, %bitpos |
2792 | /// br label %loop |
2793 | /// |
2794 | /// loop: |
2795 | /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] |
2796 | /// %x.curr.bitmasked = and i32 %x.curr, %bitmask |
2797 | /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 |
2798 | /// %x.next = shl i32 %x.curr, 1 |
2799 | /// <...> |
2800 | /// br i1 %x.curr.isbitunset, label %loop, label %end |
2801 | /// |
2802 | /// end: |
2803 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
2804 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
2805 | /// <...> |
2806 | /// \endcode |
2807 | /// |
2808 | /// And transform it into: |
2809 | /// \code |
2810 | /// entry: |
2811 | /// %bitmask = shl i32 1, %bitpos |
2812 | /// %lowbitmask = add i32 %bitmask, -1 |
2813 | /// %mask = or i32 %lowbitmask, %bitmask |
2814 | /// %x.masked = and i32 %x, %mask |
2815 | /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, |
2816 | /// i1 true) |
2817 | /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros |
2818 | /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 |
2819 | /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos |
2820 | /// %tripcount = add i32 %backedgetakencount, 1 |
2821 | /// %x.curr = shl i32 %x, %backedgetakencount |
2822 | /// %x.next = shl i32 %x, %tripcount |
2823 | /// br label %loop |
2824 | /// |
2825 | /// loop: |
2826 | /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] |
2827 | /// %loop.iv.next = add nuw i32 %loop.iv, 1 |
2828 | /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount |
2829 | /// <...> |
2830 | /// br i1 %loop.ivcheck, label %end, label %loop |
2831 | /// |
2832 | /// end: |
2833 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
2834 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
2835 | /// <...> |
2836 | /// \endcode |
2837 | bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { |
2838 | bool MadeChange = false; |
2839 | |
2840 | Value *X, *BitMask, *BitPos, *XCurr; |
2841 | Instruction *XNext; |
2842 | if (!detectShiftUntilBitTestIdiom(CurLoop, BaseX&: X, BitMask, BitPos, CurrX&: XCurr, |
2843 | NextX&: XNext)) { |
2844 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
2845 | " shift-until-bittest idiom detection failed.\n" ); |
2846 | return MadeChange; |
2847 | } |
2848 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n" ); |
2849 | |
2850 | // Ok, it is the idiom we were looking for, we *could* transform this loop, |
2851 | // but is it profitable to transform? |
2852 | |
2853 | BasicBlock * = CurLoop->getHeader(); |
2854 | BasicBlock * = CurLoop->getLoopPreheader(); |
2855 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
2856 | |
2857 | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); |
2858 | assert(SuccessorBB && "There is only a single successor." ); |
2859 | |
2860 | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); |
2861 | Builder.SetCurrentDebugLocation(cast<Instruction>(Val: XCurr)->getDebugLoc()); |
2862 | |
2863 | Intrinsic::ID IntrID = Intrinsic::ctlz; |
2864 | Type *Ty = X->getType(); |
2865 | unsigned Bitwidth = Ty->getScalarSizeInBits(); |
2866 | |
2867 | TargetTransformInfo::TargetCostKind CostKind = |
2868 | TargetTransformInfo::TCK_SizeAndLatency; |
2869 | |
2870 | // The rewrite is considered to be unprofitable iff and only iff the |
2871 | // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* |
2872 | // making the loop countable, even if nothing else changes. |
2873 | IntrinsicCostAttributes Attrs( |
2874 | IntrID, Ty, {PoisonValue::get(T: Ty), /*is_zero_poison=*/Builder.getTrue()}); |
