| 1 | //===- Reassociate.cpp - Reassociate binary expressions -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass reassociates commutative expressions in an order that is designed |
| 10 | // to promote better constant propagation, GCSE, LICM, PRE, etc. |
| 11 | // |
| 12 | // For example: 4 + (x + 5) -> x + (4 + 5) |
| 13 | // |
| 14 | // In the implementation of this algorithm, constants are assigned rank = 0, |
| 15 | // function arguments are rank = 1, and other values are assigned ranks |
| 16 | // corresponding to the reverse post order traversal of current function |
| 17 | // (starting at 2), which effectively gives values in deep loops higher rank |
| 18 | // than values not in loops. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "llvm/Transforms/Scalar/Reassociate.h" |
| 23 | #include "llvm/ADT/APFloat.h" |
| 24 | #include "llvm/ADT/APInt.h" |
| 25 | #include "llvm/ADT/DenseMap.h" |
| 26 | #include "llvm/ADT/PostOrderIterator.h" |
| 27 | #include "llvm/ADT/SmallPtrSet.h" |
| 28 | #include "llvm/ADT/SmallSet.h" |
| 29 | #include "llvm/ADT/SmallVector.h" |
| 30 | #include "llvm/ADT/Statistic.h" |
| 31 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 32 | #include "llvm/Analysis/ConstantFolding.h" |
| 33 | #include "llvm/Analysis/GlobalsModRef.h" |
| 34 | #include "llvm/Analysis/ValueTracking.h" |
| 35 | #include "llvm/IR/Argument.h" |
| 36 | #include "llvm/IR/BasicBlock.h" |
| 37 | #include "llvm/IR/CFG.h" |
| 38 | #include "llvm/IR/Constant.h" |
| 39 | #include "llvm/IR/Constants.h" |
| 40 | #include "llvm/IR/Function.h" |
| 41 | #include "llvm/IR/IRBuilder.h" |
| 42 | #include "llvm/IR/InstrTypes.h" |
| 43 | #include "llvm/IR/Instruction.h" |
| 44 | #include "llvm/IR/Instructions.h" |
| 45 | #include "llvm/IR/Operator.h" |
| 46 | #include "llvm/IR/PassManager.h" |
| 47 | #include "llvm/IR/PatternMatch.h" |
| 48 | #include "llvm/IR/Type.h" |
| 49 | #include "llvm/IR/User.h" |
| 50 | #include "llvm/IR/Value.h" |
| 51 | #include "llvm/IR/ValueHandle.h" |
| 52 | #include "llvm/InitializePasses.h" |
| 53 | #include "llvm/Pass.h" |
| 54 | #include "llvm/Support/Casting.h" |
| 55 | #include "llvm/Support/CommandLine.h" |
| 56 | #include "llvm/Support/Debug.h" |
| 57 | #include "llvm/Support/raw_ostream.h" |
| 58 | #include "llvm/Transforms/Scalar.h" |
| 59 | #include "llvm/Transforms/Utils/Local.h" |
| 60 | #include <algorithm> |
| 61 | #include <cassert> |
| 62 | #include <utility> |
| 63 | |
| 64 | using namespace llvm; |
| 65 | using namespace reassociate; |
| 66 | using namespace PatternMatch; |
| 67 | |
| 68 | #define DEBUG_TYPE "reassociate" |
| 69 | |
| 70 | STATISTIC(NumChanged, "Number of insts reassociated" ); |
| 71 | STATISTIC(NumAnnihil, "Number of expr tree annihilated" ); |
| 72 | STATISTIC(NumFactor , "Number of multiplies factored" ); |
| 73 | |
| 74 | static cl::opt<bool> |
| 75 | UseCSELocalOpt(DEBUG_TYPE "-use-cse-local" , |
| 76 | cl::desc("Only reorder expressions within a basic block " |
| 77 | "when exposing CSE opportunities" ), |
| 78 | cl::init(Val: true), cl::Hidden); |
| 79 | |
| 80 | #ifndef NDEBUG |
| 81 | /// Print out the expression identified in the Ops list. |
| 82 | static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { |
| 83 | Module *M = I->getModule(); |
| 84 | dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " |
| 85 | << *Ops[0].Op->getType() << '\t'; |
| 86 | for (const ValueEntry &Op : Ops) { |
| 87 | dbgs() << "[ " ; |
| 88 | Op.Op->printAsOperand(dbgs(), false, M); |
| 89 | dbgs() << ", #" << Op.Rank << "] " ; |
| 90 | } |
| 91 | } |
| 92 | #endif |
| 93 | |
| 94 | /// Utility class representing a non-constant Xor-operand. We classify |
| 95 | /// non-constant Xor-Operands into two categories: |
| 96 | /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 |
| 97 | /// C2) |
| 98 | /// C2.1) The operand is in the form of "X | C", where C is a non-zero |
| 99 | /// constant. |
| 100 | /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this |
| 101 | /// operand as "E | 0" |
| 102 | class llvm::reassociate::XorOpnd { |
| 103 | public: |
| 104 | XorOpnd(Value *V); |
| 105 | |
| 106 | bool isInvalid() const { return SymbolicPart == nullptr; } |
| 107 | bool isOrExpr() const { return isOr; } |
| 108 | Value *getValue() const { return OrigVal; } |
| 109 | Value *getSymbolicPart() const { return SymbolicPart; } |
| 110 | unsigned getSymbolicRank() const { return SymbolicRank; } |
| 111 | const APInt &getConstPart() const { return ConstPart; } |
| 112 | |
| 113 | void Invalidate() { SymbolicPart = OrigVal = nullptr; } |
| 114 | void setSymbolicRank(unsigned R) { SymbolicRank = R; } |
| 115 | |
| 116 | private: |
| 117 | Value *OrigVal; |
| 118 | Value *SymbolicPart; |
| 119 | APInt ConstPart; |
| 120 | unsigned SymbolicRank; |
| 121 | bool isOr; |
| 122 | }; |
| 123 | |
| 124 | XorOpnd::XorOpnd(Value *V) { |
| 125 | assert(!isa<ConstantInt>(V) && "No ConstantInt" ); |
| 126 | OrigVal = V; |
| 127 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 128 | SymbolicRank = 0; |
| 129 | |
| 130 | if (I && (I->getOpcode() == Instruction::Or || |
| 131 | I->getOpcode() == Instruction::And)) { |
| 132 | Value *V0 = I->getOperand(i: 0); |
| 133 | Value *V1 = I->getOperand(i: 1); |
| 134 | const APInt *C; |
| 135 | if (match(V: V0, P: m_APInt(Res&: C))) |
| 136 | std::swap(a&: V0, b&: V1); |
| 137 | |
| 138 | if (match(V: V1, P: m_APInt(Res&: C))) { |
| 139 | ConstPart = *C; |
| 140 | SymbolicPart = V0; |
| 141 | isOr = (I->getOpcode() == Instruction::Or); |
| 142 | return; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | // view the operand as "V | 0" |
| 147 | SymbolicPart = V; |
| 148 | ConstPart = APInt::getZero(numBits: V->getType()->getScalarSizeInBits()); |
| 149 | isOr = true; |
| 150 | } |
| 151 | |
| 152 | /// Return true if I is an instruction with the FastMathFlags that are needed |
| 153 | /// for general reassociation set. This is not the same as testing |
| 154 | /// Instruction::isAssociative() because it includes operations like fsub. |
| 155 | /// (This routine is only intended to be called for floating-point operations.) |
| 156 | static bool hasFPAssociativeFlags(Instruction *I) { |
| 157 | assert(I && isa<FPMathOperator>(I) && "Should only check FP ops" ); |
| 158 | return I->hasAllowReassoc() && I->hasNoSignedZeros(); |
| 159 | } |
| 160 | |
| 161 | /// Return true if V is an instruction of the specified opcode and if it |
| 162 | /// only has one use. |
| 163 | static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { |
| 164 | auto *BO = dyn_cast<BinaryOperator>(Val: V); |
| 165 | if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode) |
| 166 | if (!isa<FPMathOperator>(Val: BO) || hasFPAssociativeFlags(I: BO)) |
| 167 | return BO; |
| 168 | return nullptr; |
| 169 | } |
| 170 | |
| 171 | static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, |
| 172 | unsigned Opcode2) { |
| 173 | auto *BO = dyn_cast<BinaryOperator>(Val: V); |
| 174 | if (BO && BO->hasOneUse() && |
| 175 | (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2)) |
| 176 | if (!isa<FPMathOperator>(Val: BO) || hasFPAssociativeFlags(I: BO)) |
| 177 | return BO; |
| 178 | return nullptr; |
| 179 | } |
| 180 | |
| 181 | void ReassociatePass::BuildRankMap(Function &F, |
| 182 | ReversePostOrderTraversal<Function*> &RPOT) { |
| 183 | unsigned Rank = 2; |
| 184 | |
| 185 | // Assign distinct ranks to function arguments. |
| 186 | for (auto &Arg : F.args()) { |
| 187 | ValueRankMap[&Arg] = ++Rank; |
| 188 | LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank |
| 189 | << "\n" ); |
| 190 | } |
| 191 | |
| 192 | // Traverse basic blocks in ReversePostOrder. |
| 193 | for (BasicBlock *BB : RPOT) { |
| 194 | unsigned BBRank = RankMap[BB] = ++Rank << 16; |
| 195 | |
| 196 | // Walk the basic block, adding precomputed ranks for any instructions that |
| 197 | // we cannot move. This ensures that the ranks for these instructions are |
| 198 | // all different in the block. |
| 199 | for (Instruction &I : *BB) |
| 200 | if (mayHaveNonDefUseDependency(I)) |
| 201 | ValueRankMap[&I] = ++BBRank; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | unsigned ReassociatePass::getRank(Value *V) { |
| 206 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 207 | if (!I) { |
| 208 | if (isa<Argument>(Val: V)) return ValueRankMap[V]; // Function argument. |
| 209 | return 0; // Otherwise it's a global or constant, rank 0. |
| 210 | } |
| 211 | |
| 212 | if (unsigned Rank = ValueRankMap[I]) |
| 213 | return Rank; // Rank already known? |
| 214 | |
| 215 | // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that |
| 216 | // we can reassociate expressions for code motion! Since we do not recurse |
| 217 | // for PHI nodes, we cannot have infinite recursion here, because there |
| 218 | // cannot be loops in the value graph that do not go through PHI nodes. |
| 219 | unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; |
| 220 | for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) |
| 221 | Rank = std::max(a: Rank, b: getRank(V: I->getOperand(i))); |
| 222 | |
| 223 | // If this is a 'not' or 'neg' instruction, do not count it for rank. This |
| 224 | // assures us that X and ~X will have the same rank. |
| 225 | if (!match(V: I, P: m_Not(V: m_Value())) && !match(V: I, P: m_Neg(V: m_Value())) && |
| 226 | !match(V: I, P: m_FNeg(X: m_Value()))) |
| 227 | ++Rank; |
| 228 | |
| 229 | LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank |
| 230 | << "\n" ); |
| 231 | |
| 232 | return ValueRankMap[I] = Rank; |
| 233 | } |
| 234 | |
| 235 | // Canonicalize constants to RHS. Otherwise, sort the operands by rank. |
| 236 | void ReassociatePass::canonicalizeOperands(Instruction *I) { |
| 237 | assert(isa<BinaryOperator>(I) && "Expected binary operator." ); |
| 238 | assert(I->isCommutative() && "Expected commutative operator." ); |
| 239 | |
| 240 | Value *LHS = I->getOperand(i: 0); |
| 241 | Value *RHS = I->getOperand(i: 1); |
| 242 | if (LHS == RHS || isa<Constant>(Val: RHS)) |
| 243 | return; |
| 244 | if (isa<Constant>(Val: LHS) || getRank(V: RHS) < getRank(V: LHS)) { |
| 245 | cast<BinaryOperator>(Val: I)->swapOperands(); |
| 246 | MadeChange = true; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, |
| 251 | BasicBlock::iterator InsertBefore, |
| 252 | Value *FlagsOp) { |
| 253 | if (S1->getType()->isIntOrIntVectorTy()) |
| 254 | return BinaryOperator::CreateAdd(V1: S1, V2: S2, Name, InsertBefore); |
| 255 | else { |
| 256 | BinaryOperator *Res = |
| 257 | BinaryOperator::CreateFAdd(V1: S1, V2: S2, Name, InsertBefore); |
| 258 | Res->setFastMathFlags(cast<FPMathOperator>(Val: FlagsOp)->getFastMathFlags()); |
| 259 | return Res; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, |
| 264 | BasicBlock::iterator InsertBefore, |
| 265 | Value *FlagsOp) { |
| 266 | if (S1->getType()->isIntOrIntVectorTy()) |
| 267 | return BinaryOperator::CreateMul(V1: S1, V2: S2, Name, InsertBefore); |
| 268 | else { |
| 269 | BinaryOperator *Res = |
| 270 | BinaryOperator::CreateFMul(V1: S1, V2: S2, Name, InsertBefore); |
| 271 | Res->setFastMathFlags(cast<FPMathOperator>(Val: FlagsOp)->getFastMathFlags()); |
| 272 | return Res; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | static Instruction *CreateNeg(Value *S1, const Twine &Name, |
| 277 | BasicBlock::iterator InsertBefore, |
| 278 | Value *FlagsOp) { |
| 279 | if (S1->getType()->isIntOrIntVectorTy()) |
| 280 | return BinaryOperator::CreateNeg(Op: S1, Name, InsertBefore); |
| 281 | |
| 282 | if (auto *FMFSource = dyn_cast<Instruction>(Val: FlagsOp)) |
| 283 | return UnaryOperator::CreateFNegFMF(Op: S1, FMFSource, Name, InsertBefore); |
| 284 | |
| 285 | return UnaryOperator::CreateFNeg(V: S1, Name, InsertBefore); |
| 286 | } |
| 287 | |
| 288 | /// Replace 0-X with X*-1. |
| 289 | static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { |
| 290 | assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && |
| 291 | "Expected a Negate!" ); |
| 292 | // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. |
| 293 | unsigned OpNo = isa<BinaryOperator>(Val: Neg) ? 1 : 0; |
| 294 | Type *Ty = Neg->getType(); |
| 295 | Constant *NegOne = Ty->isIntOrIntVectorTy() ? |
| 296 | ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, V: -1.0); |
| 297 | |
| 298 | BinaryOperator *Res = |
| 299 | CreateMul(S1: Neg->getOperand(i: OpNo), S2: NegOne, Name: "" , InsertBefore: Neg->getIterator(), FlagsOp: Neg); |
| 300 | Neg->setOperand(i: OpNo, Val: Constant::getNullValue(Ty)); // Drop use of op. |
| 301 | Res->takeName(V: Neg); |
| 302 | Neg->replaceAllUsesWith(V: Res); |
| 303 | Res->setDebugLoc(Neg->getDebugLoc()); |
| 304 | return Res; |
| 305 | } |
| 306 | |
| 307 | using RepeatedValue = std::pair<Value *, uint64_t>; |
| 308 | |
| 309 | /// Given an associative binary expression, return the leaf |
| 310 | /// nodes in Ops along with their weights (how many times the leaf occurs). The |
| 311 | /// original expression is the same as |
| 312 | /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times |
| 313 | /// op |
| 314 | /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times |
| 315 | /// op |
| 316 | /// ... |
| 317 | /// op |
| 318 | /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times |
| 319 | /// |
| 320 | /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. |
| 321 | /// |
| 322 | /// This routine may modify the function, in which case it returns 'true'. The |
| 323 | /// changes it makes may well be destructive, changing the value computed by 'I' |
| 324 | /// to something completely different. Thus if the routine returns 'true' then |
| 325 | /// you MUST either replace I with a new expression computed from the Ops array, |
| 326 | /// or use RewriteExprTree to put the values back in. |
| 327 | /// |
| 328 | /// A leaf node is either not a binary operation of the same kind as the root |
| 329 | /// node 'I' (i.e. is not a binary operator at all, or is, but with a different |
| 330 | /// opcode), or is the same kind of binary operator but has a use which either |
| 331 | /// does not belong to the expression, or does belong to the expression but is |
| 332 | /// a leaf node. Every leaf node has at least one use that is a non-leaf node |
| 333 | /// of the expression, while for non-leaf nodes (except for the root 'I') every |
| 334 | /// use is a non-leaf node of the expression. |
| 335 | /// |
| 336 | /// For example: |
| 337 | /// expression graph node names |
| 338 | /// |
| 339 | /// + | I |
| 340 | /// / \ | |
| 341 | /// + + | A, B |
| 342 | /// / \ / \ | |
| 343 | /// * + * | C, D, E |
| 344 | /// / \ / \ / \ | |
| 345 | /// + * | F, G |
| 346 | /// |
| 347 | /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in |
| 348 | /// that order) (C, 1), (E, 1), (F, 2), (G, 2). |
| 349 | /// |
| 350 | /// The expression is maximal: if some instruction is a binary operator of the |
| 351 | /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, |
| 352 | /// then the instruction also belongs to the expression, is not a leaf node of |
| 353 | /// it, and its operands also belong to the expression (but may be leaf nodes). |
| 354 | /// |
