1 | //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Loop unrolling may create many similar GEPs for array accesses. |
10 | // e.g., a 2-level loop |
11 | // |
12 | // float a[32][32]; // global variable |
13 | // |
14 | // for (int i = 0; i < 2; ++i) { |
15 | // for (int j = 0; j < 2; ++j) { |
16 | // ... |
17 | // ... = a[x + i][y + j]; |
18 | // ... |
19 | // } |
20 | // } |
21 | // |
22 | // will probably be unrolled to: |
23 | // |
24 | // gep %a, 0, %x, %y; load |
25 | // gep %a, 0, %x, %y + 1; load |
26 | // gep %a, 0, %x + 1, %y; load |
27 | // gep %a, 0, %x + 1, %y + 1; load |
28 | // |
29 | // LLVM's GVN does not use partial redundancy elimination yet, and is thus |
30 | // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs |
31 | // significant slowdown in targets with limited addressing modes. For instance, |
32 | // because the PTX target does not support the reg+reg addressing mode, the |
33 | // NVPTX backend emits PTX code that literally computes the pointer address of |
34 | // each GEP, wasting tons of registers. It emits the following PTX for the |
35 | // first load and similar PTX for other loads. |
36 | // |
37 | // mov.u32 %r1, %x; |
38 | // mov.u32 %r2, %y; |
39 | // mul.wide.u32 %rl2, %r1, 128; |
40 | // mov.u64 %rl3, a; |
41 | // add.s64 %rl4, %rl3, %rl2; |
42 | // mul.wide.u32 %rl5, %r2, 4; |
43 | // add.s64 %rl6, %rl4, %rl5; |
44 | // ld.global.f32 %f1, [%rl6]; |
45 | // |
46 | // To reduce the register pressure, the optimization implemented in this file |
47 | // merges the common part of a group of GEPs, so we can compute each pointer |
48 | // address by adding a simple offset to the common part, saving many registers. |
49 | // |
50 | // It works by splitting each GEP into a variadic base and a constant offset. |
51 | // The variadic base can be computed once and reused by multiple GEPs, and the |
52 | // constant offsets can be nicely folded into the reg+immediate addressing mode |
53 | // (supported by most targets) without using any extra register. |
54 | // |
55 | // For instance, we transform the four GEPs and four loads in the above example |
56 | // into: |
57 | // |
58 | // base = gep a, 0, x, y |
59 | // load base |
60 | // load base + 1 * sizeof(float) |
61 | // load base + 32 * sizeof(float) |
62 | // load base + 33 * sizeof(float) |
63 | // |
64 | // Given the transformed IR, a backend that supports the reg+immediate |
65 | // addressing mode can easily fold the pointer arithmetics into the loads. For |
66 | // example, the NVPTX backend can easily fold the pointer arithmetics into the |
67 | // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. |
68 | // |
69 | // mov.u32 %r1, %tid.x; |
70 | // mov.u32 %r2, %tid.y; |
71 | // mul.wide.u32 %rl2, %r1, 128; |
72 | // mov.u64 %rl3, a; |
73 | // add.s64 %rl4, %rl3, %rl2; |
74 | // mul.wide.u32 %rl5, %r2, 4; |
75 | // add.s64 %rl6, %rl4, %rl5; |
76 | // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX |
77 | // ld.global.f32 %f2, [%rl6+4]; // much better |
78 | // ld.global.f32 %f3, [%rl6+128]; // much better |
79 | // ld.global.f32 %f4, [%rl6+132]; // much better |
80 | // |
81 | // Another improvement enabled by the LowerGEP flag is to lower a GEP with |
82 | // multiple indices to either multiple GEPs with a single index or arithmetic |
83 | // operations (depending on whether the target uses alias analysis in codegen). |
84 | // Such transformation can have following benefits: |
85 | // (1) It can always extract constants in the indices of structure type. |
86 | // (2) After such Lowering, there are more optimization opportunities such as |
87 | // CSE, LICM and CGP. |
88 | // |
89 | // E.g. The following GEPs have multiple indices: |
90 | // BB1: |
91 | // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3 |
92 | // load %p |
93 | // ... |
94 | // BB2: |
95 | // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2 |
96 | // load %p2 |
97 | // ... |
98 | // |
99 | // We can not do CSE to the common part related to index "i64 %i". Lowering |
100 | // GEPs can achieve such goals. |
101 | // If the target does not use alias analysis in codegen, this pass will |
102 | // lower a GEP with multiple indices into arithmetic operations: |
103 | // BB1: |
104 | // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity |
105 | // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity |
106 | // %3 = add i64 %1, %2 ; CSE opportunity |
107 | // %4 = mul i64 %j1, length_of_struct |
108 | // %5 = add i64 %3, %4 |
109 | // %6 = add i64 %3, struct_field_3 ; Constant offset |
110 | // %p = inttoptr i64 %6 to i32* |
111 | // load %p |
112 | // ... |
113 | // BB2: |
114 | // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity |
115 | // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity |
116 | // %9 = add i64 %7, %8 ; CSE opportunity |
117 | // %10 = mul i64 %j2, length_of_struct |
118 | // %11 = add i64 %9, %10 |
119 | // %12 = add i64 %11, struct_field_2 ; Constant offset |
120 | // %p = inttoptr i64 %12 to i32* |
121 | // load %p2 |
122 | // ... |
123 | // |
124 | // If the target uses alias analysis in codegen, this pass will lower a GEP |
125 | // with multiple indices into multiple GEPs with a single index: |
126 | // BB1: |
127 | // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity |
128 | // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity |
129 | // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity |
130 | // %4 = mul i64 %j1, length_of_struct |
131 | // %5 = getelementptr i8* %3, i64 %4 |
132 | // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset |
133 | // %p = bitcast i8* %6 to i32* |
134 | // load %p |
135 | // ... |
136 | // BB2: |
137 | // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity |
138 | // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity |
139 | // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity |
140 | // %10 = mul i64 %j2, length_of_struct |
141 | // %11 = getelementptr i8* %9, i64 %10 |
142 | // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset |
143 | // %p2 = bitcast i8* %12 to i32* |
144 | // load %p2 |
145 | // ... |
146 | // |
147 | // Lowering GEPs can also benefit other passes such as LICM and CGP. |
148 | // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple |
149 | // indices if one of the index is variant. If we lower such GEP into invariant |
150 | // parts and variant parts, LICM can hoist/sink those invariant parts. |
151 | // CGP (CodeGen Prepare) tries to sink address calculations that match the |
152 | // target's addressing modes. A GEP with multiple indices may not match and will |
153 | // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of |
154 | // them. So we end up with a better addressing mode. |
155 | // |
156 | //===----------------------------------------------------------------------===// |
157 | |
158 | #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h" |
159 | #include "llvm/ADT/APInt.h" |
160 | #include "llvm/ADT/DenseMap.h" |
161 | #include "llvm/ADT/DepthFirstIterator.h" |
162 | #include "llvm/ADT/SmallVector.h" |
163 | #include "llvm/Analysis/LoopInfo.h" |
164 | #include "llvm/Analysis/MemoryBuiltins.h" |
165 | #include "llvm/Analysis/TargetLibraryInfo.h" |
166 | #include "llvm/Analysis/TargetTransformInfo.h" |
167 | #include "llvm/Analysis/ValueTracking.h" |
168 | #include "llvm/IR/BasicBlock.h" |
169 | #include "llvm/IR/Constant.h" |
170 | #include "llvm/IR/Constants.h" |
171 | #include "llvm/IR/DataLayout.h" |
172 | #include "llvm/IR/DerivedTypes.h" |
173 | #include "llvm/IR/Dominators.h" |
174 | #include "llvm/IR/Function.h" |
175 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
176 | #include "llvm/IR/IRBuilder.h" |
177 | #include "llvm/IR/InstrTypes.h" |
178 | #include "llvm/IR/Instruction.h" |
179 | #include "llvm/IR/Instructions.h" |
180 | #include "llvm/IR/Module.h" |
181 | #include "llvm/IR/PassManager.h" |
182 | #include "llvm/IR/PatternMatch.h" |
183 | #include "llvm/IR/Type.h" |
184 | #include "llvm/IR/User.h" |
185 | #include "llvm/IR/Value.h" |
186 | #include "llvm/InitializePasses.h" |
187 | #include "llvm/Pass.h" |
188 | #include "llvm/Support/Casting.h" |
189 | #include "llvm/Support/CommandLine.h" |
