1 | //===- Local.cpp - Functions to perform local transformations -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This family of functions perform various local transformations to the |
10 | // program. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Utils/Local.h" |
15 | #include "llvm/ADT/APInt.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/DenseMapInfo.h" |
18 | #include "llvm/ADT/DenseSet.h" |
19 | #include "llvm/ADT/Hashing.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/SetVector.h" |
22 | #include "llvm/ADT/SmallPtrSet.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/Statistic.h" |
25 | #include "llvm/Analysis/AssumeBundleQueries.h" |
26 | #include "llvm/Analysis/ConstantFolding.h" |
27 | #include "llvm/Analysis/DomTreeUpdater.h" |
28 | #include "llvm/Analysis/InstructionSimplify.h" |
29 | #include "llvm/Analysis/MemoryBuiltins.h" |
30 | #include "llvm/Analysis/MemorySSAUpdater.h" |
31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
32 | #include "llvm/Analysis/ValueTracking.h" |
33 | #include "llvm/Analysis/VectorUtils.h" |
34 | #include "llvm/BinaryFormat/Dwarf.h" |
35 | #include "llvm/IR/Argument.h" |
36 | #include "llvm/IR/Attributes.h" |
37 | #include "llvm/IR/BasicBlock.h" |
38 | #include "llvm/IR/CFG.h" |
39 | #include "llvm/IR/Constant.h" |
40 | #include "llvm/IR/ConstantRange.h" |
41 | #include "llvm/IR/Constants.h" |
42 | #include "llvm/IR/DIBuilder.h" |
43 | #include "llvm/IR/DataLayout.h" |
44 | #include "llvm/IR/DebugInfo.h" |
45 | #include "llvm/IR/DebugInfoMetadata.h" |
46 | #include "llvm/IR/DebugLoc.h" |
47 | #include "llvm/IR/DerivedTypes.h" |
48 | #include "llvm/IR/Dominators.h" |
49 | #include "llvm/IR/EHPersonalities.h" |
50 | #include "llvm/IR/Function.h" |
51 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
52 | #include "llvm/IR/IRBuilder.h" |
53 | #include "llvm/IR/InstrTypes.h" |
54 | #include "llvm/IR/Instruction.h" |
55 | #include "llvm/IR/Instructions.h" |
56 | #include "llvm/IR/IntrinsicInst.h" |
57 | #include "llvm/IR/Intrinsics.h" |
58 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
59 | #include "llvm/IR/LLVMContext.h" |
60 | #include "llvm/IR/MDBuilder.h" |
61 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
62 | #include "llvm/IR/Metadata.h" |
63 | #include "llvm/IR/Module.h" |
64 | #include "llvm/IR/PatternMatch.h" |
65 | #include "llvm/IR/ProfDataUtils.h" |
66 | #include "llvm/IR/Type.h" |
67 | #include "llvm/IR/Use.h" |
68 | #include "llvm/IR/User.h" |
69 | #include "llvm/IR/Value.h" |
70 | #include "llvm/IR/ValueHandle.h" |
71 | #include "llvm/Support/Casting.h" |
72 | #include "llvm/Support/CommandLine.h" |
73 | #include "llvm/Support/Compiler.h" |
74 | #include "llvm/Support/Debug.h" |
75 | #include "llvm/Support/ErrorHandling.h" |
76 | #include "llvm/Support/KnownBits.h" |
77 | #include "llvm/Support/raw_ostream.h" |
78 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
79 | #include "llvm/Transforms/Utils/ValueMapper.h" |
80 | #include <algorithm> |
81 | #include <cassert> |
82 | #include <cstdint> |
83 | #include <iterator> |
84 | #include <map> |
85 | #include <optional> |
86 | #include <utility> |
87 | |
88 | using namespace llvm; |
89 | using namespace llvm::PatternMatch; |
90 | |
91 | #define DEBUG_TYPE "local" |
92 | |
93 | STATISTIC(NumRemoved, "Number of unreachable basic blocks removed" ); |
94 | STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd" ); |
95 | |
96 | static cl::opt<bool> PHICSEDebugHash( |
97 | "phicse-debug-hash" , |
98 | #ifdef EXPENSIVE_CHECKS |
99 | cl::init(true), |
100 | #else |
101 | cl::init(Val: false), |
102 | #endif |
103 | cl::Hidden, |
104 | cl::desc("Perform extra assertion checking to verify that PHINodes's hash " |
105 | "function is well-behaved w.r.t. its isEqual predicate" )); |
106 | |
107 | static cl::opt<unsigned> PHICSENumPHISmallSize( |
108 | "phicse-num-phi-smallsize" , cl::init(Val: 32), cl::Hidden, |
109 | cl::desc( |
110 | "When the basic block contains not more than this number of PHI nodes, " |
111 | "perform a (faster!) exhaustive search instead of set-driven one." )); |
112 | |
113 | static cl::opt<unsigned> MaxPhiEntriesIncreaseAfterRemovingEmptyBlock( |
114 | "max-phi-entries-increase-after-removing-empty-block" , cl::init(Val: 1000), |
115 | cl::Hidden, |
116 | cl::desc("Stop removing an empty block if removing it will introduce more " |
117 | "than this number of phi entries in its successor" )); |
118 | |
119 | // Max recursion depth for collectBitParts used when detecting bswap and |
120 | // bitreverse idioms. |
121 | static const unsigned BitPartRecursionMaxDepth = 48; |
122 | |
123 | //===----------------------------------------------------------------------===// |
124 | // Local constant propagation. |
125 | // |
126 | |
127 | /// ConstantFoldTerminator - If a terminator instruction is predicated on a |
128 | /// constant value, convert it into an unconditional branch to the constant |
129 | /// destination. This is a nontrivial operation because the successors of this |
130 | /// basic block must have their PHI nodes updated. |
131 | /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch |
132 | /// conditions and indirectbr addresses this might make dead if |
133 | /// DeleteDeadConditions is true. |
134 | bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, |
135 | const TargetLibraryInfo *TLI, |
136 | DomTreeUpdater *DTU) { |
137 | Instruction *T = BB->getTerminator(); |
138 | IRBuilder<> Builder(T); |
139 | |
140 | // Branch - See if we are conditional jumping on constant |
141 | if (auto *BI = dyn_cast<BranchInst>(Val: T)) { |
142 | if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
143 | |
144 | BasicBlock *Dest1 = BI->getSuccessor(i: 0); |
145 | BasicBlock *Dest2 = BI->getSuccessor(i: 1); |
146 | |
147 | if (Dest2 == Dest1) { // Conditional branch to same location? |
148 | // This branch matches something like this: |
149 | // br bool %cond, label %Dest, label %Dest |
150 | // and changes it into: br label %Dest |
151 | |
152 | // Let the basic block know that we are letting go of one copy of it. |
153 | assert(BI->getParent() && "Terminator not inserted in block!" ); |
154 | Dest1->removePredecessor(Pred: BI->getParent()); |
155 | |
156 | // Replace the conditional branch with an unconditional one. |
157 | BranchInst *NewBI = Builder.CreateBr(Dest: Dest1); |
158 | |
159 | // Transfer the metadata to the new branch instruction. |
160 | NewBI->copyMetadata(SrcInst: *BI, WL: {LLVMContext::MD_loop, LLVMContext::MD_dbg, |
161 | LLVMContext::MD_annotation}); |
162 | |
163 | Value *Cond = BI->getCondition(); |
164 | BI->eraseFromParent(); |
165 | if (DeleteDeadConditions) |
166 | RecursivelyDeleteTriviallyDeadInstructions(V: Cond, TLI); |
167 | return true; |
168 | } |
169 | |
170 | if (auto *Cond = dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
171 | // Are we branching on constant? |
172 | // YES. Change to unconditional branch... |
173 | BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; |
174 | BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; |
175 | |
176 | // Let the basic block know that we are letting go of it. Based on this, |
177 | // it will adjust it's PHI nodes. |
178 | OldDest->removePredecessor(Pred: BB); |
179 | |
180 | // Replace the conditional branch with an unconditional one. |
181 | BranchInst *NewBI = Builder.CreateBr(Dest: Destination); |
182 | |
183 | // Transfer the metadata to the new branch instruction. |
184 | NewBI->copyMetadata(SrcInst: *BI, WL: {LLVMContext::MD_loop, LLVMContext::MD_dbg, |
185 | LLVMContext::MD_annotation}); |
186 | |
187 | BI->eraseFromParent(); |
188 | if (DTU) |
189 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, OldDest}}); |
190 | return true; |
191 | } |
192 | |
193 | return false; |
194 | } |
195 | |
196 | if (auto *SI = dyn_cast<SwitchInst>(Val: T)) { |
197 | // If we are switching on a constant, we can convert the switch to an |
198 | // unconditional branch. |
199 | auto *CI = dyn_cast<ConstantInt>(Val: SI->getCondition()); |
200 | BasicBlock *DefaultDest = SI->getDefaultDest(); |
201 | BasicBlock *TheOnlyDest = DefaultDest; |
202 | |
203 | // If the default is unreachable, ignore it when searching for TheOnlyDest. |
204 | if (SI->defaultDestUnreachable() && SI->getNumCases() > 0) |
205 | TheOnlyDest = SI->case_begin()->getCaseSuccessor(); |
206 | |
207 | bool Changed = false; |
208 | |
209 | // Figure out which case it goes to. |
210 | for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { |
211 | // Found case matching a constant operand? |
212 | if (It->getCaseValue() == CI) { |
213 | TheOnlyDest = It->getCaseSuccessor(); |
214 | break; |
215 | } |
216 | |
217 | // Check to see if this branch is going to the same place as the default |
218 | // dest. If so, eliminate it as an explicit compare. |
219 | if (It->getCaseSuccessor() == DefaultDest) { |
220 | MDNode *MD = getValidBranchWeightMDNode(I: *SI); |
221 | unsigned NCases = SI->getNumCases(); |
222 | // Fold the case metadata into the default if there will be any branches |
223 | // left, unless the metadata doesn't match the switch. |
224 | if (NCases > 1 && MD) { |
225 | // Collect branch weights into a vector. |
226 | SmallVector<uint32_t, 8> Weights; |
227 | extractBranchWeights(ProfileData: MD, Weights); |
228 | |
229 | // Merge weight of this case to the default weight. |
230 | unsigned Idx = It->getCaseIndex(); |
231 | // TODO: Add overflow check. |
232 | Weights[0] += Weights[Idx + 1]; |
233 | // Remove weight for this case. |
234 | std::swap(a&: Weights[Idx + 1], b&: Weights.back()); |
235 | Weights.pop_back(); |
236 | setBranchWeights(I&: *SI, Weights, IsExpected: hasBranchWeightOrigin(ProfileData: MD)); |
237 | } |
238 | // Remove this entry. |
239 | BasicBlock *ParentBB = SI->getParent(); |
240 | DefaultDest->removePredecessor(Pred: ParentBB); |
241 | It = SI->removeCase(I: It); |
242 | End = SI->case_end(); |
243 | |
244 | // Removing this case may have made the condition constant. In that |
245 | // case, update CI and restart iteration through the cases. |
246 | if (auto *NewCI = dyn_cast<ConstantInt>(Val: SI->getCondition())) { |
247 | CI = NewCI; |
248 | It = SI->case_begin(); |
249 | } |
250 | |
251 | Changed = true; |
252 | continue; |
253 | } |
254 | |
255 | // Otherwise, check to see if the switch only branches to one destination. |
256 | // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
257 | // destinations. |
258 | if (It->getCaseSuccessor() != TheOnlyDest) |
259 | TheOnlyDest = nullptr; |
260 | |
261 | // Increment this iterator as we haven't removed the case. |
262 | ++It; |
263 | } |
264 | |
265 | if (CI && !TheOnlyDest) { |
266 | // Branching on a constant, but not any of the cases, go to the default |
267 | // successor. |
268 | TheOnlyDest = SI->getDefaultDest(); |
269 | } |
270 | |
271 | // If we found a single destination that we can fold the switch into, do so |
272 | // now. |
273 | if (TheOnlyDest) { |
274 | // Insert the new branch. |
275 | Builder.CreateBr(Dest: TheOnlyDest); |
276 | BasicBlock *BB = SI->getParent(); |
277 | |
278 | SmallSet<BasicBlock *, 8> RemovedSuccessors; |
279 | |
280 | // Remove entries from PHI nodes which we no longer branch to... |
281 | BasicBlock *SuccToKeep = TheOnlyDest; |
282 | for (BasicBlock *Succ : successors(I: SI)) { |
283 | if (DTU && Succ != TheOnlyDest) |
284 | RemovedSuccessors.insert(Ptr: Succ); |
285 | // Found case matching a constant operand? |
286 | if (Succ == SuccToKeep) { |
287 | SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest |
288 | } else { |
289 | Succ->removePredecessor(Pred: BB); |
290 | } |
291 | } |
292 | |
293 | // Delete the old switch. |
294 | Value *Cond = SI->getCondition(); |
295 | SI->eraseFromParent(); |
296 | if (DeleteDeadConditions) |
297 | RecursivelyDeleteTriviallyDeadInstructions(V: Cond, TLI); |
298 | if (DTU) { |
299 | std::vector<DominatorTree::UpdateType> Updates; |
300 | Updates.reserve(n: RemovedSuccessors.size()); |
301 | for (auto *RemovedSuccessor : RemovedSuccessors) |
302 | Updates.push_back(x: {DominatorTree::Delete, BB, RemovedSuccessor}); |
303 | DTU->applyUpdates(Updates); |
304 | } |
305 | return true; |
306 | } |
307 | |
308 | if (SI->getNumCases() == 1) { |
309 | // Otherwise, we can fold this switch into a conditional branch |
310 | // instruction if it has only one non-default destination. |
311 | auto FirstCase = *SI->case_begin(); |
312 | Value *Cond = Builder.CreateICmpEQ(LHS: SI->getCondition(), |
313 | RHS: FirstCase.getCaseValue(), Name: "cond" ); |
314 | |
315 | // Insert the new branch. |
316 | BranchInst *NewBr = Builder.CreateCondBr(Cond, |
317 | True: FirstCase.getCaseSuccessor(), |
318 | False: SI->getDefaultDest()); |
319 | SmallVector<uint32_t> Weights; |
320 | if (extractBranchWeights(I: *SI, Weights) && Weights.size() == 2) { |
321 | uint32_t DefWeight = Weights[0]; |
322 | uint32_t CaseWeight = Weights[1]; |
323 | // The TrueWeight should be the weight for the single case of SI. |
324 | NewBr->setMetadata(KindID: LLVMContext::MD_prof, |
325 | Node: MDBuilder(BB->getContext()) |
326 | .createBranchWeights(TrueWeight: CaseWeight, FalseWeight: DefWeight)); |
327 | } |
328 | |
329 | // Update make.implicit metadata to the newly-created conditional branch. |
330 | MDNode *MakeImplicitMD = SI->getMetadata(KindID: LLVMContext::MD_make_implicit); |
331 | if (MakeImplicitMD) |
332 | NewBr->setMetadata(KindID: LLVMContext::MD_make_implicit, Node: MakeImplicitMD); |
333 | |
334 | // Delete the old switch. |
335 | SI->eraseFromParent(); |
336 | return true; |
337 | } |
338 | return Changed; |
339 | } |
340 | |
341 | if (auto *IBI = dyn_cast<IndirectBrInst>(Val: T)) { |
342 | // indirectbr blockaddress(@F, @BB) -> br label @BB |
343 | if (auto *BA = |
344 | dyn_cast<BlockAddress>(Val: IBI->getAddress()->stripPointerCasts())) { |
345 | BasicBlock *TheOnlyDest = BA->getBasicBlock(); |
346 | SmallSet<BasicBlock *, 8> RemovedSuccessors; |
347 | |
348 | // Insert the new branch. |
349 | Builder.CreateBr(Dest: TheOnlyDest); |
350 | |
351 | BasicBlock *SuccToKeep = TheOnlyDest; |
352 | for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
353 | BasicBlock *DestBB = IBI->getDestination(i); |
354 | if (DTU && DestBB != TheOnlyDest) |
355 | RemovedSuccessors.insert(Ptr: DestBB); |
356 | if (IBI->getDestination(i) == SuccToKeep) { |
357 | SuccToKeep = nullptr; |
358 | } else { |
359 | DestBB->removePredecessor(Pred: BB); |
360 | } |
361 | } |
362 | Value *Address = IBI->getAddress(); |
363 | IBI->eraseFromParent(); |
364 | if (DeleteDeadConditions) |
365 | // Delete pointer cast instructions. |
366 | RecursivelyDeleteTriviallyDeadInstructions(V: Address, TLI); |
367 | |
368 | // Also zap the blockaddress constant if there are no users remaining, |
369 | // otherwise the destination is still marked as having its address taken. |
370 | if (BA->use_empty()) |
371 | BA->destroyConstant(); |
372 | |
373 | // If we didn't find our destination in the IBI successor list, then we |
374 | // have undefined behavior. Replace the unconditional branch with an |
375 | // 'unreachable' instruction. |
376 | if (SuccToKeep) { |
377 | BB->getTerminator()->eraseFromParent(); |
378 | new UnreachableInst(BB->getContext(), BB); |
379 | } |
380 | |
381 | if (DTU) { |
382 | std::vector<DominatorTree::UpdateType> Updates; |
383 | Updates.reserve(n: RemovedSuccessors.size()); |
384 | for (auto *RemovedSuccessor : RemovedSuccessors) |
385 | Updates.push_back(x: {DominatorTree::Delete, BB, RemovedSuccessor}); |
386 | DTU->applyUpdates(Updates); |
387 | } |
388 | return true; |
389 | } |
390 | } |
391 | |
392 | return false; |
393 | } |
394 | |
395 | //===----------------------------------------------------------------------===// |
396 | // Local dead code elimination. |
397 | // |
398 | |
399 | /// isInstructionTriviallyDead - Return true if the result produced by the |
400 | /// instruction is not used, and the instruction has no side effects. |
401 | /// |
402 | bool llvm::isInstructionTriviallyDead(Instruction *I, |
403 | const TargetLibraryInfo *TLI) { |
404 | if (!I->use_empty()) |
405 | return false; |
406 | return wouldInstructionBeTriviallyDead(I, TLI); |
407 | } |
408 | |
409 | bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( |
410 | Instruction *I, const TargetLibraryInfo *TLI) { |
411 | // Instructions that are "markers" and have implied meaning on code around |
412 | // them (without explicit uses), are not dead on unused paths. |
413 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) |
414 | if (II->getIntrinsicID() == Intrinsic::stacksave || |
415 | II->getIntrinsicID() == Intrinsic::launder_invariant_group || |
416 | II->isLifetimeStartOrEnd()) |
417 | return false; |
418 | return wouldInstructionBeTriviallyDead(I, TLI); |
419 | } |
420 | |
421 | bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, |
422 | const TargetLibraryInfo *TLI) { |
423 | if (I->isTerminator()) |
424 | return false; |
425 | |