| 355 | /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in |
| 356 | /// order to ensure that every non-root node in the expression has *exactly one* |
| 357 | /// use by a non-leaf node of the expression. This destruction means that the |
| 358 | /// caller MUST either replace 'I' with a new expression or use something like |
| 359 | /// RewriteExprTree to put the values back in if the routine indicates that it |
| 360 | /// made a change by returning 'true'. |
| 361 | /// |
| 362 | /// In the above example either the right operand of A or the left operand of B |
| 363 | /// will be replaced by undef. If it is B's operand then this gives: |
| 364 | /// |
| 365 | /// + | I |
| 366 | /// / \ | |
| 367 | /// + + | A, B - operand of B replaced with undef |
| 368 | /// / \ \ | |
| 369 | /// * + * | C, D, E |
| 370 | /// / \ / \ / \ | |
| 371 | /// + * | F, G |
| 372 | /// |
| 373 | /// Note that such undef operands can only be reached by passing through 'I'. |
| 374 | /// For example, if you visit operands recursively starting from a leaf node |
| 375 | /// then you will never see such an undef operand unless you get back to 'I', |
| 376 | /// which requires passing through a phi node. |
| 377 | /// |
| 378 | /// Note that this routine may also mutate binary operators of the wrong type |
| 379 | /// that have all uses inside the expression (i.e. only used by non-leaf nodes |
| 380 | /// of the expression) if it can turn them into binary operators of the right |
| 381 | /// type and thus make the expression bigger. |
| 382 | static bool LinearizeExprTree(Instruction *I, |
| 383 | SmallVectorImpl<RepeatedValue> &Ops, |
| 384 | ReassociatePass::OrderedSet &ToRedo, |
| 385 | OverflowTracking &Flags) { |
| 386 | assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && |
| 387 | "Expected a UnaryOperator or BinaryOperator!" ); |
| 388 | LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); |
| 389 | unsigned Opcode = I->getOpcode(); |
| 390 | assert(I->isAssociative() && I->isCommutative() && |
| 391 | "Expected an associative and commutative operation!" ); |
| 392 | |
| 393 | // Visit all operands of the expression, keeping track of their weight (the |
| 394 | // number of paths from the expression root to the operand, or if you like |
| 395 | // the number of times that operand occurs in the linearized expression). |
| 396 | // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 |
| 397 | // while A has weight two. |
| 398 | |
| 399 | // Worklist of non-leaf nodes (their operands are in the expression too) along |
| 400 | // with their weights, representing a certain number of paths to the operator. |
| 401 | // If an operator occurs in the worklist multiple times then we found multiple |
| 402 | // ways to get to it. |
| 403 | SmallVector<std::pair<Instruction *, uint64_t>, 8> Worklist; // (Op, Weight) |
| 404 | Worklist.push_back(Elt: std::make_pair(x&: I, y: 1)); |
| 405 | bool Changed = false; |
| 406 | |
| 407 | // Leaves of the expression are values that either aren't the right kind of |
| 408 | // operation (eg: a constant, or a multiply in an add tree), or are, but have |
| 409 | // some uses that are not inside the expression. For example, in I = X + X, |
| 410 | // X = A + B, the value X has two uses (by I) that are in the expression. If |
| 411 | // X has any other uses, for example in a return instruction, then we consider |
| 412 | // X to be a leaf, and won't analyze it further. When we first visit a value, |
| 413 | // if it has more than one use then at first we conservatively consider it to |
| 414 | // be a leaf. Later, as the expression is explored, we may discover some more |
| 415 | // uses of the value from inside the expression. If all uses turn out to be |
| 416 | // from within the expression (and the value is a binary operator of the right |
| 417 | // kind) then the value is no longer considered to be a leaf, and its operands |
| 418 | // are explored. |
| 419 | |
| 420 | // Leaves - Keeps track of the set of putative leaves as well as the number of |
| 421 | // paths to each leaf seen so far. |
| 422 | using LeafMap = DenseMap<Value *, uint64_t>; |
| 423 | LeafMap Leaves; // Leaf -> Total weight so far. |
| 424 | SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. |
| 425 | const DataLayout &DL = I->getDataLayout(); |
| 426 | |
| 427 | #ifndef NDEBUG |
| 428 | SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme. |
| 429 | #endif |
| 430 | while (!Worklist.empty()) { |
| 431 | // We examine the operands of this binary operator. |
| 432 | auto [I, Weight] = Worklist.pop_back_val(); |
| 433 | |
| 434 | Flags.mergeFlags(I&: *I); |
| 435 | |
| 436 | for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. |
| 437 | Value *Op = I->getOperand(i: OpIdx); |
| 438 | LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n" ); |
| 439 | assert((!Op->hasUseList() || !Op->use_empty()) && |
| 440 | "No uses, so how did we get to it?!" ); |
| 441 | |
| 442 | // If this is a binary operation of the right kind with only one use then |
| 443 | // add its operands to the expression. |
| 444 | if (BinaryOperator *BO = isReassociableOp(V: Op, Opcode)) { |
| 445 | assert(Visited.insert(Op).second && "Not first visit!" ); |
| 446 | LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n" ); |
| 447 | Worklist.push_back(Elt: std::make_pair(x&: BO, y&: Weight)); |
| 448 | continue; |
| 449 | } |
| 450 | |
| 451 | // Appears to be a leaf. Is the operand already in the set of leaves? |
| 452 | LeafMap::iterator It = Leaves.find(Val: Op); |
| 453 | if (It == Leaves.end()) { |
| 454 | // Not in the leaf map. Must be the first time we saw this operand. |
| 455 | assert(Visited.insert(Op).second && "Not first visit!" ); |
| 456 | if (!Op->hasOneUse()) { |
| 457 | // This value has uses not accounted for by the expression, so it is |
| 458 | // not safe to modify. Mark it as being a leaf. |
| 459 | LLVM_DEBUG(dbgs() |
| 460 | << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n" ); |
| 461 | LeafOrder.push_back(Elt: Op); |
| 462 | Leaves[Op] = Weight; |
| 463 | continue; |
| 464 | } |
| 465 | // No uses outside the expression, try morphing it. |
| 466 | } else { |
| 467 | // Already in the leaf map. |
| 468 | assert(It != Leaves.end() && Visited.count(Op) && |
| 469 | "In leaf map but not visited!" ); |
| 470 | |
| 471 | // Update the number of paths to the leaf. |
| 472 | It->second += Weight; |
| 473 | assert(It->second >= Weight && "Weight overflows" ); |
| 474 | |
| 475 | // If we still have uses that are not accounted for by the expression |
| 476 | // then it is not safe to modify the value. |
| 477 | if (!Op->hasOneUse()) |
| 478 | continue; |
| 479 | |
| 480 | // No uses outside the expression, try morphing it. |
| 481 | Weight = It->second; |
| 482 | Leaves.erase(I: It); // Since the value may be morphed below. |
| 483 | } |
| 484 | |
| 485 | // At this point we have a value which, first of all, is not a binary |
| 486 | // expression of the right kind, and secondly, is only used inside the |
| 487 | // expression. This means that it can safely be modified. See if we |
| 488 | // can usefully morph it into an expression of the right kind. |
| 489 | assert((!isa<Instruction>(Op) || |
| 490 | cast<Instruction>(Op)->getOpcode() != Opcode |
| 491 | || (isa<FPMathOperator>(Op) && |
| 492 | !hasFPAssociativeFlags(cast<Instruction>(Op)))) && |
| 493 | "Should have been handled above!" ); |
| 494 | assert(Op->hasOneUse() && "Has uses outside the expression tree!" ); |
| 495 | |
| 496 | // If this is a multiply expression, turn any internal negations into |
| 497 | // multiplies by -1 so they can be reassociated. Add any users of the |
| 498 | // newly created multiplication by -1 to the redo list, so any |
| 499 | // reassociation opportunities that are exposed will be reassociated |
| 500 | // further. |
| 501 | Instruction *Neg; |
| 502 | if (((Opcode == Instruction::Mul && match(V: Op, P: m_Neg(V: m_Value()))) || |
| 503 | (Opcode == Instruction::FMul && match(V: Op, P: m_FNeg(X: m_Value())))) && |
| 504 | match(V: Op, P: m_Instruction(I&: Neg))) { |
| 505 | LLVM_DEBUG(dbgs() |
| 506 | << "MORPH LEAF: " << *Op << " (" << Weight << ") TO " ); |
| 507 | Instruction *Mul = LowerNegateToMultiply(Neg); |
| 508 | LLVM_DEBUG(dbgs() << *Mul << '\n'); |
| 509 | Worklist.push_back(Elt: std::make_pair(x&: Mul, y&: Weight)); |
| 510 | for (User *U : Mul->users()) { |
| 511 | if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(Val: U)) |
| 512 | ToRedo.insert(X: UserBO); |
| 513 | } |
| 514 | ToRedo.insert(X: Neg); |
| 515 | Changed = true; |
| 516 | continue; |
| 517 | } |
| 518 | |
| 519 | // Failed to morph into an expression of the right type. This really is |
| 520 | // a leaf. |
| 521 | LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n" ); |
| 522 | assert(!isReassociableOp(Op, Opcode) && "Value was morphed?" ); |
| 523 | LeafOrder.push_back(Elt: Op); |
| 524 | Leaves[Op] = Weight; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | // The leaves, repeated according to their weights, represent the linearized |
| 529 | // form of the expression. |
| 530 | for (Value *V : LeafOrder) { |
| 531 | LeafMap::iterator It = Leaves.find(Val: V); |
| 532 | if (It == Leaves.end()) |
| 533 | // Node initially thought to be a leaf wasn't. |
| 534 | continue; |
| 535 | assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!" ); |
| 536 | uint64_t Weight = It->second; |
| 537 | // Ensure the leaf is only output once. |
| 538 | It->second = 0; |
| 539 | Ops.push_back(Elt: std::make_pair(x&: V, y&: Weight)); |
| 540 | if (Opcode == Instruction::Add && Flags.AllKnownNonNegative && Flags.HasNSW) |
| 541 | Flags.AllKnownNonNegative &= isKnownNonNegative(V, SQ: SimplifyQuery(DL)); |
| 542 | else if (Opcode == Instruction::Mul) { |
| 543 | // To preserve NUW we need all inputs non-zero. |
| 544 | // To preserve NSW we need all inputs strictly positive. |
| 545 | if (Flags.AllKnownNonZero && |
| 546 | (Flags.HasNUW || (Flags.HasNSW && Flags.AllKnownNonNegative))) { |
| 547 | Flags.AllKnownNonZero &= isKnownNonZero(V, Q: SimplifyQuery(DL)); |
| 548 | if (Flags.HasNSW && Flags.AllKnownNonNegative) |
| 549 | Flags.AllKnownNonNegative &= isKnownNonNegative(V, SQ: SimplifyQuery(DL)); |
| 550 | } |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | // For nilpotent operations or addition there may be no operands, for example |
| 555 | // because the expression was "X xor X" or consisted of 2^Bitwidth additions: |
| 556 | // in both cases the weight reduces to 0 causing the value to be skipped. |
| 557 | if (Ops.empty()) { |
| 558 | Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, Ty: I->getType()); |
| 559 | assert(Identity && "Associative operation without identity!" ); |
| 560 | Ops.emplace_back(Args&: Identity, Args: 1); |
| 561 | } |
| 562 | |
| 563 | return Changed; |
| 564 | } |
| 565 | |
| 566 | /// Now that the operands for this expression tree are |
| 567 | /// linearized and optimized, emit them in-order. |
| 568 | void ReassociatePass::RewriteExprTree(BinaryOperator *I, |
| 569 | SmallVectorImpl<ValueEntry> &Ops, |
| 570 | OverflowTracking Flags) { |
| 571 | assert(Ops.size() > 1 && "Single values should be used directly!" ); |
| 572 | |
| 573 | // Since our optimizations should never increase the number of operations, the |
| 574 | // new expression can usually be written reusing the existing binary operators |
| 575 | // from the original expression tree, without creating any new instructions, |
| 576 | // though the rewritten expression may have a completely different topology. |
| 577 | // We take care to not change anything if the new expression will be the same |
| 578 | // as the original. If more than trivial changes (like commuting operands) |
| 579 | // were made then we are obliged to clear out any optional subclass data like |
| 580 | // nsw flags. |
| 581 | |
| 582 | /// NodesToRewrite - Nodes from the original expression available for writing |
| 583 | /// the new expression into. |
| 584 | SmallVector<BinaryOperator*, 8> NodesToRewrite; |
| 585 | unsigned Opcode = I->getOpcode(); |
| 586 | BinaryOperator *Op = I; |
| 587 | |
| 588 | /// NotRewritable - The operands being written will be the leaves of the new |
| 589 | /// expression and must not be used as inner nodes (via NodesToRewrite) by |
| 590 | /// mistake. Inner nodes are always reassociable, and usually leaves are not |
| 591 | /// (if they were they would have been incorporated into the expression and so |
| 592 | /// would not be leaves), so most of the time there is no danger of this. But |
| 593 | /// in rare cases a leaf may become reassociable if an optimization kills uses |
| 594 | /// of it, or it may momentarily become reassociable during rewriting (below) |
| 595 | /// due it being removed as an operand of one of its uses. Ensure that misuse |
| 596 | /// of leaf nodes as inner nodes cannot occur by remembering all of the future |
| 597 | /// leaves and refusing to reuse any of them as inner nodes. |
| 598 | SmallPtrSet<Value*, 8> NotRewritable; |
| 599 | for (const ValueEntry &Op : Ops) |
| 600 | NotRewritable.insert(Ptr: Op.Op); |
| 601 | |
| 602 | // ExpressionChangedStart - Non-null if the rewritten expression differs from |
| 603 | // the original in some non-trivial way, requiring the clearing of optional |
| 604 | // flags. Flags are cleared from the operator in ExpressionChangedStart up to |
| 605 | // ExpressionChangedEnd inclusive. |
| 606 | BinaryOperator *ExpressionChangedStart = nullptr, |
| 607 | *ExpressionChangedEnd = nullptr; |
| 608 | for (unsigned i = 0; ; ++i) { |
| 609 | // The last operation (which comes earliest in the IR) is special as both |
| 610 | // operands will come from Ops, rather than just one with the other being |
| 611 | // a subexpression. |
| 612 | if (i+2 == Ops.size()) { |
| 613 | Value *NewLHS = Ops[i].Op; |
| 614 | Value *NewRHS = Ops[i+1].Op; |
| 615 | Value *OldLHS = Op->getOperand(i_nocapture: 0); |
| 616 | Value *OldRHS = Op->getOperand(i_nocapture: 1); |
| 617 | |
| 618 | if (NewLHS == OldLHS && NewRHS == OldRHS) |
| 619 | // Nothing changed, leave it alone. |
| 620 | break; |
| 621 | |
| 622 | if (NewLHS == OldRHS && NewRHS == OldLHS) { |
| 623 | // The order of the operands was reversed. Swap them. |
| 624 | LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 625 | Op->swapOperands(); |
| 626 | LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 627 | MadeChange = true; |
| 628 | ++NumChanged; |
| 629 | break; |
| 630 | } |
| 631 | |
| 632 | // The new operation differs non-trivially from the original. Overwrite |
| 633 | // the old operands with the new ones. |
| 634 | LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 635 | if (NewLHS != OldLHS) { |
| 636 | BinaryOperator *BO = isReassociableOp(V: OldLHS, Opcode); |
| 637 | if (BO && !NotRewritable.count(Ptr: BO)) |
| 638 | NodesToRewrite.push_back(Elt: BO); |
| 639 | Op->setOperand(i_nocapture: 0, Val_nocapture: NewLHS); |
| 640 | } |
| 641 | if (NewRHS != OldRHS) { |
| 642 | BinaryOperator *BO = isReassociableOp(V: OldRHS, Opcode); |
| 643 | if (BO && !NotRewritable.count(Ptr: BO)) |