190 | #include "llvm/Support/ErrorHandling.h" |
191 | #include "llvm/Support/raw_ostream.h" |
192 | #include "llvm/Transforms/Scalar.h" |
193 | #include "llvm/Transforms/Utils/Local.h" |
194 | #include <cassert> |
195 | #include <cstdint> |
196 | #include <string> |
197 | |
198 | using namespace llvm; |
199 | using namespace llvm::PatternMatch; |
200 | |
201 | static cl::opt<bool> DisableSeparateConstOffsetFromGEP( |
202 | "disable-separate-const-offset-from-gep" , cl::init(Val: false), |
203 | cl::desc("Do not separate the constant offset from a GEP instruction" ), |
204 | cl::Hidden); |
205 | |
206 | // Setting this flag may emit false positives when the input module already |
207 | // contains dead instructions. Therefore, we set it only in unit tests that are |
208 | // free of dead code. |
209 | static cl::opt<bool> |
210 | VerifyNoDeadCode("reassociate-geps-verify-no-dead-code" , cl::init(Val: false), |
211 | cl::desc("Verify this pass produces no dead code" ), |
212 | cl::Hidden); |
213 | |
214 | namespace { |
215 | |
216 | /// A helper class for separating a constant offset from a GEP index. |
217 | /// |
218 | /// In real programs, a GEP index may be more complicated than a simple addition |
219 | /// of something and a constant integer which can be trivially splitted. For |
220 | /// example, to split ((a << 3) | 5) + b, we need to search deeper for the |
221 | /// constant offset, so that we can separate the index to (a << 3) + b and 5. |
222 | /// |
223 | /// Therefore, this class looks into the expression that computes a given GEP |
224 | /// index, and tries to find a constant integer that can be hoisted to the |
225 | /// outermost level of the expression as an addition. Not every constant in an |
226 | /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + |
227 | /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, |
228 | /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). |
229 | class { |
230 | public: |
231 | /// Extracts a constant offset from the given GEP index. It returns the |
232 | /// new index representing the remainder (equal to the original index minus |
233 | /// the constant offset), or nullptr if we cannot extract a constant offset. |
234 | /// \p Idx The given GEP index |
235 | /// \p GEP The given GEP |
236 | /// \p UserChainTail Outputs the tail of UserChain so that we can |
237 | /// garbage-collect unused instructions in UserChain. |
238 | /// \p PreservesNUW Outputs whether the extraction allows preserving the |
239 | /// GEP's nuw flag, if it has one. |
240 | static Value *Extract(Value *Idx, GetElementPtrInst *GEP, |
241 | User *&UserChainTail, bool &PreservesNUW); |
242 | |
243 | /// Looks for a constant offset from the given GEP index without extracting |
244 | /// it. It returns the numeric value of the extracted constant offset (0 if |
245 | /// failed). The meaning of the arguments are the same as Extract. |
246 | static int64_t Find(Value *Idx, GetElementPtrInst *GEP); |
247 | |
248 | private: |
249 | (BasicBlock::iterator InsertionPt) |
250 | : IP(InsertionPt), DL(InsertionPt->getDataLayout()) {} |
251 | |
252 | /// Searches the expression that computes V for a non-zero constant C s.t. |
253 | /// V can be reassociated into the form V' + C. If the searching is |
254 | /// successful, returns C and update UserChain as a def-use chain from C to V; |
255 | /// otherwise, UserChain is empty. |
256 | /// |
257 | /// \p V The given expression |
258 | /// \p SignExtended Whether V will be sign-extended in the computation of the |
259 | /// GEP index |
260 | /// \p ZeroExtended Whether V will be zero-extended in the computation of the |
261 | /// GEP index |
262 | /// \p NonNegative Whether V is guaranteed to be non-negative. For example, |
263 | /// an index of an inbounds GEP is guaranteed to be |
264 | /// non-negative. Levaraging this, we can better split |
265 | /// inbounds GEPs. |
266 | APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); |
267 | |
268 | /// A helper function to look into both operands of a binary operator. |
269 | APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, |
270 | bool ZeroExtended); |
271 | |
272 | /// After finding the constant offset C from the GEP index I, we build a new |
273 | /// index I' s.t. I' + C = I. This function builds and returns the new |
274 | /// index I' according to UserChain produced by function "find". |
275 | /// |
276 | /// The building conceptually takes two steps: |
277 | /// 1) iteratively distribute s/zext towards the leaves of the expression tree |
278 | /// that computes I |
279 | /// 2) reassociate the expression tree to the form I' + C. |
280 | /// |
281 | /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute |
282 | /// sext to a, b and 5 so that we have |
283 | /// sext(a) + (sext(b) + 5). |
284 | /// Then, we reassociate it to |
285 | /// (sext(a) + sext(b)) + 5. |
286 | /// Given this form, we know I' is sext(a) + sext(b). |
287 | Value *rebuildWithoutConstOffset(); |
288 | |
289 | /// After the first step of rebuilding the GEP index without the constant |
290 | /// offset, distribute s/zext to the operands of all operators in UserChain. |
291 | /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => |
292 | /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). |
293 | /// |
294 | /// The function also updates UserChain to point to new subexpressions after |
295 | /// distributing s/zext. e.g., the old UserChain of the above example is |
296 | /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), |
297 | /// and the new UserChain is |
298 | /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> |
299 | /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) |
300 | /// |
301 | /// \p ChainIndex The index to UserChain. ChainIndex is initially |
302 | /// UserChain.size() - 1, and is decremented during |
303 | /// the recursion. |
304 | Value *distributeExtsAndCloneChain(unsigned ChainIndex); |
305 | |
306 | /// Reassociates the GEP index to the form I' + C and returns I'. |
307 | Value *removeConstOffset(unsigned ChainIndex); |
308 | |
309 | /// A helper function to apply ExtInsts, a list of s/zext, to value V. |
310 | /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function |
311 | /// returns "sext i32 (zext i16 V to i32) to i64". |
312 | Value *applyExts(Value *V); |
313 | |
314 | /// A helper function that returns whether we can trace into the operands |
315 | /// of binary operator BO for a constant offset. |
316 | /// |
317 | /// \p SignExtended Whether BO is surrounded by sext |
318 | /// \p ZeroExtended Whether BO is surrounded by zext |
319 | /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound |
320 | /// array index. |
321 | bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, |
322 | bool NonNegative); |
323 | |
324 | /// The path from the constant offset to the old GEP index. e.g., if the GEP |
325 | /// index is "a * b + (c + 5)". After running function find, UserChain[0] will |
326 | /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and |
327 | /// UserChain[2] will be the entire expression "a * b + (c + 5)". |
328 | /// |
329 | /// This path helps to rebuild the new GEP index. |
330 | SmallVector<User *, 8> ; |
331 | |
332 | /// A data structure used in rebuildWithoutConstOffset. Contains all |
333 | /// sext/zext instructions along UserChain. |
334 | SmallVector<CastInst *, 16> ; |
335 | |
336 | /// Insertion position of cloned instructions. |
337 | BasicBlock::iterator ; |
338 | |
339 | const DataLayout &; |
340 | }; |
341 | |
342 | /// A pass that tries to split every GEP in the function into a variadic |
343 | /// base and a constant offset. It is a FunctionPass because searching for the |
344 | /// constant offset may inspect other basic blocks. |
345 | class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass { |
346 | public: |
347 | static char ID; |
348 | |
349 | SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false) |
350 | : FunctionPass(ID), LowerGEP(LowerGEP) { |
351 | initializeSeparateConstOffsetFromGEPLegacyPassPass( |
352 | *PassRegistry::getPassRegistry()); |
353 | } |
354 | |
355 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
356 | AU.addRequired<DominatorTreeWrapperPass>(); |
