| 1 | ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
| 10 | #include "llvm/ADT/DenseMap.h" |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/ADT/Sequence.h" |
| 13 | #include "llvm/ADT/SetVector.h" |
| 14 | #include "llvm/ADT/SmallPtrSet.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/ADT/Twine.h" |
| 18 | #include "llvm/Analysis/AssumptionCache.h" |
| 19 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 20 | #include "llvm/Analysis/CFG.h" |
| 21 | #include "llvm/Analysis/CodeMetrics.h" |
| 22 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 23 | #include "llvm/Analysis/GuardUtils.h" |
| 24 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 25 | #include "llvm/Analysis/LoopInfo.h" |
| 26 | #include "llvm/Analysis/LoopIterator.h" |
| 27 | #include "llvm/Analysis/MemorySSA.h" |
| 28 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 29 | #include "llvm/Analysis/MustExecute.h" |
| 30 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 31 | #include "llvm/Analysis/ScalarEvolution.h" |
| 32 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 33 | #include "llvm/Analysis/ValueTracking.h" |
| 34 | #include "llvm/IR/BasicBlock.h" |
| 35 | #include "llvm/IR/Constant.h" |
| 36 | #include "llvm/IR/Constants.h" |
| 37 | #include "llvm/IR/Dominators.h" |
| 38 | #include "llvm/IR/Function.h" |
| 39 | #include "llvm/IR/IRBuilder.h" |
| 40 | #include "llvm/IR/InstrTypes.h" |
| 41 | #include "llvm/IR/Instruction.h" |
| 42 | #include "llvm/IR/Instructions.h" |
| 43 | #include "llvm/IR/IntrinsicInst.h" |
| 44 | #include "llvm/IR/Module.h" |
| 45 | #include "llvm/IR/PatternMatch.h" |
| 46 | #include "llvm/IR/ProfDataUtils.h" |
| 47 | #include "llvm/IR/Use.h" |
| 48 | #include "llvm/IR/Value.h" |
| 49 | #include "llvm/Support/Casting.h" |
| 50 | #include "llvm/Support/CommandLine.h" |
| 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/ErrorHandling.h" |
| 53 | #include "llvm/Support/GenericDomTree.h" |
| 54 | #include "llvm/Support/InstructionCost.h" |
| 55 | #include "llvm/Support/raw_ostream.h" |
| 56 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| 57 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 58 | #include "llvm/Transforms/Utils/Cloning.h" |
| 59 | #include "llvm/Transforms/Utils/Local.h" |
| 60 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 61 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 62 | #include <algorithm> |
| 63 | #include <cassert> |
| 64 | #include <iterator> |
| 65 | #include <numeric> |
| 66 | #include <optional> |
| 67 | #include <utility> |
| 68 | |
| 69 | #define DEBUG_TYPE "simple-loop-unswitch" |
| 70 | |
| 71 | using namespace llvm; |
| 72 | using namespace llvm::PatternMatch; |
| 73 | |
| 74 | STATISTIC(NumBranches, "Number of branches unswitched" ); |
| 75 | STATISTIC(NumSwitches, "Number of switches unswitched" ); |
| 76 | STATISTIC(NumSelects, "Number of selects turned into branches for unswitching" ); |
| 77 | STATISTIC(NumGuards, "Number of guards turned into branches for unswitching" ); |
| 78 | STATISTIC(NumTrivial, "Number of unswitches that are trivial" ); |
| 79 | STATISTIC( |
| 80 | NumCostMultiplierSkipped, |
| 81 | "Number of unswitch candidates that had their cost multiplier skipped" ); |
| 82 | STATISTIC(NumInvariantConditionsInjected, |
| 83 | "Number of invariant conditions injected and unswitched" ); |
| 84 | |
| 85 | static cl::opt<bool> EnableNonTrivialUnswitch( |
| 86 | "enable-nontrivial-unswitch" , cl::init(Val: false), cl::Hidden, |
| 87 | cl::desc("Forcibly enables non-trivial loop unswitching rather than " |
| 88 | "following the configuration passed into the pass." )); |
| 89 | |
| 90 | static cl::opt<int> |
| 91 | UnswitchThreshold("unswitch-threshold" , cl::init(Val: 50), cl::Hidden, |
| 92 | cl::desc("The cost threshold for unswitching a loop." )); |
| 93 | |
| 94 | static cl::opt<bool> EnableUnswitchCostMultiplier( |
| 95 | "enable-unswitch-cost-multiplier" , cl::init(Val: true), cl::Hidden, |
| 96 | cl::desc("Enable unswitch cost multiplier that prohibits exponential " |
| 97 | "explosion in nontrivial unswitch." )); |
| 98 | static cl::opt<int> UnswitchSiblingsToplevelDiv( |
| 99 | "unswitch-siblings-toplevel-div" , cl::init(Val: 2), cl::Hidden, |
| 100 | cl::desc("Toplevel siblings divisor for cost multiplier." )); |
| 101 | static cl::opt<int> UnswitchNumInitialUnscaledCandidates( |
| 102 | "unswitch-num-initial-unscaled-candidates" , cl::init(Val: 8), cl::Hidden, |
| 103 | cl::desc("Number of unswitch candidates that are ignored when calculating " |
| 104 | "cost multiplier." )); |
| 105 | static cl::opt<bool> UnswitchGuards( |
| 106 | "simple-loop-unswitch-guards" , cl::init(Val: true), cl::Hidden, |
| 107 | cl::desc("If enabled, simple loop unswitching will also consider " |
| 108 | "llvm.experimental.guard intrinsics as unswitch candidates." )); |
| 109 | static cl::opt<bool> DropNonTrivialImplicitNullChecks( |
| 110 | "simple-loop-unswitch-drop-non-trivial-implicit-null-checks" , |
| 111 | cl::init(Val: false), cl::Hidden, |
| 112 | cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " |
| 113 | "null checks to save time analyzing if we can keep it." )); |
| 114 | static cl::opt<unsigned> |
| 115 | MSSAThreshold("simple-loop-unswitch-memoryssa-threshold" , |
| 116 | cl::desc("Max number of memory uses to explore during " |
| 117 | "partial unswitching analysis" ), |
| 118 | cl::init(Val: 100), cl::Hidden); |
| 119 | static cl::opt<bool> FreezeLoopUnswitchCond( |
| 120 | "freeze-loop-unswitch-cond" , cl::init(Val: true), cl::Hidden, |
| 121 | cl::desc("If enabled, the freeze instruction will be added to condition " |
| 122 | "of loop unswitch to prevent miscompilation." )); |
| 123 | |
| 124 | static cl::opt<bool> InjectInvariantConditions( |
| 125 | "simple-loop-unswitch-inject-invariant-conditions" , cl::Hidden, |
| 126 | cl::desc("Whether we should inject new invariants and unswitch them to " |
| 127 | "eliminate some existing (non-invariant) conditions." ), |
| 128 | cl::init(Val: true)); |
| 129 | |
| 130 | static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold( |
| 131 | "simple-loop-unswitch-inject-invariant-condition-hotness-threshold" , |
| 132 | cl::Hidden, cl::desc("Only try to inject loop invariant conditions and " |
| 133 | "unswitch on them to eliminate branches that are " |
| 134 | "not-taken 1/<this option> times or less." ), |
| 135 | cl::init(Val: 16)); |
| 136 | |
| 137 | AnalysisKey ShouldRunExtraSimpleLoopUnswitch::; |
| 138 | namespace { |
| 139 | struct CompareDesc { |
| 140 | BranchInst *Term; |
| 141 | Value *Invariant; |
| 142 | BasicBlock *InLoopSucc; |
| 143 | |
| 144 | CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc) |
| 145 | : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {} |
| 146 | }; |
| 147 | |
| 148 | struct InjectedInvariant { |
| 149 | ICmpInst::Predicate Pred; |
| 150 | Value *LHS; |
| 151 | Value *RHS; |
| 152 | BasicBlock *InLoopSucc; |
| 153 | |
| 154 | InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, |
| 155 | BasicBlock *InLoopSucc) |
| 156 | : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {} |
| 157 | }; |
| 158 | |
| 159 | struct NonTrivialUnswitchCandidate { |
| 160 | Instruction *TI = nullptr; |
| 161 | TinyPtrVector<Value *> Invariants; |
| 162 | std::optional<InstructionCost> Cost; |
| 163 | std::optional<InjectedInvariant> PendingInjection; |
| 164 | NonTrivialUnswitchCandidate( |
| 165 | Instruction *TI, ArrayRef<Value *> Invariants, |
| 166 | std::optional<InstructionCost> Cost = std::nullopt, |
| 167 | std::optional<InjectedInvariant> PendingInjection = std::nullopt) |
| 168 | : TI(TI), Invariants(Invariants), Cost(Cost), |
| 169 | PendingInjection(PendingInjection) {}; |
| 170 | |
| 171 | bool hasPendingInjection() const { return PendingInjection.has_value(); } |
| 172 | }; |
| 173 | } // end anonymous namespace. |
| 174 | |
| 175 | // Helper to skip (select x, true, false), which matches both a logical AND and |
| 176 | // OR and can confuse code that tries to determine if \p Cond is either a |
| 177 | // logical AND or OR but not both. |
| 178 | static Value *skipTrivialSelect(Value *Cond) { |
| 179 | Value *CondNext; |
| 180 | while (match(V: Cond, P: m_Select(C: m_Value(V&: CondNext), L: m_One(), R: m_Zero()))) |
| 181 | Cond = CondNext; |
| 182 | return Cond; |
| 183 | } |
| 184 | |
| 185 | /// Collect all of the loop invariant input values transitively used by the |
| 186 | /// homogeneous instruction graph from a given root. |
| 187 | /// |
| 188 | /// This essentially walks from a root recursively through loop variant operands |
| 189 | /// which have perform the same logical operation (AND or OR) and finds all |
| 190 | /// inputs which are loop invariant. For some operations these can be |
| 191 | /// re-associated and unswitched out of the loop entirely. |
| 192 | static TinyPtrVector<Value *> |
| 193 | collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, |
| 194 | const LoopInfo &LI) { |
| 195 | assert(!L.isLoopInvariant(&Root) && |
| 196 | "Only need to walk the graph if root itself is not invariant." ); |
| 197 | TinyPtrVector<Value *> Invariants; |
| 198 | |
| 199 | bool IsRootAnd = match(V: &Root, P: m_LogicalAnd()); |
| 200 | bool IsRootOr = match(V: &Root, P: m_LogicalOr()); |
| 201 | |
| 202 | // Build a worklist and recurse through operators collecting invariants. |
| 203 | SmallVector<Instruction *, 4> Worklist; |
| 204 | SmallPtrSet<Instruction *, 8> Visited; |
| 205 | Worklist.push_back(Elt: &Root); |
| 206 | Visited.insert(Ptr: &Root); |
| 207 | do { |
| 208 | Instruction &I = *Worklist.pop_back_val(); |
| 209 | for (Value *OpV : I.operand_values()) { |
| 210 | // Skip constants as unswitching isn't interesting for them. |
| 211 | if (isa<Constant>(Val: OpV)) |
| 212 | continue; |
| 213 | |
| 214 | // Add it to our result if loop invariant. |
| 215 | if (L.isLoopInvariant(V: OpV)) { |
| 216 | Invariants.push_back(NewVal: OpV); |
| 217 | continue; |
| 218 | } |
| 219 | |
| 220 | // If not an instruction with the same opcode, nothing we can do. |
| 221 | Instruction *OpI = dyn_cast<Instruction>(Val: skipTrivialSelect(Cond: OpV)); |
| 222 | |
| 223 | if (OpI && ((IsRootAnd && match(V: OpI, P: m_LogicalAnd())) || |
| 224 | (IsRootOr && match(V: OpI, P: m_LogicalOr())))) { |
| 225 | // Visit this operand. |
| 226 | if (Visited.insert(Ptr: OpI).second) |
| 227 | Worklist.push_back(Elt: OpI); |
| 228 | } |
| 229 | } |
| 230 | } while (!Worklist.empty()); |
| 231 | |
| 232 | return Invariants; |
| 233 | } |
| 234 | |
| 235 | static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, |
| 236 | Constant &Replacement) { |
| 237 | assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?" ); |
| 238 | |
| 239 | // Replace uses of LIC in the loop with the given constant. |
| 240 | // We use make_early_inc_range as set invalidates the iterator. |
| 241 | for (Use &U : llvm::make_early_inc_range(Range: Invariant->uses())) { |
| 242 | Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser()); |
| 243 | |
| 244 | // Replace this use within the loop body. |
| 245 | if (UserI && L.contains(Inst: UserI)) |
| 246 | U.set(&Replacement); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /// Check that all the LCSSA PHI nodes in the loop exit block have trivial |
| 251 | /// incoming values along this edge. |
| 252 | static bool areLoopExitPHIsLoopInvariant(const Loop &L, |
| 253 | const BasicBlock &ExitingBB, |
| 254 | const BasicBlock &ExitBB) { |
| 255 | for (const Instruction &I : ExitBB) { |
| 256 | auto *PN = dyn_cast<PHINode>(Val: &I); |
| 257 | if (!PN) |
| 258 | // No more PHIs to check. |
| 259 | return true; |
| 260 | |
| 261 | // If the incoming value for this edge isn't loop invariant the unswitch |
| 262 | // won't be trivial. |
| 263 | if (!L.isLoopInvariant(V: PN->getIncomingValueForBlock(BB: &ExitingBB))) |
| 264 | return false; |
| 265 | } |
| 266 | llvm_unreachable("Basic blocks should never be empty!" ); |
| 267 | } |
| 268 | |
| 269 | /// Copy a set of loop invariant values \p ToDuplicate and insert them at the |
| 270 | /// end of \p BB and conditionally branch on the copied condition. We only |
| 271 | /// branch on a single value. |
| 272 | static void buildPartialUnswitchConditionalBranch( |
| 273 | BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, |
| 274 | BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, |
| 275 | const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) { |
| 276 | IRBuilder<> IRB(&BB); |
| 277 | IRB.SetCurrentDebugLocation(DebugLoc::getCompilerGenerated()); |
| 278 | |
| 279 | SmallVector<Value *> FrozenInvariants; |
| 280 | for (Value *Inv : Invariants) { |
| 281 | if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(V: Inv, AC, CtxI: I, DT: &DT)) |
| 282 | Inv = IRB.CreateFreeze(V: Inv, Name: Inv->getName() + ".fr" ); |
| 283 | FrozenInvariants.push_back(Elt: Inv); |
| 284 | } |
| 285 | |
| 286 | Value *Cond = Direction ? IRB.CreateOr(Ops: FrozenInvariants) |
| 287 | : IRB.CreateAnd(Ops: FrozenInvariants); |
| 288 | IRB.CreateCondBr(Cond, True: Direction ? &UnswitchedSucc : &NormalSucc, |
| 289 | False: Direction ? &NormalSucc : &UnswitchedSucc); |
| 290 | } |
| 291 | |
| 292 | /// Copy a set of loop invariant values, and conditionally branch on them. |
| 293 | static void buildPartialInvariantUnswitchConditionalBranch( |
| 294 | BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, |
| 295 | BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, |
| 296 | MemorySSAUpdater *MSSAU) { |
| 297 | ValueToValueMapTy VMap; |
| 298 | for (auto *Val : reverse(C&: ToDuplicate)) { |
| 299 | Instruction *Inst = cast<Instruction>(Val); |
| 300 | Instruction *NewInst = Inst->clone(); |
| 301 | |
| 302 | if (const DebugLoc &DL = Inst->getDebugLoc()) |
| 303 | mapAtomInstance(DL, VMap); |
| 304 | |
| 305 | NewInst->insertInto(ParentBB: &BB, It: BB.end()); |
| 306 | RemapInstruction(I: NewInst, VM&: VMap, |
| 307 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 308 | VMap[Val] = NewInst; |
| 309 | |
| 310 | if (!MSSAU) |
| 311 | continue; |
| 312 | |
| 313 | MemorySSA *MSSA = MSSAU->getMemorySSA(); |
| 314 | if (auto *MemUse = |
| 315 | dyn_cast_or_null<MemoryUse>(Val: MSSA->getMemoryAccess(I: Inst))) { |
| 316 | auto *DefiningAccess = MemUse->getDefiningAccess(); |
| 317 | // Get the first defining access before the loop. |
| 318 | while (L.contains(BB: DefiningAccess->getBlock())) { |
| 319 | // If the defining access is a MemoryPhi, get the incoming |
| 320 | // value for the pre-header as defining access. |
| 321 | if (auto *MemPhi = dyn_cast<MemoryPhi>(Val: DefiningAccess)) |
| 322 | DefiningAccess = |
| 323 | MemPhi->getIncomingValueForBlock(BB: L.getLoopPreheader()); |
| 324 | else |
| 325 | DefiningAccess = cast<MemoryDef>(Val: DefiningAccess)->getDefiningAccess(); |
| 326 | } |
| 327 | MSSAU->createMemoryAccessInBB(I: NewInst, Definition: DefiningAccess, |
| 328 | BB: NewInst->getParent(), |
| 329 | Point: MemorySSA::BeforeTerminator); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | IRBuilder<> IRB(&BB); |
| 334 | IRB.SetCurrentDebugLocation(DebugLoc::getCompilerGenerated()); |
| 335 | Value *Cond = VMap[ToDuplicate[0]]; |
| 336 | IRB.CreateCondBr(Cond, True: Direction ? &UnswitchedSucc : &NormalSucc, |
| 337 | False: Direction ? &NormalSucc : &UnswitchedSucc); |
| 338 | } |
| 339 | |
| 340 | /// Rewrite the PHI nodes in an unswitched loop exit basic block. |
| 341 | /// |
| 342 | /// Requires that the loop exit and unswitched basic block are the same, and |
| 343 | /// that the exiting block was a unique predecessor of that block. Rewrites the |
| 344 | /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial |
| 345 | /// PHI nodes from the old preheader that now contains the unswitched |
| 346 | /// terminator. |
| 347 | static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, |
| 348 | BasicBlock &OldExitingBB, |
| 349 | BasicBlock &OldPH) { |
| 350 | for (PHINode &PN : UnswitchedBB.phis()) { |
| 351 | // When the loop exit is directly unswitched we just need to update the |
| 352 | // incoming basic block. We loop to handle weird cases with repeated |
| 353 | // incoming blocks, but expect to typically only have one operand here. |
| 354 | for (auto i : seq<int>(Begin: 0, End: PN.getNumOperands())) { |
| 355 | assert(PN.getIncomingBlock(i) == &OldExitingBB && |
| 356 | "Found incoming block different from unique predecessor!" ); |
| 357 | PN.setIncomingBlock(i, BB: &OldPH); |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | /// Rewrite the PHI nodes in the loop exit basic block and the split off |
| 363 | /// unswitched block. |
| 364 | /// |
| 365 | /// Because the exit block remains an exit from the loop, this rewrites the |
| 366 | /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI |
| 367 | /// nodes into the unswitched basic block to select between the value in the |
| 368 | /// old preheader and the loop exit. |
| 369 | static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, |
| 370 | BasicBlock &UnswitchedBB, |
| 371 | BasicBlock &OldExitingBB, |
| 372 | BasicBlock &OldPH, |
| 373 | bool FullUnswitch) { |
| 374 | assert(&ExitBB != &UnswitchedBB && |
| 375 | "Must have different loop exit and unswitched blocks!" ); |
| 376 | BasicBlock::iterator InsertPt = UnswitchedBB.begin(); |
| 377 | for (PHINode &PN : ExitBB.phis()) { |
| 378 | auto *NewPN = PHINode::Create(Ty: PN.getType(), /*NumReservedValues*/ 2, |
| 379 | NameStr: PN.getName() + ".split" ); |
| 380 | NewPN->insertBefore(InsertPos: InsertPt); |
| 381 | |
| 382 | // Walk backwards over the old PHI node's inputs to minimize the cost of |
| 383 | // removing each one. We have to do this weird loop manually so that we |
| 384 | // create the same number of new incoming edges in the new PHI as we expect |
| 385 | // each case-based edge to be included in the unswitched switch in some |
| 386 | // cases. |
| 387 | // FIXME: This is really, really gross. It would be much cleaner if LLVM |
| 388 | // allowed us to create a single entry for a predecessor block without |
| 389 | // having separate entries for each "edge" even though these edges are |
| 390 | // required to produce identical results. |
| 391 | for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { |
| 392 | if (PN.getIncomingBlock(i) != &OldExitingBB) |
| 393 | continue; |
| 394 | |
| 395 | Value *Incoming = PN.getIncomingValue(i); |
| 396 | if (FullUnswitch) |
| 397 | // No more edge from the old exiting block to the exit block. |
| 398 | PN.removeIncomingValue(Idx: i); |
| 399 | |
| 400 | NewPN->addIncoming(V: Incoming, BB: &OldPH); |
| 401 | } |
| 402 | |
| 403 | // Now replace the old PHI with the new one and wire the old one in as an |
| 404 | // input to the new one. |
| 405 | PN.replaceAllUsesWith(V: NewPN); |
| 406 | NewPN->addIncoming(V: &PN, BB: &ExitBB); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | /// Hoist the current loop up to the innermost loop containing a remaining exit. |
| 411 | /// |
| 412 | /// Because we've removed an exit from the loop, we may have changed the set of |
| 413 | /// loops reachable and need to move the current loop up the loop nest or even |
| 414 | /// to an entirely separate nest. |
| 415 | static void hoistLoopToNewParent(Loop &L, BasicBlock &, |
| 416 | DominatorTree &DT, LoopInfo &LI, |
| 417 | MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { |
| 418 | // If the loop is already at the top level, we can't hoist it anywhere. |
| 419 | Loop *OldParentL = L.getParentLoop(); |
| 420 | if (!OldParentL) |
| 421 | return; |
| 422 | |
| 423 | SmallVector<BasicBlock *, 4> Exits; |
| 424 | L.getExitBlocks(ExitBlocks&: Exits); |
| 425 | Loop *NewParentL = nullptr; |
| 426 | for (auto *ExitBB : Exits) |
| 427 | if (Loop *ExitL = LI.getLoopFor(BB: ExitBB)) |
| 428 | if (!NewParentL || NewParentL->contains(L: ExitL)) |
| 429 | NewParentL = ExitL; |
| 430 | |
| 431 | if (NewParentL == OldParentL) |
| 432 | return; |
| 433 | |
| 434 | // The new parent loop (if different) should always contain the old one. |
| 435 | if (NewParentL) |
| 436 | assert(NewParentL->contains(OldParentL) && |
| 437 | "Can only hoist this loop up the nest!" ); |
| 438 | |
| 439 | // The preheader will need to move with the body of this loop. However, |
| 440 | // because it isn't in this loop we also need to update the primary loop map. |
| 441 | assert(OldParentL == LI.getLoopFor(&Preheader) && |
| 442 | "Parent loop of this loop should contain this loop's preheader!" ); |
| 443 | LI.changeLoopFor(BB: &Preheader, L: NewParentL); |
| 444 | |
| 445 | // Remove this loop from its old parent. |
| 446 | OldParentL->removeChildLoop(Child: &L); |
| 447 | |
| 448 | // Add the loop either to the new parent or as a top-level loop. |
| 449 | if (NewParentL) |
| 450 | NewParentL->addChildLoop(NewChild: &L); |
| 451 | else |
| 452 | LI.addTopLevelLoop(New: &L); |
| 453 | |
| 454 | // Remove this loops blocks from the old parent and every other loop up the |
| 455 | // nest until reaching the new parent. Also update all of these |
| 456 | // no-longer-containing loops to reflect the nesting change. |
| 457 | for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; |
| 458 | OldContainingL = OldContainingL->getParentLoop()) { |
| 459 | llvm::erase_if(C&: OldContainingL->getBlocksVector(), |
| 460 | P: [&](const BasicBlock *BB) { |
| 461 | return BB == &Preheader || L.contains(BB); |
| 462 | }); |
| 463 | |
| 464 | OldContainingL->getBlocksSet().erase(Ptr: &Preheader); |
| 465 | for (BasicBlock *BB : L.blocks()) |
| 466 | OldContainingL->getBlocksSet().erase(Ptr: BB); |
| 467 | |
| 468 | // Because we just hoisted a loop out of this one, we have essentially |
| 469 | // created new exit paths from it. That means we need to form LCSSA PHI |
| 470 | // nodes for values used in the no-longer-nested loop. |
| 471 | formLCSSA(L&: *OldContainingL, DT, LI: &LI, SE); |
| 472 | |
| 473 | // We shouldn't need to form dedicated exits because the exit introduced |
| 474 | // here is the (just split by unswitching) preheader. However, after trivial |
| 475 | // unswitching it is possible to get new non-dedicated exits out of parent |
| 476 | // loop so let's conservatively form dedicated exit blocks and figure out |
| 477 | // if we can optimize later. |
| 478 | formDedicatedExitBlocks(L: OldContainingL, DT: &DT, LI: &LI, MSSAU, |
| 479 | /*PreserveLCSSA*/ true); |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | // Return the top-most loop containing ExitBB and having ExitBB as exiting block |
| 484 | // or the loop containing ExitBB, if there is no parent loop containing ExitBB |
| 485 | // as exiting block. |
| 486 | static Loop *getTopMostExitingLoop(const BasicBlock *ExitBB, |
| 487 | const LoopInfo &LI) { |
| 488 | Loop *TopMost = LI.getLoopFor(BB: ExitBB); |
| 489 | Loop *Current = TopMost; |
| 490 | while (Current) { |