| 644 | NodesToRewrite.push_back(Elt: BO); |
| 645 | Op->setOperand(i_nocapture: 1, Val_nocapture: NewRHS); |
| 646 | } |
| 647 | LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 648 | |
| 649 | ExpressionChangedStart = Op; |
| 650 | if (!ExpressionChangedEnd) |
| 651 | ExpressionChangedEnd = Op; |
| 652 | MadeChange = true; |
| 653 | ++NumChanged; |
| 654 | |
| 655 | break; |
| 656 | } |
| 657 | |
| 658 | // Not the last operation. The left-hand side will be a sub-expression |
| 659 | // while the right-hand side will be the current element of Ops. |
| 660 | Value *NewRHS = Ops[i].Op; |
| 661 | if (NewRHS != Op->getOperand(i_nocapture: 1)) { |
| 662 | LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 663 | if (NewRHS == Op->getOperand(i_nocapture: 0)) { |
| 664 | // The new right-hand side was already present as the left operand. If |
| 665 | // we are lucky then swapping the operands will sort out both of them. |
| 666 | Op->swapOperands(); |
| 667 | } else { |
| 668 | // Overwrite with the new right-hand side. |
| 669 | BinaryOperator *BO = isReassociableOp(V: Op->getOperand(i_nocapture: 1), Opcode); |
| 670 | if (BO && !NotRewritable.count(Ptr: BO)) |
| 671 | NodesToRewrite.push_back(Elt: BO); |
| 672 | Op->setOperand(i_nocapture: 1, Val_nocapture: NewRHS); |
| 673 | ExpressionChangedStart = Op; |
| 674 | if (!ExpressionChangedEnd) |
| 675 | ExpressionChangedEnd = Op; |
| 676 | } |
| 677 | LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 678 | MadeChange = true; |
| 679 | ++NumChanged; |
| 680 | } |
| 681 | |
| 682 | // Now deal with the left-hand side. If this is already an operation node |
| 683 | // from the original expression then just rewrite the rest of the expression |
| 684 | // into it. |
| 685 | BinaryOperator *BO = isReassociableOp(V: Op->getOperand(i_nocapture: 0), Opcode); |
| 686 | if (BO && !NotRewritable.count(Ptr: BO)) { |
| 687 | Op = BO; |
| 688 | continue; |
| 689 | } |
| 690 | |
| 691 | // Otherwise, grab a spare node from the original expression and use that as |
| 692 | // the left-hand side. If there are no nodes left then the optimizers made |
| 693 | // an expression with more nodes than the original! This usually means that |
| 694 | // they did something stupid but it might mean that the problem was just too |
| 695 | // hard (finding the mimimal number of multiplications needed to realize a |
| 696 | // multiplication expression is NP-complete). Whatever the reason, smart or |
| 697 | // stupid, create a new node if there are none left. |
| 698 | BinaryOperator *NewOp; |
| 699 | if (NodesToRewrite.empty()) { |
| 700 | Constant *Poison = PoisonValue::get(T: I->getType()); |
| 701 | NewOp = BinaryOperator::Create(Op: Instruction::BinaryOps(Opcode), S1: Poison, |
| 702 | S2: Poison, Name: "" , InsertBefore: I->getIterator()); |
| 703 | if (isa<FPMathOperator>(Val: NewOp)) |
| 704 | NewOp->setFastMathFlags(I->getFastMathFlags()); |
| 705 | } else { |
| 706 | NewOp = NodesToRewrite.pop_back_val(); |
| 707 | } |
| 708 | |
| 709 | LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 710 | Op->setOperand(i_nocapture: 0, Val_nocapture: NewOp); |
| 711 | LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 712 | ExpressionChangedStart = Op; |
| 713 | if (!ExpressionChangedEnd) |
| 714 | ExpressionChangedEnd = Op; |
| 715 | MadeChange = true; |
| 716 | ++NumChanged; |
| 717 | Op = NewOp; |
| 718 | } |
| 719 | |
| 720 | // If the expression changed non-trivially then clear out all subclass data |
| 721 | // starting from the operator specified in ExpressionChanged, and compactify |
| 722 | // the operators to just before the expression root to guarantee that the |
| 723 | // expression tree is dominated by all of Ops. |
| 724 | if (ExpressionChangedStart) { |
| 725 | bool ClearFlags = true; |
| 726 | do { |
| 727 | // Preserve flags. |
| 728 | if (ClearFlags) { |
| 729 | if (isa<FPMathOperator>(Val: I)) { |
| 730 | FastMathFlags Flags = I->getFastMathFlags(); |
| 731 | ExpressionChangedStart->clearSubclassOptionalData(); |
| 732 | ExpressionChangedStart->setFastMathFlags(Flags); |
| 733 | } else { |
| 734 | Flags.applyFlags(I&: *ExpressionChangedStart); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | if (ExpressionChangedStart == ExpressionChangedEnd) |
| 739 | ClearFlags = false; |
| 740 | if (ExpressionChangedStart == I) |
| 741 | break; |
| 742 | |
| 743 | // Discard any debug info related to the expressions that has changed (we |
| 744 | // can leave debug info related to the root and any operation that didn't |
| 745 | // change, since the result of the expression tree should be the same |
| 746 | // even after reassociation). |
| 747 | if (ClearFlags) |
| 748 | replaceDbgUsesWithUndef(I: ExpressionChangedStart); |
| 749 | |
| 750 | ExpressionChangedStart->moveBefore(InsertPos: I->getIterator()); |
| 751 | ExpressionChangedStart = |
| 752 | cast<BinaryOperator>(Val: *ExpressionChangedStart->user_begin()); |
| 753 | } while (true); |
| 754 | } |
| 755 | |
| 756 | // Throw away any left over nodes from the original expression. |
| 757 | RedoInsts.insert_range(R&: NodesToRewrite); |
| 758 | } |
| 759 | |
| 760 | /// Insert instructions before the instruction pointed to by BI, |
| 761 | /// that computes the negative version of the value specified. The negative |
| 762 | /// version of the value is returned, and BI is left pointing at the instruction |
| 763 | /// that should be processed next by the reassociation pass. |
| 764 | /// Also add intermediate instructions to the redo list that are modified while |
| 765 | /// pushing the negates through adds. These will be revisited to see if |
| 766 | /// additional opportunities have been exposed. |
| 767 | static Value *NegateValue(Value *V, Instruction *BI, |
| 768 | ReassociatePass::OrderedSet &ToRedo) { |
| 769 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
| 770 | const DataLayout &DL = BI->getDataLayout(); |
| 771 | Constant *Res = C->getType()->isFPOrFPVectorTy() |
| 772 | ? ConstantFoldUnaryOpOperand(Opcode: Instruction::FNeg, Op: C, DL) |
| 773 | : ConstantExpr::getNeg(C); |
| 774 | if (Res) |
| 775 | return Res; |
| 776 | } |
| 777 | |
| 778 | // We are trying to expose opportunity for reassociation. One of the things |
| 779 | // that we want to do to achieve this is to push a negation as deep into an |
| 780 | // expression chain as possible, to expose the add instructions. In practice, |
| 781 | // this means that we turn this: |
| 782 | // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D |
| 783 | // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate |
| 784 | // the constants. We assume that instcombine will clean up the mess later if |
| 785 | // we introduce tons of unnecessary negation instructions. |
| 786 | // |
| 787 | if (BinaryOperator *I = |
| 788 | isReassociableOp(V, Opcode1: Instruction::Add, Opcode2: Instruction::FAdd)) { |
| 789 | // Push the negates through the add. |
| 790 | I->setOperand(i_nocapture: 0, Val_nocapture: NegateValue(V: I->getOperand(i_nocapture: 0), BI, ToRedo)); |
| 791 | I->setOperand(i_nocapture: 1, Val_nocapture: NegateValue(V: I->getOperand(i_nocapture: 1), BI, ToRedo)); |
| 792 | if (I->getOpcode() == Instruction::Add) { |
| 793 | I->setHasNoUnsignedWrap(false); |
| 794 | I->setHasNoSignedWrap(false); |
| 795 | } |
| 796 | |
| 797 | // We must move the add instruction here, because the neg instructions do |
| 798 | // not dominate the old add instruction in general. By moving it, we are |
| 799 | // assured that the neg instructions we just inserted dominate the |
| 800 | // instruction we are about to insert after them. |
| 801 | // |
| 802 | I->moveBefore(InsertPos: BI->getIterator()); |
| 803 | I->setName(I->getName()+".neg" ); |
| 804 | |
| 805 | // Add the intermediate negates to the redo list as processing them later |
| 806 | // could expose more reassociating opportunities. |
| 807 | ToRedo.insert(X: I); |
| 808 | return I; |
| 809 | } |
| 810 | |
| 811 | // Okay, we need to materialize a negated version of V with an instruction. |
| 812 | // Scan the use lists of V to see if we have one already. |
| 813 | for (User *U : V->users()) { |
| 814 | if (!match(V: U, P: m_Neg(V: m_Value())) && !match(V: U, P: m_FNeg(X: m_Value()))) |
| 815 | continue; |
| 816 | |
| 817 | // We found one! Now we have to make sure that the definition dominates |
| 818 | // this use. We do this by moving it to the entry block (if it is a |
| 819 | // non-instruction value) or right after the definition. These negates will |
| 820 | // be zapped by reassociate later, so we don't need much finesse here. |
| 821 | Instruction *TheNeg = dyn_cast<Instruction>(Val: U); |
| 822 | |
| 823 | // We can't safely propagate a vector zero constant with poison/undef lanes. |
| 824 | Constant *C; |
| 825 | if (match(V: TheNeg, P: m_BinOp(L: m_Constant(C), R: m_Value())) && |
| 826 | C->containsUndefOrPoisonElement()) |
| 827 | continue; |
| 828 | |
| 829 | // Verify that the negate is in this function, V might be a constant expr. |
| 830 | if (!TheNeg || |
| 831 | TheNeg->getParent()->getParent() != BI->getParent()->getParent()) |
| 832 | continue; |
| 833 | |
| 834 | BasicBlock::iterator InsertPt; |
| 835 | if (Instruction *InstInput = dyn_cast<Instruction>(Val: V)) { |
| 836 | auto InsertPtOpt = InstInput->getInsertionPointAfterDef(); |
| 837 | if (!InsertPtOpt) |
| 838 | continue; |
| 839 | InsertPt = *InsertPtOpt; |
| 840 | } else { |
| 841 | InsertPt = TheNeg->getFunction() |
| 842 | ->getEntryBlock() |
| 843 | .getFirstNonPHIOrDbg() |
| 844 | ->getIterator(); |
| 845 | } |
| 846 | |
| 847 | // Check that if TheNeg is moved out of its parent block, we drop its |
| 848 | // debug location to avoid extra coverage. |
| 849 | // See test dropping_debugloc_the_neg.ll for a detailed example. |
| 850 | if (TheNeg->getParent() != InsertPt->getParent()) |
| 851 | TheNeg->dropLocation(); |
| 852 | TheNeg->moveBefore(BB&: *InsertPt->getParent(), I: InsertPt); |
| 853 | |
| 854 | if (TheNeg->getOpcode() == Instruction::Sub) { |
| 855 | TheNeg->setHasNoUnsignedWrap(false); |
| 856 | TheNeg->setHasNoSignedWrap(false); |
| 857 | } else { |
| 858 | TheNeg->andIRFlags(V: BI); |
| 859 | } |
| 860 | ToRedo.insert(X: TheNeg); |
| 861 | return TheNeg; |
| 862 | } |
| 863 | |
| 864 | // Insert a 'neg' instruction that subtracts the value from zero to get the |
| 865 | // negation. |
| 866 | Instruction *NewNeg = |
| 867 | CreateNeg(S1: V, Name: V->getName() + ".neg" , InsertBefore: BI->getIterator(), FlagsOp: BI); |
| 868 | // NewNeg is generated to potentially replace BI, so use its DebugLoc. |
| 869 | NewNeg->setDebugLoc(BI->getDebugLoc()); |
| 870 | ToRedo.insert(X: NewNeg); |
| 871 | return NewNeg; |
| 872 | } |
| 873 | |
| 874 | // See if this `or` looks like an load widening reduction, i.e. that it |
| 875 | // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't |
| 876 | // ensure that the pattern is *really* a load widening reduction, |
| 877 | // we do not ensure that it can really be replaced with a widened load, |
| 878 | // only that it mostly looks like one. |
| 879 | static bool isLoadCombineCandidate(Instruction *Or) { |
| 880 | SmallVector<Instruction *, 8> Worklist; |
| 881 | SmallSet<Instruction *, 8> Visited; |
| 882 | |
| 883 | auto Enqueue = [&](Value *V) { |
| 884 | auto *I = dyn_cast<Instruction>(Val: V); |
| 885 | // Each node of an `or` reduction must be an instruction, |
| 886 | if (!I) |
| 887 | return false; // Node is certainly not part of an `or` load reduction. |
| 888 | // Only process instructions we have never processed before. |
| 889 | if (Visited.insert(Ptr: I).second) |
| 890 | Worklist.emplace_back(Args&: I); |
| 891 | return true; // Will need to look at parent nodes. |
| 892 | }; |
| 893 | |
| 894 | if (!Enqueue(Or)) |
| 895 | return false; // Not an `or` reduction pattern. |
| 896 | |
| 897 | while (!Worklist.empty()) { |
| 898 | auto *I = Worklist.pop_back_val(); |
| 899 | |
| 900 | // Okay, which instruction is this node? |
| 901 | switch (I->getOpcode()) { |
| 902 | case Instruction::Or: |
| 903 | // Got an `or` node. That's fine, just recurse into it's operands. |
| 904 | for (Value *Op : I->operands()) |
| 905 | if (!Enqueue(Op)) |
| 906 | return false; // Not an `or` reduction pattern. |
| 907 | continue; |
| 908 | |
| 909 | case Instruction::Shl: |
| 910 | case Instruction::ZExt: |
| 911 | // `shl`/`zext` nodes are fine, just recurse into their base operand. |
| 912 | if (!Enqueue(I->getOperand(i: 0))) |
| 913 | return false; // Not an `or` reduction pattern. |
| 914 | continue; |
| 915 | |
| 916 | case Instruction::Load: |
| 917 | // Perfect, `load` node means we've reached an edge of the graph. |
| 918 | continue; |
| 919 | |
| 920 | default: // Unknown node. |
| 921 | return false; // Not an `or` reduction pattern. |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | return true; |
| 926 | } |
| 927 | |
| 928 | /// Return true if it may be profitable to convert this (X|Y) into (X+Y). |
| 929 | static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) { |
| 930 | // Don't bother to convert this up unless either the LHS is an associable add |
| 931 | // or subtract or mul or if this is only used by one of the above. |
| 932 | // This is only a compile-time improvement, it is not needed for correctness! |
| 933 | auto isInteresting = [](Value *V) { |
| 934 | for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul, |
| 935 | Instruction::Shl}) |
| 936 | if (isReassociableOp(V, Opcode: Op)) |
| 937 | return true; |
| 938 | return false; |
| 939 | }; |
| 940 | |
| 941 | if (any_of(Range: Or->operands(), P: isInteresting)) |
| 942 | return true; |
| 943 | |
| 944 | Value *VB = Or->user_back(); |
| 945 | if (Or->hasOneUse() && isInteresting(VB)) |
| 946 | return true; |
| 947 | |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | /// If we have (X|Y), and iff X and Y have no common bits set, |
| 952 | /// transform this into (X+Y) to allow arithmetics reassociation. |
| 953 | static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) { |
| 954 | // Convert an or into an add. |
| 955 | BinaryOperator *New = CreateAdd(S1: Or->getOperand(i: 0), S2: Or->getOperand(i: 1), Name: "" , |
| 956 | InsertBefore: Or->getIterator(), FlagsOp: Or); |
| 957 | New->setHasNoSignedWrap(); |
| 958 | New->setHasNoUnsignedWrap(); |
| 959 | New->takeName(V: Or); |
| 960 | |
| 961 | // Everyone now refers to the add instruction. |
| 962 | Or->replaceAllUsesWith(V: New); |
| 963 | New->setDebugLoc(Or->getDebugLoc()); |
| 964 | |
| 965 | LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n'); |
| 966 | return New; |
| 967 | } |
| 968 | |
| 969 | /// Return true if we should break up this subtract of X-Y into (X + -Y). |
| 970 | static bool ShouldBreakUpSubtract(Instruction *Sub) { |
| 971 | // If this is a negation, we can't split it up! |
| 972 | if (match(V: Sub, P: m_Neg(V: m_Value())) || match(V: Sub, P: m_FNeg(X: m_Value()))) |
| 973 | return false; |
| 974 | |
| 975 | // Don't breakup X - undef. |
| 976 | if (isa<UndefValue>(Val: Sub->getOperand(i: 1))) |
| 977 | return false; |
| 978 | |
| 979 | // Don't bother to break this up unless either the LHS is an associable add or |