357 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
358 | AU.addRequired<LoopInfoWrapperPass>(); |
359 | AU.setPreservesCFG(); |
360 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
361 | } |
362 | |
363 | bool runOnFunction(Function &F) override; |
364 | |
365 | private: |
366 | bool LowerGEP; |
367 | }; |
368 | |
369 | /// A pass that tries to split every GEP in the function into a variadic |
370 | /// base and a constant offset. It is a FunctionPass because searching for the |
371 | /// constant offset may inspect other basic blocks. |
372 | class SeparateConstOffsetFromGEP { |
373 | public: |
374 | SeparateConstOffsetFromGEP( |
375 | DominatorTree *DT, LoopInfo *LI, TargetLibraryInfo *TLI, |
376 | function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP) |
377 | : DT(DT), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {} |
378 | |
379 | bool run(Function &F); |
380 | |
381 | private: |
382 | /// Track the operands of an add or sub. |
383 | using ExprKey = std::pair<Value *, Value *>; |
384 | |
385 | /// Create a pair for use as a map key for a commutable operation. |
386 | static ExprKey createNormalizedCommutablePair(Value *A, Value *B) { |
387 | if (A < B) |
388 | return {A, B}; |
389 | return {B, A}; |
390 | } |
391 | |
392 | /// Tries to split the given GEP into a variadic base and a constant offset, |
393 | /// and returns true if the splitting succeeds. |
394 | bool splitGEP(GetElementPtrInst *GEP); |
395 | |
396 | /// Tries to reorder the given GEP with the GEP that produces the base if |
397 | /// doing so results in producing a constant offset as the outermost |
398 | /// index. |
399 | bool reorderGEP(GetElementPtrInst *GEP, TargetTransformInfo &TTI); |
400 | |
401 | /// Lower a GEP with multiple indices into multiple GEPs with a single index. |
402 | /// Function splitGEP already split the original GEP into a variadic part and |
403 | /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the |
404 | /// variadic part into a set of GEPs with a single index and applies |
405 | /// AccumulativeByteOffset to it. |
406 | /// \p Variadic The variadic part of the original GEP. |
407 | /// \p AccumulativeByteOffset The constant offset. |
408 | void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, |
409 | int64_t AccumulativeByteOffset); |
410 | |
411 | /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form. |
412 | /// Function splitGEP already split the original GEP into a variadic part and |
413 | /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the |
414 | /// variadic part into a set of arithmetic operations and applies |
415 | /// AccumulativeByteOffset to it. |
416 | /// \p Variadic The variadic part of the original GEP. |
417 | /// \p AccumulativeByteOffset The constant offset. |
418 | void lowerToArithmetics(GetElementPtrInst *Variadic, |
419 | int64_t AccumulativeByteOffset); |
420 | |
421 | /// Finds the constant offset within each index and accumulates them. If |
422 | /// LowerGEP is true, it finds in indices of both sequential and structure |
423 | /// types, otherwise it only finds in sequential indices. The output |
424 | /// NeedsExtraction indicates whether we successfully find a non-zero constant |
425 | /// offset. |
426 | int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &); |
427 | |
428 | /// Canonicalize array indices to pointer-size integers. This helps to |
429 | /// simplify the logic of splitting a GEP. For example, if a + b is a |
430 | /// pointer-size integer, we have |
431 | /// gep base, a + b = gep (gep base, a), b |
432 | /// However, this equality may not hold if the size of a + b is smaller than |
433 | /// the pointer size, because LLVM conceptually sign-extends GEP indices to |
434 | /// pointer size before computing the address |
435 | /// (http://llvm.org/docs/LangRef.html#id181). |
436 | /// |
437 | /// This canonicalization is very likely already done in clang and |
438 | /// instcombine. Therefore, the program will probably remain the same. |
439 | /// |
440 | /// Returns true if the module changes. |
441 | /// |
442 | /// Verified in @i32_add in split-gep.ll |
443 | bool canonicalizeArrayIndicesToIndexSize(GetElementPtrInst *GEP); |
444 | |
445 | /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow. |
446 | /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting |
447 | /// the constant offset. After extraction, it becomes desirable to reunion the |
448 | /// distributed sexts. For example, |
449 | /// |
450 | /// &a[sext(i +nsw (j +nsw 5)] |
451 | /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)] |
452 | /// => constant extraction &a[sext(i) + sext(j)] + 5 |
453 | /// => reunion &a[sext(i +nsw j)] + 5 |
454 | bool reuniteExts(Function &F); |
455 | |
456 | /// A helper that reunites sexts in an instruction. |
457 | bool reuniteExts(Instruction *I); |
458 | |
459 | /// Find the closest dominator of <Dominatee> that is equivalent to <Key>. |
460 | Instruction *findClosestMatchingDominator( |
461 | ExprKey Key, Instruction *Dominatee, |
462 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs); |
463 | |
464 | /// Verify F is free of dead code. |
465 | void verifyNoDeadCode(Function &F); |
466 | |
467 | bool hasMoreThanOneUseInLoop(Value *v, Loop *L); |
468 | |
469 | // Swap the index operand of two GEP. |
470 | void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second); |
471 | |
472 | // Check if it is safe to swap operand of two GEP. |
473 | bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second, |
474 | Loop *CurLoop); |
475 | |
476 | const DataLayout *DL = nullptr; |
477 | DominatorTree *DT = nullptr; |
478 | LoopInfo *LI; |
479 | TargetLibraryInfo *TLI; |
480 | // Retrieved lazily since not always used. |
481 | function_ref<TargetTransformInfo &(Function &)> GetTTI; |
482 | |
483 | /// Whether to lower a GEP with multiple indices into arithmetic operations or |
484 | /// multiple GEPs with a single index. |
485 | bool LowerGEP; |
486 | |
487 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingAdds; |
488 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingSubs; |
489 | }; |
490 | |
491 | } // end anonymous namespace |
492 | |
493 | char SeparateConstOffsetFromGEPLegacyPass::ID = 0; |
494 | |
495 | INITIALIZE_PASS_BEGIN( |
496 | SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep" , |
497 | "Split GEPs to a variadic base and a constant offset for better CSE" , false, |
498 | false) |
499 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
500 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
501 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
502 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
503 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
504 | INITIALIZE_PASS_END( |
505 | SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep" , |
506 | "Split GEPs to a variadic base and a constant offset for better CSE" , false, |
507 | false) |
508 | |
509 | FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) { |
510 | return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP); |
511 | } |
512 | |
513 | bool ConstantOffsetExtractor::(bool SignExtended, |
514 | bool ZeroExtended, |
515 | BinaryOperator *BO, |
516 | bool NonNegative) { |
517 | // We only consider ADD, SUB and OR, because a non-zero constant found in |
518 | // expressions composed of these operations can be easily hoisted as a |
519 | // constant offset by reassociation. |
520 | if (BO->getOpcode() != Instruction::Add && |
521 | BO->getOpcode() != Instruction::Sub && |
522 | BO->getOpcode() != Instruction::Or) { |
523 | return false; |
524 | } |
525 | |
526 | Value *LHS = BO->getOperand(i_nocapture: 0), *RHS = BO->getOperand(i_nocapture: 1); |
527 | // Do not trace into "or" unless it is equivalent to "add". |
528 | // This is the case if the or's disjoint flag is set. |
529 | if (BO->getOpcode() == Instruction::Or && |
530 | !cast<PossiblyDisjointInst>(Val: BO)->isDisjoint()) |
531 | return false; |
532 | |
533 | // FIXME: We don't currently support constants from the RHS of subs, |
534 | // when we are zero-extended, because we need a way to zero-extended |
535 | // them before they are negated. |
536 | if (ZeroExtended && !SignExtended && BO->getOpcode() == Instruction::Sub) |
