| 1 | //===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Lower matrix intrinsics to vector operations. |
| 10 | // |
| 11 | // TODO: |
| 12 | // * Improve fusion: |
| 13 | // * Support more cases, e.g. multiply-add, multiply-sub, operands/results |
| 14 | // transposed. |
| 15 | // * Improve cost-modeling, e.g. choose different number of rows/columns |
| 16 | // columns for tiles, consider cost of copies on alias. |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" |
| 21 | #include "llvm/ADT/PostOrderIterator.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/ScopeExit.h" |
| 24 | #include "llvm/ADT/SmallSet.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include "llvm/Analysis/AliasAnalysis.h" |
| 28 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 29 | #include "llvm/Analysis/LoopInfo.h" |
| 30 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 31 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 32 | #include "llvm/Analysis/ValueTracking.h" |
| 33 | #include "llvm/Analysis/VectorUtils.h" |
| 34 | #include "llvm/IR/CFG.h" |
| 35 | #include "llvm/IR/DataLayout.h" |
| 36 | #include "llvm/IR/DebugInfoMetadata.h" |
| 37 | #include "llvm/IR/DerivedTypes.h" |
| 38 | #include "llvm/IR/Function.h" |
| 39 | #include "llvm/IR/IRBuilder.h" |
| 40 | #include "llvm/IR/InstrTypes.h" |
| 41 | #include "llvm/IR/Instructions.h" |
| 42 | #include "llvm/IR/IntrinsicInst.h" |
| 43 | #include "llvm/IR/MatrixBuilder.h" |
| 44 | #include "llvm/IR/PatternMatch.h" |
| 45 | #include "llvm/Support/Alignment.h" |
| 46 | #include "llvm/Support/CommandLine.h" |
| 47 | #include "llvm/Support/Compiler.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 50 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 51 | #include "llvm/Transforms/Utils/MatrixUtils.h" |
| 52 | |
| 53 | #include <cmath> |
| 54 | |
| 55 | using namespace llvm; |
| 56 | using namespace PatternMatch; |
| 57 | |
| 58 | #define DEBUG_TYPE "lower-matrix-intrinsics" |
| 59 | |
| 60 | STATISTIC(FlattenedMatrices, "Number of matrix flattenings" ); |
| 61 | STATISTIC(ReshapedMatrices, "Number of matrix reshapes" ); |
| 62 | STATISTIC(SplitMatrices, "Number of matrix splits" ); |
| 63 | |
| 64 | static cl::opt<bool> |
| 65 | FuseMatrix("fuse-matrix" , cl::init(Val: true), cl::Hidden, |
| 66 | cl::desc("Enable/disable fusing matrix instructions." )); |
| 67 | // TODO: Allow and use non-square tiles. |
| 68 | static cl::opt<unsigned> TileSize( |
| 69 | "fuse-matrix-tile-size" , cl::init(Val: 4), cl::Hidden, |
| 70 | cl::desc( |
| 71 | "Tile size for matrix instruction fusion using square-shaped tiles." )); |
| 72 | static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops" , cl::init(Val: false), |
| 73 | cl::Hidden, |
| 74 | cl::desc("Generate loop nest for tiling." )); |
| 75 | static cl::opt<bool> ForceFusion( |
| 76 | "force-fuse-matrix" , cl::init(Val: false), cl::Hidden, |
| 77 | cl::desc("Force matrix instruction fusion even if not profitable." )); |
| 78 | static cl::opt<bool> AllowContractEnabled( |
| 79 | "matrix-allow-contract" , cl::init(Val: false), cl::Hidden, |
| 80 | cl::desc("Allow the use of FMAs if available and profitable. This may " |
| 81 | "result in different results, due to less rounding error." )); |
| 82 | |
| 83 | static cl::opt<bool> |
| 84 | VerifyShapeInfo("verify-matrix-shapes" , cl::Hidden, |
| 85 | cl::desc("Enable/disable matrix shape verification." ), |
| 86 | cl::init(Val: false)); |
| 87 | |
| 88 | enum class MatrixLayoutTy { ColumnMajor, RowMajor }; |
| 89 | |
| 90 | static cl::opt<MatrixLayoutTy> MatrixLayout( |
| 91 | "matrix-default-layout" , cl::init(Val: MatrixLayoutTy::ColumnMajor), |
| 92 | cl::desc("Sets the default matrix layout" ), |
| 93 | cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major" , |
| 94 | "Use column-major layout" ), |
| 95 | clEnumValN(MatrixLayoutTy::RowMajor, "row-major" , |
| 96 | "Use row-major layout" ))); |
| 97 | |
| 98 | static cl::opt<bool> PrintAfterTransposeOpt("matrix-print-after-transpose-opt" , |
| 99 | cl::init(Val: false)); |
| 100 | |
| 101 | /// Helper function to either return Scope, if it is a subprogram or the |
| 102 | /// attached subprogram for a local scope. |
| 103 | static DISubprogram *getSubprogram(DIScope *Scope) { |
| 104 | if (auto *Subprogram = dyn_cast<DISubprogram>(Val: Scope)) |
| 105 | return Subprogram; |
| 106 | return cast<DILocalScope>(Val: Scope)->getSubprogram(); |
| 107 | } |
| 108 | |
| 109 | /// Return true if V is a splat of a value (which is used when multiplying a |
| 110 | /// matrix with a scalar). |
| 111 | static bool isSplat(Value *V) { |
| 112 | if (auto *SV = dyn_cast<ShuffleVectorInst>(Val: V)) |
| 113 | return SV->isZeroEltSplat(); |
| 114 | return false; |
| 115 | } |
| 116 | |
| 117 | /// Match any mul operation (fp or integer). |
| 118 | template <typename LTy, typename RTy> |
| 119 | auto m_AnyMul(const LTy &L, const RTy &R) { |
| 120 | return m_CombineOr(m_Mul(L, R), m_FMul(L, R)); |
| 121 | } |
| 122 | |
| 123 | /// Match any add operation (fp or integer). |
| 124 | template <typename LTy, typename RTy> |
| 125 | auto m_AnyAdd(const LTy &L, const RTy &R) { |
| 126 | return m_CombineOr(m_Add(L, R), m_FAdd(L, R)); |
| 127 | } |
| 128 | |
| 129 | namespace { |
| 130 | |
| 131 | // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute |
| 132 | // the start address of vector \p VecIdx with type (\p EltType x \p NumElements) |
| 133 | // assuming \p Stride elements between start two consecutive vectors. |
| 134 | // \p Stride must be >= \p NumElements. |
| 135 | // For column-major matrixes, the function computes the address of a column |
| 136 | // vectors and \p NumElements must be set to the number of elements in a column |
| 137 | // (= number of rows of the matrix). For row-major matrixes, the function |
| 138 | // computes the address of a row vector and \p NumElements must be set to the |
| 139 | // number of elements in a column (= number of columns of the matrix). |
| 140 | // |
| 141 | // Consider a 4x4 matrix in column-mjaor layout like below |
| 142 | // |
| 143 | // 0 1 2 3 |
| 144 | // 0 v_0_0 v_0_1 v_0_2 v_0_3 |
| 145 | // 1 v_1_0 v_1_1 v_1_2 v_1_3 |
| 146 | // 2 v_2_0 v_2_1 v_2_2 v_2_3 |
| 147 | // 3 v_3_0 v_3_1 v_3_2 v_3_3 |
| 148 | |
| 149 | // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, |
| 150 | // we need a pointer to the first element of the submatrix as base pointer. |
| 151 | // Then we can use computeVectorAddr to compute the addresses for the columns |
| 152 | // of the sub-matrix. |
| 153 | // |
| 154 | // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) |
| 155 | // -> just returns Base |
| 156 | // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) |
| 157 | // -> returns Base + (1 * 4) |
| 158 | // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) |
| 159 | // -> returns Base + (2 * 4) |
| 160 | // |
| 161 | // The graphic below illustrates the number of elements in a column (marked |
| 162 | // with |) and the number of skipped elements (marked with }). |
| 163 | // |
| 164 | // v_0_0 v_0_1 {v_0_2 {v_0_3 |
| 165 | // Base Col 1 Col 2 |
| 166 | // | | | |
| 167 | // v_1_0 |v_1_1 |v_1_2 |v_1_3 |
| 168 | // v_2_0 |v_2_1 |v_2_2 |v_2_3 |
| 169 | // v_3_0 {v_3_1 {v_3_2 v_3_3 |
| 170 | // |
| 171 | Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, |
| 172 | unsigned NumElements, Type *EltType, |
| 173 | IRBuilder<> &Builder) { |
| 174 | |
| 175 | assert((!isa<ConstantInt>(Stride) || |
| 176 | cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && |
| 177 | "Stride must be >= the number of elements in the result vector." ); |
| 178 | |
| 179 | // Compute the start of the vector with index VecIdx as VecIdx * Stride. |
| 180 | Value *VecStart = Builder.CreateMul(LHS: VecIdx, RHS: Stride, Name: "vec.start" ); |
| 181 | |
| 182 | // Get pointer to the start of the selected vector. Skip GEP creation, |
| 183 | // if we select vector 0. |
| 184 | if (isa<ConstantInt>(Val: VecStart) && cast<ConstantInt>(Val: VecStart)->isZero()) |
| 185 | VecStart = BasePtr; |
| 186 | else |
| 187 | VecStart = Builder.CreateGEP(Ty: EltType, Ptr: BasePtr, IdxList: VecStart, Name: "vec.gep" ); |
| 188 | |
| 189 | return VecStart; |
| 190 | } |
| 191 | |
| 192 | namespace { |
| 193 | struct ShapeInfo { |
| 194 | unsigned NumRows; |
| 195 | unsigned NumColumns; |
| 196 | |
| 197 | bool IsColumnMajor; |
| 198 | |
| 199 | ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) |
| 200 | : NumRows(NumRows), NumColumns(NumColumns), |
| 201 | IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} |
| 202 | |
| 203 | ShapeInfo(Value *NumRows, Value *NumColumns) |
| 204 | : ShapeInfo(cast<ConstantInt>(Val: NumRows)->getZExtValue(), |
| 205 | cast<ConstantInt>(Val: NumColumns)->getZExtValue()) {} |
| 206 | |
| 207 | bool operator==(const ShapeInfo &other) { |
| 208 | return NumRows == other.NumRows && NumColumns == other.NumColumns; |
| 209 | } |
| 210 | bool operator!=(const ShapeInfo &other) { return !(*this == other); } |
| 211 | |
| 212 | /// Returns true if shape-information is defined, meaning both dimensions |
| 213 | /// are != 0. |
| 214 | operator bool() const { |
| 215 | assert(NumRows == 0 || NumColumns != 0); |
| 216 | return NumRows != 0; |
| 217 | } |
| 218 | |
| 219 | unsigned getStride() const { |
| 220 | if (IsColumnMajor) |
| 221 | return NumRows; |
| 222 | return NumColumns; |
| 223 | } |
| 224 | |
| 225 | unsigned getNumVectors() const { |
| 226 | if (IsColumnMajor) |
| 227 | return NumColumns; |
| 228 | return NumRows; |
| 229 | } |
| 230 | |
| 231 | /// Returns the transposed shape. |
| 232 | ShapeInfo t() const { return ShapeInfo(NumColumns, NumRows); } |
| 233 | |
| 234 | friend raw_ostream &operator<<(raw_ostream &OS, ShapeInfo SI); |
| 235 | |
| 236 | LLVM_DUMP_METHOD void dump() const { dbgs() << *this << '\n'; } |
| 237 | }; |
| 238 | |
| 239 | raw_ostream &operator<<(raw_ostream &OS, ShapeInfo SI) { |
| 240 | return OS << SI.NumRows << 'x' << SI.NumColumns; |
| 241 | } |
| 242 | |
| 243 | } // namespace |
| 244 | |
| 245 | static bool isUniformShape(Value *V) { |
| 246 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 247 | if (!I) |
| 248 | return true; |
| 249 | |
| 250 | if (I->isBinaryOp()) |
| 251 | return true; |
| 252 | |
| 253 | if (auto *Cast = dyn_cast<CastInst>(Val: V)) { |
| 254 | switch (Cast->getOpcode()) { |
| 255 | case llvm::Instruction::Trunc: |
| 256 | case llvm::Instruction::ZExt: |
| 257 | case llvm::Instruction::SExt: |
| 258 | case llvm::Instruction::FPToUI: |
| 259 | case llvm::Instruction::FPToSI: |
| 260 | case llvm::Instruction::UIToFP: |
| 261 | case llvm::Instruction::SIToFP: |
| 262 | case llvm::Instruction::FPTrunc: |
| 263 | case llvm::Instruction::FPExt: |
| 264 | return true; |
| 265 | case llvm::Instruction::AddrSpaceCast: |
| 266 | case CastInst::PtrToInt: |
| 267 | case CastInst::IntToPtr: |
| 268 | return false; |
| 269 | case CastInst::BitCast: { |
| 270 | if (auto *SrcVTy = dyn_cast<FixedVectorType>(Val: Cast->getSrcTy())) |
| 271 | if (auto *DestVTy = dyn_cast<FixedVectorType>(Val: Cast->getDestTy())) |
| 272 | return SrcVTy->getNumElements() == DestVTy->getNumElements(); |
| 273 | return false; |
| 274 | } |
| 275 | case llvm::Instruction::CastOpsEnd: |
| 276 | llvm_unreachable("not an actual cast op" ); |
| 277 | } |
| 278 | llvm_unreachable("unhandled cast opcode" ); |
| 279 | } |
| 280 | |
| 281 | if (auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
| 282 | switch (II->getIntrinsicID()) { |
| 283 | case Intrinsic::abs: |
| 284 | case Intrinsic::fabs: |
| 285 | return true; |
| 286 | default: |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | switch (I->getOpcode()) { |
| 291 | case Instruction::PHI: |
| 292 | case Instruction::FNeg: |
| 293 | return true; |
| 294 | default: |
| 295 | return false; |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | /// Return the ShapeInfo for the result of \p I, it it can be determined. |
| 300 | static std::optional<ShapeInfo> |
| 301 | computeShapeInfoForInst(Instruction *I, |
| 302 | const DenseMap<Value *, ShapeInfo> &ShapeMap) { |
| 303 | Value *M; |
| 304 | Value *N; |
| 305 | Value *K; |
| 306 | if (match(V: I, P: m_Intrinsic<Intrinsic::matrix_multiply>( |
| 307 | Op0: m_Value(), Op1: m_Value(), Op2: m_Value(V&: M), Op3: m_Value(V&: N), Op4: m_Value(V&: K)))) |
| 308 | return ShapeInfo(M, K); |
| 309 | if (match(V: I, P: m_Intrinsic<Intrinsic::matrix_transpose>(Op0: m_Value(), Op1: m_Value(V&: M), |
| 310 | Op2: m_Value(V&: N)))) { |
| 311 | // Flip dimensions. |
| 312 | return ShapeInfo(N, M); |
| 313 | } |
| 314 | if (match(V: I, P: m_Intrinsic<Intrinsic::matrix_column_major_store>( |
| 315 | Op0: m_Value(), Op1: m_Value(), Op2: m_Value(), Op3: m_Value(), Op4: m_Value(V&: M), |
| 316 | Op5: m_Value(V&: N)))) |
| 317 | return ShapeInfo(N, M); |
| 318 | if (match(V: I, P: m_Intrinsic<Intrinsic::matrix_column_major_load>( |
| 319 | Op0: m_Value(), Op1: m_Value(), Op2: m_Value(), Op3: m_Value(V&: M), Op4: m_Value(V&: N)))) |
| 320 | return ShapeInfo(M, N); |
| 321 | Value *MatrixA; |
| 322 | if (match(V: I, P: m_Store(ValueOp: m_Value(V&: MatrixA), PointerOp: m_Value()))) { |
| 323 | auto OpShape = ShapeMap.find(Val: MatrixA); |
| 324 | if (OpShape != ShapeMap.end()) |
| 325 | return OpShape->second; |
| 326 | } |
| 327 | |
| 328 | if (isUniformShape(V: I) || isa<SelectInst>(Val: I)) { |
| 329 | auto Ops = I->operands(); |
| 330 | auto ShapedOps = isa<SelectInst>(Val: I) ? drop_begin(RangeOrContainer&: Ops) : Ops; |
| 331 | // Find the first operand that has a known shape and use that. |
| 332 | for (auto &Op : ShapedOps) { |
| 333 | auto OpShape = ShapeMap.find(Val: Op.get()); |
| 334 | if (OpShape != ShapeMap.end()) |
| 335 | return OpShape->second; |
| 336 | } |
| 337 | } |
| 338 | return std::nullopt; |
| 339 | } |
| 340 | |
| 341 | /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. |
| 342 | /// |
| 343 | /// Currently, the lowering for each matrix intrinsic is done as follows: |
| 344 | /// 1. Propagate the shape information from intrinsics to connected |
| 345 | /// instructions. |
| 346 | /// 2. Lower instructions with shape information (assuming column-major layout). |
| 347 | /// The lowering works similarly using row-major layout. |
| 348 | /// 2.1. Get column vectors for each argument. If we already lowered the |
| 349 | /// definition of an argument, use the produced column vectors directly. |
| 350 | /// If not, split the operand vector containing an embedded matrix into |
| 351 | /// a set of column vectors, |
| 352 | /// 2.2. Lower the instruction in terms of column major operations, which |
| 353 | /// yields a set of column vectors containing result matrix. Note that we |
| 354 | /// lower all instructions that have shape information. Besides the |
| 355 | /// intrinsics, this includes stores for example. |
| 356 | /// 2.3. Update uses of the lowered instruction. If we have shape information |
| 357 | /// for a user, there is nothing to do, as we will look up the result |
| 358 | /// column matrix when lowering the user. For other uses, we embed the |
| 359 | /// result matrix in a flat vector and update the use. |
| 360 | /// 2.4. Cache the result column matrix for the instruction we lowered |
| 361 | /// 3. After we lowered all instructions in a function, remove the now |
| 362 | /// obsolete instructions. |
| 363 | /// |
| 364 | class LowerMatrixIntrinsics { |
| 365 | Function &Func; |
| 366 | const DataLayout &DL; |
| 367 | const TargetTransformInfo &TTI; |
| 368 | FunctionAnalysisManager *AM; |
| 369 | AliasAnalysis *AA = nullptr; |
| 370 | DominatorTree *DT = nullptr; |
| 371 | LoopInfo *LI = nullptr; |
| 372 | OptimizationRemarkEmitter *ORE = nullptr; |
| 373 | |
| 374 | /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. |
| 375 | struct OpInfoTy { |
| 376 | /// Number of stores emitted to generate this matrix. |
| 377 | unsigned NumStores = 0; |
| 378 | /// Number of loads emitted to generate this matrix. |
| 379 | unsigned NumLoads = 0; |
| 380 | /// Number of compute operations emitted to generate this matrix. |
| 381 | unsigned NumComputeOps = 0; |
| 382 | /// Most of the time transposes can be fused with matrix multiplies or can |