| 980 | // subtract or if this is only used by one. |
| 981 | Value *V0 = Sub->getOperand(i: 0); |
| 982 | if (isReassociableOp(V: V0, Opcode1: Instruction::Add, Opcode2: Instruction::FAdd) || |
| 983 | isReassociableOp(V: V0, Opcode1: Instruction::Sub, Opcode2: Instruction::FSub)) |
| 984 | return true; |
| 985 | Value *V1 = Sub->getOperand(i: 1); |
| 986 | if (isReassociableOp(V: V1, Opcode1: Instruction::Add, Opcode2: Instruction::FAdd) || |
| 987 | isReassociableOp(V: V1, Opcode1: Instruction::Sub, Opcode2: Instruction::FSub)) |
| 988 | return true; |
| 989 | Value *VB = Sub->user_back(); |
| 990 | if (Sub->hasOneUse() && |
| 991 | (isReassociableOp(V: VB, Opcode1: Instruction::Add, Opcode2: Instruction::FAdd) || |
| 992 | isReassociableOp(V: VB, Opcode1: Instruction::Sub, Opcode2: Instruction::FSub))) |
| 993 | return true; |
| 994 | |
| 995 | return false; |
| 996 | } |
| 997 | |
| 998 | /// If we have (X-Y), and if either X is an add, or if this is only used by an |
| 999 | /// add, transform this into (X+(0-Y)) to promote better reassociation. |
| 1000 | static BinaryOperator *BreakUpSubtract(Instruction *Sub, |
| 1001 | ReassociatePass::OrderedSet &ToRedo) { |
| 1002 | // Convert a subtract into an add and a neg instruction. This allows sub |
| 1003 | // instructions to be commuted with other add instructions. |
| 1004 | // |
| 1005 | // Calculate the negative value of Operand 1 of the sub instruction, |
| 1006 | // and set it as the RHS of the add instruction we just made. |
| 1007 | Value *NegVal = NegateValue(V: Sub->getOperand(i: 1), BI: Sub, ToRedo); |
| 1008 | BinaryOperator *New = |
| 1009 | CreateAdd(S1: Sub->getOperand(i: 0), S2: NegVal, Name: "" , InsertBefore: Sub->getIterator(), FlagsOp: Sub); |
| 1010 | Sub->setOperand(i: 0, Val: Constant::getNullValue(Ty: Sub->getType())); // Drop use of op. |
| 1011 | Sub->setOperand(i: 1, Val: Constant::getNullValue(Ty: Sub->getType())); // Drop use of op. |
| 1012 | New->takeName(V: Sub); |
| 1013 | |
| 1014 | // Everyone now refers to the add instruction. |
| 1015 | Sub->replaceAllUsesWith(V: New); |
| 1016 | New->setDebugLoc(Sub->getDebugLoc()); |
| 1017 | |
| 1018 | LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); |
| 1019 | return New; |
| 1020 | } |
| 1021 | |
| 1022 | /// If this is a shift of a reassociable multiply or is used by one, change |
| 1023 | /// this into a multiply by a constant to assist with further reassociation. |
| 1024 | static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { |
| 1025 | Constant *MulCst = ConstantInt::get(Ty: Shl->getType(), V: 1); |
| 1026 | auto *SA = cast<ConstantInt>(Val: Shl->getOperand(i: 1)); |
| 1027 | MulCst = ConstantFoldBinaryInstruction(Opcode: Instruction::Shl, V1: MulCst, V2: SA); |
| 1028 | assert(MulCst && "Constant folding of immediate constants failed" ); |
| 1029 | |
| 1030 | BinaryOperator *Mul = BinaryOperator::CreateMul(V1: Shl->getOperand(i: 0), V2: MulCst, |
| 1031 | Name: "" , InsertBefore: Shl->getIterator()); |
| 1032 | Shl->setOperand(i: 0, Val: PoisonValue::get(T: Shl->getType())); // Drop use of op. |
| 1033 | Mul->takeName(V: Shl); |
| 1034 | |
| 1035 | // Everyone now refers to the mul instruction. |
| 1036 | Shl->replaceAllUsesWith(V: Mul); |
| 1037 | Mul->setDebugLoc(Shl->getDebugLoc()); |
| 1038 | |
| 1039 | // We can safely preserve the nuw flag in all cases. It's also safe to turn a |
| 1040 | // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special |
| 1041 | // handling. It can be preserved as long as we're not left shifting by |
| 1042 | // bitwidth - 1. |
| 1043 | bool NSW = cast<BinaryOperator>(Val: Shl)->hasNoSignedWrap(); |
| 1044 | bool NUW = cast<BinaryOperator>(Val: Shl)->hasNoUnsignedWrap(); |
| 1045 | unsigned BitWidth = Shl->getType()->getScalarSizeInBits(); |
| 1046 | if (NSW && (NUW || SA->getValue().ult(RHS: BitWidth - 1))) |
| 1047 | Mul->setHasNoSignedWrap(true); |
| 1048 | Mul->setHasNoUnsignedWrap(NUW); |
| 1049 | return Mul; |
| 1050 | } |
| 1051 | |
| 1052 | /// Scan backwards and forwards among values with the same rank as element i |
| 1053 | /// to see if X exists. If X does not exist, return i. This is useful when |
| 1054 | /// scanning for 'x' when we see '-x' because they both get the same rank. |
| 1055 | static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, |
| 1056 | unsigned i, Value *X) { |
| 1057 | unsigned XRank = Ops[i].Rank; |
| 1058 | unsigned e = Ops.size(); |
| 1059 | for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { |
| 1060 | if (Ops[j].Op == X) |
| 1061 | return j; |
| 1062 | if (Instruction *I1 = dyn_cast<Instruction>(Val: Ops[j].Op)) |
| 1063 | if (Instruction *I2 = dyn_cast<Instruction>(Val: X)) |
| 1064 | if (I1->isIdenticalTo(I: I2)) |
| 1065 | return j; |
| 1066 | } |
| 1067 | // Scan backwards. |
| 1068 | for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { |
| 1069 | if (Ops[j].Op == X) |
| 1070 | return j; |
| 1071 | if (Instruction *I1 = dyn_cast<Instruction>(Val: Ops[j].Op)) |
| 1072 | if (Instruction *I2 = dyn_cast<Instruction>(Val: X)) |
| 1073 | if (I1->isIdenticalTo(I: I2)) |
| 1074 | return j; |
| 1075 | } |
| 1076 | return i; |
| 1077 | } |
| 1078 | |
| 1079 | /// Emit a tree of add instructions, summing Ops together |
| 1080 | /// and returning the result. Insert the tree before I. |
| 1081 | static Value *EmitAddTreeOfValues(Instruction *I, |
| 1082 | SmallVectorImpl<WeakTrackingVH> &Ops) { |
| 1083 | if (Ops.size() == 1) return Ops.back(); |
| 1084 | |
| 1085 | Value *V1 = Ops.pop_back_val(); |
| 1086 | Value *V2 = EmitAddTreeOfValues(I, Ops); |
| 1087 | auto *NewAdd = CreateAdd(S1: V2, S2: V1, Name: "reass.add" , InsertBefore: I->getIterator(), FlagsOp: I); |
| 1088 | NewAdd->setDebugLoc(I->getDebugLoc()); |
| 1089 | return NewAdd; |
| 1090 | } |
| 1091 | |
| 1092 | /// If V is an expression tree that is a multiplication sequence, |
| 1093 | /// and if this sequence contains a multiply by Factor, |
| 1094 | /// remove Factor from the tree and return the new tree. |
| 1095 | /// If new instructions are inserted to generate this tree, DL should be used |
| 1096 | /// as the DebugLoc for these instructions. |
| 1097 | Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor, |
| 1098 | DebugLoc DL) { |
| 1099 | BinaryOperator *BO = isReassociableOp(V, Opcode1: Instruction::Mul, Opcode2: Instruction::FMul); |
| 1100 | if (!BO) |
| 1101 | return nullptr; |
| 1102 | |
| 1103 | SmallVector<RepeatedValue, 8> Tree; |
| 1104 | OverflowTracking Flags; |
| 1105 | MadeChange |= LinearizeExprTree(I: BO, Ops&: Tree, ToRedo&: RedoInsts, Flags); |
| 1106 | SmallVector<ValueEntry, 8> Factors; |
| 1107 | Factors.reserve(N: Tree.size()); |
| 1108 | for (const RepeatedValue &E : Tree) |
| 1109 | Factors.append(NumInputs: E.second, Elt: ValueEntry(getRank(V: E.first), E.first)); |
| 1110 | |
| 1111 | bool FoundFactor = false; |
| 1112 | bool NeedsNegate = false; |
| 1113 | for (unsigned i = 0, e = Factors.size(); i != e; ++i) { |
| 1114 | if (Factors[i].Op == Factor) { |
| 1115 | FoundFactor = true; |
| 1116 | Factors.erase(CI: Factors.begin()+i); |
| 1117 | break; |
| 1118 | } |
| 1119 | |
| 1120 | // If this is a negative version of this factor, remove it. |
| 1121 | if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Val: Factor)) { |
| 1122 | if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Val: Factors[i].Op)) |
| 1123 | if (FC1->getValue() == -FC2->getValue()) { |
| 1124 | FoundFactor = NeedsNegate = true; |
| 1125 | Factors.erase(CI: Factors.begin()+i); |
| 1126 | break; |
| 1127 | } |
| 1128 | } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Val: Factor)) { |
| 1129 | if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Val: Factors[i].Op)) { |
| 1130 | const APFloat &F1 = FC1->getValueAPF(); |
| 1131 | APFloat F2(FC2->getValueAPF()); |
| 1132 | F2.changeSign(); |
| 1133 | if (F1 == F2) { |
| 1134 | FoundFactor = NeedsNegate = true; |
| 1135 | Factors.erase(CI: Factors.begin() + i); |
| 1136 | break; |
| 1137 | } |
| 1138 | } |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | if (!FoundFactor) { |
| 1143 | // Make sure to restore the operands to the expression tree. |
| 1144 | RewriteExprTree(I: BO, Ops&: Factors, Flags); |
| 1145 | return nullptr; |
| 1146 | } |
| 1147 | |
| 1148 | BasicBlock::iterator InsertPt = ++BO->getIterator(); |
| 1149 | |
| 1150 | // If this was just a single multiply, remove the multiply and return the only |
| 1151 | // remaining operand. |
| 1152 | if (Factors.size() == 1) { |
| 1153 | RedoInsts.insert(X: BO); |
| 1154 | V = Factors[0].Op; |
| 1155 | } else { |
| 1156 | RewriteExprTree(I: BO, Ops&: Factors, Flags); |
| 1157 | V = BO; |
| 1158 | } |
| 1159 | |
| 1160 | if (NeedsNegate) { |
| 1161 | V = CreateNeg(S1: V, Name: "neg" , InsertBefore: InsertPt, FlagsOp: BO); |
| 1162 | cast<Instruction>(Val: V)->setDebugLoc(DL); |
| 1163 | } |
| 1164 | |
| 1165 | return V; |
| 1166 | } |
| 1167 | |
| 1168 | /// If V is a single-use multiply, recursively add its operands as factors, |
| 1169 | /// otherwise add V to the list of factors. |
| 1170 | /// |
| 1171 | /// Ops is the top-level list of add operands we're trying to factor. |
| 1172 | static void FindSingleUseMultiplyFactors(Value *V, |
| 1173 | SmallVectorImpl<Value*> &Factors) { |
| 1174 | BinaryOperator *BO = isReassociableOp(V, Opcode1: Instruction::Mul, Opcode2: Instruction::FMul); |
| 1175 | if (!BO) { |
| 1176 | Factors.push_back(Elt: V); |
| 1177 | return; |
| 1178 | } |
| 1179 | |
| 1180 | // Otherwise, add the LHS and RHS to the list of factors. |
| 1181 | FindSingleUseMultiplyFactors(V: BO->getOperand(i_nocapture: 1), Factors); |
| 1182 | FindSingleUseMultiplyFactors(V: BO->getOperand(i_nocapture: 0), Factors); |
| 1183 | } |
| 1184 | |
| 1185 | /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. |
| 1186 | /// This optimizes based on identities. If it can be reduced to a single Value, |
| 1187 | /// it is returned, otherwise the Ops list is mutated as necessary. |
| 1188 | static Value *OptimizeAndOrXor(unsigned Opcode, |
| 1189 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1190 | // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. |
| 1191 | // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. |
| 1192 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| 1193 | // First, check for X and ~X in the operand list. |
| 1194 | assert(i < Ops.size()); |
| 1195 | Value *X; |
| 1196 | if (match(V: Ops[i].Op, P: m_Not(V: m_Value(V&: X)))) { // Cannot occur for ^. |
| 1197 | unsigned FoundX = FindInOperandList(Ops, i, X); |
| 1198 | if (FoundX != i) { |
| 1199 | if (Opcode == Instruction::And) // ...&X&~X = 0 |
| 1200 | return Constant::getNullValue(Ty: X->getType()); |
| 1201 | |
| 1202 | if (Opcode == Instruction::Or) // ...|X|~X = -1 |
| 1203 | return Constant::getAllOnesValue(Ty: X->getType()); |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | // Next, check for duplicate pairs of values, which we assume are next to |
| 1208 | // each other, due to our sorting criteria. |
| 1209 | assert(i < Ops.size()); |
| 1210 | if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { |
| 1211 | if (Opcode == Instruction::And || Opcode == Instruction::Or) { |
| 1212 | // Drop duplicate values for And and Or. |
| 1213 | Ops.erase(CI: Ops.begin()+i); |
| 1214 | --i; --e; |
| 1215 | ++NumAnnihil; |
| 1216 | continue; |
| 1217 | } |
| 1218 | |
| 1219 | // Drop pairs of values for Xor. |
| 1220 | assert(Opcode == Instruction::Xor); |
| 1221 | if (e == 2) |
| 1222 | return Constant::getNullValue(Ty: Ops[0].Op->getType()); |
| 1223 | |
| 1224 | // Y ^ X^X -> Y |
| 1225 | Ops.erase(CS: Ops.begin()+i, CE: Ops.begin()+i+2); |
| 1226 | i -= 1; e -= 2; |
| 1227 | ++NumAnnihil; |
| 1228 | } |
| 1229 | } |
| 1230 | return nullptr; |
| 1231 | } |
| 1232 | |
| 1233 | /// Helper function of CombineXorOpnd(). It creates a bitwise-and |
| 1234 | /// instruction with the given two operands, and return the resulting |
| 1235 | /// instruction. There are two special cases: 1) if the constant operand is 0, |
| 1236 | /// it will return NULL. 2) if the constant is ~0, the symbolic operand will |
| 1237 | /// be returned. |
| 1238 | static Value *createAndInstr(BasicBlock::iterator InsertBefore, Value *Opnd, |
| 1239 | const APInt &ConstOpnd) { |
| 1240 | if (ConstOpnd.isZero()) |
| 1241 | return nullptr; |
| 1242 | |
| 1243 | if (ConstOpnd.isAllOnes()) |
| 1244 | return Opnd; |
| 1245 | |
| 1246 | Instruction *I = BinaryOperator::CreateAnd( |
| 1247 | V1: Opnd, V2: ConstantInt::get(Ty: Opnd->getType(), V: ConstOpnd), Name: "and.ra" , |
| 1248 | InsertBefore); |
| 1249 | I->setDebugLoc(InsertBefore->getDebugLoc()); |
| 1250 | return I; |
| 1251 | } |
| 1252 | |
| 1253 | // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" |
| 1254 | // into "R ^ C", where C would be 0, and R is a symbolic value. |
| 1255 | // |
| 1256 | // If it was successful, true is returned, and the "R" and "C" is returned |
| 1257 | // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, |
| 1258 | // and both "Res" and "ConstOpnd" remain unchanged. |
| 1259 | bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1, |
| 1260 | APInt &ConstOpnd, Value *&Res) { |
| 1261 | // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 |
| 1262 | // = ((x | c1) ^ c1) ^ (c1 ^ c2) |
| 1263 | // = (x & ~c1) ^ (c1 ^ c2) |
| 1264 | // It is useful only when c1 == c2. |
| 1265 | if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero()) |
| 1266 | return false; |
| 1267 | |
| 1268 | if (!Opnd1->getValue()->hasOneUse()) |
| 1269 | return false; |
| 1270 | |
| 1271 | const APInt &C1 = Opnd1->getConstPart(); |
| 1272 | if (C1 != ConstOpnd) |
| 1273 | return false; |
| 1274 | |
| 1275 | Value *X = Opnd1->getSymbolicPart(); |
| 1276 | Res = createAndInstr(InsertBefore: It, Opnd: X, ConstOpnd: ~C1); |
| 1277 | // ConstOpnd was C2, now C1 ^ C2. |
| 1278 | ConstOpnd ^= C1; |
| 1279 | |
| 1280 | if (Instruction *T = dyn_cast<Instruction>(Val: Opnd1->getValue())) |
| 1281 | RedoInsts.insert(X: T); |
| 1282 | return true; |
| 1283 | } |
| 1284 | |
| 1285 | // Helper function of OptimizeXor(). It tries to simplify |
| 1286 | // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a |
| 1287 | // symbolic value. |
| 1288 | // |
| 1289 | // If it was successful, true is returned, and the "R" and "C" is returned |
| 1290 | // via "Res" and "ConstOpnd", respectively (If the entire expression is |
| 1291 | // evaluated to a constant, the Res is set to NULL); otherwise, false is |
| 1292 | // returned, and both "Res" and "ConstOpnd" remain unchanged. |
| 1293 | bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1, |
| 1294 | XorOpnd *Opnd2, APInt &ConstOpnd, |
| 1295 | Value *&Res) { |
| 1296 | Value *X = Opnd1->getSymbolicPart(); |
| 1297 | if (X != Opnd2->getSymbolicPart()) |
| 1298 | return false; |
| 1299 | |
| 1300 | // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) |
| 1301 | int DeadInstNum = 1; |
| 1302 | if (Opnd1->getValue()->hasOneUse()) |
| 1303 | DeadInstNum++; |
| 1304 | if (Opnd2->getValue()->hasOneUse()) |
| 1305 | DeadInstNum++; |
| 1306 | |
| 1307 | // Xor-Rule 2: |