537 | return false; |
538 | |
539 | // In addition, tracing into BO requires that its surrounding s/zext (if |
540 | // any) is distributable to both operands. |
541 | // |
542 | // Suppose BO = A op B. |
543 | // SignExtended | ZeroExtended | Distributable? |
544 | // --------------+--------------+---------------------------------- |
545 | // 0 | 0 | true because no s/zext exists |
546 | // 0 | 1 | zext(BO) == zext(A) op zext(B) |
547 | // 1 | 0 | sext(BO) == sext(A) op sext(B) |
548 | // 1 | 1 | zext(sext(BO)) == |
549 | // | | zext(sext(A)) op zext(sext(B)) |
550 | if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { |
551 | // If a + b >= 0 and (a >= 0 or b >= 0), then |
552 | // sext(a + b) = sext(a) + sext(b) |
553 | // even if the addition is not marked nsw. |
554 | // |
555 | // Leveraging this invariant, we can trace into an sext'ed inbound GEP |
556 | // index if the constant offset is non-negative. |
557 | // |
558 | // Verified in @sext_add in split-gep.ll. |
559 | if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(Val: LHS)) { |
560 | if (!ConstLHS->isNegative()) |
561 | return true; |
562 | } |
563 | if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Val: RHS)) { |
564 | if (!ConstRHS->isNegative()) |
565 | return true; |
566 | } |
567 | } |
568 | |
569 | // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) |
570 | // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) |
571 | if (BO->getOpcode() == Instruction::Add || |
572 | BO->getOpcode() == Instruction::Sub) { |
573 | if (SignExtended && !BO->hasNoSignedWrap()) |
574 | return false; |
575 | if (ZeroExtended && !BO->hasNoUnsignedWrap()) |
576 | return false; |
577 | } |
578 | |
579 | return true; |
580 | } |
581 | |
582 | APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, |
583 | bool SignExtended, |
584 | bool ZeroExtended) { |
585 | // Save off the current height of the chain, in case we need to restore it. |
586 | size_t ChainLength = UserChain.size(); |
587 | |
588 | // BO being non-negative does not shed light on whether its operands are |
589 | // non-negative. Clear the NonNegative flag here. |
590 | APInt ConstantOffset = find(V: BO->getOperand(i_nocapture: 0), SignExtended, ZeroExtended, |
591 | /* NonNegative */ false); |
592 | // If we found a constant offset in the left operand, stop and return that. |
593 | // This shortcut might cause us to miss opportunities of combining the |
594 | // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. |
595 | // However, such cases are probably already handled by -instcombine, |
596 | // given this pass runs after the standard optimizations. |
597 | if (ConstantOffset != 0) return ConstantOffset; |
598 | |
599 | // Reset the chain back to where it was when we started exploring this node, |
600 | // since visiting the LHS didn't pan out. |
601 | UserChain.resize(N: ChainLength); |
602 | |
603 | ConstantOffset = find(V: BO->getOperand(i_nocapture: 1), SignExtended, ZeroExtended, |
604 | /* NonNegative */ false); |
605 | // If U is a sub operator, negate the constant offset found in the right |
606 | // operand. |
607 | if (BO->getOpcode() == Instruction::Sub) |
608 | ConstantOffset = -ConstantOffset; |
609 | |
610 | // If RHS wasn't a suitable candidate either, reset the chain again. |
611 | if (ConstantOffset == 0) |
612 | UserChain.resize(N: ChainLength); |
613 | |
614 | return ConstantOffset; |
615 | } |
616 | |
617 | APInt ConstantOffsetExtractor::(Value *V, bool SignExtended, |
618 | bool ZeroExtended, bool NonNegative) { |
619 | // TODO(jingyue): We could trace into integer/pointer casts, such as |
620 | // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only |
621 | // integers because it gives good enough results for our benchmarks. |
622 | unsigned BitWidth = cast<IntegerType>(Val: V->getType())->getBitWidth(); |
623 | |
624 | // We cannot do much with Values that are not a User, such as an Argument. |
625 | User *U = dyn_cast<User>(Val: V); |
626 | if (U == nullptr) return APInt(BitWidth, 0); |
627 | |
628 | APInt ConstantOffset(BitWidth, 0); |
629 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
630 | // Hooray, we found it! |
631 | ConstantOffset = CI->getValue(); |
632 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: V)) { |
633 | // Trace into subexpressions for more hoisting opportunities. |
634 | if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) |
635 | ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); |
636 | } else if (isa<TruncInst>(Val: V)) { |
637 | ConstantOffset = |
638 | find(V: U->getOperand(i: 0), SignExtended, ZeroExtended, NonNegative) |
639 | .trunc(width: BitWidth); |
640 | } else if (isa<SExtInst>(Val: V)) { |
641 | ConstantOffset = find(V: U->getOperand(i: 0), /* SignExtended */ true, |
642 | ZeroExtended, NonNegative).sext(width: BitWidth); |
643 | } else if (isa<ZExtInst>(Val: V)) { |
644 | // As an optimization, we can clear the SignExtended flag because |
645 | // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. |
646 | // |
647 | // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. |
648 | ConstantOffset = |
649 | find(V: U->getOperand(i: 0), /* SignExtended */ false, |
650 | /* ZeroExtended */ true, /* NonNegative */ false).zext(width: BitWidth); |
651 | } |
652 | |
653 | // If we found a non-zero constant offset, add it to the path for |
654 | // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't |
655 | // help this optimization. |
656 | if (ConstantOffset != 0) |
657 | UserChain.push_back(Elt: U); |
658 | return ConstantOffset; |
659 | } |
660 | |
661 | Value *ConstantOffsetExtractor::(Value *V) { |
662 | Value *Current = V; |
663 | // ExtInsts is built in the use-def order. Therefore, we apply them to V |
664 | // in the reversed order. |
665 | for (CastInst *I : llvm::reverse(C&: ExtInsts)) { |
666 | if (Constant *C = dyn_cast<Constant>(Val: Current)) { |
667 | // Try to constant fold the cast. |
668 | Current = ConstantFoldCastOperand(Opcode: I->getOpcode(), C, DestTy: I->getType(), DL); |
669 | if (Current) |
670 | continue; |
671 | } |
672 | |
673 | Instruction *Ext = I->clone(); |
674 | Ext->setOperand(i: 0, Val: Current); |
675 | Ext->insertBefore(BB&: *IP->getParent(), InsertPos: IP); |
676 | Current = Ext; |
677 | } |
678 | return Current; |
679 | } |
680 | |
681 | Value *ConstantOffsetExtractor::() { |
682 | distributeExtsAndCloneChain(ChainIndex: UserChain.size() - 1); |
683 | // Remove all nullptrs (used to be s/zext) from UserChain. |
684 | unsigned NewSize = 0; |
685 | for (User *I : UserChain) { |
686 | if (I != nullptr) { |
687 | UserChain[NewSize] = I; |
688 | NewSize++; |
689 | } |
690 | } |
691 | UserChain.resize(N: NewSize); |
692 | return removeConstOffset(ChainIndex: UserChain.size() - 1); |
693 | } |
694 | |
695 | Value * |
696 | ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { |
697 | User *U = UserChain[ChainIndex]; |
698 | if (ChainIndex == 0) { |
699 | assert(isa<ConstantInt>(U)); |
700 | // If U is a ConstantInt, applyExts will return a ConstantInt as well. |
701 | return UserChain[ChainIndex] = cast<ConstantInt>(Val: applyExts(V: U)); |
702 | } |
703 | |
704 | if (CastInst *Cast = dyn_cast<CastInst>(Val: U)) { |
705 | assert( |
706 | (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) && |
707 | "Only following instructions can be traced: sext, zext & trunc" ); |
708 | ExtInsts.push_back(Elt: Cast); |
709 | UserChain[ChainIndex] = nullptr; |
710 | return distributeExtsAndCloneChain(ChainIndex: ChainIndex - 1); |
711 | } |
712 | |
713 | // Function find only trace into BinaryOperator and CastInst. |
714 | BinaryOperator *BO = cast<BinaryOperator>(Val: U); |
715 | // OpNo = which operand of BO is UserChain[ChainIndex - 1] |
716 | unsigned OpNo = (BO->getOperand(i_nocapture: 0) == UserChain[ChainIndex - 1] ? 0 : 1); |
717 | Value *TheOther = applyExts(V: BO->getOperand(i_nocapture: 1 - OpNo)); |
718 | Value *NextInChain = distributeExtsAndCloneChain(ChainIndex: ChainIndex - 1); |
719 | |
720 | BinaryOperator *NewBO = nullptr; |
721 | if (OpNo == 0) { |
722 | NewBO = BinaryOperator::Create(Op: BO->getOpcode(), S1: NextInChain, S2: TheOther, |
723 | Name: BO->getName(), InsertBefore: IP); |