426 | // We don't want the landingpad-like instructions removed by anything this |
427 | // general. |
428 | if (I->isEHPad()) |
429 | return false; |
430 | |
431 | // We don't want debug info removed by anything this general. |
432 | if (isa<DbgVariableIntrinsic>(Val: I)) |
433 | return false; |
434 | |
435 | if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(Val: I)) { |
436 | if (DLI->getLabel()) |
437 | return false; |
438 | return true; |
439 | } |
440 | |
441 | if (auto *CB = dyn_cast<CallBase>(Val: I)) |
442 | if (isRemovableAlloc(V: CB, TLI)) |
443 | return true; |
444 | |
445 | if (!I->willReturn()) { |
446 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
447 | if (!II) |
448 | return false; |
449 | |
450 | switch (II->getIntrinsicID()) { |
451 | case Intrinsic::experimental_guard: { |
452 | // Guards on true are operationally no-ops. In the future we can |
453 | // consider more sophisticated tradeoffs for guards considering potential |
454 | // for check widening, but for now we keep things simple. |
455 | auto *Cond = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 0)); |
456 | return Cond && Cond->isOne(); |
457 | } |
458 | // TODO: These intrinsics are not safe to remove, because this may remove |
459 | // a well-defined trap. |
460 | case Intrinsic::wasm_trunc_signed: |
461 | case Intrinsic::wasm_trunc_unsigned: |
462 | case Intrinsic::ptrauth_auth: |
463 | case Intrinsic::ptrauth_resign: |
464 | return true; |
465 | default: |
466 | return false; |
467 | } |
468 | } |
469 | |
470 | if (!I->mayHaveSideEffects()) |
471 | return true; |
472 | |
473 | // Special case intrinsics that "may have side effects" but can be deleted |
474 | // when dead. |
475 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
476 | // Safe to delete llvm.stacksave and launder.invariant.group if dead. |
477 | if (II->getIntrinsicID() == Intrinsic::stacksave || |
478 | II->getIntrinsicID() == Intrinsic::launder_invariant_group) |
479 | return true; |
480 | |
481 | // Intrinsics declare sideeffects to prevent them from moving, but they are |
482 | // nops without users. |
483 | if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || |
484 | II->getIntrinsicID() == Intrinsic::allow_ubsan_check) |
485 | return true; |
486 | |
487 | if (II->isLifetimeStartOrEnd()) { |
488 | auto *Arg = II->getArgOperand(i: 1); |
489 | // Lifetime intrinsics are dead when their right-hand is undef. |
490 | if (isa<UndefValue>(Val: Arg)) |
491 | return true; |
492 | // If the right-hand is an alloc, global, or argument and the only uses |
493 | // are lifetime intrinsics then the intrinsics are dead. |
494 | if (isa<AllocaInst>(Val: Arg) || isa<GlobalValue>(Val: Arg) || isa<Argument>(Val: Arg)) |
495 | return llvm::all_of(Range: Arg->uses(), P: [](Use &Use) { |
496 | return isa<LifetimeIntrinsic>(Val: Use.getUser()); |
497 | }); |
498 | return false; |
499 | } |
500 | |
501 | // Assumptions are dead if their condition is trivially true. |
502 | if (II->getIntrinsicID() == Intrinsic::assume && |
503 | isAssumeWithEmptyBundle(Assume: cast<AssumeInst>(Val: *II))) { |
504 | if (ConstantInt *Cond = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 0))) |
505 | return !Cond->isZero(); |
506 | |
507 | return false; |
508 | } |
509 | |
510 | if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(Val: I)) { |
511 | std::optional<fp::ExceptionBehavior> ExBehavior = |
512 | FPI->getExceptionBehavior(); |
513 | return *ExBehavior != fp::ebStrict; |
514 | } |
515 | } |
516 | |
517 | if (auto *Call = dyn_cast<CallBase>(Val: I)) { |
518 | if (Value *FreedOp = getFreedOperand(CB: Call, TLI)) |
519 | if (Constant *C = dyn_cast<Constant>(Val: FreedOp)) |
520 | return C->isNullValue() || isa<UndefValue>(Val: C); |
521 | if (isMathLibCallNoop(Call, TLI)) |
522 | return true; |
523 | } |
524 | |
525 | // Non-volatile atomic loads from constants can be removed. |
526 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
527 | if (auto *GV = dyn_cast<GlobalVariable>( |
528 | Val: LI->getPointerOperand()->stripPointerCasts())) |
529 | if (!LI->isVolatile() && GV->isConstant()) |
530 | return true; |
531 | |
532 | return false; |
533 | } |
534 | |
535 | /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a |
536 | /// trivially dead instruction, delete it. If that makes any of its operands |
537 | /// trivially dead, delete them too, recursively. Return true if any |
538 | /// instructions were deleted. |
539 | bool llvm::RecursivelyDeleteTriviallyDeadInstructions( |
540 | Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, |
541 | std::function<void(Value *)> AboutToDeleteCallback) { |
542 | Instruction *I = dyn_cast<Instruction>(Val: V); |
543 | if (!I || !isInstructionTriviallyDead(I, TLI)) |
544 | return false; |
545 | |
546 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
547 | DeadInsts.push_back(Elt: I); |
548 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, |
549 | AboutToDeleteCallback); |
550 | |
551 | return true; |
552 | } |
553 | |
554 | bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( |
555 | SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, |
556 | MemorySSAUpdater *MSSAU, |
557 | std::function<void(Value *)> AboutToDeleteCallback) { |
558 | unsigned S = 0, E = DeadInsts.size(), Alive = 0; |
559 | for (; S != E; ++S) { |
560 | auto *I = dyn_cast_or_null<Instruction>(Val&: DeadInsts[S]); |
561 | if (!I || !isInstructionTriviallyDead(I)) { |
562 | DeadInsts[S] = nullptr; |
563 | ++Alive; |
564 | } |
565 | } |
566 | if (Alive == E) |
567 | return false; |
568 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, |
569 | AboutToDeleteCallback); |
570 | return true; |
571 | } |
572 | |
573 | void llvm::RecursivelyDeleteTriviallyDeadInstructions( |
574 | SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, |
575 | MemorySSAUpdater *MSSAU, |
576 | std::function<void(Value *)> AboutToDeleteCallback) { |
577 | // Process the dead instruction list until empty. |
578 | while (!DeadInsts.empty()) { |
579 | Value *V = DeadInsts.pop_back_val(); |
580 | Instruction *I = cast_or_null<Instruction>(Val: V); |
581 | if (!I) |
582 | continue; |
583 | assert(isInstructionTriviallyDead(I, TLI) && |
584 | "Live instruction found in dead worklist!" ); |
585 | assert(I->use_empty() && "Instructions with uses are not dead." ); |
586 | |
587 | // Don't lose the debug info while deleting the instructions. |
588 | salvageDebugInfo(I&: *I); |
589 | |
590 | if (AboutToDeleteCallback) |
591 | AboutToDeleteCallback(I); |
592 | |
593 | // Null out all of the instruction's operands to see if any operand becomes |
594 | // dead as we go. |
595 | for (Use &OpU : I->operands()) { |
596 | Value *OpV = OpU.get(); |
597 | OpU.set(nullptr); |
598 | |
599 | if (!OpV->use_empty()) |
600 | continue; |
601 | |
602 | // If the operand is an instruction that became dead as we nulled out the |
603 | // operand, and if it is 'trivially' dead, delete it in a future loop |
604 | // iteration. |
605 | if (Instruction *OpI = dyn_cast<Instruction>(Val: OpV)) |
606 | if (isInstructionTriviallyDead(I: OpI, TLI)) |
607 | DeadInsts.push_back(Elt: OpI); |
608 | } |
609 | if (MSSAU) |
610 | MSSAU->removeMemoryAccess(I); |
611 | |
612 | I->eraseFromParent(); |
613 | } |
614 | } |
615 | |
616 | bool llvm::replaceDbgUsesWithUndef(Instruction *I) { |
617 | SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
618 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
619 | findDbgUsers(DbgInsts&: DbgUsers, V: I, DbgVariableRecords: &DPUsers); |
620 | for (auto *DII : DbgUsers) |
621 | DII->setKillLocation(); |
622 | for (auto *DVR : DPUsers) |
623 | DVR->setKillLocation(); |
624 | return !DbgUsers.empty() || !DPUsers.empty(); |
625 | } |
626 | |
627 | /// areAllUsesEqual - Check whether the uses of a value are all the same. |
628 | /// This is similar to Instruction::hasOneUse() except this will also return |
629 | /// true when there are no uses or multiple uses that all refer to the same |
630 | /// value. |
631 | static bool areAllUsesEqual(Instruction *I) { |
632 | Value::user_iterator UI = I->user_begin(); |
633 | Value::user_iterator UE = I->user_end(); |
634 | if (UI == UE) |
635 | return true; |
636 | |
637 | User *TheUse = *UI; |
638 | for (++UI; UI != UE; ++UI) { |
639 | if (*UI != TheUse) |
640 | return false; |
641 | } |
642 | return true; |
643 | } |
644 | |
645 | /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively |
646 | /// dead PHI node, due to being a def-use chain of single-use nodes that |
647 | /// either forms a cycle or is terminated by a trivially dead instruction, |
648 | /// delete it. If that makes any of its operands trivially dead, delete them |
649 | /// too, recursively. Return true if a change was made. |
650 | bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, |
651 | const TargetLibraryInfo *TLI, |
652 | llvm::MemorySSAUpdater *MSSAU) { |
653 | SmallPtrSet<Instruction*, 4> Visited; |
654 | for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); |
655 | I = cast<Instruction>(Val: *I->user_begin())) { |
656 | if (I->use_empty()) |
657 | return RecursivelyDeleteTriviallyDeadInstructions(V: I, TLI, MSSAU); |
658 | |
659 | // If we find an instruction more than once, we're on a cycle that |
660 | // won't prove fruitful. |
661 | if (!Visited.insert(Ptr: I).second) { |
662 | // Break the cycle and delete the instruction and its operands. |
663 | I->replaceAllUsesWith(V: PoisonValue::get(T: I->getType())); |
664 | (void)RecursivelyDeleteTriviallyDeadInstructions(V: I, TLI, MSSAU); |
665 | return true; |
666 | } |
667 | } |
668 | return false; |
669 | } |
670 | |
671 | static bool |
672 | simplifyAndDCEInstruction(Instruction *I, |
673 | SmallSetVector<Instruction *, 16> &WorkList, |
674 | const DataLayout &DL, |
675 | const TargetLibraryInfo *TLI) { |
676 | if (isInstructionTriviallyDead(I, TLI)) { |
677 | salvageDebugInfo(I&: *I); |
678 | |
679 | // Null out all of the instruction's operands to see if any operand becomes |
680 | // dead as we go. |
681 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
682 | Value *OpV = I->getOperand(i); |
683 | I->setOperand(i, Val: nullptr); |
684 | |
685 | if (!OpV->use_empty() || I == OpV) |
686 | continue; |
687 | |
688 | // If the operand is an instruction that became dead as we nulled out the |
689 | // operand, and if it is 'trivially' dead, delete it in a future loop |
690 | // iteration. |
691 | if (Instruction *OpI = dyn_cast<Instruction>(Val: OpV)) |
692 | if (isInstructionTriviallyDead(I: OpI, TLI)) |
693 | WorkList.insert(X: OpI); |
694 | } |
695 | |
696 | I->eraseFromParent(); |
697 | |
698 | return true; |
699 | } |
700 | |
701 | if (Value *SimpleV = simplifyInstruction(I, Q: DL)) { |
702 | // Add the users to the worklist. CAREFUL: an instruction can use itself, |
703 | // in the case of a phi node. |
704 | for (User *U : I->users()) { |
705 | if (U != I) { |
706 | WorkList.insert(X: cast<Instruction>(Val: U)); |
707 | } |
708 | } |
709 | |
710 | // Replace the instruction with its simplified value. |
711 | bool Changed = false; |
712 | if (!I->use_empty()) { |
713 | I->replaceAllUsesWith(V: SimpleV); |
714 | Changed = true; |
715 | } |
716 | if (isInstructionTriviallyDead(I, TLI)) { |
717 | I->eraseFromParent(); |
718 | Changed = true; |
719 | } |
720 | return Changed; |
721 | } |
722 | return false; |
723 | } |
724 | |
725 | /// SimplifyInstructionsInBlock - Scan the specified basic block and try to |
726 | /// simplify any instructions in it and recursively delete dead instructions. |
727 | /// |
728 | /// This returns true if it changed the code, note that it can delete |
729 | /// instructions in other blocks as well in this block. |
730 | bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, |
731 | const TargetLibraryInfo *TLI) { |
732 | bool MadeChange = false; |
733 | const DataLayout &DL = BB->getDataLayout(); |
734 | |
735 | #ifndef NDEBUG |
736 | // In debug builds, ensure that the terminator of the block is never replaced |
737 | // or deleted by these simplifications. The idea of simplification is that it |
738 | // cannot introduce new instructions, and there is no way to replace the |
739 | // terminator of a block without introducing a new instruction. |
740 | AssertingVH<Instruction> TerminatorVH(&BB->back()); |
741 | #endif |
742 | |
743 | SmallSetVector<Instruction *, 16> WorkList; |
744 | // Iterate over the original function, only adding insts to the worklist |
745 | // if they actually need to be revisited. This avoids having to pre-init |
746 | // the worklist with the entire function's worth of instructions. |
747 | for (BasicBlock::iterator BI = BB->begin(), E = std::prev(x: BB->end()); |
748 | BI != E;) { |
749 | assert(!BI->isTerminator()); |
750 | Instruction *I = &*BI; |
751 | ++BI; |
752 | |
753 | // We're visiting this instruction now, so make sure it's not in the |
754 | // worklist from an earlier visit. |
755 | if (!WorkList.count(key: I)) |
756 | MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
757 | } |
758 | |
759 | while (!WorkList.empty()) { |
760 | Instruction *I = WorkList.pop_back_val(); |
761 | MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
762 | } |
763 | return MadeChange; |
764 | } |
765 | |
766 | //===----------------------------------------------------------------------===// |
767 | // Control Flow Graph Restructuring. |
768 | // |
769 | |
770 | void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, |
771 | DomTreeUpdater *DTU) { |
772 | |
773 | // If BB has single-entry PHI nodes, fold them. |
774 | while (PHINode *PN = dyn_cast<PHINode>(Val: DestBB->begin())) { |
775 | Value *NewVal = PN->getIncomingValue(i: 0); |
776 | // Replace self referencing PHI with poison, it must be dead. |
777 | if (NewVal == PN) NewVal = PoisonValue::get(T: PN->getType()); |
778 | PN->replaceAllUsesWith(V: NewVal); |
779 | PN->eraseFromParent(); |
780 | } |
781 | |
782 | BasicBlock *PredBB = DestBB->getSinglePredecessor(); |
783 | assert(PredBB && "Block doesn't have a single predecessor!" ); |
784 | |
785 | bool ReplaceEntryBB = PredBB->isEntryBlock(); |
786 | |
787 | // DTU updates: Collect all the edges that enter |
788 | // PredBB. These dominator edges will be redirected to DestBB. |
789 | SmallVector<DominatorTree::UpdateType, 32> Updates; |
790 | |
791 | if (DTU) { |
792 | // To avoid processing the same predecessor more than once. |
793 | SmallPtrSet<BasicBlock *, 2> SeenPreds; |
794 | Updates.reserve(N: Updates.size() + 2 * pred_size(BB: PredBB) + 1); |
795 | for (BasicBlock *PredOfPredBB : predecessors(BB: PredBB)) |
796 | // This predecessor of PredBB may already have DestBB as a successor. |
797 | if (PredOfPredBB != PredBB) |
798 | if (SeenPreds.insert(Ptr: PredOfPredBB).second) |
799 | Updates.push_back(Elt: {DominatorTree::Insert, PredOfPredBB, DestBB}); |
800 | SeenPreds.clear(); |
801 | for (BasicBlock *PredOfPredBB : predecessors(BB: PredBB)) |
802 | if (SeenPreds.insert(Ptr: PredOfPredBB).second) |
803 | Updates.push_back(Elt: {DominatorTree::Delete, PredOfPredBB, PredBB}); |
804 | Updates.push_back(Elt: {DominatorTree::Delete, PredBB, DestBB}); |
805 | } |
806 | |
807 | // Zap anything that took the address of DestBB. Not doing this will give the |
808 | // address an invalid value. |
809 | if (DestBB->hasAddressTaken()) { |
810 | BlockAddress *BA = BlockAddress::get(BB: DestBB); |
811 | Constant *Replacement = |
812 | ConstantInt::get(Ty: Type::getInt32Ty(C&: BA->getContext()), V: 1); |
813 | BA->replaceAllUsesWith(V: ConstantExpr::getIntToPtr(C: Replacement, |
814 | Ty: BA->getType())); |
815 | BA->destroyConstant(); |
816 | } |
817 | |
818 | // Anything that branched to PredBB now branches to DestBB. |
819 | PredBB->replaceAllUsesWith(V: DestBB); |
820 | |
821 | // Splice all the instructions from PredBB to DestBB. |
822 | PredBB->getTerminator()->eraseFromParent(); |
823 | DestBB->splice(ToIt: DestBB->begin(), FromBB: PredBB); |
824 | new UnreachableInst(PredBB->getContext(), PredBB); |
825 | |
826 | // If the PredBB is the entry block of the function, move DestBB up to |
827 | // become the entry block after we erase PredBB. |
828 | if (ReplaceEntryBB) |
829 | DestBB->moveAfter(MovePos: PredBB); |
830 | |
831 | if (DTU) { |
832 | assert(PredBB->size() == 1 && |
833 | isa<UnreachableInst>(PredBB->getTerminator()) && |
834 | "The successor list of PredBB isn't empty before " |
835 | "applying corresponding DTU updates." ); |
836 | DTU->applyUpdatesPermissive(Updates); |
837 | DTU->deleteBB(DelBB: PredBB); |
838 | // Recalculation of DomTree is needed when updating a forward DomTree and |
839 | // the Entry BB is replaced. |
840 | if (ReplaceEntryBB && DTU->hasDomTree()) { |
841 | // The entry block was removed and there is no external interface for |
842 | // the dominator tree to be notified of this change. In this corner-case |
843 | // we recalculate the entire tree. |
844 | DTU->recalculate(F&: *(DestBB->getParent())); |
845 | } |
846 | } |
847 | |
848 | else { |
849 | PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. |