| 383 | /// be folded away via algebraic simplifications. This is the number of |
| 384 | /// transposes that we failed to make "free" via such optimizations. |
| 385 | unsigned NumExposedTransposes = 0; |
| 386 | |
| 387 | OpInfoTy &operator+=(const OpInfoTy &RHS) { |
| 388 | NumStores += RHS.NumStores; |
| 389 | NumLoads += RHS.NumLoads; |
| 390 | NumComputeOps += RHS.NumComputeOps; |
| 391 | NumExposedTransposes += RHS.NumExposedTransposes; |
| 392 | return *this; |
| 393 | } |
| 394 | }; |
| 395 | |
| 396 | /// Wrapper class representing a matrix as a set of vectors, either in row or |
| 397 | /// column major layout. All vectors must have the same vector type. |
| 398 | class MatrixTy { |
| 399 | SmallVector<Value *, 16> Vectors; |
| 400 | |
| 401 | OpInfoTy OpInfo; |
| 402 | |
| 403 | bool IsColumnMajor = true; |
| 404 | |
| 405 | public: |
| 406 | MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} |
| 407 | MatrixTy(ArrayRef<Value *> Vectors) |
| 408 | : Vectors(Vectors), |
| 409 | IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} |
| 410 | MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) |
| 411 | : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { |
| 412 | |
| 413 | unsigned D = isColumnMajor() ? NumColumns : NumRows; |
| 414 | for (unsigned J = 0; J < D; ++J) |
| 415 | addVector(V: PoisonValue::get(T: FixedVectorType::get( |
| 416 | ElementType: EltTy, NumElts: isColumnMajor() ? NumRows : NumColumns))); |
| 417 | } |
| 418 | |
| 419 | Value *getVector(unsigned i) const { return Vectors[i]; } |
| 420 | Value *getColumn(unsigned i) const { |
| 421 | assert(isColumnMajor() && "only supported for column-major matrixes" ); |
| 422 | return Vectors[i]; |
| 423 | } |
| 424 | Value *getRow(unsigned i) const { |
| 425 | assert(!isColumnMajor() && "only supported for row-major matrixes" ); |
| 426 | return Vectors[i]; |
| 427 | } |
| 428 | |
| 429 | void setVector(unsigned i, Value *V) { Vectors[i] = V; } |
| 430 | |
| 431 | Type *getElementType() const { return getVectorTy()->getElementType(); } |
| 432 | |
| 433 | unsigned getNumVectors() const { |
| 434 | if (isColumnMajor()) |
| 435 | return getNumColumns(); |
| 436 | return getNumRows(); |
| 437 | } |
| 438 | |
| 439 | unsigned getNumColumns() const { |
| 440 | if (isColumnMajor()) |
| 441 | return Vectors.size(); |
| 442 | else { |
| 443 | assert(Vectors.size() > 0 && "Cannot call getNumRows without columns" ); |
| 444 | return getVectorTy()->getNumElements(); |
| 445 | } |
| 446 | } |
| 447 | unsigned getNumRows() const { |
| 448 | if (isColumnMajor()) { |
| 449 | assert(Vectors.size() > 0 && "Cannot call getNumRows without columns" ); |
| 450 | return getVectorTy()->getNumElements(); |
| 451 | } else |
| 452 | return Vectors.size(); |
| 453 | } |
| 454 | |
| 455 | void addVector(Value *V) { Vectors.push_back(Elt: V); } |
| 456 | FixedVectorType *getColumnTy() { |
| 457 | assert(isColumnMajor() && "only supported for column-major matrixes" ); |
| 458 | return getVectorTy(); |
| 459 | } |
| 460 | |
| 461 | FixedVectorType *getVectorTy() const { |
| 462 | return cast<FixedVectorType>(Val: Vectors[0]->getType()); |
| 463 | } |
| 464 | |
| 465 | iterator_range<SmallVector<Value *, 8>::iterator> columns() { |
| 466 | assert(isColumnMajor() && |
| 467 | "columns() only supported for column-major matrixes" ); |
| 468 | return make_range(x: Vectors.begin(), y: Vectors.end()); |
| 469 | } |
| 470 | |
| 471 | iterator_range<SmallVector<Value *, 8>::iterator> vectors() { |
| 472 | return make_range(x: Vectors.begin(), y: Vectors.end()); |
| 473 | } |
| 474 | |
| 475 | /// Embed the vectors of the matrix into a flat vector by concatenating |
| 476 | /// them. |
| 477 | Value *embedInVector(IRBuilder<> &Builder) const { |
| 478 | return Vectors.size() == 1 ? Vectors[0] |
| 479 | : concatenateVectors(Builder, Vecs: Vectors); |
| 480 | } |
| 481 | |
| 482 | MatrixTy &addNumLoads(unsigned N) { |
| 483 | OpInfo.NumLoads += N; |
| 484 | return *this; |
| 485 | } |
| 486 | |
| 487 | void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } |
| 488 | |
| 489 | MatrixTy &addNumStores(unsigned N) { |
| 490 | OpInfo.NumStores += N; |
| 491 | return *this; |
| 492 | } |
| 493 | |
| 494 | MatrixTy &addNumExposedTransposes(unsigned N) { |
| 495 | OpInfo.NumExposedTransposes += N; |
| 496 | return *this; |
| 497 | } |
| 498 | |
| 499 | MatrixTy &addNumComputeOps(unsigned N) { |
| 500 | OpInfo.NumComputeOps += N; |
| 501 | return *this; |
| 502 | } |
| 503 | |
| 504 | unsigned getNumStores() const { return OpInfo.NumStores; } |
| 505 | unsigned getNumLoads() const { return OpInfo.NumLoads; } |
| 506 | unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } |
| 507 | |
| 508 | const OpInfoTy &getOpInfo() const { return OpInfo; } |
| 509 | |
| 510 | bool isColumnMajor() const { return IsColumnMajor; } |
| 511 | |
| 512 | unsigned getStride() const { |
| 513 | if (isColumnMajor()) |
| 514 | return getNumRows(); |
| 515 | return getNumColumns(); |
| 516 | } |
| 517 | |
| 518 | ShapeInfo shape() const { return {getNumRows(), getNumColumns()}; } |
| 519 | |
| 520 | /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the |
| 521 | /// matrix is column-major, the result vector is extracted from a column |
| 522 | /// vector, otherwise from a row vector. |
| 523 | Value *(unsigned I, unsigned J, unsigned NumElts, |
| 524 | IRBuilder<> &Builder) const { |
| 525 | Value *Vec = isColumnMajor() ? getColumn(i: J) : getRow(i: I); |
| 526 | assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >= |
| 527 | NumElts && |
| 528 | "Extracted vector will contain poison values" ); |
| 529 | return Builder.CreateShuffleVector( |
| 530 | V: Vec, Mask: createSequentialMask(Start: isColumnMajor() ? I : J, NumInts: NumElts, NumUndefs: 0), |
| 531 | Name: "block" ); |
| 532 | } |
| 533 | }; |
| 534 | |
| 535 | /// Maps instructions to their shape information. The shape information |
| 536 | /// describes the shape to be used while lowering. This matches the shape of |
| 537 | /// the result value of the instruction, with the only exceptions being store |
| 538 | /// instructions and the matrix_column_major_store intrinsics. For those, the |
| 539 | /// shape information indicates that those instructions should be lowered |
| 540 | /// using shape information as well. Note that extra care is needed when |
| 541 | /// erasing or RAUW'ing a value that is present in ShapeMap. If the |
| 542 | /// replacement is also a matrix operation, use |
| 543 | /// updateShapeAndReplaceAllUsesWith to make sure the replacement is added to |
| 544 | /// ShapeMap. We don't use ValueMap, as there are also cases where we do not |
| 545 | /// want to add shape information for a replacement instruction. When directly |
| 546 | /// erasing a value with an entry in ShapeMap, use |
| 547 | /// eraseFromParentAndRemoveFromShapeMap to make sure ShapeMap is also updated |
| 548 | /// accordingly. |
| 549 | DenseMap<Value *, ShapeInfo> ShapeMap; |
| 550 | |
| 551 | /// List of instructions to remove. While lowering, we are not replacing all |
| 552 | /// users of a lowered instruction, if shape information is available and |
| 553 | /// those need to be removed after we finished lowering. |
| 554 | SmallVector<Instruction *, 16> ToRemove; |
| 555 | |
| 556 | /// Map from instructions to their produced column matrix. |
| 557 | MapVector<Value *, MatrixTy> Inst2ColumnMatrix; |
| 558 | |
| 559 | private: |
| 560 | static FastMathFlags getFastMathFlags(Instruction *Inst) { |
| 561 | FastMathFlags FMF; |
| 562 | |
| 563 | if (isa<FPMathOperator>(Val: *Inst)) |
| 564 | FMF = Inst->getFastMathFlags(); |
| 565 | |
| 566 | FMF.setAllowContract(AllowContractEnabled || FMF.allowContract()); |
| 567 | |
| 568 | return FMF; |
| 569 | } |
| 570 | |
| 571 | public: |
| 572 | LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, |
| 573 | FunctionAnalysisManager *AM) |
| 574 | : Func(F), DL(F.getDataLayout()), TTI(TTI), AM(AM) {} |
| 575 | |
| 576 | unsigned getNumOps(Type *VT) { |
| 577 | assert(isa<FixedVectorType>(VT) && "Expected vector type" ); |
| 578 | return getNumOps(ST: VT->getScalarType(), |
| 579 | N: cast<FixedVectorType>(Val: VT)->getNumElements()); |
| 580 | } |
| 581 | |
| 582 | /// Is this the minimal version executed in the backend pipelines. |
| 583 | bool isMinimal() const { |
| 584 | return !DT; |
| 585 | } |
| 586 | |
| 587 | /// Return the estimated number of vector ops required for an operation on |
| 588 | /// \p VT * N. |
| 589 | unsigned getNumOps(Type *ST, unsigned N) { |
| 590 | return std::ceil(x: (ST->getPrimitiveSizeInBits() * N).getFixedValue() / |
| 591 | double(TTI.getRegisterBitWidth( |
| 592 | K: TargetTransformInfo::RGK_FixedWidthVector) |
| 593 | .getFixedValue())); |
| 594 | } |
| 595 | |
| 596 | /// Return the set of vectors that a matrix value is lowered to. |
| 597 | /// |
| 598 | /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise |
| 599 | /// split the flat vector \p MatrixVal containing a matrix with shape \p SI |
| 600 | /// into vectors. |
| 601 | MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, |
| 602 | IRBuilder<> &Builder) { |
| 603 | FixedVectorType *VType = cast<FixedVectorType>(Val: MatrixVal->getType()); |
| 604 | assert(VType->getNumElements() == SI.NumRows * SI.NumColumns && |
| 605 | "The vector size must match the number of matrix elements" ); |
| 606 | |
| 607 | // Check if we lowered MatrixVal using shape information. In that case, |
| 608 | // return the existing matrix, if it matches the requested shape |
| 609 | // information. If there is a mis-match, embed the result in a flat |
| 610 | // vector and split it later. |
| 611 | auto Found = Inst2ColumnMatrix.find(Key: MatrixVal); |
| 612 | if (Found != Inst2ColumnMatrix.end()) { |
| 613 | MatrixTy &M = Found->second; |
| 614 | // Return the found matrix, if its shape matches the requested shape |
| 615 | // information |
| 616 | if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) |
| 617 | return M; |
| 618 | |
| 619 | MatrixVal = M.embedInVector(Builder); |
| 620 | } |
| 621 | |
| 622 | // Otherwise split MatrixVal. |
| 623 | SmallVector<Value *, 16> SplitVecs; |
| 624 | for (unsigned MaskStart = 0; MaskStart < VType->getNumElements(); |
| 625 | MaskStart += SI.getStride()) { |
| 626 | Value *V = Builder.CreateShuffleVector( |
| 627 | V: MatrixVal, Mask: createSequentialMask(Start: MaskStart, NumInts: SI.getStride(), NumUndefs: 0), |
| 628 | Name: "split" ); |
| 629 | SplitVecs.push_back(Elt: V); |
| 630 | } |
| 631 | |
| 632 | if (Instruction *Inst = dyn_cast<Instruction>(Val: MatrixVal)) { |
| 633 | if (Found != Inst2ColumnMatrix.end()) { |
| 634 | // FIXME: re: "at least": SplitVecs.size() doesn't count the shuffles |
| 635 | // that embedInVector created. |
| 636 | LLVM_DEBUG(dbgs() << "matrix reshape from " << Found->second.shape() |
| 637 | << " to " << SI << " using at least " |
| 638 | << SplitVecs.size() << " shuffles on behalf of:\n" |
| 639 | << *Inst << '\n'); |
| 640 | ReshapedMatrices++; |
| 641 | } else if (!ShapeMap.contains(Val: MatrixVal)) { |
| 642 | LLVM_DEBUG( |
| 643 | dbgs() |
| 644 | << "splitting a " << SI << " matrix with " << SplitVecs.size() |
| 645 | << " shuffles beacuse we do not have a shape-aware lowering for " |
| 646 | "its def:\n" |
| 647 | << *Inst << '\n'); |
| 648 | (void)Inst; |
| 649 | SplitMatrices++; |
| 650 | } else { |
| 651 | // The ShapeMap has it, so it's a case where we're being lowered |
| 652 | // before the def, and we expect that InstCombine will clean things up |
| 653 | // afterward. |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | return {SplitVecs}; |
| 658 | } |
| 659 | |
| 660 | /// If \p V already has a known shape return false. Otherwise set the shape |
| 661 | /// for instructions that support it. |
| 662 | bool setShapeInfo(Value *V, ShapeInfo Shape) { |
| 663 | assert(Shape && "Shape not set" ); |
| 664 | if (isa<UndefValue>(Val: V) || !supportsShapeInfo(V)) |
| 665 | return false; |
| 666 | |
| 667 | auto SIter = ShapeMap.find(Val: V); |
| 668 | if (SIter != ShapeMap.end()) { |
| 669 | if (VerifyShapeInfo && (SIter->second.NumRows != Shape.NumRows || |
| 670 | SIter->second.NumColumns != Shape.NumColumns)) { |
| 671 | errs() << "Conflicting shapes (" << SIter->second.NumRows << "x" |
| 672 | << SIter->second.NumColumns << " vs " << Shape.NumRows << "x" |
| 673 | << Shape.NumColumns << ") for " << *V << "\n" ; |
| 674 | report_fatal_error( |
| 675 | reason: "Matrix shape verification failed, compilation aborted!" ); |
| 676 | } |
| 677 | |
| 678 | LLVM_DEBUG(dbgs() << " not overriding existing shape: " |
| 679 | << SIter->second.NumRows << " " |
| 680 | << SIter->second.NumColumns << " for " << *V << "\n" ); |
| 681 | return false; |
| 682 | } |
| 683 | |
| 684 | ShapeMap.insert(KV: {V, Shape}); |
| 685 | LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns |
| 686 | << " for " << *V << "\n" ); |
| 687 | return true; |
| 688 | } |
| 689 | |
| 690 | /// Returns true if shape information can be used for \p V. The supported |
| 691 | /// instructions must match the instructions that can be lowered by this pass. |
| 692 | bool supportsShapeInfo(Value *V) { |
| 693 | Instruction *Inst = dyn_cast<Instruction>(Val: V); |
| 694 | if (!Inst) |
| 695 | return false; |
| 696 | |
| 697 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst); |
| 698 | if (II) |
| 699 | switch (II->getIntrinsicID()) { |
| 700 | case Intrinsic::matrix_multiply: |
| 701 | case Intrinsic::matrix_transpose: |
| 702 | case Intrinsic::matrix_column_major_load: |
| 703 | case Intrinsic::matrix_column_major_store: |
| 704 | return true; |
| 705 | default: |
| 706 | return isUniformShape(V: II); |
| 707 | } |
| 708 | return isUniformShape(V) || isa<StoreInst>(Val: V) || isa<LoadInst>(Val: V) || |
| 709 | isa<SelectInst>(Val: V); |
| 710 | } |
| 711 | |
| 712 | /// Propagate the shape information of instructions to their users. |
| 713 | /// The work list contains instructions for which we can compute the shape, |
| 714 | /// either based on the information provided by matrix intrinsics or known |
| 715 | /// shapes of operands. |
| 716 | SmallVector<Instruction *, 32> |
| 717 | propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) { |
| 718 | SmallVector<Instruction *, 32> NewWorkList; |
| 719 | // Pop an element for which we guaranteed to have at least one of the |
| 720 | // operand shapes. Add the shape for this and then add users to the work |
| 721 | // list. |
| 722 | LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n" ); |
| 723 | while (!WorkList.empty()) { |
| 724 | Instruction *Inst = WorkList.pop_back_val(); |
| 725 | |
| 726 | // New entry, set the value and insert operands |
| 727 | bool Propagate = false; |
| 728 | if (auto SI = computeShapeInfoForInst(I: Inst, ShapeMap)) |
| 729 | Propagate = setShapeInfo(V: Inst, Shape: *SI); |
| 730 | |
| 731 | if (Propagate) { |
| 732 | NewWorkList.push_back(Elt: Inst); |
| 733 | for (auto *User : Inst->users()) |
| 734 | if (ShapeMap.count(Val: User) == 0) |
| 735 | WorkList.push_back(Elt: cast<Instruction>(Val: User)); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | return NewWorkList; |
| 740 | } |
| 741 | |
| 742 | /// Propagate the shape to operands of instructions with shape information. |
| 743 | /// \p Worklist contains the instruction for which we already know the shape. |
| 744 | SmallVector<Instruction *, 32> |
| 745 | propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) { |
| 746 | SmallVector<Instruction *, 32> NewWorkList; |
| 747 | |
| 748 | auto pushInstruction = [](Value *V, |
| 749 | SmallVectorImpl<Instruction *> &WorkList) { |
| 750 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 751 | if (I) |
| 752 | WorkList.push_back(Elt: I); |
| 753 | }; |
| 754 | // Pop an element with known shape. Traverse the operands, if their shape |
| 755 | // derives from the result shape and is unknown, add it and add them to the |
| 756 | // worklist. |
| 757 | LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n" ); |
| 758 | while (!WorkList.empty()) { |
| 759 | Value *V = WorkList.pop_back_val(); |
| 760 | |
| 761 | size_t BeforeProcessingV = WorkList.size(); |
| 762 | if (!isa<Instruction>(Val: V)) |