724 | } else { |
725 | NewBO = BinaryOperator::Create(Op: BO->getOpcode(), S1: TheOther, S2: NextInChain, |
726 | Name: BO->getName(), InsertBefore: IP); |
727 | } |
728 | return UserChain[ChainIndex] = NewBO; |
729 | } |
730 | |
731 | Value *ConstantOffsetExtractor::(unsigned ChainIndex) { |
732 | if (ChainIndex == 0) { |
733 | assert(isa<ConstantInt>(UserChain[ChainIndex])); |
734 | return ConstantInt::getNullValue(Ty: UserChain[ChainIndex]->getType()); |
735 | } |
736 | |
737 | BinaryOperator *BO = cast<BinaryOperator>(Val: UserChain[ChainIndex]); |
738 | assert((BO->use_empty() || BO->hasOneUse()) && |
739 | "distributeExtsAndCloneChain clones each BinaryOperator in " |
740 | "UserChain, so no one should be used more than " |
741 | "once" ); |
742 | |
743 | unsigned OpNo = (BO->getOperand(i_nocapture: 0) == UserChain[ChainIndex - 1] ? 0 : 1); |
744 | assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); |
745 | Value *NextInChain = removeConstOffset(ChainIndex: ChainIndex - 1); |
746 | Value *TheOther = BO->getOperand(i_nocapture: 1 - OpNo); |
747 | |
748 | // If NextInChain is 0 and not the LHS of a sub, we can simplify the |
749 | // sub-expression to be just TheOther. |
750 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: NextInChain)) { |
751 | if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) |
752 | return TheOther; |
753 | } |
754 | |
755 | BinaryOperator::BinaryOps NewOp = BO->getOpcode(); |
756 | if (BO->getOpcode() == Instruction::Or) { |
757 | // Rebuild "or" as "add", because "or" may be invalid for the new |
758 | // expression. |
759 | // |
760 | // For instance, given |
761 | // a | (b + 5) where a and b + 5 have no common bits, |
762 | // we can extract 5 as the constant offset. |
763 | // |
764 | // However, reusing the "or" in the new index would give us |
765 | // (a | b) + 5 |
766 | // which does not equal a | (b + 5). |
767 | // |
768 | // Replacing the "or" with "add" is fine, because |
769 | // a | (b + 5) = a + (b + 5) = (a + b) + 5 |
770 | NewOp = Instruction::Add; |
771 | } |
772 | |
773 | BinaryOperator *NewBO; |
774 | if (OpNo == 0) { |
775 | NewBO = BinaryOperator::Create(Op: NewOp, S1: NextInChain, S2: TheOther, Name: "" , InsertBefore: IP); |
776 | } else { |
777 | NewBO = BinaryOperator::Create(Op: NewOp, S1: TheOther, S2: NextInChain, Name: "" , InsertBefore: IP); |
778 | } |
779 | NewBO->takeName(V: BO); |
780 | return NewBO; |
781 | } |
782 | |
783 | /// A helper function to check if reassociating through an entry in the user |
784 | /// chain would invalidate the GEP's nuw flag. |
785 | static bool allowsPreservingNUW(const User *U) { |
786 | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: U)) { |
787 | // Binary operations need to be effectively add nuw. |
788 | auto Opcode = BO->getOpcode(); |
789 | if (Opcode == BinaryOperator::Or) { |
790 | // Ors are only considered here if they are disjoint. The addition that |
791 | // they represent in this case is NUW. |
792 | assert(cast<PossiblyDisjointInst>(BO)->isDisjoint()); |
793 | return true; |
794 | } |
795 | return Opcode == BinaryOperator::Add && BO->hasNoUnsignedWrap(); |
796 | } |
797 | // UserChain can only contain ConstantInt, CastInst, or BinaryOperator. |
798 | // Among the possible CastInsts, only trunc without nuw is a problem: If it |
799 | // is distributed through an add nuw, wrapping may occur: |
800 | // "add nuw trunc(a), trunc(b)" is more poisonous than "trunc(add nuw a, b)" |
801 | if (const TruncInst *TI = dyn_cast<TruncInst>(Val: U)) |
802 | return TI->hasNoUnsignedWrap(); |
803 | return isa<CastInst>(Val: U) || isa<ConstantInt>(Val: U); |
804 | } |
805 | |
806 | Value *ConstantOffsetExtractor::(Value *Idx, GetElementPtrInst *GEP, |
807 | User *&UserChainTail, |
808 | bool &PreservesNUW) { |
809 | ConstantOffsetExtractor (GEP->getIterator()); |
810 | // Find a non-zero constant offset first. |
811 | APInt ConstantOffset = |
812 | Extractor.find(V: Idx, /* SignExtended */ false, /* ZeroExtended */ false, |
813 | NonNegative: GEP->isInBounds()); |
814 | if (ConstantOffset == 0) { |
815 | UserChainTail = nullptr; |
816 | PreservesNUW = true; |
817 | return nullptr; |
818 | } |
819 | |
820 | PreservesNUW = all_of(Range&: Extractor.UserChain, P: allowsPreservingNUW); |
821 | |
822 | // Separates the constant offset from the GEP index. |
823 | Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); |
824 | UserChainTail = Extractor.UserChain.back(); |
825 | return IdxWithoutConstOffset; |
826 | } |
827 | |
828 | int64_t ConstantOffsetExtractor::(Value *Idx, GetElementPtrInst *GEP) { |
829 | // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. |
830 | return ConstantOffsetExtractor(GEP->getIterator()) |
831 | .find(V: Idx, /* SignExtended */ false, /* ZeroExtended */ false, |
832 | NonNegative: GEP->isInBounds()) |
833 | .getSExtValue(); |
834 | } |
835 | |
836 | bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToIndexSize( |
837 | GetElementPtrInst *GEP) { |
838 | bool Changed = false; |
839 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
840 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
841 | for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); |
842 | I != E; ++I, ++GTI) { |
843 | // Skip struct member indices which must be i32. |
844 | if (GTI.isSequential()) { |
845 | if ((*I)->getType() != PtrIdxTy) { |
846 | *I = CastInst::CreateIntegerCast(S: *I, Ty: PtrIdxTy, isSigned: true, Name: "idxprom" , |
847 | InsertBefore: GEP->getIterator()); |
848 | Changed = true; |
849 | } |
850 | } |
851 | } |
852 | return Changed; |
853 | } |
854 | |
855 | int64_t |
856 | SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, |
857 | bool &) { |
858 | NeedsExtraction = false; |
859 | int64_t AccumulativeByteOffset = 0; |
860 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
861 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
862 | if (GTI.isSequential()) { |
863 | // Constant offsets of scalable types are not really constant. |
864 | if (GTI.getIndexedType()->isScalableTy()) |
865 | continue; |
866 | |
867 | // Tries to extract a constant offset from this GEP index. |
868 | int64_t ConstantOffset = |
869 | ConstantOffsetExtractor::Find(Idx: GEP->getOperand(i_nocapture: I), GEP); |
870 | if (ConstantOffset != 0) { |
871 | NeedsExtraction = true; |
872 | // A GEP may have multiple indices. We accumulate the extracted |
873 | // constant offset to a byte offset, and later offset the remainder of |
874 | // the original GEP with this byte offset. |
875 | AccumulativeByteOffset += |
876 | ConstantOffset * GTI.getSequentialElementStride(DL: *DL); |
877 | } |
878 | } else if (LowerGEP) { |
879 | StructType *StTy = GTI.getStructType(); |
880 | uint64_t Field = cast<ConstantInt>(Val: GEP->getOperand(i_nocapture: I))->getZExtValue(); |
881 | // Skip field 0 as the offset is always 0. |
882 | if (Field != 0) { |
883 | NeedsExtraction = true; |
884 | AccumulativeByteOffset += |
885 | DL->getStructLayout(Ty: StTy)->getElementOffset(Idx: Field); |
886 | } |
887 | } |
888 | } |
889 | return AccumulativeByteOffset; |
890 | } |
891 | |
892 | void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( |
893 | GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) { |
894 | IRBuilder<> Builder(Variadic); |
895 | Type *PtrIndexTy = DL->getIndexType(PtrTy: Variadic->getType()); |
896 | |
897 | Value *ResultPtr = Variadic->getOperand(i_nocapture: 0); |
898 | Loop *L = LI->getLoopFor(BB: Variadic->getParent()); |
899 | // Check if the base is not loop invariant or used more than once. |
900 | bool isSwapCandidate = |
901 | L && L->isLoopInvariant(V: ResultPtr) && |
902 | !hasMoreThanOneUseInLoop(v: ResultPtr, L); |
903 | Value *FirstResult = nullptr; |
904 | |
905 | gep_type_iterator GTI = gep_type_begin(GEP: *Variadic); |
906 | // Create an ugly GEP for each sequential index. We don't create GEPs for |
907 | // structure indices, as they are accumulated in the constant offset index. |
908 | for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { |
909 | if (GTI.isSequential()) { |
910 | Value *Idx = Variadic->getOperand(i_nocapture: I); |
911 | // Skip zero indices. |
912 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Idx)) |