850 | } |
851 | } |
852 | |
853 | /// Return true if we can choose one of these values to use in place of the |
854 | /// other. Note that we will always choose the non-undef value to keep. |
855 | static bool CanMergeValues(Value *First, Value *Second) { |
856 | return First == Second || isa<UndefValue>(Val: First) || isa<UndefValue>(Val: Second); |
857 | } |
858 | |
859 | /// Return true if we can fold BB, an almost-empty BB ending in an unconditional |
860 | /// branch to Succ, into Succ. |
861 | /// |
862 | /// Assumption: Succ is the single successor for BB. |
863 | static bool |
864 | CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, |
865 | const SmallPtrSetImpl<BasicBlock *> &BBPreds) { |
866 | assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!" ); |
867 | |
868 | LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " |
869 | << Succ->getName() << "\n" ); |
870 | // Shortcut, if there is only a single predecessor it must be BB and merging |
871 | // is always safe |
872 | if (Succ->getSinglePredecessor()) |
873 | return true; |
874 | |
875 | // Look at all the phi nodes in Succ, to see if they present a conflict when |
876 | // merging these blocks |
877 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(Val: I); ++I) { |
878 | PHINode *PN = cast<PHINode>(Val&: I); |
879 | |
880 | // If the incoming value from BB is again a PHINode in |
881 | // BB which has the same incoming value for *PI as PN does, we can |
882 | // merge the phi nodes and then the blocks can still be merged |
883 | PHINode *BBPN = dyn_cast<PHINode>(Val: PN->getIncomingValueForBlock(BB)); |
884 | if (BBPN && BBPN->getParent() == BB) { |
885 | for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
886 | BasicBlock *IBB = PN->getIncomingBlock(i: PI); |
887 | if (BBPreds.count(Ptr: IBB) && |
888 | !CanMergeValues(First: BBPN->getIncomingValueForBlock(BB: IBB), |
889 | Second: PN->getIncomingValue(i: PI))) { |
890 | LLVM_DEBUG(dbgs() |
891 | << "Can't fold, phi node " << PN->getName() << " in " |
892 | << Succ->getName() << " is conflicting with " |
893 | << BBPN->getName() << " with regard to common predecessor " |
894 | << IBB->getName() << "\n" ); |
895 | return false; |
896 | } |
897 | } |
898 | } else { |
899 | Value* Val = PN->getIncomingValueForBlock(BB); |
900 | for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
901 | // See if the incoming value for the common predecessor is equal to the |
902 | // one for BB, in which case this phi node will not prevent the merging |
903 | // of the block. |
904 | BasicBlock *IBB = PN->getIncomingBlock(i: PI); |
905 | if (BBPreds.count(Ptr: IBB) && |
906 | !CanMergeValues(First: Val, Second: PN->getIncomingValue(i: PI))) { |
907 | LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() |
908 | << " in " << Succ->getName() |
909 | << " is conflicting with regard to common " |
910 | << "predecessor " << IBB->getName() << "\n" ); |
911 | return false; |
912 | } |
913 | } |
914 | } |
915 | } |
916 | |
917 | return true; |
918 | } |
919 | |
920 | using PredBlockVector = SmallVector<BasicBlock *, 16>; |
921 | using IncomingValueMap = SmallDenseMap<BasicBlock *, Value *, 16>; |
922 | |
923 | /// Determines the value to use as the phi node input for a block. |
924 | /// |
925 | /// Select between \p OldVal any value that we know flows from \p BB |
926 | /// to a particular phi on the basis of which one (if either) is not |
927 | /// undef. Update IncomingValues based on the selected value. |
928 | /// |
929 | /// \param OldVal The value we are considering selecting. |
930 | /// \param BB The block that the value flows in from. |
931 | /// \param IncomingValues A map from block-to-value for other phi inputs |
932 | /// that we have examined. |
933 | /// |
934 | /// \returns the selected value. |
935 | static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, |
936 | IncomingValueMap &IncomingValues) { |
937 | if (!isa<UndefValue>(Val: OldVal)) { |
938 | assert((!IncomingValues.count(BB) || |
939 | IncomingValues.find(BB)->second == OldVal) && |
940 | "Expected OldVal to match incoming value from BB!" ); |
941 | |
942 | IncomingValues.insert(KV: std::make_pair(x&: BB, y&: OldVal)); |
943 | return OldVal; |
944 | } |
945 | |
946 | IncomingValueMap::const_iterator It = IncomingValues.find(Val: BB); |
947 | if (It != IncomingValues.end()) return It->second; |
948 | |
949 | return OldVal; |
950 | } |
951 | |
952 | /// Create a map from block to value for the operands of a |
953 | /// given phi. |
954 | /// |
955 | /// Create a map from block to value for each non-undef value flowing |
956 | /// into \p PN. |
957 | /// |
958 | /// \param PN The phi we are collecting the map for. |
959 | /// \param IncomingValues [out] The map from block to value for this phi. |
960 | static void gatherIncomingValuesToPhi(PHINode *PN, |
961 | IncomingValueMap &IncomingValues) { |
962 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
963 | BasicBlock *BB = PN->getIncomingBlock(i); |
964 | Value *V = PN->getIncomingValue(i); |
965 | |
966 | if (!isa<UndefValue>(Val: V)) |
967 | IncomingValues.insert(KV: std::make_pair(x&: BB, y&: V)); |
968 | } |
969 | } |
970 | |
971 | /// Replace the incoming undef values to a phi with the values |
972 | /// from a block-to-value map. |
973 | /// |
974 | /// \param PN The phi we are replacing the undefs in. |
975 | /// \param IncomingValues A map from block to value. |
976 | static void replaceUndefValuesInPhi(PHINode *PN, |
977 | const IncomingValueMap &IncomingValues) { |
978 | SmallVector<unsigned> TrueUndefOps; |
979 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
980 | Value *V = PN->getIncomingValue(i); |
981 | |
982 | if (!isa<UndefValue>(Val: V)) continue; |
983 | |
984 | BasicBlock *BB = PN->getIncomingBlock(i); |
985 | IncomingValueMap::const_iterator It = IncomingValues.find(Val: BB); |
986 | |
987 | // Keep track of undef/poison incoming values. Those must match, so we fix |
988 | // them up below if needed. |
989 | // Note: this is conservatively correct, but we could try harder and group |
990 | // the undef values per incoming basic block. |
991 | if (It == IncomingValues.end()) { |
992 | TrueUndefOps.push_back(Elt: i); |
993 | continue; |
994 | } |
995 | |
996 | // There is a defined value for this incoming block, so map this undef |
997 | // incoming value to the defined value. |
998 | PN->setIncomingValue(i, V: It->second); |
999 | } |
1000 | |
1001 | // If there are both undef and poison values incoming, then convert those |
1002 | // values to undef. It is invalid to have different values for the same |
1003 | // incoming block. |
1004 | unsigned PoisonCount = count_if(Range&: TrueUndefOps, P: [&](unsigned i) { |
1005 | return isa<PoisonValue>(Val: PN->getIncomingValue(i)); |
1006 | }); |
1007 | if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { |
1008 | for (unsigned i : TrueUndefOps) |
1009 | PN->setIncomingValue(i, V: UndefValue::get(T: PN->getType())); |
1010 | } |
1011 | } |
1012 | |
1013 | // Only when they shares a single common predecessor, return true. |
1014 | // Only handles cases when BB can't be merged while its predecessors can be |
1015 | // redirected. |
1016 | static bool |
1017 | CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, |
1018 | const SmallPtrSetImpl<BasicBlock *> &BBPreds, |
1019 | BasicBlock *&CommonPred) { |
1020 | |
1021 | // There must be phis in BB, otherwise BB will be merged into Succ directly |
1022 | if (BB->phis().empty() || Succ->phis().empty()) |
1023 | return false; |
1024 | |
1025 | // BB must have predecessors not shared that can be redirected to Succ |
1026 | if (!BB->hasNPredecessorsOrMore(N: 2)) |
1027 | return false; |
1028 | |
1029 | if (any_of(Range: BBPreds, P: [](const BasicBlock *Pred) { |
1030 | return isa<IndirectBrInst>(Val: Pred->getTerminator()); |
1031 | })) |
1032 | return false; |
1033 | |
1034 | // Get the single common predecessor of both BB and Succ. Return false |
1035 | // when there are more than one common predecessors. |
1036 | for (BasicBlock *SuccPred : predecessors(BB: Succ)) { |
1037 | if (BBPreds.count(Ptr: SuccPred)) { |
1038 | if (CommonPred) |
1039 | return false; |
1040 | CommonPred = SuccPred; |
1041 | } |
1042 | } |
1043 | |
1044 | return true; |
1045 | } |
1046 | |
1047 | /// Check whether removing \p BB will make the phis in its \p Succ have too |
1048 | /// many incoming entries. This function does not check whether \p BB is |
1049 | /// foldable or not. |
1050 | static bool introduceTooManyPhiEntries(BasicBlock *BB, BasicBlock *Succ) { |
1051 | // If BB only has one predecessor, then removing it will not introduce more |
1052 | // incoming edges for phis. |
1053 | if (BB->hasNPredecessors(N: 1)) |
1054 | return false; |
1055 | unsigned NumPreds = pred_size(BB); |
1056 | unsigned NumChangedPhi = 0; |
1057 | for (auto &Phi : Succ->phis()) { |
1058 | // If the incoming value is a phi and the phi is defined in BB, |
1059 | // then removing BB will not increase the total phi entries of the ir. |
1060 | if (auto *IncomingPhi = dyn_cast<PHINode>(Val: Phi.getIncomingValueForBlock(BB))) |
1061 | if (IncomingPhi->getParent() == BB) |
1062 | continue; |
1063 | // Otherwise, we need to add entries to the phi |
1064 | NumChangedPhi++; |
1065 | } |
1066 | // For every phi that needs to be changed, (NumPreds - 1) new entries will be |
1067 | // added. If the total increase in phi entries exceeds |
1068 | // MaxPhiEntriesIncreaseAfterRemovingEmptyBlock, it will be considered as |
1069 | // introducing too many new phi entries. |
1070 | return (NumPreds - 1) * NumChangedPhi > |
1071 | MaxPhiEntriesIncreaseAfterRemovingEmptyBlock; |
1072 | } |
1073 | |
1074 | /// Replace a value flowing from a block to a phi with |
1075 | /// potentially multiple instances of that value flowing from the |
1076 | /// block's predecessors to the phi. |
1077 | /// |
1078 | /// \param BB The block with the value flowing into the phi. |
1079 | /// \param BBPreds The predecessors of BB. |
1080 | /// \param PN The phi that we are updating. |
1081 | /// \param CommonPred The common predecessor of BB and PN's BasicBlock |
1082 | static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, |
1083 | const PredBlockVector &BBPreds, |
1084 | PHINode *PN, |
1085 | BasicBlock *CommonPred) { |
1086 | Value *OldVal = PN->removeIncomingValue(BB, DeletePHIIfEmpty: false); |
1087 | assert(OldVal && "No entry in PHI for Pred BB!" ); |
1088 | |
1089 | IncomingValueMap IncomingValues; |
1090 | |
1091 | // We are merging two blocks - BB, and the block containing PN - and |
1092 | // as a result we need to redirect edges from the predecessors of BB |
1093 | // to go to the block containing PN, and update PN |
1094 | // accordingly. Since we allow merging blocks in the case where the |
1095 | // predecessor and successor blocks both share some predecessors, |
1096 | // and where some of those common predecessors might have undef |
1097 | // values flowing into PN, we want to rewrite those values to be |
1098 | // consistent with the non-undef values. |
1099 | |
1100 | gatherIncomingValuesToPhi(PN, IncomingValues); |
1101 | |
1102 | // If this incoming value is one of the PHI nodes in BB, the new entries |
1103 | // in the PHI node are the entries from the old PHI. |
1104 | if (isa<PHINode>(Val: OldVal) && cast<PHINode>(Val: OldVal)->getParent() == BB) { |
1105 | PHINode *OldValPN = cast<PHINode>(Val: OldVal); |
1106 | for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { |
1107 | // Note that, since we are merging phi nodes and BB and Succ might |
1108 | // have common predecessors, we could end up with a phi node with |
1109 | // identical incoming branches. This will be cleaned up later (and |
1110 | // will trigger asserts if we try to clean it up now, without also |
1111 | // simplifying the corresponding conditional branch). |
1112 | BasicBlock *PredBB = OldValPN->getIncomingBlock(i); |
1113 | |
1114 | if (PredBB == CommonPred) |
1115 | continue; |
1116 | |
1117 | Value *PredVal = OldValPN->getIncomingValue(i); |
1118 | Value *Selected = |
1119 | selectIncomingValueForBlock(OldVal: PredVal, BB: PredBB, IncomingValues); |
1120 | |
1121 | // And add a new incoming value for this predecessor for the |
1122 | // newly retargeted branch. |
1123 | PN->addIncoming(V: Selected, BB: PredBB); |
1124 | } |
1125 | if (CommonPred) |
1126 | PN->addIncoming(V: OldValPN->getIncomingValueForBlock(BB: CommonPred), BB); |
1127 | |
1128 | } else { |
1129 | for (BasicBlock *PredBB : BBPreds) { |
1130 | // Update existing incoming values in PN for this |
1131 | // predecessor of BB. |
1132 | if (PredBB == CommonPred) |
1133 | continue; |
1134 | |
1135 | Value *Selected = |
1136 | selectIncomingValueForBlock(OldVal, BB: PredBB, IncomingValues); |
1137 | |
1138 | // And add a new incoming value for this predecessor for the |
1139 | // newly retargeted branch. |
1140 | PN->addIncoming(V: Selected, BB: PredBB); |
1141 | } |
1142 | if (CommonPred) |
1143 | PN->addIncoming(V: OldVal, BB); |
1144 | } |
1145 | |
1146 | replaceUndefValuesInPhi(PN, IncomingValues); |
1147 | } |
1148 | |
1149 | bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, |
1150 | DomTreeUpdater *DTU) { |
1151 | assert(BB != &BB->getParent()->getEntryBlock() && |
1152 | "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!" ); |
1153 | |
1154 | // We can't simplify infinite loops. |
1155 | BasicBlock *Succ = cast<BranchInst>(Val: BB->getTerminator())->getSuccessor(i: 0); |
1156 | if (BB == Succ) |
1157 | return false; |
1158 | |
1159 | SmallPtrSet<BasicBlock *, 16> BBPreds(llvm::from_range, predecessors(BB)); |
1160 | |
1161 | // The single common predecessor of BB and Succ when BB cannot be killed |
1162 | BasicBlock *CommonPred = nullptr; |
1163 | |
1164 | bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); |
1165 | |
1166 | // Even if we can not fold BB into Succ, we may be able to redirect the |
1167 | // predecessors of BB to Succ. |
1168 | bool BBPhisMergeable = BBKillable || CanRedirectPredsOfEmptyBBToSucc( |
1169 | BB, Succ, BBPreds, CommonPred); |
1170 | |
1171 | if ((!BBKillable && !BBPhisMergeable) || introduceTooManyPhiEntries(BB, Succ)) |
1172 | return false; |
1173 | |
1174 | // Check to see if merging these blocks/phis would cause conflicts for any of |
1175 | // the phi nodes in BB or Succ. If not, we can safely merge. |
1176 | |
1177 | // Check for cases where Succ has multiple predecessors and a PHI node in BB |
1178 | // has uses which will not disappear when the PHI nodes are merged. It is |
1179 | // possible to handle such cases, but difficult: it requires checking whether |
1180 | // BB dominates Succ, which is non-trivial to calculate in the case where |
1181 | // Succ has multiple predecessors. Also, it requires checking whether |
1182 | // constructing the necessary self-referential PHI node doesn't introduce any |
1183 | // conflicts; this isn't too difficult, but the previous code for doing this |
1184 | // was incorrect. |
1185 | // |
1186 | // Note that if this check finds a live use, BB dominates Succ, so BB is |
1187 | // something like a loop pre-header (or rarely, a part of an irreducible CFG); |
1188 | // folding the branch isn't profitable in that case anyway. |
1189 | if (!Succ->getSinglePredecessor()) { |
1190 | BasicBlock::iterator BBI = BB->begin(); |
1191 | while (isa<PHINode>(Val: *BBI)) { |
1192 | for (Use &U : BBI->uses()) { |
1193 | if (PHINode* PN = dyn_cast<PHINode>(Val: U.getUser())) { |
1194 | if (PN->getIncomingBlock(U) != BB) |
1195 | return false; |
1196 | } else { |
1197 | return false; |
1198 | } |
1199 | } |
1200 | ++BBI; |
1201 | } |
1202 | } |
1203 | |
1204 | if (BBPhisMergeable && CommonPred) |
1205 | LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() |
1206 | << " and " << Succ->getName() << " : " |
1207 | << CommonPred->getName() << "\n" ); |
1208 | |
1209 | // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop |
1210 | // metadata. |
1211 | // |
1212 | // FIXME: This is a stop-gap solution to preserve inner-loop metadata given |
1213 | // current status (that loop metadata is implemented as metadata attached to |
1214 | // the branch instruction in the loop latch block). To quote from review |
1215 | // comments, "the current representation of loop metadata (using a loop latch |
1216 | // terminator attachment) is known to be fundamentally broken. Loop latches |
1217 | // are not uniquely associated with loops (both in that a latch can be part of |
1218 | // multiple loops and a loop may have multiple latches). Loop headers are. The |
1219 | // solution to this problem is also known: Add support for basic block |
1220 | // metadata, and attach loop metadata to the loop header." |
1221 | // |
1222 | // Why bail out: |
1223 | // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is |
1224 | // the latch for inner-loop (see reason below), so bail out to prerserve |
1225 | // inner-loop metadata rather than eliminating 'BB' and attaching its metadata |