| 1308 | // (x | c1) ^ (x & c2) |
| 1309 | // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 |
| 1310 | // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 |
| 1311 | // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 |
| 1312 | // |
| 1313 | if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { |
| 1314 | if (Opnd2->isOrExpr()) |
| 1315 | std::swap(a&: Opnd1, b&: Opnd2); |
| 1316 | |
| 1317 | const APInt &C1 = Opnd1->getConstPart(); |
| 1318 | const APInt &C2 = Opnd2->getConstPart(); |
| 1319 | APInt C3((~C1) ^ C2); |
| 1320 | |
| 1321 | // Do not increase code size! |
| 1322 | if (!C3.isZero() && !C3.isAllOnes()) { |
| 1323 | int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; |
| 1324 | if (NewInstNum > DeadInstNum) |
| 1325 | return false; |
| 1326 | } |
| 1327 | |
| 1328 | Res = createAndInstr(InsertBefore: It, Opnd: X, ConstOpnd: C3); |
| 1329 | ConstOpnd ^= C1; |
| 1330 | } else if (Opnd1->isOrExpr()) { |
| 1331 | // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 |
| 1332 | // |
| 1333 | const APInt &C1 = Opnd1->getConstPart(); |
| 1334 | const APInt &C2 = Opnd2->getConstPart(); |
| 1335 | APInt C3 = C1 ^ C2; |
| 1336 | |
| 1337 | // Do not increase code size |
| 1338 | if (!C3.isZero() && !C3.isAllOnes()) { |
| 1339 | int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; |
| 1340 | if (NewInstNum > DeadInstNum) |
| 1341 | return false; |
| 1342 | } |
| 1343 | |
| 1344 | Res = createAndInstr(InsertBefore: It, Opnd: X, ConstOpnd: C3); |
| 1345 | ConstOpnd ^= C3; |
| 1346 | } else { |
| 1347 | // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) |
| 1348 | // |
| 1349 | const APInt &C1 = Opnd1->getConstPart(); |
| 1350 | const APInt &C2 = Opnd2->getConstPart(); |
| 1351 | APInt C3 = C1 ^ C2; |
| 1352 | Res = createAndInstr(InsertBefore: It, Opnd: X, ConstOpnd: C3); |
| 1353 | } |
| 1354 | |
| 1355 | // Put the original operands in the Redo list; hope they will be deleted |
| 1356 | // as dead code. |
| 1357 | if (Instruction *T = dyn_cast<Instruction>(Val: Opnd1->getValue())) |
| 1358 | RedoInsts.insert(X: T); |
| 1359 | if (Instruction *T = dyn_cast<Instruction>(Val: Opnd2->getValue())) |
| 1360 | RedoInsts.insert(X: T); |
| 1361 | |
| 1362 | return true; |
| 1363 | } |
| 1364 | |
| 1365 | /// Optimize a series of operands to an 'xor' instruction. If it can be reduced |
| 1366 | /// to a single Value, it is returned, otherwise the Ops list is mutated as |
| 1367 | /// necessary. |
| 1368 | Value *ReassociatePass::OptimizeXor(Instruction *I, |
| 1369 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1370 | if (Value *V = OptimizeAndOrXor(Opcode: Instruction::Xor, Ops)) |
| 1371 | return V; |
| 1372 | |
| 1373 | if (Ops.size() == 1) |
| 1374 | return nullptr; |
| 1375 | |
| 1376 | SmallVector<XorOpnd, 8> Opnds; |
| 1377 | SmallVector<XorOpnd*, 8> OpndPtrs; |
| 1378 | Type *Ty = Ops[0].Op->getType(); |
| 1379 | APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); |
| 1380 | |
| 1381 | // Step 1: Convert ValueEntry to XorOpnd |
| 1382 | for (const ValueEntry &Op : Ops) { |
| 1383 | Value *V = Op.Op; |
| 1384 | const APInt *C; |
| 1385 | // TODO: Support non-splat vectors. |
| 1386 | if (match(V, P: m_APInt(Res&: C))) { |
| 1387 | ConstOpnd ^= *C; |
| 1388 | } else { |
| 1389 | XorOpnd O(V); |
| 1390 | O.setSymbolicRank(getRank(V: O.getSymbolicPart())); |
| 1391 | Opnds.push_back(Elt: O); |
| 1392 | } |
| 1393 | } |
| 1394 | |
| 1395 | // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". |
| 1396 | // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate |
| 1397 | // the "OpndPtrs" as well. For the similar reason, do not fuse this loop |
| 1398 | // with the previous loop --- the iterator of the "Opnds" may be invalidated |
| 1399 | // when new elements are added to the vector. |
| 1400 | for (XorOpnd &Op : Opnds) |
| 1401 | OpndPtrs.push_back(Elt: &Op); |
| 1402 | |
| 1403 | // Step 2: Sort the Xor-Operands in a way such that the operands containing |
| 1404 | // the same symbolic value cluster together. For instance, the input operand |
| 1405 | // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: |
| 1406 | // ("x | 123", "x & 789", "y & 456"). |
| 1407 | // |
| 1408 | // The purpose is twofold: |
| 1409 | // 1) Cluster together the operands sharing the same symbolic-value. |
| 1410 | // 2) Operand having smaller symbolic-value-rank is permuted earlier, which |
| 1411 | // could potentially shorten crital path, and expose more loop-invariants. |
| 1412 | // Note that values' rank are basically defined in RPO order (FIXME). |
| 1413 | // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier |
| 1414 | // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", |
| 1415 | // "z" in the order of X-Y-Z is better than any other orders. |
| 1416 | llvm::stable_sort(Range&: OpndPtrs, C: [](XorOpnd *LHS, XorOpnd *RHS) { |
| 1417 | return LHS->getSymbolicRank() < RHS->getSymbolicRank(); |
| 1418 | }); |
| 1419 | |
| 1420 | // Step 3: Combine adjacent operands |
| 1421 | XorOpnd *PrevOpnd = nullptr; |
| 1422 | bool Changed = false; |
| 1423 | for (unsigned i = 0, e = Opnds.size(); i < e; i++) { |
| 1424 | XorOpnd *CurrOpnd = OpndPtrs[i]; |
| 1425 | // The combined value |
| 1426 | Value *CV; |
| 1427 | |
| 1428 | // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" |
| 1429 | if (!ConstOpnd.isZero() && |
| 1430 | CombineXorOpnd(It: I->getIterator(), Opnd1: CurrOpnd, ConstOpnd, Res&: CV)) { |
| 1431 | Changed = true; |
| 1432 | if (CV) |
| 1433 | *CurrOpnd = XorOpnd(CV); |
| 1434 | else { |
| 1435 | CurrOpnd->Invalidate(); |
| 1436 | continue; |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { |
| 1441 | PrevOpnd = CurrOpnd; |
| 1442 | continue; |
| 1443 | } |
| 1444 | |
| 1445 | // step 3.2: When previous and current operands share the same symbolic |
| 1446 | // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" |
| 1447 | if (CombineXorOpnd(It: I->getIterator(), Opnd1: CurrOpnd, Opnd2: PrevOpnd, ConstOpnd, Res&: CV)) { |
| 1448 | // Remove previous operand |
| 1449 | PrevOpnd->Invalidate(); |
| 1450 | if (CV) { |
| 1451 | *CurrOpnd = XorOpnd(CV); |
| 1452 | PrevOpnd = CurrOpnd; |
| 1453 | } else { |
| 1454 | CurrOpnd->Invalidate(); |
| 1455 | PrevOpnd = nullptr; |
| 1456 | } |
| 1457 | Changed = true; |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | // Step 4: Reassemble the Ops |
| 1462 | if (Changed) { |
| 1463 | Ops.clear(); |
| 1464 | for (const XorOpnd &O : Opnds) { |
| 1465 | if (O.isInvalid()) |
| 1466 | continue; |
| 1467 | ValueEntry VE(getRank(V: O.getValue()), O.getValue()); |
| 1468 | Ops.push_back(Elt: VE); |
| 1469 | } |
| 1470 | if (!ConstOpnd.isZero()) { |
| 1471 | Value *C = ConstantInt::get(Ty, V: ConstOpnd); |
| 1472 | ValueEntry VE(getRank(V: C), C); |
| 1473 | Ops.push_back(Elt: VE); |
| 1474 | } |
| 1475 | unsigned Sz = Ops.size(); |
| 1476 | if (Sz == 1) |
| 1477 | return Ops.back().Op; |
| 1478 | if (Sz == 0) { |
| 1479 | assert(ConstOpnd.isZero()); |
| 1480 | return ConstantInt::get(Ty, V: ConstOpnd); |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | return nullptr; |
| 1485 | } |
| 1486 | |
| 1487 | /// Optimize a series of operands to an 'add' instruction. This |
| 1488 | /// optimizes based on identities. If it can be reduced to a single Value, it |
| 1489 | /// is returned, otherwise the Ops list is mutated as necessary. |
| 1490 | Value *ReassociatePass::OptimizeAdd(Instruction *I, |
| 1491 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1492 | // Scan the operand lists looking for X and -X pairs. If we find any, we |
| 1493 | // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, |
| 1494 | // scan for any |
| 1495 | // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. |
| 1496 | |
| 1497 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| 1498 | Value *TheOp = Ops[i].Op; |
| 1499 | // Check to see if we've seen this operand before. If so, we factor all |
| 1500 | // instances of the operand together. Due to our sorting criteria, we know |
| 1501 | // that these need to be next to each other in the vector. |
| 1502 | if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { |
| 1503 | // Rescan the list, remove all instances of this operand from the expr. |
| 1504 | unsigned NumFound = 0; |
| 1505 | do { |
| 1506 | Ops.erase(CI: Ops.begin()+i); |
| 1507 | ++NumFound; |
| 1508 | } while (i != Ops.size() && Ops[i].Op == TheOp); |
| 1509 | |
| 1510 | LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp |
| 1511 | << '\n'); |
| 1512 | ++NumFactor; |
| 1513 | |
| 1514 | // Insert a new multiply. |
| 1515 | Type *Ty = TheOp->getType(); |
| 1516 | Constant *C = Ty->isIntOrIntVectorTy() ? |
| 1517 | ConstantInt::get(Ty, V: NumFound) : ConstantFP::get(Ty, V: NumFound); |
| 1518 | Instruction *Mul = CreateMul(S1: TheOp, S2: C, Name: "factor" , InsertBefore: I->getIterator(), FlagsOp: I); |
| 1519 | Mul->setDebugLoc(I->getDebugLoc()); |
| 1520 | |
| 1521 | // Now that we have inserted a multiply, optimize it. This allows us to |
| 1522 | // handle cases that require multiple factoring steps, such as this: |
| 1523 | // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 |
| 1524 | RedoInsts.insert(X: Mul); |
| 1525 | |
| 1526 | // If every add operand was a duplicate, return the multiply. |
| 1527 | if (Ops.empty()) |
| 1528 | return Mul; |
| 1529 | |
| 1530 | // Otherwise, we had some input that didn't have the dupe, such as |
| 1531 | // "A + A + B" -> "A*2 + B". Add the new multiply to the list of |
| 1532 | // things being added by this operation. |
| 1533 | Ops.insert(I: Ops.begin(), Elt: ValueEntry(getRank(V: Mul), Mul)); |
| 1534 | |
| 1535 | --i; |
| 1536 | e = Ops.size(); |
| 1537 | continue; |
| 1538 | } |
| 1539 | |
| 1540 | // Check for X and -X or X and ~X in the operand list. |
| 1541 | Value *X; |
| 1542 | if (!match(V: TheOp, P: m_Neg(V: m_Value(V&: X))) && !match(V: TheOp, P: m_Not(V: m_Value(V&: X))) && |
| 1543 | !match(V: TheOp, P: m_FNeg(X: m_Value(V&: X)))) |
| 1544 | continue; |
| 1545 | |
| 1546 | unsigned FoundX = FindInOperandList(Ops, i, X); |
| 1547 | if (FoundX == i) |
| 1548 | continue; |
| 1549 | |
| 1550 | // Remove X and -X from the operand list. |
| 1551 | if (Ops.size() == 2 && |
| 1552 | (match(V: TheOp, P: m_Neg(V: m_Value())) || match(V: TheOp, P: m_FNeg(X: m_Value())))) |
| 1553 | return Constant::getNullValue(Ty: X->getType()); |
| 1554 | |
| 1555 | // Remove X and ~X from the operand list. |
| 1556 | if (Ops.size() == 2 && match(V: TheOp, P: m_Not(V: m_Value()))) |
| 1557 | return Constant::getAllOnesValue(Ty: X->getType()); |
| 1558 | |
| 1559 | Ops.erase(CI: Ops.begin()+i); |
| 1560 | if (i < FoundX) |
| 1561 | --FoundX; |
| 1562 | else |
| 1563 | --i; // Need to back up an extra one. |
| 1564 | Ops.erase(CI: Ops.begin()+FoundX); |
| 1565 | ++NumAnnihil; |
| 1566 | --i; // Revisit element. |
| 1567 | e -= 2; // Removed two elements. |
| 1568 | |
| 1569 | // if X and ~X we append -1 to the operand list. |
| 1570 | if (match(V: TheOp, P: m_Not(V: m_Value()))) { |
| 1571 | Value *V = Constant::getAllOnesValue(Ty: X->getType()); |
| 1572 | Ops.insert(I: Ops.end(), Elt: ValueEntry(getRank(V), V)); |
| 1573 | e += 1; |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | // Scan the operand list, checking to see if there are any common factors |
| 1578 | // between operands. Consider something like A*A+A*B*C+D. We would like to |
| 1579 | // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. |
| 1580 | // To efficiently find this, we count the number of times a factor occurs |
| 1581 | // for any ADD operands that are MULs. |
| 1582 | DenseMap<Value*, unsigned> FactorOccurrences; |
| 1583 | |
| 1584 | // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) |
| 1585 | // where they are actually the same multiply. |
| 1586 | unsigned MaxOcc = 0; |
| 1587 | Value *MaxOccVal = nullptr; |
| 1588 | for (const ValueEntry &Op : Ops) { |
| 1589 | BinaryOperator *BOp = |
| 1590 | isReassociableOp(V: Op.Op, Opcode1: Instruction::Mul, Opcode2: Instruction::FMul); |
| 1591 | if (!BOp) |
| 1592 | continue; |
| 1593 | |
| 1594 | // Compute all of the factors of this added value. |
| 1595 | SmallVector<Value*, 8> Factors; |
| 1596 | FindSingleUseMultiplyFactors(V: BOp, Factors); |
| 1597 | assert(Factors.size() > 1 && "Bad linearize!" ); |
| 1598 | |
| 1599 | // Add one to FactorOccurrences for each unique factor in this op. |
| 1600 | SmallPtrSet<Value*, 8> Duplicates; |
| 1601 | for (Value *Factor : Factors) { |
| 1602 | if (!Duplicates.insert(Ptr: Factor).second) |
| 1603 | continue; |
| 1604 | |
| 1605 | unsigned Occ = ++FactorOccurrences[Factor]; |
| 1606 | if (Occ > MaxOcc) { |
| 1607 | MaxOcc = Occ; |
| 1608 | MaxOccVal = Factor; |
| 1609 | } |
| 1610 | |
| 1611 | // If Factor is a negative constant, add the negated value as a factor |
| 1612 | // because we can percolate the negate out. Watch for minint, which |
| 1613 | // cannot be positivified. |
| 1614 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Factor)) { |
| 1615 | if (CI->isNegative() && !CI->isMinValue(IsSigned: true)) { |
| 1616 | Factor = ConstantInt::get(Context&: CI->getContext(), V: -CI->getValue()); |
| 1617 | if (!Duplicates.insert(Ptr: Factor).second) |
| 1618 | continue; |
| 1619 | unsigned Occ = ++FactorOccurrences[Factor]; |
| 1620 | if (Occ > MaxOcc) { |
| 1621 | MaxOcc = Occ; |
| 1622 | MaxOccVal = Factor; |
| 1623 | } |
| 1624 | } |
| 1625 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Val: Factor)) { |
| 1626 | if (CF->isNegative()) { |
| 1627 | APFloat F(CF->getValueAPF()); |
| 1628 | F.changeSign(); |
| 1629 | Factor = ConstantFP::get(Context&: CF->getContext(), V: F); |
| 1630 | if (!Duplicates.insert(Ptr: Factor).second) |
| 1631 | continue; |
| 1632 | unsigned Occ = ++FactorOccurrences[Factor]; |
| 1633 | if (Occ > MaxOcc) { |
| 1634 | MaxOcc = Occ; |
| 1635 | MaxOccVal = Factor; |
| 1636 | } |
| 1637 | } |
| 1638 | } |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | // If any factor occurred more than one time, we can pull it out. |
| 1643 | if (MaxOcc > 1) { |
| 1644 | LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal |
| 1645 | << '\n'); |
| 1646 | ++NumFactor; |
| 1647 | |
| 1648 | // Create a new instruction that uses the MaxOccVal twice. If we don't do |
| 1649 | // this, we could otherwise run into situations where removing a factor |
| 1650 | // from an expression will drop a use of maxocc, and this can cause |
| 1651 | // RemoveFactorFromExpression on successive values to behave differently. |
| 1652 | Instruction *DummyInst = |
| 1653 | I->getType()->isIntOrIntVectorTy() |
| 1654 | ? BinaryOperator::CreateAdd(V1: MaxOccVal, V2: MaxOccVal) |
| 1655 | : BinaryOperator::CreateFAdd(V1: MaxOccVal, V2: MaxOccVal); |
| 1656 | |
| 1657 | SmallVector<WeakTrackingVH, 4> NewMulOps; |
| 1658 | for (unsigned i = 0; i != Ops.size(); ++i) { |
| 1659 | // Only try to remove factors from expressions we're allowed to. |
| 1660 | BinaryOperator *BOp = |
| 1661 | isReassociableOp(V: Ops[i].Op, Opcode1: Instruction::Mul, Opcode2: Instruction::FMul); |
| 1662 | if (!BOp) |
| 1663 | continue; |
| 1664 | |