913 | if (CI->isZero()) |
914 | continue; |
915 | |
916 | APInt ElementSize = APInt(PtrIndexTy->getIntegerBitWidth(), |
917 | GTI.getSequentialElementStride(DL: *DL)); |
918 | // Scale the index by element size. |
919 | if (ElementSize != 1) { |
920 | if (ElementSize.isPowerOf2()) { |
921 | Idx = Builder.CreateShl( |
922 | LHS: Idx, RHS: ConstantInt::get(Ty: PtrIndexTy, V: ElementSize.logBase2())); |
923 | } else { |
924 | Idx = |
925 | Builder.CreateMul(LHS: Idx, RHS: ConstantInt::get(Ty: PtrIndexTy, V: ElementSize)); |
926 | } |
927 | } |
928 | // Create an ugly GEP with a single index for each index. |
929 | ResultPtr = Builder.CreatePtrAdd(Ptr: ResultPtr, Offset: Idx, Name: "uglygep" ); |
930 | if (FirstResult == nullptr) |
931 | FirstResult = ResultPtr; |
932 | } |
933 | } |
934 | |
935 | // Create a GEP with the constant offset index. |
936 | if (AccumulativeByteOffset != 0) { |
937 | Value *Offset = ConstantInt::get(Ty: PtrIndexTy, V: AccumulativeByteOffset); |
938 | ResultPtr = Builder.CreatePtrAdd(Ptr: ResultPtr, Offset, Name: "uglygep" ); |
939 | } else |
940 | isSwapCandidate = false; |
941 | |
942 | // If we created a GEP with constant index, and the base is loop invariant, |
943 | // then we swap the first one with it, so LICM can move constant GEP out |
944 | // later. |
945 | auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(Val: FirstResult); |
946 | auto *SecondGEP = dyn_cast<GetElementPtrInst>(Val: ResultPtr); |
947 | if (isSwapCandidate && isLegalToSwapOperand(First: FirstGEP, Second: SecondGEP, CurLoop: L)) |
948 | swapGEPOperand(First: FirstGEP, Second: SecondGEP); |
949 | |
950 | Variadic->replaceAllUsesWith(V: ResultPtr); |
951 | Variadic->eraseFromParent(); |
952 | } |
953 | |
954 | void |
955 | SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic, |
956 | int64_t AccumulativeByteOffset) { |
957 | IRBuilder<> Builder(Variadic); |
958 | Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); |
959 | assert(IntPtrTy == DL->getIndexType(Variadic->getType()) && |
960 | "Pointer type must match index type for arithmetic-based lowering of " |
961 | "split GEPs" ); |
962 | |
963 | Value *ResultPtr = Builder.CreatePtrToInt(V: Variadic->getOperand(i_nocapture: 0), DestTy: IntPtrTy); |
964 | gep_type_iterator GTI = gep_type_begin(GEP: *Variadic); |
965 | // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We |
966 | // don't create arithmetics for structure indices, as they are accumulated |
967 | // in the constant offset index. |
968 | for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { |
969 | if (GTI.isSequential()) { |
970 | Value *Idx = Variadic->getOperand(i_nocapture: I); |
971 | // Skip zero indices. |
972 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Idx)) |
973 | if (CI->isZero()) |
974 | continue; |
975 | |
976 | APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), |
977 | GTI.getSequentialElementStride(DL: *DL)); |
978 | // Scale the index by element size. |
979 | if (ElementSize != 1) { |
980 | if (ElementSize.isPowerOf2()) { |
981 | Idx = Builder.CreateShl( |
982 | LHS: Idx, RHS: ConstantInt::get(Ty: IntPtrTy, V: ElementSize.logBase2())); |
983 | } else { |
984 | Idx = Builder.CreateMul(LHS: Idx, RHS: ConstantInt::get(Ty: IntPtrTy, V: ElementSize)); |
985 | } |
986 | } |
987 | // Create an ADD for each index. |
988 | ResultPtr = Builder.CreateAdd(LHS: ResultPtr, RHS: Idx); |
989 | } |
990 | } |
991 | |
992 | // Create an ADD for the constant offset index. |
993 | if (AccumulativeByteOffset != 0) { |
994 | ResultPtr = Builder.CreateAdd( |
995 | LHS: ResultPtr, RHS: ConstantInt::get(Ty: IntPtrTy, V: AccumulativeByteOffset)); |
996 | } |
997 | |
998 | ResultPtr = Builder.CreateIntToPtr(V: ResultPtr, DestTy: Variadic->getType()); |
999 | Variadic->replaceAllUsesWith(V: ResultPtr); |
1000 | Variadic->eraseFromParent(); |
1001 | } |
1002 | |
1003 | bool SeparateConstOffsetFromGEP::reorderGEP(GetElementPtrInst *GEP, |
1004 | TargetTransformInfo &TTI) { |
1005 | auto PtrGEP = dyn_cast<GetElementPtrInst>(Val: GEP->getPointerOperand()); |
1006 | if (!PtrGEP) |
1007 | return false; |
1008 | |
1009 | bool ; |
1010 | int64_t NestedByteOffset = |
1011 | accumulateByteOffset(GEP: PtrGEP, NeedsExtraction&: NestedNeedsExtraction); |
1012 | if (!NestedNeedsExtraction) |
1013 | return false; |
1014 | |
1015 | unsigned AddrSpace = PtrGEP->getPointerAddressSpace(); |
1016 | if (!TTI.isLegalAddressingMode(Ty: GEP->getResultElementType(), |
1017 | /*BaseGV=*/nullptr, BaseOffset: NestedByteOffset, |
1018 | /*HasBaseReg=*/true, /*Scale=*/0, AddrSpace)) |
1019 | return false; |
1020 | |
1021 | bool GEPInBounds = GEP->isInBounds(); |
1022 | bool PtrGEPInBounds = PtrGEP->isInBounds(); |
1023 | bool IsChainInBounds = GEPInBounds && PtrGEPInBounds; |
1024 | if (IsChainInBounds) { |
1025 | auto IsKnownNonNegative = [this](Value *V) { |
1026 | return isKnownNonNegative(V, SQ: *DL); |
1027 | }; |
1028 | IsChainInBounds &= all_of(Range: GEP->indices(), P: IsKnownNonNegative); |
1029 | if (IsChainInBounds) |
1030 | IsChainInBounds &= all_of(Range: PtrGEP->indices(), P: IsKnownNonNegative); |
1031 | } |
1032 | |
1033 | IRBuilder<> Builder(GEP); |
1034 | // For trivial GEP chains, we can swap the indices. |
1035 | Value *NewSrc = Builder.CreateGEP( |
1036 | Ty: GEP->getSourceElementType(), Ptr: PtrGEP->getPointerOperand(), |
1037 | IdxList: SmallVector<Value *, 4>(GEP->indices()), Name: "" , NW: IsChainInBounds); |
1038 | Value *NewGEP = Builder.CreateGEP(Ty: PtrGEP->getSourceElementType(), Ptr: NewSrc, |
1039 | IdxList: SmallVector<Value *, 4>(PtrGEP->indices()), |
1040 | Name: "" , NW: IsChainInBounds); |
1041 | GEP->replaceAllUsesWith(V: NewGEP); |
1042 | RecursivelyDeleteTriviallyDeadInstructions(V: GEP); |
1043 | return true; |
1044 | } |
1045 | |
1046 | bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { |
1047 | // Skip vector GEPs. |
1048 | if (GEP->getType()->isVectorTy()) |
1049 | return false; |
1050 | |
1051 | // The backend can already nicely handle the case where all indices are |
1052 | // constant. |
1053 | if (GEP->hasAllConstantIndices()) |
1054 | return false; |
1055 | |
1056 | bool Changed = canonicalizeArrayIndicesToIndexSize(GEP); |
1057 | |
1058 | bool ; |
1059 | int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); |
1060 | |
1061 | TargetTransformInfo &TTI = GetTTI(*GEP->getFunction()); |
1062 | |
1063 | if (!NeedsExtraction) { |
1064 | Changed |= reorderGEP(GEP, TTI); |
1065 | return Changed; |
1066 | } |
1067 | |
1068 | // If LowerGEP is disabled, before really splitting the GEP, check whether the |
1069 | // backend supports the addressing mode we are about to produce. If no, this |
1070 | // splitting probably won't be beneficial. |
1071 | // If LowerGEP is enabled, even the extracted constant offset can not match |
1072 | // the addressing mode, we can still do optimizations to other lowered parts |
1073 | // of variable indices. Therefore, we don't check for addressing modes in that |
1074 | // case. |
1075 | if (!LowerGEP) { |
1076 | unsigned AddrSpace = GEP->getPointerAddressSpace(); |
1077 | if (!TTI.isLegalAddressingMode(Ty: GEP->getResultElementType(), |
1078 | /*BaseGV=*/nullptr, BaseOffset: AccumulativeByteOffset, |
1079 | /*HasBaseReg=*/true, /*Scale=*/0, |
1080 | AddrSpace)) { |
1081 | return Changed; |
1082 | } |
1083 | } |
1084 | |
1085 | // Track information for preserving GEP flags. |
1086 | bool AllOffsetsNonNegative = AccumulativeByteOffset >= 0; |
1087 | bool AllNUWPreserved = true; |
1088 | |
1089 | // Remove the constant offset in each sequential index. The resultant GEP |
1090 | // computes the variadic base. |
1091 | // Notice that we don't remove struct field indices here. If LowerGEP is |
1092 | // disabled, a structure index is not accumulated and we still use the old |
1093 | // one. If LowerGEP is enabled, a structure index is accumulated in the |
1094 | // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later |
1095 | // handle the constant offset and won't need a new structure index. |
1096 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
1097 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
1098 | if (GTI.isSequential()) { |
1099 | // Constant offsets of scalable types are not really constant. |