2875 | InstructionCost Cost = TTI->getIntrinsicInstrCost(ICA: Attrs, CostKind); |
2876 | if (Cost > TargetTransformInfo::TCC_Basic) { |
2877 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
2878 | " Intrinsic is too costly, not beneficial\n" ); |
2879 | return MadeChange; |
2880 | } |
2881 | if (TTI->getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind) > |
2882 | TargetTransformInfo::TCC_Basic) { |
2883 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n" ); |
2884 | return MadeChange; |
2885 | } |
2886 | |
2887 | // Ok, transform appears worthwhile. |
2888 | MadeChange = true; |
2889 | |
2890 | if (!isGuaranteedNotToBeUndefOrPoison(V: BitPos)) { |
2891 | // BitMask may be computed from BitPos, Freeze BitPos so we can increase |
2892 | // it's use count. |
2893 | std::optional<BasicBlock::iterator> InsertPt = std::nullopt; |
2894 | if (auto *BitPosI = dyn_cast<Instruction>(Val: BitPos)) |
2895 | InsertPt = BitPosI->getInsertionPointAfterDef(); |
2896 | else |
2897 | InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); |
2898 | if (!InsertPt) |
2899 | return false; |
2900 | FreezeInst *BitPosFrozen = |
2901 | new FreezeInst(BitPos, BitPos->getName() + ".fr" , *InsertPt); |
2902 | BitPos->replaceUsesWithIf(New: BitPosFrozen, ShouldReplace: [BitPosFrozen](Use &U) { |
2903 | return U.getUser() != BitPosFrozen; |
2904 | }); |
2905 | BitPos = BitPosFrozen; |
2906 | } |
2907 | |
2908 | // Step 1: Compute the loop trip count. |
2909 | |
2910 | Value *LowBitMask = Builder.CreateAdd(LHS: BitMask, RHS: Constant::getAllOnesValue(Ty), |
2911 | Name: BitPos->getName() + ".lowbitmask" ); |
2912 | Value *Mask = |
2913 | Builder.CreateOr(LHS: LowBitMask, RHS: BitMask, Name: BitPos->getName() + ".mask" ); |
2914 | Value *XMasked = Builder.CreateAnd(LHS: X, RHS: Mask, Name: X->getName() + ".masked" ); |
2915 | CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( |
2916 | ID: IntrID, Types: Ty, Args: {XMasked, /*is_zero_poison=*/Builder.getTrue()}, |
2917 | /*FMFSource=*/nullptr, Name: XMasked->getName() + ".numleadingzeros" ); |
2918 | Value *XMaskedNumActiveBits = Builder.CreateSub( |
2919 | LHS: ConstantInt::get(Ty, V: Ty->getScalarSizeInBits()), RHS: XMaskedNumLeadingZeros, |
2920 | Name: XMasked->getName() + ".numactivebits" , /*HasNUW=*/true, |
2921 | /*HasNSW=*/Bitwidth != 2); |
2922 | Value *XMaskedLeadingOnePos = |
2923 | Builder.CreateAdd(LHS: XMaskedNumActiveBits, RHS: Constant::getAllOnesValue(Ty), |
2924 | Name: XMasked->getName() + ".leadingonepos" , /*HasNUW=*/false, |
2925 | /*HasNSW=*/Bitwidth > 2); |
2926 | |
2927 | Value *LoopBackedgeTakenCount = Builder.CreateSub( |
2928 | LHS: BitPos, RHS: XMaskedLeadingOnePos, Name: CurLoop->getName() + ".backedgetakencount" , |
2929 | /*HasNUW=*/true, /*HasNSW=*/true); |
2930 | // We know loop's backedge-taken count, but what's loop's trip count? |
2931 | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. |
2932 | Value *LoopTripCount = |
2933 | Builder.CreateAdd(LHS: LoopBackedgeTakenCount, RHS: ConstantInt::get(Ty, V: 1), |
2934 | Name: CurLoop->getName() + ".tripcount" , /*HasNUW=*/true, |
2935 | /*HasNSW=*/Bitwidth != 2); |
2936 | |
2937 | // Step 2: Compute the recurrence's final value without a loop. |
2938 | |
2939 | // NewX is always safe to compute, because `LoopBackedgeTakenCount` |
2940 | // will always be smaller than `bitwidth(X)`, i.e. we never get poison. |
2941 | Value *NewX = Builder.CreateShl(LHS: X, RHS: LoopBackedgeTakenCount); |
2942 | NewX->takeName(V: XCurr); |
2943 | if (auto *I = dyn_cast<Instruction>(Val: NewX)) |
2944 | I->copyIRFlags(V: XNext, /*IncludeWrapFlags=*/true); |