| 763 | continue; |
| 764 | |
| 765 | Value *MatrixA; |
| 766 | Value *MatrixB; |
| 767 | Value *M; |
| 768 | Value *N; |
| 769 | Value *K; |
| 770 | if (match(V, P: m_Intrinsic<Intrinsic::matrix_multiply>( |
| 771 | Op0: m_Value(V&: MatrixA), Op1: m_Value(V&: MatrixB), Op2: m_Value(V&: M), |
| 772 | Op3: m_Value(V&: N), Op4: m_Value(V&: K)))) { |
| 773 | if (setShapeInfo(V: MatrixA, Shape: {M, N})) |
| 774 | pushInstruction(MatrixA, WorkList); |
| 775 | |
| 776 | if (setShapeInfo(V: MatrixB, Shape: {N, K})) |
| 777 | pushInstruction(MatrixB, WorkList); |
| 778 | |
| 779 | } else if (match(V, P: m_Intrinsic<Intrinsic::matrix_transpose>( |
| 780 | Op0: m_Value(V&: MatrixA), Op1: m_Value(V&: M), Op2: m_Value(V&: N)))) { |
| 781 | // Flip dimensions. |
| 782 | if (setShapeInfo(V: MatrixA, Shape: {M, N})) |
| 783 | pushInstruction(MatrixA, WorkList); |
| 784 | } else if (match(V, P: m_Intrinsic<Intrinsic::matrix_column_major_store>( |
| 785 | Op0: m_Value(V&: MatrixA), Op1: m_Value(), Op2: m_Value(), Op3: m_Value(), |
| 786 | Op4: m_Value(V&: M), Op5: m_Value(V&: N)))) { |
| 787 | if (setShapeInfo(V: MatrixA, Shape: {M, N})) { |
| 788 | pushInstruction(MatrixA, WorkList); |
| 789 | } |
| 790 | } else if (isa<LoadInst>(Val: V) || |
| 791 | match(V, P: m_Intrinsic<Intrinsic::matrix_column_major_load>())) { |
| 792 | // Nothing to do, no matrix input. |
| 793 | } else if (isa<StoreInst>(Val: V)) { |
| 794 | // Nothing to do. We forward-propagated to this so we would just |
| 795 | // backward propagate to an instruction with an already known shape. |
| 796 | } else if (isUniformShape(V) || isa<SelectInst>(Val: V)) { |
| 797 | auto Ops = cast<Instruction>(Val: V)->operands(); |
| 798 | auto ShapedOps = isa<SelectInst>(Val: V) ? drop_begin(RangeOrContainer&: Ops) : Ops; |
| 799 | // Propagate to all operands. |
| 800 | ShapeInfo Shape = ShapeMap[V]; |
| 801 | for (Use &U : ShapedOps) { |
| 802 | if (setShapeInfo(V: U.get(), Shape)) |
| 803 | pushInstruction(U.get(), WorkList); |
| 804 | } |
| 805 | } |
| 806 | // After we discovered new shape info for new instructions in the |
| 807 | // worklist, we use their users as seeds for the next round of forward |
| 808 | // propagation. |
| 809 | for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) |
| 810 | for (User *U : WorkList[I]->users()) |
| 811 | if (isa<Instruction>(Val: U) && V != U) |
| 812 | NewWorkList.push_back(Elt: cast<Instruction>(Val: U)); |
| 813 | } |
| 814 | return NewWorkList; |
| 815 | } |
| 816 | |
| 817 | /// (Op0 op Op1)^T -> Op0^T op Op1^T |
| 818 | /// Transpose \p Op0 and \p Op1 of shape \p Shape0 and \p Shape1, then use |
| 819 | /// them on both sides of \p Operation. |
| 820 | Instruction *distributeTransposes( |
| 821 | Value *Op0, ShapeInfo Shape0, Value *Op1, ShapeInfo Shape1, |
| 822 | MatrixBuilder &Builder, |
| 823 | function_ref<Instruction *(Value *, ShapeInfo, Value *, ShapeInfo)> |
| 824 | Operation) { |
| 825 | Value *T0 = Builder.CreateMatrixTranspose( |
| 826 | Matrix: Op0, Rows: Shape0.NumRows, Columns: Shape0.NumColumns, Name: Op0->getName() + "_t" ); |
| 827 | // We are being run after shape prop, add shape for newly created |
| 828 | // instructions so that we lower them later. |
| 829 | setShapeInfo(V: T0, Shape: Shape0.t()); |
| 830 | Value *T1 = Builder.CreateMatrixTranspose( |
| 831 | Matrix: Op1, Rows: Shape1.NumRows, Columns: Shape1.NumColumns, Name: Op1->getName() + "_t" ); |
| 832 | setShapeInfo(V: T1, Shape: Shape1.t()); |
| 833 | return Operation(T0, Shape0.t(), T1, Shape1.t()); |
| 834 | } |
| 835 | |
| 836 | /// Erase \p Inst from both ShapeMap (if an entry exists) and erase \p Inst |
| 837 | /// itself. |
| 838 | void eraseFromParentAndRemoveFromShapeMap(Instruction *Inst) { |
| 839 | ShapeMap.erase(Val: Inst); |
| 840 | Inst->eraseFromParent(); |
| 841 | } |
| 842 | |
| 843 | /// Erase \p V from \p BB and move \II forward to avoid invalidating |
| 844 | /// iterators. |
| 845 | void eraseFromParentAndMove(Value *V, BasicBlock::reverse_iterator &II, |
| 846 | BasicBlock &BB) { |
| 847 | auto *Inst = cast<Instruction>(Val: V); |
| 848 | // Still used, don't erase. |
| 849 | if (!Inst->use_empty()) |
| 850 | return; |
| 851 | if (II != BB.rend() && Inst == &*II) |
| 852 | ++II; |
| 853 | eraseFromParentAndRemoveFromShapeMap(Inst); |
| 854 | } |
| 855 | |
| 856 | /// Add a new entry to ShapeMap for \p New with \p Old's shape info, erase the |
| 857 | /// entry for \p Old and replace all uses of \p Old with \p New. |
| 858 | void updateShapeAndReplaceAllUsesWith(Instruction &Old, Value *New) { |
| 859 | // We need to remove Old from the ShapeMap otherwise RAUW will replace it |
| 860 | // with New. We should only add New it it supportsShapeInfo so we insert |
| 861 | // it conditionally instead. |
| 862 | auto S = ShapeMap.find(Val: &Old); |
| 863 | if (S != ShapeMap.end()) { |
| 864 | ShapeMap.erase(I: S); |
| 865 | if (supportsShapeInfo(V: New)) |
| 866 | ShapeMap.insert(KV: {New, S->second}); |
| 867 | } |
| 868 | Old.replaceAllUsesWith(V: New); |
| 869 | } |
| 870 | |
| 871 | /// Sink a top-level transpose inside matmuls and adds. |
| 872 | /// This creates and erases instructions as needed, and returns the newly |
| 873 | /// created instruction while updating the iterator to avoid invalidation. If |
| 874 | /// this returns nullptr, no new instruction was created. |
| 875 | Instruction *sinkTranspose(Instruction &I, BasicBlock::reverse_iterator &II, |
| 876 | bool &Changed) { |
| 877 | BasicBlock &BB = *I.getParent(); |
| 878 | IRBuilder<> IB(&I); |
| 879 | MatrixBuilder Builder(IB); |
| 880 | |
| 881 | Value *TA, *TAMA, *TAMB; |
| 882 | ConstantInt *R, *K, *C; |
| 883 | if (!match(V: &I, P: m_Intrinsic<Intrinsic::matrix_transpose>( |
| 884 | Op0: m_Value(V&: TA), Op1: m_ConstantInt(CI&: R), Op2: m_ConstantInt(CI&: C)))) |
| 885 | return nullptr; |
| 886 | |
| 887 | // Transpose of a transpose is a nop when the shapes match. |
| 888 | Value *TATA; |
| 889 | if (match(V: TA, P: m_Intrinsic<Intrinsic::matrix_transpose>( |
| 890 | Op0: m_Value(V&: TATA), Op1: m_Specific(V: C), Op2: m_Specific(V: R)))) { |
| 891 | updateShapeAndReplaceAllUsesWith(Old&: I, New: TATA); |
| 892 | eraseFromParentAndMove(V: &I, II, BB); |
| 893 | eraseFromParentAndMove(V: TA, II, BB); |
| 894 | Changed = true; |
| 895 | return nullptr; |
| 896 | } |
| 897 | |
| 898 | // k^T -> k |
| 899 | if (isSplat(V: TA)) { |
| 900 | updateShapeAndReplaceAllUsesWith(Old&: I, New: TA); |
| 901 | eraseFromParentAndMove(V: &I, II, BB); |
| 902 | Changed = true; |
| 903 | return nullptr; |
| 904 | } |
| 905 | |
| 906 | // (A * B)^t -> B^t * A^t |
| 907 | // RxK KxC CxK KxR |
| 908 | if (match(V: TA, P: m_Intrinsic<Intrinsic::matrix_multiply>( |
| 909 | Op0: m_Value(V&: TAMA), Op1: m_Value(V&: TAMB), Op2: m_ConstantInt(CI&: R), |
| 910 | Op3: m_ConstantInt(CI&: K), Op4: m_ConstantInt(CI&: C)))) { |
| 911 | auto NewInst = distributeTransposes( |
| 912 | Op0: TAMB, Shape0: {K, C}, Op1: TAMA, Shape1: {R, K}, Builder, |
| 913 | Operation: [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) { |
| 914 | return Builder.CreateMatrixMultiply(LHS: T0, RHS: T1, LHSRows: Shape0.NumRows, |
| 915 | LHSColumns: Shape0.NumColumns, |
| 916 | RHSColumns: Shape1.NumColumns, Name: "mmul" ); |
| 917 | }); |
| 918 | updateShapeAndReplaceAllUsesWith(Old&: I, New: NewInst); |
| 919 | eraseFromParentAndMove(V: &I, II, BB); |
| 920 | eraseFromParentAndMove(V: TA, II, BB); |
| 921 | Changed = true; |
| 922 | return NewInst; |
| 923 | } |
| 924 | |
| 925 | // Same as above, but with a mul, which occurs when multiplied |
| 926 | // with a scalar. |
| 927 | // (A * k)^t -> A^t * k |
| 928 | // R x C RxC |
| 929 | if (match(V: TA, P: m_AnyMul(L: m_Value(V&: TAMA), R: m_Value(V&: TAMB))) && |
| 930 | (isSplat(V: TAMA) || isSplat(V: TAMB))) { |
| 931 | IRBuilder<> LocalBuilder(&I); |
| 932 | // We know that the transposed operand is of shape RxC. |
| 933 | // An when multiplied with a scalar, the shape is preserved. |
| 934 | auto NewInst = distributeTransposes( |
| 935 | Op0: TAMA, Shape0: {R, C}, Op1: TAMB, Shape1: {R, C}, Builder, |
| 936 | Operation: [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) { |
| 937 | bool IsFP = I.getType()->isFPOrFPVectorTy(); |
| 938 | auto *Mul = IsFP ? LocalBuilder.CreateFMul(L: T0, R: T1, Name: "mmul" ) |
| 939 | : LocalBuilder.CreateMul(LHS: T0, RHS: T1, Name: "mmul" ); |
| 940 | auto *Result = cast<Instruction>(Val: Mul); |
| 941 | setShapeInfo(V: Result, Shape: Shape0); |
| 942 | return Result; |
| 943 | }); |
| 944 | updateShapeAndReplaceAllUsesWith(Old&: I, New: NewInst); |
| 945 | eraseFromParentAndMove(V: &I, II, BB); |
| 946 | eraseFromParentAndMove(V: TA, II, BB); |
| 947 | Changed = true; |
| 948 | return NewInst; |
| 949 | } |
| 950 | |
| 951 | // (A + B)^t -> A^t + B^t |
| 952 | // RxC RxC CxR CxR |
| 953 | if (match(V: TA, P: m_AnyAdd(L: m_Value(V&: TAMA), R: m_Value(V&: TAMB)))) { |
| 954 | IRBuilder<> LocalBuilder(&I); |
| 955 | auto NewInst = distributeTransposes( |
| 956 | Op0: TAMA, Shape0: {R, C}, Op1: TAMB, Shape1: {R, C}, Builder, |
| 957 | Operation: [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) { |
| 958 | bool IsFP = I.getType()->isFPOrFPVectorTy(); |
| 959 | auto *Add = IsFP ? LocalBuilder.CreateFAdd(L: T0, R: T1, Name: "madd" ) |
| 960 | : LocalBuilder.CreateAdd(LHS: T0, RHS: T1, Name: "madd" ); |
| 961 | |
| 962 | auto *Result = cast<Instruction>(Val: Add); |
| 963 | setShapeInfo(V: Result, Shape: Shape0); |
| 964 | return Result; |
| 965 | }); |
| 966 | updateShapeAndReplaceAllUsesWith(Old&: I, New: NewInst); |
| 967 | eraseFromParentAndMove(V: &I, II, BB); |
| 968 | eraseFromParentAndMove(V: TA, II, BB); |
| 969 | Changed = true; |
| 970 | return NewInst; |
| 971 | } |
| 972 | |
| 973 | return nullptr; |
| 974 | } |
| 975 | |
| 976 | bool liftTranspose(Instruction &I) { |
| 977 | // Erase dead Instructions after lifting transposes from binops. |
| 978 | auto CleanupBinOp = [this](Instruction &T, Value *A, Value *B) { |
| 979 | if (T.use_empty()) |
| 980 | eraseFromParentAndRemoveFromShapeMap(Inst: &T); |
| 981 | if (A->use_empty()) |
| 982 | eraseFromParentAndRemoveFromShapeMap(Inst: cast<Instruction>(Val: A)); |
| 983 | if (A != B && B->use_empty()) |
| 984 | eraseFromParentAndRemoveFromShapeMap(Inst: cast<Instruction>(Val: B)); |
| 985 | }; |
| 986 | |
| 987 | Value *A, *B, *AT, *BT; |
| 988 | ConstantInt *R, *K, *C; |
| 989 | // A^t * B ^t -> (B * A)^t |
| 990 | if (match(V: &I, P: m_Intrinsic<Intrinsic::matrix_multiply>( |
| 991 | Op0: m_Value(V&: A), Op1: m_Value(V&: B), Op2: m_ConstantInt(CI&: R), |
| 992 | Op3: m_ConstantInt(CI&: K), Op4: m_ConstantInt(CI&: C))) && |
| 993 | match(V: A, P: m_Intrinsic<Intrinsic::matrix_transpose>(Op0: m_Value(V&: AT))) && |
| 994 | match(V: B, P: m_Intrinsic<Intrinsic::matrix_transpose>(Op0: m_Value(V&: (BT))))) { |
| 995 | IRBuilder<> IB(&I); |
| 996 | MatrixBuilder Builder(IB); |
| 997 | Value *M = Builder.CreateMatrixMultiply( |
| 998 | LHS: BT, RHS: AT, LHSRows: C->getZExtValue(), LHSColumns: K->getZExtValue(), RHSColumns: R->getZExtValue()); |
| 999 | setShapeInfo(V: M, Shape: {C, R}); |
| 1000 | Instruction *NewInst = Builder.CreateMatrixTranspose(Matrix: M, Rows: C->getZExtValue(), |
| 1001 | Columns: R->getZExtValue()); |
| 1002 | updateShapeAndReplaceAllUsesWith(Old&: I, New: NewInst); |
| 1003 | CleanupBinOp(I, A, B); |
| 1004 | return true; |
| 1005 | } |
| 1006 | // A^t + B ^t -> (A + B)^t. Pick rows and columns from first transpose. If |
| 1007 | // the shape of the second transpose is different, there's a shape conflict |
| 1008 | // which gets resolved by picking the shape of the first operand. |
| 1009 | else if (match(V: &I, P: m_FAdd(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 1010 | match(V: A, P: m_Intrinsic<Intrinsic::matrix_transpose>( |
| 1011 | Op0: m_Value(V&: AT), Op1: m_ConstantInt(CI&: R), Op2: m_ConstantInt(CI&: C))) && |
| 1012 | match(V: B, P: m_Intrinsic<Intrinsic::matrix_transpose>( |
| 1013 | Op0: m_Value(V&: BT), Op1: m_ConstantInt(), Op2: m_ConstantInt()))) { |
| 1014 | IRBuilder<> Builder(&I); |
| 1015 | auto *Add = Builder.CreateFAdd(L: AT, R: BT, Name: "mfadd" ); |
| 1016 | MatrixBuilder MBuilder(Builder); |
| 1017 | Instruction *NewInst = MBuilder.CreateMatrixTranspose( |
| 1018 | Matrix: Add, Rows: R->getZExtValue(), Columns: C->getZExtValue(), Name: "mfadd_t" ); |
| 1019 | updateShapeAndReplaceAllUsesWith(Old&: I, New: NewInst); |
| 1020 | assert(computeShapeInfoForInst(NewInst, ShapeMap) == |
| 1021 | computeShapeInfoForInst(&I, ShapeMap) && |
| 1022 | "Shape of new instruction doesn't match original shape." ); |
| 1023 | CleanupBinOp(I, A, B); |
| 1024 | if (auto *AddI = dyn_cast<Instruction>(Val: Add)) { |
| 1025 | setShapeInfo(V: AddI, Shape: {R, C}); |
| 1026 | assert( |
| 1027 | computeShapeInfoForInst(AddI, ShapeMap).value_or(ShapeMap[AddI]) == |
| 1028 | ShapeMap[AddI] && |
| 1029 | "Shape of updated addition doesn't match cached shape." ); |
| 1030 | } |
| 1031 | return true; |
| 1032 | } |
| 1033 | return false; |
| 1034 | } |
| 1035 | |
| 1036 | /// Try moving transposes in order to fold them away or into multiplies. |
| 1037 | bool optimizeTransposes() { |
| 1038 | bool Changed = false; |
| 1039 | // First sink all transposes inside matmuls and adds, hoping that we end up |
| 1040 | // with NN, NT or TN variants. |
| 1041 | for (BasicBlock &BB : reverse(C&: Func)) { |
| 1042 | for (auto II = BB.rbegin(); II != BB.rend();) { |
| 1043 | Instruction &I = *II; |
| 1044 | // We may remove II. By default continue on the next/prev instruction. |
| 1045 | ++II; |
| 1046 | if (Instruction *NewInst = sinkTranspose(I, II, Changed)) |
| 1047 | II = std::next(x: BasicBlock::reverse_iterator(NewInst)); |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | // If we have a TT matmul or a TT add, lift the transpose. We may be able |
| 1052 | // to fold into consuming multiply or add. |
| 1053 | for (BasicBlock &BB : Func) { |
| 1054 | for (Instruction &I : llvm::make_early_inc_range(Range&: BB)) { |
| 1055 | Changed |= liftTranspose(I); |
| 1056 | } |
| 1057 | } |
| 1058 | return Changed; |
| 1059 | } |
| 1060 | |
| 1061 | bool Visit() { |
| 1062 | SmallVector<Instruction *, 32> WorkList; |
| 1063 | |
| 1064 | // Initially only the shape of matrix intrinsics is known. |
| 1065 | // Initialize the work list with ops carrying shape information. |
| 1066 | for (BasicBlock &BB : Func) |
| 1067 | for (Instruction &Inst : BB) { |
| 1068 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: &Inst); |
| 1069 | if (!II) |
| 1070 | continue; |
| 1071 | |
| 1072 | switch (II->getIntrinsicID()) { |
| 1073 | case Intrinsic::matrix_multiply: |
| 1074 | case Intrinsic::matrix_transpose: |
| 1075 | case Intrinsic::matrix_column_major_load: |
| 1076 | case Intrinsic::matrix_column_major_store: |
| 1077 | WorkList.push_back(Elt: &Inst); |
| 1078 | break; |
| 1079 | default: |
| 1080 | break; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | // Avoid unnecessary work if there are no matrix intrinsics in the function. |
| 1085 | if (WorkList.empty()) |
| 1086 | return false; |
| 1087 | |
| 1088 | if (AM) { |
| 1089 | ORE = &AM->getResult<OptimizationRemarkEmitterAnalysis>(IR&: Func); |
| 1090 | AA = &AM->getResult<AAManager>(IR&: Func); |
| 1091 | DT = &AM->getResult<DominatorTreeAnalysis>(IR&: Func); |
| 1092 | LI = &AM->getResult<LoopAnalysis>(IR&: Func); |
| 1093 | } |
| 1094 | |
| 1095 | // Propagate shapes until nothing changes any longer. |
| 1096 | while (!WorkList.empty()) { |
| 1097 | WorkList = propagateShapeForward(WorkList); |
| 1098 | WorkList = propagateShapeBackward(WorkList); |
| 1099 | } |
| 1100 | |
| 1101 | bool Changed = false; |
| 1102 | if (!isMinimal()) { |
| 1103 | Changed |= optimizeTransposes(); |
| 1104 | if (PrintAfterTransposeOpt) { |
| 1105 | dbgs() << "Dump after matrix transpose optimization:\n" ; |
| 1106 | Func.print(OS&: dbgs()); |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | SmallVector<CallInst *, 16> MaybeFusableInsts; |
| 1111 | SmallVector<Instruction *, 16> MatrixInsts; |
| 1112 | SmallVector<IntrinsicInst *, 16> LifetimeEnds; |
| 1113 | |