1226 | // to this inner-loop. |
1227 | // - The reason we believe 'BB' and 'BB->Pred' have different inner-most |
1228 | // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, |
1229 | // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of |
1230 | // one self-looping basic block, which is contradictory with the assumption. |
1231 | // |
1232 | // To illustrate how inner-loop metadata is dropped: |
1233 | // |
1234 | // CFG Before |
1235 | // |
1236 | // BB is while.cond.exit, attached with loop metdata md2. |
1237 | // BB->Pred is for.body, attached with loop metadata md1. |
1238 | // |
1239 | // entry |
1240 | // | |
1241 | // v |
1242 | // ---> while.cond -------------> while.end |
1243 | // | | |
1244 | // | v |
1245 | // | while.body |
1246 | // | | |
1247 | // | v |
1248 | // | for.body <---- (md1) |
1249 | // | | |______| |
1250 | // | v |
1251 | // | while.cond.exit (md2) |
1252 | // | | |
1253 | // |_______| |
1254 | // |
1255 | // CFG After |
1256 | // |
1257 | // while.cond1 is the merge of while.cond.exit and while.cond above. |
1258 | // for.body is attached with md2, and md1 is dropped. |
1259 | // If LoopSimplify runs later (as a part of loop pass), it could create |
1260 | // dedicated exits for inner-loop (essentially adding `while.cond.exit` |
1261 | // back), but won't it won't see 'md1' nor restore it for the inner-loop. |
1262 | // |
1263 | // entry |
1264 | // | |
1265 | // v |
1266 | // ---> while.cond1 -------------> while.end |
1267 | // | | |
1268 | // | v |
1269 | // | while.body |
1270 | // | | |
1271 | // | v |
1272 | // | for.body <---- (md2) |
1273 | // |_______| |______| |
1274 | if (Instruction *TI = BB->getTerminator()) |
1275 | if (TI->hasNonDebugLocLoopMetadata()) |
1276 | for (BasicBlock *Pred : predecessors(BB)) |
1277 | if (Instruction *PredTI = Pred->getTerminator()) |
1278 | if (PredTI->hasNonDebugLocLoopMetadata()) |
1279 | return false; |
1280 | |
1281 | if (BBKillable) |
1282 | LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); |
1283 | else if (BBPhisMergeable) |
1284 | LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); |
1285 | |
1286 | SmallVector<DominatorTree::UpdateType, 32> Updates; |
1287 | |
1288 | if (DTU) { |
1289 | // To avoid processing the same predecessor more than once. |
1290 | SmallPtrSet<BasicBlock *, 8> SeenPreds; |
1291 | // All predecessors of BB (except the common predecessor) will be moved to |
1292 | // Succ. |
1293 | Updates.reserve(N: Updates.size() + 2 * pred_size(BB) + 1); |
1294 | SmallPtrSet<BasicBlock *, 16> SuccPreds(llvm::from_range, |
1295 | predecessors(BB: Succ)); |
1296 | for (auto *PredOfBB : predecessors(BB)) { |
1297 | // Do not modify those common predecessors of BB and Succ |
1298 | if (!SuccPreds.contains(Ptr: PredOfBB)) |
1299 | if (SeenPreds.insert(Ptr: PredOfBB).second) |
1300 | Updates.push_back(Elt: {DominatorTree::Insert, PredOfBB, Succ}); |
1301 | } |
1302 | |
1303 | SeenPreds.clear(); |
1304 | |
1305 | for (auto *PredOfBB : predecessors(BB)) |
1306 | // When BB cannot be killed, do not remove the edge between BB and |
1307 | // CommonPred. |
1308 | if (SeenPreds.insert(Ptr: PredOfBB).second && PredOfBB != CommonPred) |
1309 | Updates.push_back(Elt: {DominatorTree::Delete, PredOfBB, BB}); |
1310 | |
1311 | if (BBKillable) |
1312 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
1313 | } |
1314 | |
1315 | if (isa<PHINode>(Val: Succ->begin())) { |
1316 | // If there is more than one pred of succ, and there are PHI nodes in |
1317 | // the successor, then we need to add incoming edges for the PHI nodes |
1318 | // |
1319 | const PredBlockVector BBPreds(predecessors(BB)); |
1320 | |
1321 | // Loop over all of the PHI nodes in the successor of BB. |
1322 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(Val: I); ++I) { |
1323 | PHINode *PN = cast<PHINode>(Val&: I); |
1324 | redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); |
1325 | } |
1326 | } |
1327 | |
1328 | if (Succ->getSinglePredecessor()) { |
1329 | // BB is the only predecessor of Succ, so Succ will end up with exactly |
1330 | // the same predecessors BB had. |
1331 | // Copy over any phi, debug or lifetime instruction. |
1332 | BB->getTerminator()->eraseFromParent(); |
1333 | Succ->splice(ToIt: Succ->getFirstNonPHIIt(), FromBB: BB); |
1334 | } else { |
1335 | while (PHINode *PN = dyn_cast<PHINode>(Val: &BB->front())) { |
1336 | // We explicitly check for such uses for merging phis. |
1337 | assert(PN->use_empty() && "There shouldn't be any uses here!" ); |
1338 | PN->eraseFromParent(); |
1339 | } |
1340 | } |
1341 | |
1342 | // If the unconditional branch we replaced contains non-debug llvm.loop |
1343 | // metadata, we add the metadata to the branch instructions in the |
1344 | // predecessors. |
1345 | if (Instruction *TI = BB->getTerminator()) |
1346 | if (TI->hasNonDebugLocLoopMetadata()) { |
1347 | MDNode *LoopMD = TI->getMetadata(KindID: LLVMContext::MD_loop); |
1348 | for (BasicBlock *Pred : predecessors(BB)) |
1349 | Pred->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: LoopMD); |
1350 | } |
1351 | |
1352 | if (BBKillable) { |
1353 | // Everything that jumped to BB now goes to Succ. |
1354 | BB->replaceAllUsesWith(V: Succ); |
1355 | |
1356 | if (!Succ->hasName()) |
1357 | Succ->takeName(V: BB); |
1358 | |
1359 | // Clear the successor list of BB to match updates applying to DTU later. |
1360 | if (BB->getTerminator()) |
1361 | BB->back().eraseFromParent(); |
1362 | |
1363 | new UnreachableInst(BB->getContext(), BB); |
1364 | assert(succ_empty(BB) && "The successor list of BB isn't empty before " |
1365 | "applying corresponding DTU updates." ); |
1366 | } else if (BBPhisMergeable) { |
1367 | // Everything except CommonPred that jumped to BB now goes to Succ. |
1368 | BB->replaceUsesWithIf(New: Succ, ShouldReplace: [BBPreds, CommonPred](Use &U) -> bool { |
1369 | if (Instruction *UseInst = dyn_cast<Instruction>(Val: U.getUser())) |
1370 | return UseInst->getParent() != CommonPred && |
1371 | BBPreds.contains(Ptr: UseInst->getParent()); |
1372 | return false; |
1373 | }); |
1374 | } |
1375 | |
1376 | if (DTU) |
1377 | DTU->applyUpdates(Updates); |
1378 | |
1379 | if (BBKillable) |
1380 | DeleteDeadBlock(BB, DTU); |
1381 | |
1382 | return true; |
1383 | } |
1384 | |
1385 | static bool |
1386 | EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, |
1387 | SmallPtrSetImpl<PHINode *> &ToRemove) { |
1388 | // This implementation doesn't currently consider undef operands |
1389 | // specially. Theoretically, two phis which are identical except for |
1390 | // one having an undef where the other doesn't could be collapsed. |
1391 | |
1392 | bool Changed = false; |
1393 | |
1394 | // Examine each PHI. |
1395 | // Note that increment of I must *NOT* be in the iteration_expression, since |
1396 | // we don't want to immediately advance when we restart from the beginning. |
1397 | for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(Val&: I);) { |
1398 | ++I; |
1399 | // Is there an identical PHI node in this basic block? |
1400 | // Note that we only look in the upper square's triangle, |
1401 | // we already checked that the lower triangle PHI's aren't identical. |
1402 | for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(Val&: J); ++J) { |
1403 | if (ToRemove.contains(Ptr: DuplicatePN)) |
1404 | continue; |
1405 | if (!DuplicatePN->isIdenticalToWhenDefined(I: PN)) |
1406 | continue; |
1407 | // A duplicate. Replace this PHI with the base PHI. |
1408 | ++NumPHICSEs; |
1409 | DuplicatePN->replaceAllUsesWith(V: PN); |
1410 | ToRemove.insert(Ptr: DuplicatePN); |
1411 | Changed = true; |
1412 | |
1413 | // The RAUW can change PHIs that we already visited. |
1414 | I = BB->begin(); |
1415 | break; // Start over from the beginning. |
1416 | } |
1417 | } |
1418 | return Changed; |
1419 | } |
1420 | |
1421 | static bool |
1422 | EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, |
1423 | SmallPtrSetImpl<PHINode *> &ToRemove) { |
1424 | // This implementation doesn't currently consider undef operands |
1425 | // specially. Theoretically, two phis which are identical except for |
1426 | // one having an undef where the other doesn't could be collapsed. |
1427 | |
1428 | struct PHIDenseMapInfo { |
1429 | static PHINode *getEmptyKey() { |
1430 | return DenseMapInfo<PHINode *>::getEmptyKey(); |
1431 | } |
1432 | |
1433 | static PHINode *getTombstoneKey() { |
1434 | return DenseMapInfo<PHINode *>::getTombstoneKey(); |
1435 | } |
1436 | |
1437 | static bool isSentinel(PHINode *PN) { |
1438 | return PN == getEmptyKey() || PN == getTombstoneKey(); |
1439 | } |
1440 | |
1441 | // WARNING: this logic must be kept in sync with |
1442 | // Instruction::isIdenticalToWhenDefined()! |
1443 | static unsigned getHashValueImpl(PHINode *PN) { |
1444 | // Compute a hash value on the operands. Instcombine will likely have |
1445 | // sorted them, which helps expose duplicates, but we have to check all |
1446 | // the operands to be safe in case instcombine hasn't run. |
1447 | return static_cast<unsigned>( |
1448 | hash_combine(args: hash_combine_range(R: PN->operand_values()), |
1449 | args: hash_combine_range(R: PN->blocks()))); |
1450 | } |
1451 | |
1452 | static unsigned getHashValue(PHINode *PN) { |
1453 | #ifndef NDEBUG |
1454 | // If -phicse-debug-hash was specified, return a constant -- this |
1455 | // will force all hashing to collide, so we'll exhaustively search |
1456 | // the table for a match, and the assertion in isEqual will fire if |
1457 | // there's a bug causing equal keys to hash differently. |
1458 | if (PHICSEDebugHash) |
1459 | return 0; |
1460 | #endif |
1461 | return getHashValueImpl(PN); |
1462 | } |
1463 | |
1464 | static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { |
1465 | if (isSentinel(PN: LHS) || isSentinel(PN: RHS)) |
1466 | return LHS == RHS; |
1467 | return LHS->isIdenticalTo(I: RHS); |
1468 | } |
1469 | |
1470 | static bool isEqual(PHINode *LHS, PHINode *RHS) { |
1471 | // These comparisons are nontrivial, so assert that equality implies |
1472 | // hash equality (DenseMap demands this as an invariant). |
1473 | bool Result = isEqualImpl(LHS, RHS); |
1474 | assert(!Result || (isSentinel(LHS) && LHS == RHS) || |
1475 | getHashValueImpl(LHS) == getHashValueImpl(RHS)); |
1476 | return Result; |
1477 | } |
1478 | }; |
1479 | |
1480 | // Set of unique PHINodes. |
1481 | DenseSet<PHINode *, PHIDenseMapInfo> PHISet; |
1482 | PHISet.reserve(Size: 4 * PHICSENumPHISmallSize); |
1483 | |
1484 | // Examine each PHI. |
1485 | bool Changed = false; |
1486 | for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(Val: I++);) { |
1487 | if (ToRemove.contains(Ptr: PN)) |
1488 | continue; |
1489 | auto Inserted = PHISet.insert(V: PN); |
1490 | if (!Inserted.second) { |
1491 | // A duplicate. Replace this PHI with its duplicate. |
1492 | ++NumPHICSEs; |
1493 | PN->replaceAllUsesWith(V: *Inserted.first); |
1494 | ToRemove.insert(Ptr: PN); |
1495 | Changed = true; |
1496 | |
1497 | // The RAUW can change PHIs that we already visited. Start over from the |
1498 | // beginning. |
1499 | PHISet.clear(); |
1500 | I = BB->begin(); |
1501 | } |
1502 | } |
1503 | |
1504 | return Changed; |
1505 | } |
1506 | |
1507 | bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, |
1508 | SmallPtrSetImpl<PHINode *> &ToRemove) { |
1509 | if ( |
1510 | #ifndef NDEBUG |
1511 | !PHICSEDebugHash && |
1512 | #endif |
1513 | hasNItemsOrLess(C: BB->phis(), N: PHICSENumPHISmallSize)) |
1514 | return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); |
1515 | return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); |
1516 | } |
1517 | |
1518 | bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { |
1519 | SmallPtrSet<PHINode *, 8> ToRemove; |
1520 | bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); |
1521 | for (PHINode *PN : ToRemove) |
1522 | PN->eraseFromParent(); |
1523 | return Changed; |
1524 | } |
1525 | |
1526 | Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, |
1527 | const DataLayout &DL) { |
1528 | V = V->stripPointerCasts(); |
1529 | |
1530 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: V)) { |
1531 | // TODO: Ideally, this function would not be called if PrefAlign is smaller |
1532 | // than the current alignment, as the known bits calculation should have |
1533 | // already taken it into account. However, this is not always the case, |
1534 | // as computeKnownBits() has a depth limit, while stripPointerCasts() |
1535 | // doesn't. |
1536 | Align CurrentAlign = AI->getAlign(); |
1537 | if (PrefAlign <= CurrentAlign) |
1538 | return CurrentAlign; |
1539 | |
1540 | // If the preferred alignment is greater than the natural stack alignment |
1541 | // then don't round up. This avoids dynamic stack realignment. |
1542 | MaybeAlign StackAlign = DL.getStackAlignment(); |
1543 | if (StackAlign && PrefAlign > *StackAlign) |
1544 | return CurrentAlign; |
1545 | AI->setAlignment(PrefAlign); |
1546 | return PrefAlign; |
1547 | } |
1548 | |
1549 | if (auto *GV = dyn_cast<GlobalVariable>(Val: V)) { |
1550 | // TODO: as above, this shouldn't be necessary. |
1551 | Align CurrentAlign = GV->getPointerAlignment(DL); |
1552 | if (PrefAlign <= CurrentAlign) |
1553 | return CurrentAlign; |
1554 | |
1555 | // If there is a large requested alignment and we can, bump up the alignment |
1556 | // of the global. If the memory we set aside for the global may not be the |
1557 | // memory used by the final program then it is impossible for us to reliably |
1558 | // enforce the preferred alignment. |
1559 | if (!GV->canIncreaseAlignment()) |
1560 | return CurrentAlign; |
1561 | |
1562 | if (GV->isThreadLocal()) { |
1563 | unsigned MaxTLSAlign = GV->getParent()->getMaxTLSAlignment() / CHAR_BIT; |
1564 | if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) |
1565 | PrefAlign = Align(MaxTLSAlign); |
1566 | } |
1567 | |
1568 | GV->setAlignment(PrefAlign); |
1569 | return PrefAlign; |
1570 | } |
1571 | |
1572 | return Align(1); |
1573 | } |
1574 | |
1575 | Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, |
1576 | const DataLayout &DL, |
1577 | const Instruction *CxtI, |
1578 | AssumptionCache *AC, |
1579 | const DominatorTree *DT) { |
1580 | assert(V->getType()->isPointerTy() && |
1581 | "getOrEnforceKnownAlignment expects a pointer!" ); |
1582 | |
1583 | KnownBits Known = computeKnownBits(V, DL, AC, CxtI, DT); |
1584 | unsigned TrailZ = Known.countMinTrailingZeros(); |
1585 | |
1586 | // Avoid trouble with ridiculously large TrailZ values, such as |
1587 | // those computed from a null pointer. |
1588 | // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). |
1589 | TrailZ = std::min(a: TrailZ, b: +Value::MaxAlignmentExponent); |
1590 | |
1591 | Align Alignment = Align(1ull << std::min(a: Known.getBitWidth() - 1, b: TrailZ)); |
1592 | |
1593 | if (PrefAlign && *PrefAlign > Alignment) |
1594 | Alignment = std::max(a: Alignment, b: tryEnforceAlignment(V, PrefAlign: *PrefAlign, DL)); |
1595 | |
1596 | // We don't need to make any adjustment. |
1597 | return Alignment; |
1598 | } |
1599 | |
1600 | ///===---------------------------------------------------------------------===// |
1601 | /// Dbg Intrinsic utilities |
1602 | /// |
1603 | |
1604 | /// See if there is a dbg.value intrinsic for DIVar for the PHI node. |
1605 | static bool PhiHasDebugValue(DILocalVariable *DIVar, |
1606 | DIExpression *DIExpr, |
1607 | PHINode *APN) { |
1608 | // Since we can't guarantee that the original dbg.declare intrinsic |
1609 | // is removed by LowerDbgDeclare(), we need to make sure that we are |
1610 | // not inserting the same dbg.value intrinsic over and over. |
1611 | SmallVector<DbgValueInst *, 1> DbgValues; |
1612 | SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; |
1613 | findDbgValues(DbgValues, V: APN, DbgVariableRecords: &DbgVariableRecords); |
1614 | for (auto *DVI : DbgValues) { |
1615 | assert(is_contained(DVI->getValues(), APN)); |
1616 | if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) |
1617 | return true; |
1618 | } |
1619 | for (auto *DVR : DbgVariableRecords) { |
1620 | assert(is_contained(DVR->location_ops(), APN)); |
1621 | if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) |
1622 | return true; |
1623 | } |
1624 | return false; |
1625 | } |
1626 | |
1627 | /// Check if the alloc size of \p ValTy is large enough to cover the variable |
1628 | /// (or fragment of the variable) described by \p DII. |
1629 | /// |
1630 | /// This is primarily intended as a helper for the different |
1631 | /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted |
1632 | /// describes an alloca'd variable, so we need to use the alloc size of the |
1633 | /// value when doing the comparison. E.g. an i1 value will be identified as |
1634 | /// covering an n-bit fragment, if the store size of i1 is at least n bits. |
1635 | static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { |
1636 | const DataLayout &DL = DII->getDataLayout(); |