1100 | if (GTI.getIndexedType()->isScalableTy()) |
1101 | continue; |
1102 | |
1103 | // Splits this GEP index into a variadic part and a constant offset, and |
1104 | // uses the variadic part as the new index. |
1105 | Value *OldIdx = GEP->getOperand(i_nocapture: I); |
1106 | User *UserChainTail; |
1107 | bool PreservesNUW; |
1108 | Value *NewIdx = ConstantOffsetExtractor::Extract( |
1109 | Idx: OldIdx, GEP, UserChainTail, PreservesNUW); |
1110 | if (NewIdx != nullptr) { |
1111 | // Switches to the index with the constant offset removed. |
1112 | GEP->setOperand(i_nocapture: I, Val_nocapture: NewIdx); |
1113 | // After switching to the new index, we can garbage-collect UserChain |
1114 | // and the old index if they are not used. |
1115 | RecursivelyDeleteTriviallyDeadInstructions(V: UserChainTail); |
1116 | RecursivelyDeleteTriviallyDeadInstructions(V: OldIdx); |
1117 | AllOffsetsNonNegative = |
1118 | AllOffsetsNonNegative && isKnownNonNegative(V: NewIdx, SQ: *DL); |
1119 | AllNUWPreserved &= PreservesNUW; |
1120 | } |
1121 | } |
1122 | } |
1123 | |
1124 | // Clear the inbounds attribute because the new index may be off-bound. |
1125 | // e.g., |
1126 | // |
1127 | // b = add i64 a, 5 |
1128 | // addr = gep inbounds float, float* p, i64 b |
1129 | // |
1130 | // is transformed to: |
1131 | // |
1132 | // addr2 = gep float, float* p, i64 a ; inbounds removed |
1133 | // addr = gep float, float* addr2, i64 5 ; inbounds removed |
1134 | // |
1135 | // If a is -4, although the old index b is in bounds, the new index a is |
1136 | // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the |
1137 | // inbounds keyword is not present, the offsets are added to the base |
1138 | // address with silently-wrapping two's complement arithmetic". |
1139 | // Therefore, the final code will be a semantically equivalent. |
1140 | GEPNoWrapFlags NewGEPFlags = GEPNoWrapFlags::none(); |
1141 | |
1142 | // If the initial GEP was inbounds/nusw and all variable indices and the |
1143 | // accumulated offsets are non-negative, they can be added in any order and |
1144 | // the intermediate results are in bounds and don't overflow in a nusw sense. |
1145 | // So, we can preserve the inbounds/nusw flag for both GEPs. |
1146 | bool CanPreserveInBoundsNUSW = AllOffsetsNonNegative; |
1147 | |
1148 | // If the initial GEP was NUW and all operations that we reassociate were NUW |
1149 | // additions, the resulting GEPs are also NUW. |
1150 | if (GEP->hasNoUnsignedWrap() && AllNUWPreserved) { |
1151 | NewGEPFlags |= GEPNoWrapFlags::noUnsignedWrap(); |
1152 | // If the initial GEP additionally had NUSW (or inbounds, which implies |
1153 | // NUSW), we know that the indices in the initial GEP must all have their |
1154 | // signbit not set. For indices that are the result of NUW adds, the |
1155 | // add-operands therefore also don't have their signbit set. Therefore, all |
1156 | // indices of the resulting GEPs are non-negative -> we can preserve |
1157 | // the inbounds/nusw flag. |
1158 | CanPreserveInBoundsNUSW |= GEP->hasNoUnsignedSignedWrap(); |
1159 | } |
1160 | |
1161 | if (CanPreserveInBoundsNUSW) { |
1162 | if (GEP->isInBounds()) |
1163 | NewGEPFlags |= GEPNoWrapFlags::inBounds(); |
1164 | else if (GEP->hasNoUnsignedSignedWrap()) |
1165 | NewGEPFlags |= GEPNoWrapFlags::noUnsignedSignedWrap(); |
1166 | } |
1167 | |
1168 | GEP->setNoWrapFlags(NewGEPFlags); |
1169 | |
1170 | // Lowers a GEP to either GEPs with a single index or arithmetic operations. |
1171 | if (LowerGEP) { |
1172 | // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to |
1173 | // arithmetic operations if the target uses alias analysis in codegen. |
1174 | // Additionally, pointers that aren't integral (and so can't be safely |
1175 | // converted to integers) or those whose offset size is different from their |
1176 | // pointer size (which means that doing integer arithmetic on them could |
1177 | // affect that data) can't be lowered in this way. |
1178 | unsigned AddrSpace = GEP->getPointerAddressSpace(); |
1179 | bool = DL->getPointerSizeInBits(AS: AddrSpace) != |
1180 | DL->getIndexSizeInBits(AS: AddrSpace); |
1181 | if (TTI.useAA() || DL->isNonIntegralAddressSpace(AddrSpace) || |
1182 | PointerHasExtraData) |
1183 | lowerToSingleIndexGEPs(Variadic: GEP, AccumulativeByteOffset); |
1184 | else |
1185 | lowerToArithmetics(Variadic: GEP, AccumulativeByteOffset); |
1186 | return true; |
1187 | } |
1188 | |
1189 | // No need to create another GEP if the accumulative byte offset is 0. |
1190 | if (AccumulativeByteOffset == 0) |
1191 | return true; |
1192 | |
1193 | // Offsets the base with the accumulative byte offset. |
1194 | // |
1195 | // %gep ; the base |
1196 | // ... %gep ... |
1197 | // |
1198 | // => add the offset |
1199 | // |
1200 | // %gep2 ; clone of %gep |
1201 | // %new.gep = gep i8, %gep2, %offset |
1202 | // %gep ; will be removed |
1203 | // ... %gep ... |
1204 | // |
1205 | // => replace all uses of %gep with %new.gep and remove %gep |
1206 | // |
1207 | // %gep2 ; clone of %gep |
1208 | // %new.gep = gep i8, %gep2, %offset |
1209 | // ... %new.gep ... |
1210 | Instruction *NewGEP = GEP->clone(); |
1211 | NewGEP->insertBefore(InsertPos: GEP->getIterator()); |
1212 | |
1213 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
1214 | IRBuilder<> Builder(GEP); |
1215 | NewGEP = cast<Instruction>(Val: Builder.CreatePtrAdd( |
1216 | Ptr: NewGEP, Offset: ConstantInt::get(Ty: PtrIdxTy, V: AccumulativeByteOffset, IsSigned: true), |
1217 | Name: GEP->getName(), NW: NewGEPFlags)); |
1218 | NewGEP->copyMetadata(SrcInst: *GEP); |
1219 | |
1220 | GEP->replaceAllUsesWith(V: NewGEP); |
1221 | GEP->eraseFromParent(); |
1222 | |
1223 | return true; |
1224 | } |
1225 | |
1226 | bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) { |
1227 | if (skipFunction(F)) |
1228 | return false; |
1229 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1230 | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
1231 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
1232 | auto GetTTI = [this](Function &F) -> TargetTransformInfo & { |
1233 | return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
1234 | }; |
1235 | SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP); |
1236 | return Impl.run(F); |
1237 | } |
1238 | |
1239 | bool SeparateConstOffsetFromGEP::run(Function &F) { |
1240 | if (DisableSeparateConstOffsetFromGEP) |
1241 | return false; |
1242 | |
1243 | DL = &F.getDataLayout(); |
1244 | bool Changed = false; |
1245 | for (BasicBlock &B : F) { |
1246 | if (!DT->isReachableFromEntry(A: &B)) |
1247 | continue; |
1248 | |
1249 | for (Instruction &I : llvm::make_early_inc_range(Range&: B)) |
1250 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) |
1251 | Changed |= splitGEP(GEP); |
1252 | // No need to split GEP ConstantExprs because all its indices are constant |
1253 | // already. |
1254 | } |
1255 | |
1256 | Changed |= reuniteExts(F); |
1257 | |
1258 | if (VerifyNoDeadCode) |
1259 | verifyNoDeadCode(F); |
1260 | |
1261 | return Changed; |
1262 | } |
1263 | |
1264 | Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator( |
1265 | ExprKey Key, Instruction *Dominatee, |
1266 | DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs) { |
1267 | auto Pos = DominatingExprs.find(Val: Key); |
1268 | if (Pos == DominatingExprs.end()) |
1269 | return nullptr; |
1270 | |
1271 | auto &Candidates = Pos->second; |
1272 | // Because we process the basic blocks in pre-order of the dominator tree, a |
1273 | // candidate that doesn't dominate the current instruction won't dominate any |
1274 | // future instruction either. Therefore, we pop it out of the stack. This |
1275 | // optimization makes the algorithm O(n). |
1276 | while (!Candidates.empty()) { |
1277 | Instruction *Candidate = Candidates.back(); |
1278 | if (DT->dominates(Def: Candidate, User: Dominatee)) |
1279 | return Candidate; |
1280 | Candidates.pop_back(); |
1281 | } |
1282 | return nullptr; |
1283 | } |
1284 | |
1285 | bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) { |
1286 | if (!I->getType()->isIntOrIntVectorTy()) |
1287 | return false; |
1288 | |
1289 | // Dom: LHS+RHS |
1290 | // I: sext(LHS)+sext(RHS) |