| 491 | if (Current->isLoopExiting(BB: ExitBB)) |
| 492 | TopMost = Current; |
| 493 | Current = Current->getParentLoop(); |
| 494 | } |
| 495 | return TopMost; |
| 496 | } |
| 497 | |
| 498 | /// Unswitch a trivial branch if the condition is loop invariant. |
| 499 | /// |
| 500 | /// This routine should only be called when loop code leading to the branch has |
| 501 | /// been validated as trivial (no side effects). This routine checks if the |
| 502 | /// condition is invariant and one of the successors is a loop exit. This |
| 503 | /// allows us to unswitch without duplicating the loop, making it trivial. |
| 504 | /// |
| 505 | /// If this routine fails to unswitch the branch it returns false. |
| 506 | /// |
| 507 | /// If the branch can be unswitched, this routine splits the preheader and |
| 508 | /// hoists the branch above that split. Preserves loop simplified form |
| 509 | /// (splitting the exit block as necessary). It simplifies the branch within |
| 510 | /// the loop to an unconditional branch but doesn't remove it entirely. Further |
| 511 | /// cleanup can be done with some simplifycfg like pass. |
| 512 | /// |
| 513 | /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| 514 | /// invalidated by this. |
| 515 | static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, |
| 516 | LoopInfo &LI, ScalarEvolution *SE, |
| 517 | MemorySSAUpdater *MSSAU) { |
| 518 | assert(BI.isConditional() && "Can only unswitch a conditional branch!" ); |
| 519 | LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n" ); |
| 520 | |
| 521 | // The loop invariant values that we want to unswitch. |
| 522 | TinyPtrVector<Value *> Invariants; |
| 523 | |
| 524 | // When true, we're fully unswitching the branch rather than just unswitching |
| 525 | // some input conditions to the branch. |
| 526 | bool FullUnswitch = false; |
| 527 | |
| 528 | Value *Cond = skipTrivialSelect(Cond: BI.getCondition()); |
| 529 | if (L.isLoopInvariant(V: Cond)) { |
| 530 | Invariants.push_back(NewVal: Cond); |
| 531 | FullUnswitch = true; |
| 532 | } else { |
| 533 | if (auto *CondInst = dyn_cast<Instruction>(Val: Cond)) |
| 534 | Invariants = collectHomogenousInstGraphLoopInvariants(L, Root&: *CondInst, LI); |
| 535 | if (Invariants.empty()) { |
| 536 | LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n" ); |
| 537 | return false; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | // Check that one of the branch's successors exits, and which one. |
| 542 | bool ExitDirection = true; |
| 543 | int LoopExitSuccIdx = 0; |
| 544 | auto *LoopExitBB = BI.getSuccessor(i: 0); |
| 545 | if (L.contains(BB: LoopExitBB)) { |
| 546 | ExitDirection = false; |
| 547 | LoopExitSuccIdx = 1; |
| 548 | LoopExitBB = BI.getSuccessor(i: 1); |
| 549 | if (L.contains(BB: LoopExitBB)) { |
| 550 | LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n" ); |
| 551 | return false; |
| 552 | } |
| 553 | } |
| 554 | auto *ContinueBB = BI.getSuccessor(i: 1 - LoopExitSuccIdx); |
| 555 | auto *ParentBB = BI.getParent(); |
| 556 | if (!areLoopExitPHIsLoopInvariant(L, ExitingBB: *ParentBB, ExitBB: *LoopExitBB)) { |
| 557 | LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n" ); |
| 558 | return false; |
| 559 | } |
| 560 | |
| 561 | // When unswitching only part of the branch's condition, we need the exit |
| 562 | // block to be reached directly from the partially unswitched input. This can |
| 563 | // be done when the exit block is along the true edge and the branch condition |
| 564 | // is a graph of `or` operations, or the exit block is along the false edge |
| 565 | // and the condition is a graph of `and` operations. |
| 566 | if (!FullUnswitch) { |
| 567 | if (ExitDirection ? !match(V: Cond, P: m_LogicalOr()) |
| 568 | : !match(V: Cond, P: m_LogicalAnd())) { |
| 569 | LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " |
| 570 | "non-full unswitch!\n" ); |
| 571 | return false; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | LLVM_DEBUG({ |
| 576 | dbgs() << " unswitching trivial invariant conditions for: " << BI |
| 577 | << "\n" ; |
| 578 | for (Value *Invariant : Invariants) { |
| 579 | dbgs() << " " << *Invariant << " == true" ; |
| 580 | if (Invariant != Invariants.back()) |
| 581 | dbgs() << " ||" ; |
| 582 | dbgs() << "\n" ; |
| 583 | } |
| 584 | }); |
| 585 | |
| 586 | // If we have scalar evolutions, we need to invalidate them including this |
| 587 | // loop, the loop containing the exit block and the topmost parent loop |
| 588 | // exiting via LoopExitBB. |
| 589 | if (SE) { |
| 590 | if (const Loop *ExitL = getTopMostExitingLoop(ExitBB: LoopExitBB, LI)) |
| 591 | SE->forgetLoop(L: ExitL); |
| 592 | else |
| 593 | // Forget the entire nest as this exits the entire nest. |
| 594 | SE->forgetTopmostLoop(L: &L); |
| 595 | SE->forgetBlockAndLoopDispositions(); |
| 596 | } |
| 597 | |
| 598 | if (MSSAU && VerifyMemorySSA) |
| 599 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 600 | |
| 601 | // Split the preheader, so that we know that there is a safe place to insert |
| 602 | // the conditional branch. We will change the preheader to have a conditional |
| 603 | // branch on LoopCond. |
| 604 | BasicBlock *OldPH = L.getLoopPreheader(); |
| 605 | BasicBlock *NewPH = SplitEdge(From: OldPH, To: L.getHeader(), DT: &DT, LI: &LI, MSSAU); |
| 606 | |
| 607 | // Now that we have a place to insert the conditional branch, create a place |
| 608 | // to branch to: this is the exit block out of the loop that we are |
| 609 | // unswitching. We need to split this if there are other loop predecessors. |
| 610 | // Because the loop is in simplified form, *any* other predecessor is enough. |
| 611 | BasicBlock *UnswitchedBB; |
| 612 | if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { |
| 613 | assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && |
| 614 | "A branch's parent isn't a predecessor!" ); |
| 615 | UnswitchedBB = LoopExitBB; |
| 616 | } else { |
| 617 | UnswitchedBB = |
| 618 | SplitBlock(Old: LoopExitBB, SplitPt: LoopExitBB->begin(), DT: &DT, LI: &LI, MSSAU, BBName: "" , Before: false); |
| 619 | } |
| 620 | |
| 621 | if (MSSAU && VerifyMemorySSA) |
| 622 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 623 | |
| 624 | // Actually move the invariant uses into the unswitched position. If possible, |
| 625 | // we do this by moving the instructions, but when doing partial unswitching |
| 626 | // we do it by building a new merge of the values in the unswitched position. |
| 627 | OldPH->getTerminator()->eraseFromParent(); |
| 628 | if (FullUnswitch) { |
| 629 | // If fully unswitching, we can use the existing branch instruction. |
| 630 | // Splice it into the old PH to gate reaching the new preheader and re-point |
| 631 | // its successors. |
| 632 | BI.moveBefore(BB&: *OldPH, I: OldPH->end()); |
| 633 | BI.setCondition(Cond); |
| 634 | if (MSSAU) { |
| 635 | // Temporarily clone the terminator, to make MSSA update cheaper by |
| 636 | // separating "insert edge" updates from "remove edge" ones. |
| 637 | BI.clone()->insertInto(ParentBB, It: ParentBB->end()); |
| 638 | } else { |
| 639 | // Create a new unconditional branch that will continue the loop as a new |
| 640 | // terminator. |
| 641 | Instruction *NewBI = BranchInst::Create(IfTrue: ContinueBB, InsertBefore: ParentBB); |
| 642 | NewBI->setDebugLoc(BI.getDebugLoc()); |
| 643 | } |
| 644 | BI.setSuccessor(idx: LoopExitSuccIdx, NewSucc: UnswitchedBB); |
| 645 | BI.setSuccessor(idx: 1 - LoopExitSuccIdx, NewSucc: NewPH); |
| 646 | } else { |
| 647 | // Only unswitching a subset of inputs to the condition, so we will need to |
| 648 | // build a new branch that merges the invariant inputs. |
| 649 | if (ExitDirection) |
| 650 | assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && |
| 651 | "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " |
| 652 | "condition!" ); |
| 653 | else |
| 654 | assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && |
| 655 | "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" |
| 656 | " condition!" ); |
| 657 | buildPartialUnswitchConditionalBranch( |
| 658 | BB&: *OldPH, Invariants, Direction: ExitDirection, UnswitchedSucc&: *UnswitchedBB, NormalSucc&: *NewPH, |
| 659 | InsertFreeze: FreezeLoopUnswitchCond, I: OldPH->getTerminator(), AC: nullptr, DT); |
| 660 | } |
| 661 | |
| 662 | // Update the dominator tree with the added edge. |
| 663 | DT.insertEdge(From: OldPH, To: UnswitchedBB); |
| 664 | |
| 665 | // After the dominator tree was updated with the added edge, update MemorySSA |
| 666 | // if available. |
| 667 | if (MSSAU) { |
| 668 | SmallVector<CFGUpdate, 1> Updates; |
| 669 | Updates.push_back(Elt: {cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); |
| 670 | MSSAU->applyInsertUpdates(Updates, DT); |
| 671 | } |
| 672 | |
| 673 | // Finish updating dominator tree and memory ssa for full unswitch. |
| 674 | if (FullUnswitch) { |
| 675 | if (MSSAU) { |
| 676 | Instruction *Term = ParentBB->getTerminator(); |
| 677 | // Remove the cloned branch instruction and create unconditional branch |
| 678 | // now. |
| 679 | Instruction *NewBI = BranchInst::Create(IfTrue: ContinueBB, InsertBefore: ParentBB); |
| 680 | NewBI->setDebugLoc(Term->getDebugLoc()); |
| 681 | Term->eraseFromParent(); |
| 682 | MSSAU->removeEdge(From: ParentBB, To: LoopExitBB); |
| 683 | } |
| 684 | DT.deleteEdge(From: ParentBB, To: LoopExitBB); |
| 685 | } |
| 686 | |
| 687 | if (MSSAU && VerifyMemorySSA) |
| 688 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 689 | |
| 690 | // Rewrite the relevant PHI nodes. |
| 691 | if (UnswitchedBB == LoopExitBB) |
| 692 | rewritePHINodesForUnswitchedExitBlock(UnswitchedBB&: *UnswitchedBB, OldExitingBB&: *ParentBB, OldPH&: *OldPH); |
| 693 | else |
| 694 | rewritePHINodesForExitAndUnswitchedBlocks(ExitBB&: *LoopExitBB, UnswitchedBB&: *UnswitchedBB, |
| 695 | OldExitingBB&: *ParentBB, OldPH&: *OldPH, FullUnswitch); |
| 696 | |
| 697 | // The constant we can replace all of our invariants with inside the loop |
| 698 | // body. If any of the invariants have a value other than this the loop won't |
| 699 | // be entered. |
| 700 | ConstantInt *Replacement = ExitDirection |
| 701 | ? ConstantInt::getFalse(Context&: BI.getContext()) |
| 702 | : ConstantInt::getTrue(Context&: BI.getContext()); |
| 703 | |
| 704 | // Since this is an i1 condition we can also trivially replace uses of it |
| 705 | // within the loop with a constant. |
| 706 | for (Value *Invariant : Invariants) |
| 707 | replaceLoopInvariantUses(L, Invariant, Replacement&: *Replacement); |
| 708 | |
| 709 | // If this was full unswitching, we may have changed the nesting relationship |
| 710 | // for this loop so hoist it to its correct parent if needed. |
| 711 | if (FullUnswitch) |
| 712 | hoistLoopToNewParent(L, Preheader&: *NewPH, DT, LI, MSSAU, SE); |
| 713 | |
| 714 | if (MSSAU && VerifyMemorySSA) |
| 715 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 716 | |
| 717 | LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n" ); |
| 718 | ++NumTrivial; |
| 719 | ++NumBranches; |
| 720 | return true; |
| 721 | } |
| 722 | |
| 723 | /// Unswitch a trivial switch if the condition is loop invariant. |
| 724 | /// |
| 725 | /// This routine should only be called when loop code leading to the switch has |
| 726 | /// been validated as trivial (no side effects). This routine checks if the |
| 727 | /// condition is invariant and that at least one of the successors is a loop |
| 728 | /// exit. This allows us to unswitch without duplicating the loop, making it |
| 729 | /// trivial. |
| 730 | /// |
| 731 | /// If this routine fails to unswitch the switch it returns false. |
| 732 | /// |
| 733 | /// If the switch can be unswitched, this routine splits the preheader and |
| 734 | /// copies the switch above that split. If the default case is one of the |
| 735 | /// exiting cases, it copies the non-exiting cases and points them at the new |
| 736 | /// preheader. If the default case is not exiting, it copies the exiting cases |
| 737 | /// and points the default at the preheader. It preserves loop simplified form |
| 738 | /// (splitting the exit blocks as necessary). It simplifies the switch within |
| 739 | /// the loop by removing now-dead cases. If the default case is one of those |
| 740 | /// unswitched, it replaces its destination with a new basic block containing |
| 741 | /// only unreachable. Such basic blocks, while technically loop exits, are not |
| 742 | /// considered for unswitching so this is a stable transform and the same |
| 743 | /// switch will not be revisited. If after unswitching there is only a single |
| 744 | /// in-loop successor, the switch is further simplified to an unconditional |
| 745 | /// branch. Still more cleanup can be done with some simplifycfg like pass. |
| 746 | /// |
| 747 | /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| 748 | /// invalidated by this. |
| 749 | static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, |
| 750 | LoopInfo &LI, ScalarEvolution *SE, |
| 751 | MemorySSAUpdater *MSSAU) { |
| 752 | LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n" ); |
| 753 | Value *LoopCond = SI.getCondition(); |
| 754 | |
| 755 | // If this isn't switching on an invariant condition, we can't unswitch it. |
| 756 | if (!L.isLoopInvariant(V: LoopCond)) |
| 757 | return false; |
| 758 | |
| 759 | auto *ParentBB = SI.getParent(); |
| 760 | |
| 761 | // The same check must be used both for the default and the exit cases. We |
| 762 | // should never leave edges from the switch instruction to a basic block that |
| 763 | // we are unswitching, hence the condition used to determine the default case |
| 764 | // needs to also be used to populate ExitCaseIndices, which is then used to |
| 765 | // remove cases from the switch. |
| 766 | auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { |
| 767 | // BBToCheck is not an exit block if it is inside loop L. |
| 768 | if (L.contains(BB: &BBToCheck)) |
| 769 | return false; |
| 770 | // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. |
| 771 | if (!areLoopExitPHIsLoopInvariant(L, ExitingBB: *ParentBB, ExitBB: BBToCheck)) |
| 772 | return false; |
| 773 | // We do not unswitch a block that only has an unreachable statement, as |
| 774 | // it's possible this is a previously unswitched block. Only unswitch if |
| 775 | // either the terminator is not unreachable, or, if it is, it's not the only |
| 776 | // instruction in the block. |
| 777 | auto *TI = BBToCheck.getTerminator(); |
| 778 | bool isUnreachable = isa<UnreachableInst>(Val: TI); |
| 779 | return !isUnreachable || &*BBToCheck.getFirstNonPHIOrDbg() != TI; |
| 780 | }; |
| 781 | |
| 782 | SmallVector<int, 4> ExitCaseIndices; |
| 783 | for (auto Case : SI.cases()) |
| 784 | if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) |
| 785 | ExitCaseIndices.push_back(Elt: Case.getCaseIndex()); |
| 786 | BasicBlock *DefaultExitBB = nullptr; |
| 787 | SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = |
| 788 | SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, idx: 0); |
| 789 | if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { |
| 790 | DefaultExitBB = SI.getDefaultDest(); |
| 791 | } else if (ExitCaseIndices.empty()) |
| 792 | return false; |
| 793 | |
| 794 | LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n" ); |
| 795 | |
| 796 | if (MSSAU && VerifyMemorySSA) |
| 797 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 798 | |
| 799 | // We may need to invalidate SCEVs for the outermost loop reached by any of |
| 800 | // the exits. |
| 801 | Loop *OuterL = &L; |
| 802 | |
| 803 | if (DefaultExitBB) { |
| 804 | // Check the loop containing this exit. |
| 805 | Loop *ExitL = getTopMostExitingLoop(ExitBB: DefaultExitBB, LI); |
| 806 | if (!ExitL || ExitL->contains(L: OuterL)) |
| 807 | OuterL = ExitL; |
| 808 | } |
| 809 | for (unsigned Index : ExitCaseIndices) { |
| 810 | auto CaseI = SI.case_begin() + Index; |
| 811 | // Compute the outer loop from this exit. |
| 812 | Loop *ExitL = getTopMostExitingLoop(ExitBB: CaseI->getCaseSuccessor(), LI); |
| 813 | if (!ExitL || ExitL->contains(L: OuterL)) |
| 814 | OuterL = ExitL; |
| 815 | } |
| 816 | |
| 817 | if (SE) { |
| 818 | if (OuterL) |
| 819 | SE->forgetLoop(L: OuterL); |
| 820 | else |
| 821 | SE->forgetTopmostLoop(L: &L); |
| 822 | } |
| 823 | |
| 824 | if (DefaultExitBB) { |
| 825 | // Clear out the default destination temporarily to allow accurate |
| 826 | // predecessor lists to be examined below. |
| 827 | SI.setDefaultDest(nullptr); |
| 828 | } |
| 829 | |
| 830 | // Store the exit cases into a separate data structure and remove them from |
| 831 | // the switch. |
| 832 | SmallVector<std::tuple<ConstantInt *, BasicBlock *, |
| 833 | SwitchInstProfUpdateWrapper::CaseWeightOpt>, |
| 834 | 4> ExitCases; |
| 835 | ExitCases.reserve(N: ExitCaseIndices.size()); |
| 836 | SwitchInstProfUpdateWrapper SIW(SI); |
| 837 | // We walk the case indices backwards so that we remove the last case first |
| 838 | // and don't disrupt the earlier indices. |
| 839 | for (unsigned Index : reverse(C&: ExitCaseIndices)) { |
| 840 | auto CaseI = SI.case_begin() + Index; |
| 841 | // Save the value of this case. |
| 842 | auto W = SIW.getSuccessorWeight(idx: CaseI->getSuccessorIndex()); |
| 843 | ExitCases.emplace_back(Args: CaseI->getCaseValue(), Args: CaseI->getCaseSuccessor(), Args&: W); |
| 844 | // Delete the unswitched cases. |
| 845 | SIW.removeCase(I: CaseI); |
| 846 | } |
| 847 | |
| 848 | // Check if after this all of the remaining cases point at the same |
| 849 | // successor. |
| 850 | BasicBlock *CommonSuccBB = nullptr; |
| 851 | if (SI.getNumCases() > 0 && |
| 852 | all_of(Range: drop_begin(RangeOrContainer: SI.cases()), P: [&SI](const SwitchInst::CaseHandle &Case) { |
| 853 | return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); |
| 854 | })) |
| 855 | CommonSuccBB = SI.case_begin()->getCaseSuccessor(); |
| 856 | if (!DefaultExitBB) { |
| 857 | // If we're not unswitching the default, we need it to match any cases to |
| 858 | // have a common successor or if we have no cases it is the common |
| 859 | // successor. |
| 860 | if (SI.getNumCases() == 0) |
| 861 | CommonSuccBB = SI.getDefaultDest(); |
| 862 | else if (SI.getDefaultDest() != CommonSuccBB) |
| 863 | CommonSuccBB = nullptr; |
| 864 | } |
| 865 | |
| 866 | // Split the preheader, so that we know that there is a safe place to insert |
| 867 | // the switch. |
| 868 | BasicBlock *OldPH = L.getLoopPreheader(); |
| 869 | BasicBlock *NewPH = SplitEdge(From: OldPH, To: L.getHeader(), DT: &DT, LI: &LI, MSSAU); |
| 870 | OldPH->getTerminator()->eraseFromParent(); |
| 871 | |
| 872 | // Now add the unswitched switch. This new switch instruction inherits the |
| 873 | // debug location of the old switch, because it semantically replace the old |
| 874 | // one. |
| 875 | auto *NewSI = SwitchInst::Create(Value: LoopCond, Default: NewPH, NumCases: ExitCases.size(), InsertBefore: OldPH); |
| 876 | NewSI->setDebugLoc(SIW->getDebugLoc()); |
| 877 | SwitchInstProfUpdateWrapper NewSIW(*NewSI); |
| 878 | |
| 879 | // Rewrite the IR for the unswitched basic blocks. This requires two steps. |
| 880 | // First, we split any exit blocks with remaining in-loop predecessors. Then |
| 881 | // we update the PHIs in one of two ways depending on if there was a split. |
| 882 | // We walk in reverse so that we split in the same order as the cases |
| 883 | // appeared. This is purely for convenience of reading the resulting IR, but |
| 884 | // it doesn't cost anything really. |
| 885 | SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; |
| 886 | SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; |
| 887 | // Handle the default exit if necessary. |
| 888 | // FIXME: It'd be great if we could merge this with the loop below but LLVM's |
| 889 | // ranges aren't quite powerful enough yet. |
| 890 | if (DefaultExitBB) { |
| 891 | if (pred_empty(BB: DefaultExitBB)) { |
| 892 | UnswitchedExitBBs.insert(Ptr: DefaultExitBB); |
| 893 | rewritePHINodesForUnswitchedExitBlock(UnswitchedBB&: *DefaultExitBB, OldExitingBB&: *ParentBB, OldPH&: *OldPH); |
| 894 | } else { |
| 895 | auto *SplitBB = |
| 896 | SplitBlock(Old: DefaultExitBB, SplitPt: DefaultExitBB->begin(), DT: &DT, LI: &LI, MSSAU); |
| 897 | rewritePHINodesForExitAndUnswitchedBlocks(ExitBB&: *DefaultExitBB, UnswitchedBB&: *SplitBB, |
| 898 | OldExitingBB&: *ParentBB, OldPH&: *OldPH, |
| 899 | /*FullUnswitch*/ true); |
| 900 | DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; |
| 901 | } |
| 902 | } |
| 903 | // Note that we must use a reference in the for loop so that we update the |
| 904 | // container. |
| 905 | for (auto &ExitCase : reverse(C&: ExitCases)) { |
| 906 | // Grab a reference to the exit block in the pair so that we can update it. |
| 907 | BasicBlock *ExitBB = std::get<1>(t&: ExitCase); |
| 908 | |
| 909 | // If this case is the last edge into the exit block, we can simply reuse it |
| 910 | // as it will no longer be a loop exit. No mapping necessary. |
| 911 | if (pred_empty(BB: ExitBB)) { |
| 912 | // Only rewrite once. |
| 913 | if (UnswitchedExitBBs.insert(Ptr: ExitBB).second) |
| 914 | rewritePHINodesForUnswitchedExitBlock(UnswitchedBB&: *ExitBB, OldExitingBB&: *ParentBB, OldPH&: *OldPH); |
| 915 | continue; |
| 916 | } |
| 917 | |
| 918 | // Otherwise we need to split the exit block so that we retain an exit |
| 919 | // block from the loop and a target for the unswitched condition. |
| 920 | BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; |
| 921 | if (!SplitExitBB) { |
| 922 | // If this is the first time we see this, do the split and remember it. |
| 923 | SplitExitBB = SplitBlock(Old: ExitBB, SplitPt: ExitBB->begin(), DT: &DT, LI: &LI, MSSAU); |
| 924 | rewritePHINodesForExitAndUnswitchedBlocks(ExitBB&: *ExitBB, UnswitchedBB&: *SplitExitBB, |
| 925 | OldExitingBB&: *ParentBB, OldPH&: *OldPH, |
| 926 | /*FullUnswitch*/ true); |
| 927 | } |
| 928 | // Update the case pair to point to the split block. |
| 929 | std::get<1>(t&: ExitCase) = SplitExitBB; |
| 930 | } |
| 931 | |
| 932 | // Now add the unswitched cases. We do this in reverse order as we built them |
| 933 | // in reverse order. |
| 934 | for (auto &ExitCase : reverse(C&: ExitCases)) { |
| 935 | ConstantInt *CaseVal = std::get<0>(t&: ExitCase); |
| 936 | BasicBlock *UnswitchedBB = std::get<1>(t&: ExitCase); |
| 937 | |
| 938 | NewSIW.addCase(OnVal: CaseVal, Dest: UnswitchedBB, W: std::get<2>(t&: ExitCase)); |
| 939 | } |
| 940 | |
| 941 | // If the default was unswitched, re-point it and add explicit cases for |
| 942 | // entering the loop. |
| 943 | if (DefaultExitBB) { |
| 944 | NewSIW->setDefaultDest(DefaultExitBB); |
| 945 | NewSIW.setSuccessorWeight(idx: 0, W: DefaultCaseWeight); |
| 946 | |
| 947 | // We removed all the exit cases, so we just copy the cases to the |