2945 | |
2946 | Value *NewXNext; |
2947 | // Rewriting XNext is more complicated, however, because `X << LoopTripCount` |
2948 | // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen |
2949 | // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know |
2950 | // that isn't the case, we'll need to emit an alternative, safe IR. |
2951 | if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || |
2952 | PatternMatch::match( |
2953 | V: BitPos, P: PatternMatch::m_SpecificInt_ICMP( |
2954 | Predicate: ICmpInst::ICMP_NE, Threshold: APInt(Ty->getScalarSizeInBits(), |
2955 | Ty->getScalarSizeInBits() - 1)))) |
2956 | NewXNext = Builder.CreateShl(LHS: X, RHS: LoopTripCount); |
2957 | else { |
2958 | // Otherwise, just additionally shift by one. It's the smallest solution, |
2959 | // alternatively, we could check that NewX is INT_MIN (or BitPos is ) |
2960 | // and select 0 instead. |
2961 | NewXNext = Builder.CreateShl(LHS: NewX, RHS: ConstantInt::get(Ty, V: 1)); |
2962 | } |
2963 | |
2964 | NewXNext->takeName(V: XNext); |
2965 | if (auto *I = dyn_cast<Instruction>(Val: NewXNext)) |
2966 | I->copyIRFlags(V: XNext, /*IncludeWrapFlags=*/true); |
2967 | |
2968 | // Step 3: Adjust the successor basic block to recieve the computed |
2969 | // recurrence's final value instead of the recurrence itself. |
2970 | |
2971 | XCurr->replaceUsesOutsideBlock(V: NewX, BB: LoopHeaderBB); |
2972 | XNext->replaceUsesOutsideBlock(V: NewXNext, BB: LoopHeaderBB); |
2973 | |
2974 | // Step 4: Rewrite the loop into a countable form, with canonical IV. |
2975 | |
2976 | // The new canonical induction variable. |
2977 | Builder.SetInsertPoint(TheBB: LoopHeaderBB, IP: LoopHeaderBB->begin()); |
2978 | auto *IV = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: CurLoop->getName() + ".iv" ); |
2979 | |
2980 | // The induction itself. |
2981 | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. |
2982 | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); |
2983 | auto *IVNext = |
2984 | Builder.CreateAdd(LHS: IV, RHS: ConstantInt::get(Ty, V: 1), Name: IV->getName() + ".next" , |
2985 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
2986 | |
2987 | // The loop trip count check. |
2988 | auto *IVCheck = Builder.CreateICmpEQ(LHS: IVNext, RHS: LoopTripCount, |
2989 | Name: CurLoop->getName() + ".ivcheck" ); |
2990 | Builder.CreateCondBr(Cond: IVCheck, True: SuccessorBB, False: LoopHeaderBB); |
2991 | LoopHeaderBB->getTerminator()->eraseFromParent(); |
2992 | |
2993 | // Populate the IV PHI. |
2994 | IV->addIncoming(V: ConstantInt::get(Ty, V: 0), BB: LoopPreheaderBB); |
2995 | IV->addIncoming(V: IVNext, BB: LoopHeaderBB); |
2996 | |
2997 | // Step 5: Forget the "non-computable" trip-count SCEV associated with the |
2998 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
2999 | |
3000 | SE->forgetLoop(L: CurLoop); |
3001 | |
3002 | // Other passes will take care of actually deleting the loop if possible. |
3003 | |
3004 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n" ); |
3005 | |
3006 | ++NumShiftUntilBitTest; |
3007 | return MadeChange; |
3008 | } |
3009 | |
3010 | /// Return true if the idiom is detected in the loop. |
3011 | /// |
3012 | /// The core idiom we are trying to detect is: |
3013 | /// \code |
3014 | /// entry: |
3015 | /// <...> |
3016 | /// %start = <...> |
3017 | /// %extraoffset = <...> |
3018 | /// <...> |
3019 | /// br label %for.cond |
3020 | /// |
3021 | /// loop: |
3022 | /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] |
3023 | /// %nbits = add nsw i8 %iv, %extraoffset |