1637 | TypeSize ValueSize = DL.getTypeAllocSizeInBits(Ty: ValTy); |
1638 | if (std::optional<uint64_t> FragmentSize = |
1639 | DII->getExpression()->getActiveBits(Var: DII->getVariable())) |
1640 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: TypeSize::getFixed(ExactSize: *FragmentSize)); |
1641 | |
1642 | // We can't always calculate the size of the DI variable (e.g. if it is a |
1643 | // VLA). Try to use the size of the alloca that the dbg intrinsic describes |
1644 | // instead. |
1645 | if (DII->isAddressOfVariable()) { |
1646 | // DII should have exactly 1 location when it is an address. |
1647 | assert(DII->getNumVariableLocationOps() == 1 && |
1648 | "address of variable must have exactly 1 location operand." ); |
1649 | if (auto *AI = |
1650 | dyn_cast_or_null<AllocaInst>(Val: DII->getVariableLocationOp(OpIdx: 0))) { |
1651 | if (std::optional<TypeSize> FragmentSize = |
1652 | AI->getAllocationSizeInBits(DL)) { |
1653 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: *FragmentSize); |
1654 | } |
1655 | } |
1656 | } |
1657 | // Could not determine size of variable. Conservatively return false. |
1658 | return false; |
1659 | } |
1660 | // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, |
1661 | // the replacement for dbg.values. |
1662 | static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { |
1663 | const DataLayout &DL = DVR->getModule()->getDataLayout(); |
1664 | TypeSize ValueSize = DL.getTypeAllocSizeInBits(Ty: ValTy); |
1665 | if (std::optional<uint64_t> FragmentSize = |
1666 | DVR->getExpression()->getActiveBits(Var: DVR->getVariable())) |
1667 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: TypeSize::getFixed(ExactSize: *FragmentSize)); |
1668 | |
1669 | // We can't always calculate the size of the DI variable (e.g. if it is a |
1670 | // VLA). Try to use the size of the alloca that the dbg intrinsic describes |
1671 | // instead. |
1672 | if (DVR->isAddressOfVariable()) { |
1673 | // DVR should have exactly 1 location when it is an address. |
1674 | assert(DVR->getNumVariableLocationOps() == 1 && |
1675 | "address of variable must have exactly 1 location operand." ); |
1676 | if (auto *AI = |
1677 | dyn_cast_or_null<AllocaInst>(Val: DVR->getVariableLocationOp(OpIdx: 0))) { |
1678 | if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { |
1679 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: *FragmentSize); |
1680 | } |
1681 | } |
1682 | } |
1683 | // Could not determine size of variable. Conservatively return false. |
1684 | return false; |
1685 | } |
1686 | |
1687 | static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, |
1688 | DILocalVariable *DIVar, |
1689 | DIExpression *DIExpr, |
1690 | const DebugLoc &NewLoc, |
1691 | BasicBlock::iterator Instr) { |
1692 | ValueAsMetadata *DVAM = ValueAsMetadata::get(V: DV); |
1693 | DbgVariableRecord *DVRec = |
1694 | new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); |
1695 | Instr->getParent()->insertDbgRecordBefore(DR: DVRec, Here: Instr); |
1696 | } |
1697 | |
1698 | static void insertDbgValueOrDbgVariableRecordAfter( |
1699 | DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, |
1700 | const DebugLoc &NewLoc, Instruction *Instr) { |
1701 | BasicBlock::iterator NextIt = std::next(x: Instr->getIterator()); |
1702 | NextIt.setHeadBit(true); |
1703 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, Instr: NextIt); |
1704 | } |
1705 | |
1706 | /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value |
1707 | /// that has an associated llvm.dbg.declare intrinsic. |
1708 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
1709 | StoreInst *SI, DIBuilder &Builder) { |
1710 | assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); |
1711 | auto *DIVar = DII->getVariable(); |
1712 | assert(DIVar && "Missing variable" ); |
1713 | auto *DIExpr = DII->getExpression(); |
1714 | Value *DV = SI->getValueOperand(); |
1715 | |
1716 | DebugLoc NewLoc = getDebugValueLoc(DII); |
1717 | |
1718 | // If the alloca describes the variable itself, i.e. the expression in the |
1719 | // dbg.declare doesn't start with a dereference, we can perform the |
1720 | // conversion if the value covers the entire fragment of DII. |
1721 | // If the alloca describes the *address* of DIVar, i.e. DIExpr is |
1722 | // *just* a DW_OP_deref, we use DV as is for the dbg.value. |
1723 | // We conservatively ignore other dereferences, because the following two are |
1724 | // not equivalent: |
1725 | // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) |
1726 | // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) |
1727 | // The former is adding 2 to the address of the variable, whereas the latter |
1728 | // is adding 2 to the value of the variable. As such, we insist on just a |
1729 | // deref expression. |
1730 | bool CanConvert = |
1731 | DIExpr->isDeref() || (!DIExpr->startsWithDeref() && |
1732 | valueCoversEntireFragment(ValTy: DV->getType(), DII)); |
1733 | if (CanConvert) { |
1734 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
1735 | Instr: SI->getIterator()); |
1736 | return; |
1737 | } |
1738 | |
1739 | // FIXME: If storing to a part of the variable described by the dbg.declare, |
1740 | // then we want to insert a dbg.value for the corresponding fragment. |
1741 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII |
1742 | << '\n'); |
1743 | // For now, when there is a store to parts of the variable (but we do not |
1744 | // know which part) we insert an dbg.value intrinsic to indicate that we |
1745 | // know nothing about the variable's content. |
1746 | DV = PoisonValue::get(T: DV->getType()); |
1747 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
1748 | Instr: SI->getIterator()); |
1749 | } |
1750 | |
1751 | static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { |
1752 | int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; |
1753 | return DIExpression::get(Context&: DIExpr->getContext(), |
1754 | Elements: DIExpr->getElements().drop_front(N: NumEltDropped)); |
1755 | } |
1756 | |
1757 | void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, |
1758 | DIBuilder &Builder) { |
1759 | auto *DIVar = DII->getVariable(); |
1760 | assert(DIVar && "Missing variable" ); |
1761 | auto *DIExpr = DII->getExpression(); |
1762 | DIExpr = dropInitialDeref(DIExpr); |
1763 | Value *DV = SI->getValueOperand(); |
1764 | |
1765 | DebugLoc NewLoc = getDebugValueLoc(DII); |
1766 | |
1767 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
1768 | Instr: SI->getIterator()); |
1769 | } |
1770 | |
1771 | /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value |
1772 | /// that has an associated llvm.dbg.declare intrinsic. |
1773 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
1774 | LoadInst *LI, DIBuilder &Builder) { |
1775 | auto *DIVar = DII->getVariable(); |
1776 | auto *DIExpr = DII->getExpression(); |
1777 | assert(DIVar && "Missing variable" ); |
1778 | |
1779 | if (!valueCoversEntireFragment(ValTy: LI->getType(), DII)) { |
1780 | // FIXME: If only referring to a part of the variable described by the |
1781 | // dbg.declare, then we want to insert a dbg.value for the corresponding |
1782 | // fragment. |
1783 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
1784 | << *DII << '\n'); |
1785 | return; |
1786 | } |
1787 | |
1788 | DebugLoc NewLoc = getDebugValueLoc(DII); |
1789 | |
1790 | // We are now tracking the loaded value instead of the address. In the |
1791 | // future if multi-location support is added to the IR, it might be |
1792 | // preferable to keep tracking both the loaded value and the original |
1793 | // address in case the alloca can not be elided. |
1794 | insertDbgValueOrDbgVariableRecordAfter(Builder, DV: LI, DIVar, DIExpr, NewLoc, |
1795 | Instr: LI); |
1796 | } |
1797 | |
1798 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, |
1799 | StoreInst *SI, DIBuilder &Builder) { |
1800 | assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); |
1801 | auto *DIVar = DVR->getVariable(); |
1802 | assert(DIVar && "Missing variable" ); |
1803 | auto *DIExpr = DVR->getExpression(); |
1804 | Value *DV = SI->getValueOperand(); |
1805 | |
1806 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
1807 | |
1808 | // If the alloca describes the variable itself, i.e. the expression in the |
1809 | // dbg.declare doesn't start with a dereference, we can perform the |
1810 | // conversion if the value covers the entire fragment of DII. |
1811 | // If the alloca describes the *address* of DIVar, i.e. DIExpr is |
1812 | // *just* a DW_OP_deref, we use DV as is for the dbg.value. |
1813 | // We conservatively ignore other dereferences, because the following two are |
1814 | // not equivalent: |
1815 | // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) |
1816 | // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) |
1817 | // The former is adding 2 to the address of the variable, whereas the latter |
1818 | // is adding 2 to the value of the variable. As such, we insist on just a |
1819 | // deref expression. |
1820 | bool CanConvert = |
1821 | DIExpr->isDeref() || (!DIExpr->startsWithDeref() && |
1822 | valueCoversEntireFragment(ValTy: DV->getType(), DVR)); |
1823 | if (CanConvert) { |
1824 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
1825 | Instr: SI->getIterator()); |
1826 | return; |
1827 | } |
1828 | |
1829 | // FIXME: If storing to a part of the variable described by the dbg.declare, |
1830 | // then we want to insert a dbg.value for the corresponding fragment. |
1831 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR |
1832 | << '\n'); |
1833 | |
1834 | // For now, when there is a store to parts of the variable (but we do not |
1835 | // know which part) we insert an dbg.value intrinsic to indicate that we |
1836 | // know nothing about the variable's content. |
1837 | DV = PoisonValue::get(T: DV->getType()); |
1838 | ValueAsMetadata *DVAM = ValueAsMetadata::get(V: DV); |
1839 | DbgVariableRecord *NewDVR = |
1840 | new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); |
1841 | SI->getParent()->insertDbgRecordBefore(DR: NewDVR, Here: SI->getIterator()); |
1842 | } |
1843 | |
1844 | void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, |
1845 | DIBuilder &Builder) { |
1846 | auto *DIVar = DVR->getVariable(); |
1847 | assert(DIVar && "Missing variable" ); |
1848 | auto *DIExpr = DVR->getExpression(); |
1849 | DIExpr = dropInitialDeref(DIExpr); |
1850 | Value *DV = SI->getValueOperand(); |
1851 | |
1852 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
1853 | |
1854 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
1855 | Instr: SI->getIterator()); |
1856 | } |
1857 | |
1858 | /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated |
1859 | /// llvm.dbg.declare intrinsic. |
1860 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
1861 | PHINode *APN, DIBuilder &Builder) { |
1862 | auto *DIVar = DII->getVariable(); |
1863 | auto *DIExpr = DII->getExpression(); |
1864 | assert(DIVar && "Missing variable" ); |
1865 | |
1866 | if (PhiHasDebugValue(DIVar, DIExpr, APN)) |
1867 | return; |
1868 | |
1869 | if (!valueCoversEntireFragment(ValTy: APN->getType(), DII)) { |
1870 | // FIXME: If only referring to a part of the variable described by the |
1871 | // dbg.declare, then we want to insert a dbg.value for the corresponding |
1872 | // fragment. |
1873 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
1874 | << *DII << '\n'); |
1875 | return; |
1876 | } |
1877 | |
1878 | BasicBlock *BB = APN->getParent(); |
1879 | auto InsertionPt = BB->getFirstInsertionPt(); |
1880 | |
1881 | DebugLoc NewLoc = getDebugValueLoc(DII); |
1882 | |
1883 | // The block may be a catchswitch block, which does not have a valid |
1884 | // insertion point. |
1885 | // FIXME: Insert dbg.value markers in the successors when appropriate. |
1886 | if (InsertionPt != BB->end()) { |
1887 | insertDbgValueOrDbgVariableRecord(Builder, DV: APN, DIVar, DIExpr, NewLoc, |
1888 | Instr: InsertionPt); |
1889 | } |
1890 | } |
1891 | |
1892 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, |
1893 | DIBuilder &Builder) { |
1894 | auto *DIVar = DVR->getVariable(); |
1895 | auto *DIExpr = DVR->getExpression(); |
1896 | assert(DIVar && "Missing variable" ); |
1897 | |
1898 | if (!valueCoversEntireFragment(ValTy: LI->getType(), DVR)) { |
1899 | // FIXME: If only referring to a part of the variable described by the |
1900 | // dbg.declare, then we want to insert a DbgVariableRecord for the |
1901 | // corresponding fragment. |
1902 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " |
1903 | << *DVR << '\n'); |
1904 | return; |
1905 | } |
1906 | |
1907 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
1908 | |
1909 | // We are now tracking the loaded value instead of the address. In the |
1910 | // future if multi-location support is added to the IR, it might be |
1911 | // preferable to keep tracking both the loaded value and the original |
1912 | // address in case the alloca can not be elided. |
1913 | |
1914 | // Create a DbgVariableRecord directly and insert. |
1915 | ValueAsMetadata *LIVAM = ValueAsMetadata::get(V: LI); |
1916 | DbgVariableRecord *DV = |
1917 | new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); |
1918 | LI->getParent()->insertDbgRecordAfter(DR: DV, I: LI); |
1919 | } |
1920 | |
1921 | /// Determine whether this alloca is either a VLA or an array. |
1922 | static bool isArray(AllocaInst *AI) { |
1923 | return AI->isArrayAllocation() || |
1924 | (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); |
1925 | } |
1926 | |
1927 | /// Determine whether this alloca is a structure. |
1928 | static bool isStructure(AllocaInst *AI) { |
1929 | return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); |
1930 | } |
1931 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, |
1932 | DIBuilder &Builder) { |
1933 | auto *DIVar = DVR->getVariable(); |
1934 | auto *DIExpr = DVR->getExpression(); |
1935 | assert(DIVar && "Missing variable" ); |
1936 | |
1937 | if (PhiHasDebugValue(DIVar, DIExpr, APN)) |
1938 | return; |
1939 | |
1940 | if (!valueCoversEntireFragment(ValTy: APN->getType(), DVR)) { |
1941 | // FIXME: If only referring to a part of the variable described by the |
1942 | // dbg.declare, then we want to insert a DbgVariableRecord for the |
1943 | // corresponding fragment. |
1944 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " |
1945 | << *DVR << '\n'); |
1946 | return; |
1947 | } |
1948 | |
1949 | BasicBlock *BB = APN->getParent(); |
1950 | auto InsertionPt = BB->getFirstInsertionPt(); |
1951 | |
1952 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
1953 | |
1954 | // The block may be a catchswitch block, which does not have a valid |
1955 | // insertion point. |
1956 | // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. |
1957 | if (InsertionPt != BB->end()) { |
1958 | insertDbgValueOrDbgVariableRecord(Builder, DV: APN, DIVar, DIExpr, NewLoc, |
1959 | Instr: InsertionPt); |
1960 | } |
1961 | } |
1962 | |
1963 | /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set |
1964 | /// of llvm.dbg.value intrinsics. |
1965 | bool llvm::LowerDbgDeclare(Function &F) { |
1966 | bool Changed = false; |
1967 | DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); |
1968 | SmallVector<DbgDeclareInst *, 4> Dbgs; |
1969 | SmallVector<DbgVariableRecord *> DVRs; |
1970 | for (auto &FI : F) { |
1971 | for (Instruction &BI : FI) { |
1972 | if (auto *DDI = dyn_cast<DbgDeclareInst>(Val: &BI)) |
1973 | Dbgs.push_back(Elt: DDI); |
1974 | for (DbgVariableRecord &DVR : filterDbgVars(R: BI.getDbgRecordRange())) { |
1975 | if (DVR.getType() == DbgVariableRecord::LocationType::Declare) |
1976 | DVRs.push_back(Elt: &DVR); |
1977 | } |
1978 | } |
1979 | } |
1980 | |
1981 | if (Dbgs.empty() && DVRs.empty()) |
1982 | return Changed; |
1983 | |
1984 | auto LowerOne = [&](auto *DDI) { |
1985 | AllocaInst *AI = |
1986 | dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); |
1987 | // If this is an alloca for a scalar variable, insert a dbg.value |
1988 | // at each load and store to the alloca and erase the dbg.declare. |
1989 | // The dbg.values allow tracking a variable even if it is not |
1990 | // stored on the stack, while the dbg.declare can only describe |
1991 | // the stack slot (and at a lexical-scope granularity). Later |
1992 | // passes will attempt to elide the stack slot. |
1993 | if (!AI || isArray(AI) || isStructure(AI)) |
1994 | return; |
1995 | |
1996 | // A volatile load/store means that the alloca can't be elided anyway. |
1997 | if (llvm::any_of(AI->users(), [](User *U) -> bool { |
1998 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: U)) |
1999 | return LI->isVolatile(); |
2000 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) |
2001 | return SI->isVolatile(); |
2002 | return false; |
2003 | })) |
2004 | return; |
2005 | |
2006 | SmallVector<const Value *, 8> WorkList; |
2007 | WorkList.push_back(Elt: AI); |
2008 | while (!WorkList.empty()) { |
2009 | const Value *V = WorkList.pop_back_val(); |