| 948 | // unswitched switch. |
| 949 | for (const auto &Case : SI.cases()) |
| 950 | NewSIW.addCase(OnVal: Case.getCaseValue(), Dest: NewPH, |
| 951 | W: SIW.getSuccessorWeight(idx: Case.getSuccessorIndex())); |
| 952 | } else if (DefaultCaseWeight) { |
| 953 | // We have to set branch weight of the default case. |
| 954 | uint64_t SW = *DefaultCaseWeight; |
| 955 | for (const auto &Case : SI.cases()) { |
| 956 | auto W = SIW.getSuccessorWeight(idx: Case.getSuccessorIndex()); |
| 957 | assert(W && |
| 958 | "case weight must be defined as default case weight is defined" ); |
| 959 | SW += *W; |
| 960 | } |
| 961 | NewSIW.setSuccessorWeight(idx: 0, W: SW); |
| 962 | } |
| 963 | |
| 964 | // If we ended up with a common successor for every path through the switch |
| 965 | // after unswitching, rewrite it to an unconditional branch to make it easy |
| 966 | // to recognize. Otherwise we potentially have to recognize the default case |
| 967 | // pointing at unreachable and other complexity. |
| 968 | if (CommonSuccBB) { |
| 969 | BasicBlock *BB = SI.getParent(); |
| 970 | // We may have had multiple edges to this common successor block, so remove |
| 971 | // them as predecessors. We skip the first one, either the default or the |
| 972 | // actual first case. |
| 973 | bool SkippedFirst = DefaultExitBB == nullptr; |
| 974 | for (auto Case : SI.cases()) { |
| 975 | assert(Case.getCaseSuccessor() == CommonSuccBB && |
| 976 | "Non-common successor!" ); |
| 977 | (void)Case; |
| 978 | if (!SkippedFirst) { |
| 979 | SkippedFirst = true; |
| 980 | continue; |
| 981 | } |
| 982 | CommonSuccBB->removePredecessor(Pred: BB, |
| 983 | /*KeepOneInputPHIs*/ true); |
| 984 | } |
| 985 | // Now nuke the switch and replace it with a direct branch. |
| 986 | Instruction *NewBI = BranchInst::Create(IfTrue: CommonSuccBB, InsertBefore: BB); |
| 987 | NewBI->setDebugLoc(SIW->getDebugLoc()); |
| 988 | SIW.eraseFromParent(); |
| 989 | } else if (DefaultExitBB) { |
| 990 | assert(SI.getNumCases() > 0 && |
| 991 | "If we had no cases we'd have a common successor!" ); |
| 992 | // Move the last case to the default successor. This is valid as if the |
| 993 | // default got unswitched it cannot be reached. This has the advantage of |
| 994 | // being simple and keeping the number of edges from this switch to |
| 995 | // successors the same, and avoiding any PHI update complexity. |
| 996 | auto LastCaseI = std::prev(x: SI.case_end()); |
| 997 | |
| 998 | SI.setDefaultDest(LastCaseI->getCaseSuccessor()); |
| 999 | SIW.setSuccessorWeight( |
| 1000 | idx: 0, W: SIW.getSuccessorWeight(idx: LastCaseI->getSuccessorIndex())); |
| 1001 | SIW.removeCase(I: LastCaseI); |
| 1002 | } |
| 1003 | |
| 1004 | // Walk the unswitched exit blocks and the unswitched split blocks and update |
| 1005 | // the dominator tree based on the CFG edits. While we are walking unordered |
| 1006 | // containers here, the API for applyUpdates takes an unordered list of |
| 1007 | // updates and requires them to not contain duplicates. |
| 1008 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| 1009 | for (auto *UnswitchedExitBB : UnswitchedExitBBs) { |
| 1010 | DTUpdates.push_back(Elt: {DT.Delete, ParentBB, UnswitchedExitBB}); |
| 1011 | DTUpdates.push_back(Elt: {DT.Insert, OldPH, UnswitchedExitBB}); |
| 1012 | } |
| 1013 | for (auto SplitUnswitchedPair : SplitExitBBMap) { |
| 1014 | DTUpdates.push_back(Elt: {DT.Delete, ParentBB, SplitUnswitchedPair.first}); |
| 1015 | DTUpdates.push_back(Elt: {DT.Insert, OldPH, SplitUnswitchedPair.second}); |
| 1016 | } |
| 1017 | |
| 1018 | if (MSSAU) { |
| 1019 | MSSAU->applyUpdates(Updates: DTUpdates, DT, /*UpdateDT=*/UpdateDTFirst: true); |
| 1020 | if (VerifyMemorySSA) |
| 1021 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 1022 | } else { |
| 1023 | DT.applyUpdates(Updates: DTUpdates); |
| 1024 | } |
| 1025 | |
| 1026 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| 1027 | |
| 1028 | // We may have changed the nesting relationship for this loop so hoist it to |
| 1029 | // its correct parent if needed. |
| 1030 | hoistLoopToNewParent(L, Preheader&: *NewPH, DT, LI, MSSAU, SE); |
| 1031 | |
| 1032 | if (MSSAU && VerifyMemorySSA) |
| 1033 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 1034 | |
| 1035 | ++NumTrivial; |
| 1036 | ++NumSwitches; |
| 1037 | LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n" ); |
| 1038 | return true; |
| 1039 | } |
| 1040 | |
| 1041 | /// This routine scans the loop to find a branch or switch which occurs before |
| 1042 | /// any side effects occur. These can potentially be unswitched without |
| 1043 | /// duplicating the loop. If a branch or switch is successfully unswitched the |
| 1044 | /// scanning continues to see if subsequent branches or switches have become |
| 1045 | /// trivial. Once all trivial candidates have been unswitched, this routine |
| 1046 | /// returns. |
| 1047 | /// |
| 1048 | /// The return value indicates whether anything was unswitched (and therefore |
| 1049 | /// changed). |
| 1050 | /// |
| 1051 | /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| 1052 | /// invalidated by this. |
| 1053 | static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, |
| 1054 | LoopInfo &LI, ScalarEvolution *SE, |
| 1055 | MemorySSAUpdater *MSSAU) { |
| 1056 | bool Changed = false; |
| 1057 | |
| 1058 | // If loop header has only one reachable successor we should keep looking for |
| 1059 | // trivial condition candidates in the successor as well. An alternative is |
| 1060 | // to constant fold conditions and merge successors into loop header (then we |
| 1061 | // only need to check header's terminator). The reason for not doing this in |
| 1062 | // LoopUnswitch pass is that it could potentially break LoopPassManager's |
| 1063 | // invariants. Folding dead branches could either eliminate the current loop |
| 1064 | // or make other loops unreachable. LCSSA form might also not be preserved |
| 1065 | // after deleting branches. The following code keeps traversing loop header's |
| 1066 | // successors until it finds the trivial condition candidate (condition that |
| 1067 | // is not a constant). Since unswitching generates branches with constant |
| 1068 | // conditions, this scenario could be very common in practice. |
| 1069 | BasicBlock *CurrentBB = L.getHeader(); |
| 1070 | SmallPtrSet<BasicBlock *, 8> Visited; |
| 1071 | Visited.insert(Ptr: CurrentBB); |
| 1072 | do { |
| 1073 | // Check if there are any side-effecting instructions (e.g. stores, calls, |
| 1074 | // volatile loads) in the part of the loop that the code *would* execute |
| 1075 | // without unswitching. |
| 1076 | if (MSSAU) // Possible early exit with MSSA |
| 1077 | if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(BB: CurrentBB)) |
| 1078 | if (!isa<MemoryPhi>(Val: *Defs->begin()) || (++Defs->begin() != Defs->end())) |
| 1079 | return Changed; |
| 1080 | if (llvm::any_of(Range&: *CurrentBB, |
| 1081 | P: [](Instruction &I) { return I.mayHaveSideEffects(); })) |
| 1082 | return Changed; |
| 1083 | |
| 1084 | Instruction *CurrentTerm = CurrentBB->getTerminator(); |
| 1085 | |
| 1086 | if (auto *SI = dyn_cast<SwitchInst>(Val: CurrentTerm)) { |
| 1087 | // Don't bother trying to unswitch past a switch with a constant |
| 1088 | // condition. This should be removed prior to running this pass by |
| 1089 | // simplifycfg. |
| 1090 | if (isa<Constant>(Val: SI->getCondition())) |
| 1091 | return Changed; |
| 1092 | |
| 1093 | if (!unswitchTrivialSwitch(L, SI&: *SI, DT, LI, SE, MSSAU)) |
| 1094 | // Couldn't unswitch this one so we're done. |
| 1095 | return Changed; |
| 1096 | |
| 1097 | // Mark that we managed to unswitch something. |
| 1098 | Changed = true; |
| 1099 | |
| 1100 | // If unswitching turned the terminator into an unconditional branch then |
| 1101 | // we can continue. The unswitching logic specifically works to fold any |
| 1102 | // cases it can into an unconditional branch to make it easier to |
| 1103 | // recognize here. |
| 1104 | auto *BI = dyn_cast<BranchInst>(Val: CurrentBB->getTerminator()); |
| 1105 | if (!BI || BI->isConditional()) |
| 1106 | return Changed; |
| 1107 | |
| 1108 | CurrentBB = BI->getSuccessor(i: 0); |
| 1109 | continue; |
| 1110 | } |
| 1111 | |
| 1112 | auto *BI = dyn_cast<BranchInst>(Val: CurrentTerm); |
| 1113 | if (!BI) |
| 1114 | // We do not understand other terminator instructions. |
| 1115 | return Changed; |
| 1116 | |
| 1117 | // Don't bother trying to unswitch past an unconditional branch or a branch |
| 1118 | // with a constant value. These should be removed by simplifycfg prior to |
| 1119 | // running this pass. |
| 1120 | if (!BI->isConditional() || |
| 1121 | isa<Constant>(Val: skipTrivialSelect(Cond: BI->getCondition()))) |
| 1122 | return Changed; |
| 1123 | |
| 1124 | // Found a trivial condition candidate: non-foldable conditional branch. If |
| 1125 | // we fail to unswitch this, we can't do anything else that is trivial. |
| 1126 | if (!unswitchTrivialBranch(L, BI&: *BI, DT, LI, SE, MSSAU)) |
| 1127 | return Changed; |
| 1128 | |
| 1129 | // Mark that we managed to unswitch something. |
| 1130 | Changed = true; |
| 1131 | |
| 1132 | // If we only unswitched some of the conditions feeding the branch, we won't |
| 1133 | // have collapsed it to a single successor. |
| 1134 | BI = cast<BranchInst>(Val: CurrentBB->getTerminator()); |
| 1135 | if (BI->isConditional()) |
| 1136 | return Changed; |
| 1137 | |
| 1138 | // Follow the newly unconditional branch into its successor. |
| 1139 | CurrentBB = BI->getSuccessor(i: 0); |
| 1140 | |
| 1141 | // When continuing, if we exit the loop or reach a previous visited block, |
| 1142 | // then we can not reach any trivial condition candidates (unfoldable |
| 1143 | // branch instructions or switch instructions) and no unswitch can happen. |
| 1144 | } while (L.contains(BB: CurrentBB) && Visited.insert(Ptr: CurrentBB).second); |
| 1145 | |
| 1146 | return Changed; |
| 1147 | } |
| 1148 | |
| 1149 | /// Build the cloned blocks for an unswitched copy of the given loop. |
| 1150 | /// |
| 1151 | /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and |
| 1152 | /// after the split block (`SplitBB`) that will be used to select between the |
| 1153 | /// cloned and original loop. |
| 1154 | /// |
| 1155 | /// This routine handles cloning all of the necessary loop blocks and exit |
| 1156 | /// blocks including rewriting their instructions and the relevant PHI nodes. |
| 1157 | /// Any loop blocks or exit blocks which are dominated by a different successor |
| 1158 | /// than the one for this clone of the loop blocks can be trivially skipped. We |
| 1159 | /// use the `DominatingSucc` map to determine whether a block satisfies that |
| 1160 | /// property with a simple map lookup. |
| 1161 | /// |
| 1162 | /// It also correctly creates the unconditional branch in the cloned |
| 1163 | /// unswitched parent block to only point at the unswitched successor. |
| 1164 | /// |
| 1165 | /// This does not handle most of the necessary updates to `LoopInfo`. Only exit |
| 1166 | /// block splitting is correctly reflected in `LoopInfo`, essentially all of |
| 1167 | /// the cloned blocks (and their loops) are left without full `LoopInfo` |
| 1168 | /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned |
| 1169 | /// blocks to them but doesn't create the cloned `DominatorTree` structure and |
| 1170 | /// instead the caller must recompute an accurate DT. It *does* correctly |
| 1171 | /// update the `AssumptionCache` provided in `AC`. |
| 1172 | static BasicBlock *buildClonedLoopBlocks( |
| 1173 | Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, |
| 1174 | ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, |
| 1175 | BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, |
| 1176 | const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, |
| 1177 | ValueToValueMapTy &VMap, |
| 1178 | SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, |
| 1179 | DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, |
| 1180 | ScalarEvolution *SE) { |
| 1181 | SmallVector<BasicBlock *, 4> NewBlocks; |
| 1182 | NewBlocks.reserve(N: L.getNumBlocks() + ExitBlocks.size()); |
| 1183 | |
| 1184 | // We will need to clone a bunch of blocks, wrap up the clone operation in |
| 1185 | // a helper. |
| 1186 | auto CloneBlock = [&](BasicBlock *OldBB) { |
| 1187 | // Clone the basic block and insert it before the new preheader. |
| 1188 | BasicBlock *NewBB = CloneBasicBlock(BB: OldBB, VMap, NameSuffix: ".us" , F: OldBB->getParent()); |
| 1189 | NewBB->moveBefore(MovePos: LoopPH); |
| 1190 | |
| 1191 | // Record this block and the mapping. |
| 1192 | NewBlocks.push_back(Elt: NewBB); |
| 1193 | VMap[OldBB] = NewBB; |
| 1194 | |
| 1195 | return NewBB; |
| 1196 | }; |
| 1197 | |
| 1198 | // We skip cloning blocks when they have a dominating succ that is not the |
| 1199 | // succ we are cloning for. |
| 1200 | auto SkipBlock = [&](BasicBlock *BB) { |
| 1201 | auto It = DominatingSucc.find(Val: BB); |
| 1202 | return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; |
| 1203 | }; |
| 1204 | |
| 1205 | // First, clone the preheader. |
| 1206 | auto *ClonedPH = CloneBlock(LoopPH); |
| 1207 | |
| 1208 | // Then clone all the loop blocks, skipping the ones that aren't necessary. |
| 1209 | for (auto *LoopBB : L.blocks()) |
| 1210 | if (!SkipBlock(LoopBB)) |
| 1211 | CloneBlock(LoopBB); |
| 1212 | |
| 1213 | // Split all the loop exit edges so that when we clone the exit blocks, if |
| 1214 | // any of the exit blocks are *also* a preheader for some other loop, we |
| 1215 | // don't create multiple predecessors entering the loop header. |
| 1216 | for (auto *ExitBB : ExitBlocks) { |
| 1217 | if (SkipBlock(ExitBB)) |
| 1218 | continue; |
| 1219 | |
| 1220 | // When we are going to clone an exit, we don't need to clone all the |
| 1221 | // instructions in the exit block and we want to ensure we have an easy |
| 1222 | // place to merge the CFG, so split the exit first. This is always safe to |
| 1223 | // do because there cannot be any non-loop predecessors of a loop exit in |
| 1224 | // loop simplified form. |
| 1225 | auto *MergeBB = SplitBlock(Old: ExitBB, SplitPt: ExitBB->begin(), DT: &DT, LI: &LI, MSSAU); |
| 1226 | |
| 1227 | // Rearrange the names to make it easier to write test cases by having the |
| 1228 | // exit block carry the suffix rather than the merge block carrying the |
| 1229 | // suffix. |
| 1230 | MergeBB->takeName(V: ExitBB); |
| 1231 | ExitBB->setName(Twine(MergeBB->getName()) + ".split" ); |
| 1232 | |
| 1233 | // Now clone the original exit block. |
| 1234 | auto *ClonedExitBB = CloneBlock(ExitBB); |
| 1235 | assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && |
| 1236 | "Exit block should have been split to have one successor!" ); |
| 1237 | assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && |
| 1238 | "Cloned exit block has the wrong successor!" ); |
| 1239 | |
| 1240 | // Remap any cloned instructions and create a merge phi node for them. |
| 1241 | for (auto ZippedInsts : llvm::zip_first( |
| 1242 | t: llvm::make_range(x: ExitBB->begin(), y: std::prev(x: ExitBB->end())), |
| 1243 | u: llvm::make_range(x: ClonedExitBB->begin(), |
| 1244 | y: std::prev(x: ClonedExitBB->end())))) { |
| 1245 | Instruction &I = std::get<0>(t&: ZippedInsts); |
| 1246 | Instruction &ClonedI = std::get<1>(t&: ZippedInsts); |
| 1247 | |
| 1248 | // The only instructions in the exit block should be PHI nodes and |
| 1249 | // potentially a landing pad. |
| 1250 | assert( |
| 1251 | (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && |
| 1252 | "Bad instruction in exit block!" ); |
| 1253 | // We should have a value map between the instruction and its clone. |
| 1254 | assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!" ); |
| 1255 | |
| 1256 | // Forget SCEVs based on exit phis in case SCEV looked through the phi. |
| 1257 | if (SE) |
| 1258 | if (auto *PN = dyn_cast<PHINode>(Val: &I)) |
| 1259 | SE->forgetLcssaPhiWithNewPredecessor(L: &L, V: PN); |
| 1260 | |
| 1261 | BasicBlock::iterator InsertPt = MergeBB->getFirstInsertionPt(); |
| 1262 | |
| 1263 | auto *MergePN = |
| 1264 | PHINode::Create(Ty: I.getType(), /*NumReservedValues*/ 2, NameStr: ".us-phi" ); |
| 1265 | MergePN->insertBefore(InsertPos: InsertPt); |
| 1266 | MergePN->setDebugLoc(InsertPt->getDebugLoc()); |
| 1267 | I.replaceAllUsesWith(V: MergePN); |
| 1268 | MergePN->addIncoming(V: &I, BB: ExitBB); |
| 1269 | MergePN->addIncoming(V: &ClonedI, BB: ClonedExitBB); |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | // Rewrite the instructions in the cloned blocks to refer to the instructions |
| 1274 | // in the cloned blocks. We have to do this as a second pass so that we have |
| 1275 | // everything available. Also, we have inserted new instructions which may |
| 1276 | // include assume intrinsics, so we update the assumption cache while |
| 1277 | // processing this. |
| 1278 | Module *M = ClonedPH->getParent()->getParent(); |
| 1279 | for (auto *ClonedBB : NewBlocks) |
| 1280 | for (Instruction &I : *ClonedBB) { |
| 1281 | RemapDbgRecordRange(M, Range: I.getDbgRecordRange(), VM&: VMap, |
| 1282 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 1283 | RemapInstruction(I: &I, VM&: VMap, |
| 1284 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 1285 | if (auto *II = dyn_cast<AssumeInst>(Val: &I)) |
| 1286 | AC.registerAssumption(CI: II); |
| 1287 | } |
| 1288 | |
| 1289 | // Update any PHI nodes in the cloned successors of the skipped blocks to not |
| 1290 | // have spurious incoming values. |
| 1291 | for (auto *LoopBB : L.blocks()) |
| 1292 | if (SkipBlock(LoopBB)) |
| 1293 | for (auto *SuccBB : successors(BB: LoopBB)) |
| 1294 | if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: SuccBB))) |
| 1295 | for (PHINode &PN : ClonedSuccBB->phis()) |
| 1296 | PN.removeIncomingValue(BB: LoopBB, /*DeletePHIIfEmpty*/ false); |
| 1297 | |
| 1298 | // Remove the cloned parent as a predecessor of any successor we ended up |
| 1299 | // cloning other than the unswitched one. |
| 1300 | auto *ClonedParentBB = cast<BasicBlock>(Val: VMap.lookup(Val: ParentBB)); |
| 1301 | for (auto *SuccBB : successors(BB: ParentBB)) { |
| 1302 | if (SuccBB == UnswitchedSuccBB) |
| 1303 | continue; |
| 1304 | |
| 1305 | auto *ClonedSuccBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: SuccBB)); |
| 1306 | if (!ClonedSuccBB) |
| 1307 | continue; |
| 1308 | |
| 1309 | ClonedSuccBB->removePredecessor(Pred: ClonedParentBB, |
| 1310 | /*KeepOneInputPHIs*/ true); |
| 1311 | } |
| 1312 | |
| 1313 | // Replace the cloned branch with an unconditional branch to the cloned |
| 1314 | // unswitched successor. |
| 1315 | auto *ClonedSuccBB = cast<BasicBlock>(Val: VMap.lookup(Val: UnswitchedSuccBB)); |
| 1316 | Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); |
| 1317 | // Trivial Simplification. If Terminator is a conditional branch and |
| 1318 | // condition becomes dead - erase it. |
| 1319 | Value *ClonedConditionToErase = nullptr; |
| 1320 | if (auto *BI = dyn_cast<BranchInst>(Val: ClonedTerminator)) |
| 1321 | ClonedConditionToErase = BI->getCondition(); |
| 1322 | else if (auto *SI = dyn_cast<SwitchInst>(Val: ClonedTerminator)) |
| 1323 | ClonedConditionToErase = SI->getCondition(); |
| 1324 | |
| 1325 | Instruction *BI = BranchInst::Create(IfTrue: ClonedSuccBB, InsertBefore: ClonedParentBB); |
| 1326 | BI->setDebugLoc(ClonedTerminator->getDebugLoc()); |
| 1327 | ClonedTerminator->eraseFromParent(); |
| 1328 | |
| 1329 | if (ClonedConditionToErase) |
| 1330 | RecursivelyDeleteTriviallyDeadInstructions(V: ClonedConditionToErase, TLI: nullptr, |
| 1331 | MSSAU); |
| 1332 | |
| 1333 | // If there are duplicate entries in the PHI nodes because of multiple edges |
| 1334 | // to the unswitched successor, we need to nuke all but one as we replaced it |
| 1335 | // with a direct branch. |
| 1336 | for (PHINode &PN : ClonedSuccBB->phis()) { |
| 1337 | bool Found = false; |
| 1338 | // Loop over the incoming operands backwards so we can easily delete as we |
| 1339 | // go without invalidating the index. |
| 1340 | for (int i = PN.getNumOperands() - 1; i >= 0; --i) { |
| 1341 | if (PN.getIncomingBlock(i) != ClonedParentBB) |
| 1342 | continue; |
| 1343 | if (!Found) { |
| 1344 | Found = true; |
| 1345 | continue; |
| 1346 | } |
| 1347 | PN.removeIncomingValue(Idx: i, /*DeletePHIIfEmpty*/ false); |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | // Record the domtree updates for the new blocks. |
| 1352 | SmallPtrSet<BasicBlock *, 4> SuccSet; |
| 1353 | for (auto *ClonedBB : NewBlocks) { |
| 1354 | for (auto *SuccBB : successors(BB: ClonedBB)) |
| 1355 | if (SuccSet.insert(Ptr: SuccBB).second) |
| 1356 | DTUpdates.push_back(Elt: {DominatorTree::Insert, ClonedBB, SuccBB}); |
| 1357 | SuccSet.clear(); |
| 1358 | } |
| 1359 | |
| 1360 | return ClonedPH; |
| 1361 | } |
| 1362 | |
| 1363 | /// Recursively clone the specified loop and all of its children. |
| 1364 | /// |
| 1365 | /// The target parent loop for the clone should be provided, or can be null if |
| 1366 | /// the clone is a top-level loop. While cloning, all the blocks are mapped |
| 1367 | /// with the provided value map. The entire original loop must be present in |
| 1368 | /// the value map. The cloned loop is returned. |
| 1369 | static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, |
| 1370 | const ValueToValueMapTy &VMap, LoopInfo &LI) { |
| 1371 | auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { |
| 1372 | assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!" ); |
| 1373 | ClonedL.reserveBlocks(size: OrigL.getNumBlocks()); |
| 1374 | for (auto *BB : OrigL.blocks()) { |
| 1375 | auto *ClonedBB = cast<BasicBlock>(Val: VMap.lookup(Val: BB)); |
| 1376 | ClonedL.addBlockEntry(BB: ClonedBB); |
| 1377 | if (LI.getLoopFor(BB) == &OrigL) |
| 1378 | LI.changeLoopFor(BB: ClonedBB, L: &ClonedL); |
| 1379 | } |
| 1380 | }; |
| 1381 | |
| 1382 | // We specially handle the first loop because it may get cloned into |
| 1383 | // a different parent and because we most commonly are cloning leaf loops. |
| 1384 | Loop *ClonedRootL = LI.AllocateLoop(); |
| 1385 | if (RootParentL) |
| 1386 | RootParentL->addChildLoop(NewChild: ClonedRootL); |
| 1387 | else |
| 1388 | LI.addTopLevelLoop(New: ClonedRootL); |
| 1389 | AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); |
| 1390 | |
| 1391 | if (OrigRootL.isInnermost()) |
| 1392 | return ClonedRootL; |
| 1393 | |
| 1394 | // If we have a nest, we can quickly clone the entire loop nest using an |
| 1395 | // iterative approach because it is a tree. We keep the cloned parent in the |
| 1396 | // data structure to avoid repeatedly querying through a map to find it. |
| 1397 | SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; |