| 1114 | // First, collect all instructions with shape information and candidates for |
| 1115 | // fusion (currently only matrix multiplies). |
| 1116 | ReversePostOrderTraversal<Function *> RPOT(&Func); |
| 1117 | for (auto *BB : RPOT) |
| 1118 | for (Instruction &I : *BB) { |
| 1119 | if (match(V: &I, P: m_Intrinsic<Intrinsic::lifetime_end>())) |
| 1120 | LifetimeEnds.push_back(Elt: cast<IntrinsicInst>(Val: &I)); |
| 1121 | if (!ShapeMap.contains(Val: &I)) |
| 1122 | continue; |
| 1123 | if (match(V: &I, P: m_Intrinsic<Intrinsic::matrix_multiply>())) |
| 1124 | MaybeFusableInsts.push_back(Elt: cast<CallInst>(Val: &I)); |
| 1125 | MatrixInsts.push_back(Elt: &I); |
| 1126 | } |
| 1127 | |
| 1128 | // Second, try to lower any dot products |
| 1129 | SmallPtrSet<Instruction *, 16> FusedInsts; |
| 1130 | for (CallInst *CI : MaybeFusableInsts) |
| 1131 | lowerDotProduct(MatMul: CI, FusedInsts, FMF: getFastMathFlags(Inst: CI)); |
| 1132 | |
| 1133 | // Third, try to fuse candidates. |
| 1134 | for (CallInst *CI : MaybeFusableInsts) |
| 1135 | if (!FusedInsts.contains(Ptr: CI)) |
| 1136 | LowerMatrixMultiplyFused(MatMul: CI, FusedInsts, LifetimeEnds); |
| 1137 | |
| 1138 | Changed |= !FusedInsts.empty(); |
| 1139 | |
| 1140 | // Fourth, pre-process all the PHINode's. The incoming values will be |
| 1141 | // assigned later in VisitPHI. |
| 1142 | for (Instruction *Inst : MatrixInsts) { |
| 1143 | if (FusedInsts.count(Ptr: Inst)) |
| 1144 | continue; |
| 1145 | |
| 1146 | auto *PHI = dyn_cast<PHINode>(Val: Inst); |
| 1147 | if (!PHI) |
| 1148 | continue; |
| 1149 | |
| 1150 | const ShapeInfo &SI = ShapeMap.at(Val: Inst); |
| 1151 | auto *EltTy = cast<FixedVectorType>(Val: PHI->getType())->getElementType(); |
| 1152 | MatrixTy PhiM(SI.NumRows, SI.NumColumns, EltTy); |
| 1153 | |
| 1154 | IRBuilder<> Builder(Inst); |
| 1155 | for (unsigned VI = 0, VE = PhiM.getNumVectors(); VI != VE; ++VI) |
| 1156 | PhiM.setVector(i: VI, V: Builder.CreatePHI(Ty: PhiM.getVectorTy(), |
| 1157 | NumReservedValues: PHI->getNumIncomingValues(), |
| 1158 | Name: PHI->getName())); |
| 1159 | assert(!Inst2ColumnMatrix.contains(PHI) && "map already contains phi?" ); |
| 1160 | Inst2ColumnMatrix[PHI] = PhiM; |
| 1161 | } |
| 1162 | |
| 1163 | // Fifth, lower remaining instructions with shape information. |
| 1164 | for (Instruction *Inst : MatrixInsts) { |
| 1165 | if (FusedInsts.count(Ptr: Inst)) |
| 1166 | continue; |
| 1167 | |
| 1168 | const ShapeInfo &SI = ShapeMap.at(Val: Inst); |
| 1169 | |
| 1170 | Value *Op1; |
| 1171 | Value *Op2; |
| 1172 | MatrixTy Result; |
| 1173 | IRBuilder<> Builder(Inst); |
| 1174 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: Inst)) |
| 1175 | Result = VisitBinaryOperator(Inst: BinOp, SI, Builder); |
| 1176 | else if (auto *Cast = dyn_cast<CastInst>(Val: Inst)) |
| 1177 | Result = VisitCastInstruction(Inst: Cast, Shape: SI, Builder); |
| 1178 | else if (auto *UnOp = dyn_cast<UnaryOperator>(Val: Inst)) |
| 1179 | Result = VisitUnaryOperator(Inst: UnOp, SI, Builder); |
| 1180 | else if (auto *Intr = dyn_cast<IntrinsicInst>(Val: Inst)) |
| 1181 | Result = VisitIntrinsicInst(Inst: Intr, SI, Builder); |
| 1182 | else if (auto *Select = dyn_cast<SelectInst>(Val: Inst)) |
| 1183 | Result = VisitSelectInst(Inst: Select, Shape: SI, Builder); |
| 1184 | else if (match(V: Inst, P: m_Load(Op: m_Value(V&: Op1)))) |
| 1185 | Result = VisitLoad(Inst: cast<LoadInst>(Val: Inst), SI, Ptr: Op1, Builder); |
| 1186 | else if (match(V: Inst, P: m_Store(ValueOp: m_Value(V&: Op1), PointerOp: m_Value(V&: Op2)))) |
| 1187 | Result = VisitStore(Inst: cast<StoreInst>(Val: Inst), SI, StoredVal: Op1, Ptr: Op2, Builder); |
| 1188 | else if (auto *PHI = dyn_cast<PHINode>(Val: Inst)) |
| 1189 | Result = VisitPHI(Inst: PHI, SI, Builder); |
| 1190 | else |
| 1191 | continue; |
| 1192 | |
| 1193 | finalizeLowering(Inst, Matrix: Result, Builder); |
| 1194 | Changed = true; |
| 1195 | } |
| 1196 | |
| 1197 | if (ORE) { |
| 1198 | RemarkGenerator (Inst2ColumnMatrix, *ORE, Func); |
| 1199 | RemarkGen.emitRemarks(); |
| 1200 | } |
| 1201 | |
| 1202 | // Delete the instructions backwards, as it has a reduced likelihood of |
| 1203 | // having to update as many def-use and use-def chains. |
| 1204 | // |
| 1205 | // Because we add to ToRemove during fusion we can't guarantee that defs |
| 1206 | // are before uses. Change uses to poison temporarily as these should get |
| 1207 | // removed as well. |
| 1208 | // |
| 1209 | // For verification, we keep track of where we changed uses to poison in |
| 1210 | // PoisonedInsts and then check that we in fact remove them. |
| 1211 | SmallSet<Instruction *, 16> PoisonedInsts; |
| 1212 | for (auto *Inst : reverse(C&: ToRemove)) { |
| 1213 | for (Use &U : llvm::make_early_inc_range(Range: Inst->uses())) { |
| 1214 | if (auto *Poisoned = dyn_cast<Instruction>(Val: U.getUser())) |
| 1215 | PoisonedInsts.insert(Ptr: Poisoned); |
| 1216 | U.set(PoisonValue::get(T: Inst->getType())); |
| 1217 | } |
| 1218 | Inst->eraseFromParent(); |
| 1219 | PoisonedInsts.erase(Ptr: Inst); |
| 1220 | } |
| 1221 | if (!PoisonedInsts.empty()) { |
| 1222 | // If we didn't remove all poisoned instructions, it's a hard error. |
| 1223 | dbgs() << "Poisoned but present instructions:\n" ; |
| 1224 | for (auto *I : PoisonedInsts) |
| 1225 | dbgs() << *I << "\n" ; |
| 1226 | llvm_unreachable("Poisoned but instruction not removed" ); |
| 1227 | } |
| 1228 | |
| 1229 | return Changed; |
| 1230 | } |
| 1231 | |
| 1232 | /// Replace intrinsic calls. |
| 1233 | MatrixTy VisitIntrinsicInst(IntrinsicInst *Inst, const ShapeInfo &SI, |
| 1234 | IRBuilder<> &Builder) { |
| 1235 | assert(Inst->getCalledFunction() && |
| 1236 | Inst->getCalledFunction()->isIntrinsic()); |
| 1237 | |
| 1238 | switch (Inst->getCalledFunction()->getIntrinsicID()) { |
| 1239 | case Intrinsic::matrix_multiply: |
| 1240 | return LowerMultiply(MatMul: Inst, Builder); |
| 1241 | case Intrinsic::matrix_transpose: |
| 1242 | return LowerTranspose(Inst, Builder); |
| 1243 | case Intrinsic::matrix_column_major_load: |
| 1244 | return LowerColumnMajorLoad(Inst, Builder); |
| 1245 | case Intrinsic::matrix_column_major_store: |
| 1246 | return LowerColumnMajorStore(Inst, Builder); |
| 1247 | case Intrinsic::abs: |
| 1248 | case Intrinsic::fabs: { |
| 1249 | MatrixTy Result; |
| 1250 | MatrixTy M = getMatrix(MatrixVal: Inst->getOperand(i_nocapture: 0), SI, Builder); |
| 1251 | Builder.setFastMathFlags(getFastMathFlags(Inst)); |
| 1252 | |
| 1253 | for (auto *Vector : M.vectors()) { |
| 1254 | switch (Inst->getIntrinsicID()) { |
| 1255 | case Intrinsic::abs: |
| 1256 | Result.addVector(V: Builder.CreateBinaryIntrinsic(ID: Intrinsic::abs, LHS: Vector, |
| 1257 | RHS: Inst->getOperand(i_nocapture: 1))); |
| 1258 | continue; |
| 1259 | case Intrinsic::fabs: |
| 1260 | Result.addVector( |
| 1261 | V: Builder.CreateUnaryIntrinsic(ID: Inst->getIntrinsicID(), V: Vector)); |
| 1262 | continue; |
| 1263 | default: |
| 1264 | llvm_unreachable("unexpected intrinsic" ); |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | return Result.addNumComputeOps(N: getNumOps(VT: Result.getVectorTy()) * |
| 1269 | Result.getNumVectors()); |
| 1270 | } |
| 1271 | default: |
| 1272 | break; |
| 1273 | } |
| 1274 | llvm_unreachable( |
| 1275 | "only intrinsics supporting shape info should be seen here" ); |
| 1276 | } |
| 1277 | |
| 1278 | /// Compute the alignment for a column/row \p Idx with \p Stride between them. |
| 1279 | /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a |
| 1280 | /// ConstantInt, reduce the initial alignment based on the byte offset. For |
| 1281 | /// non-ConstantInt strides, return the common alignment of the initial |
| 1282 | /// alignment and the element size in bytes. |
| 1283 | Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, |
| 1284 | MaybeAlign A) const { |
| 1285 | Align InitialAlign = DL.getValueOrABITypeAlignment(Alignment: A, Ty: ElementTy); |
| 1286 | if (Idx == 0) |
| 1287 | return InitialAlign; |
| 1288 | |
| 1289 | TypeSize ElementSizeInBits = DL.getTypeSizeInBits(Ty: ElementTy); |
| 1290 | if (auto *ConstStride = dyn_cast<ConstantInt>(Val: Stride)) { |
| 1291 | uint64_t StrideInBytes = |
| 1292 | ConstStride->getZExtValue() * ElementSizeInBits / 8; |
| 1293 | return commonAlignment(A: InitialAlign, Offset: Idx * StrideInBytes); |
| 1294 | } |
| 1295 | return commonAlignment(A: InitialAlign, Offset: ElementSizeInBits / 8); |
| 1296 | } |
| 1297 | |
| 1298 | /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between |
| 1299 | /// vectors. |
| 1300 | MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, |
| 1301 | bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { |
| 1302 | auto *VType = cast<FixedVectorType>(Val: Ty); |
| 1303 | Type *EltTy = VType->getElementType(); |
| 1304 | Type *VecTy = FixedVectorType::get(ElementType: EltTy, NumElts: Shape.getStride()); |
| 1305 | Value *EltPtr = Ptr; |
| 1306 | MatrixTy Result; |
| 1307 | for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { |
| 1308 | Value *GEP = computeVectorAddr( |
| 1309 | BasePtr: EltPtr, VecIdx: Builder.getIntN(N: Stride->getType()->getScalarSizeInBits(), C: I), |
| 1310 | Stride, NumElements: Shape.getStride(), EltType: EltTy, Builder); |
| 1311 | Value *Vector = Builder.CreateAlignedLoad( |
| 1312 | Ty: VecTy, Ptr: GEP, Align: getAlignForIndex(Idx: I, Stride, ElementTy: EltTy, A: MAlign), |
| 1313 | isVolatile: IsVolatile, Name: "col.load" ); |
| 1314 | |
| 1315 | Result.addVector(V: Vector); |
| 1316 | } |
| 1317 | return Result.addNumLoads(N: getNumOps(VT: Result.getVectorTy()) * |
| 1318 | Result.getNumVectors()); |
| 1319 | } |
| 1320 | |
| 1321 | /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, |
| 1322 | /// starting at \p MatrixPtr[I][J]. |
| 1323 | MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, |
| 1324 | ShapeInfo MatrixShape, Value *I, Value *J, |
| 1325 | ShapeInfo ResultShape, Type *EltTy, |
| 1326 | IRBuilder<> &Builder) { |
| 1327 | Value *Offset = Builder.CreateAdd( |
| 1328 | LHS: Builder.CreateMul(LHS: J, RHS: Builder.getInt64(C: MatrixShape.getStride())), RHS: I); |
| 1329 | |
| 1330 | Value *TileStart = Builder.CreateGEP(Ty: EltTy, Ptr: MatrixPtr, IdxList: Offset); |
| 1331 | auto *TileTy = FixedVectorType::get(ElementType: EltTy, NumElts: ResultShape.NumRows * |
| 1332 | ResultShape.NumColumns); |
| 1333 | |
| 1334 | return loadMatrix(Ty: TileTy, Ptr: TileStart, MAlign: Align, |
| 1335 | Stride: Builder.getInt64(C: MatrixShape.getStride()), IsVolatile, |
| 1336 | Shape: ResultShape, Builder); |
| 1337 | } |
| 1338 | |
| 1339 | /// Lower a load instruction with shape information. |
| 1340 | MatrixTy LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, |
| 1341 | Value *Stride, bool IsVolatile, ShapeInfo Shape, |
| 1342 | IRBuilder<> &Builder) { |
| 1343 | return loadMatrix(Ty: Inst->getType(), Ptr, MAlign: Align, Stride, IsVolatile, Shape, |
| 1344 | Builder); |
| 1345 | } |
| 1346 | |
| 1347 | /// Lowers llvm.matrix.column.major.load. |
| 1348 | /// |
| 1349 | /// The intrinsic loads a matrix from memory using a stride between columns. |
| 1350 | MatrixTy LowerColumnMajorLoad(CallInst *Inst, IRBuilder<> &Builder) { |
| 1351 | assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && |
| 1352 | "Intrinsic only supports column-major layout!" ); |
| 1353 | Value *Ptr = Inst->getArgOperand(i: 0); |
| 1354 | Value *Stride = Inst->getArgOperand(i: 1); |
| 1355 | return LowerLoad(Inst, Ptr, Align: Inst->getParamAlign(ArgNo: 0), Stride, |
| 1356 | IsVolatile: cast<ConstantInt>(Val: Inst->getArgOperand(i: 2))->isOne(), |
| 1357 | Shape: {Inst->getArgOperand(i: 3), Inst->getArgOperand(i: 4)}, Builder); |
| 1358 | } |
| 1359 | |
| 1360 | /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p |
| 1361 | /// MatrixPtr[I][J]. |
| 1362 | void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, |
| 1363 | MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, |
| 1364 | Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { |
| 1365 | Value *Offset = Builder.CreateAdd( |
| 1366 | LHS: Builder.CreateMul(LHS: J, RHS: Builder.getInt64(C: MatrixShape.getStride())), RHS: I); |
| 1367 | |
| 1368 | Value *TileStart = Builder.CreateGEP(Ty: EltTy, Ptr: MatrixPtr, IdxList: Offset); |
| 1369 | auto *TileTy = FixedVectorType::get(ElementType: EltTy, NumElts: StoreVal.getNumRows() * |
| 1370 | StoreVal.getNumColumns()); |
| 1371 | |
| 1372 | storeMatrix(Ty: TileTy, StoreVal, Ptr: TileStart, MAlign, |
| 1373 | Stride: Builder.getInt64(C: MatrixShape.getStride()), IsVolatile, Builder); |
| 1374 | } |
| 1375 | |
| 1376 | /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between |
| 1377 | /// vectors. |
| 1378 | MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, |
| 1379 | MaybeAlign MAlign, Value *Stride, bool IsVolatile, |
| 1380 | IRBuilder<> &Builder) { |
| 1381 | auto *VType = cast<FixedVectorType>(Val: Ty); |
| 1382 | Value *EltPtr = Ptr; |
| 1383 | for (auto Vec : enumerate(First: StoreVal.vectors())) { |
| 1384 | Value *GEP = computeVectorAddr( |
| 1385 | BasePtr: EltPtr, |
| 1386 | VecIdx: Builder.getIntN(N: Stride->getType()->getScalarSizeInBits(), |
| 1387 | C: Vec.index()), |
| 1388 | Stride, NumElements: StoreVal.getStride(), EltType: VType->getElementType(), Builder); |
| 1389 | Builder.CreateAlignedStore(Val: Vec.value(), Ptr: GEP, |
| 1390 | Align: getAlignForIndex(Idx: Vec.index(), Stride, |
| 1391 | ElementTy: VType->getElementType(), |
| 1392 | A: MAlign), |
| 1393 | isVolatile: IsVolatile); |
| 1394 | } |
| 1395 | return MatrixTy().addNumStores(N: getNumOps(VT: StoreVal.getVectorTy()) * |
| 1396 | StoreVal.getNumVectors()); |
| 1397 | } |
| 1398 | |
| 1399 | /// Lower a store instruction with shape information. |
| 1400 | MatrixTy LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, |
| 1401 | MaybeAlign A, Value *Stride, bool IsVolatile, |
| 1402 | ShapeInfo Shape, IRBuilder<> &Builder) { |
| 1403 | auto StoreVal = getMatrix(MatrixVal: Matrix, SI: Shape, Builder); |
| 1404 | return storeMatrix(Ty: Matrix->getType(), StoreVal, Ptr, MAlign: A, Stride, IsVolatile, |
| 1405 | Builder); |
| 1406 | } |
| 1407 | |
| 1408 | /// Lowers llvm.matrix.column.major.store. |
| 1409 | /// |
| 1410 | /// The intrinsic store a matrix back memory using a stride between columns. |
| 1411 | MatrixTy LowerColumnMajorStore(CallInst *Inst, IRBuilder<> &Builder) { |
| 1412 | assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && |
| 1413 | "Intrinsic only supports column-major layout!" ); |
| 1414 | Value *Matrix = Inst->getArgOperand(i: 0); |
| 1415 | Value *Ptr = Inst->getArgOperand(i: 1); |
| 1416 | Value *Stride = Inst->getArgOperand(i: 2); |
| 1417 | return LowerStore(Inst, Matrix, Ptr, A: Inst->getParamAlign(ArgNo: 1), Stride, |
| 1418 | IsVolatile: cast<ConstantInt>(Val: Inst->getArgOperand(i: 3))->isOne(), |
| 1419 | Shape: {Inst->getArgOperand(i: 4), Inst->getArgOperand(i: 5)}, |
| 1420 | Builder); |
| 1421 | } |
| 1422 | |
| 1423 | // Set elements I..I+NumElts-1 to Block |
| 1424 | Value *insertVector(Value *Col, unsigned I, Value *Block, |
| 1425 | IRBuilder<> &Builder) { |
| 1426 | |
| 1427 | // First, bring Block to the same size as Col |
| 1428 | unsigned BlockNumElts = |
| 1429 | cast<FixedVectorType>(Val: Block->getType())->getNumElements(); |
| 1430 | unsigned NumElts = cast<FixedVectorType>(Val: Col->getType())->getNumElements(); |
| 1431 | assert(NumElts >= BlockNumElts && "Too few elements for current block" ); |
| 1432 | |
| 1433 | Block = Builder.CreateShuffleVector( |
| 1434 | V: Block, Mask: createSequentialMask(Start: 0, NumInts: BlockNumElts, NumUndefs: NumElts - BlockNumElts)); |
| 1435 | |
| 1436 | // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, |
| 1437 | // 8, 4, 5, 6 |
| 1438 | SmallVector<int, 16> Mask; |
| 1439 | unsigned i; |
| 1440 | for (i = 0; i < I; i++) |
| 1441 | Mask.push_back(Elt: i); |
| 1442 | |
| 1443 | unsigned VecNumElts = |
| 1444 | cast<FixedVectorType>(Val: Col->getType())->getNumElements(); |
| 1445 | for (; i < I + BlockNumElts; i++) |
| 1446 | Mask.push_back(Elt: i - I + VecNumElts); |
| 1447 | |
| 1448 | for (; i < VecNumElts; i++) |
| 1449 | Mask.push_back(Elt: i); |
| 1450 | |
| 1451 | return Builder.CreateShuffleVector(V1: Col, V2: Block, Mask); |