| 1665 | if (Value *V = RemoveFactorFromExpression(V: Ops[i].Op, Factor: MaxOccVal, |
| 1666 | DL: I->getDebugLoc())) { |
| 1667 | // The factorized operand may occur several times. Convert them all in |
| 1668 | // one fell swoop. |
| 1669 | for (unsigned j = Ops.size(); j != i;) { |
| 1670 | --j; |
| 1671 | if (Ops[j].Op == Ops[i].Op) { |
| 1672 | NewMulOps.push_back(Elt: V); |
| 1673 | Ops.erase(CI: Ops.begin()+j); |
| 1674 | } |
| 1675 | } |
| 1676 | --i; |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | // No need for extra uses anymore. |
| 1681 | DummyInst->deleteValue(); |
| 1682 | |
| 1683 | unsigned NumAddedValues = NewMulOps.size(); |
| 1684 | Value *V = EmitAddTreeOfValues(I, Ops&: NewMulOps); |
| 1685 | |
| 1686 | // Now that we have inserted the add tree, optimize it. This allows us to |
| 1687 | // handle cases that require multiple factoring steps, such as this: |
| 1688 | // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) |
| 1689 | assert(NumAddedValues > 1 && "Each occurrence should contribute a value" ); |
| 1690 | (void)NumAddedValues; |
| 1691 | if (Instruction *VI = dyn_cast<Instruction>(Val: V)) |
| 1692 | RedoInsts.insert(X: VI); |
| 1693 | |
| 1694 | // Create the multiply. |
| 1695 | Instruction *V2 = CreateMul(S1: V, S2: MaxOccVal, Name: "reass.mul" , InsertBefore: I->getIterator(), FlagsOp: I); |
| 1696 | V2->setDebugLoc(I->getDebugLoc()); |
| 1697 | |
| 1698 | // Rerun associate on the multiply in case the inner expression turned into |
| 1699 | // a multiply. We want to make sure that we keep things in canonical form. |
| 1700 | RedoInsts.insert(X: V2); |
| 1701 | |
| 1702 | // If every add operand included the factor (e.g. "A*B + A*C"), then the |
| 1703 | // entire result expression is just the multiply "A*(B+C)". |
| 1704 | if (Ops.empty()) |
| 1705 | return V2; |
| 1706 | |
| 1707 | // Otherwise, we had some input that didn't have the factor, such as |
| 1708 | // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of |
| 1709 | // things being added by this operation. |
| 1710 | Ops.insert(I: Ops.begin(), Elt: ValueEntry(getRank(V: V2), V2)); |
| 1711 | } |
| 1712 | |
| 1713 | return nullptr; |
| 1714 | } |
| 1715 | |
| 1716 | /// Build up a vector of value/power pairs factoring a product. |
| 1717 | /// |
| 1718 | /// Given a series of multiplication operands, build a vector of factors and |
| 1719 | /// the powers each is raised to when forming the final product. Sort them in |
| 1720 | /// the order of descending power. |
| 1721 | /// |
| 1722 | /// (x*x) -> [(x, 2)] |
| 1723 | /// ((x*x)*x) -> [(x, 3)] |
| 1724 | /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] |
| 1725 | /// |
| 1726 | /// \returns Whether any factors have a power greater than one. |
| 1727 | static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, |
| 1728 | SmallVectorImpl<Factor> &Factors) { |
| 1729 | // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. |
| 1730 | // Compute the sum of powers of simplifiable factors. |
| 1731 | unsigned FactorPowerSum = 0; |
| 1732 | for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { |
| 1733 | Value *Op = Ops[Idx-1].Op; |
| 1734 | |
| 1735 | // Count the number of occurrences of this value. |
| 1736 | unsigned Count = 1; |
| 1737 | for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) |
| 1738 | ++Count; |
| 1739 | // Track for simplification all factors which occur 2 or more times. |
| 1740 | if (Count > 1) |
| 1741 | FactorPowerSum += Count; |
| 1742 | } |
| 1743 | |
| 1744 | // We can only simplify factors if the sum of the powers of our simplifiable |
| 1745 | // factors is 4 or higher. When that is the case, we will *always* have |
| 1746 | // a simplification. This is an important invariant to prevent cyclicly |
| 1747 | // trying to simplify already minimal formations. |
| 1748 | if (FactorPowerSum < 4) |
| 1749 | return false; |
| 1750 | |
| 1751 | // Now gather the simplifiable factors, removing them from Ops. |
| 1752 | FactorPowerSum = 0; |
| 1753 | for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { |
| 1754 | Value *Op = Ops[Idx-1].Op; |
| 1755 | |
| 1756 | // Count the number of occurrences of this value. |
| 1757 | unsigned Count = 1; |
| 1758 | for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) |
| 1759 | ++Count; |
| 1760 | if (Count == 1) |
| 1761 | continue; |
| 1762 | // Move an even number of occurrences to Factors. |
| 1763 | Count &= ~1U; |
| 1764 | Idx -= Count; |
| 1765 | FactorPowerSum += Count; |
| 1766 | Factors.push_back(Elt: Factor(Op, Count)); |
| 1767 | Ops.erase(CS: Ops.begin()+Idx, CE: Ops.begin()+Idx+Count); |
| 1768 | } |
| 1769 | |
| 1770 | // None of the adjustments above should have reduced the sum of factor powers |
| 1771 | // below our mininum of '4'. |
| 1772 | assert(FactorPowerSum >= 4); |
| 1773 | |
| 1774 | llvm::stable_sort(Range&: Factors, C: [](const Factor &LHS, const Factor &RHS) { |
| 1775 | return LHS.Power > RHS.Power; |
| 1776 | }); |
| 1777 | return true; |
| 1778 | } |
| 1779 | |
| 1780 | /// Build a tree of multiplies, computing the product of Ops. |
| 1781 | static Value *buildMultiplyTree(IRBuilderBase &Builder, |
| 1782 | SmallVectorImpl<Value*> &Ops) { |
| 1783 | if (Ops.size() == 1) |
| 1784 | return Ops.back(); |
| 1785 | |
| 1786 | Value *LHS = Ops.pop_back_val(); |
| 1787 | do { |
| 1788 | if (LHS->getType()->isIntOrIntVectorTy()) |
| 1789 | LHS = Builder.CreateMul(LHS, RHS: Ops.pop_back_val()); |
| 1790 | else |
| 1791 | LHS = Builder.CreateFMul(L: LHS, R: Ops.pop_back_val()); |
| 1792 | } while (!Ops.empty()); |
| 1793 | |
| 1794 | return LHS; |
| 1795 | } |
| 1796 | |
| 1797 | /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... |
| 1798 | /// |
| 1799 | /// Given a vector of values raised to various powers, where no two values are |
| 1800 | /// equal and the powers are sorted in decreasing order, compute the minimal |
| 1801 | /// DAG of multiplies to compute the final product, and return that product |
| 1802 | /// value. |
| 1803 | Value * |
| 1804 | ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder, |
| 1805 | SmallVectorImpl<Factor> &Factors) { |
| 1806 | assert(Factors[0].Power); |
| 1807 | SmallVector<Value *, 4> OuterProduct; |
| 1808 | for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); |
| 1809 | Idx < Size && Factors[Idx].Power > 0; ++Idx) { |
| 1810 | if (Factors[Idx].Power != Factors[LastIdx].Power) { |
| 1811 | LastIdx = Idx; |
| 1812 | continue; |
| 1813 | } |
| 1814 | |
| 1815 | // We want to multiply across all the factors with the same power so that |
| 1816 | // we can raise them to that power as a single entity. Build a mini tree |
| 1817 | // for that. |
| 1818 | SmallVector<Value *, 4> InnerProduct; |
| 1819 | InnerProduct.push_back(Elt: Factors[LastIdx].Base); |
| 1820 | do { |
| 1821 | InnerProduct.push_back(Elt: Factors[Idx].Base); |
| 1822 | ++Idx; |
| 1823 | } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); |
| 1824 | |
| 1825 | // Reset the base value of the first factor to the new expression tree. |
| 1826 | // We'll remove all the factors with the same power in a second pass. |
| 1827 | Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, Ops&: InnerProduct); |
| 1828 | if (Instruction *MI = dyn_cast<Instruction>(Val: M)) |
| 1829 | RedoInsts.insert(X: MI); |
| 1830 | |
| 1831 | LastIdx = Idx; |
| 1832 | } |
| 1833 | // Unique factors with equal powers -- we've folded them into the first one's |
| 1834 | // base. |
| 1835 | Factors.erase(CS: llvm::unique(R&: Factors, |
| 1836 | P: [](const Factor &LHS, const Factor &RHS) { |
| 1837 | return LHS.Power == RHS.Power; |
| 1838 | }), |
| 1839 | CE: Factors.end()); |
| 1840 | |
| 1841 | // Iteratively collect the base of each factor with an add power into the |
| 1842 | // outer product, and halve each power in preparation for squaring the |
| 1843 | // expression. |
| 1844 | for (Factor &F : Factors) { |
| 1845 | if (F.Power & 1) |
| 1846 | OuterProduct.push_back(Elt: F.Base); |
| 1847 | F.Power >>= 1; |
| 1848 | } |
| 1849 | if (Factors[0].Power) { |
| 1850 | Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); |
| 1851 | OuterProduct.push_back(Elt: SquareRoot); |
| 1852 | OuterProduct.push_back(Elt: SquareRoot); |
| 1853 | } |
| 1854 | if (OuterProduct.size() == 1) |
| 1855 | return OuterProduct.front(); |
| 1856 | |
| 1857 | Value *V = buildMultiplyTree(Builder, Ops&: OuterProduct); |
| 1858 | return V; |
| 1859 | } |
| 1860 | |
| 1861 | Value *ReassociatePass::OptimizeMul(BinaryOperator *I, |
| 1862 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1863 | // We can only optimize the multiplies when there is a chain of more than |
| 1864 | // three, such that a balanced tree might require fewer total multiplies. |
| 1865 | if (Ops.size() < 4) |
| 1866 | return nullptr; |
| 1867 | |
| 1868 | // Try to turn linear trees of multiplies without other uses of the |
| 1869 | // intermediate stages into minimal multiply DAGs with perfect sub-expression |
| 1870 | // re-use. |
| 1871 | SmallVector<Factor, 4> Factors; |
| 1872 | if (!collectMultiplyFactors(Ops, Factors)) |
| 1873 | return nullptr; // All distinct factors, so nothing left for us to do. |
| 1874 | |
| 1875 | IRBuilder<> Builder(I); |
| 1876 | // The reassociate transformation for FP operations is performed only |
| 1877 | // if unsafe algebra is permitted by FastMathFlags. Propagate those flags |
| 1878 | // to the newly generated operations. |
| 1879 | if (auto FPI = dyn_cast<FPMathOperator>(Val: I)) |
| 1880 | Builder.setFastMathFlags(FPI->getFastMathFlags()); |
| 1881 | |
| 1882 | Value *V = buildMinimalMultiplyDAG(Builder, Factors); |
| 1883 | if (Ops.empty()) |
| 1884 | return V; |
| 1885 | |
| 1886 | ValueEntry NewEntry = ValueEntry(getRank(V), V); |
| 1887 | Ops.insert(I: llvm::lower_bound(Range&: Ops, Value&: NewEntry), Elt: NewEntry); |
| 1888 | return nullptr; |
| 1889 | } |
| 1890 | |
| 1891 | Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, |
| 1892 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1893 | // Now that we have the linearized expression tree, try to optimize it. |
| 1894 | // Start by folding any constants that we found. |
| 1895 | const DataLayout &DL = I->getDataLayout(); |
| 1896 | Constant *Cst = nullptr; |
| 1897 | unsigned Opcode = I->getOpcode(); |
| 1898 | while (!Ops.empty()) { |
| 1899 | if (auto *C = dyn_cast<Constant>(Val: Ops.back().Op)) { |
| 1900 | if (!Cst) { |
| 1901 | Ops.pop_back(); |
| 1902 | Cst = C; |
| 1903 | continue; |
| 1904 | } |
| 1905 | if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, LHS: C, RHS: Cst, DL)) { |
| 1906 | Ops.pop_back(); |
| 1907 | Cst = Res; |
| 1908 | continue; |
| 1909 | } |
| 1910 | } |
| 1911 | break; |
| 1912 | } |
| 1913 | // If there was nothing but constants then we are done. |
| 1914 | if (Ops.empty()) |
| 1915 | return Cst; |
| 1916 | |
| 1917 | // Put the combined constant back at the end of the operand list, except if |
| 1918 | // there is no point. For example, an add of 0 gets dropped here, while a |
| 1919 | // multiplication by zero turns the whole expression into zero. |
| 1920 | if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, Ty: I->getType())) { |
| 1921 | if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, Ty: I->getType())) |
| 1922 | return Cst; |
| 1923 | Ops.push_back(Elt: ValueEntry(0, Cst)); |
| 1924 | } |
| 1925 | |
| 1926 | if (Ops.size() == 1) return Ops[0].Op; |
| 1927 | |
| 1928 | // Handle destructive annihilation due to identities between elements in the |
| 1929 | // argument list here. |
| 1930 | unsigned NumOps = Ops.size(); |
| 1931 | switch (Opcode) { |
| 1932 | default: break; |
| 1933 | case Instruction::And: |
| 1934 | case Instruction::Or: |
| 1935 | if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) |
| 1936 | return Result; |
| 1937 | break; |
| 1938 | |
| 1939 | case Instruction::Xor: |
| 1940 | if (Value *Result = OptimizeXor(I, Ops)) |
| 1941 | return Result; |
| 1942 | break; |
| 1943 | |
| 1944 | case Instruction::Add: |
| 1945 | case Instruction::FAdd: |
| 1946 | if (Value *Result = OptimizeAdd(I, Ops)) |
| 1947 | return Result; |
| 1948 | break; |
| 1949 | |
| 1950 | case Instruction::Mul: |
| 1951 | case Instruction::FMul: |
| 1952 | if (Value *Result = OptimizeMul(I, Ops)) |
| 1953 | return Result; |
| 1954 | break; |
| 1955 | } |
| 1956 | |
| 1957 | if (Ops.size() != NumOps) |
| 1958 | return OptimizeExpression(I, Ops); |
| 1959 | return nullptr; |
| 1960 | } |
| 1961 | |
| 1962 | // Remove dead instructions and if any operands are trivially dead add them to |
| 1963 | // Insts so they will be removed as well. |
| 1964 | void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, |
| 1965 | OrderedSet &Insts) { |
| 1966 | assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!" ); |
| 1967 | SmallVector<Value *, 4> Ops(I->operands()); |
| 1968 | ValueRankMap.erase(Val: I); |
| 1969 | Insts.remove(X: I); |
| 1970 | RedoInsts.remove(X: I); |
| 1971 | llvm::salvageDebugInfo(I&: *I); |
| 1972 | I->eraseFromParent(); |
| 1973 | for (auto *Op : Ops) |
| 1974 | if (Instruction *OpInst = dyn_cast<Instruction>(Val: Op)) |
| 1975 | if (OpInst->use_empty()) |
| 1976 | Insts.insert(X: OpInst); |
| 1977 | } |
| 1978 | |
| 1979 | /// Zap the given instruction, adding interesting operands to the work list. |
| 1980 | void ReassociatePass::EraseInst(Instruction *I) { |
| 1981 | assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!" ); |
| 1982 | LLVM_DEBUG(dbgs() << "Erasing dead inst: " ; I->dump()); |
| 1983 | |
| 1984 | SmallVector<Value *, 8> Ops(I->operands()); |
| 1985 | // Erase the dead instruction. |
| 1986 | ValueRankMap.erase(Val: I); |
| 1987 | RedoInsts.remove(X: I); |
| 1988 | llvm::salvageDebugInfo(I&: *I); |
| 1989 | I->eraseFromParent(); |
| 1990 | // Optimize its operands. |
| 1991 | SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. |
| 1992 | for (Value *V : Ops) |
| 1993 | if (Instruction *Op = dyn_cast<Instruction>(Val: V)) { |
| 1994 | // If this is a node in an expression tree, climb to the expression root |
| 1995 | // and add that since that's where optimization actually happens. |
| 1996 | unsigned Opcode = Op->getOpcode(); |
| 1997 | while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && |
| 1998 | Visited.insert(Ptr: Op).second) |
| 1999 | Op = Op->user_back(); |
| 2000 | |
| 2001 | // The instruction we're going to push may be coming from a |
| 2002 | // dead block, and Reassociate skips the processing of unreachable |
| 2003 | // blocks because it's a waste of time and also because it can |
| 2004 | // lead to infinite loop due to LLVM's non-standard definition |
| 2005 | // of dominance. |
| 2006 | if (ValueRankMap.contains(Val: Op)) |
| 2007 | RedoInsts.insert(X: Op); |
| 2008 | } |
| 2009 | |
| 2010 | MadeChange = true; |
| 2011 | } |
| 2012 | |
| 2013 | /// Recursively analyze an expression to build a list of instructions that have |
| 2014 | /// negative floating-point constant operands. The caller can then transform |
| 2015 | /// the list to create positive constants for better reassociation and CSE. |
| 2016 | static void getNegatibleInsts(Value *V, |
| 2017 | SmallVectorImpl<Instruction *> &Candidates) { |