2010 | for (const auto &AIUse : V->uses()) { |
2011 | User *U = AIUse.getUser(); |
2012 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
2013 | if (AIUse.getOperandNo() == 1) |
2014 | ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
2015 | } else if (LoadInst *LI = dyn_cast<LoadInst>(Val: U)) { |
2016 | ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
2017 | } else if (CallInst *CI = dyn_cast<CallInst>(Val: U)) { |
2018 | // This is a call by-value or some other instruction that takes a |
2019 | // pointer to the variable. Insert a *value* intrinsic that describes |
2020 | // the variable by dereferencing the alloca. |
2021 | if (!CI->isLifetimeStartOrEnd()) { |
2022 | DebugLoc NewLoc = getDebugValueLoc(DDI); |
2023 | auto *DerefExpr = |
2024 | DIExpression::append(Expr: DDI->getExpression(), Ops: dwarf::DW_OP_deref); |
2025 | insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), |
2026 | DerefExpr, NewLoc, |
2027 | CI->getIterator()); |
2028 | } |
2029 | } else if (BitCastInst *BI = dyn_cast<BitCastInst>(Val: U)) { |
2030 | if (BI->getType()->isPointerTy()) |
2031 | WorkList.push_back(Elt: BI); |
2032 | } |
2033 | } |
2034 | } |
2035 | DDI->eraseFromParent(); |
2036 | Changed = true; |
2037 | }; |
2038 | |
2039 | for_each(Range&: Dbgs, F: LowerOne); |
2040 | for_each(Range&: DVRs, F: LowerOne); |
2041 | |
2042 | if (Changed) |
2043 | for (BasicBlock &BB : F) |
2044 | RemoveRedundantDbgInstrs(BB: &BB); |
2045 | |
2046 | return Changed; |
2047 | } |
2048 | |
2049 | // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the |
2050 | // debug-info out of the block's DbgVariableRecords rather than dbg.value |
2051 | // intrinsics. |
2052 | static void |
2053 | insertDbgVariableRecordsForPHIs(BasicBlock *BB, |
2054 | SmallVectorImpl<PHINode *> &InsertedPHIs) { |
2055 | assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from." ); |
2056 | if (InsertedPHIs.size() == 0) |
2057 | return; |
2058 | |
2059 | // Map existing PHI nodes to their DbgVariableRecords. |
2060 | DenseMap<Value *, DbgVariableRecord *> DbgValueMap; |
2061 | for (auto &I : *BB) { |
2062 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
2063 | for (Value *V : DVR.location_ops()) |
2064 | if (auto *Loc = dyn_cast_or_null<PHINode>(Val: V)) |
2065 | DbgValueMap.insert(KV: {Loc, &DVR}); |
2066 | } |
2067 | } |
2068 | if (DbgValueMap.size() == 0) |
2069 | return; |
2070 | |
2071 | // Map a pair of the destination BB and old DbgVariableRecord to the new |
2072 | // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use |
2073 | // more than one of the inserted PHIs in the same destination BB, we can |
2074 | // update the same DbgVariableRecord with all the new PHIs instead of creating |
2075 | // one copy for each. |
2076 | MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> |
2077 | NewDbgValueMap; |
2078 | // Then iterate through the new PHIs and look to see if they use one of the |
2079 | // previously mapped PHIs. If so, create a new DbgVariableRecord that will |
2080 | // propagate the info through the new PHI. If we use more than one new PHI in |
2081 | // a single destination BB with the same old dbg.value, merge the updates so |
2082 | // that we get a single new DbgVariableRecord with all the new PHIs. |
2083 | for (auto PHI : InsertedPHIs) { |
2084 | BasicBlock *Parent = PHI->getParent(); |
2085 | // Avoid inserting a debug-info record into an EH block. |
2086 | if (Parent->getFirstNonPHIIt()->isEHPad()) |
2087 | continue; |
2088 | for (auto VI : PHI->operand_values()) { |
2089 | auto V = DbgValueMap.find(Val: VI); |
2090 | if (V != DbgValueMap.end()) { |
2091 | DbgVariableRecord *DbgII = cast<DbgVariableRecord>(Val: V->second); |
2092 | auto NewDI = NewDbgValueMap.find(Key: {Parent, DbgII}); |
2093 | if (NewDI == NewDbgValueMap.end()) { |
2094 | DbgVariableRecord *NewDbgII = DbgII->clone(); |
2095 | NewDI = NewDbgValueMap.insert(KV: {{Parent, DbgII}, NewDbgII}).first; |
2096 | } |
2097 | DbgVariableRecord *NewDbgII = NewDI->second; |
2098 | // If PHI contains VI as an operand more than once, we may |
2099 | // replaced it in NewDbgII; confirm that it is present. |
2100 | if (is_contained(Range: NewDbgII->location_ops(), Element: VI)) |
2101 | NewDbgII->replaceVariableLocationOp(OldValue: VI, NewValue: PHI); |
2102 | } |
2103 | } |
2104 | } |
2105 | // Insert the new DbgVariableRecords into their destination blocks. |
2106 | for (auto DI : NewDbgValueMap) { |
2107 | BasicBlock *Parent = DI.first.first; |
2108 | DbgVariableRecord *NewDbgII = DI.second; |
2109 | auto InsertionPt = Parent->getFirstInsertionPt(); |
2110 | assert(InsertionPt != Parent->end() && "Ill-formed basic block" ); |
2111 | |
2112 | Parent->insertDbgRecordBefore(DR: NewDbgII, Here: InsertionPt); |
2113 | } |
2114 | } |
2115 | |
2116 | /// Propagate dbg.value intrinsics through the newly inserted PHIs. |
2117 | void llvm::insertDebugValuesForPHIs(BasicBlock *BB, |
2118 | SmallVectorImpl<PHINode *> &InsertedPHIs) { |
2119 | assert(BB && "No BasicBlock to clone dbg.value(s) from." ); |
2120 | if (InsertedPHIs.size() == 0) |
2121 | return; |
2122 | |
2123 | insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); |
2124 | |
2125 | // Map existing PHI nodes to their dbg.values. |
2126 | ValueToValueMapTy DbgValueMap; |
2127 | for (auto &I : *BB) { |
2128 | if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(Val: &I)) { |
2129 | for (Value *V : DbgII->location_ops()) |
2130 | if (auto *Loc = dyn_cast_or_null<PHINode>(Val: V)) |
2131 | DbgValueMap.insert(KV: {Loc, DbgII}); |
2132 | } |
2133 | } |
2134 | if (DbgValueMap.size() == 0) |
2135 | return; |
2136 | |
2137 | // Map a pair of the destination BB and old dbg.value to the new dbg.value, |
2138 | // so that if a dbg.value is being rewritten to use more than one of the |
2139 | // inserted PHIs in the same destination BB, we can update the same dbg.value |
2140 | // with all the new PHIs instead of creating one copy for each. |
2141 | MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, |
2142 | DbgVariableIntrinsic *> |
2143 | NewDbgValueMap; |
2144 | // Then iterate through the new PHIs and look to see if they use one of the |
2145 | // previously mapped PHIs. If so, create a new dbg.value intrinsic that will |
2146 | // propagate the info through the new PHI. If we use more than one new PHI in |
2147 | // a single destination BB with the same old dbg.value, merge the updates so |
2148 | // that we get a single new dbg.value with all the new PHIs. |
2149 | for (auto *PHI : InsertedPHIs) { |
2150 | BasicBlock *Parent = PHI->getParent(); |
2151 | // Avoid inserting an intrinsic into an EH block. |
2152 | if (Parent->getFirstNonPHIIt()->isEHPad()) |
2153 | continue; |
2154 | for (auto *VI : PHI->operand_values()) { |
2155 | auto V = DbgValueMap.find(Val: VI); |
2156 | if (V != DbgValueMap.end()) { |
2157 | auto *DbgII = cast<DbgVariableIntrinsic>(Val&: V->second); |
2158 | auto [NewDI, Inserted] = NewDbgValueMap.try_emplace(Key: {Parent, DbgII}); |
2159 | if (Inserted) |
2160 | NewDI->second = cast<DbgVariableIntrinsic>(Val: DbgII->clone()); |
2161 | DbgVariableIntrinsic *NewDbgII = NewDI->second; |
2162 | // If PHI contains VI as an operand more than once, we may |
2163 | // replaced it in NewDbgII; confirm that it is present. |
2164 | if (is_contained(Range: NewDbgII->location_ops(), Element: VI)) |
2165 | NewDbgII->replaceVariableLocationOp(OldValue: VI, NewValue: PHI); |
2166 | } |
2167 | } |
2168 | } |
2169 | // Insert thew new dbg.values into their destination blocks. |
2170 | for (auto DI : NewDbgValueMap) { |
2171 | BasicBlock *Parent = DI.first.first; |
2172 | auto *NewDbgII = DI.second; |
2173 | auto InsertionPt = Parent->getFirstInsertionPt(); |
2174 | assert(InsertionPt != Parent->end() && "Ill-formed basic block" ); |
2175 | NewDbgII->insertBefore(InsertPos: InsertionPt); |
2176 | } |
2177 | } |
2178 | |
2179 | bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, |
2180 | DIBuilder &Builder, uint8_t DIExprFlags, |
2181 | int Offset) { |
2182 | TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(V: Address); |
2183 | TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(V: Address); |
2184 | |
2185 | auto ReplaceOne = [&](auto *DII) { |
2186 | assert(DII->getVariable() && "Missing variable" ); |
2187 | auto *DIExpr = DII->getExpression(); |
2188 | DIExpr = DIExpression::prepend(Expr: DIExpr, Flags: DIExprFlags, Offset); |
2189 | DII->setExpression(DIExpr); |
2190 | DII->replaceVariableLocationOp(Address, NewAddress); |
2191 | }; |
2192 | |
2193 | for_each(Range&: DbgDeclares, F: ReplaceOne); |
2194 | for_each(Range&: DVRDeclares, F: ReplaceOne); |
2195 | |
2196 | return !DbgDeclares.empty() || !DVRDeclares.empty(); |
2197 | } |
2198 | |
2199 | static void updateOneDbgValueForAlloca(const DebugLoc &Loc, |
2200 | DILocalVariable *DIVar, |
2201 | DIExpression *DIExpr, Value *NewAddress, |
2202 | DbgValueInst *DVI, |
2203 | DbgVariableRecord *DVR, |
2204 | DIBuilder &Builder, int Offset) { |
2205 | assert(DIVar && "Missing variable" ); |
2206 | |
2207 | // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it |
2208 | // should do with the alloca pointer is dereference it. Otherwise we don't |
2209 | // know how to handle it and give up. |
2210 | if (!DIExpr || DIExpr->getNumElements() < 1 || |
2211 | DIExpr->getElement(I: 0) != dwarf::DW_OP_deref) |
2212 | return; |
2213 | |
2214 | // Insert the offset before the first deref. |
2215 | if (Offset) |
2216 | DIExpr = DIExpression::prepend(Expr: DIExpr, Flags: 0, Offset); |
2217 | |
2218 | if (DVI) { |
2219 | DVI->setExpression(DIExpr); |
2220 | DVI->replaceVariableLocationOp(OpIdx: 0u, NewValue: NewAddress); |
2221 | } else { |
2222 | assert(DVR); |
2223 | DVR->setExpression(DIExpr); |
2224 | DVR->replaceVariableLocationOp(OpIdx: 0u, NewValue: NewAddress); |
2225 | } |
2226 | } |
2227 | |
2228 | void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, |
2229 | DIBuilder &Builder, int Offset) { |
2230 | SmallVector<DbgValueInst *, 1> DbgUsers; |
2231 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
2232 | findDbgValues(DbgValues&: DbgUsers, V: AI, DbgVariableRecords: &DPUsers); |
2233 | |
2234 | // Attempt to replace dbg.values that use this alloca. |
2235 | for (auto *DVI : DbgUsers) |
2236 | updateOneDbgValueForAlloca(Loc: DVI->getDebugLoc(), DIVar: DVI->getVariable(), |
2237 | DIExpr: DVI->getExpression(), NewAddress: NewAllocaAddress, DVI, |
2238 | DVR: nullptr, Builder, Offset); |
2239 | |
2240 | // Replace any DbgVariableRecords that use this alloca. |
2241 | for (DbgVariableRecord *DVR : DPUsers) |
2242 | updateOneDbgValueForAlloca(Loc: DVR->getDebugLoc(), DIVar: DVR->getVariable(), |
2243 | DIExpr: DVR->getExpression(), NewAddress: NewAllocaAddress, DVI: nullptr, |
2244 | DVR, Builder, Offset); |
2245 | } |
2246 | |
2247 | /// Where possible to salvage debug information for \p I do so. |
2248 | /// If not possible mark undef. |
2249 | void llvm::salvageDebugInfo(Instruction &I) { |
2250 | SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
2251 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
2252 | findDbgUsers(DbgInsts&: DbgUsers, V: &I, DbgVariableRecords: &DPUsers); |
2253 | salvageDebugInfoForDbgValues(I, Insns: DbgUsers, DPInsns: DPUsers); |
2254 | } |
2255 | |
2256 | template <typename T> static void salvageDbgAssignAddress(T *Assign) { |
2257 | Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); |
2258 | // Only instructions can be salvaged at the moment. |
2259 | if (!I) |
2260 | return; |
2261 | |
2262 | assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && |
2263 | "address-expression shouldn't have fragment info" ); |
2264 | |
2265 | // The address component of a dbg.assign cannot be variadic. |
2266 | uint64_t CurrentLocOps = 0; |
2267 | SmallVector<Value *, 4> AdditionalValues; |
2268 | SmallVector<uint64_t, 16> Ops; |
2269 | Value *NewV = salvageDebugInfoImpl(I&: *I, CurrentLocOps, Ops, AdditionalValues); |
2270 | |
2271 | // Check if the salvage failed. |
2272 | if (!NewV) |
2273 | return; |
2274 | |
2275 | DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( |
2276 | Expr: Assign->getAddressExpression(), Ops, ArgNo: 0, /*StackValue=*/false); |
2277 | assert(!SalvagedExpr->getFragmentInfo().has_value() && |
2278 | "address-expression shouldn't have fragment info" ); |
2279 | |
2280 | SalvagedExpr = SalvagedExpr->foldConstantMath(); |
2281 | |
2282 | // Salvage succeeds if no additional values are required. |
2283 | if (AdditionalValues.empty()) { |
2284 | Assign->setAddress(NewV); |
2285 | Assign->setAddressExpression(SalvagedExpr); |
2286 | } else { |
2287 | Assign->setKillAddress(); |
2288 | } |
2289 | } |
2290 | |
2291 | void llvm::salvageDebugInfoForDbgValues( |
2292 | Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, |
2293 | ArrayRef<DbgVariableRecord *> DPUsers) { |
2294 | // These are arbitrary chosen limits on the maximum number of values and the |
2295 | // maximum size of a debug expression we can salvage up to, used for |
2296 | // performance reasons. |
2297 | const unsigned MaxDebugArgs = 16; |
2298 | const unsigned MaxExpressionSize = 128; |
2299 | bool Salvaged = false; |
2300 | |
2301 | for (auto *DII : DbgUsers) { |
2302 | if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: DII)) { |
2303 | if (DAI->getAddress() == &I) { |
2304 | salvageDbgAssignAddress(Assign: DAI); |
2305 | Salvaged = true; |
2306 | } |
2307 | if (DAI->getValue() != &I) |
2308 | continue; |
2309 | } |
2310 | |
2311 | // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly |
2312 | // pointing out the value as a DWARF memory location description. |
2313 | bool StackValue = isa<DbgValueInst>(Val: DII); |
2314 | auto DIILocation = DII->location_ops(); |
2315 | assert( |
2316 | is_contained(DIILocation, &I) && |
2317 | "DbgVariableIntrinsic must use salvaged instruction as its location" ); |
2318 | SmallVector<Value *, 4> AdditionalValues; |
2319 | // `I` may appear more than once in DII's location ops, and each use of `I` |
2320 | // must be updated in the DIExpression and potentially have additional |
2321 | // values added; thus we call salvageDebugInfoImpl for each `I` instance in |
2322 | // DIILocation. |
2323 | Value *Op0 = nullptr; |
2324 | DIExpression *SalvagedExpr = DII->getExpression(); |
2325 | auto LocItr = find(Range&: DIILocation, Val: &I); |
2326 | while (SalvagedExpr && LocItr != DIILocation.end()) { |
2327 | SmallVector<uint64_t, 16> Ops; |
2328 | unsigned LocNo = std::distance(first: DIILocation.begin(), last: LocItr); |
2329 | uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); |
2330 | Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); |
2331 | if (!Op0) |
2332 | break; |
2333 | SalvagedExpr = |
2334 | DIExpression::appendOpsToArg(Expr: SalvagedExpr, Ops, ArgNo: LocNo, StackValue); |
2335 | LocItr = std::find(first: ++LocItr, last: DIILocation.end(), val: &I); |
2336 | } |
2337 | // salvageDebugInfoImpl should fail on examining the first element of |
2338 | // DbgUsers, or none of them. |
2339 | if (!Op0) |
2340 | break; |
2341 | |
2342 | SalvagedExpr = SalvagedExpr->foldConstantMath(); |
2343 | DII->replaceVariableLocationOp(OldValue: &I, NewValue: Op0); |
2344 | bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; |
2345 | if (AdditionalValues.empty() && IsValidSalvageExpr) { |
2346 | DII->setExpression(SalvagedExpr); |
2347 | } else if (isa<DbgValueInst>(Val: DII) && IsValidSalvageExpr && |
2348 | DII->getNumVariableLocationOps() + AdditionalValues.size() <= |
2349 | MaxDebugArgs) { |
2350 | DII->addVariableLocationOps(NewValues: AdditionalValues, NewExpr: SalvagedExpr); |
2351 | } else { |
2352 | // Do not salvage using DIArgList for dbg.declare, as it is not currently |
2353 | // supported in those instructions. Also do not salvage if the resulting |
2354 | // DIArgList would contain an unreasonably large number of values. |
2355 | DII->setKillLocation(); |
2356 | } |
2357 | LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); |
2358 | Salvaged = true; |
2359 | } |
2360 | // Duplicate of above block for DbgVariableRecords. |
2361 | for (auto *DVR : DPUsers) { |
2362 | if (DVR->isDbgAssign()) { |
2363 | if (DVR->getAddress() == &I) { |
2364 | salvageDbgAssignAddress(Assign: DVR); |
2365 | Salvaged = true; |
2366 | } |
2367 | if (DVR->getValue() != &I) |
2368 | continue; |
2369 | } |
2370 | |
2371 | // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they |
2372 | // are implicitly pointing out the value as a DWARF memory location |
2373 | // description. |
2374 | bool StackValue = |
2375 | DVR->getType() != DbgVariableRecord::LocationType::Declare; |
2376 | auto DVRLocation = DVR->location_ops(); |
2377 | assert( |
2378 | is_contained(DVRLocation, &I) && |
2379 | "DbgVariableIntrinsic must use salvaged instruction as its location" ); |
2380 | SmallVector<Value *, 4> AdditionalValues; |
2381 | // 'I' may appear more than once in DVR's location ops, and each use of 'I' |
2382 | // must be updated in the DIExpression and potentially have additional |