| 1452 | } |
| 1453 | |
| 1454 | Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, |
| 1455 | IRBuilder<> &Builder, bool AllowContraction, |
| 1456 | unsigned &NumComputeOps) { |
| 1457 | NumComputeOps += getNumOps(VT: A->getType()); |
| 1458 | if (!Sum) |
| 1459 | return UseFPOp ? Builder.CreateFMul(L: A, R: B) : Builder.CreateMul(LHS: A, RHS: B); |
| 1460 | |
| 1461 | if (UseFPOp) { |
| 1462 | if (AllowContraction) { |
| 1463 | // Use fmuladd for floating point operations and let the backend decide |
| 1464 | // if that's profitable. |
| 1465 | return Builder.CreateIntrinsic(ID: Intrinsic::fmuladd, Types: A->getType(), |
| 1466 | Args: {A, B, Sum}); |
| 1467 | } |
| 1468 | NumComputeOps += getNumOps(VT: A->getType()); |
| 1469 | Value *Mul = Builder.CreateFMul(L: A, R: B); |
| 1470 | return Builder.CreateFAdd(L: Sum, R: Mul); |
| 1471 | } |
| 1472 | |
| 1473 | NumComputeOps += getNumOps(VT: A->getType()); |
| 1474 | Value *Mul = Builder.CreateMul(LHS: A, RHS: B); |
| 1475 | return Builder.CreateAdd(LHS: Sum, RHS: Mul); |
| 1476 | } |
| 1477 | |
| 1478 | /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For |
| 1479 | /// users with shape information, there's nothing to do: they will use the |
| 1480 | /// cached value when they are lowered. For other users, \p Matrix is |
| 1481 | /// flattened and the uses are updated to use it. Also marks \p Inst for |
| 1482 | /// deletion. |
| 1483 | void finalizeLowering(Instruction *Inst, MatrixTy Matrix, |
| 1484 | IRBuilder<> &Builder) { |
| 1485 | auto inserted = Inst2ColumnMatrix.insert(KV: std::make_pair(x&: Inst, y&: Matrix)); |
| 1486 | (void)inserted; |
| 1487 | assert((inserted.second || isa<PHINode>(Inst)) && |
| 1488 | "multiple matrix lowering mapping" ); |
| 1489 | |
| 1490 | ToRemove.push_back(Elt: Inst); |
| 1491 | Value *Flattened = nullptr; |
| 1492 | for (Use &U : llvm::make_early_inc_range(Range: Inst->uses())) { |
| 1493 | if (ShapeMap.contains(Val: U.getUser())) |
| 1494 | continue; |
| 1495 | |
| 1496 | if (!Flattened) { |
| 1497 | Flattened = Matrix.embedInVector(Builder); |
| 1498 | LLVM_DEBUG( |
| 1499 | if (Instruction *User = dyn_cast<Instruction>(U.getUser())) dbgs() |
| 1500 | << "flattening a " << Matrix.shape() << " matrix:\n" |
| 1501 | << *Inst |
| 1502 | << "\nbecause we do not have a shape-aware lowering for its " |
| 1503 | "user:\n" |
| 1504 | << *User << '\n';); |
| 1505 | FlattenedMatrices++; |
| 1506 | } |
| 1507 | U.set(Flattened); |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | /// Special case for MatMul lowering. Prevents scalar loads of row-major |
| 1512 | /// vectors Lowers to vector reduction add instead of sequential add if |
| 1513 | /// reassocation is enabled. |
| 1514 | void lowerDotProduct(CallInst *MatMul, |
| 1515 | SmallPtrSet<Instruction *, 16> &FusedInsts, |
| 1516 | FastMathFlags FMF) { |
| 1517 | if (FusedInsts.contains(Ptr: MatMul) || |
| 1518 | MatrixLayout != MatrixLayoutTy::ColumnMajor) |
| 1519 | return; |
| 1520 | ShapeInfo LShape(MatMul->getArgOperand(i: 2), MatMul->getArgOperand(i: 3)); |
| 1521 | ShapeInfo RShape(MatMul->getArgOperand(i: 3), MatMul->getArgOperand(i: 4)); |
| 1522 | |
| 1523 | if (LShape.NumRows != 1 || RShape.NumColumns != 1) // not a dot product |
| 1524 | return; |
| 1525 | |
| 1526 | Value *LHS = MatMul->getArgOperand(i: 0); |
| 1527 | Value *RHS = MatMul->getArgOperand(i: 1); |
| 1528 | |
| 1529 | Type *ElementType = cast<FixedVectorType>(Val: LHS->getType())->getElementType(); |
| 1530 | bool IsIntVec = ElementType->isIntegerTy(); |
| 1531 | |
| 1532 | // Floating point reductions require reassocation. |
| 1533 | if (!IsIntVec && !FMF.allowReassoc()) |
| 1534 | return; |
| 1535 | |
| 1536 | auto CanBeFlattened = [](Value *Op) { |
| 1537 | if (match(V: Op, P: m_BinOp())) |
| 1538 | return true; |
| 1539 | return match( |
| 1540 | V: Op, P: m_OneUse(SubPattern: m_CombineOr( |
| 1541 | L: m_Load(Op: m_Value()), |
| 1542 | R: m_CombineOr(L: m_Intrinsic<Intrinsic::matrix_transpose>(), |
| 1543 | R: m_Intrinsic<Intrinsic::matrix_column_major_load>( |
| 1544 | Op0: m_Value(), Op1: m_SpecificInt(V: 1)))))); |
| 1545 | }; |
| 1546 | // Returns the cost benefit of using \p Op with the dot product lowering. If |
| 1547 | // the returned cost is < 0, the argument is cheaper to use in the |
| 1548 | // dot-product lowering. |
| 1549 | auto GetCostForArg = [this, &CanBeFlattened](Value *Op, unsigned N) { |
| 1550 | if (!ShapeMap.contains(Val: Op)) |
| 1551 | return InstructionCost::getInvalid(); |
| 1552 | |
| 1553 | if (!isa<Instruction>(Val: Op)) |
| 1554 | return InstructionCost(0); |
| 1555 | |
| 1556 | FixedVectorType *VecTy = cast<FixedVectorType>(Val: Op->getType()); |
| 1557 | Type *EltTy = VecTy->getElementType(); |
| 1558 | |
| 1559 | if (!CanBeFlattened(Op)) { |
| 1560 | InstructionCost EmbedCost(0); |
| 1561 | // Roughly estimate the cost for embedding the columns into a vector. |
| 1562 | for (unsigned I = 1; I < N; ++I) |
| 1563 | EmbedCost += TTI.getShuffleCost( |
| 1564 | Kind: TTI::SK_Splice, DstTy: FixedVectorType::get(ElementType: EltTy, NumElts: 1), |
| 1565 | SrcTy: FixedVectorType::get(ElementType: EltTy, NumElts: 1), Mask: {}, CostKind: TTI::TCK_RecipThroughput); |
| 1566 | return EmbedCost; |
| 1567 | } |
| 1568 | |
| 1569 | if (match(V: Op, P: m_BinOp()) && ShapeMap.contains(Val: Op)) { |
| 1570 | InstructionCost OriginalCost = |
| 1571 | TTI.getArithmeticInstrCost(Opcode: cast<Instruction>(Val: Op)->getOpcode(), |
| 1572 | Ty: EltTy) * |
| 1573 | N; |
| 1574 | InstructionCost NewCost = TTI.getArithmeticInstrCost( |
| 1575 | Opcode: cast<Instruction>(Val: Op)->getOpcode(), Ty: VecTy); |
| 1576 | return NewCost - OriginalCost; |
| 1577 | } |
| 1578 | |
| 1579 | if (match(V: Op, P: m_Intrinsic<Intrinsic::matrix_transpose>())) { |
| 1580 | // The transpose can be skipped for the dot product lowering, roughly |
| 1581 | // estimate the savings as the cost of embedding the columns in a |
| 1582 | // vector. |
| 1583 | InstructionCost EmbedCost(0); |
| 1584 | for (unsigned I = 1; I < N; ++I) |
| 1585 | EmbedCost -= TTI.getShuffleCost( |
| 1586 | Kind: TTI::SK_Splice, DstTy: FixedVectorType::get(ElementType: EltTy, NumElts: 1), |
| 1587 | SrcTy: FixedVectorType::get(ElementType: EltTy, NumElts: 1), Mask: {}, CostKind: TTI::TCK_RecipThroughput); |
| 1588 | return EmbedCost; |
| 1589 | } |
| 1590 | |
| 1591 | // Costs for loads. |
| 1592 | if (N == 1) |
| 1593 | return InstructionCost(0); |
| 1594 | |
| 1595 | return TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy, Alignment: Align(1), AddressSpace: 0) - |
| 1596 | N * TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: EltTy, Alignment: Align(1), AddressSpace: 0); |
| 1597 | }; |
| 1598 | |
| 1599 | // Iterate over LHS and operations feeding LHS and check if it is profitable |
| 1600 | // to flatten the visited ops. For each op, we compute the difference |
| 1601 | // between the flattened and matrix versions. |
| 1602 | SmallPtrSet<Value *, 4> Seen; |
| 1603 | SmallVector<Value *> WorkList; |
| 1604 | SmallVector<Value *> ToFlatten; |
| 1605 | WorkList.push_back(Elt: LHS); |
| 1606 | InstructionCost LHSCost(0); |
| 1607 | while (!WorkList.empty()) { |
| 1608 | Value *Op = WorkList.pop_back_val(); |
| 1609 | if (!Seen.insert(Ptr: Op).second) |
| 1610 | continue; |
| 1611 | |
| 1612 | InstructionCost OpCost = GetCostForArg(Op, LShape.NumColumns); |
| 1613 | if (OpCost + LHSCost >= LHSCost) |
| 1614 | continue; |
| 1615 | |
| 1616 | LHSCost += OpCost; |
| 1617 | ToFlatten.push_back(Elt: Op); |
| 1618 | if (auto *I = dyn_cast<Instruction>(Val: Op)) |
| 1619 | WorkList.append(in_start: I->op_begin(), in_end: I->op_end()); |
| 1620 | } |
| 1621 | |
| 1622 | // We compare the costs of a vector.reduce.add to sequential add. |
| 1623 | int AddOpCode = IsIntVec ? Instruction::Add : Instruction::FAdd; |
| 1624 | int MulOpCode = IsIntVec ? Instruction::Mul : Instruction::FMul; |
| 1625 | InstructionCost ReductionCost = |
| 1626 | TTI.getArithmeticReductionCost( |
| 1627 | Opcode: AddOpCode, Ty: cast<FixedVectorType>(Val: LHS->getType()), |
| 1628 | FMF: IsIntVec ? std::nullopt : std::optional(FMF)) + |
| 1629 | TTI.getArithmeticInstrCost(Opcode: MulOpCode, Ty: LHS->getType()); |
| 1630 | InstructionCost SequentialAddCost = |
| 1631 | TTI.getArithmeticInstrCost(Opcode: AddOpCode, Ty: ElementType) * |
| 1632 | (LShape.NumColumns - 1) + |
| 1633 | TTI.getArithmeticInstrCost(Opcode: MulOpCode, Ty: ElementType) * |
| 1634 | (LShape.NumColumns); |
| 1635 | if ((LHSCost + ReductionCost - SequentialAddCost) > InstructionCost(0)) |
| 1636 | return; |
| 1637 | |
| 1638 | FusedInsts.insert(Ptr: MatMul); |
| 1639 | IRBuilder<> Builder(MatMul); |
| 1640 | auto FlattenArg = [&Builder, &FusedInsts, &CanBeFlattened, |
| 1641 | this](Value *Op) { |
| 1642 | // Matmul must be the only user of loads because we don't use LowerLoad |
| 1643 | // for row vectors (LowerLoad results in scalar loads and shufflevectors |
| 1644 | // instead of single vector load). |
| 1645 | if (!CanBeFlattened(Op)) |
| 1646 | return; |
| 1647 | |
| 1648 | if (match(V: Op, P: m_BinOp())) { |
| 1649 | auto It = ShapeMap.find(Val: Op); |
| 1650 | if (It != ShapeMap.end()) { |
| 1651 | It->second = It->second.t(); |
| 1652 | return; |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | FusedInsts.insert(Ptr: cast<Instruction>(Val: Op)); |
| 1657 | // If vector uses the builtin load, lower to a LoadInst |
| 1658 | Value *Arg; |
| 1659 | if (match(V: Op, P: m_Intrinsic<Intrinsic::matrix_column_major_load>( |
| 1660 | Op0: m_Value(V&: Arg)))) { |
| 1661 | auto *NewLoad = Builder.CreateLoad(Ty: Op->getType(), Ptr: Arg); |
| 1662 | Op->replaceAllUsesWith(V: NewLoad); |
| 1663 | eraseFromParentAndRemoveFromShapeMap(Inst: cast<Instruction>(Val: Op)); |
| 1664 | return; |
| 1665 | } else if (match(V: Op, P: m_Intrinsic<Intrinsic::matrix_transpose>( |
| 1666 | Op0: m_Value(V&: Arg)))) { |
| 1667 | ToRemove.push_back(Elt: cast<Instruction>(Val: Op)); |
| 1668 | Op->replaceAllUsesWith(V: Arg); |
| 1669 | return; |
| 1670 | } |
| 1671 | }; |
| 1672 | |
| 1673 | for (auto *V : ToFlatten) |
| 1674 | FlattenArg(V); |
| 1675 | |
| 1676 | LHS = MatMul->getArgOperand(i: 0); |
| 1677 | |
| 1678 | // Insert mul/fmul and llvm.vector.reduce.fadd |
| 1679 | Value *Mul = |
| 1680 | IsIntVec ? Builder.CreateMul(LHS, RHS) : Builder.CreateFMul(L: LHS, R: RHS); |
| 1681 | |
| 1682 | Value *Result; |
| 1683 | if (IsIntVec) |
| 1684 | Result = Builder.CreateAddReduce(Src: Mul); |
| 1685 | else { |
| 1686 | Result = Builder.CreateFAddReduce( |
| 1687 | Acc: ConstantFP::get( |
| 1688 | Ty: cast<FixedVectorType>(Val: LHS->getType())->getElementType(), V: 0.0), |
| 1689 | Src: Mul); |
| 1690 | cast<Instruction>(Val: Result)->setFastMathFlags(FMF); |
| 1691 | } |
| 1692 | |
| 1693 | // pack scalar back into a matrix and then replace matmul inst |
| 1694 | Result = Builder.CreateInsertElement(Vec: PoisonValue::get(T: MatMul->getType()), |
| 1695 | NewElt: Result, Idx: uint64_t(0)); |
| 1696 | MatMul->replaceAllUsesWith(V: Result); |
| 1697 | FusedInsts.insert(Ptr: MatMul); |
| 1698 | ToRemove.push_back(Elt: MatMul); |
| 1699 | } |
| 1700 | |
| 1701 | /// Compute \p Result += \p A * \p B for input matrices with left-associating |
| 1702 | /// addition. |
| 1703 | /// |
| 1704 | /// We can fold a transpose into the operand that is used to extract scalars. |
| 1705 | /// This is the first operands with row-major and the second with |
| 1706 | /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate |
| 1707 | /// operand is transposed. |
| 1708 | void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, |
| 1709 | const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled, |
| 1710 | bool IsScalarMatrixTransposed, FastMathFlags FMF) { |
| 1711 | const unsigned VF = std::max<unsigned>( |
| 1712 | a: TTI.getRegisterBitWidth(K: TargetTransformInfo::RGK_FixedWidthVector) |
| 1713 | .getFixedValue() / |
| 1714 | Result.getElementType()->getPrimitiveSizeInBits().getFixedValue(), |
| 1715 | b: 1U); |
| 1716 | unsigned R = Result.getNumRows(); |
| 1717 | unsigned C = Result.getNumColumns(); |
| 1718 | unsigned M = A.getNumColumns(); |
| 1719 | |
| 1720 | bool IsFP = Result.getElementType()->isFloatingPointTy(); |
| 1721 | assert(A.isColumnMajor() == B.isColumnMajor() && |
| 1722 | Result.isColumnMajor() == A.isColumnMajor() && |
| 1723 | "operands must agree on matrix layout" ); |
| 1724 | unsigned NumComputeOps = 0; |
| 1725 | |
| 1726 | Builder.setFastMathFlags(FMF); |
| 1727 | |
| 1728 | if (A.isColumnMajor()) { |
| 1729 | // Multiply columns from the first operand with scalars from the second |
| 1730 | // operand. Then move along the K axes and accumulate the columns. With |
| 1731 | // this the adds can be vectorized without reassociation. |
| 1732 | for (unsigned J = 0; J < C; ++J) { |
| 1733 | unsigned BlockSize = VF; |
| 1734 | // If Result is zero, we don't need to accumulate in the K==0 iteration. |
| 1735 | bool isSumZero = isa<ConstantAggregateZero>(Val: Result.getColumn(i: J)); |
| 1736 | |
| 1737 | for (unsigned I = 0; I < R; I += BlockSize) { |
| 1738 | // Gradually lower the vectorization factor to cover the remainder. |
| 1739 | while (I + BlockSize > R) |
| 1740 | BlockSize /= 2; |
| 1741 | |
| 1742 | Value *Sum = IsTiled ? Result.extractVector(I, J, NumElts: BlockSize, Builder) |
| 1743 | : nullptr; |
| 1744 | for (unsigned K = 0; K < M; ++K) { |
| 1745 | Value *L = A.extractVector(I, J: K, NumElts: BlockSize, Builder); |
| 1746 | Value *RH = Builder.CreateExtractElement( |
| 1747 | Vec: B.getColumn(i: IsScalarMatrixTransposed ? K : J), |
| 1748 | Idx: IsScalarMatrixTransposed ? J : K); |
| 1749 | Value *Splat = Builder.CreateVectorSplat(NumElts: BlockSize, V: RH, Name: "splat" ); |
| 1750 | Sum = |
| 1751 | createMulAdd(Sum: isSumZero && K == 0 ? nullptr : Sum, A: L, B: Splat, |
| 1752 | UseFPOp: IsFP, Builder, AllowContraction: FMF.allowContract(), NumComputeOps); |
| 1753 | } |
| 1754 | Result.setVector(i: J, |
| 1755 | V: insertVector(Col: Result.getVector(i: J), I, Block: Sum, Builder)); |
| 1756 | } |
| 1757 | } |
| 1758 | } else { |
| 1759 | // Multiply rows from the second operand with scalars from the first |
| 1760 | // operand. Then move along the K axes and accumulate the rows. With this |
| 1761 | // the adds can be vectorized without reassociation. |
| 1762 | for (unsigned I = 0; I < R; ++I) { |
| 1763 | unsigned BlockSize = VF; |
| 1764 | bool isSumZero = isa<ConstantAggregateZero>(Val: Result.getRow(i: I)); |
| 1765 | for (unsigned J = 0; J < C; J += BlockSize) { |
| 1766 | // Gradually lower the vectorization factor to cover the remainder. |
| 1767 | while (J + BlockSize > C) |
| 1768 | BlockSize /= 2; |
| 1769 | |
| 1770 | Value *Sum = nullptr; |
| 1771 | for (unsigned K = 0; K < M; ++K) { |
| 1772 | Value *R = B.extractVector(I: K, J, NumElts: BlockSize, Builder); |
| 1773 | Value *LH = Builder.CreateExtractElement( |
| 1774 | Vec: A.getVector(i: IsScalarMatrixTransposed ? K : I), |
| 1775 | Idx: IsScalarMatrixTransposed ? I : K); |
| 1776 | Value *Splat = Builder.CreateVectorSplat(NumElts: BlockSize, V: LH, Name: "splat" ); |
| 1777 | Sum = |
| 1778 | createMulAdd(Sum: isSumZero && K == 0 ? nullptr : Sum, A: Splat, B: R, |
| 1779 | UseFPOp: IsFP, Builder, AllowContraction: FMF.allowContract(), NumComputeOps); |
| 1780 | } |
| 1781 | Result.setVector(i: I, |
| 1782 | V: insertVector(Col: Result.getVector(i: I), I: J, Block: Sum, Builder)); |
| 1783 | } |
| 1784 | } |
| 1785 | } |
| 1786 | Result.addNumComputeOps(N: NumComputeOps); |
| 1787 | } |
| 1788 | |
| 1789 | /// Ensure that the memory in \p Load does not alias \p Store by potentially |
| 1790 | /// copying it to a new location. This new or otherwise the original location |
| 1791 | /// is returned. |
| 1792 | Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, |
| 1793 | CallInst *MatMul) { |
| 1794 | MemoryLocation StoreLoc = MemoryLocation::get(SI: Store); |
| 1795 | MemoryLocation LoadLoc = MemoryLocation::get(LI: Load); |
| 1796 | |
| 1797 | // If we can statically determine noalias we're good. |
| 1798 | if (AA->isNoAlias(LocA: LoadLoc, LocB: StoreLoc)) |
| 1799 | return Load->getPointerOperand(); |