| 1398 | // Build up the loops to clone in reverse order as we'll clone them from the |
| 1399 | // back. |
| 1400 | for (Loop *ChildL : llvm::reverse(C&: OrigRootL)) |
| 1401 | LoopsToClone.push_back(Elt: {ClonedRootL, ChildL}); |
| 1402 | do { |
| 1403 | Loop *ClonedParentL, *L; |
| 1404 | std::tie(args&: ClonedParentL, args&: L) = LoopsToClone.pop_back_val(); |
| 1405 | Loop *ClonedL = LI.AllocateLoop(); |
| 1406 | ClonedParentL->addChildLoop(NewChild: ClonedL); |
| 1407 | AddClonedBlocksToLoop(*L, *ClonedL); |
| 1408 | for (Loop *ChildL : llvm::reverse(C&: *L)) |
| 1409 | LoopsToClone.push_back(Elt: {ClonedL, ChildL}); |
| 1410 | } while (!LoopsToClone.empty()); |
| 1411 | |
| 1412 | return ClonedRootL; |
| 1413 | } |
| 1414 | |
| 1415 | /// Build the cloned loops of an original loop from unswitching. |
| 1416 | /// |
| 1417 | /// Because unswitching simplifies the CFG of the loop, this isn't a trivial |
| 1418 | /// operation. We need to re-verify that there even is a loop (as the backedge |
| 1419 | /// may not have been cloned), and even if there are remaining backedges the |
| 1420 | /// backedge set may be different. However, we know that each child loop is |
| 1421 | /// undisturbed, we only need to find where to place each child loop within |
| 1422 | /// either any parent loop or within a cloned version of the original loop. |
| 1423 | /// |
| 1424 | /// Because child loops may end up cloned outside of any cloned version of the |
| 1425 | /// original loop, multiple cloned sibling loops may be created. All of them |
| 1426 | /// are returned so that the newly introduced loop nest roots can be |
| 1427 | /// identified. |
| 1428 | static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, |
| 1429 | const ValueToValueMapTy &VMap, LoopInfo &LI, |
| 1430 | SmallVectorImpl<Loop *> &NonChildClonedLoops) { |
| 1431 | Loop *ClonedL = nullptr; |
| 1432 | |
| 1433 | auto *OrigPH = OrigL.getLoopPreheader(); |
| 1434 | auto * = OrigL.getHeader(); |
| 1435 | |
| 1436 | auto *ClonedPH = cast<BasicBlock>(Val: VMap.lookup(Val: OrigPH)); |
| 1437 | auto * = cast<BasicBlock>(Val: VMap.lookup(Val: OrigHeader)); |
| 1438 | |
| 1439 | // We need to know the loops of the cloned exit blocks to even compute the |
| 1440 | // accurate parent loop. If we only clone exits to some parent of the |
| 1441 | // original parent, we want to clone into that outer loop. We also keep track |
| 1442 | // of the loops that our cloned exit blocks participate in. |
| 1443 | Loop *ParentL = nullptr; |
| 1444 | SmallVector<BasicBlock *, 4> ClonedExitsInLoops; |
| 1445 | SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; |
| 1446 | ClonedExitsInLoops.reserve(N: ExitBlocks.size()); |
| 1447 | for (auto *ExitBB : ExitBlocks) |
| 1448 | if (auto *ClonedExitBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: ExitBB))) |
| 1449 | if (Loop *ExitL = LI.getLoopFor(BB: ExitBB)) { |
| 1450 | ExitLoopMap[ClonedExitBB] = ExitL; |
| 1451 | ClonedExitsInLoops.push_back(Elt: ClonedExitBB); |
| 1452 | if (!ParentL || (ParentL != ExitL && ParentL->contains(L: ExitL))) |
| 1453 | ParentL = ExitL; |
| 1454 | } |
| 1455 | assert((!ParentL || ParentL == OrigL.getParentLoop() || |
| 1456 | ParentL->contains(OrigL.getParentLoop())) && |
| 1457 | "The computed parent loop should always contain (or be) the parent of " |
| 1458 | "the original loop." ); |
| 1459 | |
| 1460 | // We build the set of blocks dominated by the cloned header from the set of |
| 1461 | // cloned blocks out of the original loop. While not all of these will |
| 1462 | // necessarily be in the cloned loop, it is enough to establish that they |
| 1463 | // aren't in unreachable cycles, etc. |
| 1464 | SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; |
| 1465 | for (auto *BB : OrigL.blocks()) |
| 1466 | if (auto *ClonedBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: BB))) |
| 1467 | ClonedLoopBlocks.insert(X: ClonedBB); |
| 1468 | |
| 1469 | // Rebuild the set of blocks that will end up in the cloned loop. We may have |
| 1470 | // skipped cloning some region of this loop which can in turn skip some of |
| 1471 | // the backedges so we have to rebuild the blocks in the loop based on the |
| 1472 | // backedges that remain after cloning. |
| 1473 | SmallVector<BasicBlock *, 16> Worklist; |
| 1474 | SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; |
| 1475 | for (auto *Pred : predecessors(BB: ClonedHeader)) { |
| 1476 | // The only possible non-loop header predecessor is the preheader because |
| 1477 | // we know we cloned the loop in simplified form. |
| 1478 | if (Pred == ClonedPH) |
| 1479 | continue; |
| 1480 | |
| 1481 | // Because the loop was in simplified form, the only non-loop predecessor |
| 1482 | // should be the preheader. |
| 1483 | assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " |
| 1484 | "header other than the preheader " |
| 1485 | "that is not part of the loop!" ); |
| 1486 | |
| 1487 | // Insert this block into the loop set and on the first visit (and if it |
| 1488 | // isn't the header we're currently walking) put it into the worklist to |
| 1489 | // recurse through. |
| 1490 | if (BlocksInClonedLoop.insert(Ptr: Pred).second && Pred != ClonedHeader) |
| 1491 | Worklist.push_back(Elt: Pred); |
| 1492 | } |
| 1493 | |
| 1494 | // If we had any backedges then there *is* a cloned loop. Put the header into |
| 1495 | // the loop set and then walk the worklist backwards to find all the blocks |
| 1496 | // that remain within the loop after cloning. |
| 1497 | if (!BlocksInClonedLoop.empty()) { |
| 1498 | BlocksInClonedLoop.insert(Ptr: ClonedHeader); |
| 1499 | |
| 1500 | while (!Worklist.empty()) { |
| 1501 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1502 | assert(BlocksInClonedLoop.count(BB) && |
| 1503 | "Didn't put block into the loop set!" ); |
| 1504 | |
| 1505 | // Insert any predecessors that are in the possible set into the cloned |
| 1506 | // set, and if the insert is successful, add them to the worklist. Note |
| 1507 | // that we filter on the blocks that are definitely reachable via the |
| 1508 | // backedge to the loop header so we may prune out dead code within the |
| 1509 | // cloned loop. |
| 1510 | for (auto *Pred : predecessors(BB)) |
| 1511 | if (ClonedLoopBlocks.count(key: Pred) && |
| 1512 | BlocksInClonedLoop.insert(Ptr: Pred).second) |
| 1513 | Worklist.push_back(Elt: Pred); |
| 1514 | } |
| 1515 | |
| 1516 | ClonedL = LI.AllocateLoop(); |
| 1517 | if (ParentL) { |
| 1518 | ParentL->addBasicBlockToLoop(NewBB: ClonedPH, LI); |
| 1519 | ParentL->addChildLoop(NewChild: ClonedL); |
| 1520 | } else { |
| 1521 | LI.addTopLevelLoop(New: ClonedL); |
| 1522 | } |
| 1523 | NonChildClonedLoops.push_back(Elt: ClonedL); |
| 1524 | |
| 1525 | ClonedL->reserveBlocks(size: BlocksInClonedLoop.size()); |
| 1526 | // We don't want to just add the cloned loop blocks based on how we |
| 1527 | // discovered them. The original order of blocks was carefully built in |
| 1528 | // a way that doesn't rely on predecessor ordering. Rather than re-invent |
| 1529 | // that logic, we just re-walk the original blocks (and those of the child |
| 1530 | // loops) and filter them as we add them into the cloned loop. |
| 1531 | for (auto *BB : OrigL.blocks()) { |
| 1532 | auto *ClonedBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: BB)); |
| 1533 | if (!ClonedBB || !BlocksInClonedLoop.count(Ptr: ClonedBB)) |
| 1534 | continue; |
| 1535 | |
| 1536 | // Directly add the blocks that are only in this loop. |
| 1537 | if (LI.getLoopFor(BB) == &OrigL) { |
| 1538 | ClonedL->addBasicBlockToLoop(NewBB: ClonedBB, LI); |
| 1539 | continue; |
| 1540 | } |
| 1541 | |
| 1542 | // We want to manually add it to this loop and parents. |
| 1543 | // Registering it with LoopInfo will happen when we clone the top |
| 1544 | // loop for this block. |
| 1545 | for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) |
| 1546 | PL->addBlockEntry(BB: ClonedBB); |
| 1547 | } |
| 1548 | |
| 1549 | // Now add each child loop whose header remains within the cloned loop. All |
| 1550 | // of the blocks within the loop must satisfy the same constraints as the |
| 1551 | // header so once we pass the header checks we can just clone the entire |
| 1552 | // child loop nest. |
| 1553 | for (Loop *ChildL : OrigL) { |
| 1554 | auto * = |
| 1555 | cast_or_null<BasicBlock>(Val: VMap.lookup(Val: ChildL->getHeader())); |
| 1556 | if (!ClonedChildHeader || !BlocksInClonedLoop.count(Ptr: ClonedChildHeader)) |
| 1557 | continue; |
| 1558 | |
| 1559 | #ifndef NDEBUG |
| 1560 | // We should never have a cloned child loop header but fail to have |
| 1561 | // all of the blocks for that child loop. |
| 1562 | for (auto *ChildLoopBB : ChildL->blocks()) |
| 1563 | assert(BlocksInClonedLoop.count( |
| 1564 | cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && |
| 1565 | "Child cloned loop has a header within the cloned outer " |
| 1566 | "loop but not all of its blocks!" ); |
| 1567 | #endif |
| 1568 | |
| 1569 | cloneLoopNest(OrigRootL&: *ChildL, RootParentL: ClonedL, VMap, LI); |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | // Now that we've handled all the components of the original loop that were |
| 1574 | // cloned into a new loop, we still need to handle anything from the original |
| 1575 | // loop that wasn't in a cloned loop. |
| 1576 | |
| 1577 | // Figure out what blocks are left to place within any loop nest containing |
| 1578 | // the unswitched loop. If we never formed a loop, the cloned PH is one of |
| 1579 | // them. |
| 1580 | SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; |
| 1581 | if (BlocksInClonedLoop.empty()) |
| 1582 | UnloopedBlockSet.insert(Ptr: ClonedPH); |
| 1583 | for (auto *ClonedBB : ClonedLoopBlocks) |
| 1584 | if (!BlocksInClonedLoop.count(Ptr: ClonedBB)) |
| 1585 | UnloopedBlockSet.insert(Ptr: ClonedBB); |
| 1586 | |
| 1587 | // Copy the cloned exits and sort them in ascending loop depth, we'll work |
| 1588 | // backwards across these to process them inside out. The order shouldn't |
| 1589 | // matter as we're just trying to build up the map from inside-out; we use |
| 1590 | // the map in a more stably ordered way below. |
| 1591 | auto OrderedClonedExitsInLoops = ClonedExitsInLoops; |
| 1592 | llvm::sort(C&: OrderedClonedExitsInLoops, Comp: [&](BasicBlock *LHS, BasicBlock *RHS) { |
| 1593 | return ExitLoopMap.lookup(Val: LHS)->getLoopDepth() < |
| 1594 | ExitLoopMap.lookup(Val: RHS)->getLoopDepth(); |
| 1595 | }); |
| 1596 | |
| 1597 | // Populate the existing ExitLoopMap with everything reachable from each |
| 1598 | // exit, starting from the inner most exit. |
| 1599 | while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { |
| 1600 | assert(Worklist.empty() && "Didn't clear worklist!" ); |
| 1601 | |
| 1602 | BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); |
| 1603 | Loop *ExitL = ExitLoopMap.lookup(Val: ExitBB); |
| 1604 | |
| 1605 | // Walk the CFG back until we hit the cloned PH adding everything reachable |
| 1606 | // and in the unlooped set to this exit block's loop. |
| 1607 | Worklist.push_back(Elt: ExitBB); |
| 1608 | do { |
| 1609 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1610 | // We can stop recursing at the cloned preheader (if we get there). |
| 1611 | if (BB == ClonedPH) |
| 1612 | continue; |
| 1613 | |
| 1614 | for (BasicBlock *PredBB : predecessors(BB)) { |
| 1615 | // If this pred has already been moved to our set or is part of some |
| 1616 | // (inner) loop, no update needed. |
| 1617 | if (!UnloopedBlockSet.erase(Ptr: PredBB)) { |
| 1618 | assert( |
| 1619 | (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && |
| 1620 | "Predecessor not mapped to a loop!" ); |
| 1621 | continue; |
| 1622 | } |
| 1623 | |
| 1624 | // We just insert into the loop set here. We'll add these blocks to the |
| 1625 | // exit loop after we build up the set in an order that doesn't rely on |
| 1626 | // predecessor order (which in turn relies on use list order). |
| 1627 | bool Inserted = ExitLoopMap.insert(KV: {PredBB, ExitL}).second; |
| 1628 | (void)Inserted; |
| 1629 | assert(Inserted && "Should only visit an unlooped block once!" ); |
| 1630 | |
| 1631 | // And recurse through to its predecessors. |
| 1632 | Worklist.push_back(Elt: PredBB); |
| 1633 | } |
| 1634 | } while (!Worklist.empty()); |
| 1635 | } |
| 1636 | |
| 1637 | // Now that the ExitLoopMap gives as mapping for all the non-looping cloned |
| 1638 | // blocks to their outer loops, walk the cloned blocks and the cloned exits |
| 1639 | // in their original order adding them to the correct loop. |
| 1640 | |
| 1641 | // We need a stable insertion order. We use the order of the original loop |
| 1642 | // order and map into the correct parent loop. |
| 1643 | for (auto *BB : llvm::concat<BasicBlock *const>( |
| 1644 | Ranges: ArrayRef(ClonedPH), Ranges&: ClonedLoopBlocks, Ranges&: ClonedExitsInLoops)) |
| 1645 | if (Loop *OuterL = ExitLoopMap.lookup(Val: BB)) |
| 1646 | OuterL->addBasicBlockToLoop(NewBB: BB, LI); |
| 1647 | |
| 1648 | #ifndef NDEBUG |
| 1649 | for (auto &BBAndL : ExitLoopMap) { |
| 1650 | auto *BB = BBAndL.first; |
| 1651 | auto *OuterL = BBAndL.second; |
| 1652 | assert(LI.getLoopFor(BB) == OuterL && |
| 1653 | "Failed to put all blocks into outer loops!" ); |
| 1654 | } |
| 1655 | #endif |
| 1656 | |
| 1657 | // Now that all the blocks are placed into the correct containing loop in the |
| 1658 | // absence of child loops, find all the potentially cloned child loops and |
| 1659 | // clone them into whatever outer loop we placed their header into. |
| 1660 | for (Loop *ChildL : OrigL) { |
| 1661 | auto * = |
| 1662 | cast_or_null<BasicBlock>(Val: VMap.lookup(Val: ChildL->getHeader())); |
| 1663 | if (!ClonedChildHeader || BlocksInClonedLoop.count(Ptr: ClonedChildHeader)) |
| 1664 | continue; |
| 1665 | |
| 1666 | #ifndef NDEBUG |
| 1667 | for (auto *ChildLoopBB : ChildL->blocks()) |
| 1668 | assert(VMap.count(ChildLoopBB) && |
| 1669 | "Cloned a child loop header but not all of that loops blocks!" ); |
| 1670 | #endif |
| 1671 | |
| 1672 | NonChildClonedLoops.push_back(Elt: cloneLoopNest( |
| 1673 | OrigRootL&: *ChildL, RootParentL: ExitLoopMap.lookup(Val: ClonedChildHeader), VMap, LI)); |
| 1674 | } |
| 1675 | } |
| 1676 | |
| 1677 | static void |
| 1678 | deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, |
| 1679 | ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, |
| 1680 | DominatorTree &DT, MemorySSAUpdater *MSSAU) { |
| 1681 | // Find all the dead clones, and remove them from their successors. |
| 1682 | SmallVector<BasicBlock *, 16> DeadBlocks; |
| 1683 | for (BasicBlock *BB : llvm::concat<BasicBlock *const>(Ranges: L.blocks(), Ranges&: ExitBlocks)) |
| 1684 | for (const auto &VMap : VMaps) |
| 1685 | if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(Val: VMap->lookup(Val: BB))) |
| 1686 | if (!DT.isReachableFromEntry(A: ClonedBB)) { |
| 1687 | for (BasicBlock *SuccBB : successors(BB: ClonedBB)) |
| 1688 | SuccBB->removePredecessor(Pred: ClonedBB); |
| 1689 | DeadBlocks.push_back(Elt: ClonedBB); |
| 1690 | } |
| 1691 | |
| 1692 | // Remove all MemorySSA in the dead blocks |
| 1693 | if (MSSAU) { |
| 1694 | SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), |
| 1695 | DeadBlocks.end()); |
| 1696 | MSSAU->removeBlocks(DeadBlocks: DeadBlockSet); |
| 1697 | } |
| 1698 | |
| 1699 | // Drop any remaining references to break cycles. |
| 1700 | for (BasicBlock *BB : DeadBlocks) |
| 1701 | BB->dropAllReferences(); |
| 1702 | // Erase them from the IR. |
| 1703 | for (BasicBlock *BB : DeadBlocks) |
| 1704 | BB->eraseFromParent(); |
| 1705 | } |
| 1706 | |
| 1707 | static void deleteDeadBlocksFromLoop(Loop &L, |
| 1708 | SmallVectorImpl<BasicBlock *> &ExitBlocks, |
| 1709 | DominatorTree &DT, LoopInfo &LI, |
| 1710 | MemorySSAUpdater *MSSAU, |
| 1711 | ScalarEvolution *SE, |
| 1712 | LPMUpdater &LoopUpdater) { |
| 1713 | // Find all the dead blocks tied to this loop, and remove them from their |
| 1714 | // successors. |
| 1715 | SmallSetVector<BasicBlock *, 8> DeadBlockSet; |
| 1716 | |
| 1717 | // Start with loop/exit blocks and get a transitive closure of reachable dead |
| 1718 | // blocks. |
| 1719 | SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), |
| 1720 | ExitBlocks.end()); |
| 1721 | DeathCandidates.append(in_start: L.blocks().begin(), in_end: L.blocks().end()); |
| 1722 | while (!DeathCandidates.empty()) { |
| 1723 | auto *BB = DeathCandidates.pop_back_val(); |
| 1724 | if (!DeadBlockSet.count(key: BB) && !DT.isReachableFromEntry(A: BB)) { |
| 1725 | for (BasicBlock *SuccBB : successors(BB)) { |
| 1726 | SuccBB->removePredecessor(Pred: BB); |
| 1727 | DeathCandidates.push_back(Elt: SuccBB); |
| 1728 | } |
| 1729 | DeadBlockSet.insert(X: BB); |
| 1730 | } |
| 1731 | } |
| 1732 | |
| 1733 | // Remove all MemorySSA in the dead blocks |
| 1734 | if (MSSAU) |
| 1735 | MSSAU->removeBlocks(DeadBlocks: DeadBlockSet); |
| 1736 | |
| 1737 | // Filter out the dead blocks from the exit blocks list so that it can be |
| 1738 | // used in the caller. |
| 1739 | llvm::erase_if(C&: ExitBlocks, |
| 1740 | P: [&](BasicBlock *BB) { return DeadBlockSet.count(key: BB); }); |
| 1741 | |
| 1742 | // Walk from this loop up through its parents removing all of the dead blocks. |
| 1743 | for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { |
| 1744 | for (auto *BB : DeadBlockSet) |
| 1745 | ParentL->getBlocksSet().erase(Ptr: BB); |
| 1746 | llvm::erase_if(C&: ParentL->getBlocksVector(), |
| 1747 | P: [&](BasicBlock *BB) { return DeadBlockSet.count(key: BB); }); |
| 1748 | } |
| 1749 | |
| 1750 | // Now delete the dead child loops. This raw delete will clear them |
| 1751 | // recursively. |
| 1752 | llvm::erase_if(C&: L.getSubLoopsVector(), P: [&](Loop *ChildL) { |
| 1753 | if (!DeadBlockSet.count(key: ChildL->getHeader())) |
| 1754 | return false; |
| 1755 | |
| 1756 | assert(llvm::all_of(ChildL->blocks(), |
| 1757 | [&](BasicBlock *ChildBB) { |
| 1758 | return DeadBlockSet.count(ChildBB); |
| 1759 | }) && |
| 1760 | "If the child loop header is dead all blocks in the child loop must " |
| 1761 | "be dead as well!" ); |
| 1762 | LoopUpdater.markLoopAsDeleted(L&: *ChildL, Name: ChildL->getName()); |
| 1763 | if (SE) |
| 1764 | SE->forgetBlockAndLoopDispositions(); |
| 1765 | LI.destroy(L: ChildL); |
| 1766 | return true; |
| 1767 | }); |
| 1768 | |
| 1769 | // Remove the loop mappings for the dead blocks and drop all the references |
| 1770 | // from these blocks to others to handle cyclic references as we start |
| 1771 | // deleting the blocks themselves. |
| 1772 | for (auto *BB : DeadBlockSet) { |
| 1773 | // Check that the dominator tree has already been updated. |
| 1774 | assert(!DT.getNode(BB) && "Should already have cleared domtree!" ); |
| 1775 | LI.changeLoopFor(BB, L: nullptr); |
| 1776 | // Drop all uses of the instructions to make sure we won't have dangling |
| 1777 | // uses in other blocks. |
| 1778 | for (auto &I : *BB) |
| 1779 | if (!I.use_empty()) |
| 1780 | I.replaceAllUsesWith(V: PoisonValue::get(T: I.getType())); |
| 1781 | BB->dropAllReferences(); |
| 1782 | } |
| 1783 | |
| 1784 | // Actually delete the blocks now that they've been fully unhooked from the |
| 1785 | // IR. |
| 1786 | for (auto *BB : DeadBlockSet) |
| 1787 | BB->eraseFromParent(); |
| 1788 | } |
| 1789 | |
| 1790 | /// Recompute the set of blocks in a loop after unswitching. |
| 1791 | /// |
| 1792 | /// This walks from the original headers predecessors to rebuild the loop. We |
| 1793 | /// take advantage of the fact that new blocks can't have been added, and so we |
| 1794 | /// filter by the original loop's blocks. This also handles potentially |
| 1795 | /// unreachable code that we don't want to explore but might be found examining |
| 1796 | /// the predecessors of the header. |
| 1797 | /// |
| 1798 | /// If the original loop is no longer a loop, this will return an empty set. If |
| 1799 | /// it remains a loop, all the blocks within it will be added to the set |
| 1800 | /// (including those blocks in inner loops). |
| 1801 | static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, |
| 1802 | LoopInfo &LI) { |
| 1803 | SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; |
| 1804 | |
| 1805 | auto *PH = L.getLoopPreheader(); |
| 1806 | auto * = L.getHeader(); |
| 1807 | |
| 1808 | // A worklist to use while walking backwards from the header. |
| 1809 | SmallVector<BasicBlock *, 16> Worklist; |
| 1810 | |
| 1811 | // First walk the predecessors of the header to find the backedges. This will |
| 1812 | // form the basis of our walk. |
| 1813 | for (auto *Pred : predecessors(BB: Header)) { |
| 1814 | // Skip the preheader. |
| 1815 | if (Pred == PH) |
| 1816 | continue; |
| 1817 | |
| 1818 | // Because the loop was in simplified form, the only non-loop predecessor |
| 1819 | // is the preheader. |
| 1820 | assert(L.contains(Pred) && "Found a predecessor of the loop header other " |
| 1821 | "than the preheader that is not part of the " |
| 1822 | "loop!" ); |
| 1823 | |
| 1824 | // Insert this block into the loop set and on the first visit and, if it |
| 1825 | // isn't the header we're currently walking, put it into the worklist to |
| 1826 | // recurse through. |
| 1827 | if (LoopBlockSet.insert(Ptr: Pred).second && Pred != Header) |
| 1828 | Worklist.push_back(Elt: Pred); |
| 1829 | } |
| 1830 | |
| 1831 | // If no backedges were found, we're done. |
| 1832 | if (LoopBlockSet.empty()) |
| 1833 | return LoopBlockSet; |
| 1834 | |
| 1835 | // We found backedges, recurse through them to identify the loop blocks. |
| 1836 | while (!Worklist.empty()) { |
| 1837 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1838 | assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!" ); |
| 1839 | |
| 1840 | // No need to walk past the header. |
| 1841 | if (BB == Header) |
| 1842 | continue; |
| 1843 | |
| 1844 | // Because we know the inner loop structure remains valid we can use the |
| 1845 | // loop structure to jump immediately across the entire nested loop. |
| 1846 | // Further, because it is in loop simplified form, we can directly jump |
| 1847 | // to its preheader afterward. |
| 1848 | if (Loop *InnerL = LI.getLoopFor(BB)) |
| 1849 | if (InnerL != &L) { |
| 1850 | assert(L.contains(InnerL) && |
| 1851 | "Should not reach a loop *outside* this loop!" ); |
| 1852 | // The preheader is the only possible predecessor of the loop so |
| 1853 | // insert it into the set and check whether it was already handled. |
| 1854 | auto *InnerPH = InnerL->getLoopPreheader(); |
| 1855 | assert(L.contains(InnerPH) && "Cannot contain an inner loop block " |
| 1856 | "but not contain the inner loop " |
| 1857 | "preheader!" ); |
| 1858 | if (!LoopBlockSet.insert(Ptr: InnerPH).second) |
| 1859 | // The only way to reach the preheader is through the loop body |