3024 | /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits |
3025 | /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 |
3026 | /// %iv.next = add i8 %iv, 1 |
3027 | /// <...> |
3028 | /// br i1 %val.shifted.iszero, label %end, label %loop |
3029 | /// |
3030 | /// end: |
3031 | /// %iv.res = phi i8 [ %iv, %loop ] <...> |
3032 | /// %nbits.res = phi i8 [ %nbits, %loop ] <...> |
3033 | /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> |
3034 | /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> |
3035 | /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> |
3036 | /// <...> |
3037 | /// \endcode |
3038 | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, |
3039 | Instruction *&ValShiftedIsZero, |
3040 | Intrinsic::ID &IntrinID, Instruction *&IV, |
3041 | Value *&Start, Value *&Val, |
3042 | const SCEV *&, |
3043 | bool &InvertedCond) { |
3044 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
3045 | " Performing shift-until-zero idiom detection.\n" ); |
3046 | |
3047 | // Give up if the loop has multiple blocks or multiple backedges. |
3048 | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { |
3049 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n" ); |
3050 | return false; |
3051 | } |
3052 | |
3053 | Instruction *ValShifted, *NBits, *IVNext; |
3054 | Value *; |
3055 | |
3056 | BasicBlock * = CurLoop->getHeader(); |
3057 | BasicBlock * = CurLoop->getLoopPreheader(); |
3058 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
3059 | |
3060 | using namespace PatternMatch; |
3061 | |
3062 | // Step 1: Check if the loop backedge, condition is in desirable form. |
3063 | |
3064 | CmpPredicate Pred; |
3065 | BasicBlock *TrueBB, *FalseBB; |
3066 | if (!match(V: LoopHeaderBB->getTerminator(), |
3067 | P: m_Br(C: m_Instruction(I&: ValShiftedIsZero), T: m_BasicBlock(V&: TrueBB), |
3068 | F: m_BasicBlock(V&: FalseBB))) || |
3069 | !match(V: ValShiftedIsZero, |
3070 | P: m_ICmp(Pred, L: m_Instruction(I&: ValShifted), R: m_Zero())) || |
3071 | !ICmpInst::isEquality(P: Pred)) { |
3072 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n" ); |
3073 | return false; |
3074 | } |
3075 | |
3076 | // Step 2: Check if the comparison's operand is in desirable form. |
3077 | // FIXME: Val could be a one-input PHI node, which we should look past. |
3078 | if (!match(V: ValShifted, P: m_Shift(L: m_LoopInvariant(M: m_Value(V&: Val), L: CurLoop), |
3079 | R: m_Instruction(I&: NBits)))) { |
3080 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n" ); |
3081 | return false; |
3082 | } |
3083 | IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz |
3084 | : Intrinsic::ctlz; |
3085 | |
3086 | // Step 3: Check if the shift amount is in desirable form. |
3087 | |
3088 | if (match(V: NBits, P: m_c_Add(L: m_Instruction(I&: IV), |
3089 | R: m_LoopInvariant(M: m_Value(V&: ExtraOffset), L: CurLoop))) && |
3090 | (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) |
3091 | ExtraOffsetExpr = SE->getNegativeSCEV(V: SE->getSCEV(V: ExtraOffset)); |
3092 | else if (match(V: NBits, |
3093 | P: m_Sub(L: m_Instruction(I&: IV), |
3094 | R: m_LoopInvariant(M: m_Value(V&: ExtraOffset), L: CurLoop))) && |
3095 | NBits->hasNoSignedWrap()) |
3096 | ExtraOffsetExpr = SE->getSCEV(V: ExtraOffset); |
3097 | else { |
3098 | IV = NBits; |
3099 | ExtraOffsetExpr = SE->getZero(Ty: NBits->getType()); |
3100 | } |
3101 | |
3102 | // Step 4: Check if the recurrence is in desirable form. |
3103 | auto *IVPN = dyn_cast<PHINode>(Val: IV); |
3104 | if (!IVPN || IVPN->getParent() != LoopHeaderBB) { |
3105 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n" ); |