2383 | // values added; thus we call salvageDebugInfoImpl for each 'I' instance in |
2384 | // DVRLocation. |
2385 | Value *Op0 = nullptr; |
2386 | DIExpression *SalvagedExpr = DVR->getExpression(); |
2387 | auto LocItr = find(Range&: DVRLocation, Val: &I); |
2388 | while (SalvagedExpr && LocItr != DVRLocation.end()) { |
2389 | SmallVector<uint64_t, 16> Ops; |
2390 | unsigned LocNo = std::distance(first: DVRLocation.begin(), last: LocItr); |
2391 | uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); |
2392 | Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); |
2393 | if (!Op0) |
2394 | break; |
2395 | SalvagedExpr = |
2396 | DIExpression::appendOpsToArg(Expr: SalvagedExpr, Ops, ArgNo: LocNo, StackValue); |
2397 | LocItr = std::find(first: ++LocItr, last: DVRLocation.end(), val: &I); |
2398 | } |
2399 | // salvageDebugInfoImpl should fail on examining the first element of |
2400 | // DbgUsers, or none of them. |
2401 | if (!Op0) |
2402 | break; |
2403 | |
2404 | SalvagedExpr = SalvagedExpr->foldConstantMath(); |
2405 | DVR->replaceVariableLocationOp(OldValue: &I, NewValue: Op0); |
2406 | bool IsValidSalvageExpr = |
2407 | SalvagedExpr->getNumElements() <= MaxExpressionSize; |
2408 | if (AdditionalValues.empty() && IsValidSalvageExpr) { |
2409 | DVR->setExpression(SalvagedExpr); |
2410 | } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && |
2411 | IsValidSalvageExpr && |
2412 | DVR->getNumVariableLocationOps() + AdditionalValues.size() <= |
2413 | MaxDebugArgs) { |
2414 | DVR->addVariableLocationOps(NewValues: AdditionalValues, NewExpr: SalvagedExpr); |
2415 | } else { |
2416 | // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is |
2417 | // currently only valid for stack value expressions. |
2418 | // Also do not salvage if the resulting DIArgList would contain an |
2419 | // unreasonably large number of values. |
2420 | DVR->setKillLocation(); |
2421 | } |
2422 | LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); |
2423 | Salvaged = true; |
2424 | } |
2425 | |
2426 | if (Salvaged) |
2427 | return; |
2428 | |
2429 | for (auto *DII : DbgUsers) |
2430 | DII->setKillLocation(); |
2431 | |
2432 | for (auto *DVR : DPUsers) |
2433 | DVR->setKillLocation(); |
2434 | } |
2435 | |
2436 | Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, |
2437 | uint64_t CurrentLocOps, |
2438 | SmallVectorImpl<uint64_t> &Opcodes, |
2439 | SmallVectorImpl<Value *> &AdditionalValues) { |
2440 | unsigned BitWidth = DL.getIndexSizeInBits(AS: GEP->getPointerAddressSpace()); |
2441 | // Rewrite a GEP into a DIExpression. |
2442 | SmallMapVector<Value *, APInt, 4> VariableOffsets; |
2443 | APInt ConstantOffset(BitWidth, 0); |
2444 | if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) |
2445 | return nullptr; |
2446 | if (!VariableOffsets.empty() && !CurrentLocOps) { |
2447 | Opcodes.insert(I: Opcodes.begin(), IL: {dwarf::DW_OP_LLVM_arg, 0}); |
2448 | CurrentLocOps = 1; |
2449 | } |
2450 | for (const auto &Offset : VariableOffsets) { |
2451 | AdditionalValues.push_back(Elt: Offset.first); |
2452 | assert(Offset.second.isStrictlyPositive() && |
2453 | "Expected strictly positive multiplier for offset." ); |
2454 | Opcodes.append(IL: {dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, |
2455 | Offset.second.getZExtValue(), dwarf::DW_OP_mul, |
2456 | dwarf::DW_OP_plus}); |
2457 | } |
2458 | DIExpression::appendOffset(Ops&: Opcodes, Offset: ConstantOffset.getSExtValue()); |
2459 | return GEP->getOperand(i_nocapture: 0); |
2460 | } |
2461 | |
2462 | uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { |
2463 | switch (Opcode) { |
2464 | case Instruction::Add: |
2465 | return dwarf::DW_OP_plus; |
2466 | case Instruction::Sub: |
2467 | return dwarf::DW_OP_minus; |
2468 | case Instruction::Mul: |
2469 | return dwarf::DW_OP_mul; |
2470 | case Instruction::SDiv: |
2471 | return dwarf::DW_OP_div; |
2472 | case Instruction::SRem: |
2473 | return dwarf::DW_OP_mod; |
2474 | case Instruction::Or: |
2475 | return dwarf::DW_OP_or; |
2476 | case Instruction::And: |
2477 | return dwarf::DW_OP_and; |
2478 | case Instruction::Xor: |
2479 | return dwarf::DW_OP_xor; |
2480 | case Instruction::Shl: |
2481 | return dwarf::DW_OP_shl; |
2482 | case Instruction::LShr: |
2483 | return dwarf::DW_OP_shr; |
2484 | case Instruction::AShr: |
2485 | return dwarf::DW_OP_shra; |
2486 | default: |
2487 | // TODO: Salvage from each kind of binop we know about. |
2488 | return 0; |
2489 | } |
2490 | } |
2491 | |
2492 | static void handleSSAValueOperands(uint64_t CurrentLocOps, |
2493 | SmallVectorImpl<uint64_t> &Opcodes, |
2494 | SmallVectorImpl<Value *> &AdditionalValues, |
2495 | Instruction *I) { |
2496 | if (!CurrentLocOps) { |
2497 | Opcodes.append(IL: {dwarf::DW_OP_LLVM_arg, 0}); |
2498 | CurrentLocOps = 1; |
2499 | } |
2500 | Opcodes.append(IL: {dwarf::DW_OP_LLVM_arg, CurrentLocOps}); |
2501 | AdditionalValues.push_back(Elt: I->getOperand(i: 1)); |
2502 | } |
2503 | |
2504 | Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, |
2505 | SmallVectorImpl<uint64_t> &Opcodes, |
2506 | SmallVectorImpl<Value *> &AdditionalValues) { |
2507 | // Handle binary operations with constant integer operands as a special case. |
2508 | auto *ConstInt = dyn_cast<ConstantInt>(Val: BI->getOperand(i_nocapture: 1)); |
2509 | // Values wider than 64 bits cannot be represented within a DIExpression. |
2510 | if (ConstInt && ConstInt->getBitWidth() > 64) |
2511 | return nullptr; |
2512 | |
2513 | Instruction::BinaryOps BinOpcode = BI->getOpcode(); |
2514 | // Push any Constant Int operand onto the expression stack. |
2515 | if (ConstInt) { |
2516 | uint64_t Val = ConstInt->getSExtValue(); |
2517 | // Add or Sub Instructions with a constant operand can potentially be |
2518 | // simplified. |
2519 | if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { |
2520 | uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); |
2521 | DIExpression::appendOffset(Ops&: Opcodes, Offset); |
2522 | return BI->getOperand(i_nocapture: 0); |
2523 | } |
2524 | Opcodes.append(IL: {dwarf::DW_OP_constu, Val}); |
2525 | } else { |
2526 | handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, I: BI); |
2527 | } |
2528 | |
2529 | // Add salvaged binary operator to expression stack, if it has a valid |
2530 | // representation in a DIExpression. |
2531 | uint64_t DwarfBinOp = getDwarfOpForBinOp(Opcode: BinOpcode); |
2532 | if (!DwarfBinOp) |
2533 | return nullptr; |
2534 | Opcodes.push_back(Elt: DwarfBinOp); |
2535 | return BI->getOperand(i_nocapture: 0); |
2536 | } |
2537 | |
2538 | uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { |
2539 | // The signedness of the operation is implicit in the typed stack, signed and |
2540 | // unsigned instructions map to the same DWARF opcode. |
2541 | switch (Pred) { |
2542 | case CmpInst::ICMP_EQ: |
2543 | return dwarf::DW_OP_eq; |
2544 | case CmpInst::ICMP_NE: |
2545 | return dwarf::DW_OP_ne; |
2546 | case CmpInst::ICMP_UGT: |
2547 | case CmpInst::ICMP_SGT: |
2548 | return dwarf::DW_OP_gt; |
2549 | case CmpInst::ICMP_UGE: |
2550 | case CmpInst::ICMP_SGE: |
2551 | return dwarf::DW_OP_ge; |
2552 | case CmpInst::ICMP_ULT: |
2553 | case CmpInst::ICMP_SLT: |
2554 | return dwarf::DW_OP_lt; |
2555 | case CmpInst::ICMP_ULE: |
2556 | case CmpInst::ICMP_SLE: |
2557 | return dwarf::DW_OP_le; |
2558 | default: |
2559 | return 0; |
2560 | } |
2561 | } |
2562 | |
2563 | Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, |
2564 | SmallVectorImpl<uint64_t> &Opcodes, |
2565 | SmallVectorImpl<Value *> &AdditionalValues) { |
2566 | // Handle icmp operations with constant integer operands as a special case. |
2567 | auto *ConstInt = dyn_cast<ConstantInt>(Val: Icmp->getOperand(i_nocapture: 1)); |
2568 | // Values wider than 64 bits cannot be represented within a DIExpression. |
2569 | if (ConstInt && ConstInt->getBitWidth() > 64) |
2570 | return nullptr; |
2571 | // Push any Constant Int operand onto the expression stack. |
2572 | if (ConstInt) { |
2573 | if (Icmp->isSigned()) |
2574 | Opcodes.push_back(Elt: dwarf::DW_OP_consts); |
2575 | else |
2576 | Opcodes.push_back(Elt: dwarf::DW_OP_constu); |
2577 | uint64_t Val = ConstInt->getSExtValue(); |
2578 | Opcodes.push_back(Elt: Val); |
2579 | } else { |
2580 | handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, I: Icmp); |
2581 | } |
2582 | |
2583 | // Add salvaged binary operator to expression stack, if it has a valid |
2584 | // representation in a DIExpression. |
2585 | uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Pred: Icmp->getPredicate()); |
2586 | if (!DwarfIcmpOp) |
2587 | return nullptr; |
2588 | Opcodes.push_back(Elt: DwarfIcmpOp); |
2589 | return Icmp->getOperand(i_nocapture: 0); |
2590 | } |
2591 | |
2592 | Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, |
2593 | SmallVectorImpl<uint64_t> &Ops, |
2594 | SmallVectorImpl<Value *> &AdditionalValues) { |
2595 | auto &M = *I.getModule(); |
2596 | auto &DL = M.getDataLayout(); |
2597 | |
2598 | if (auto *CI = dyn_cast<CastInst>(Val: &I)) { |
2599 | Value *FromValue = CI->getOperand(i_nocapture: 0); |
2600 | // No-op casts are irrelevant for debug info. |
2601 | if (CI->isNoopCast(DL)) { |
2602 | return FromValue; |
2603 | } |
2604 | |
2605 | Type *Type = CI->getType(); |
2606 | if (Type->isPointerTy()) |
2607 | Type = DL.getIntPtrType(Type); |
2608 | // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. |
2609 | if (Type->isVectorTy() || |
2610 | !(isa<TruncInst>(Val: &I) || isa<SExtInst>(Val: &I) || isa<ZExtInst>(Val: &I) || |
2611 | isa<IntToPtrInst>(Val: &I) || isa<PtrToIntInst>(Val: &I))) |
2612 | return nullptr; |
2613 | |
2614 | llvm::Type *FromType = FromValue->getType(); |
2615 | if (FromType->isPointerTy()) |
2616 | FromType = DL.getIntPtrType(FromType); |
2617 | |
2618 | unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); |
2619 | unsigned ToTypeBitSize = Type->getScalarSizeInBits(); |
2620 | |
2621 | auto ExtOps = DIExpression::getExtOps(FromSize: FromTypeBitSize, ToSize: ToTypeBitSize, |
2622 | Signed: isa<SExtInst>(Val: &I)); |
2623 | Ops.append(in_start: ExtOps.begin(), in_end: ExtOps.end()); |
2624 | return FromValue; |
2625 | } |
2626 | |
2627 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) |
2628 | return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Opcodes&: Ops, AdditionalValues); |
2629 | if (auto *BI = dyn_cast<BinaryOperator>(Val: &I)) |
2630 | return getSalvageOpsForBinOp(BI, CurrentLocOps, Opcodes&: Ops, AdditionalValues); |
2631 | if (auto *IC = dyn_cast<ICmpInst>(Val: &I)) |
2632 | return getSalvageOpsForIcmpOp(Icmp: IC, CurrentLocOps, Opcodes&: Ops, AdditionalValues); |
2633 | |
2634 | // *Not* to do: we should not attempt to salvage load instructions, |
2635 | // because the validity and lifetime of a dbg.value containing |
2636 | // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. |
2637 | return nullptr; |
2638 | } |
2639 | |
2640 | /// A replacement for a dbg.value expression. |
2641 | using DbgValReplacement = std::optional<DIExpression *>; |
2642 | |
2643 | /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, |
2644 | /// possibly moving/undefing users to prevent use-before-def. Returns true if |
2645 | /// changes are made. |
2646 | static bool rewriteDebugUsers( |
2647 | Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, |
2648 | function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, |
2649 | function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { |
2650 | // Find debug users of From. |
2651 | SmallVector<DbgVariableIntrinsic *, 1> Users; |
2652 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
2653 | findDbgUsers(DbgInsts&: Users, V: &From, DbgVariableRecords: &DPUsers); |
2654 | if (Users.empty() && DPUsers.empty()) |
2655 | return false; |
2656 | |
2657 | // Prevent use-before-def of To. |
2658 | bool Changed = false; |
2659 | |
2660 | SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; |
2661 | SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; |
2662 | if (isa<Instruction>(Val: &To)) { |
2663 | bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; |
2664 | |
2665 | for (auto *DII : Users) { |
2666 | // It's common to see a debug user between From and DomPoint. Move it |
2667 | // after DomPoint to preserve the variable update without any reordering. |
2668 | if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { |
2669 | LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); |
2670 | DII->moveAfter(MovePos: &DomPoint); |
2671 | Changed = true; |
2672 | |
2673 | // Users which otherwise aren't dominated by the replacement value must |
2674 | // be salvaged or deleted. |
2675 | } else if (!DT.dominates(Def: &DomPoint, User: DII)) { |
2676 | UndefOrSalvage.insert(Ptr: DII); |
2677 | } |
2678 | } |
2679 | |
2680 | // DbgVariableRecord implementation of the above. |
2681 | for (auto *DVR : DPUsers) { |
2682 | Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; |
2683 | Instruction *NextNonDebug = MarkedInstr; |
2684 | // The next instruction might still be a dbg.declare, skip over it. |
2685 | if (isa<DbgVariableIntrinsic>(Val: NextNonDebug)) |
2686 | NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); |
2687 | |
2688 | if (DomPointAfterFrom && NextNonDebug == &DomPoint) { |
2689 | LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); |
2690 | DVR->removeFromParent(); |
2691 | // Ensure there's a marker. |
2692 | DomPoint.getParent()->insertDbgRecordAfter(DR: DVR, I: &DomPoint); |
2693 | Changed = true; |
2694 | } else if (!DT.dominates(Def: &DomPoint, User: MarkedInstr)) { |
2695 | UndefOrSalvageDVR.insert(Ptr: DVR); |
2696 | } |
2697 | } |
2698 | } |
2699 | |
2700 | // Update debug users without use-before-def risk. |
2701 | for (auto *DII : Users) { |
2702 | if (UndefOrSalvage.count(Ptr: DII)) |
2703 | continue; |
2704 | |
2705 | DbgValReplacement DVRepl = RewriteExpr(*DII); |
2706 | if (!DVRepl) |
2707 | continue; |
2708 | |
2709 | DII->replaceVariableLocationOp(OldValue: &From, NewValue: &To); |
2710 | DII->setExpression(*DVRepl); |
2711 | LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); |
2712 | Changed = true; |
2713 | } |
2714 | for (auto *DVR : DPUsers) { |
2715 | if (UndefOrSalvageDVR.count(Ptr: DVR)) |
2716 | continue; |
2717 | |
2718 | DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); |
2719 | if (!DVRepl) |
2720 | continue; |
2721 | |
2722 | DVR->replaceVariableLocationOp(OldValue: &From, NewValue: &To); |
2723 | DVR->setExpression(*DVRepl); |
2724 | LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); |
2725 | Changed = true; |
2726 | } |
2727 | |
2728 | if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { |
2729 | // Try to salvage the remaining debug users. |
2730 | salvageDebugInfo(I&: From); |
2731 | Changed = true; |
2732 | } |
2733 | |
2734 | return Changed; |
2735 | } |
2736 | |
2737 | /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would |
2738 | /// losslessly preserve the bits and semantics of the value. This predicate is |
2739 | /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. |
2740 | /// |
2741 | /// Note that Type::canLosslesslyBitCastTo is not suitable here because it |
2742 | /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, |
2743 | /// and also does not allow lossless pointer <-> integer conversions. |
2744 | static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, |
2745 | Type *ToTy) { |
2746 | // Trivially compatible types. |
2747 | if (FromTy == ToTy) |
2748 | return true; |
2749 | |
2750 | // Handle compatible pointer <-> integer conversions. |
2751 | if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { |
2752 | bool SameSize = DL.getTypeSizeInBits(Ty: FromTy) == DL.getTypeSizeInBits(Ty: ToTy); |
2753 | bool LosslessConversion = !DL.isNonIntegralPointerType(Ty: FromTy) && |
2754 | !DL.isNonIntegralPointerType(Ty: ToTy); |
2755 | return SameSize && LosslessConversion; |
2756 | } |
2757 | |
2758 | // TODO: This is not exhaustive. |
2759 | return false; |
2760 | } |
2761 | |
2762 | bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, |
2763 | Instruction &DomPoint, DominatorTree &DT) { |
2764 | // Exit early if From has no debug users. |
2765 | if (!From.isUsedByMetadata()) |
2766 | return false; |
2767 | |
2768 | assert(&From != &To && "Can't replace something with itself" ); |
2769 | |
2770 | Type *FromTy = From.getType(); |
2771 | Type *ToTy = To.getType(); |
2772 | |
2773 | auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
2774 | return DII.getExpression(); |
2775 | }; |
2776 | auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { |
2777 | return DVR.getExpression(); |
2778 | }; |
2779 | |
2780 | // Handle no-op conversions. |
2781 | Module &M = *From.getModule(); |
2782 | const DataLayout &DL = M.getDataLayout(); |
2783 | if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) |
2784 | return rewriteDebugUsers(From, To, DomPoint, DT, RewriteExpr: Identity, RewriteDVRExpr: IdentityDVR); |
2785 | |
2786 | // Handle integer-to-integer widening and narrowing. |