| 2018 | // Handle only one-use instructions. Combining negations does not justify |
| 2019 | // replicating instructions. |
| 2020 | Instruction *I; |
| 2021 | if (!match(V, P: m_OneUse(SubPattern: m_Instruction(I)))) |
| 2022 | return; |
| 2023 | |
| 2024 | // Handle expressions of multiplications and divisions. |
| 2025 | // TODO: This could look through floating-point casts. |
| 2026 | const APFloat *C; |
| 2027 | switch (I->getOpcode()) { |
| 2028 | case Instruction::FMul: |
| 2029 | // Not expecting non-canonical code here. Bail out and wait. |
| 2030 | if (match(V: I->getOperand(i: 0), P: m_Constant())) |
| 2031 | break; |
| 2032 | |
| 2033 | if (match(V: I->getOperand(i: 1), P: m_APFloat(Res&: C)) && C->isNegative()) { |
| 2034 | Candidates.push_back(Elt: I); |
| 2035 | LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); |
| 2036 | } |
| 2037 | getNegatibleInsts(V: I->getOperand(i: 0), Candidates); |
| 2038 | getNegatibleInsts(V: I->getOperand(i: 1), Candidates); |
| 2039 | break; |
| 2040 | case Instruction::FDiv: |
| 2041 | // Not expecting non-canonical code here. Bail out and wait. |
| 2042 | if (match(V: I->getOperand(i: 0), P: m_Constant()) && |
| 2043 | match(V: I->getOperand(i: 1), P: m_Constant())) |
| 2044 | break; |
| 2045 | |
| 2046 | if ((match(V: I->getOperand(i: 0), P: m_APFloat(Res&: C)) && C->isNegative()) || |
| 2047 | (match(V: I->getOperand(i: 1), P: m_APFloat(Res&: C)) && C->isNegative())) { |
| 2048 | Candidates.push_back(Elt: I); |
| 2049 | LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); |
| 2050 | } |
| 2051 | getNegatibleInsts(V: I->getOperand(i: 0), Candidates); |
| 2052 | getNegatibleInsts(V: I->getOperand(i: 1), Candidates); |
| 2053 | break; |
| 2054 | default: |
| 2055 | break; |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | /// Given an fadd/fsub with an operand that is a one-use instruction |
| 2060 | /// (the fadd/fsub), try to change negative floating-point constants into |
| 2061 | /// positive constants to increase potential for reassociation and CSE. |
| 2062 | Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, |
| 2063 | Instruction *Op, |
| 2064 | Value *OtherOp) { |
| 2065 | assert((I->getOpcode() == Instruction::FAdd || |
| 2066 | I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub" ); |
| 2067 | |
| 2068 | // Collect instructions with negative FP constants from the subtree that ends |
| 2069 | // in Op. |
| 2070 | SmallVector<Instruction *, 4> Candidates; |
| 2071 | getNegatibleInsts(V: Op, Candidates); |
| 2072 | if (Candidates.empty()) |
| 2073 | return nullptr; |
| 2074 | |
| 2075 | // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the |
| 2076 | // resulting subtract will be broken up later. This can get us into an |
| 2077 | // infinite loop during reassociation. |
| 2078 | bool IsFSub = I->getOpcode() == Instruction::FSub; |
| 2079 | bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; |
| 2080 | if (NeedsSubtract && ShouldBreakUpSubtract(Sub: I)) |
| 2081 | return nullptr; |
| 2082 | |
| 2083 | for (Instruction *Negatible : Candidates) { |
| 2084 | const APFloat *C; |
| 2085 | if (match(V: Negatible->getOperand(i: 0), P: m_APFloat(Res&: C))) { |
| 2086 | assert(!match(Negatible->getOperand(1), m_Constant()) && |
| 2087 | "Expecting only 1 constant operand" ); |
| 2088 | assert(C->isNegative() && "Expected negative FP constant" ); |
| 2089 | Negatible->setOperand(i: 0, Val: ConstantFP::get(Ty: Negatible->getType(), V: abs(X: *C))); |
| 2090 | MadeChange = true; |
| 2091 | } |
| 2092 | if (match(V: Negatible->getOperand(i: 1), P: m_APFloat(Res&: C))) { |
| 2093 | assert(!match(Negatible->getOperand(0), m_Constant()) && |
| 2094 | "Expecting only 1 constant operand" ); |
| 2095 | assert(C->isNegative() && "Expected negative FP constant" ); |
| 2096 | Negatible->setOperand(i: 1, Val: ConstantFP::get(Ty: Negatible->getType(), V: abs(X: *C))); |
| 2097 | MadeChange = true; |
| 2098 | } |
| 2099 | } |
| 2100 | assert(MadeChange == true && "Negative constant candidate was not changed" ); |
| 2101 | |
| 2102 | // Negations cancelled out. |
| 2103 | if (Candidates.size() % 2 == 0) |
| 2104 | return I; |
| 2105 | |
| 2106 | // Negate the final operand in the expression by flipping the opcode of this |
| 2107 | // fadd/fsub. |
| 2108 | assert(Candidates.size() % 2 == 1 && "Expected odd number" ); |
| 2109 | IRBuilder<> Builder(I); |
| 2110 | Value *NewInst = IsFSub ? Builder.CreateFAddFMF(L: OtherOp, R: Op, FMFSource: I) |
| 2111 | : Builder.CreateFSubFMF(L: OtherOp, R: Op, FMFSource: I); |
| 2112 | I->replaceAllUsesWith(V: NewInst); |
| 2113 | RedoInsts.insert(X: I); |
| 2114 | return dyn_cast<Instruction>(Val: NewInst); |
| 2115 | } |
| 2116 | |
| 2117 | /// Canonicalize expressions that contain a negative floating-point constant |
| 2118 | /// of the following form: |
| 2119 | /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) |
| 2120 | /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) |
| 2121 | /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) |
| 2122 | /// |
| 2123 | /// The fadd/fsub opcode may be switched to allow folding a negation into the |
| 2124 | /// input instruction. |
| 2125 | Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { |
| 2126 | LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); |
| 2127 | Value *X; |
| 2128 | Instruction *Op; |
| 2129 | if (match(V: I, P: m_FAdd(L: m_Value(V&: X), R: m_OneUse(SubPattern: m_Instruction(I&: Op))))) |
| 2130 | if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, OtherOp: X)) |
| 2131 | I = R; |
| 2132 | if (match(V: I, P: m_FAdd(L: m_OneUse(SubPattern: m_Instruction(I&: Op)), R: m_Value(V&: X)))) |
| 2133 | if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, OtherOp: X)) |
| 2134 | I = R; |
| 2135 | if (match(V: I, P: m_FSub(L: m_Value(V&: X), R: m_OneUse(SubPattern: m_Instruction(I&: Op))))) |
| 2136 | if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, OtherOp: X)) |
| 2137 | I = R; |
| 2138 | return I; |
| 2139 | } |
| 2140 | |
| 2141 | /// Inspect and optimize the given instruction. Note that erasing |
| 2142 | /// instructions is not allowed. |
| 2143 | void ReassociatePass::OptimizeInst(Instruction *I) { |
| 2144 | // Only consider operations that we understand. |
| 2145 | if (!isa<UnaryOperator>(Val: I) && !isa<BinaryOperator>(Val: I)) |
| 2146 | return; |
| 2147 | |
| 2148 | if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(Val: I->getOperand(i: 1))) |
| 2149 | // If an operand of this shift is a reassociable multiply, or if the shift |
| 2150 | // is used by a reassociable multiply or add, turn into a multiply. |
| 2151 | if (isReassociableOp(V: I->getOperand(i: 0), Opcode: Instruction::Mul) || |
| 2152 | (I->hasOneUse() && |
| 2153 | (isReassociableOp(V: I->user_back(), Opcode: Instruction::Mul) || |
| 2154 | isReassociableOp(V: I->user_back(), Opcode: Instruction::Add)))) { |
| 2155 | Instruction *NI = ConvertShiftToMul(Shl: I); |
| 2156 | RedoInsts.insert(X: I); |
| 2157 | MadeChange = true; |
| 2158 | I = NI; |
| 2159 | } |
| 2160 | |
| 2161 | // Commute binary operators, to canonicalize the order of their operands. |
| 2162 | // This can potentially expose more CSE opportunities, and makes writing other |
| 2163 | // transformations simpler. |
| 2164 | if (I->isCommutative()) |
| 2165 | canonicalizeOperands(I); |
| 2166 | |
| 2167 | // Canonicalize negative constants out of expressions. |
| 2168 | if (Instruction *Res = canonicalizeNegFPConstants(I)) |
| 2169 | I = Res; |
| 2170 | |
| 2171 | // Don't optimize floating-point instructions unless they have the |
| 2172 | // appropriate FastMathFlags for reassociation enabled. |
| 2173 | if (isa<FPMathOperator>(Val: I) && !hasFPAssociativeFlags(I)) |
| 2174 | return; |
| 2175 | |
| 2176 | // Do not reassociate boolean (i1/vXi1) expressions. We want to preserve the |
| 2177 | // original order of evaluation for short-circuited comparisons that |
| 2178 | // SimplifyCFG has folded to AND/OR expressions. If the expression |
| 2179 | // is not further optimized, it is likely to be transformed back to a |
| 2180 | // short-circuited form for code gen, and the source order may have been |
| 2181 | // optimized for the most likely conditions. For vector boolean expressions, |
| 2182 | // we should be optimizing for ILP and not serializing the logical operations. |
| 2183 | if (I->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 2184 | return; |
| 2185 | |
| 2186 | // If this is a bitwise or instruction of operands |
| 2187 | // with no common bits set, convert it to X+Y. |
| 2188 | if (I->getOpcode() == Instruction::Or && |
| 2189 | shouldConvertOrWithNoCommonBitsToAdd(Or: I) && !isLoadCombineCandidate(Or: I) && |
| 2190 | (cast<PossiblyDisjointInst>(Val: I)->isDisjoint() || |
| 2191 | haveNoCommonBitsSet(LHSCache: I->getOperand(i: 0), RHSCache: I->getOperand(i: 1), |
| 2192 | SQ: SimplifyQuery(I->getDataLayout(), |
| 2193 | /*DT=*/nullptr, /*AC=*/nullptr, I)))) { |
| 2194 | Instruction *NI = convertOrWithNoCommonBitsToAdd(Or: I); |
| 2195 | RedoInsts.insert(X: I); |
| 2196 | MadeChange = true; |
| 2197 | I = NI; |
| 2198 | } |
| 2199 | |
| 2200 | // If this is a subtract instruction which is not already in negate form, |
| 2201 | // see if we can convert it to X+-Y. |
| 2202 | if (I->getOpcode() == Instruction::Sub) { |
| 2203 | if (ShouldBreakUpSubtract(Sub: I)) { |
| 2204 | Instruction *NI = BreakUpSubtract(Sub: I, ToRedo&: RedoInsts); |
| 2205 | RedoInsts.insert(X: I); |
| 2206 | MadeChange = true; |
| 2207 | I = NI; |
| 2208 | } else if (match(V: I, P: m_Neg(V: m_Value()))) { |
| 2209 | // Otherwise, this is a negation. See if the operand is a multiply tree |
| 2210 | // and if this is not an inner node of a multiply tree. |
| 2211 | if (isReassociableOp(V: I->getOperand(i: 1), Opcode: Instruction::Mul) && |
| 2212 | (!I->hasOneUse() || |
| 2213 | !isReassociableOp(V: I->user_back(), Opcode: Instruction::Mul))) { |
| 2214 | Instruction *NI = LowerNegateToMultiply(Neg: I); |
| 2215 | // If the negate was simplified, revisit the users to see if we can |
| 2216 | // reassociate further. |
| 2217 | for (User *U : NI->users()) { |
| 2218 | if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(Val: U)) |
| 2219 | RedoInsts.insert(X: Tmp); |
| 2220 | } |
| 2221 | RedoInsts.insert(X: I); |
| 2222 | MadeChange = true; |
| 2223 | I = NI; |
| 2224 | } |
| 2225 | } |
| 2226 | } else if (I->getOpcode() == Instruction::FNeg || |
| 2227 | I->getOpcode() == Instruction::FSub) { |
| 2228 | if (ShouldBreakUpSubtract(Sub: I)) { |
| 2229 | Instruction *NI = BreakUpSubtract(Sub: I, ToRedo&: RedoInsts); |
| 2230 | RedoInsts.insert(X: I); |
| 2231 | MadeChange = true; |
| 2232 | I = NI; |
| 2233 | } else if (match(V: I, P: m_FNeg(X: m_Value()))) { |
| 2234 | // Otherwise, this is a negation. See if the operand is a multiply tree |
| 2235 | // and if this is not an inner node of a multiply tree. |
| 2236 | Value *Op = isa<BinaryOperator>(Val: I) ? I->getOperand(i: 1) : |
| 2237 | I->getOperand(i: 0); |
| 2238 | if (isReassociableOp(V: Op, Opcode: Instruction::FMul) && |
| 2239 | (!I->hasOneUse() || |
| 2240 | !isReassociableOp(V: I->user_back(), Opcode: Instruction::FMul))) { |
| 2241 | // If the negate was simplified, revisit the users to see if we can |
| 2242 | // reassociate further. |
| 2243 | Instruction *NI = LowerNegateToMultiply(Neg: I); |
| 2244 | for (User *U : NI->users()) { |
| 2245 | if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(Val: U)) |
| 2246 | RedoInsts.insert(X: Tmp); |
| 2247 | } |
| 2248 | RedoInsts.insert(X: I); |
| 2249 | MadeChange = true; |
| 2250 | I = NI; |
| 2251 | } |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | // If this instruction is an associative binary operator, process it. |
| 2256 | if (!I->isAssociative()) return; |
| 2257 | BinaryOperator *BO = cast<BinaryOperator>(Val: I); |
| 2258 | |
| 2259 | // If this is an interior node of a reassociable tree, ignore it until we |
| 2260 | // get to the root of the tree, to avoid N^2 analysis. |
| 2261 | unsigned Opcode = BO->getOpcode(); |
| 2262 | if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { |
| 2263 | // During the initial run we will get to the root of the tree. |
| 2264 | // But if we get here while we are redoing instructions, there is no |
| 2265 | // guarantee that the root will be visited. So Redo later |
| 2266 | if (BO->user_back() != BO && |
| 2267 | BO->getParent() == BO->user_back()->getParent()) |
| 2268 | RedoInsts.insert(X: BO->user_back()); |
| 2269 | return; |
| 2270 | } |
| 2271 | |
| 2272 | // If this is an add tree that is used by a sub instruction, ignore it |
| 2273 | // until we process the subtract. |
| 2274 | if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && |
| 2275 | cast<Instruction>(Val: BO->user_back())->getOpcode() == Instruction::Sub) |
| 2276 | return; |
| 2277 | if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && |
| 2278 | cast<Instruction>(Val: BO->user_back())->getOpcode() == Instruction::FSub) |
| 2279 | return; |
| 2280 | |
| 2281 | ReassociateExpression(I: BO); |
| 2282 | } |
| 2283 | |
| 2284 | void ReassociatePass::ReassociateExpression(BinaryOperator *I) { |
| 2285 | // First, walk the expression tree, linearizing the tree, collecting the |
| 2286 | // operand information. |
| 2287 | SmallVector<RepeatedValue, 8> Tree; |
| 2288 | OverflowTracking Flags; |
| 2289 | MadeChange |= LinearizeExprTree(I, Ops&: Tree, ToRedo&: RedoInsts, Flags); |
| 2290 | SmallVector<ValueEntry, 8> Ops; |
| 2291 | Ops.reserve(N: Tree.size()); |
| 2292 | for (const RepeatedValue &E : Tree) |
| 2293 | Ops.append(NumInputs: E.second, Elt: ValueEntry(getRank(V: E.first), E.first)); |
| 2294 | |
| 2295 | LLVM_DEBUG(dbgs() << "RAIn:\t" ; PrintOps(I, Ops); dbgs() << '\n'); |
| 2296 | |
| 2297 | // Now that we have linearized the tree to a list and have gathered all of |
| 2298 | // the operands and their ranks, sort the operands by their rank. Use a |
| 2299 | // stable_sort so that values with equal ranks will have their relative |
| 2300 | // positions maintained (and so the compiler is deterministic). Note that |
| 2301 | // this sorts so that the highest ranking values end up at the beginning of |
| 2302 | // the vector. |
| 2303 | llvm::stable_sort(Range&: Ops); |
| 2304 | |
| 2305 | // Now that we have the expression tree in a convenient |
| 2306 | // sorted form, optimize it globally if possible. |
| 2307 | if (Value *V = OptimizeExpression(I, Ops)) { |
| 2308 | if (V == I) |
| 2309 | // Self-referential expression in unreachable code. |
| 2310 | return; |
| 2311 | // This expression tree simplified to something that isn't a tree, |
| 2312 | // eliminate it. |
| 2313 | LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); |
| 2314 | I->replaceAllUsesWith(V); |
| 2315 | if (Instruction *VI = dyn_cast<Instruction>(Val: V)) |
| 2316 | if (I->getDebugLoc()) |
| 2317 | VI->setDebugLoc(I->getDebugLoc()); |
| 2318 | RedoInsts.insert(X: I); |
| 2319 | ++NumAnnihil; |
| 2320 | return; |
| 2321 | } |
| 2322 | |
| 2323 | // We want to sink immediates as deeply as possible except in the case where |