3106 | return false; |
3107 | } |
3108 | |
3109 | Start = IVPN->getIncomingValueForBlock(BB: LoopPreheaderBB); |
3110 | IVNext = dyn_cast<Instruction>(Val: IVPN->getIncomingValueForBlock(BB: LoopHeaderBB)); |
3111 | |
3112 | if (!IVNext || !match(V: IVNext, P: m_Add(L: m_Specific(V: IVPN), R: m_One()))) { |
3113 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n" ); |
3114 | return false; |
3115 | } |
3116 | |
3117 | // Step 4: Check if the backedge's destinations are in desirable form. |
3118 | |
3119 | assert(ICmpInst::isEquality(Pred) && |
3120 | "Should only get equality predicates here." ); |
3121 | |
3122 | // cmp-br is commutative, so canonicalize to a single variant. |
3123 | InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; |
3124 | if (InvertedCond) { |
3125 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
3126 | std::swap(a&: TrueBB, b&: FalseBB); |
3127 | } |
3128 | |
3129 | // We expect to exit loop when comparison yields true, |
3130 | // so when it yields false we should branch back to loop header. |
3131 | if (FalseBB != LoopHeaderBB) { |
3132 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n" ); |
3133 | return false; |
3134 | } |
3135 | |
3136 | // The new, countable, loop will certainly only run a known number of |
3137 | // iterations, It won't be infinite. But the old loop might be infinite |
3138 | // under certain conditions. For logical shifts, the value will become zero |
3139 | // after at most bitwidth(%Val) loop iterations. However, for arithmetic |
3140 | // right-shift, iff the sign bit was set, the value will never become zero, |
3141 | // and the loop may never finish. |
3142 | if (ValShifted->getOpcode() == Instruction::AShr && |
3143 | !isMustProgress(L: CurLoop) && !SE->isKnownNonNegative(S: SE->getSCEV(V: Val))) { |
3144 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n" ); |
3145 | return false; |
3146 | } |
3147 | |
3148 | // Okay, idiom checks out. |
3149 | return true; |
3150 | } |
3151 | |
3152 | /// Look for the following loop: |
3153 | /// \code |
3154 | /// entry: |
3155 | /// <...> |
3156 | /// %start = <...> |
3157 | /// %extraoffset = <...> |
3158 | /// <...> |
3159 | /// br label %for.cond |
3160 | /// |
3161 | /// loop: |
3162 | /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] |
3163 | /// %nbits = add nsw i8 %iv, %extraoffset |
3164 | /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits |
3165 | /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 |
3166 | /// %iv.next = add i8 %iv, 1 |
3167 | /// <...> |
3168 | /// br i1 %val.shifted.iszero, label %end, label %loop |
3169 | /// |
3170 | /// end: |
3171 | /// %iv.res = phi i8 [ %iv, %loop ] <...> |
3172 | /// %nbits.res = phi i8 [ %nbits, %loop ] <...> |
3173 | /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> |
3174 | /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> |
3175 | /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> |
3176 | /// <...> |
3177 | /// \endcode |
3178 | /// |
3179 | /// And transform it into: |
3180 | /// \code |
3181 | /// entry: |
3182 | /// <...> |
3183 | /// %start = <...> |
3184 | /// %extraoffset = <...> |
3185 | /// <...> |
3186 | /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) |
3187 | /// %val.numactivebits = sub i8 8, %val.numleadingzeros |
3188 | /// %extraoffset.neg = sub i8 0, %extraoffset |
3189 | /// %tmp = add i8 %val.numactivebits, %extraoffset.neg |
3190 | /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) |
3191 | /// %loop.tripcount = sub i8 %iv.final, %start |
3192 | /// br label %loop |