| 1800 | |
| 1801 | // Create code to check if the memory locations of the Load and Store |
| 1802 | // overlap and if they do, copy Load's operand to a new buffer. |
| 1803 | |
| 1804 | // First, create new blocks for 2n part of the check and the copy. |
| 1805 | BasicBlock *Check0 = MatMul->getParent(); |
| 1806 | // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a |
| 1807 | // DT. Manually collect dominator tree updates, to avoid unnecessary work, |
| 1808 | // as we adjust Check0 and Check1's branches. |
| 1809 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| 1810 | for (BasicBlock *Succ : successors(BB: Check0)) |
| 1811 | DTUpdates.push_back(Elt: {DT->Delete, Check0, Succ}); |
| 1812 | |
| 1813 | BasicBlock *Check1 = |
| 1814 | SplitBlock(Old: MatMul->getParent(), SplitPt: MatMul, DTU: (DomTreeUpdater *)nullptr, LI, |
| 1815 | MSSAU: nullptr, BBName: "alias_cont" ); |
| 1816 | BasicBlock *Copy = |
| 1817 | SplitBlock(Old: MatMul->getParent(), SplitPt: MatMul, DTU: (DomTreeUpdater *)nullptr, LI, |
| 1818 | MSSAU: nullptr, BBName: "copy" ); |
| 1819 | BasicBlock *Fusion = |
| 1820 | SplitBlock(Old: MatMul->getParent(), SplitPt: MatMul, DTU: (DomTreeUpdater *)nullptr, LI, |
| 1821 | MSSAU: nullptr, BBName: "no_alias" ); |
| 1822 | |
| 1823 | // Check if the loaded memory location begins before the end of the store |
| 1824 | // location. If the condition holds, they might overlap, otherwise they are |
| 1825 | // guaranteed to not overlap. |
| 1826 | IRBuilder<> Builder(MatMul); |
| 1827 | Check0->getTerminator()->eraseFromParent(); |
| 1828 | Builder.SetInsertPoint(Check0); |
| 1829 | Type *IntPtrTy = Builder.getIntPtrTy(DL: Load->getDataLayout()); |
| 1830 | Value *StoreBegin = Builder.CreatePtrToInt( |
| 1831 | V: const_cast<Value *>(StoreLoc.Ptr), DestTy: IntPtrTy, Name: "store.begin" ); |
| 1832 | Value *StoreEnd = Builder.CreateAdd( |
| 1833 | LHS: StoreBegin, RHS: ConstantInt::get(Ty: IntPtrTy, V: StoreLoc.Size.getValue()), |
| 1834 | Name: "store.end" , HasNUW: true, HasNSW: true); |
| 1835 | Value *LoadBegin = Builder.CreatePtrToInt(V: const_cast<Value *>(LoadLoc.Ptr), |
| 1836 | DestTy: IntPtrTy, Name: "load.begin" ); |
| 1837 | Builder.CreateCondBr(Cond: Builder.CreateICmpULT(LHS: LoadBegin, RHS: StoreEnd), True: Check1, |
| 1838 | False: Fusion); |
| 1839 | |
| 1840 | // Check if the store begins before the end of the load location. If the |
| 1841 | // condition holds, they alias, otherwise they are guaranteed to not |
| 1842 | // overlap. |
| 1843 | Check1->getTerminator()->eraseFromParent(); |
| 1844 | Builder.SetInsertPoint(TheBB: Check1, IP: Check1->begin()); |
| 1845 | Value *LoadEnd = Builder.CreateAdd( |
| 1846 | LHS: LoadBegin, RHS: ConstantInt::get(Ty: IntPtrTy, V: LoadLoc.Size.getValue()), |
| 1847 | Name: "load.end" , HasNUW: true, HasNSW: true); |
| 1848 | Builder.CreateCondBr(Cond: Builder.CreateICmpULT(LHS: StoreBegin, RHS: LoadEnd), True: Copy, |
| 1849 | False: Fusion); |
| 1850 | |
| 1851 | // Copy load operand to new alloca. |
| 1852 | Builder.SetInsertPoint(TheBB: Copy, IP: Copy->begin()); |
| 1853 | auto *VT = cast<FixedVectorType>(Val: Load->getType()); |
| 1854 | // Use an array type for the alloca, to avoid potentially huge alignment |
| 1855 | // requirements for large vector types. |
| 1856 | auto *ArrayTy = ArrayType::get(ElementType: VT->getElementType(), NumElements: VT->getNumElements()); |
| 1857 | AllocaInst *Alloca = |
| 1858 | Builder.CreateAlloca(Ty: ArrayTy, AddrSpace: Load->getPointerAddressSpace()); |
| 1859 | |
| 1860 | Builder.CreateMemCpy(Dst: Alloca, DstAlign: Alloca->getAlign(), Src: Load->getPointerOperand(), |
| 1861 | SrcAlign: Load->getAlign(), Size: LoadLoc.Size.getValue()); |
| 1862 | Builder.SetInsertPoint(TheBB: Fusion, IP: Fusion->begin()); |
| 1863 | PHINode *PHI = Builder.CreatePHI(Ty: Load->getPointerOperandType(), NumReservedValues: 3); |
| 1864 | PHI->addIncoming(V: Load->getPointerOperand(), BB: Check0); |
| 1865 | PHI->addIncoming(V: Load->getPointerOperand(), BB: Check1); |
| 1866 | PHI->addIncoming(V: Alloca, BB: Copy); |
| 1867 | |
| 1868 | // Adjust DT. |
| 1869 | DTUpdates.push_back(Elt: {DT->Insert, Check0, Check1}); |
| 1870 | DTUpdates.push_back(Elt: {DT->Insert, Check0, Fusion}); |
| 1871 | DTUpdates.push_back(Elt: {DT->Insert, Check1, Copy}); |
| 1872 | DTUpdates.push_back(Elt: {DT->Insert, Check1, Fusion}); |
| 1873 | DT->applyUpdates(Updates: DTUpdates); |
| 1874 | return PHI; |
| 1875 | } |
| 1876 | |
| 1877 | bool isFusionProfitable(CallInst *MatMul) { |
| 1878 | if (ForceFusion) |
| 1879 | return true; |
| 1880 | |
| 1881 | ShapeInfo LShape(MatMul->getArgOperand(i: 2), MatMul->getArgOperand(i: 3)); |
| 1882 | ShapeInfo RShape(MatMul->getArgOperand(i: 3), MatMul->getArgOperand(i: 4)); |
| 1883 | |
| 1884 | const unsigned R = LShape.NumRows; |
| 1885 | const unsigned C = RShape.NumColumns; |
| 1886 | const unsigned M = LShape.NumColumns; |
| 1887 | auto *EltType = cast<FixedVectorType>(Val: MatMul->getType())->getElementType(); |
| 1888 | |
| 1889 | const unsigned VF = std::max<unsigned>( |
| 1890 | a: TTI.getRegisterBitWidth(K: TargetTransformInfo::RGK_FixedWidthVector) |
| 1891 | .getFixedValue() / |
| 1892 | EltType->getPrimitiveSizeInBits().getFixedValue(), |
| 1893 | b: 1U); |
| 1894 | |
| 1895 | // Cost model for tiling |
| 1896 | // |
| 1897 | // For tiling to be beneficial, we need reuse either along the R or |
| 1898 | // the C axis. We vectorize along the R axis so that means at least |
| 1899 | // 3 elements. |
| 1900 | // TODO: Also consider cost of copying if operands alias. |
| 1901 | if (R <= VF && C == 1) |
| 1902 | return false; |
| 1903 | // Then we need enough elements to exceed the number of vector |
| 1904 | // registers we have. Note that this is an oversimplification since |
| 1905 | // fusing also takes some extra loads which may exceed the number of |
| 1906 | // reloads necessary. |
| 1907 | unsigned Op0Regs = (R + VF - 1) / VF * M; |
| 1908 | unsigned Op1Regs = (M + VF - 1) / VF * C; |
| 1909 | return Op0Regs + Op1Regs > |
| 1910 | TTI.getNumberOfRegisters(ClassID: TTI.getRegisterClassForType(Vector: true)); |
| 1911 | } |
| 1912 | |
| 1913 | MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { |
| 1914 | MatrixTy Res; |
| 1915 | auto *ColumType = FixedVectorType::get(ElementType: EltType, NumElts: R); |
| 1916 | for (unsigned I = 0; I < C; ++I) |
| 1917 | Res.addVector(V: ConstantAggregateZero::get(Ty: ColumType)); |
| 1918 | return Res; |
| 1919 | } |
| 1920 | |
| 1921 | void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape, |
| 1922 | Value *RPtr, ShapeInfo RShape, StoreInst *Store) { |
| 1923 | auto *EltType = cast<FixedVectorType>(Val: MatMul->getType())->getElementType(); |
| 1924 | |
| 1925 | // Create the main tiling loop nest. |
| 1926 | TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize); |
| 1927 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 1928 | Instruction *InsertI = cast<Instruction>(Val: MatMul); |
| 1929 | BasicBlock *Start = InsertI->getParent(); |
| 1930 | BasicBlock *End = |
| 1931 | SplitBlock(Old: InsertI->getParent(), SplitPt: InsertI, DT, LI, MSSAU: nullptr, BBName: "continue" ); |
| 1932 | IRBuilder<> Builder(MatMul); |
| 1933 | BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, B&: Builder, DTU, LI&: *LI); |
| 1934 | |
| 1935 | Type *TileVecTy = |
| 1936 | FixedVectorType::get(ElementType: MatMul->getType()->getScalarType(), NumElts: TileSize); |
| 1937 | MatrixTy TileResult; |
| 1938 | // Insert in the inner loop header. |
| 1939 | Builder.SetInsertPoint(TI.KLoop.Header->getTerminator()); |
| 1940 | // Create PHI nodes for the result columns to accumulate across iterations. |
| 1941 | SmallVector<PHINode *, 4> ColumnPhis; |
| 1942 | for (unsigned I = 0; I < TileSize; I++) { |
| 1943 | auto *Phi = Builder.CreatePHI(Ty: TileVecTy, NumReservedValues: 2, Name: "result.vec." + Twine(I)); |
| 1944 | Phi->addIncoming(V: ConstantAggregateZero::get(Ty: TileVecTy), |
| 1945 | BB: TI.RowLoop.Header->getSingleSuccessor()); |
| 1946 | TileResult.addVector(V: Phi); |
| 1947 | ColumnPhis.push_back(Elt: Phi); |
| 1948 | } |
| 1949 | |
| 1950 | // Insert in the inner loop body, which computes |
| 1951 | // Res += Load(CurrentRow, K) * Load(K, CurrentColumn) |
| 1952 | Builder.SetInsertPoint(InnerBody->getTerminator()); |
| 1953 | // Load tiles of the operands. |
| 1954 | MatrixTy A = |
| 1955 | loadMatrix(MatrixPtr: LPtr, Align: {}, IsVolatile: false, MatrixShape: LShape, I: TI.RowLoop.Index, J: TI.KLoop.Index, |
| 1956 | ResultShape: {TileSize, TileSize}, EltTy: EltType, Builder); |
| 1957 | MatrixTy B = |
| 1958 | loadMatrix(MatrixPtr: RPtr, Align: {}, IsVolatile: false, MatrixShape: RShape, I: TI.KLoop.Index, J: TI.ColumnLoop.Index, |
| 1959 | ResultShape: {TileSize, TileSize}, EltTy: EltType, Builder); |
| 1960 | emitMatrixMultiply(Result&: TileResult, A, B, Builder, IsTiled: true, IsScalarMatrixTransposed: false, |
| 1961 | FMF: getFastMathFlags(Inst: MatMul)); |
| 1962 | // Store result after the inner loop is done. |
| 1963 | Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator()); |
| 1964 | storeMatrix(StoreVal: TileResult, MatrixPtr: Store->getPointerOperand(), MAlign: Store->getAlign(), |
| 1965 | IsVolatile: Store->isVolatile(), MatrixShape: {LShape.NumRows, RShape.NumColumns}, |
| 1966 | I: TI.RowLoop.Index, J: TI.ColumnLoop.Index, EltTy: EltType, Builder); |
| 1967 | |
| 1968 | for (unsigned I = 0; I < TileResult.getNumVectors(); I++) |
| 1969 | ColumnPhis[I]->addIncoming(V: TileResult.getVector(i: I), BB: TI.KLoop.Latch); |
| 1970 | |
| 1971 | // Force unrolling of a few iterations of the inner loop, to make sure there |
| 1972 | // is enough work per iteration. |
| 1973 | // FIXME: The unroller should make this decision directly instead, but |
| 1974 | // currently the cost-model is not up to the task. |
| 1975 | unsigned InnerLoopUnrollCount = std::min(a: 10u, b: LShape.NumColumns / TileSize); |
| 1976 | addStringMetadataToLoop(TheLoop: LI->getLoopFor(BB: TI.KLoop.Header), |
| 1977 | MDString: "llvm.loop.unroll.count" , V: InnerLoopUnrollCount); |
| 1978 | } |
| 1979 | |
| 1980 | void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, |
| 1981 | StoreInst *Store, |
| 1982 | SmallPtrSetImpl<Instruction *> &FusedInsts) { |
| 1983 | assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && |
| 1984 | "Tiling only supported for column-major matrixes at the moment!" ); |
| 1985 | if (!isFusionProfitable(MatMul)) |
| 1986 | return; |
| 1987 | |
| 1988 | ShapeInfo LShape(MatMul->getArgOperand(i: 2), MatMul->getArgOperand(i: 3)); |
| 1989 | ShapeInfo RShape(MatMul->getArgOperand(i: 3), MatMul->getArgOperand(i: 4)); |
| 1990 | |
| 1991 | const unsigned R = LShape.NumRows; |
| 1992 | const unsigned C = RShape.NumColumns; |
| 1993 | const unsigned M = LShape.NumColumns; |
| 1994 | auto *EltType = cast<FixedVectorType>(Val: MatMul->getType())->getElementType(); |
| 1995 | |
| 1996 | Value *APtr = getNonAliasingPointer(Load: LoadOp0, Store, MatMul); |
| 1997 | Value *BPtr = getNonAliasingPointer(Load: LoadOp1, Store, MatMul); |
| 1998 | Value *CPtr = Store->getPointerOperand(); |
| 1999 | |
| 2000 | if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0)) |
| 2001 | createTiledLoops(MatMul, LPtr: APtr, LShape, RPtr: BPtr, RShape, Store); |
| 2002 | else { |
| 2003 | IRBuilder<> Builder(Store); |
| 2004 | for (unsigned J = 0; J < C; J += TileSize) |
| 2005 | for (unsigned I = 0; I < R; I += TileSize) { |
| 2006 | const unsigned TileR = std::min(a: R - I, b: unsigned(TileSize)); |
| 2007 | const unsigned TileC = std::min(a: C - J, b: unsigned(TileSize)); |
| 2008 | MatrixTy Res = getZeroMatrix(EltType, R: TileR, C: TileC); |
| 2009 | |
| 2010 | for (unsigned K = 0; K < M; K += TileSize) { |
| 2011 | const unsigned TileM = std::min(a: M - K, b: unsigned(TileSize)); |
| 2012 | MatrixTy A = |
| 2013 | loadMatrix(MatrixPtr: APtr, Align: LoadOp0->getAlign(), IsVolatile: LoadOp0->isVolatile(), |
| 2014 | MatrixShape: LShape, I: Builder.getInt64(C: I), J: Builder.getInt64(C: K), |
| 2015 | ResultShape: {TileR, TileM}, EltTy: EltType, Builder); |
| 2016 | MatrixTy B = |
| 2017 | loadMatrix(MatrixPtr: BPtr, Align: LoadOp1->getAlign(), IsVolatile: LoadOp1->isVolatile(), |
| 2018 | MatrixShape: RShape, I: Builder.getInt64(C: K), J: Builder.getInt64(C: J), |
| 2019 | ResultShape: {TileM, TileC}, EltTy: EltType, Builder); |
| 2020 | emitMatrixMultiply(Result&: Res, A, B, Builder, IsTiled: true, IsScalarMatrixTransposed: false, |
| 2021 | FMF: getFastMathFlags(Inst: MatMul)); |
| 2022 | } |
| 2023 | storeMatrix(StoreVal: Res, MatrixPtr: CPtr, MAlign: Store->getAlign(), IsVolatile: Store->isVolatile(), MatrixShape: {R, M}, |
| 2024 | I: Builder.getInt64(C: I), J: Builder.getInt64(C: J), EltTy: EltType, |
| 2025 | Builder); |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | // Mark eliminated instructions as fused and remove them. |
| 2030 | FusedInsts.insert(Ptr: Store); |
| 2031 | FusedInsts.insert(Ptr: MatMul); |
| 2032 | eraseFromParentAndRemoveFromShapeMap(Inst: Store); |
| 2033 | eraseFromParentAndRemoveFromShapeMap(Inst: MatMul); |
| 2034 | if (LoadOp0->use_empty()) { |
| 2035 | FusedInsts.insert(Ptr: LoadOp0); |
| 2036 | eraseFromParentAndRemoveFromShapeMap(Inst: LoadOp0); |
| 2037 | } |
| 2038 | if (LoadOp1 != LoadOp0 && LoadOp1->use_empty()) { |
| 2039 | FusedInsts.insert(Ptr: LoadOp1); |
| 2040 | eraseFromParentAndRemoveFromShapeMap(Inst: LoadOp1); |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | /// Try to lower matrix multiply chains by fusing operations. |
| 2045 | /// |
| 2046 | /// Call finalizeLowering on lowered instructions. Instructions that are |
| 2047 | /// completely eliminated by fusion are added to \p FusedInsts. |
| 2048 | void |
| 2049 | LowerMatrixMultiplyFused(CallInst *MatMul, |
| 2050 | SmallPtrSetImpl<Instruction *> &FusedInsts, |
| 2051 | SmallVector<IntrinsicInst *, 16> &LifetimeEnds) { |
| 2052 | if (!FuseMatrix || !DT) |
| 2053 | return; |
| 2054 | |
| 2055 | assert(AA && LI && "Analyses should be available" ); |
| 2056 | |
| 2057 | Value *A = MatMul->getArgOperand(i: 0); |
| 2058 | Value *B = MatMul->getArgOperand(i: 1); |
| 2059 | |
| 2060 | // We can fold the transpose into the operand that is used to fetch scalars. |
| 2061 | Value *T; |
| 2062 | if (MatrixLayout == MatrixLayoutTy::ColumnMajor |
| 2063 | ? match(V: B, P: m_Intrinsic<Intrinsic::matrix_transpose>(Op0: m_Value(V&: T))) |
| 2064 | : match(V: A, P: m_Intrinsic<Intrinsic::matrix_transpose>(Op0: m_Value(V&: T)))) { |
| 2065 | IRBuilder<> Builder(MatMul); |
| 2066 | auto *EltType = |
| 2067 | cast<FixedVectorType>(Val: MatMul->getType())->getElementType(); |
| 2068 | ShapeInfo LShape(MatMul->getArgOperand(i: 2), MatMul->getArgOperand(i: 3)); |
| 2069 | ShapeInfo RShape(MatMul->getArgOperand(i: 3), MatMul->getArgOperand(i: 4)); |
| 2070 | const unsigned R = LShape.NumRows; |
| 2071 | const unsigned M = LShape.NumColumns; |
| 2072 | const unsigned C = RShape.NumColumns; |
| 2073 | |
| 2074 | MatrixTy MA; |
| 2075 | MatrixTy MB; |
| 2076 | |
| 2077 | Value *Transpose; |
| 2078 | if (MatrixLayout == MatrixLayoutTy::ColumnMajor) { |
| 2079 | MA = getMatrix(MatrixVal: A, SI: ShapeInfo(R, M), Builder); |
| 2080 | MB = getMatrix(MatrixVal: T, SI: ShapeInfo(C, M), Builder); |
| 2081 | Transpose = B; |
| 2082 | } else { |
| 2083 | MA = getMatrix(MatrixVal: T, SI: ShapeInfo(R, M), Builder); |
| 2084 | MB = getMatrix(MatrixVal: B, SI: ShapeInfo(C, M), Builder); |
| 2085 | Transpose = A; |
| 2086 | } |
| 2087 | |
| 2088 | // Initialize the output |
| 2089 | MatrixTy Result(R, C, EltType); |
| 2090 | |
| 2091 | emitMatrixMultiply(Result, A: MA, B: MB, Builder, IsTiled: false, IsScalarMatrixTransposed: true, |
| 2092 | FMF: getFastMathFlags(Inst: MatMul)); |
| 2093 | |
| 2094 | FusedInsts.insert(Ptr: MatMul); |
| 2095 | if (Transpose->hasOneUse()) { |
| 2096 | FusedInsts.insert(Ptr: cast<Instruction>(Val: Transpose)); |
| 2097 | ToRemove.push_back(Elt: cast<Instruction>(Val: Transpose)); |
| 2098 | // TODO: add a fake entry for the folded instruction so that this is |
| 2099 | // included in the expression in the remark. |
| 2100 | Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType); |