| 2324 | // this is a multiply tree used only by an add, and the immediate is a -1. |
| 2325 | // In this case we reassociate to put the negation on the outside so that we |
| 2326 | // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y |
| 2327 | if (I->hasOneUse()) { |
| 2328 | if (I->getOpcode() == Instruction::Mul && |
| 2329 | cast<Instruction>(Val: I->user_back())->getOpcode() == Instruction::Add && |
| 2330 | isa<ConstantInt>(Val: Ops.back().Op) && |
| 2331 | cast<ConstantInt>(Val: Ops.back().Op)->isMinusOne()) { |
| 2332 | ValueEntry Tmp = Ops.pop_back_val(); |
| 2333 | Ops.insert(I: Ops.begin(), Elt: Tmp); |
| 2334 | } else if (I->getOpcode() == Instruction::FMul && |
| 2335 | cast<Instruction>(Val: I->user_back())->getOpcode() == |
| 2336 | Instruction::FAdd && |
| 2337 | isa<ConstantFP>(Val: Ops.back().Op) && |
| 2338 | cast<ConstantFP>(Val: Ops.back().Op)->isExactlyValue(V: -1.0)) { |
| 2339 | ValueEntry Tmp = Ops.pop_back_val(); |
| 2340 | Ops.insert(I: Ops.begin(), Elt: Tmp); |
| 2341 | } |
| 2342 | } |
| 2343 | |
| 2344 | LLVM_DEBUG(dbgs() << "RAOut:\t" ; PrintOps(I, Ops); dbgs() << '\n'); |
| 2345 | |
| 2346 | if (Ops.size() == 1) { |
| 2347 | if (Ops[0].Op == I) |
| 2348 | // Self-referential expression in unreachable code. |
| 2349 | return; |
| 2350 | |
| 2351 | // This expression tree simplified to something that isn't a tree, |
| 2352 | // eliminate it. |
| 2353 | I->replaceAllUsesWith(V: Ops[0].Op); |
| 2354 | if (Instruction *OI = dyn_cast<Instruction>(Val: Ops[0].Op)) |
| 2355 | OI->setDebugLoc(I->getDebugLoc()); |
| 2356 | RedoInsts.insert(X: I); |
| 2357 | return; |
| 2358 | } |
| 2359 | |
| 2360 | if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { |
| 2361 | // Find the pair with the highest count in the pairmap and move it to the |
| 2362 | // back of the list so that it can later be CSE'd. |
| 2363 | // example: |
| 2364 | // a*b*c*d*e |
| 2365 | // if c*e is the most "popular" pair, we can express this as |
| 2366 | // (((c*e)*d)*b)*a |
| 2367 | unsigned Max = 1; |
| 2368 | unsigned BestRank = 0; |
| 2369 | std::pair<unsigned, unsigned> BestPair; |
| 2370 | unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; |
| 2371 | unsigned LimitIdx = 0; |
| 2372 | // With the CSE-driven heuristic, we are about to slap two values at the |
| 2373 | // beginning of the expression whereas they could live very late in the CFG. |
| 2374 | // When using the CSE-local heuristic we avoid creating dependences from |
| 2375 | // completely unrelated part of the CFG by limiting the expression |
| 2376 | // reordering on the values that live in the first seen basic block. |
| 2377 | // The main idea is that we want to avoid forming expressions that would |
| 2378 | // become loop dependent. |
| 2379 | if (UseCSELocalOpt) { |
| 2380 | const BasicBlock *FirstSeenBB = nullptr; |
| 2381 | int StartIdx = Ops.size() - 1; |
| 2382 | // Skip the first value of the expression since we need at least two |
| 2383 | // values to materialize an expression. I.e., even if this value is |
| 2384 | // anchored in a different basic block, the actual first sub expression |
| 2385 | // will be anchored on the second value. |
| 2386 | for (int i = StartIdx - 1; i != -1; --i) { |
| 2387 | const Value *Val = Ops[i].Op; |
| 2388 | const auto *CurrLeafInstr = dyn_cast<Instruction>(Val); |
| 2389 | const BasicBlock *SeenBB = nullptr; |
| 2390 | if (!CurrLeafInstr) { |
| 2391 | // The value is free of any CFG dependencies. |
| 2392 | // Do as if it lives in the entry block. |
| 2393 | // |
| 2394 | // We do this to make sure all the values falling on this path are |
| 2395 | // seen through the same anchor point. The rationale is these values |
| 2396 | // can be combined together to from a sub expression free of any CFG |
| 2397 | // dependencies so we want them to stay together. |
| 2398 | // We could be cleverer and postpone the anchor down to the first |
| 2399 | // anchored value, but that's likely complicated to get right. |
| 2400 | // E.g., we wouldn't want to do that if that means being stuck in a |
| 2401 | // loop. |
| 2402 | // |
| 2403 | // For instance, we wouldn't want to change: |
| 2404 | // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ... |
| 2405 | // into |
| 2406 | // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ... |
| 2407 | // Because all the sub expressions with arg2..N would be stuck between |
| 2408 | // two loop dependent values. |
| 2409 | SeenBB = &I->getParent()->getParent()->getEntryBlock(); |
| 2410 | } else { |
| 2411 | SeenBB = CurrLeafInstr->getParent(); |
| 2412 | } |
| 2413 | |
| 2414 | if (!FirstSeenBB) { |
| 2415 | FirstSeenBB = SeenBB; |
| 2416 | continue; |
| 2417 | } |
| 2418 | if (FirstSeenBB != SeenBB) { |
| 2419 | // ith value is in a different basic block. |
| 2420 | // Rewind the index once to point to the last value on the same basic |
| 2421 | // block. |
| 2422 | LimitIdx = i + 1; |
| 2423 | LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between [" |
| 2424 | << LimitIdx << ", " << StartIdx << "]\n" ); |
| 2425 | break; |
| 2426 | } |
| 2427 | } |
| 2428 | } |
| 2429 | for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) { |
| 2430 | // We must use int type to go below zero when LimitIdx is 0. |
| 2431 | for (int j = i - 1; j >= (int)LimitIdx; --j) { |
| 2432 | unsigned Score = 0; |
| 2433 | Value *Op0 = Ops[i].Op; |
| 2434 | Value *Op1 = Ops[j].Op; |
| 2435 | if (std::less<Value *>()(Op1, Op0)) |
| 2436 | std::swap(a&: Op0, b&: Op1); |
| 2437 | auto it = PairMap[Idx].find(Val: {Op0, Op1}); |
| 2438 | if (it != PairMap[Idx].end()) { |
| 2439 | // Functions like BreakUpSubtract() can erase the Values we're using |
| 2440 | // as keys and create new Values after we built the PairMap. There's a |
| 2441 | // small chance that the new nodes can have the same address as |
| 2442 | // something already in the table. We shouldn't accumulate the stored |
| 2443 | // score in that case as it refers to the wrong Value. |
| 2444 | if (it->second.isValid()) |
| 2445 | Score += it->second.Score; |
| 2446 | } |
| 2447 | |
| 2448 | unsigned MaxRank = std::max(a: Ops[i].Rank, b: Ops[j].Rank); |
| 2449 | |
| 2450 | // By construction, the operands are sorted in reverse order of their |
| 2451 | // topological order. |
| 2452 | // So we tend to form (sub) expressions with values that are close to |
| 2453 | // each other. |
| 2454 | // |
| 2455 | // Now to expose more CSE opportunities we want to expose the pair of |
| 2456 | // operands that occur the most (as statically computed in |
| 2457 | // BuildPairMap.) as the first sub-expression. |
| 2458 | // |
| 2459 | // If two pairs occur as many times, we pick the one with the |
| 2460 | // lowest rank, meaning the one with both operands appearing first in |
| 2461 | // the topological order. |
| 2462 | if (Score > Max || (Score == Max && MaxRank < BestRank)) { |
| 2463 | BestPair = {j, i}; |
| 2464 | Max = Score; |
| 2465 | BestRank = MaxRank; |
| 2466 | } |
| 2467 | } |
| 2468 | } |
| 2469 | if (Max > 1) { |
| 2470 | auto Op0 = Ops[BestPair.first]; |
| 2471 | auto Op1 = Ops[BestPair.second]; |
| 2472 | Ops.erase(CI: &Ops[BestPair.second]); |
| 2473 | Ops.erase(CI: &Ops[BestPair.first]); |
| 2474 | Ops.push_back(Elt: Op0); |
| 2475 | Ops.push_back(Elt: Op1); |
| 2476 | } |
| 2477 | } |
| 2478 | LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t" ; PrintOps(I, Ops); |
| 2479 | dbgs() << '\n'); |
| 2480 | // Now that we ordered and optimized the expressions, splat them back into |
| 2481 | // the expression tree, removing any unneeded nodes. |
| 2482 | RewriteExprTree(I, Ops, Flags); |
| 2483 | } |
| 2484 | |
| 2485 | void |
| 2486 | ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { |
| 2487 | // Make a "pairmap" of how often each operand pair occurs. |
| 2488 | for (BasicBlock *BI : RPOT) { |
| 2489 | for (Instruction &I : *BI) { |
| 2490 | if (!I.isAssociative() || !I.isBinaryOp()) |
| 2491 | continue; |
| 2492 | |
| 2493 | // Ignore nodes that aren't at the root of trees. |
| 2494 | if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) |
| 2495 | continue; |
| 2496 | |
| 2497 | // Collect all operands in a single reassociable expression. |
| 2498 | // Since Reassociate has already been run once, we can assume things |
| 2499 | // are already canonical according to Reassociation's regime. |
| 2500 | SmallVector<Value *, 8> Worklist = { I.getOperand(i: 0), I.getOperand(i: 1) }; |
| 2501 | SmallVector<Value *, 8> Ops; |
| 2502 | while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { |
| 2503 | Value *Op = Worklist.pop_back_val(); |
| 2504 | Instruction *OpI = dyn_cast<Instruction>(Val: Op); |
| 2505 | if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { |
| 2506 | Ops.push_back(Elt: Op); |
| 2507 | continue; |
| 2508 | } |
| 2509 | // Be paranoid about self-referencing expressions in unreachable code. |
| 2510 | if (OpI->getOperand(i: 0) != OpI) |
| 2511 | Worklist.push_back(Elt: OpI->getOperand(i: 0)); |
| 2512 | if (OpI->getOperand(i: 1) != OpI) |
| 2513 | Worklist.push_back(Elt: OpI->getOperand(i: 1)); |
| 2514 | } |
| 2515 | // Skip extremely long expressions. |
| 2516 | if (Ops.size() > GlobalReassociateLimit) |
| 2517 | continue; |
| 2518 | |
| 2519 | // Add all pairwise combinations of operands to the pair map. |
| 2520 | unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; |
| 2521 | SmallSet<std::pair<Value *, Value*>, 32> Visited; |
| 2522 | for (unsigned i = 0; i < Ops.size() - 1; ++i) { |
| 2523 | for (unsigned j = i + 1; j < Ops.size(); ++j) { |
| 2524 | // Canonicalize operand orderings. |
| 2525 | Value *Op0 = Ops[i]; |
| 2526 | Value *Op1 = Ops[j]; |
| 2527 | if (std::less<Value *>()(Op1, Op0)) |
| 2528 | std::swap(a&: Op0, b&: Op1); |
| 2529 | if (!Visited.insert(V: {Op0, Op1}).second) |
| 2530 | continue; |
| 2531 | auto res = PairMap[BinaryIdx].insert(KV: {{Op0, Op1}, {.Value1: Op0, .Value2: Op1, .Score: 1}}); |
| 2532 | if (!res.second) { |
| 2533 | // If either key value has been erased then we've got the same |
| 2534 | // address by coincidence. That can't happen here because nothing is |
| 2535 | // erasing values but it can happen by the time we're querying the |
| 2536 | // map. |
| 2537 | assert(res.first->second.isValid() && "WeakVH invalidated" ); |
| 2538 | ++res.first->second.Score; |
| 2539 | } |
| 2540 | } |
| 2541 | } |
| 2542 | } |
| 2543 | } |
| 2544 | } |
| 2545 | |
| 2546 | PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { |
| 2547 | // Get the functions basic blocks in Reverse Post Order. This order is used by |
| 2548 | // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic |
| 2549 | // blocks (it has been seen that the analysis in this pass could hang when |
| 2550 | // analysing dead basic blocks). |
| 2551 | ReversePostOrderTraversal<Function *> RPOT(&F); |
| 2552 | |
| 2553 | // Calculate the rank map for F. |
| 2554 | BuildRankMap(F, RPOT); |
| 2555 | |
| 2556 | // Build the pair map before running reassociate. |
| 2557 | // Technically this would be more accurate if we did it after one round |
| 2558 | // of reassociation, but in practice it doesn't seem to help much on |
| 2559 | // real-world code, so don't waste the compile time running reassociate |
| 2560 | // twice. |
| 2561 | // If a user wants, they could expicitly run reassociate twice in their |
| 2562 | // pass pipeline for further potential gains. |
| 2563 | // It might also be possible to update the pair map during runtime, but the |
| 2564 | // overhead of that may be large if there's many reassociable chains. |
| 2565 | BuildPairMap(RPOT); |
| 2566 | |
| 2567 | MadeChange = false; |
| 2568 | |
| 2569 | // Traverse the same blocks that were analysed by BuildRankMap. |
| 2570 | for (BasicBlock *BI : RPOT) { |
| 2571 | assert(RankMap.count(&*BI) && "BB should be ranked." ); |
| 2572 | // Optimize every instruction in the basic block. |
| 2573 | for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) |
| 2574 | if (isInstructionTriviallyDead(I: &*II)) { |
| 2575 | EraseInst(I: &*II++); |
| 2576 | } else { |
| 2577 | OptimizeInst(I: &*II); |
| 2578 | assert(II->getParent() == &*BI && "Moved to a different block!" ); |
| 2579 | ++II; |
| 2580 | } |
| 2581 | |
| 2582 | // Make a copy of all the instructions to be redone so we can remove dead |
| 2583 | // instructions. |
| 2584 | OrderedSet ToRedo(RedoInsts); |
| 2585 | // Iterate over all instructions to be reevaluated and remove trivially dead |
| 2586 | // instructions. If any operand of the trivially dead instruction becomes |
| 2587 | // dead mark it for deletion as well. Continue this process until all |
| 2588 | // trivially dead instructions have been removed. |
| 2589 | while (!ToRedo.empty()) { |
| 2590 | Instruction *I = ToRedo.pop_back_val(); |
| 2591 | if (isInstructionTriviallyDead(I)) { |
| 2592 | RecursivelyEraseDeadInsts(I, Insts&: ToRedo); |
| 2593 | MadeChange = true; |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | // Now that we have removed dead instructions, we can reoptimize the |
| 2598 | // remaining instructions. |
| 2599 | while (!RedoInsts.empty()) { |
| 2600 | Instruction *I = RedoInsts.front(); |
| 2601 | RedoInsts.erase(I: RedoInsts.begin()); |
| 2602 | if (isInstructionTriviallyDead(I)) |
| 2603 | EraseInst(I); |
| 2604 | else |
| 2605 | OptimizeInst(I); |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | // We are done with the rank map and pair map. |
| 2610 | RankMap.clear(); |
| 2611 | ValueRankMap.clear(); |
| 2612 | for (auto &Entry : PairMap) |
| 2613 | Entry.clear(); |
| 2614 | |
| 2615 | if (MadeChange) { |
| 2616 | PreservedAnalyses PA; |
| 2617 | PA.preserveSet<CFGAnalyses>(); |
| 2618 | return PA; |
| 2619 | } |
| 2620 | |
| 2621 | return PreservedAnalyses::all(); |
| 2622 | } |
| 2623 | |
| 2624 | namespace { |
| 2625 | |
| 2626 | class ReassociateLegacyPass : public FunctionPass { |
| 2627 | ReassociatePass Impl; |
| 2628 | |
| 2629 | public: |
| 2630 | static char ID; // Pass identification, replacement for typeid |
| 2631 | |
| 2632 | ReassociateLegacyPass() : FunctionPass(ID) { |
| 2633 | initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 2634 | } |
| 2635 | |
| 2636 | bool runOnFunction(Function &F) override { |
| 2637 | if (skipFunction(F)) |
| 2638 | return false; |
| 2639 | |
| 2640 | FunctionAnalysisManager DummyFAM; |
| 2641 | auto PA = Impl.run(F, DummyFAM); |
| 2642 | return !PA.areAllPreserved(); |
| 2643 | } |
| 2644 | |
| 2645 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 2646 | AU.setPreservesCFG(); |
| 2647 | AU.addPreserved<AAResultsWrapperPass>(); |
| 2648 | AU.addPreserved<BasicAAWrapperPass>(); |
| 2649 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 2650 | } |
| 2651 | }; |
| 2652 | |
| 2653 | } // end anonymous namespace |
| 2654 | |
| 2655 | char ReassociateLegacyPass::ID = 0; |
| 2656 | |
| 2657 | INITIALIZE_PASS(ReassociateLegacyPass, "reassociate" , |
| 2658 | "Reassociate expressions" , false, false) |
| 2659 | |
| 2660 | // Public interface to the Reassociate pass |
| 2661 | FunctionPass *llvm::createReassociatePass() { |
| 2662 | return new ReassociateLegacyPass(); |
| 2663 | } |
| 2664 | |