3193 | /// |
3194 | /// loop: |
3195 | /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] |
3196 | /// %loop.iv.next = add i8 %loop.iv, 1 |
3197 | /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount |
3198 | /// %iv = add i8 %loop.iv, %start |
3199 | /// <...> |
3200 | /// br i1 %loop.ivcheck, label %end, label %loop |
3201 | /// |
3202 | /// end: |
3203 | /// %iv.res = phi i8 [ %iv.final, %loop ] <...> |
3204 | /// <...> |
3205 | /// \endcode |
3206 | bool LoopIdiomRecognize::recognizeShiftUntilZero() { |
3207 | bool MadeChange = false; |
3208 | |
3209 | Instruction *ValShiftedIsZero; |
3210 | Intrinsic::ID IntrID; |
3211 | Instruction *IV; |
3212 | Value *Start, *Val; |
3213 | const SCEV *; |
3214 | bool InvertedCond; |
3215 | if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrinID&: IntrID, IV, |
3216 | Start, Val, ExtraOffsetExpr, InvertedCond)) { |
3217 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
3218 | " shift-until-zero idiom detection failed.\n" ); |
3219 | return MadeChange; |
3220 | } |
3221 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n" ); |
3222 | |
3223 | // Ok, it is the idiom we were looking for, we *could* transform this loop, |
3224 | // but is it profitable to transform? |
3225 | |
3226 | BasicBlock * = CurLoop->getHeader(); |
3227 | BasicBlock * = CurLoop->getLoopPreheader(); |
3228 | assert(LoopPreheaderBB && "There is always a loop preheader." ); |
3229 | |
3230 | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); |
3231 | assert(SuccessorBB && "There is only a single successor." ); |
3232 | |
3233 | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); |
3234 | Builder.SetCurrentDebugLocation(IV->getDebugLoc()); |
3235 | |
3236 | Type *Ty = Val->getType(); |
3237 | unsigned Bitwidth = Ty->getScalarSizeInBits(); |
3238 | |
3239 | TargetTransformInfo::TargetCostKind CostKind = |
3240 | TargetTransformInfo::TCK_SizeAndLatency; |
3241 | |
3242 | // The rewrite is considered to be unprofitable iff and only iff the |
3243 | // intrinsic we'll use are not cheap. Note that we are okay with *just* |
3244 | // making the loop countable, even if nothing else changes. |
3245 | IntrinsicCostAttributes Attrs( |
3246 | IntrID, Ty, {PoisonValue::get(T: Ty), /*is_zero_poison=*/Builder.getFalse()}); |
3247 | InstructionCost Cost = TTI->getIntrinsicInstrCost(ICA: Attrs, CostKind); |
3248 | if (Cost > TargetTransformInfo::TCC_Basic) { |
3249 | LLVM_DEBUG(dbgs() << DEBUG_TYPE |
3250 | " Intrinsic is too costly, not beneficial\n" ); |
3251 | return MadeChange; |
3252 | } |
3253 | |
3254 | // Ok, transform appears worthwhile. |
3255 | MadeChange = true; |
3256 | |
3257 | bool OffsetIsZero = ExtraOffsetExpr->isZero(); |
3258 | |
3259 | // Step 1: Compute the loop's final IV value / trip count. |
3260 | |
3261 | CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( |
3262 | ID: IntrID, Types: Ty, Args: {Val, /*is_zero_poison=*/Builder.getFalse()}, |
3263 | /*FMFSource=*/nullptr, Name: Val->getName() + ".numleadingzeros" ); |
3264 | Value *ValNumActiveBits = Builder.CreateSub( |
3265 | LHS: ConstantInt::get(Ty, V: Ty->getScalarSizeInBits()), RHS: ValNumLeadingZeros, |
3266 | Name: Val->getName() + ".numactivebits" , /*HasNUW=*/true, |
3267 | /*HasNSW=*/Bitwidth != 2); |
3268 | |
3269 | SCEVExpander Expander(*SE, *DL, "loop-idiom" ); |
3270 | Expander.setInsertPoint(&*Builder.GetInsertPoint()); |
3271 | Value * = Expander.expandCodeFor(SH: ExtraOffsetExpr); |
3272 | |
3273 | Value *ValNumActiveBitsOffset = Builder.CreateAdd( |
3274 | LHS: ValNumActiveBits, RHS: ExtraOffset, Name: ValNumActiveBits->getName() + ".offset" , |