| 2101 | } |
| 2102 | finalizeLowering(Inst: MatMul, Matrix: Result, Builder); |
| 2103 | return; |
| 2104 | } |
| 2105 | |
| 2106 | if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor) |
| 2107 | return; |
| 2108 | |
| 2109 | // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering |
| 2110 | // since the single store user will be lowered as part of this. |
| 2111 | auto *LoadOp0 = dyn_cast<LoadInst>(Val: A); |
| 2112 | auto *LoadOp1 = dyn_cast<LoadInst>(Val: B); |
| 2113 | auto *Store = dyn_cast<StoreInst>(Val: *MatMul->user_begin()); |
| 2114 | if (LoadOp0 && LoadOp1 && Store) { |
| 2115 | // The store address must dominate the MatMul instruction, otherwise |
| 2116 | // we create invalid IR. |
| 2117 | SetVector<Value *> WorkList; |
| 2118 | WorkList.insert(X: Store->getOperand(i_nocapture: 1)); |
| 2119 | SmallVector<Instruction *> ToHoist; |
| 2120 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
| 2121 | Value *Current = WorkList[I]; |
| 2122 | auto *CurrI = dyn_cast<Instruction>(Val: Current); |
| 2123 | if (!CurrI) |
| 2124 | continue; |
| 2125 | if (isa<PHINode>(Val: CurrI)) |
| 2126 | return; |
| 2127 | if (DT->dominates(Def: CurrI, User: MatMul)) |
| 2128 | continue; |
| 2129 | if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory()) |
| 2130 | return; |
| 2131 | ToHoist.push_back(Elt: CurrI); |
| 2132 | WorkList.insert_range(R: CurrI->operands()); |
| 2133 | } |
| 2134 | |
| 2135 | sort(C&: ToHoist, Comp: [this](Instruction *A, Instruction *B) { |
| 2136 | return DT->dominates(Def: A, User: B); |
| 2137 | }); |
| 2138 | for (Instruction *I : ToHoist) |
| 2139 | I->moveBefore(InsertPos: MatMul->getIterator()); |
| 2140 | |
| 2141 | // Deal with lifetime.end calls that might be between Load0/Load1 and the |
| 2142 | // store. To avoid introducing loads to dead objects (i.e. after the |
| 2143 | // lifetime has been termined by @llvm.lifetime.end), either sink them |
| 2144 | // after the store if in the same block, or remove the lifetime.end marker |
| 2145 | // otherwise. This might pessimize further optimizations, by extending the |
| 2146 | // lifetime of the object until the function returns, but should be |
| 2147 | // conservatively correct. |
| 2148 | MemoryLocation Load0Loc = MemoryLocation::get(LI: LoadOp0); |
| 2149 | MemoryLocation Load1Loc = MemoryLocation::get(LI: LoadOp1); |
| 2150 | BasicBlock *StoreParent = Store->getParent(); |
| 2151 | bool FusableOpsInSameBlock = LoadOp0->getParent() == StoreParent && |
| 2152 | LoadOp1->getParent() == StoreParent; |
| 2153 | for (unsigned Idx = 0; Idx != LifetimeEnds.size();) { |
| 2154 | IntrinsicInst *End = LifetimeEnds[Idx]; |
| 2155 | auto Inc = make_scope_exit(F: [&Idx]() { Idx++; }); |
| 2156 | // If the lifetime.end is guaranteed to be before the loads or after the |
| 2157 | // store, it won't interfere with fusion. |
| 2158 | if (DT->dominates(Def: End, User: LoadOp0) && DT->dominates(Def: End, User: LoadOp1)) |
| 2159 | continue; |
| 2160 | if (DT->dominates(Def: Store, User: End)) |
| 2161 | continue; |
| 2162 | // If all fusable ops are in the same block and the lifetime.end is in a |
| 2163 | // different block, it won't interfere with fusion. |
| 2164 | if (FusableOpsInSameBlock && End->getParent() != StoreParent) |
| 2165 | continue; |
| 2166 | |
| 2167 | // If the loads don't alias the lifetime.end, it won't interfere with |
| 2168 | // fusion. |
| 2169 | MemoryLocation EndLoc = MemoryLocation::getForArgument(Call: End, ArgIdx: 1, TLI: nullptr); |
| 2170 | if (!EndLoc.Ptr) |
| 2171 | continue; |
| 2172 | if (AA->isNoAlias(LocA: Load0Loc, LocB: EndLoc) && AA->isNoAlias(LocA: Load1Loc, LocB: EndLoc)) |
| 2173 | continue; |
| 2174 | |
| 2175 | // If both lifetime.end and the store are in the same block, extend the |
| 2176 | // lifetime until after the store, so the new lifetime covers the loads |
| 2177 | // we introduce later. |
| 2178 | if (End->getParent() == StoreParent) { |
| 2179 | End->moveAfter(MovePos: Store); |
| 2180 | continue; |
| 2181 | } |
| 2182 | |
| 2183 | // Otherwise remove the conflicting lifetime.end marker. |
| 2184 | ToRemove.push_back(Elt: End); |
| 2185 | std::swap(a&: LifetimeEnds[Idx], b&: LifetimeEnds.back()); |
| 2186 | LifetimeEnds.pop_back(); |
| 2187 | Inc.release(); |
| 2188 | } |
| 2189 | |
| 2190 | emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); |
| 2191 | return; |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | /// Lowers llvm.matrix.multiply. |
| 2196 | MatrixTy LowerMultiply(CallInst *MatMul, IRBuilder<> &Builder) { |
| 2197 | auto *EltType = cast<FixedVectorType>(Val: MatMul->getType())->getElementType(); |
| 2198 | ShapeInfo LShape(MatMul->getArgOperand(i: 2), MatMul->getArgOperand(i: 3)); |
| 2199 | ShapeInfo RShape(MatMul->getArgOperand(i: 3), MatMul->getArgOperand(i: 4)); |
| 2200 | |
| 2201 | const MatrixTy &Lhs = getMatrix(MatrixVal: MatMul->getArgOperand(i: 0), SI: LShape, Builder); |
| 2202 | const MatrixTy &Rhs = getMatrix(MatrixVal: MatMul->getArgOperand(i: 1), SI: RShape, Builder); |
| 2203 | assert(Lhs.getElementType() == Rhs.getElementType() && |
| 2204 | "Matrix multiply argument element types do not match." ); |
| 2205 | |
| 2206 | const unsigned R = LShape.NumRows; |
| 2207 | const unsigned C = RShape.NumColumns; |
| 2208 | assert(LShape.NumColumns == RShape.NumRows); |
| 2209 | |
| 2210 | // Initialize the output |
| 2211 | MatrixTy Result(R, C, EltType); |
| 2212 | assert(Lhs.getElementType() == Result.getElementType() && |
| 2213 | "Matrix multiply result element type does not match arguments." ); |
| 2214 | |
| 2215 | emitMatrixMultiply(Result, A: Lhs, B: Rhs, Builder, IsTiled: false, IsScalarMatrixTransposed: false, |
| 2216 | FMF: getFastMathFlags(Inst: MatMul)); |
| 2217 | return Result; |
| 2218 | } |
| 2219 | |
| 2220 | /// Lowers llvm.matrix.transpose. |
| 2221 | MatrixTy LowerTranspose(CallInst *Inst, IRBuilder<> &Builder) { |
| 2222 | MatrixTy Result; |
| 2223 | Value *InputVal = Inst->getArgOperand(i: 0); |
| 2224 | FixedVectorType *VectorTy = cast<FixedVectorType>(Val: InputVal->getType()); |
| 2225 | ShapeInfo ArgShape(Inst->getArgOperand(i: 1), Inst->getArgOperand(i: 2)); |
| 2226 | MatrixTy InputMatrix = getMatrix(MatrixVal: InputVal, SI: ArgShape, Builder); |
| 2227 | |
| 2228 | const unsigned NewNumVecs = |
| 2229 | InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; |
| 2230 | const unsigned NewNumElts = |
| 2231 | InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; |
| 2232 | |
| 2233 | for (unsigned I = 0; I < NewNumVecs; ++I) { |
| 2234 | // Build a single result vector. First initialize it. |
| 2235 | Value *ResultVector = PoisonValue::get( |
| 2236 | T: FixedVectorType::get(ElementType: VectorTy->getElementType(), NumElts: NewNumElts)); |
| 2237 | // Go through the old elements and insert it into the resulting vector. |
| 2238 | for (auto J : enumerate(First: InputMatrix.vectors())) { |
| 2239 | Value *Elt = Builder.CreateExtractElement(Vec: J.value(), Idx: I); |
| 2240 | // Row and column indices are transposed. |
| 2241 | ResultVector = |
| 2242 | Builder.CreateInsertElement(Vec: ResultVector, NewElt: Elt, Idx: J.index()); |
| 2243 | } |
| 2244 | Result.addVector(V: ResultVector); |
| 2245 | } |
| 2246 | |
| 2247 | // TODO: Improve estimate of operations needed for transposes. Currently we |
| 2248 | // just count the insertelement/extractelement instructions, but do not |
| 2249 | // account for later simplifications/combines. |
| 2250 | return Result.addNumComputeOps(N: 2 * ArgShape.NumRows * ArgShape.NumColumns) |
| 2251 | .addNumExposedTransposes(N: 1); |
| 2252 | } |
| 2253 | |
| 2254 | /// Lower load instructions. |
| 2255 | MatrixTy VisitLoad(LoadInst *Inst, const ShapeInfo &SI, Value *Ptr, |
| 2256 | IRBuilder<> &Builder) { |
| 2257 | return LowerLoad(Inst, Ptr, Align: Inst->getAlign(), |
| 2258 | Stride: Builder.getInt64(C: SI.getStride()), IsVolatile: Inst->isVolatile(), Shape: SI, |
| 2259 | Builder); |
| 2260 | } |
| 2261 | |
| 2262 | MatrixTy VisitStore(StoreInst *Inst, const ShapeInfo &SI, Value *StoredVal, |
| 2263 | Value *Ptr, IRBuilder<> &Builder) { |
| 2264 | return LowerStore(Inst, Matrix: StoredVal, Ptr, A: Inst->getAlign(), |
| 2265 | Stride: Builder.getInt64(C: SI.getStride()), IsVolatile: Inst->isVolatile(), Shape: SI, |
| 2266 | Builder); |
| 2267 | } |
| 2268 | |
| 2269 | MatrixTy VisitPHI(PHINode *Inst, const ShapeInfo &SI, IRBuilder<> &Builder) { |
| 2270 | auto BlockIP = Inst->getParent()->getFirstInsertionPt(); |
| 2271 | Builder.SetInsertPoint(BlockIP); |
| 2272 | MatrixTy PhiM = getMatrix(MatrixVal: Inst, SI, Builder); |
| 2273 | |
| 2274 | for (auto [IncomingV, IncomingB] : |
| 2275 | llvm::zip_equal(t: Inst->incoming_values(), u: Inst->blocks())) { |
| 2276 | // getMatrix() may insert some instructions to help with reshaping. The |
| 2277 | // safest place for those is at the top of the block after the rest of the |
| 2278 | // PHI's. Even better, if we can put it in the incoming block. |
| 2279 | Builder.SetInsertPoint(BlockIP); |
| 2280 | if (auto *IncomingInst = dyn_cast<Instruction>(Val&: IncomingV)) |
| 2281 | if (auto MaybeIP = IncomingInst->getInsertionPointAfterDef()) |
| 2282 | Builder.SetInsertPoint(*MaybeIP); |
| 2283 | |
| 2284 | MatrixTy OpM = getMatrix(MatrixVal: IncomingV, SI, Builder); |
| 2285 | |
| 2286 | for (unsigned VI = 0, VE = PhiM.getNumVectors(); VI != VE; ++VI) { |
| 2287 | PHINode *NewPHI = cast<PHINode>(Val: PhiM.getVector(i: VI)); |
| 2288 | NewPHI->addIncoming(V: OpM.getVector(i: VI), BB: IncomingB); |
| 2289 | } |
| 2290 | } |
| 2291 | |
| 2292 | // finalizeLowering() may also insert instructions in some cases. The safe |
| 2293 | // place for those is at the end of the initial block of PHIs. |
| 2294 | Builder.SetInsertPoint(BlockIP); |
| 2295 | return PhiM; |
| 2296 | } |
| 2297 | |
| 2298 | /// Lower binary operators. |
| 2299 | MatrixTy VisitBinaryOperator(BinaryOperator *Inst, const ShapeInfo &SI, |
| 2300 | IRBuilder<> &Builder) { |
| 2301 | Value *Lhs = Inst->getOperand(i_nocapture: 0); |
| 2302 | Value *Rhs = Inst->getOperand(i_nocapture: 1); |
| 2303 | |
| 2304 | MatrixTy Result; |
| 2305 | MatrixTy A = getMatrix(MatrixVal: Lhs, SI, Builder); |
| 2306 | MatrixTy B = getMatrix(MatrixVal: Rhs, SI, Builder); |
| 2307 | assert(A.isColumnMajor() == B.isColumnMajor() && |
| 2308 | Result.isColumnMajor() == A.isColumnMajor() && |
| 2309 | "operands must agree on matrix layout" ); |
| 2310 | |
| 2311 | Builder.setFastMathFlags(getFastMathFlags(Inst)); |
| 2312 | |
| 2313 | for (auto [AV, BV] : llvm::zip_equal(t: A.vectors(), u: B.vectors())) |
| 2314 | Result.addVector(V: Builder.CreateBinOp(Opc: Inst->getOpcode(), LHS: AV, RHS: BV)); |
| 2315 | |
| 2316 | return Result.addNumComputeOps(N: getNumOps(VT: Result.getVectorTy()) * |
| 2317 | Result.getNumVectors()); |
| 2318 | } |
| 2319 | |
| 2320 | /// Lower unary operators. |
| 2321 | MatrixTy VisitUnaryOperator(UnaryOperator *Inst, const ShapeInfo &SI, |
| 2322 | IRBuilder<> &Builder) { |
| 2323 | Value *Op = Inst->getOperand(i_nocapture: 0); |
| 2324 | |
| 2325 | MatrixTy Result; |
| 2326 | MatrixTy M = getMatrix(MatrixVal: Op, SI, Builder); |
| 2327 | |
| 2328 | Builder.setFastMathFlags(getFastMathFlags(Inst)); |
| 2329 | |
| 2330 | // Helper to perform unary op on vectors. |
| 2331 | auto BuildVectorOp = [&Builder, Inst](Value *Op) { |
| 2332 | switch (Inst->getOpcode()) { |
| 2333 | case Instruction::FNeg: |
| 2334 | return Builder.CreateFNeg(V: Op); |
| 2335 | default: |
| 2336 | llvm_unreachable("Unsupported unary operator for matrix" ); |
| 2337 | } |
| 2338 | }; |
| 2339 | |
| 2340 | for (auto *Vector : M.vectors()) |
| 2341 | Result.addVector(V: BuildVectorOp(Vector)); |
| 2342 | |
| 2343 | return Result.addNumComputeOps(N: getNumOps(VT: Result.getVectorTy()) * |
| 2344 | Result.getNumVectors()); |
| 2345 | } |
| 2346 | |
| 2347 | /// Lower cast instructions. |
| 2348 | MatrixTy VisitCastInstruction(CastInst *Inst, const ShapeInfo &Shape, |
| 2349 | IRBuilder<> &Builder) { |
| 2350 | Value *Op = Inst->getOperand(i_nocapture: 0); |
| 2351 | |
| 2352 | MatrixTy Result; |
| 2353 | MatrixTy M = getMatrix(MatrixVal: Op, SI: Shape, Builder); |
| 2354 | |
| 2355 | Builder.setFastMathFlags(getFastMathFlags(Inst)); |
| 2356 | |
| 2357 | auto *OrigVTy = cast<VectorType>(Val: Inst->getType()); |
| 2358 | auto *NewVTy = VectorType::get(ElementType: OrigVTy->getElementType(), |
| 2359 | EC: ElementCount::getFixed(MinVal: M.getStride())); |
| 2360 | |
| 2361 | for (auto *Vector : M.vectors()) |
| 2362 | Result.addVector(V: Builder.CreateCast(Op: Inst->getOpcode(), V: Vector, DestTy: NewVTy)); |
| 2363 | |
| 2364 | return Result.addNumComputeOps(N: getNumOps(VT: Result.getVectorTy()) * |
| 2365 | Result.getNumVectors()); |
| 2366 | } |
| 2367 | |
| 2368 | /// Lower selects. |
| 2369 | MatrixTy VisitSelectInst(SelectInst *Inst, const ShapeInfo &Shape, |
| 2370 | IRBuilder<> &Builder) { |
| 2371 | Value *Cond = Inst->getOperand(i_nocapture: 0); |
| 2372 | Value *OpA = Inst->getOperand(i_nocapture: 1); |
| 2373 | Value *OpB = Inst->getOperand(i_nocapture: 2); |
| 2374 | |
| 2375 | MatrixTy Result; |
| 2376 | MatrixTy A = getMatrix(MatrixVal: OpA, SI: Shape, Builder); |
| 2377 | MatrixTy B = getMatrix(MatrixVal: OpB, SI: Shape, Builder); |
| 2378 | |
| 2379 | SmallVector<Value*> CondV; |
| 2380 | if (isa<FixedVectorType>(Val: Cond->getType())) { |
| 2381 | MatrixTy C = getMatrix(MatrixVal: Cond, SI: Shape, Builder); |
| 2382 | llvm::copy(Range: C.vectors(), Out: std::back_inserter(x&: CondV)); |
| 2383 | } else { |
| 2384 | CondV.resize(N: A.getNumVectors()); |
| 2385 | llvm::fill(Range&: CondV, Value&: Cond); |
| 2386 | } |
| 2387 | |
| 2388 | for (auto [CV, AV, BV] : llvm::zip_equal(t&: CondV, u: A.vectors(), args: B.vectors())) |
| 2389 | Result.addVector(V: Builder.CreateSelect(C: CV, True: AV, False: BV)); |
| 2390 | |
| 2391 | return Result.addNumComputeOps(N: getNumOps(VT: Result.getVectorTy()) * |
| 2392 | Result.getNumVectors()); |
| 2393 | } |
| 2394 | |
| 2395 | /// Helper to linearize a matrix expression tree into a string. Currently |
| 2396 | /// matrix expressions are linarized by starting at an expression leaf and |
| 2397 | /// linearizing bottom up. |
| 2398 | struct ExprLinearizer { |
| 2399 | unsigned LengthToBreak = 100; |
| 2400 | std::string Str; |
| 2401 | raw_string_ostream Stream; |
| 2402 | unsigned LineLength = 0; |
| 2403 | const DataLayout &DL; |
| 2404 | |
| 2405 | /// Mapping from instructions to matrixes. It is used to identify |
| 2406 | /// matrix instructions. |
| 2407 | const MapVector<Value *, MatrixTy> &Inst2Matrix; |
| 2408 | |
| 2409 | /// Mapping from values to the leaves of all expressions that the value is |
| 2410 | /// part of. |
| 2411 | const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; |
| 2412 | |
| 2413 | /// Set of matrix expressions in the scope of a given DISubprogram. |
| 2414 | const SmallSetVector<Value *, 32> &ExprsInSubprogram; |
| 2415 | |
| 2416 | /// Leaf node of the expression to linearize. |
| 2417 | Value *Leaf; |
| 2418 | |
| 2419 | /// Used to keep track of sub-expressions that get reused while linearizing |
| 2420 | /// the expression. Re-used sub-expressions are marked as (reused). |
| 2421 | SmallPtrSet<Value *, 8> ReusedExprs; |
| 2422 | |
| 2423 | ExprLinearizer(const DataLayout &DL, |
| 2424 | const MapVector<Value *, MatrixTy> &Inst2Matrix, |
| 2425 | const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, |
| 2426 | const SmallSetVector<Value *, 32> &ExprsInSubprogram, |
| 2427 | Value *Leaf) |
| 2428 | : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), |
| 2429 | ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} |
| 2430 | |
| 2431 | void indent(unsigned N) { |
| 2432 | LineLength += N; |
| 2433 | for (unsigned i = 0; i < N; i++) |
| 2434 | Stream << " " ; |
| 2435 | } |
| 2436 | |
| 2437 | void lineBreak() { |
| 2438 | Stream << "\n" ; |
| 2439 | LineLength = 0; |
| 2440 | } |
| 2441 | |
| 2442 | void maybeIndent(unsigned Indent) { |
| 2443 | if (LineLength >= LengthToBreak) |
| 2444 | lineBreak(); |
| 2445 | |
| 2446 | if (LineLength == 0) |
| 2447 | indent(N: Indent); |
| 2448 | } |