1291 | // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom). |
1292 | // TODO: handle zext |
1293 | Value *LHS = nullptr, *RHS = nullptr; |
1294 | if (match(V: I, P: m_Add(L: m_SExt(Op: m_Value(V&: LHS)), R: m_SExt(Op: m_Value(V&: RHS))))) { |
1295 | if (LHS->getType() == RHS->getType()) { |
1296 | ExprKey Key = createNormalizedCommutablePair(A: LHS, B: RHS); |
1297 | if (auto *Dom = findClosestMatchingDominator(Key, Dominatee: I, DominatingExprs&: DominatingAdds)) { |
1298 | Instruction *NewSExt = |
1299 | new SExtInst(Dom, I->getType(), "" , I->getIterator()); |
1300 | NewSExt->takeName(V: I); |
1301 | I->replaceAllUsesWith(V: NewSExt); |
1302 | NewSExt->setDebugLoc(I->getDebugLoc()); |
1303 | RecursivelyDeleteTriviallyDeadInstructions(V: I); |
1304 | return true; |
1305 | } |
1306 | } |
1307 | } else if (match(V: I, P: m_Sub(L: m_SExt(Op: m_Value(V&: LHS)), R: m_SExt(Op: m_Value(V&: RHS))))) { |
1308 | if (LHS->getType() == RHS->getType()) { |
1309 | if (auto *Dom = |
1310 | findClosestMatchingDominator(Key: {LHS, RHS}, Dominatee: I, DominatingExprs&: DominatingSubs)) { |
1311 | Instruction *NewSExt = |
1312 | new SExtInst(Dom, I->getType(), "" , I->getIterator()); |
1313 | NewSExt->takeName(V: I); |
1314 | I->replaceAllUsesWith(V: NewSExt); |
1315 | NewSExt->setDebugLoc(I->getDebugLoc()); |
1316 | RecursivelyDeleteTriviallyDeadInstructions(V: I); |
1317 | return true; |
1318 | } |
1319 | } |
1320 | } |
1321 | |
1322 | // Add I to DominatingExprs if it's an add/sub that can't sign overflow. |
1323 | if (match(V: I, P: m_NSWAdd(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) { |
1324 | if (programUndefinedIfPoison(Inst: I)) { |
1325 | ExprKey Key = createNormalizedCommutablePair(A: LHS, B: RHS); |
1326 | DominatingAdds[Key].push_back(Elt: I); |
1327 | } |
1328 | } else if (match(V: I, P: m_NSWSub(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) { |
1329 | if (programUndefinedIfPoison(Inst: I)) |
1330 | DominatingSubs[{LHS, RHS}].push_back(Elt: I); |
1331 | } |
1332 | return false; |
1333 | } |
1334 | |
1335 | bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) { |
1336 | bool Changed = false; |
1337 | DominatingAdds.clear(); |
1338 | DominatingSubs.clear(); |
1339 | for (const auto Node : depth_first(G: DT)) { |
1340 | BasicBlock *BB = Node->getBlock(); |
1341 | for (Instruction &I : llvm::make_early_inc_range(Range&: *BB)) |
1342 | Changed |= reuniteExts(I: &I); |
1343 | } |
1344 | return Changed; |
1345 | } |
1346 | |
1347 | void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { |
1348 | for (BasicBlock &B : F) { |
1349 | for (Instruction &I : B) { |
1350 | if (isInstructionTriviallyDead(I: &I)) { |
1351 | std::string ErrMessage; |
1352 | raw_string_ostream RSO(ErrMessage); |
1353 | RSO << "Dead instruction detected!\n" << I << "\n" ; |
1354 | llvm_unreachable(RSO.str().c_str()); |
1355 | } |
1356 | } |
1357 | } |
1358 | } |
1359 | |
1360 | bool SeparateConstOffsetFromGEP::isLegalToSwapOperand( |
1361 | GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) { |
1362 | if (!FirstGEP || !FirstGEP->hasOneUse()) |
1363 | return false; |
1364 | |
1365 | if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent()) |
1366 | return false; |
1367 | |
1368 | if (FirstGEP == SecondGEP) |
1369 | return false; |
1370 | |
1371 | unsigned FirstNum = FirstGEP->getNumOperands(); |
1372 | unsigned SecondNum = SecondGEP->getNumOperands(); |
1373 | // Give up if the number of operands are not 2. |
1374 | if (FirstNum != SecondNum || FirstNum != 2) |
1375 | return false; |
1376 | |
1377 | Value *FirstBase = FirstGEP->getOperand(i_nocapture: 0); |
1378 | Value *SecondBase = SecondGEP->getOperand(i_nocapture: 0); |
1379 | Value *FirstOffset = FirstGEP->getOperand(i_nocapture: 1); |
1380 | // Give up if the index of the first GEP is loop invariant. |
1381 | if (CurLoop->isLoopInvariant(V: FirstOffset)) |
1382 | return false; |
1383 | |
1384 | // Give up if base doesn't have same type. |
1385 | if (FirstBase->getType() != SecondBase->getType()) |
1386 | return false; |
1387 | |
1388 | Instruction *FirstOffsetDef = dyn_cast<Instruction>(Val: FirstOffset); |
1389 | |
1390 | // Check if the second operand of first GEP has constant coefficient. |
1391 | // For an example, for the following code, we won't gain anything by |
1392 | // hoisting the second GEP out because the second GEP can be folded away. |
1393 | // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256 |
1394 | // %67 = shl i64 %scevgep.sum.ur159, 2 |
1395 | // %uglygep160 = getelementptr i8* %65, i64 %67 |
1396 | // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024 |
1397 | |
1398 | // Skip constant shift instruction which may be generated by Splitting GEPs. |
1399 | if (FirstOffsetDef && FirstOffsetDef->isShift() && |
1400 | isa<ConstantInt>(Val: FirstOffsetDef->getOperand(i: 1))) |
1401 | FirstOffsetDef = dyn_cast<Instruction>(Val: FirstOffsetDef->getOperand(i: 0)); |
1402 | |
1403 | // Give up if FirstOffsetDef is an Add or Sub with constant. |
1404 | // Because it may not profitable at all due to constant folding. |
1405 | if (FirstOffsetDef) |
1406 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: FirstOffsetDef)) { |
1407 | unsigned opc = BO->getOpcode(); |
1408 | if ((opc == Instruction::Add || opc == Instruction::Sub) && |
1409 | (isa<ConstantInt>(Val: BO->getOperand(i_nocapture: 0)) || |
1410 | isa<ConstantInt>(Val: BO->getOperand(i_nocapture: 1)))) |
1411 | return false; |
1412 | } |
1413 | return true; |
1414 | } |
1415 | |
1416 | bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) { |
1417 | // TODO: Could look at uses of globals, but we need to make sure we are |
1418 | // looking at the correct function. |
1419 | if (isa<Constant>(Val: V)) |
1420 | return false; |
1421 | |
1422 | int UsesInLoop = 0; |
1423 | for (User *U : V->users()) { |
1424 | if (Instruction *User = dyn_cast<Instruction>(Val: U)) |
1425 | if (L->contains(Inst: User)) |
1426 | if (++UsesInLoop > 1) |
1427 | return true; |
1428 | } |
1429 | return false; |
1430 | } |
1431 | |
1432 | void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First, |
1433 | GetElementPtrInst *Second) { |
1434 | Value *Offset1 = First->getOperand(i_nocapture: 1); |
1435 | Value *Offset2 = Second->getOperand(i_nocapture: 1); |
1436 | First->setOperand(i_nocapture: 1, Val_nocapture: Offset2); |
1437 | Second->setOperand(i_nocapture: 1, Val_nocapture: Offset1); |
1438 | |
1439 | // We changed p+o+c to p+c+o, p+c may not be inbound anymore. |
1440 | const DataLayout &DAL = First->getDataLayout(); |
1441 | APInt Offset(DAL.getIndexSizeInBits( |
1442 | AS: cast<PointerType>(Val: First->getType())->getAddressSpace()), |
1443 | 0); |
1444 | Value *NewBase = |
1445 | First->stripAndAccumulateInBoundsConstantOffsets(DL: DAL, Offset); |
1446 | uint64_t ObjectSize; |
1447 | if (!getObjectSize(Ptr: NewBase, Size&: ObjectSize, DL: DAL, TLI) || |
1448 | Offset.ugt(RHS: ObjectSize)) { |
1449 | // TODO(gep_nowrap): Make flag preservation more precise. |
1450 | First->setNoWrapFlags(GEPNoWrapFlags::none()); |
1451 | Second->setNoWrapFlags(GEPNoWrapFlags::none()); |
1452 | } else |
1453 | First->setIsInBounds(true); |
1454 | } |
1455 | |
1456 | void SeparateConstOffsetFromGEPPass::printPipeline( |
1457 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1458 | static_cast<PassInfoMixin<SeparateConstOffsetFromGEPPass> *>(this) |
1459 | ->printPipeline(OS, MapClassName2PassName); |
1460 | OS << '<'; |
1461 | if (LowerGEP) |
1462 | OS << "lower-gep" ; |
1463 | OS << '>'; |
1464 | } |
1465 | |
1466 | PreservedAnalyses |
1467 | SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) { |
1468 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1469 | auto *LI = &AM.getResult<LoopAnalysis>(IR&: F); |
1470 | auto *TLI = &AM.getResult<TargetLibraryAnalysis>(IR&: F); |
1471 | auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & { |
1472 | return AM.getResult<TargetIRAnalysis>(IR&: F); |
1473 | }; |
1474 | SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP); |
1475 | if (!Impl.run(F)) |
1476 | return PreservedAnalyses::all(); |
1477 | PreservedAnalyses PA; |
1478 | PA.preserveSet<CFGAnalyses>(); |
1479 | return PA; |
1480 | } |
1481 | |