3275 | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); |
3276 | Value *IVFinal = Builder.CreateIntrinsic(ID: Intrinsic::smax, Types: {Ty}, |
3277 | Args: {ValNumActiveBitsOffset, Start}, |
3278 | /*FMFSource=*/nullptr, Name: "iv.final" ); |
3279 | |
3280 | auto *LoopBackedgeTakenCount = cast<Instruction>(Val: Builder.CreateSub( |
3281 | LHS: IVFinal, RHS: Start, Name: CurLoop->getName() + ".backedgetakencount" , |
3282 | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); |
3283 | // FIXME: or when the offset was `add nuw` |
3284 | |
3285 | // We know loop's backedge-taken count, but what's loop's trip count? |
3286 | Value *LoopTripCount = |
3287 | Builder.CreateAdd(LHS: LoopBackedgeTakenCount, RHS: ConstantInt::get(Ty, V: 1), |
3288 | Name: CurLoop->getName() + ".tripcount" , /*HasNUW=*/true, |
3289 | /*HasNSW=*/Bitwidth != 2); |
3290 | |
3291 | // Step 2: Adjust the successor basic block to recieve the original |
3292 | // induction variable's final value instead of the orig. IV itself. |
3293 | |
3294 | IV->replaceUsesOutsideBlock(V: IVFinal, BB: LoopHeaderBB); |
3295 | |
3296 | // Step 3: Rewrite the loop into a countable form, with canonical IV. |
3297 | |
3298 | // The new canonical induction variable. |
3299 | Builder.SetInsertPoint(TheBB: LoopHeaderBB, IP: LoopHeaderBB->begin()); |
3300 | auto *CIV = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: CurLoop->getName() + ".iv" ); |
3301 | |
3302 | // The induction itself. |
3303 | Builder.SetInsertPoint(TheBB: LoopHeaderBB, IP: LoopHeaderBB->getFirstNonPHIIt()); |
3304 | auto *CIVNext = |
3305 | Builder.CreateAdd(LHS: CIV, RHS: ConstantInt::get(Ty, V: 1), Name: CIV->getName() + ".next" , |
3306 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
3307 | |
3308 | // The loop trip count check. |
3309 | auto *CIVCheck = Builder.CreateICmpEQ(LHS: CIVNext, RHS: LoopTripCount, |
3310 | Name: CurLoop->getName() + ".ivcheck" ); |
3311 | auto *NewIVCheck = CIVCheck; |
3312 | if (InvertedCond) { |
3313 | NewIVCheck = Builder.CreateNot(V: CIVCheck); |
3314 | NewIVCheck->takeName(V: ValShiftedIsZero); |
3315 | } |
3316 | |
3317 | // The original IV, but rebased to be an offset to the CIV. |
3318 | auto *IVDePHId = Builder.CreateAdd(LHS: CIV, RHS: Start, Name: "" , /*HasNUW=*/false, |
3319 | /*HasNSW=*/true); // FIXME: what about NUW? |
3320 | IVDePHId->takeName(V: IV); |
3321 | |
3322 | // The loop terminator. |
3323 | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); |
3324 | Builder.CreateCondBr(Cond: CIVCheck, True: SuccessorBB, False: LoopHeaderBB); |
3325 | LoopHeaderBB->getTerminator()->eraseFromParent(); |
3326 | |
3327 | // Populate the IV PHI. |
3328 | CIV->addIncoming(V: ConstantInt::get(Ty, V: 0), BB: LoopPreheaderBB); |
3329 | CIV->addIncoming(V: CIVNext, BB: LoopHeaderBB); |
3330 | |
3331 | // Step 4: Forget the "non-computable" trip-count SCEV associated with the |
3332 | // loop. The loop would otherwise not be deleted even if it becomes empty. |
3333 | |
3334 | SE->forgetLoop(L: CurLoop); |
3335 | |
3336 | // Step 5: Try to cleanup the loop's body somewhat. |
3337 | IV->replaceAllUsesWith(V: IVDePHId); |
3338 | IV->eraseFromParent(); |
3339 | |
3340 | ValShiftedIsZero->replaceAllUsesWith(V: NewIVCheck); |
3341 | ValShiftedIsZero->eraseFromParent(); |
3342 | |
3343 | // Other passes will take care of actually deleting the loop if possible. |
3344 | |
3345 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n" ); |
3346 | |
3347 | ++NumShiftUntilZero; |
3348 | return MadeChange; |
3349 | } |
3350 | |