| 1860 | // itself so if it has been visited the loop is already handled. |
| 1861 | continue; |
| 1862 | |
| 1863 | // Insert all of the blocks (other than those already present) into |
| 1864 | // the loop set. We expect at least the block that led us to find the |
| 1865 | // inner loop to be in the block set, but we may also have other loop |
| 1866 | // blocks if they were already enqueued as predecessors of some other |
| 1867 | // outer loop block. |
| 1868 | for (auto *InnerBB : InnerL->blocks()) { |
| 1869 | if (InnerBB == BB) { |
| 1870 | assert(LoopBlockSet.count(InnerBB) && |
| 1871 | "Block should already be in the set!" ); |
| 1872 | continue; |
| 1873 | } |
| 1874 | |
| 1875 | LoopBlockSet.insert(Ptr: InnerBB); |
| 1876 | } |
| 1877 | |
| 1878 | // Add the preheader to the worklist so we will continue past the |
| 1879 | // loop body. |
| 1880 | Worklist.push_back(Elt: InnerPH); |
| 1881 | continue; |
| 1882 | } |
| 1883 | |
| 1884 | // Insert any predecessors that were in the original loop into the new |
| 1885 | // set, and if the insert is successful, add them to the worklist. |
| 1886 | for (auto *Pred : predecessors(BB)) |
| 1887 | if (L.contains(BB: Pred) && LoopBlockSet.insert(Ptr: Pred).second) |
| 1888 | Worklist.push_back(Elt: Pred); |
| 1889 | } |
| 1890 | |
| 1891 | assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!" ); |
| 1892 | |
| 1893 | // We've found all the blocks participating in the loop, return our completed |
| 1894 | // set. |
| 1895 | return LoopBlockSet; |
| 1896 | } |
| 1897 | |
| 1898 | /// Rebuild a loop after unswitching removes some subset of blocks and edges. |
| 1899 | /// |
| 1900 | /// The removal may have removed some child loops entirely but cannot have |
| 1901 | /// disturbed any remaining child loops. However, they may need to be hoisted |
| 1902 | /// to the parent loop (or to be top-level loops). The original loop may be |
| 1903 | /// completely removed. |
| 1904 | /// |
| 1905 | /// The sibling loops resulting from this update are returned. If the original |
| 1906 | /// loop remains a valid loop, it will be the first entry in this list with all |
| 1907 | /// of the newly sibling loops following it. |
| 1908 | /// |
| 1909 | /// Returns true if the loop remains a loop after unswitching, and false if it |
| 1910 | /// is no longer a loop after unswitching (and should not continue to be |
| 1911 | /// referenced). |
| 1912 | static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, |
| 1913 | LoopInfo &LI, |
| 1914 | SmallVectorImpl<Loop *> &HoistedLoops, |
| 1915 | ScalarEvolution *SE) { |
| 1916 | auto *PH = L.getLoopPreheader(); |
| 1917 | |
| 1918 | // Compute the actual parent loop from the exit blocks. Because we may have |
| 1919 | // pruned some exits the loop may be different from the original parent. |
| 1920 | Loop *ParentL = nullptr; |
| 1921 | SmallVector<Loop *, 4> ExitLoops; |
| 1922 | SmallVector<BasicBlock *, 4> ExitsInLoops; |
| 1923 | ExitsInLoops.reserve(N: ExitBlocks.size()); |
| 1924 | for (auto *ExitBB : ExitBlocks) |
| 1925 | if (Loop *ExitL = LI.getLoopFor(BB: ExitBB)) { |
| 1926 | ExitLoops.push_back(Elt: ExitL); |
| 1927 | ExitsInLoops.push_back(Elt: ExitBB); |
| 1928 | if (!ParentL || (ParentL != ExitL && ParentL->contains(L: ExitL))) |
| 1929 | ParentL = ExitL; |
| 1930 | } |
| 1931 | |
| 1932 | // Recompute the blocks participating in this loop. This may be empty if it |
| 1933 | // is no longer a loop. |
| 1934 | auto LoopBlockSet = recomputeLoopBlockSet(L, LI); |
| 1935 | |
| 1936 | // If we still have a loop, we need to re-set the loop's parent as the exit |
| 1937 | // block set changing may have moved it within the loop nest. Note that this |
| 1938 | // can only happen when this loop has a parent as it can only hoist the loop |
| 1939 | // *up* the nest. |
| 1940 | if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { |
| 1941 | // Remove this loop's (original) blocks from all of the intervening loops. |
| 1942 | for (Loop *IL = L.getParentLoop(); IL != ParentL; |
| 1943 | IL = IL->getParentLoop()) { |
| 1944 | IL->getBlocksSet().erase(Ptr: PH); |
| 1945 | for (auto *BB : L.blocks()) |
| 1946 | IL->getBlocksSet().erase(Ptr: BB); |
| 1947 | llvm::erase_if(C&: IL->getBlocksVector(), P: [&](BasicBlock *BB) { |
| 1948 | return BB == PH || L.contains(BB); |
| 1949 | }); |
| 1950 | } |
| 1951 | |
| 1952 | LI.changeLoopFor(BB: PH, L: ParentL); |
| 1953 | L.getParentLoop()->removeChildLoop(Child: &L); |
| 1954 | if (ParentL) |
| 1955 | ParentL->addChildLoop(NewChild: &L); |
| 1956 | else |
| 1957 | LI.addTopLevelLoop(New: &L); |
| 1958 | } |
| 1959 | |
| 1960 | // Now we update all the blocks which are no longer within the loop. |
| 1961 | auto &Blocks = L.getBlocksVector(); |
| 1962 | auto BlocksSplitI = |
| 1963 | LoopBlockSet.empty() |
| 1964 | ? Blocks.begin() |
| 1965 | : std::stable_partition( |
| 1966 | first: Blocks.begin(), last: Blocks.end(), |
| 1967 | pred: [&](BasicBlock *BB) { return LoopBlockSet.count(Ptr: BB); }); |
| 1968 | |
| 1969 | // Before we erase the list of unlooped blocks, build a set of them. |
| 1970 | SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); |
| 1971 | if (LoopBlockSet.empty()) |
| 1972 | UnloopedBlocks.insert(Ptr: PH); |
| 1973 | |
| 1974 | // Now erase these blocks from the loop. |
| 1975 | for (auto *BB : make_range(x: BlocksSplitI, y: Blocks.end())) |
| 1976 | L.getBlocksSet().erase(Ptr: BB); |
| 1977 | Blocks.erase(first: BlocksSplitI, last: Blocks.end()); |
| 1978 | |
| 1979 | // Sort the exits in ascending loop depth, we'll work backwards across these |
| 1980 | // to process them inside out. |
| 1981 | llvm::stable_sort(Range&: ExitsInLoops, C: [&](BasicBlock *LHS, BasicBlock *RHS) { |
| 1982 | return LI.getLoopDepth(BB: LHS) < LI.getLoopDepth(BB: RHS); |
| 1983 | }); |
| 1984 | |
| 1985 | // We'll build up a set for each exit loop. |
| 1986 | SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; |
| 1987 | Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. |
| 1988 | |
| 1989 | auto RemoveUnloopedBlocksFromLoop = |
| 1990 | [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { |
| 1991 | for (auto *BB : UnloopedBlocks) |
| 1992 | L.getBlocksSet().erase(Ptr: BB); |
| 1993 | llvm::erase_if(C&: L.getBlocksVector(), P: [&](BasicBlock *BB) { |
| 1994 | return UnloopedBlocks.count(Ptr: BB); |
| 1995 | }); |
| 1996 | }; |
| 1997 | |
| 1998 | SmallVector<BasicBlock *, 16> Worklist; |
| 1999 | while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { |
| 2000 | assert(Worklist.empty() && "Didn't clear worklist!" ); |
| 2001 | assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!" ); |
| 2002 | |
| 2003 | // Grab the next exit block, in decreasing loop depth order. |
| 2004 | BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); |
| 2005 | Loop &ExitL = *LI.getLoopFor(BB: ExitBB); |
| 2006 | assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!" ); |
| 2007 | |
| 2008 | // Erase all of the unlooped blocks from the loops between the previous |
| 2009 | // exit loop and this exit loop. This works because the ExitInLoops list is |
| 2010 | // sorted in increasing order of loop depth and thus we visit loops in |
| 2011 | // decreasing order of loop depth. |
| 2012 | for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) |
| 2013 | RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); |
| 2014 | |
| 2015 | // Walk the CFG back until we hit the cloned PH adding everything reachable |
| 2016 | // and in the unlooped set to this exit block's loop. |
| 2017 | Worklist.push_back(Elt: ExitBB); |
| 2018 | do { |
| 2019 | BasicBlock *BB = Worklist.pop_back_val(); |
| 2020 | // We can stop recursing at the cloned preheader (if we get there). |
| 2021 | if (BB == PH) |
| 2022 | continue; |
| 2023 | |
| 2024 | for (BasicBlock *PredBB : predecessors(BB)) { |
| 2025 | // If this pred has already been moved to our set or is part of some |
| 2026 | // (inner) loop, no update needed. |
| 2027 | if (!UnloopedBlocks.erase(Ptr: PredBB)) { |
| 2028 | assert((NewExitLoopBlocks.count(PredBB) || |
| 2029 | ExitL.contains(LI.getLoopFor(PredBB))) && |
| 2030 | "Predecessor not in a nested loop (or already visited)!" ); |
| 2031 | continue; |
| 2032 | } |
| 2033 | |
| 2034 | // We just insert into the loop set here. We'll add these blocks to the |
| 2035 | // exit loop after we build up the set in a deterministic order rather |
| 2036 | // than the predecessor-influenced visit order. |
| 2037 | bool Inserted = NewExitLoopBlocks.insert(Ptr: PredBB).second; |
| 2038 | (void)Inserted; |
| 2039 | assert(Inserted && "Should only visit an unlooped block once!" ); |
| 2040 | |
| 2041 | // And recurse through to its predecessors. |
| 2042 | Worklist.push_back(Elt: PredBB); |
| 2043 | } |
| 2044 | } while (!Worklist.empty()); |
| 2045 | |
| 2046 | // If blocks in this exit loop were directly part of the original loop (as |
| 2047 | // opposed to a child loop) update the map to point to this exit loop. This |
| 2048 | // just updates a map and so the fact that the order is unstable is fine. |
| 2049 | for (auto *BB : NewExitLoopBlocks) |
| 2050 | if (Loop *BBL = LI.getLoopFor(BB)) |
| 2051 | if (BBL == &L || !L.contains(L: BBL)) |
| 2052 | LI.changeLoopFor(BB, L: &ExitL); |
| 2053 | |
| 2054 | // We will remove the remaining unlooped blocks from this loop in the next |
| 2055 | // iteration or below. |
| 2056 | NewExitLoopBlocks.clear(); |
| 2057 | } |
| 2058 | |
| 2059 | // Any remaining unlooped blocks are no longer part of any loop unless they |
| 2060 | // are part of some child loop. |
| 2061 | for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) |
| 2062 | RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); |
| 2063 | for (auto *BB : UnloopedBlocks) |
| 2064 | if (Loop *BBL = LI.getLoopFor(BB)) |
| 2065 | if (BBL == &L || !L.contains(L: BBL)) |
| 2066 | LI.changeLoopFor(BB, L: nullptr); |
| 2067 | |
| 2068 | // Sink all the child loops whose headers are no longer in the loop set to |
| 2069 | // the parent (or to be top level loops). We reach into the loop and directly |
| 2070 | // update its subloop vector to make this batch update efficient. |
| 2071 | auto &SubLoops = L.getSubLoopsVector(); |
| 2072 | auto SubLoopsSplitI = |
| 2073 | LoopBlockSet.empty() |
| 2074 | ? SubLoops.begin() |
| 2075 | : std::stable_partition( |
| 2076 | first: SubLoops.begin(), last: SubLoops.end(), pred: [&](Loop *SubL) { |
| 2077 | return LoopBlockSet.count(Ptr: SubL->getHeader()); |
| 2078 | }); |
| 2079 | for (auto *HoistedL : make_range(x: SubLoopsSplitI, y: SubLoops.end())) { |
| 2080 | HoistedLoops.push_back(Elt: HoistedL); |
| 2081 | HoistedL->setParentLoop(nullptr); |
| 2082 | |
| 2083 | // To compute the new parent of this hoisted loop we look at where we |
| 2084 | // placed the preheader above. We can't lookup the header itself because we |
| 2085 | // retained the mapping from the header to the hoisted loop. But the |
| 2086 | // preheader and header should have the exact same new parent computed |
| 2087 | // based on the set of exit blocks from the original loop as the preheader |
| 2088 | // is a predecessor of the header and so reached in the reverse walk. And |
| 2089 | // because the loops were all in simplified form the preheader of the |
| 2090 | // hoisted loop can't be part of some *other* loop. |
| 2091 | if (auto *NewParentL = LI.getLoopFor(BB: HoistedL->getLoopPreheader())) |
| 2092 | NewParentL->addChildLoop(NewChild: HoistedL); |
| 2093 | else |
| 2094 | LI.addTopLevelLoop(New: HoistedL); |
| 2095 | } |
| 2096 | SubLoops.erase(first: SubLoopsSplitI, last: SubLoops.end()); |
| 2097 | |
| 2098 | // Actually delete the loop if nothing remained within it. |
| 2099 | if (Blocks.empty()) { |
| 2100 | assert(SubLoops.empty() && |
| 2101 | "Failed to remove all subloops from the original loop!" ); |
| 2102 | if (Loop *ParentL = L.getParentLoop()) |
| 2103 | ParentL->removeChildLoop(I: llvm::find(Range&: *ParentL, Val: &L)); |
| 2104 | else |
| 2105 | LI.removeLoop(I: llvm::find(Range&: LI, Val: &L)); |
| 2106 | // markLoopAsDeleted for L should be triggered by the caller (it is |
| 2107 | // typically done within postUnswitch). |
| 2108 | if (SE) |
| 2109 | SE->forgetBlockAndLoopDispositions(); |
| 2110 | LI.destroy(L: &L); |
| 2111 | return false; |
| 2112 | } |
| 2113 | |
| 2114 | return true; |
| 2115 | } |
| 2116 | |
| 2117 | /// Helper to visit a dominator subtree, invoking a callable on each node. |
| 2118 | /// |
| 2119 | /// Returning false at any point will stop walking past that node of the tree. |
| 2120 | template <typename CallableT> |
| 2121 | void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { |
| 2122 | SmallVector<DomTreeNode *, 4> DomWorklist; |
| 2123 | DomWorklist.push_back(Elt: DT[BB]); |
| 2124 | #ifndef NDEBUG |
| 2125 | SmallPtrSet<DomTreeNode *, 4> Visited; |
| 2126 | Visited.insert(DT[BB]); |
| 2127 | #endif |
| 2128 | do { |
| 2129 | DomTreeNode *N = DomWorklist.pop_back_val(); |
| 2130 | |
| 2131 | // Visit this node. |
| 2132 | if (!Callable(N->getBlock())) |
| 2133 | continue; |
| 2134 | |
| 2135 | // Accumulate the child nodes. |
| 2136 | for (DomTreeNode *ChildN : *N) { |
| 2137 | assert(Visited.insert(ChildN).second && |
| 2138 | "Cannot visit a node twice when walking a tree!" ); |
| 2139 | DomWorklist.push_back(Elt: ChildN); |
| 2140 | } |
| 2141 | } while (!DomWorklist.empty()); |
| 2142 | } |
| 2143 | |
| 2144 | void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName, |
| 2145 | bool CurrentLoopValid, bool PartiallyInvariant, |
| 2146 | bool InjectedCondition, ArrayRef<Loop *> NewLoops) { |
| 2147 | // If we did a non-trivial unswitch, we have added new (cloned) loops. |
| 2148 | if (!NewLoops.empty()) |
| 2149 | U.addSiblingLoops(NewSibLoops: NewLoops); |
| 2150 | |
| 2151 | // If the current loop remains valid, we should revisit it to catch any |
| 2152 | // other unswitch opportunities. Otherwise, we need to mark it as deleted. |
| 2153 | if (CurrentLoopValid) { |
| 2154 | if (PartiallyInvariant) { |
| 2155 | // Mark the new loop as partially unswitched, to avoid unswitching on |
| 2156 | // the same condition again. |
| 2157 | auto &Context = L.getHeader()->getContext(); |
| 2158 | MDNode *DisableUnswitchMD = MDNode::get( |
| 2159 | Context, |
| 2160 | MDs: MDString::get(Context, Str: "llvm.loop.unswitch.partial.disable" )); |
| 2161 | MDNode *NewLoopID = makePostTransformationMetadata( |
| 2162 | Context, OrigLoopID: L.getLoopID(), RemovePrefixes: {"llvm.loop.unswitch.partial" }, |
| 2163 | AddAttrs: {DisableUnswitchMD}); |
| 2164 | L.setLoopID(NewLoopID); |
| 2165 | } else if (InjectedCondition) { |
| 2166 | // Do the same for injection of invariant conditions. |
| 2167 | auto &Context = L.getHeader()->getContext(); |
| 2168 | MDNode *DisableUnswitchMD = MDNode::get( |
| 2169 | Context, |
| 2170 | MDs: MDString::get(Context, Str: "llvm.loop.unswitch.injection.disable" )); |
| 2171 | MDNode *NewLoopID = makePostTransformationMetadata( |
| 2172 | Context, OrigLoopID: L.getLoopID(), RemovePrefixes: {"llvm.loop.unswitch.injection" }, |
| 2173 | AddAttrs: {DisableUnswitchMD}); |
| 2174 | L.setLoopID(NewLoopID); |
| 2175 | } else |
| 2176 | U.revisitCurrentLoop(); |
| 2177 | } else |
| 2178 | U.markLoopAsDeleted(L, Name: LoopName); |
| 2179 | } |
| 2180 | |
| 2181 | static void unswitchNontrivialInvariants( |
| 2182 | Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, |
| 2183 | IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, |
| 2184 | AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
| 2185 | LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition) { |
| 2186 | auto *ParentBB = TI.getParent(); |
| 2187 | BranchInst *BI = dyn_cast<BranchInst>(Val: &TI); |
| 2188 | SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(Val: &TI); |
| 2189 | |
| 2190 | // Save the current loop name in a variable so that we can report it even |
| 2191 | // after it has been deleted. |
| 2192 | std::string LoopName(L.getName()); |
| 2193 | |
| 2194 | // We can only unswitch switches, conditional branches with an invariant |
| 2195 | // condition, or combining invariant conditions with an instruction or |
| 2196 | // partially invariant instructions. |
| 2197 | assert((SI || (BI && BI->isConditional())) && |
| 2198 | "Can only unswitch switches and conditional branch!" ); |
| 2199 | bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); |
| 2200 | bool FullUnswitch = |
| 2201 | SI || (skipTrivialSelect(Cond: BI->getCondition()) == Invariants[0] && |
| 2202 | !PartiallyInvariant); |
| 2203 | if (FullUnswitch) |
| 2204 | assert(Invariants.size() == 1 && |
| 2205 | "Cannot have other invariants with full unswitching!" ); |
| 2206 | else |
| 2207 | assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && |
| 2208 | "Partial unswitching requires an instruction as the condition!" ); |
| 2209 | |
| 2210 | if (MSSAU && VerifyMemorySSA) |
| 2211 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2212 | |
| 2213 | // Constant and BBs tracking the cloned and continuing successor. When we are |
| 2214 | // unswitching the entire condition, this can just be trivially chosen to |
| 2215 | // unswitch towards `true`. However, when we are unswitching a set of |
| 2216 | // invariants combined with `and` or `or` or partially invariant instructions, |
| 2217 | // the combining operation determines the best direction to unswitch: we want |
| 2218 | // to unswitch the direction that will collapse the branch. |
| 2219 | bool Direction = true; |
| 2220 | int ClonedSucc = 0; |
| 2221 | if (!FullUnswitch) { |
| 2222 | Value *Cond = skipTrivialSelect(Cond: BI->getCondition()); |
| 2223 | (void)Cond; |
| 2224 | assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || |
| 2225 | PartiallyInvariant) && |
| 2226 | "Only `or`, `and`, an `select`, partially invariant instructions " |
| 2227 | "can combine invariants being unswitched." ); |
| 2228 | if (!match(V: Cond, P: m_LogicalOr())) { |
| 2229 | if (match(V: Cond, P: m_LogicalAnd()) || |
| 2230 | (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { |
| 2231 | Direction = false; |
| 2232 | ClonedSucc = 1; |
| 2233 | } |
| 2234 | } |
| 2235 | } |
| 2236 | |
| 2237 | BasicBlock *RetainedSuccBB = |
| 2238 | BI ? BI->getSuccessor(i: 1 - ClonedSucc) : SI->getDefaultDest(); |
| 2239 | SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; |
| 2240 | if (BI) |
| 2241 | UnswitchedSuccBBs.insert(X: BI->getSuccessor(i: ClonedSucc)); |
| 2242 | else |
| 2243 | for (auto Case : SI->cases()) |
| 2244 | if (Case.getCaseSuccessor() != RetainedSuccBB) |
| 2245 | UnswitchedSuccBBs.insert(X: Case.getCaseSuccessor()); |
| 2246 | |
| 2247 | assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && |
| 2248 | "Should not unswitch the same successor we are retaining!" ); |
| 2249 | |
| 2250 | // The branch should be in this exact loop. Any inner loop's invariant branch |
| 2251 | // should be handled by unswitching that inner loop. The caller of this |
| 2252 | // routine should filter out any candidates that remain (but were skipped for |
| 2253 | // whatever reason). |
| 2254 | assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!" ); |
| 2255 | |
| 2256 | // Compute the parent loop now before we start hacking on things. |
| 2257 | Loop *ParentL = L.getParentLoop(); |
| 2258 | // Get blocks in RPO order for MSSA update, before changing the CFG. |
| 2259 | LoopBlocksRPO LBRPO(&L); |
| 2260 | if (MSSAU) |
| 2261 | LBRPO.perform(LI: &LI); |
| 2262 | |
| 2263 | // Compute the outer-most loop containing one of our exit blocks. This is the |
| 2264 | // furthest up our loopnest which can be mutated, which we will use below to |
| 2265 | // update things. |
| 2266 | Loop *OuterExitL = &L; |
| 2267 | SmallVector<BasicBlock *, 4> ExitBlocks; |
| 2268 | L.getUniqueExitBlocks(ExitBlocks); |
| 2269 | for (auto *ExitBB : ExitBlocks) { |
| 2270 | // ExitBB can be an exit block for several levels in the loop nest. Make |
| 2271 | // sure we find the top most. |
| 2272 | Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI); |
| 2273 | if (!NewOuterExitL) { |
| 2274 | // We exited the entire nest with this block, so we're done. |
| 2275 | OuterExitL = nullptr; |
| 2276 | break; |
| 2277 | } |
| 2278 | if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(L: OuterExitL)) |
| 2279 | OuterExitL = NewOuterExitL; |
| 2280 | } |
| 2281 | |
| 2282 | // At this point, we're definitely going to unswitch something so invalidate |
| 2283 | // any cached information in ScalarEvolution for the outer most loop |
| 2284 | // containing an exit block and all nested loops. |
| 2285 | if (SE) { |
| 2286 | if (OuterExitL) |
| 2287 | SE->forgetLoop(L: OuterExitL); |
| 2288 | else |
| 2289 | SE->forgetTopmostLoop(L: &L); |
| 2290 | SE->forgetBlockAndLoopDispositions(); |
| 2291 | } |
| 2292 | |
| 2293 | // If the edge from this terminator to a successor dominates that successor, |
| 2294 | // store a map from each block in its dominator subtree to it. This lets us |
| 2295 | // tell when cloning for a particular successor if a block is dominated by |
| 2296 | // some *other* successor with a single data structure. We use this to |
| 2297 | // significantly reduce cloning. |
| 2298 | SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; |
| 2299 | for (auto *SuccBB : llvm::concat<BasicBlock *const>(Ranges: ArrayRef(RetainedSuccBB), |
| 2300 | Ranges&: UnswitchedSuccBBs)) |
| 2301 | if (SuccBB->getUniquePredecessor() || |
| 2302 | llvm::all_of(Range: predecessors(BB: SuccBB), P: [&](BasicBlock *PredBB) { |
| 2303 | return PredBB == ParentBB || DT.dominates(A: SuccBB, B: PredBB); |
| 2304 | })) |
| 2305 | visitDomSubTree(DT, BB: SuccBB, Callable: [&](BasicBlock *BB) { |
| 2306 | DominatingSucc[BB] = SuccBB; |
| 2307 | return true; |
| 2308 | }); |
| 2309 | |
| 2310 | // Split the preheader, so that we know that there is a safe place to insert |
| 2311 | // the conditional branch. We will change the preheader to have a conditional |
| 2312 | // branch on LoopCond. The original preheader will become the split point |
| 2313 | // between the unswitched versions, and we will have a new preheader for the |
| 2314 | // original loop. |
| 2315 | BasicBlock *SplitBB = L.getLoopPreheader(); |
| 2316 | BasicBlock *LoopPH = SplitEdge(From: SplitBB, To: L.getHeader(), DT: &DT, LI: &LI, MSSAU); |
| 2317 | |
| 2318 | // Keep track of the dominator tree updates needed. |
| 2319 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| 2320 | |
| 2321 | // Clone the loop for each unswitched successor. |
| 2322 | SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; |
| 2323 | VMaps.reserve(N: UnswitchedSuccBBs.size()); |
| 2324 | SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; |
| 2325 | for (auto *SuccBB : UnswitchedSuccBBs) { |
| 2326 | VMaps.emplace_back(Args: new ValueToValueMapTy()); |
| 2327 | ClonedPHs[SuccBB] = buildClonedLoopBlocks( |