| 2449 | |
| 2450 | void write(StringRef S) { |
| 2451 | LineLength += S.size(); |
| 2452 | Stream << S; |
| 2453 | } |
| 2454 | |
| 2455 | Value *getUnderlyingObjectThroughLoads(Value *V) { |
| 2456 | if (Value *Ptr = getPointerOperand(V)) |
| 2457 | return getUnderlyingObjectThroughLoads(V: Ptr); |
| 2458 | else if (V->getType()->isPointerTy()) |
| 2459 | return getUnderlyingObject(V); |
| 2460 | return V; |
| 2461 | } |
| 2462 | |
| 2463 | /// Returns true if \p V is a matrix value in the given subprogram. |
| 2464 | bool isMatrix(Value *V) const { return ExprsInSubprogram.count(key: V); } |
| 2465 | |
| 2466 | /// If \p V is a matrix value, print its shape as NumRows x NumColumns to |
| 2467 | /// \p SS. |
| 2468 | void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { |
| 2469 | auto M = Inst2Matrix.find(Key: V); |
| 2470 | if (M == Inst2Matrix.end()) |
| 2471 | SS << "unknown" ; |
| 2472 | else { |
| 2473 | SS << M->second.getNumRows(); |
| 2474 | SS << "x" ; |
| 2475 | SS << M->second.getNumColumns(); |
| 2476 | } |
| 2477 | } |
| 2478 | |
| 2479 | /// Write the called function name. Handles calls to llvm.matrix.* |
| 2480 | /// specially: we write the name, followed by the dimensions of the input |
| 2481 | /// matrixes, followed by the scalar type name. |
| 2482 | void writeFnName(CallInst *CI) { |
| 2483 | if (!CI->getCalledFunction()) |
| 2484 | write(S: "<no called fn>" ); |
| 2485 | else { |
| 2486 | StringRef Name = CI->getCalledFunction()->getName(); |
| 2487 | if (!Name.starts_with(Prefix: "llvm.matrix" )) { |
| 2488 | write(S: Name); |
| 2489 | return; |
| 2490 | } |
| 2491 | auto *II = cast<IntrinsicInst>(Val: CI); |
| 2492 | write(S: Intrinsic::getBaseName(id: II->getIntrinsicID()) |
| 2493 | .drop_front(N: StringRef("llvm.matrix." ).size())); |
| 2494 | write(S: "." ); |
| 2495 | std::string Tmp; |
| 2496 | raw_string_ostream SS(Tmp); |
| 2497 | |
| 2498 | switch (II->getIntrinsicID()) { |
| 2499 | case Intrinsic::matrix_multiply: |
| 2500 | prettyPrintMatrixType(V: II->getOperand(i_nocapture: 0), SS); |
| 2501 | SS << "." ; |
| 2502 | prettyPrintMatrixType(V: II->getOperand(i_nocapture: 1), SS); |
| 2503 | SS << "." << *II->getType()->getScalarType(); |
| 2504 | break; |
| 2505 | case Intrinsic::matrix_transpose: |
| 2506 | prettyPrintMatrixType(V: II->getOperand(i_nocapture: 0), SS); |
| 2507 | SS << "." << *II->getType()->getScalarType(); |
| 2508 | break; |
| 2509 | case Intrinsic::matrix_column_major_load: |
| 2510 | prettyPrintMatrixType(V: II, SS); |
| 2511 | SS << "." << *II->getType()->getScalarType(); |
| 2512 | break; |
| 2513 | case Intrinsic::matrix_column_major_store: |
| 2514 | prettyPrintMatrixType(V: II->getOperand(i_nocapture: 0), SS); |
| 2515 | SS << "." << *II->getOperand(i_nocapture: 0)->getType()->getScalarType(); |
| 2516 | break; |
| 2517 | default: |
| 2518 | llvm_unreachable("Unhandled case" ); |
| 2519 | } |
| 2520 | write(S: Tmp); |
| 2521 | } |
| 2522 | } |
| 2523 | |
| 2524 | unsigned getNumShapeArgs(CallInst *CI) const { |
| 2525 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: CI)) { |
| 2526 | switch (II->getIntrinsicID()) { |
| 2527 | case Intrinsic::matrix_multiply: |
| 2528 | return 3; |
| 2529 | case Intrinsic::matrix_transpose: |
| 2530 | return 2; |
| 2531 | case Intrinsic::matrix_column_major_load: |
| 2532 | case Intrinsic::matrix_column_major_store: |
| 2533 | return 3; |
| 2534 | default: |
| 2535 | return 0; |
| 2536 | } |
| 2537 | } |
| 2538 | return 0; |
| 2539 | } |
| 2540 | |
| 2541 | /// Special printing for values: for pointers, we print if they refer to an |
| 2542 | /// (function) external address or a stack address, for other values we |
| 2543 | /// either print the constant or "scalar"/"matrix" for other values. |
| 2544 | void write(Value *V) { |
| 2545 | V = getUnderlyingObjectThroughLoads(V); |
| 2546 | if (V->getType()->isPointerTy()) { |
| 2547 | if (isa<AllocaInst>(Val: V)) { |
| 2548 | Stream << "stack addr" ; |
| 2549 | LineLength += StringRef("stack addr" ).size(); |
| 2550 | } else { |
| 2551 | Stream << "addr" ; |
| 2552 | LineLength += StringRef("addr" ).size(); |
| 2553 | } |
| 2554 | if (!V->getName().empty()) { |
| 2555 | Stream << " %" << V->getName() << "" ; |
| 2556 | LineLength += V->getName().size() + 2; |
| 2557 | } |
| 2558 | return; |
| 2559 | } |
| 2560 | |
| 2561 | std::string Tmp; |
| 2562 | raw_string_ostream TmpStream(Tmp); |
| 2563 | |
| 2564 | if (auto *CI = dyn_cast<ConstantInt>(Val: V)) |
| 2565 | TmpStream << CI->getValue(); |
| 2566 | else if (isa<Constant>(Val: V)) |
| 2567 | TmpStream << "constant" ; |
| 2568 | else { |
| 2569 | if (isMatrix(V)) |
| 2570 | TmpStream << "matrix" ; |
| 2571 | else |
| 2572 | TmpStream << "scalar" ; |
| 2573 | } |
| 2574 | Tmp = std::string(StringRef(Tmp).trim()); |
| 2575 | LineLength += Tmp.size(); |
| 2576 | Stream << Tmp; |
| 2577 | } |
| 2578 | |
| 2579 | /// Linearize expression \p Expr starting at an indentation of \p Indent. |
| 2580 | /// Expressions that are re-used multiple times are prefixed with (reused) |
| 2581 | /// at the re-used root instruction. |
| 2582 | void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, |
| 2583 | bool ParentShared) { |
| 2584 | auto *I = cast<Instruction>(Val: Expr); |
| 2585 | maybeIndent(Indent); |
| 2586 | SmallVector<Value *, 8> Ops; |
| 2587 | |
| 2588 | // Is Expr shared with other expression leaves? |
| 2589 | bool ExprShared = false; |
| 2590 | |
| 2591 | // Deal with shared subtrees. Mark them as shared, if required. |
| 2592 | if (!ParentShared) { |
| 2593 | auto SI = Shared.find(Val: Expr); |
| 2594 | assert(SI != Shared.end() && SI->second.count(Leaf)); |
| 2595 | |
| 2596 | for (Value *S : SI->second) { |
| 2597 | if (S == Leaf) |
| 2598 | continue; |
| 2599 | DebugLoc DL = cast<Instruction>(Val: S)->getDebugLoc(); |
| 2600 | write(S: "shared with remark at line " + std::to_string(val: DL.getLine()) + |
| 2601 | " column " + std::to_string(val: DL.getCol()) + " (" ); |
| 2602 | } |
| 2603 | ExprShared = SI->second.size() > 1; |
| 2604 | } |
| 2605 | |
| 2606 | bool Reused = !ReusedExprs.insert(Ptr: Expr).second; |
| 2607 | if (Reused && !ParentReused) |
| 2608 | write(S: "(reused) " ); |
| 2609 | |
| 2610 | if (auto *CI = dyn_cast<CallInst>(Val: I)) { |
| 2611 | writeFnName(CI); |
| 2612 | |
| 2613 | Ops.append(in_start: CI->arg_begin(), in_end: CI->arg_end() - getNumShapeArgs(CI)); |
| 2614 | } else if (isa<BitCastInst>(Val: Expr)) { |
| 2615 | // Special case bitcasts, which are used to materialize matrixes from |
| 2616 | // non-matrix ops. |
| 2617 | write(S: "matrix" ); |
| 2618 | return; |
| 2619 | } else { |
| 2620 | Ops.append(in_start: I->value_op_begin(), in_end: I->value_op_end()); |
| 2621 | write(S: I->getOpcodeName()); |
| 2622 | } |
| 2623 | |
| 2624 | write(S: "(" ); |
| 2625 | |
| 2626 | unsigned NumOpsToBreak = 1; |
| 2627 | if (match(V: Expr, P: m_Intrinsic<Intrinsic::matrix_column_major_load>())) |
| 2628 | NumOpsToBreak = 2; |
| 2629 | |
| 2630 | for (Value *Op : Ops) { |
| 2631 | if (Ops.size() > NumOpsToBreak) |
| 2632 | lineBreak(); |
| 2633 | |
| 2634 | maybeIndent(Indent: Indent + 1); |
| 2635 | if (isMatrix(V: Op)) |
| 2636 | linearizeExpr(Expr: Op, Indent: Indent + 1, ParentReused: Reused, ParentShared: ExprShared); |
| 2637 | else |
| 2638 | write(V: Op); |
| 2639 | if (Op != Ops.back()) |
| 2640 | write(S: ", " ); |
| 2641 | } |
| 2642 | |
| 2643 | write(S: ")" ); |
| 2644 | } |
| 2645 | |
| 2646 | const std::string &getResult() { |
| 2647 | return Str; |
| 2648 | } |
| 2649 | }; |
| 2650 | |
| 2651 | /// Generate remarks for matrix operations in a function. To generate remarks |
| 2652 | /// for matrix expressions, the following approach is used: |
| 2653 | /// 1. Use the inlined-at debug information to group matrix operations to the |
| 2654 | /// DISubprograms they are contained in. |
| 2655 | /// 2. Collect leaves of matrix expressions (done in |
| 2656 | /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression |
| 2657 | // mapping. Leaves are lowered matrix instructions without other matrix |
| 2658 | // users (like stores) in the current subprogram. |
| 2659 | /// 3. For each leaf, create a remark containing a linearizied version of the |
| 2660 | /// matrix expression. The expression is linearized by a recursive |
| 2661 | /// bottom-up traversal of the matrix operands, starting at a leaf. Note |
| 2662 | /// that multiple leaves can share sub-expressions. Shared subexpressions |
| 2663 | /// are explicitly marked as shared(). |
| 2664 | struct { |
| 2665 | const MapVector<Value *, MatrixTy> &; |
| 2666 | OptimizationRemarkEmitter &; |
| 2667 | Function &; |
| 2668 | const DataLayout &; |
| 2669 | |
| 2670 | (const MapVector<Value *, MatrixTy> &Inst2Matrix, |
| 2671 | OptimizationRemarkEmitter &ORE, Function &Func) |
| 2672 | : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), |
| 2673 | DL(Func.getDataLayout()) {} |
| 2674 | |
| 2675 | /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are |
| 2676 | /// instructions in Inst2Matrix returning void or without any users in |
| 2677 | /// \p ExprsInSubprogram. Currently that should only include stores. |
| 2678 | SmallVector<Value *, 4> |
| 2679 | (const SmallSetVector<Value *, 32> &ExprsInSubprogram) { |
| 2680 | SmallVector<Value *, 4> Leaves; |
| 2681 | for (auto *Expr : ExprsInSubprogram) |
| 2682 | if (Expr->getType()->isVoidTy() || |
| 2683 | !any_of(Range: Expr->users(), P: [&ExprsInSubprogram](User *U) { |
| 2684 | return ExprsInSubprogram.count(key: U); |
| 2685 | })) |
| 2686 | Leaves.push_back(Elt: Expr); |
| 2687 | return Leaves; |
| 2688 | } |
| 2689 | |
| 2690 | /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf |
| 2691 | /// to all visited expressions in \p Shared. Limit the matrix operations to |
| 2692 | /// the ones in \p ExprsInSubprogram. |
| 2693 | void (Value *Leaf, Value *V, |
| 2694 | const SmallSetVector<Value *, 32> &ExprsInSubprogram, |
| 2695 | DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { |
| 2696 | |
| 2697 | if (!ExprsInSubprogram.count(key: V)) |
| 2698 | return; |
| 2699 | |
| 2700 | Shared[V].insert(Ptr: Leaf); |
| 2701 | |
| 2702 | for (Value *Op : cast<Instruction>(Val: V)->operand_values()) |
| 2703 | collectSharedInfo(Leaf, V: Op, ExprsInSubprogram, Shared); |
| 2704 | } |
| 2705 | |
| 2706 | /// Calculate the number of exclusive and shared op counts for expression |
| 2707 | /// starting at \p V. Expressions used multiple times are counted once. |
| 2708 | /// Limit the matrix operations to the ones in \p ExprsInSubprogram. |
| 2709 | std::pair<OpInfoTy, OpInfoTy> |
| 2710 | (Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, |
| 2711 | const SmallSetVector<Value *, 32> &ExprsInSubprogram, |
| 2712 | DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { |
| 2713 | if (!ExprsInSubprogram.count(key: Root)) |
| 2714 | return {}; |
| 2715 | |
| 2716 | // Already counted this expression. Stop. |
| 2717 | if (!ReusedExprs.insert(Ptr: Root).second) |
| 2718 | return {}; |
| 2719 | |
| 2720 | OpInfoTy SharedCount; |
| 2721 | OpInfoTy Count; |
| 2722 | |
| 2723 | auto I = Shared.find(Val: Root); |
| 2724 | auto CM = Inst2Matrix.find(Key: Root); |
| 2725 | if (I->second.size() == 1) |
| 2726 | Count = CM->second.getOpInfo(); |
| 2727 | else |
| 2728 | SharedCount = CM->second.getOpInfo(); |
| 2729 | |
| 2730 | for (Value *Op : cast<Instruction>(Val: Root)->operand_values()) { |
| 2731 | auto C = sumOpInfos(Root: Op, ReusedExprs, ExprsInSubprogram, Shared); |
| 2732 | Count += C.first; |
| 2733 | SharedCount += C.second; |
| 2734 | } |
| 2735 | return {Count, SharedCount}; |
| 2736 | } |
| 2737 | |
| 2738 | void () { |
| 2739 | if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) |
| 2740 | return; |
| 2741 | |
| 2742 | // Map matrix operations to their containting subprograms, by traversing |
| 2743 | // the inlinedAt chain. If the function does not have a DISubprogram, we |
| 2744 | // only map them to the containing function. |
| 2745 | MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; |
| 2746 | for (const auto &KV : Inst2Matrix) { |
| 2747 | if (Func.getSubprogram()) { |
| 2748 | auto *I = cast<Instruction>(Val: KV.first); |
| 2749 | DILocation *Context = I->getDebugLoc(); |
| 2750 | while (Context) { |
| 2751 | Subprog2Exprs[getSubprogram(Scope: Context->getScope())].push_back( |
| 2752 | Elt: KV.first); |
| 2753 | Context = DebugLoc(Context).getInlinedAt(); |
| 2754 | } |
| 2755 | } else { |
| 2756 | Subprog2Exprs[nullptr].push_back(Elt: KV.first); |
| 2757 | } |
| 2758 | } |
| 2759 | for (auto &KV : Subprog2Exprs) { |
| 2760 | SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), |
| 2761 | KV.second.end()); |
| 2762 | auto Leaves = getExpressionLeaves(ExprsInSubprogram); |
| 2763 | |
| 2764 | DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; |
| 2765 | for (Value *Leaf : Leaves) |
| 2766 | collectSharedInfo(Leaf, V: Leaf, ExprsInSubprogram, Shared); |
| 2767 | |
| 2768 | // Generate remarks for each leaf. |
| 2769 | for (auto *L : Leaves) { |
| 2770 | |
| 2771 | DebugLoc Loc = cast<Instruction>(Val: L)->getDebugLoc(); |
| 2772 | DILocation *Context = cast<Instruction>(Val: L)->getDebugLoc(); |
| 2773 | while (Context) { |
| 2774 | if (getSubprogram(Scope: Context->getScope()) == KV.first) { |
| 2775 | Loc = Context; |
| 2776 | break; |
| 2777 | } |
| 2778 | Context = DebugLoc(Context).getInlinedAt(); |
| 2779 | } |
| 2780 | |
| 2781 | SmallPtrSet<Value *, 8> ReusedExprs; |
| 2782 | OpInfoTy Counts, SharedCounts; |
| 2783 | std::tie(args&: Counts, args&: SharedCounts) = |
| 2784 | sumOpInfos(Root: L, ReusedExprs, ExprsInSubprogram, Shared); |
| 2785 | |
| 2786 | OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered" , Loc, |
| 2787 | cast<Instruction>(Val: L)->getParent()); |
| 2788 | |
| 2789 | Rem << "Lowered with " ; |
| 2790 | Rem << ore::NV("NumStores" , Counts.NumStores) << " stores, " |
| 2791 | << ore::NV("NumLoads" , Counts.NumLoads) << " loads, " |
| 2792 | << ore::NV("NumComputeOps" , Counts.NumComputeOps) |
| 2793 | << " compute ops, " |
| 2794 | << ore::NV("NumExposedTransposes" , Counts.NumExposedTransposes) |
| 2795 | << " exposed transposes" ; |
| 2796 | |
| 2797 | if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || |
| 2798 | SharedCounts.NumComputeOps > 0) { |
| 2799 | Rem << ",\nadditionally " |
| 2800 | << ore::NV("NumStores" , SharedCounts.NumStores) << " stores, " |
| 2801 | << ore::NV("NumLoads" , SharedCounts.NumLoads) << " loads, " |
| 2802 | << ore::NV("NumFPOps" , SharedCounts.NumComputeOps) |
| 2803 | << " compute ops" |
| 2804 | << " are shared with other expressions" ; |
| 2805 | } |
| 2806 | |
| 2807 | Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); |
| 2808 | ORE.emit(OptDiag&: Rem); |
| 2809 | } |
| 2810 | } |
| 2811 | } |
| 2812 | |
| 2813 | std::string |
| 2814 | (Value *L, |
| 2815 | const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, |
| 2816 | const SmallSetVector<Value *, 32> &ExprsInSubprogram, |
| 2817 | const DataLayout &DL) { |
| 2818 | ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); |
| 2819 | Lin.linearizeExpr(Expr: L, Indent: 0, ParentReused: false, ParentShared: false); |
| 2820 | return Lin.getResult(); |
| 2821 | } |
| 2822 | }; |
| 2823 | }; |
| 2824 | } // namespace |
| 2825 | |
| 2826 | PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, |
| 2827 | FunctionAnalysisManager &AM) { |
| 2828 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
| 2829 | |
| 2830 | LowerMatrixIntrinsics LMT(F, TTI, Minimal ? nullptr : &AM); |
| 2831 | if (LMT.Visit()) { |
| 2832 | PreservedAnalyses PA; |
| 2833 | if (!Minimal) { |
| 2834 | PA.preserve<LoopAnalysis>(); |
| 2835 | PA.preserve<DominatorTreeAnalysis>(); |
| 2836 | } |
| 2837 | return PA; |
| 2838 | } |
| 2839 | return PreservedAnalyses::all(); |
| 2840 | } |
| 2841 | |
| 2842 | void LowerMatrixIntrinsicsPass::printPipeline( |
| 2843 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 2844 | static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline( |
| 2845 | OS, MapClassName2PassName); |
| 2846 | OS << '<'; |
| 2847 | if (Minimal) |
| 2848 | OS << "minimal" ; |
| 2849 | OS << '>'; |
| 2850 | } |
| 2851 | |