| 2328 | L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB: SuccBB, ContinueSuccBB: RetainedSuccBB, |
| 2329 | DominatingSucc, VMap&: *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE); |
| 2330 | } |
| 2331 | |
| 2332 | // Drop metadata if we may break its semantics by moving this instr into the |
| 2333 | // split block. |
| 2334 | if (TI.getMetadata(KindID: LLVMContext::MD_make_implicit)) { |
| 2335 | if (DropNonTrivialImplicitNullChecks) |
| 2336 | // Do not spend time trying to understand if we can keep it, just drop it |
| 2337 | // to save compile time. |
| 2338 | TI.setMetadata(KindID: LLVMContext::MD_make_implicit, Node: nullptr); |
| 2339 | else { |
| 2340 | // It is only legal to preserve make.implicit metadata if we are |
| 2341 | // guaranteed no reach implicit null check after following this branch. |
| 2342 | ICFLoopSafetyInfo SafetyInfo; |
| 2343 | SafetyInfo.computeLoopSafetyInfo(CurLoop: &L); |
| 2344 | if (!SafetyInfo.isGuaranteedToExecute(Inst: TI, DT: &DT, CurLoop: &L)) |
| 2345 | TI.setMetadata(KindID: LLVMContext::MD_make_implicit, Node: nullptr); |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | // The stitching of the branched code back together depends on whether we're |
| 2350 | // doing full unswitching or not with the exception that we always want to |
| 2351 | // nuke the initial terminator placed in the split block. |
| 2352 | SplitBB->getTerminator()->eraseFromParent(); |
| 2353 | if (FullUnswitch) { |
| 2354 | // Keep a clone of the terminator for MSSA updates. |
| 2355 | Instruction *NewTI = TI.clone(); |
| 2356 | NewTI->insertInto(ParentBB, It: ParentBB->end()); |
| 2357 | |
| 2358 | // Splice the terminator from the original loop and rewrite its |
| 2359 | // successors. |
| 2360 | TI.moveBefore(BB&: *SplitBB, I: SplitBB->end()); |
| 2361 | TI.dropLocation(); |
| 2362 | |
| 2363 | // First wire up the moved terminator to the preheaders. |
| 2364 | if (BI) { |
| 2365 | BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| 2366 | BI->setSuccessor(idx: ClonedSucc, NewSucc: ClonedPH); |
| 2367 | BI->setSuccessor(idx: 1 - ClonedSucc, NewSucc: LoopPH); |
| 2368 | Value *Cond = skipTrivialSelect(Cond: BI->getCondition()); |
| 2369 | if (InsertFreeze) { |
| 2370 | // We don't give any debug location to the new freeze, because the |
| 2371 | // BI (`dyn_cast<BranchInst>(TI)`) is an in-loop instruction hoisted |
| 2372 | // out of the loop. |
| 2373 | Cond = new FreezeInst(Cond, Cond->getName() + ".fr" , BI->getIterator()); |
| 2374 | cast<Instruction>(Val: Cond)->setDebugLoc(DebugLoc::getDropped()); |
| 2375 | } |
| 2376 | BI->setCondition(Cond); |
| 2377 | DTUpdates.push_back(Elt: {DominatorTree::Insert, SplitBB, ClonedPH}); |
| 2378 | } else { |
| 2379 | assert(SI && "Must either be a branch or switch!" ); |
| 2380 | |
| 2381 | // Walk the cases and directly update their successors. |
| 2382 | assert(SI->getDefaultDest() == RetainedSuccBB && |
| 2383 | "Not retaining default successor!" ); |
| 2384 | SI->setDefaultDest(LoopPH); |
| 2385 | for (const auto &Case : SI->cases()) |
| 2386 | if (Case.getCaseSuccessor() == RetainedSuccBB) |
| 2387 | Case.setSuccessor(LoopPH); |
| 2388 | else |
| 2389 | Case.setSuccessor(ClonedPHs.find(Val: Case.getCaseSuccessor())->second); |
| 2390 | |
| 2391 | if (InsertFreeze) |
| 2392 | SI->setCondition(new FreezeInst(SI->getCondition(), |
| 2393 | SI->getCondition()->getName() + ".fr" , |
| 2394 | SI->getIterator())); |
| 2395 | |
| 2396 | // We need to use the set to populate domtree updates as even when there |
| 2397 | // are multiple cases pointing at the same successor we only want to |
| 2398 | // remove and insert one edge in the domtree. |
| 2399 | for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| 2400 | DTUpdates.push_back( |
| 2401 | Elt: {DominatorTree::Insert, SplitBB, ClonedPHs.find(Val: SuccBB)->second}); |
| 2402 | } |
| 2403 | |
| 2404 | if (MSSAU) { |
| 2405 | DT.applyUpdates(Updates: DTUpdates); |
| 2406 | DTUpdates.clear(); |
| 2407 | |
| 2408 | // Remove all but one edge to the retained block and all unswitched |
| 2409 | // blocks. This is to avoid having duplicate entries in the cloned Phis, |
| 2410 | // when we know we only keep a single edge for each case. |
| 2411 | MSSAU->removeDuplicatePhiEdgesBetween(From: ParentBB, To: RetainedSuccBB); |
| 2412 | for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| 2413 | MSSAU->removeDuplicatePhiEdgesBetween(From: ParentBB, To: SuccBB); |
| 2414 | |
| 2415 | for (auto &VMap : VMaps) |
| 2416 | MSSAU->updateForClonedLoop(LoopBlocks: LBRPO, ExitBlocks, VM: *VMap, |
| 2417 | /*IgnoreIncomingWithNoClones=*/true); |
| 2418 | MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); |
| 2419 | |
| 2420 | // Remove all edges to unswitched blocks. |
| 2421 | for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| 2422 | MSSAU->removeEdge(From: ParentBB, To: SuccBB); |
| 2423 | } |
| 2424 | |
| 2425 | // Now unhook the successor relationship as we'll be replacing |
| 2426 | // the terminator with a direct branch. This is much simpler for branches |
| 2427 | // than switches so we handle those first. |
| 2428 | if (BI) { |
| 2429 | // Remove the parent as a predecessor of the unswitched successor. |
| 2430 | assert(UnswitchedSuccBBs.size() == 1 && |
| 2431 | "Only one possible unswitched block for a branch!" ); |
| 2432 | BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); |
| 2433 | UnswitchedSuccBB->removePredecessor(Pred: ParentBB, |
| 2434 | /*KeepOneInputPHIs*/ true); |
| 2435 | DTUpdates.push_back(Elt: {DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); |
| 2436 | } else { |
| 2437 | // Note that we actually want to remove the parent block as a predecessor |
| 2438 | // of *every* case successor. The case successor is either unswitched, |
| 2439 | // completely eliminating an edge from the parent to that successor, or it |
| 2440 | // is a duplicate edge to the retained successor as the retained successor |
| 2441 | // is always the default successor and as we'll replace this with a direct |
| 2442 | // branch we no longer need the duplicate entries in the PHI nodes. |
| 2443 | SwitchInst *NewSI = cast<SwitchInst>(Val: NewTI); |
| 2444 | assert(NewSI->getDefaultDest() == RetainedSuccBB && |
| 2445 | "Not retaining default successor!" ); |
| 2446 | for (const auto &Case : NewSI->cases()) |
| 2447 | Case.getCaseSuccessor()->removePredecessor( |
| 2448 | Pred: ParentBB, |
| 2449 | /*KeepOneInputPHIs*/ true); |
| 2450 | |
| 2451 | // We need to use the set to populate domtree updates as even when there |
| 2452 | // are multiple cases pointing at the same successor we only want to |
| 2453 | // remove and insert one edge in the domtree. |
| 2454 | for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| 2455 | DTUpdates.push_back(Elt: {DominatorTree::Delete, ParentBB, SuccBB}); |
| 2456 | } |
| 2457 | |
| 2458 | // Create a new unconditional branch to the continuing block (as opposed to |
| 2459 | // the one cloned). |
| 2460 | Instruction *NewBI = BranchInst::Create(IfTrue: RetainedSuccBB, InsertBefore: ParentBB); |
| 2461 | NewBI->setDebugLoc(NewTI->getDebugLoc()); |
| 2462 | |
| 2463 | // After MSSAU update, remove the cloned terminator instruction NewTI. |
| 2464 | NewTI->eraseFromParent(); |
| 2465 | } else { |
| 2466 | assert(BI && "Only branches have partial unswitching." ); |
| 2467 | assert(UnswitchedSuccBBs.size() == 1 && |
| 2468 | "Only one possible unswitched block for a branch!" ); |
| 2469 | BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| 2470 | // When doing a partial unswitch, we have to do a bit more work to build up |
| 2471 | // the branch in the split block. |
| 2472 | if (PartiallyInvariant) |
| 2473 | buildPartialInvariantUnswitchConditionalBranch( |
| 2474 | BB&: *SplitBB, ToDuplicate: Invariants, Direction, UnswitchedSucc&: *ClonedPH, NormalSucc&: *LoopPH, L, MSSAU); |
| 2475 | else { |
| 2476 | buildPartialUnswitchConditionalBranch( |
| 2477 | BB&: *SplitBB, Invariants, Direction, UnswitchedSucc&: *ClonedPH, NormalSucc&: *LoopPH, |
| 2478 | InsertFreeze: FreezeLoopUnswitchCond, I: BI, AC: &AC, DT); |
| 2479 | } |
| 2480 | DTUpdates.push_back(Elt: {DominatorTree::Insert, SplitBB, ClonedPH}); |
| 2481 | |
| 2482 | if (MSSAU) { |
| 2483 | DT.applyUpdates(Updates: DTUpdates); |
| 2484 | DTUpdates.clear(); |
| 2485 | |
| 2486 | // Perform MSSA cloning updates. |
| 2487 | for (auto &VMap : VMaps) |
| 2488 | MSSAU->updateForClonedLoop(LoopBlocks: LBRPO, ExitBlocks, VM: *VMap, |
| 2489 | /*IgnoreIncomingWithNoClones=*/true); |
| 2490 | MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); |
| 2491 | } |
| 2492 | } |
| 2493 | |
| 2494 | // Apply the updates accumulated above to get an up-to-date dominator tree. |
| 2495 | DT.applyUpdates(Updates: DTUpdates); |
| 2496 | |
| 2497 | // Now that we have an accurate dominator tree, first delete the dead cloned |
| 2498 | // blocks so that we can accurately build any cloned loops. It is important to |
| 2499 | // not delete the blocks from the original loop yet because we still want to |
| 2500 | // reference the original loop to understand the cloned loop's structure. |
| 2501 | deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); |
| 2502 | |
| 2503 | // Build the cloned loop structure itself. This may be substantially |
| 2504 | // different from the original structure due to the simplified CFG. This also |
| 2505 | // handles inserting all the cloned blocks into the correct loops. |
| 2506 | SmallVector<Loop *, 4> NonChildClonedLoops; |
| 2507 | for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) |
| 2508 | buildClonedLoops(OrigL&: L, ExitBlocks, VMap: *VMap, LI, NonChildClonedLoops); |
| 2509 | |
| 2510 | // Now that our cloned loops have been built, we can update the original loop. |
| 2511 | // First we delete the dead blocks from it and then we rebuild the loop |
| 2512 | // structure taking these deletions into account. |
| 2513 | deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE, LoopUpdater); |
| 2514 | |
| 2515 | if (MSSAU && VerifyMemorySSA) |
| 2516 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2517 | |
| 2518 | SmallVector<Loop *, 4> HoistedLoops; |
| 2519 | bool IsStillLoop = |
| 2520 | rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE); |
| 2521 | |
| 2522 | if (MSSAU && VerifyMemorySSA) |
| 2523 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2524 | |
| 2525 | // This transformation has a high risk of corrupting the dominator tree, and |
| 2526 | // the below steps to rebuild loop structures will result in hard to debug |
| 2527 | // errors in that case so verify that the dominator tree is sane first. |
| 2528 | // FIXME: Remove this when the bugs stop showing up and rely on existing |
| 2529 | // verification steps. |
| 2530 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| 2531 | |
| 2532 | if (BI && !PartiallyInvariant) { |
| 2533 | // If we unswitched a branch which collapses the condition to a known |
| 2534 | // constant we want to replace all the uses of the invariants within both |
| 2535 | // the original and cloned blocks. We do this here so that we can use the |
| 2536 | // now updated dominator tree to identify which side the users are on. |
| 2537 | assert(UnswitchedSuccBBs.size() == 1 && |
| 2538 | "Only one possible unswitched block for a branch!" ); |
| 2539 | BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| 2540 | |
| 2541 | // When considering multiple partially-unswitched invariants |
| 2542 | // we cant just go replace them with constants in both branches. |
| 2543 | // |
| 2544 | // For 'AND' we infer that true branch ("continue") means true |
| 2545 | // for each invariant operand. |
| 2546 | // For 'OR' we can infer that false branch ("continue") means false |
| 2547 | // for each invariant operand. |
| 2548 | // So it happens that for multiple-partial case we dont replace |
| 2549 | // in the unswitched branch. |
| 2550 | bool ReplaceUnswitched = |
| 2551 | FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; |
| 2552 | |
| 2553 | ConstantInt *UnswitchedReplacement = |
| 2554 | Direction ? ConstantInt::getTrue(Context&: BI->getContext()) |
| 2555 | : ConstantInt::getFalse(Context&: BI->getContext()); |
| 2556 | ConstantInt *ContinueReplacement = |
| 2557 | Direction ? ConstantInt::getFalse(Context&: BI->getContext()) |
| 2558 | : ConstantInt::getTrue(Context&: BI->getContext()); |
| 2559 | for (Value *Invariant : Invariants) { |
| 2560 | assert(!isa<Constant>(Invariant) && |
| 2561 | "Should not be replacing constant values!" ); |
| 2562 | // Use make_early_inc_range here as set invalidates the iterator. |
| 2563 | for (Use &U : llvm::make_early_inc_range(Range: Invariant->uses())) { |
| 2564 | Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser()); |
| 2565 | if (!UserI) |
| 2566 | continue; |
| 2567 | |
| 2568 | // Replace it with the 'continue' side if in the main loop body, and the |
| 2569 | // unswitched if in the cloned blocks. |
| 2570 | if (DT.dominates(A: LoopPH, B: UserI->getParent())) |
| 2571 | U.set(ContinueReplacement); |
| 2572 | else if (ReplaceUnswitched && |
| 2573 | DT.dominates(A: ClonedPH, B: UserI->getParent())) |
| 2574 | U.set(UnswitchedReplacement); |
| 2575 | } |
| 2576 | } |
| 2577 | } |
| 2578 | |
| 2579 | // We can change which blocks are exit blocks of all the cloned sibling |
| 2580 | // loops, the current loop, and any parent loops which shared exit blocks |
| 2581 | // with the current loop. As a consequence, we need to re-form LCSSA for |
| 2582 | // them. But we shouldn't need to re-form LCSSA for any child loops. |
| 2583 | // FIXME: This could be made more efficient by tracking which exit blocks are |
| 2584 | // new, and focusing on them, but that isn't likely to be necessary. |
| 2585 | // |
| 2586 | // In order to reasonably rebuild LCSSA we need to walk inside-out across the |
| 2587 | // loop nest and update every loop that could have had its exits changed. We |
| 2588 | // also need to cover any intervening loops. We add all of these loops to |
| 2589 | // a list and sort them by loop depth to achieve this without updating |
| 2590 | // unnecessary loops. |
| 2591 | auto UpdateLoop = [&](Loop &UpdateL) { |
| 2592 | #ifndef NDEBUG |
| 2593 | UpdateL.verifyLoop(); |
| 2594 | for (Loop *ChildL : UpdateL) { |
| 2595 | ChildL->verifyLoop(); |
| 2596 | assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && |
| 2597 | "Perturbed a child loop's LCSSA form!" ); |
| 2598 | } |
| 2599 | #endif |
| 2600 | // First build LCSSA for this loop so that we can preserve it when |
| 2601 | // forming dedicated exits. We don't want to perturb some other loop's |
| 2602 | // LCSSA while doing that CFG edit. |
| 2603 | formLCSSA(L&: UpdateL, DT, LI: &LI, SE); |
| 2604 | |
| 2605 | // For loops reached by this loop's original exit blocks we may |
| 2606 | // introduced new, non-dedicated exits. At least try to re-form dedicated |
| 2607 | // exits for these loops. This may fail if they couldn't have dedicated |
| 2608 | // exits to start with. |
| 2609 | formDedicatedExitBlocks(L: &UpdateL, DT: &DT, LI: &LI, MSSAU, /*PreserveLCSSA*/ true); |
| 2610 | }; |
| 2611 | |
| 2612 | // For non-child cloned loops and hoisted loops, we just need to update LCSSA |
| 2613 | // and we can do it in any order as they don't nest relative to each other. |
| 2614 | // |
| 2615 | // Also check if any of the loops we have updated have become top-level loops |
| 2616 | // as that will necessitate widening the outer loop scope. |
| 2617 | for (Loop *UpdatedL : |
| 2618 | llvm::concat<Loop *>(Ranges&: NonChildClonedLoops, Ranges&: HoistedLoops)) { |
| 2619 | UpdateLoop(*UpdatedL); |
| 2620 | if (UpdatedL->isOutermost()) |
| 2621 | OuterExitL = nullptr; |
| 2622 | } |
| 2623 | if (IsStillLoop) { |
| 2624 | UpdateLoop(L); |
| 2625 | if (L.isOutermost()) |
| 2626 | OuterExitL = nullptr; |
| 2627 | } |
| 2628 | |
| 2629 | // If the original loop had exit blocks, walk up through the outer most loop |
| 2630 | // of those exit blocks to update LCSSA and form updated dedicated exits. |
| 2631 | if (OuterExitL != &L) |
| 2632 | for (Loop *OuterL = ParentL; OuterL != OuterExitL; |
| 2633 | OuterL = OuterL->getParentLoop()) |
| 2634 | UpdateLoop(*OuterL); |
| 2635 | |
| 2636 | #ifndef NDEBUG |
| 2637 | // Verify the entire loop structure to catch any incorrect updates before we |
| 2638 | // progress in the pass pipeline. |
| 2639 | LI.verify(DT); |
| 2640 | #endif |
| 2641 | |
| 2642 | // Now that we've unswitched something, make callbacks to report the changes. |
| 2643 | // For that we need to merge together the updated loops and the cloned loops |
| 2644 | // and check whether the original loop survived. |
| 2645 | SmallVector<Loop *, 4> SibLoops; |
| 2646 | for (Loop *UpdatedL : llvm::concat<Loop *>(Ranges&: NonChildClonedLoops, Ranges&: HoistedLoops)) |
| 2647 | if (UpdatedL->getParentLoop() == ParentL) |
| 2648 | SibLoops.push_back(Elt: UpdatedL); |
| 2649 | postUnswitch(L, U&: LoopUpdater, LoopName, CurrentLoopValid: IsStillLoop, PartiallyInvariant, |
| 2650 | InjectedCondition, NewLoops: SibLoops); |
| 2651 | |
| 2652 | if (MSSAU && VerifyMemorySSA) |
| 2653 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2654 | |
| 2655 | if (BI) |
| 2656 | ++NumBranches; |
| 2657 | else |
| 2658 | ++NumSwitches; |
| 2659 | } |
| 2660 | |
| 2661 | /// Recursively compute the cost of a dominator subtree based on the per-block |
| 2662 | /// cost map provided. |
| 2663 | /// |
| 2664 | /// The recursive computation is memozied into the provided DT-indexed cost map |
| 2665 | /// to allow querying it for most nodes in the domtree without it becoming |
| 2666 | /// quadratic. |
| 2667 | static InstructionCost computeDomSubtreeCost( |
| 2668 | DomTreeNode &N, |
| 2669 | const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, |
| 2670 | SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { |
| 2671 | // Don't accumulate cost (or recurse through) blocks not in our block cost |
| 2672 | // map and thus not part of the duplication cost being considered. |
| 2673 | auto BBCostIt = BBCostMap.find(Val: N.getBlock()); |
| 2674 | if (BBCostIt == BBCostMap.end()) |
| 2675 | return 0; |
| 2676 | |
| 2677 | // Lookup this node to see if we already computed its cost. |
| 2678 | auto DTCostIt = DTCostMap.find(Val: &N); |
| 2679 | if (DTCostIt != DTCostMap.end()) |
| 2680 | return DTCostIt->second; |
| 2681 | |
| 2682 | // If not, we have to compute it. We can't use insert above and update |
| 2683 | // because computing the cost may insert more things into the map. |
| 2684 | InstructionCost Cost = std::accumulate( |
| 2685 | first: N.begin(), last: N.end(), init: BBCostIt->second, |
| 2686 | binary_op: [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { |
| 2687 | return Sum + computeDomSubtreeCost(N&: *ChildN, BBCostMap, DTCostMap); |
| 2688 | }); |
| 2689 | bool Inserted = DTCostMap.insert(KV: {&N, Cost}).second; |
| 2690 | (void)Inserted; |
| 2691 | assert(Inserted && "Should not insert a node while visiting children!" ); |
| 2692 | return Cost; |
| 2693 | } |
| 2694 | |
| 2695 | /// Turns a select instruction into implicit control flow branch, |
| 2696 | /// making the following replacement: |
| 2697 | /// |
| 2698 | /// head: |
| 2699 | /// --code before select-- |
| 2700 | /// select %cond, %trueval, %falseval |
| 2701 | /// --code after select-- |
| 2702 | /// |
| 2703 | /// into |
| 2704 | /// |
| 2705 | /// head: |
| 2706 | /// --code before select-- |
| 2707 | /// br i1 %cond, label %then, label %tail |
| 2708 | /// |
| 2709 | /// then: |
| 2710 | /// br %tail |
| 2711 | /// |
| 2712 | /// tail: |
| 2713 | /// phi [ %trueval, %then ], [ %falseval, %head] |
| 2714 | /// unreachable |
| 2715 | /// |
| 2716 | /// It also makes all relevant DT and LI updates, so that all structures are in |
| 2717 | /// valid state after this transform. |
| 2718 | static BranchInst *turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT, |
| 2719 | LoopInfo &LI, MemorySSAUpdater *MSSAU, |
| 2720 | AssumptionCache *AC) { |
| 2721 | LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n" ); |
| 2722 | BasicBlock *HeadBB = SI->getParent(); |
| 2723 | |
| 2724 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| 2725 | SplitBlockAndInsertIfThen(Cond: SI->getCondition(), SplitBefore: SI, Unreachable: false, |
| 2726 | BranchWeights: SI->getMetadata(KindID: LLVMContext::MD_prof), DTU: &DTU, LI: &LI); |
| 2727 | auto *CondBr = cast<BranchInst>(Val: HeadBB->getTerminator()); |
| 2728 | BasicBlock *ThenBB = CondBr->getSuccessor(i: 0), |
| 2729 | *TailBB = CondBr->getSuccessor(i: 1); |
| 2730 | if (MSSAU) |
| 2731 | MSSAU->moveAllAfterSpliceBlocks(From: HeadBB, To: TailBB, Start: SI); |
| 2732 | |
| 2733 | PHINode *Phi = |
| 2734 | PHINode::Create(Ty: SI->getType(), NumReservedValues: 2, NameStr: "unswitched.select" , InsertBefore: SI->getIterator()); |
| 2735 | Phi->addIncoming(V: SI->getTrueValue(), BB: ThenBB); |
| 2736 | Phi->addIncoming(V: SI->getFalseValue(), BB: HeadBB); |
| 2737 | Phi->setDebugLoc(SI->getDebugLoc()); |
| 2738 | SI->replaceAllUsesWith(V: Phi); |
| 2739 | SI->eraseFromParent(); |
| 2740 | |
| 2741 | if (MSSAU && VerifyMemorySSA) |
| 2742 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2743 | |
| 2744 | ++NumSelects; |
| 2745 | return CondBr; |
| 2746 | } |
| 2747 | |
| 2748 | /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, |
| 2749 | /// making the following replacement: |
| 2750 | /// |
| 2751 | /// --code before guard-- |
| 2752 | /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] |
| 2753 | /// --code after guard-- |
| 2754 | /// |
| 2755 | /// into |
| 2756 | /// |
| 2757 | /// --code before guard-- |
| 2758 | /// br i1 %cond, label %guarded, label %deopt |
| 2759 | /// |
| 2760 | /// guarded: |
| 2761 | /// --code after guard-- |
| 2762 | /// |
| 2763 | /// deopt: |
| 2764 | /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] |
| 2765 | /// unreachable |
| 2766 | /// |
| 2767 | /// It also makes all relevant DT and LI updates, so that all structures are in |
| 2768 | /// valid state after this transform. |
| 2769 | static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, |
| 2770 | DominatorTree &DT, LoopInfo &LI, |
| 2771 | MemorySSAUpdater *MSSAU) { |
| 2772 | LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n" ); |
| 2773 | BasicBlock *CheckBB = GI->getParent(); |
| 2774 | |
| 2775 | if (MSSAU && VerifyMemorySSA) |
| 2776 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2777 | |
| 2778 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| 2779 | Instruction *DeoptBlockTerm = |
| 2780 | SplitBlockAndInsertIfThen(Cond: GI->getArgOperand(i: 0), SplitBefore: GI, Unreachable: true, |
| 2781 | BranchWeights: GI->getMetadata(KindID: LLVMContext::MD_prof), DTU: &DTU, LI: &LI); |
| 2782 | BranchInst *CheckBI = cast<BranchInst>(Val: CheckBB->getTerminator()); |
| 2783 | // SplitBlockAndInsertIfThen inserts control flow that branches to |
| 2784 | // DeoptBlockTerm if the condition is true. We want the opposite. |
| 2785 | CheckBI->swapSuccessors(); |
| 2786 | |
| 2787 | BasicBlock *GuardedBlock = CheckBI->getSuccessor(i: 0); |
| 2788 | GuardedBlock->setName("guarded" ); |
| 2789 | CheckBI->getSuccessor(i: 1)->setName("deopt" ); |
| 2790 | BasicBlock *DeoptBlock = CheckBI->getSuccessor(i: 1); |
| 2791 | |
| 2792 | if (MSSAU) |
| 2793 | MSSAU->moveAllAfterSpliceBlocks(From: CheckBB, To: GuardedBlock, Start: GI); |
| 2794 | |
| 2795 | GI->moveBefore(InsertPos: DeoptBlockTerm->getIterator()); |
| 2796 | GI->setArgOperand(i: 0, v: ConstantInt::getFalse(Context&: GI->getContext())); |
| 2797 | |
| 2798 | if (MSSAU) { |
| 2799 | MemoryDef *MD = cast<MemoryDef>(Val: MSSAU->getMemorySSA()->getMemoryAccess(I: GI)); |
| 2800 | MSSAU->moveToPlace(What: MD, BB: DeoptBlock, Where: MemorySSA::BeforeTerminator); |
| 2801 | if (VerifyMemorySSA) |
| 2802 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 2803 | } |
| 2804 | |
| 2805 | if (VerifyLoopInfo) |
| 2806 | LI.verify(DomTree: DT); |
| 2807 | ++NumGuards; |
| 2808 | return CheckBI; |
| 2809 | } |
| 2810 | |
| 2811 | /// Cost multiplier is a way to limit potentially exponential behavior |
| 2812 | /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch |
| 2813 | /// candidates available. Also accounting for the number of "sibling" loops with |
| 2814 | /// the idea to account for previous unswitches that already happened on this |
| 2815 | /// cluster of loops. There was an attempt to keep this formula simple, |
| 2816 | /// just enough to limit the worst case behavior. Even if it is not that simple |
| 2817 | /// now it is still not an attempt to provide a detailed heuristic size |
| 2818 | /// prediction. |
| 2819 | /// |
| 2820 | /// TODO: Make a proper accounting of "explosion" effect for all kinds of |
| 2821 | /// unswitch candidates, making adequate predictions instead of wild guesses. |
| 2822 | /// That requires knowing not just the number of "remaining" candidates but |
| 2823 | /// also costs of unswitching for each of these candidates. |
| 2824 | static int CalculateUnswitchCostMultiplier( |
| 2825 | const Instruction &TI, const Loop &L, const LoopInfo &LI, |
| 2826 | const DominatorTree &DT, |
| 2827 | ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) { |
| 2828 | |
| 2829 | // Guards and other exiting conditions do not contribute to exponential |
| 2830 | // explosion as soon as they dominate the latch (otherwise there might be |
| 2831 | // another path to the latch remaining that does not allow to eliminate the |
| 2832 | // loop copy on unswitch). |
| 2833 | const BasicBlock *Latch = L.getLoopLatch(); |
| 2834 | const BasicBlock *CondBlock = TI.getParent(); |
| 2835 | if (DT.dominates(A: CondBlock, B: Latch) && |
| 2836 | (isGuard(U: &TI) || |
| 2837 | (TI.isTerminator() && |
| 2838 | llvm::count_if(Range: successors(I: &TI), P: [&L](const BasicBlock *SuccBB) { |
| 2839 | return L.contains(BB: SuccBB); |
| 2840 | }) <= 1))) { |
| 2841 | NumCostMultiplierSkipped++; |
| 2842 | return 1; |
| 2843 | } |
| 2844 | |
| 2845 | auto *ParentL = L.getParentLoop(); |
| 2846 | int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() |
| 2847 | : std::distance(first: LI.begin(), last: LI.end())); |
| 2848 | // Count amount of clones that all the candidates might cause during |
| 2849 | // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its |
| 2850 | // cases. |
| 2851 | int UnswitchedClones = 0; |
| 2852 | for (const auto &Candidate : UnswitchCandidates) { |
| 2853 | const Instruction *CI = Candidate.TI; |
| 2854 | const BasicBlock *CondBlock = CI->getParent(); |
| 2855 | bool SkipExitingSuccessors = DT.dominates(A: CondBlock, B: Latch); |
| 2856 | if (isa<SelectInst>(Val: CI)) { |
| 2857 | UnswitchedClones++; |
| 2858 | continue; |
| 2859 | } |
| 2860 | if (isGuard(U: CI)) { |
| 2861 | if (!SkipExitingSuccessors) |
| 2862 | UnswitchedClones++; |
| 2863 | continue; |
| 2864 | } |
| 2865 | int NonExitingSuccessors = |
| 2866 | llvm::count_if(Range: successors(BB: CondBlock), |
| 2867 | P: [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) { |
| 2868 | return !SkipExitingSuccessors || L.contains(BB: SuccBB); |
| 2869 | }); |
| 2870 | UnswitchedClones += Log2_32(Value: NonExitingSuccessors); |
| 2871 | } |
| 2872 | |
| 2873 | // Ignore up to the "unscaled candidates" number of unswitch candidates |
| 2874 | // when calculating the power-of-two scaling of the cost. The main idea |
| 2875 | // with this control is to allow a small number of unswitches to happen |
| 2876 | // and rely more on siblings multiplier (see below) when the number |
| 2877 | // of candidates is small. |
| 2878 | unsigned ClonesPower = |
| 2879 | std::max(a: UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, b: 0); |
| 2880 | |
| 2881 | // Allowing top-level loops to spread a bit more than nested ones. |
| 2882 | int SiblingsMultiplier = |
| 2883 | std::max(a: (ParentL ? SiblingsCount |
| 2884 | : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), |
| 2885 | b: 1); |
| 2886 | // Compute the cost multiplier in a way that won't overflow by saturating |
| 2887 | // at an upper bound. |
| 2888 | int CostMultiplier; |
| 2889 | if (ClonesPower > Log2_32(Value: UnswitchThreshold) || |
| 2890 | SiblingsMultiplier > UnswitchThreshold) |
| 2891 | CostMultiplier = UnswitchThreshold; |
| 2892 | else |
| 2893 | CostMultiplier = std::min(a: SiblingsMultiplier * (1 << ClonesPower), |
| 2894 | b: (int)UnswitchThreshold); |
| 2895 | |
| 2896 | LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier |
| 2897 | << " (siblings " << SiblingsMultiplier << " * clones " |
| 2898 | << (1 << ClonesPower) << ")" |
| 2899 | << " for unswitch candidate: " << TI << "\n" ); |
| 2900 | return CostMultiplier; |
| 2901 | } |
| 2902 | |
| 2903 | static bool collectUnswitchCandidates( |
| 2904 | SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, |
| 2905 | IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, |
| 2906 | const Loop &L, const LoopInfo &LI, AAResults &AA, |
| 2907 | const MemorySSAUpdater *MSSAU) { |
| 2908 | assert(UnswitchCandidates.empty() && "Should be!" ); |
| 2909 | |
| 2910 | auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) { |
| 2911 | Cond = skipTrivialSelect(Cond); |
| 2912 | if (isa<Constant>(Val: Cond)) |
| 2913 | return; |
| 2914 | if (L.isLoopInvariant(V: Cond)) { |
| 2915 | UnswitchCandidates.push_back(Elt: {I, {Cond}}); |
| 2916 | return; |
| 2917 | } |
| 2918 | if (match(V: Cond, P: m_CombineOr(L: m_LogicalAnd(), R: m_LogicalOr()))) { |
| 2919 | TinyPtrVector<Value *> Invariants = |
| 2920 | collectHomogenousInstGraphLoopInvariants( |
| 2921 | L, Root&: *static_cast<Instruction *>(Cond), LI); |
| 2922 | if (!Invariants.empty()) |
| 2923 | UnswitchCandidates.push_back(Elt: {I, std::move(Invariants)}); |
| 2924 | } |
| 2925 | }; |
| 2926 | |
| 2927 | // Whether or not we should also collect guards in the loop. |
| 2928 | bool CollectGuards = false; |
| 2929 | if (UnswitchGuards) { |
| 2930 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
| 2931 | M: L.getHeader()->getParent()->getParent(), id: Intrinsic::experimental_guard); |
| 2932 | if (GuardDecl && !GuardDecl->use_empty()) |
| 2933 | CollectGuards = true; |
| 2934 | } |
| 2935 | |
| 2936 | for (auto *BB : L.blocks()) { |
| 2937 | if (LI.getLoopFor(BB) != &L) |
| 2938 | continue; |
| 2939 | |
| 2940 | for (auto &I : *BB) { |
| 2941 | if (auto *SI = dyn_cast<SelectInst>(Val: &I)) { |
| 2942 | auto *Cond = SI->getCondition(); |
| 2943 | // Do not unswitch vector selects and logical and/or selects |
| 2944 | if (Cond->getType()->isIntegerTy(Bitwidth: 1) && !SI->getType()->isIntegerTy(Bitwidth: 1)) |
| 2945 | AddUnswitchCandidatesForInst(SI, Cond); |
| 2946 | } else if (CollectGuards && isGuard(U: &I)) { |
| 2947 | auto *Cond = |
| 2948 | skipTrivialSelect(Cond: cast<IntrinsicInst>(Val: &I)->getArgOperand(i: 0)); |
| 2949 | // TODO: Support AND, OR conditions and partial unswitching. |
| 2950 | if (!isa<Constant>(Val: Cond) && L.isLoopInvariant(V: Cond)) |
| 2951 | UnswitchCandidates.push_back(Elt: {&I, {Cond}}); |
| 2952 | } |
| 2953 | } |
| 2954 | |
| 2955 | if (auto *SI = dyn_cast<SwitchInst>(Val: BB->getTerminator())) { |
| 2956 | // We can only consider fully loop-invariant switch conditions as we need |
| 2957 | // to completely eliminate the switch after unswitching. |
| 2958 | if (!isa<Constant>(Val: SI->getCondition()) && |
| 2959 | L.isLoopInvariant(V: SI->getCondition()) && !BB->getUniqueSuccessor()) |
| 2960 | UnswitchCandidates.push_back(Elt: {SI, {SI->getCondition()}}); |
| 2961 | continue; |
| 2962 | } |
| 2963 | |
| 2964 | auto *BI = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
| 2965 | if (!BI || !BI->isConditional() || |
| 2966 | BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1)) |
| 2967 | continue; |
| 2968 | |
| 2969 | AddUnswitchCandidatesForInst(BI, BI->getCondition()); |
| 2970 | } |
| 2971 | |
| 2972 | if (MSSAU && !findOptionMDForLoop(TheLoop: &L, Name: "llvm.loop.unswitch.partial.disable" ) && |
| 2973 | !any_of(Range&: UnswitchCandidates, P: [&L](auto &TerminatorAndInvariants) { |
| 2974 | return TerminatorAndInvariants.TI == L.getHeader()->getTerminator(); |
| 2975 | })) { |
| 2976 | MemorySSA *MSSA = MSSAU->getMemorySSA(); |
| 2977 | if (auto Info = hasPartialIVCondition(L, MSSAThreshold, MSSA: *MSSA, AA)) { |
| 2978 | LLVM_DEBUG( |
| 2979 | dbgs() << "simple-loop-unswitch: Found partially invariant condition " |
| 2980 | << *Info->InstToDuplicate[0] << "\n" ); |
| 2981 | PartialIVInfo = *Info; |
| 2982 | PartialIVCondBranch = L.getHeader()->getTerminator(); |
| 2983 | TinyPtrVector<Value *> ValsToDuplicate; |
| 2984 | llvm::append_range(C&: ValsToDuplicate, R&: Info->InstToDuplicate); |
| 2985 | UnswitchCandidates.push_back( |
| 2986 | Elt: {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); |
| 2987 | } |
| 2988 | } |
| 2989 | return !UnswitchCandidates.empty(); |
| 2990 | } |
| 2991 | |
| 2992 | /// Tries to canonicalize condition described by: |
| 2993 | /// |
| 2994 | /// br (LHS pred RHS), label IfTrue, label IfFalse |
| 2995 | /// |
| 2996 | /// into its equivalent where `Pred` is something that we support for injected |
| 2997 | /// invariants (so far it is limited to ult), LHS in canonicalized form is |
| 2998 | /// non-invariant and RHS is an invariant. |
| 2999 | static void canonicalizeForInvariantConditionInjection(CmpPredicate &Pred, |
| 3000 | Value *&LHS, Value *&RHS, |
| 3001 | BasicBlock *&IfTrue, |
| 3002 | BasicBlock *&IfFalse, |
| 3003 | const Loop &L) { |
| 3004 | if (!L.contains(BB: IfTrue)) { |
| 3005 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
| 3006 | std::swap(a&: IfTrue, b&: IfFalse); |
| 3007 | } |
| 3008 | |
| 3009 | // Move loop-invariant argument to RHS position. |
| 3010 | if (L.isLoopInvariant(V: LHS)) { |
| 3011 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 3012 | std::swap(a&: LHS, b&: RHS); |
| 3013 | } |
| 3014 | |
| 3015 | if (Pred == ICmpInst::ICMP_SGE && match(V: RHS, P: m_Zero())) { |
| 3016 | // Turn "x >=s 0" into "x <u UMIN_INT" |
| 3017 | Pred = ICmpInst::ICMP_ULT; |
| 3018 | RHS = ConstantInt::get( |
| 3019 | Context&: RHS->getContext(), |
| 3020 | V: APInt::getSignedMinValue(numBits: RHS->getType()->getIntegerBitWidth())); |
| 3021 | } |
| 3022 | } |
| 3023 | |
| 3024 | /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS ) |
| 3025 | /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by |
| 3026 | /// injecting a loop-invariant condition. |
| 3027 | static bool shouldTryInjectInvariantCondition( |
| 3028 | const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS, |
| 3029 | const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) { |
| 3030 | if (L.isLoopInvariant(V: LHS) || !L.isLoopInvariant(V: RHS)) |
| 3031 | return false; |
| 3032 | // TODO: Support other predicates. |
| 3033 | if (Pred != ICmpInst::ICMP_ULT) |
| 3034 | return false; |
| 3035 | // TODO: Support non-loop-exiting branches? |
| 3036 | if (!L.contains(BB: IfTrue) || L.contains(BB: IfFalse)) |
| 3037 | return false; |
| 3038 | // FIXME: For some reason this causes problems with MSSA updates, need to |
| 3039 | // investigate why. So far, just don't unswitch latch. |
| 3040 | if (L.getHeader() == IfTrue) |
| 3041 | return false; |
| 3042 | return true; |
| 3043 | } |
| 3044 | |
| 3045 | /// Returns true, if metadata on \p BI allows us to optimize branching into \p |
| 3046 | /// TakenSucc via injection of invariant conditions. The branch should be not |
| 3047 | /// enough and not previously unswitched, the information about this comes from |
| 3048 | /// the metadata. |
| 3049 | bool shouldTryInjectBasingOnMetadata(const BranchInst *BI, |
| 3050 | const BasicBlock *TakenSucc) { |
| 3051 | SmallVector<uint32_t> Weights; |
| 3052 | if (!extractBranchWeights(I: *BI, Weights)) |
| 3053 | return false; |
| 3054 | unsigned T = InjectInvariantConditionHotnesThreshold; |
| 3055 | BranchProbability LikelyTaken(T - 1, T); |
| 3056 | |
| 3057 | assert(Weights.size() == 2 && "Unexpected profile data!" ); |
| 3058 | size_t Idx = BI->getSuccessor(i: 0) == TakenSucc ? 0 : 1; |
| 3059 | auto Num = Weights[Idx]; |
| 3060 | auto Denom = Weights[0] + Weights[1]; |
| 3061 | // Degenerate or overflowed metadata. |
| 3062 | if (Denom == 0 || Num > Denom) |
| 3063 | return false; |
| 3064 | BranchProbability ActualTaken(Num, Denom); |
| 3065 | if (LikelyTaken > ActualTaken) |
| 3066 | return false; |
| 3067 | return true; |
| 3068 | } |
| 3069 | |
| 3070 | /// Materialize pending invariant condition of the given candidate into IR. The |
| 3071 | /// injected loop-invariant condition implies the original loop-variant branch |
| 3072 | /// condition, so the materialization turns |
| 3073 | /// |
| 3074 | /// loop_block: |
| 3075 | /// ... |
| 3076 | /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc |
| 3077 | /// |
| 3078 | /// into |
| 3079 | /// |
| 3080 | /// preheader: |
| 3081 | /// %invariant_cond = LHS pred RHS |
| 3082 | /// ... |
| 3083 | /// loop_block: |
| 3084 | /// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck |
| 3085 | /// OriginalCheck: |
| 3086 | /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc |
| 3087 | /// ... |
| 3088 | static NonTrivialUnswitchCandidate |
| 3089 | injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L, |
| 3090 | DominatorTree &DT, LoopInfo &LI, |
| 3091 | AssumptionCache &AC, MemorySSAUpdater *MSSAU) { |
| 3092 | assert(Candidate.hasPendingInjection() && "Nothing to inject!" ); |
| 3093 | BasicBlock * = L.getLoopPreheader(); |
| 3094 | assert(Preheader && "Loop is not in simplified form?" ); |
| 3095 | assert(LI.getLoopFor(Candidate.TI->getParent()) == &L && |
| 3096 | "Unswitching branch of inner loop!" ); |
| 3097 | |
| 3098 | auto Pred = Candidate.PendingInjection->Pred; |
| 3099 | auto *LHS = Candidate.PendingInjection->LHS; |
| 3100 | auto *RHS = Candidate.PendingInjection->RHS; |
| 3101 | auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc; |
| 3102 | auto *TI = cast<BranchInst>(Val: Candidate.TI); |
| 3103 | auto *BB = Candidate.TI->getParent(); |
| 3104 | auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(i: 0) ? TI->getSuccessor(i: 1) |
| 3105 | : TI->getSuccessor(i: 0); |
| 3106 | // FIXME: Remove this once limitation on successors is lifted. |
| 3107 | assert(L.contains(InLoopSucc) && "Not supported yet!" ); |
| 3108 | assert(!L.contains(OutOfLoopSucc) && "Not supported yet!" ); |
| 3109 | auto &Ctx = BB->getContext(); |
| 3110 | |
| 3111 | IRBuilder<> Builder(Preheader->getTerminator()); |
| 3112 | assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!" ); |
| 3113 | if (LHS->getType() != RHS->getType()) { |
| 3114 | if (LHS->getType()->getIntegerBitWidth() < |
| 3115 | RHS->getType()->getIntegerBitWidth()) |
| 3116 | LHS = Builder.CreateZExt(V: LHS, DestTy: RHS->getType(), Name: LHS->getName() + ".wide" ); |
| 3117 | else |
| 3118 | RHS = Builder.CreateZExt(V: RHS, DestTy: LHS->getType(), Name: RHS->getName() + ".wide" ); |
| 3119 | } |
| 3120 | // Do not use builder here: CreateICmp may simplify this into a constant and |
| 3121 | // unswitching will break. Better optimize it away later. |
| 3122 | auto *InjectedCond = |
| 3123 | ICmpInst::Create(Op: Instruction::ICmp, Pred, S1: LHS, S2: RHS, Name: "injected.cond" , |
| 3124 | InsertBefore: Preheader->getTerminator()->getIterator()); |
| 3125 | |
| 3126 | BasicBlock *CheckBlock = BasicBlock::Create(Context&: Ctx, Name: BB->getName() + ".check" , |
| 3127 | Parent: BB->getParent(), InsertBefore: InLoopSucc); |
| 3128 | Builder.SetInsertPoint(TI); |
| 3129 | auto *InvariantBr = |
| 3130 | Builder.CreateCondBr(Cond: InjectedCond, True: InLoopSucc, False: CheckBlock); |
| 3131 | |
| 3132 | Builder.SetInsertPoint(CheckBlock); |
| 3133 | Builder.CreateCondBr(Cond: TI->getCondition(), True: TI->getSuccessor(i: 0), |
| 3134 | False: TI->getSuccessor(i: 1)); |
| 3135 | TI->eraseFromParent(); |
| 3136 | |
| 3137 | // Fixup phis. |
| 3138 | for (auto &I : *InLoopSucc) { |
| 3139 | auto *PN = dyn_cast<PHINode>(Val: &I); |
| 3140 | if (!PN) |
| 3141 | break; |
| 3142 | auto *Inc = PN->getIncomingValueForBlock(BB); |
| 3143 | PN->addIncoming(V: Inc, BB: CheckBlock); |
| 3144 | } |
| 3145 | OutOfLoopSucc->replacePhiUsesWith(Old: BB, New: CheckBlock); |
| 3146 | |
| 3147 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates = { |
| 3148 | { DominatorTree::Insert, BB, CheckBlock }, |
| 3149 | { DominatorTree::Insert, CheckBlock, InLoopSucc }, |
| 3150 | { DominatorTree::Insert, CheckBlock, OutOfLoopSucc }, |
| 3151 | { DominatorTree::Delete, BB, OutOfLoopSucc } |
| 3152 | }; |
| 3153 | |
| 3154 | DT.applyUpdates(Updates: DTUpdates); |
| 3155 | if (MSSAU) |
| 3156 | MSSAU->applyUpdates(Updates: DTUpdates, DT); |
| 3157 | L.addBasicBlockToLoop(NewBB: CheckBlock, LI); |
| 3158 | |
| 3159 | #ifndef NDEBUG |
| 3160 | DT.verify(); |
| 3161 | LI.verify(DT); |
| 3162 | if (MSSAU && VerifyMemorySSA) |
| 3163 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 3164 | #endif |
| 3165 | |
| 3166 | // TODO: In fact, cost of unswitching a new invariant candidate is *slightly* |
| 3167 | // higher because we have just inserted a new block. Need to think how to |
| 3168 | // adjust the cost of injected candidates when it was first computed. |
| 3169 | LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr |
| 3170 | << " and considering it for unswitching." ); |
| 3171 | ++NumInvariantConditionsInjected; |
| 3172 | return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond }, |
| 3173 | Candidate.Cost); |
| 3174 | } |
| 3175 | |
| 3176 | /// Given chain of loop branch conditions looking like: |
| 3177 | /// br (Variant < Invariant1) |
| 3178 | /// br (Variant < Invariant2) |
| 3179 | /// br (Variant < Invariant3) |
| 3180 | /// ... |
| 3181 | /// collect set of invariant conditions on which we want to unswitch, which |
| 3182 | /// look like: |
| 3183 | /// Invariant1 <= Invariant2 |
| 3184 | /// Invariant2 <= Invariant3 |
| 3185 | /// ... |
| 3186 | /// Though they might not immediately exist in the IR, we can still inject them. |
| 3187 | static bool insertCandidatesWithPendingInjections( |
| 3188 | SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L, |
| 3189 | ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares, |
| 3190 | const DominatorTree &DT) { |
| 3191 | |
| 3192 | assert(ICmpInst::isRelational(Pred)); |
| 3193 | assert(ICmpInst::isStrictPredicate(Pred)); |
| 3194 | if (Compares.size() < 2) |
| 3195 | return false; |
| 3196 | ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(pred: Pred); |
| 3197 | for (auto Prev = Compares.begin(), Next = Compares.begin() + 1; |
| 3198 | Next != Compares.end(); ++Prev, ++Next) { |
| 3199 | Value *LHS = Next->Invariant; |
| 3200 | Value *RHS = Prev->Invariant; |
| 3201 | BasicBlock *InLoopSucc = Prev->InLoopSucc; |
| 3202 | InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc); |
| 3203 | NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS }, |
| 3204 | std::nullopt, std::move(ToInject)); |
| 3205 | UnswitchCandidates.push_back(Elt: std::move(Candidate)); |
| 3206 | } |
| 3207 | return true; |
| 3208 | } |
| 3209 | |
| 3210 | /// Collect unswitch candidates by invariant conditions that are not immediately |
| 3211 | /// present in the loop. However, they can be injected into the code if we |
| 3212 | /// decide it's profitable. |
| 3213 | /// An example of such conditions is following: |
| 3214 | /// |
| 3215 | /// for (...) { |
| 3216 | /// x = load ... |
| 3217 | /// if (! x <u C1) break; |
| 3218 | /// if (! x <u C2) break; |
| 3219 | /// <do something> |
| 3220 | /// } |
| 3221 | /// |
| 3222 | /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <= |
| 3223 | /// C2" automatically implies "x <u C2", so we can get rid of one of |
| 3224 | /// loop-variant checks in unswitched loop version. |
| 3225 | static bool collectUnswitchCandidatesWithInjections( |
| 3226 | SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, |
| 3227 | IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L, |
| 3228 | const DominatorTree &DT, const LoopInfo &LI, AAResults &AA, |
| 3229 | const MemorySSAUpdater *MSSAU) { |
| 3230 | if (!InjectInvariantConditions) |
| 3231 | return false; |
| 3232 | |
| 3233 | if (!DT.isReachableFromEntry(A: L.getHeader())) |
| 3234 | return false; |
| 3235 | auto *Latch = L.getLoopLatch(); |
| 3236 | // Need to have a single latch and a preheader. |
| 3237 | if (!Latch) |
| 3238 | return false; |
| 3239 | assert(L.getLoopPreheader() && "Must have a preheader!" ); |
| 3240 | |
| 3241 | DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT; |
| 3242 | // Traverse the conditions that dominate latch (and therefore dominate each |
| 3243 | // other). |
| 3244 | for (auto *DTN = DT.getNode(BB: Latch); L.contains(BB: DTN->getBlock()); |
| 3245 | DTN = DTN->getIDom()) { |
| 3246 | CmpPredicate Pred; |
| 3247 | Value *LHS = nullptr, *RHS = nullptr; |
| 3248 | BasicBlock *IfTrue = nullptr, *IfFalse = nullptr; |
| 3249 | auto *BB = DTN->getBlock(); |
| 3250 | // Ignore inner loops. |
| 3251 | if (LI.getLoopFor(BB) != &L) |
| 3252 | continue; |
| 3253 | auto *Term = BB->getTerminator(); |
| 3254 | if (!match(V: Term, P: m_Br(C: m_ICmp(Pred, L: m_Value(V&: LHS), R: m_Value(V&: RHS)), |
| 3255 | T: m_BasicBlock(V&: IfTrue), F: m_BasicBlock(V&: IfFalse)))) |
| 3256 | continue; |
| 3257 | if (!LHS->getType()->isIntegerTy()) |
| 3258 | continue; |
| 3259 | canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse, |
| 3260 | L); |
| 3261 | if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L)) |
| 3262 | continue; |
| 3263 | if (!shouldTryInjectBasingOnMetadata(BI: cast<BranchInst>(Val: Term), TakenSucc: IfTrue)) |
| 3264 | continue; |
| 3265 | // Strip ZEXT for unsigned predicate. |
| 3266 | // TODO: once signed predicates are supported, also strip SEXT. |
| 3267 | CompareDesc Desc(cast<BranchInst>(Val: Term), RHS, IfTrue); |
| 3268 | while (auto *Zext = dyn_cast<ZExtInst>(Val: LHS)) |
| 3269 | LHS = Zext->getOperand(i_nocapture: 0); |
| 3270 | CandidatesULT[LHS].push_back(Elt: Desc); |
| 3271 | } |
| 3272 | |
| 3273 | bool Found = false; |
| 3274 | for (auto &It : CandidatesULT) |
| 3275 | Found |= insertCandidatesWithPendingInjections( |
| 3276 | UnswitchCandidates, L, Pred: ICmpInst::ICMP_ULT, Compares: It.second, DT); |
| 3277 | return Found; |
| 3278 | } |
| 3279 | |
| 3280 | static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) { |
| 3281 | if (!L.isSafeToClone()) |
| 3282 | return false; |
| 3283 | for (auto *BB : L.blocks()) |
| 3284 | for (auto &I : *BB) { |
| 3285 | if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) |
| 3286 | return false; |
| 3287 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 3288 | assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone()." ); |
| 3289 | if (CB->isConvergent()) |
| 3290 | return false; |
| 3291 | } |
| 3292 | } |
| 3293 | |
| 3294 | // Check if there are irreducible CFG cycles in this loop. If so, we cannot |
| 3295 | // easily unswitch non-trivial edges out of the loop. Doing so might turn the |
| 3296 | // irreducible control flow into reducible control flow and introduce new |
| 3297 | // loops "out of thin air". If we ever discover important use cases for doing |
| 3298 | // this, we can add support to loop unswitch, but it is a lot of complexity |
| 3299 | // for what seems little or no real world benefit. |
| 3300 | LoopBlocksRPO RPOT(&L); |
| 3301 | RPOT.perform(LI: &LI); |
| 3302 | if (containsIrreducibleCFG<const BasicBlock *>(RPOTraversal&: RPOT, LI)) |
| 3303 | return false; |
| 3304 | |
| 3305 | SmallVector<BasicBlock *, 4> ExitBlocks; |
| 3306 | L.getUniqueExitBlocks(ExitBlocks); |
| 3307 | // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch |
| 3308 | // instruction as we don't know how to split those exit blocks. |
| 3309 | // FIXME: We should teach SplitBlock to handle this and remove this |
| 3310 | // restriction. |
| 3311 | for (auto *ExitBB : ExitBlocks) { |
| 3312 | auto It = ExitBB->getFirstNonPHIIt(); |
| 3313 | if (isa<CleanupPadInst>(Val: It) || isa<CatchSwitchInst>(Val: It)) { |
| 3314 | LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " |
| 3315 | "in exit block\n" ); |
| 3316 | return false; |
| 3317 | } |
| 3318 | } |
| 3319 | |
| 3320 | return true; |
| 3321 | } |
| 3322 | |
| 3323 | static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate( |
| 3324 | ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L, |
| 3325 | const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, |
| 3326 | const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) { |
| 3327 | // Given that unswitching these terminators will require duplicating parts of |
| 3328 | // the loop, so we need to be able to model that cost. Compute the ephemeral |
| 3329 | // values and set up a data structure to hold per-BB costs. We cache each |
| 3330 | // block's cost so that we don't recompute this when considering different |
| 3331 | // subsets of the loop for duplication during unswitching. |
| 3332 | SmallPtrSet<const Value *, 4> EphValues; |
| 3333 | CodeMetrics::collectEphemeralValues(L: &L, AC: &AC, EphValues); |
| 3334 | SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; |
| 3335 | |
| 3336 | // Compute the cost of each block, as well as the total loop cost. Also, bail |
| 3337 | // out if we see instructions which are incompatible with loop unswitching |
| 3338 | // (convergent, noduplicate, or cross-basic-block tokens). |
| 3339 | // FIXME: We might be able to safely handle some of these in non-duplicated |
| 3340 | // regions. |
| 3341 | TargetTransformInfo::TargetCostKind CostKind = |
| 3342 | L.getHeader()->getParent()->hasMinSize() |
| 3343 | ? TargetTransformInfo::TCK_CodeSize |
| 3344 | : TargetTransformInfo::TCK_SizeAndLatency; |
| 3345 | InstructionCost LoopCost = 0; |
| 3346 | for (auto *BB : L.blocks()) { |
| 3347 | InstructionCost Cost = 0; |
| 3348 | for (auto &I : *BB) { |
| 3349 | if (EphValues.count(Ptr: &I)) |
| 3350 | continue; |
| 3351 | Cost += TTI.getInstructionCost(U: &I, CostKind); |
| 3352 | } |
| 3353 | assert(Cost >= 0 && "Must not have negative costs!" ); |
| 3354 | LoopCost += Cost; |
| 3355 | assert(LoopCost >= 0 && "Must not have negative loop costs!" ); |
| 3356 | BBCostMap[BB] = Cost; |
| 3357 | } |
| 3358 | LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n" ); |
| 3359 | |
| 3360 | // Now we find the best candidate by searching for the one with the following |
| 3361 | // properties in order: |
| 3362 | // |
| 3363 | // 1) An unswitching cost below the threshold |
| 3364 | // 2) The smallest number of duplicated unswitch candidates (to avoid |
| 3365 | // creating redundant subsequent unswitching) |
| 3366 | // 3) The smallest cost after unswitching. |
| 3367 | // |
| 3368 | // We prioritize reducing fanout of unswitch candidates provided the cost |
| 3369 | // remains below the threshold because this has a multiplicative effect. |
| 3370 | // |
| 3371 | // This requires memoizing each dominator subtree to avoid redundant work. |
| 3372 | // |
| 3373 | // FIXME: Need to actually do the number of candidates part above. |
| 3374 | SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; |
| 3375 | // Given a terminator which might be unswitched, computes the non-duplicated |
| 3376 | // cost for that terminator. |
| 3377 | auto ComputeUnswitchedCost = [&](Instruction &TI, |
| 3378 | bool FullUnswitch) -> InstructionCost { |
| 3379 | // Unswitching selects unswitches the entire loop. |
| 3380 | if (isa<SelectInst>(Val: TI)) |
| 3381 | return LoopCost; |
| 3382 | |
| 3383 | BasicBlock &BB = *TI.getParent(); |
| 3384 | SmallPtrSet<BasicBlock *, 4> Visited; |
| 3385 | |
| 3386 | InstructionCost Cost = 0; |
| 3387 | for (BasicBlock *SuccBB : successors(BB: &BB)) { |
| 3388 | // Don't count successors more than once. |
| 3389 | if (!Visited.insert(Ptr: SuccBB).second) |
| 3390 | continue; |
| 3391 | |
| 3392 | // If this is a partial unswitch candidate, then it must be a conditional |
| 3393 | // branch with a condition of either `or`, `and`, their corresponding |
| 3394 | // select forms or partially invariant instructions. In that case, one of |
| 3395 | // the successors is necessarily duplicated, so don't even try to remove |
| 3396 | // its cost. |
| 3397 | if (!FullUnswitch) { |
| 3398 | auto &BI = cast<BranchInst>(Val&: TI); |
| 3399 | Value *Cond = skipTrivialSelect(Cond: BI.getCondition()); |
| 3400 | if (match(V: Cond, P: m_LogicalAnd())) { |
| 3401 | if (SuccBB == BI.getSuccessor(i: 1)) |
| 3402 | continue; |
| 3403 | } else if (match(V: Cond, P: m_LogicalOr())) { |
| 3404 | if (SuccBB == BI.getSuccessor(i: 0)) |
| 3405 | continue; |
| 3406 | } else if ((PartialIVInfo.KnownValue->isOneValue() && |
| 3407 | SuccBB == BI.getSuccessor(i: 0)) || |
| 3408 | (!PartialIVInfo.KnownValue->isOneValue() && |
| 3409 | SuccBB == BI.getSuccessor(i: 1))) |
| 3410 | continue; |
| 3411 | } |
| 3412 | |
| 3413 | // This successor's domtree will not need to be duplicated after |
| 3414 | // unswitching if the edge to the successor dominates it (and thus the |
| 3415 | // entire tree). This essentially means there is no other path into this |
| 3416 | // subtree and so it will end up live in only one clone of the loop. |
| 3417 | if (SuccBB->getUniquePredecessor() || |
| 3418 | llvm::all_of(Range: predecessors(BB: SuccBB), P: [&](BasicBlock *PredBB) { |
| 3419 | return PredBB == &BB || DT.dominates(A: SuccBB, B: PredBB); |
| 3420 | })) { |
| 3421 | Cost += computeDomSubtreeCost(N&: *DT[SuccBB], BBCostMap, DTCostMap); |
| 3422 | assert(Cost <= LoopCost && |
| 3423 | "Non-duplicated cost should never exceed total loop cost!" ); |
| 3424 | } |
| 3425 | } |
| 3426 | |
| 3427 | // Now scale the cost by the number of unique successors minus one. We |
| 3428 | // subtract one because there is already at least one copy of the entire |
| 3429 | // loop. This is computing the new cost of unswitching a condition. |
| 3430 | // Note that guards always have 2 unique successors that are implicit and |
| 3431 | // will be materialized if we decide to unswitch it. |
| 3432 | int SuccessorsCount = isGuard(U: &TI) ? 2 : Visited.size(); |
| 3433 | assert(SuccessorsCount > 1 && |
| 3434 | "Cannot unswitch a condition without multiple distinct successors!" ); |
| 3435 | return (LoopCost - Cost) * (SuccessorsCount - 1); |
| 3436 | }; |
| 3437 | |
| 3438 | std::optional<NonTrivialUnswitchCandidate> Best; |
| 3439 | for (auto &Candidate : UnswitchCandidates) { |
| 3440 | Instruction &TI = *Candidate.TI; |
| 3441 | ArrayRef<Value *> Invariants = Candidate.Invariants; |
| 3442 | BranchInst *BI = dyn_cast<BranchInst>(Val: &TI); |
| 3443 | bool FullUnswitch = |
| 3444 | !BI || Candidate.hasPendingInjection() || |
| 3445 | (Invariants.size() == 1 && |
| 3446 | Invariants[0] == skipTrivialSelect(Cond: BI->getCondition())); |
| 3447 | InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch); |
| 3448 | // Calculate cost multiplier which is a tool to limit potentially |
| 3449 | // exponential behavior of loop-unswitch. |
| 3450 | if (EnableUnswitchCostMultiplier) { |
| 3451 | int CostMultiplier = |
| 3452 | CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); |
| 3453 | assert( |
| 3454 | (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && |
| 3455 | "cost multiplier needs to be in the range of 1..UnswitchThreshold" ); |
| 3456 | CandidateCost *= CostMultiplier; |
| 3457 | LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost |
| 3458 | << " (multiplier: " << CostMultiplier << ")" |
| 3459 | << " for unswitch candidate: " << TI << "\n" ); |
| 3460 | } else { |
| 3461 | LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost |
| 3462 | << " for unswitch candidate: " << TI << "\n" ); |
| 3463 | } |
| 3464 | |
| 3465 | if (!Best || CandidateCost < Best->Cost) { |
| 3466 | Best = Candidate; |
| 3467 | Best->Cost = CandidateCost; |
| 3468 | } |
| 3469 | } |
| 3470 | assert(Best && "Must be!" ); |
| 3471 | return *Best; |
| 3472 | } |
| 3473 | |
| 3474 | // Insert a freeze on an unswitched branch if all is true: |
| 3475 | // 1. freeze-loop-unswitch-cond option is true |
| 3476 | // 2. The branch may not execute in the loop pre-transformation. If a branch may |
| 3477 | // not execute and could cause UB, it would always cause UB if it is hoisted outside |
| 3478 | // of the loop. Insert a freeze to prevent this case. |
| 3479 | // 3. The branch condition may be poison or undef |
| 3480 | static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT, |
| 3481 | AssumptionCache &AC) { |
| 3482 | assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI)); |
| 3483 | if (!FreezeLoopUnswitchCond) |
| 3484 | return false; |
| 3485 | |
| 3486 | ICFLoopSafetyInfo SafetyInfo; |
| 3487 | SafetyInfo.computeLoopSafetyInfo(CurLoop: &L); |
| 3488 | if (SafetyInfo.isGuaranteedToExecute(Inst: TI, DT: &DT, CurLoop: &L)) |
| 3489 | return false; |
| 3490 | |
| 3491 | Value *Cond; |
| 3492 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: &TI)) |
| 3493 | Cond = skipTrivialSelect(Cond: BI->getCondition()); |
| 3494 | else |
| 3495 | Cond = skipTrivialSelect(Cond: cast<SwitchInst>(Val: &TI)->getCondition()); |
| 3496 | return !isGuaranteedNotToBeUndefOrPoison( |
| 3497 | V: Cond, AC: &AC, CtxI: L.getLoopPreheader()->getTerminator(), DT: &DT); |
| 3498 | } |
| 3499 | |
| 3500 | static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, |
| 3501 | AssumptionCache &AC, AAResults &AA, |
| 3502 | TargetTransformInfo &TTI, ScalarEvolution *SE, |
| 3503 | MemorySSAUpdater *MSSAU, |
| 3504 | LPMUpdater &LoopUpdater) { |
| 3505 | // Collect all invariant conditions within this loop (as opposed to an inner |
| 3506 | // loop which would be handled when visiting that inner loop). |
| 3507 | SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates; |
| 3508 | IVConditionInfo PartialIVInfo; |
| 3509 | Instruction *PartialIVCondBranch = nullptr; |
| 3510 | collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo, |
| 3511 | PartialIVCondBranch, L, LI, AA, MSSAU); |
| 3512 | if (!findOptionMDForLoop(TheLoop: &L, Name: "llvm.loop.unswitch.injection.disable" )) |
| 3513 | collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo, |
| 3514 | PartialIVCondBranch, L, DT, LI, AA, |
| 3515 | MSSAU); |
| 3516 | // If we didn't find any candidates, we're done. |
| 3517 | if (UnswitchCandidates.empty()) |
| 3518 | return false; |
| 3519 | |
| 3520 | LLVM_DEBUG( |
| 3521 | dbgs() << "Considering " << UnswitchCandidates.size() |
| 3522 | << " non-trivial loop invariant conditions for unswitching.\n" ); |
| 3523 | |
| 3524 | NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate( |
| 3525 | UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo); |
| 3526 | |
| 3527 | assert(Best.TI && "Failed to find loop unswitch candidate" ); |
| 3528 | assert(Best.Cost && "Failed to compute cost" ); |
| 3529 | |
| 3530 | if (*Best.Cost >= UnswitchThreshold) { |
| 3531 | LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost |
| 3532 | << "\n" ); |
| 3533 | return false; |
| 3534 | } |
| 3535 | |
| 3536 | bool InjectedCondition = false; |
| 3537 | if (Best.hasPendingInjection()) { |
| 3538 | Best = injectPendingInvariantConditions(Candidate: Best, L, DT, LI, AC, MSSAU); |
| 3539 | InjectedCondition = true; |
| 3540 | } |
| 3541 | assert(!Best.hasPendingInjection() && |
| 3542 | "All injections should have been done by now!" ); |
| 3543 | |
| 3544 | if (Best.TI != PartialIVCondBranch) |
| 3545 | PartialIVInfo.InstToDuplicate.clear(); |
| 3546 | |
| 3547 | bool InsertFreeze; |
| 3548 | if (auto *SI = dyn_cast<SelectInst>(Val: Best.TI)) { |
| 3549 | // If the best candidate is a select, turn it into a branch. Select |
| 3550 | // instructions with a poison conditional do not propagate poison, but |
| 3551 | // branching on poison causes UB. Insert a freeze on the select |
| 3552 | // conditional to prevent UB after turning the select into a branch. |
| 3553 | InsertFreeze = !isGuaranteedNotToBeUndefOrPoison( |
| 3554 | V: SI->getCondition(), AC: &AC, CtxI: L.getLoopPreheader()->getTerminator(), DT: &DT); |
| 3555 | Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, AC: &AC); |
| 3556 | } else { |
| 3557 | // If the best candidate is a guard, turn it into a branch. |
| 3558 | if (isGuard(U: Best.TI)) |
| 3559 | Best.TI = |
| 3560 | turnGuardIntoBranch(GI: cast<IntrinsicInst>(Val: Best.TI), L, DT, LI, MSSAU); |
| 3561 | InsertFreeze = shouldInsertFreeze(L, TI&: *Best.TI, DT, AC); |
| 3562 | } |
| 3563 | |
| 3564 | LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost |
| 3565 | << ") terminator: " << *Best.TI << "\n" ); |
| 3566 | unswitchNontrivialInvariants(L, TI&: *Best.TI, Invariants: Best.Invariants, PartialIVInfo, DT, |
| 3567 | LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze, |
| 3568 | InjectedCondition); |
| 3569 | return true; |
| 3570 | } |
| 3571 | |
| 3572 | /// Unswitch control flow predicated on loop invariant conditions. |
| 3573 | /// |
| 3574 | /// This first hoists all branches or switches which are trivial (IE, do not |
| 3575 | /// require duplicating any part of the loop) out of the loop body. It then |
| 3576 | /// looks at other loop invariant control flows and tries to unswitch those as |
| 3577 | /// well by cloning the loop if the result is small enough. |
| 3578 | /// |
| 3579 | /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are |
| 3580 | /// also updated based on the unswitch. The `MSSA` analysis is also updated if |
| 3581 | /// valid (i.e. its use is enabled). |
| 3582 | /// |
| 3583 | /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is |
| 3584 | /// true, we will attempt to do non-trivial unswitching as well as trivial |
| 3585 | /// unswitching. |
| 3586 | /// |
| 3587 | /// The `postUnswitch` function will be run after unswitching is complete |
| 3588 | /// with information on whether or not the provided loop remains a loop and |
| 3589 | /// a list of new sibling loops created. |
| 3590 | /// |
| 3591 | /// If `SE` is non-null, we will update that analysis based on the unswitching |
| 3592 | /// done. |
| 3593 | static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, |
| 3594 | AssumptionCache &AC, AAResults &AA, |
| 3595 | TargetTransformInfo &TTI, bool Trivial, |
| 3596 | bool NonTrivial, ScalarEvolution *SE, |
| 3597 | MemorySSAUpdater *MSSAU, ProfileSummaryInfo *PSI, |
| 3598 | BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater) { |
| 3599 | assert(L.isRecursivelyLCSSAForm(DT, LI) && |
| 3600 | "Loops must be in LCSSA form before unswitching." ); |
| 3601 | |
| 3602 | // Must be in loop simplified form: we need a preheader and dedicated exits. |
| 3603 | if (!L.isLoopSimplifyForm()) |
| 3604 | return false; |
| 3605 | |
| 3606 | // Try trivial unswitch first before loop over other basic blocks in the loop. |
| 3607 | if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { |
| 3608 | // If we unswitched successfully we will want to clean up the loop before |
| 3609 | // processing it further so just mark it as unswitched and return. |
| 3610 | postUnswitch(L, U&: LoopUpdater, LoopName: L.getName(), |
| 3611 | /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false, |
| 3612 | /*InjectedCondition*/ false, NewLoops: {}); |
| 3613 | return true; |
| 3614 | } |
| 3615 | |
| 3616 | const Function *F = L.getHeader()->getParent(); |
| 3617 | |
| 3618 | // Check whether we should continue with non-trivial conditions. |
| 3619 | // EnableNonTrivialUnswitch: Global variable that forces non-trivial |
| 3620 | // unswitching for testing and debugging. |
| 3621 | // NonTrivial: Parameter that enables non-trivial unswitching for this |
| 3622 | // invocation of the transform. But this should be allowed only |
| 3623 | // for targets without branch divergence. |
| 3624 | // |
| 3625 | // FIXME: If divergence analysis becomes available to a loop |
| 3626 | // transform, we should allow unswitching for non-trivial uniform |
| 3627 | // branches even on targets that have divergence. |
| 3628 | // https://bugs.llvm.org/show_bug.cgi?id=48819 |
| 3629 | bool ContinueWithNonTrivial = |
| 3630 | EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence(F)); |
| 3631 | if (!ContinueWithNonTrivial) |
| 3632 | return false; |
| 3633 | |
| 3634 | // Skip non-trivial unswitching for optsize functions. |
| 3635 | if (F->hasOptSize()) |
| 3636 | return false; |
| 3637 | |
| 3638 | // Returns true if Loop L's loop nest is cold, i.e. if the headers of L, |
| 3639 | // of the loops L is nested in, and of the loops nested in L are all cold. |
| 3640 | auto IsLoopNestCold = [&](const Loop *L) { |
| 3641 | // Check L and all of its parent loops. |
| 3642 | auto *Parent = L; |
| 3643 | while (Parent) { |
| 3644 | if (!PSI->isColdBlock(BB: Parent->getHeader(), BFI)) |
| 3645 | return false; |
| 3646 | Parent = Parent->getParentLoop(); |
| 3647 | } |
| 3648 | // Next check all loops nested within L. |
| 3649 | SmallVector<const Loop *, 4> Worklist; |
| 3650 | llvm::append_range(C&: Worklist, R: L->getSubLoops()); |
| 3651 | while (!Worklist.empty()) { |
| 3652 | auto *CurLoop = Worklist.pop_back_val(); |
| 3653 | if (!PSI->isColdBlock(BB: CurLoop->getHeader(), BFI)) |
| 3654 | return false; |
| 3655 | llvm::append_range(C&: Worklist, R: CurLoop->getSubLoops()); |
| 3656 | } |
| 3657 | return true; |
| 3658 | }; |
| 3659 | |
| 3660 | // Skip cold loops in cold loop nests, as unswitching them brings little |
| 3661 | // benefit but increases the code size |
| 3662 | if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) { |
| 3663 | LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n" ); |
| 3664 | return false; |
| 3665 | } |
| 3666 | |
| 3667 | // Perform legality checks. |
| 3668 | if (!isSafeForNoNTrivialUnswitching(L, LI)) |
| 3669 | return false; |
| 3670 | |
| 3671 | // For non-trivial unswitching, because it often creates new loops, we rely on |
| 3672 | // the pass manager to iterate on the loops rather than trying to immediately |
| 3673 | // reach a fixed point. There is no substantial advantage to iterating |
| 3674 | // internally, and if any of the new loops are simplified enough to contain |
| 3675 | // trivial unswitching we want to prefer those. |
| 3676 | |
| 3677 | // Try to unswitch the best invariant condition. We prefer this full unswitch to |
| 3678 | // a partial unswitch when possible below the threshold. |
| 3679 | if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, SE, MSSAU, LoopUpdater)) |
| 3680 | return true; |
| 3681 | |
| 3682 | // No other opportunities to unswitch. |
| 3683 | return false; |
| 3684 | } |
| 3685 | |
| 3686 | PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, |
| 3687 | LoopStandardAnalysisResults &AR, |
| 3688 | LPMUpdater &U) { |
| 3689 | Function &F = *L.getHeader()->getParent(); |
| 3690 | (void)F; |
| 3691 | ProfileSummaryInfo *PSI = nullptr; |
| 3692 | if (auto OuterProxy = |
| 3693 | AM.getResult<FunctionAnalysisManagerLoopProxy>(IR&: L, ExtraArgs&: AR) |
| 3694 | .getCachedResult<ModuleAnalysisManagerFunctionProxy>(IR&: F)) |
| 3695 | PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
| 3696 | LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L |
| 3697 | << "\n" ); |
| 3698 | |
| 3699 | std::optional<MemorySSAUpdater> MSSAU; |
| 3700 | if (AR.MSSA) { |
| 3701 | MSSAU = MemorySSAUpdater(AR.MSSA); |
| 3702 | if (VerifyMemorySSA) |
| 3703 | AR.MSSA->verifyMemorySSA(); |
| 3704 | } |
| 3705 | if (!unswitchLoop(L, DT&: AR.DT, LI&: AR.LI, AC&: AR.AC, AA&: AR.AA, TTI&: AR.TTI, Trivial, NonTrivial, |
| 3706 | SE: &AR.SE, MSSAU: MSSAU ? &*MSSAU : nullptr, PSI, BFI: AR.BFI, LoopUpdater&: U)) |
| 3707 | return PreservedAnalyses::all(); |
| 3708 | |
| 3709 | if (AR.MSSA && VerifyMemorySSA) |
| 3710 | AR.MSSA->verifyMemorySSA(); |
| 3711 | |
| 3712 | // Historically this pass has had issues with the dominator tree so verify it |
| 3713 | // in asserts builds. |
| 3714 | assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); |
| 3715 | |
| 3716 | auto PA = getLoopPassPreservedAnalyses(); |
| 3717 | if (AR.MSSA) |
| 3718 | PA.preserve<MemorySSAAnalysis>(); |
| 3719 | return PA; |
| 3720 | } |
| 3721 | |
| 3722 | void SimpleLoopUnswitchPass::printPipeline( |
| 3723 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 3724 | static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( |
| 3725 | OS, MapClassName2PassName); |
| 3726 | |
| 3727 | OS << '<'; |
| 3728 | OS << (NonTrivial ? "" : "no-" ) << "nontrivial;" ; |
| 3729 | OS << (Trivial ? "" : "no-" ) << "trivial" ; |
| 3730 | OS << '>'; |
| 3731 | } |
| 3732 | |