2787 | // FIXME: Use DW_OP_convert when it's available everywhere. |
2788 | if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { |
2789 | uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); |
2790 | uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); |
2791 | assert(FromBits != ToBits && "Unexpected no-op conversion" ); |
2792 | |
2793 | // When the width of the result grows, assume that a debugger will only |
2794 | // access the low `FromBits` bits when inspecting the source variable. |
2795 | if (FromBits < ToBits) |
2796 | return rewriteDebugUsers(From, To, DomPoint, DT, RewriteExpr: Identity, RewriteDVRExpr: IdentityDVR); |
2797 | |
2798 | // The width of the result has shrunk. Use sign/zero extension to describe |
2799 | // the source variable's high bits. |
2800 | auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
2801 | DILocalVariable *Var = DII.getVariable(); |
2802 | |
2803 | // Without knowing signedness, sign/zero extension isn't possible. |
2804 | auto Signedness = Var->getSignedness(); |
2805 | if (!Signedness) |
2806 | return std::nullopt; |
2807 | |
2808 | bool Signed = *Signedness == DIBasicType::Signedness::Signed; |
2809 | return DIExpression::appendExt(Expr: DII.getExpression(), FromSize: ToBits, ToSize: FromBits, |
2810 | Signed); |
2811 | }; |
2812 | // RemoveDIs: duplicate implementation working on DbgVariableRecords rather |
2813 | // than on dbg.value intrinsics. |
2814 | auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { |
2815 | DILocalVariable *Var = DVR.getVariable(); |
2816 | |
2817 | // Without knowing signedness, sign/zero extension isn't possible. |
2818 | auto Signedness = Var->getSignedness(); |
2819 | if (!Signedness) |
2820 | return std::nullopt; |
2821 | |
2822 | bool Signed = *Signedness == DIBasicType::Signedness::Signed; |
2823 | return DIExpression::appendExt(Expr: DVR.getExpression(), FromSize: ToBits, ToSize: FromBits, |
2824 | Signed); |
2825 | }; |
2826 | return rewriteDebugUsers(From, To, DomPoint, DT, RewriteExpr: SignOrZeroExt, |
2827 | RewriteDVRExpr: SignOrZeroExtDVR); |
2828 | } |
2829 | |
2830 | // TODO: Floating-point conversions, vectors. |
2831 | return false; |
2832 | } |
2833 | |
2834 | bool llvm::handleUnreachableTerminator( |
2835 | Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { |
2836 | bool Changed = false; |
2837 | // RemoveDIs: erase debug-info on this instruction manually. |
2838 | I->dropDbgRecords(); |
2839 | for (Use &U : I->operands()) { |
2840 | Value *Op = U.get(); |
2841 | if (isa<Instruction>(Val: Op) && !Op->getType()->isTokenTy()) { |
2842 | U.set(PoisonValue::get(T: Op->getType())); |
2843 | PoisonedValues.push_back(Elt: Op); |
2844 | Changed = true; |
2845 | } |
2846 | } |
2847 | |
2848 | return Changed; |
2849 | } |
2850 | |
2851 | unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { |
2852 | unsigned NumDeadInst = 0; |
2853 | // Delete the instructions backwards, as it has a reduced likelihood of |
2854 | // having to update as many def-use and use-def chains. |
2855 | Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. |
2856 | SmallVector<Value *> Uses; |
2857 | handleUnreachableTerminator(I: EndInst, PoisonedValues&: Uses); |
2858 | |
2859 | while (EndInst != &BB->front()) { |
2860 | // Delete the next to last instruction. |
2861 | Instruction *Inst = &*--EndInst->getIterator(); |
2862 | if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) |
2863 | Inst->replaceAllUsesWith(V: PoisonValue::get(T: Inst->getType())); |
2864 | if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { |
2865 | // EHPads can't have DbgVariableRecords attached to them, but it might be |
2866 | // possible for things with token type. |
2867 | Inst->dropDbgRecords(); |
2868 | EndInst = Inst; |
2869 | continue; |
2870 | } |
2871 | ++NumDeadInst; |
2872 | // RemoveDIs: erasing debug-info must be done manually. |
2873 | Inst->dropDbgRecords(); |
2874 | Inst->eraseFromParent(); |
2875 | } |
2876 | return NumDeadInst; |
2877 | } |
2878 | |
2879 | unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, |
2880 | DomTreeUpdater *DTU, |
2881 | MemorySSAUpdater *MSSAU) { |
2882 | BasicBlock *BB = I->getParent(); |
2883 | |
2884 | if (MSSAU) |
2885 | MSSAU->changeToUnreachable(I); |
2886 | |
2887 | SmallSet<BasicBlock *, 8> UniqueSuccessors; |
2888 | |
2889 | // Loop over all of the successors, removing BB's entry from any PHI |
2890 | // nodes. |
2891 | for (BasicBlock *Successor : successors(BB)) { |
2892 | Successor->removePredecessor(Pred: BB, KeepOneInputPHIs: PreserveLCSSA); |
2893 | if (DTU) |
2894 | UniqueSuccessors.insert(Ptr: Successor); |
2895 | } |
2896 | auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); |
2897 | UI->setDebugLoc(I->getDebugLoc()); |
2898 | |
2899 | // All instructions after this are dead. |
2900 | unsigned NumInstrsRemoved = 0; |
2901 | BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); |
2902 | while (BBI != BBE) { |
2903 | if (!BBI->use_empty()) |
2904 | BBI->replaceAllUsesWith(V: PoisonValue::get(T: BBI->getType())); |
2905 | BBI++->eraseFromParent(); |
2906 | ++NumInstrsRemoved; |
2907 | } |
2908 | if (DTU) { |
2909 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
2910 | Updates.reserve(N: UniqueSuccessors.size()); |
2911 | for (BasicBlock *UniqueSuccessor : UniqueSuccessors) |
2912 | Updates.push_back(Elt: {DominatorTree::Delete, BB, UniqueSuccessor}); |
2913 | DTU->applyUpdates(Updates); |
2914 | } |
2915 | BB->flushTerminatorDbgRecords(); |
2916 | return NumInstrsRemoved; |
2917 | } |
2918 | |
2919 | CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { |
2920 | SmallVector<Value *, 8> Args(II->args()); |
2921 | SmallVector<OperandBundleDef, 1> OpBundles; |
2922 | II->getOperandBundlesAsDefs(Defs&: OpBundles); |
2923 | CallInst *NewCall = CallInst::Create(Ty: II->getFunctionType(), |
2924 | Func: II->getCalledOperand(), Args, Bundles: OpBundles); |
2925 | NewCall->setCallingConv(II->getCallingConv()); |
2926 | NewCall->setAttributes(II->getAttributes()); |
2927 | NewCall->setDebugLoc(II->getDebugLoc()); |
2928 | NewCall->copyMetadata(SrcInst: *II); |
2929 | |
2930 | // If the invoke had profile metadata, try converting them for CallInst. |
2931 | uint64_t TotalWeight; |
2932 | if (NewCall->extractProfTotalWeight(TotalVal&: TotalWeight)) { |
2933 | // Set the total weight if it fits into i32, otherwise reset. |
2934 | MDBuilder MDB(NewCall->getContext()); |
2935 | auto NewWeights = uint32_t(TotalWeight) != TotalWeight |
2936 | ? nullptr |
2937 | : MDB.createBranchWeights(Weights: {uint32_t(TotalWeight)}); |
2938 | NewCall->setMetadata(KindID: LLVMContext::MD_prof, Node: NewWeights); |
2939 | } |
2940 | |
2941 | return NewCall; |
2942 | } |
2943 | |
2944 | // changeToCall - Convert the specified invoke into a normal call. |
2945 | CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { |
2946 | CallInst *NewCall = createCallMatchingInvoke(II); |
2947 | NewCall->takeName(V: II); |
2948 | NewCall->insertBefore(InsertPos: II->getIterator()); |
2949 | II->replaceAllUsesWith(V: NewCall); |
2950 | |
2951 | // Follow the call by a branch to the normal destination. |
2952 | BasicBlock *NormalDestBB = II->getNormalDest(); |
2953 | auto *BI = BranchInst::Create(IfTrue: NormalDestBB, InsertBefore: II->getIterator()); |
2954 | // Although it takes place after the call itself, the new branch is still |
2955 | // performing part of the control-flow functionality of the invoke, so we use |
2956 | // II's DebugLoc. |
2957 | BI->setDebugLoc(II->getDebugLoc()); |
2958 | |
2959 | // Update PHI nodes in the unwind destination |
2960 | BasicBlock *BB = II->getParent(); |
2961 | BasicBlock *UnwindDestBB = II->getUnwindDest(); |
2962 | UnwindDestBB->removePredecessor(Pred: BB); |
2963 | II->eraseFromParent(); |
2964 | if (DTU) |
2965 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnwindDestBB}}); |
2966 | return NewCall; |
2967 | } |
2968 | |
2969 | BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, |
2970 | BasicBlock *UnwindEdge, |
2971 | DomTreeUpdater *DTU) { |
2972 | BasicBlock *BB = CI->getParent(); |
2973 | |
2974 | // Convert this function call into an invoke instruction. First, split the |
2975 | // basic block. |
2976 | BasicBlock *Split = SplitBlock(Old: BB, SplitPt: CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, |
2977 | BBName: CI->getName() + ".noexc" ); |
2978 | |
2979 | // Delete the unconditional branch inserted by SplitBlock |
2980 | BB->back().eraseFromParent(); |
2981 | |
2982 | // Create the new invoke instruction. |
2983 | SmallVector<Value *, 8> InvokeArgs(CI->args()); |
2984 | SmallVector<OperandBundleDef, 1> OpBundles; |
2985 | |
2986 | CI->getOperandBundlesAsDefs(Defs&: OpBundles); |
2987 | |
2988 | // Note: we're round tripping operand bundles through memory here, and that |
2989 | // can potentially be avoided with a cleverer API design that we do not have |
2990 | // as of this time. |
2991 | |
2992 | InvokeInst *II = |
2993 | InvokeInst::Create(Ty: CI->getFunctionType(), Func: CI->getCalledOperand(), IfNormal: Split, |
2994 | IfException: UnwindEdge, Args: InvokeArgs, Bundles: OpBundles, NameStr: CI->getName(), InsertBefore: BB); |
2995 | II->setDebugLoc(CI->getDebugLoc()); |
2996 | II->setCallingConv(CI->getCallingConv()); |
2997 | II->setAttributes(CI->getAttributes()); |
2998 | II->setMetadata(KindID: LLVMContext::MD_prof, Node: CI->getMetadata(KindID: LLVMContext::MD_prof)); |
2999 | |
3000 | if (DTU) |
3001 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, BB, UnwindEdge}}); |
3002 | |
3003 | // Make sure that anything using the call now uses the invoke! This also |
3004 | // updates the CallGraph if present, because it uses a WeakTrackingVH. |
3005 | CI->replaceAllUsesWith(V: II); |
3006 | |
3007 | // Delete the original call |
3008 | Split->front().eraseFromParent(); |
3009 | return Split; |
3010 | } |
3011 | |
3012 | static bool markAliveBlocks(Function &F, |
3013 | SmallPtrSetImpl<BasicBlock *> &Reachable, |
3014 | DomTreeUpdater *DTU = nullptr) { |
3015 | SmallVector<BasicBlock*, 128> Worklist; |
3016 | BasicBlock *BB = &F.front(); |
3017 | Worklist.push_back(Elt: BB); |
3018 | Reachable.insert(Ptr: BB); |
3019 | bool Changed = false; |
3020 | do { |
3021 | BB = Worklist.pop_back_val(); |
3022 | |
3023 | // Do a quick scan of the basic block, turning any obviously unreachable |
3024 | // instructions into LLVM unreachable insts. The instruction combining pass |
3025 | // canonicalizes unreachable insts into stores to null or undef. |
3026 | for (Instruction &I : *BB) { |
3027 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) { |
3028 | Value *Callee = CI->getCalledOperand(); |
3029 | // Handle intrinsic calls. |
3030 | if (Function *F = dyn_cast<Function>(Val: Callee)) { |
3031 | auto IntrinsicID = F->getIntrinsicID(); |
3032 | // Assumptions that are known to be false are equivalent to |
3033 | // unreachable. Also, if the condition is undefined, then we make the |
3034 | // choice most beneficial to the optimizer, and choose that to also be |
3035 | // unreachable. |
3036 | if (IntrinsicID == Intrinsic::assume) { |
3037 | if (match(V: CI->getArgOperand(i: 0), P: m_CombineOr(L: m_Zero(), R: m_Undef()))) { |
3038 | // Don't insert a call to llvm.trap right before the unreachable. |
3039 | changeToUnreachable(I: CI, PreserveLCSSA: false, DTU); |
3040 | Changed = true; |
3041 | break; |
3042 | } |
3043 | } else if (IntrinsicID == Intrinsic::experimental_guard) { |
3044 | // A call to the guard intrinsic bails out of the current |
3045 | // compilation unit if the predicate passed to it is false. If the |
3046 | // predicate is a constant false, then we know the guard will bail |
3047 | // out of the current compile unconditionally, so all code following |
3048 | // it is dead. |
3049 | // |
3050 | // Note: unlike in llvm.assume, it is not "obviously profitable" for |
3051 | // guards to treat `undef` as `false` since a guard on `undef` can |
3052 | // still be useful for widening. |
3053 | if (match(V: CI->getArgOperand(i: 0), P: m_Zero())) |
3054 | if (!isa<UnreachableInst>(Val: CI->getNextNode())) { |
3055 | changeToUnreachable(I: CI->getNextNode(), PreserveLCSSA: false, DTU); |
3056 | Changed = true; |
3057 | break; |
3058 | } |
3059 | } |
3060 | } else if ((isa<ConstantPointerNull>(Val: Callee) && |
3061 | !NullPointerIsDefined(F: CI->getFunction(), |
3062 | AS: cast<PointerType>(Val: Callee->getType()) |
3063 | ->getAddressSpace())) || |
3064 | isa<UndefValue>(Val: Callee)) { |
3065 | changeToUnreachable(I: CI, PreserveLCSSA: false, DTU); |
3066 | Changed = true; |
3067 | break; |
3068 | } |
3069 | if (CI->doesNotReturn() && !CI->isMustTailCall()) { |
3070 | // If we found a call to a no-return function, insert an unreachable |
3071 | // instruction after it. Make sure there isn't *already* one there |
3072 | // though. |
3073 | if (!isa<UnreachableInst>(Val: CI->getNextNonDebugInstruction())) { |
3074 | // Don't insert a call to llvm.trap right before the unreachable. |
3075 | changeToUnreachable(I: CI->getNextNonDebugInstruction(), PreserveLCSSA: false, DTU); |
3076 | Changed = true; |
3077 | } |
3078 | break; |
3079 | } |
3080 | } else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
3081 | // Store to undef and store to null are undefined and used to signal |
3082 | // that they should be changed to unreachable by passes that can't |
3083 | // modify the CFG. |
3084 | |
3085 | // Don't touch volatile stores. |
3086 | if (SI->isVolatile()) continue; |
3087 | |
3088 | Value *Ptr = SI->getOperand(i_nocapture: 1); |
3089 | |
3090 | if (isa<UndefValue>(Val: Ptr) || |
3091 | (isa<ConstantPointerNull>(Val: Ptr) && |
3092 | !NullPointerIsDefined(F: SI->getFunction(), |
3093 | AS: SI->getPointerAddressSpace()))) { |
3094 | changeToUnreachable(I: SI, PreserveLCSSA: false, DTU); |
3095 | Changed = true; |
3096 | break; |
3097 | } |
3098 | } |
3099 | } |
3100 | |
3101 | Instruction *Terminator = BB->getTerminator(); |
3102 | if (auto *II = dyn_cast<InvokeInst>(Val: Terminator)) { |
3103 | // Turn invokes that call 'nounwind' functions into ordinary calls. |
3104 | Value *Callee = II->getCalledOperand(); |
3105 | if ((isa<ConstantPointerNull>(Val: Callee) && |
3106 | !NullPointerIsDefined(F: BB->getParent())) || |
3107 | isa<UndefValue>(Val: Callee)) { |
3108 | changeToUnreachable(I: II, PreserveLCSSA: false, DTU); |
3109 | Changed = true; |
3110 | } else { |
3111 | if (II->doesNotReturn() && |
3112 | !isa<UnreachableInst>(Val: II->getNormalDest()->front())) { |
3113 | // If we found an invoke of a no-return function, |
3114 | // create a new empty basic block with an `unreachable` terminator, |
3115 | // and set it as the normal destination for the invoke, |
3116 | // unless that is already the case. |
3117 | // Note that the original normal destination could have other uses. |
3118 | BasicBlock *OrigNormalDest = II->getNormalDest(); |
3119 | OrigNormalDest->removePredecessor(Pred: II->getParent()); |
3120 | LLVMContext &Ctx = II->getContext(); |
3121 | BasicBlock *UnreachableNormalDest = BasicBlock::Create( |
3122 | Context&: Ctx, Name: OrigNormalDest->getName() + ".unreachable" , |
3123 | Parent: II->getFunction(), InsertBefore: OrigNormalDest); |
3124 | auto *UI = new UnreachableInst(Ctx, UnreachableNormalDest); |
3125 | UI->setDebugLoc(DebugLoc::getTemporary()); |
3126 | II->setNormalDest(UnreachableNormalDest); |
3127 | if (DTU) |
3128 | DTU->applyUpdates( |
3129 | Updates: {{DominatorTree::Delete, BB, OrigNormalDest}, |
3130 | {DominatorTree::Insert, BB, UnreachableNormalDest}}); |
3131 | Changed = true; |
3132 | } |
3133 | if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(F: &F)) { |
3134 | if (II->use_empty() && !II->mayHaveSideEffects()) { |
3135 | // jump to the normal destination branch. |
3136 | BasicBlock *NormalDestBB = II->getNormalDest(); |
3137 | BasicBlock *UnwindDestBB = II->getUnwindDest(); |
3138 | BranchInst::Create(IfTrue: NormalDestBB, InsertBefore: II->getIterator()); |
3139 | UnwindDestBB->removePredecessor(Pred: II->getParent()); |
3140 | II->eraseFromParent(); |
3141 | if (DTU) |
3142 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnwindDestBB}}); |
3143 | } else |
3144 | changeToCall(II, DTU); |
3145 | Changed = true; |
3146 | } |
3147 | } |
3148 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: Terminator)) { |
3149 | // Remove catchpads which cannot be reached. |
3150 | struct CatchPadDenseMapInfo { |
3151 | static CatchPadInst *getEmptyKey() { |
3152 | return DenseMapInfo<CatchPadInst *>::getEmptyKey(); |
3153 | } |
3154 | |
3155 | static CatchPadInst *getTombstoneKey() { |
3156 | return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); |
3157 | } |
3158 | |
3159 | static unsigned getHashValue(CatchPadInst *CatchPad) { |
3160 | return static_cast<unsigned>(hash_combine_range( |
3161 | first: CatchPad->value_op_begin(), last: CatchPad->value_op_end())); |
3162 | } |
3163 | |
3164 | static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { |
3165 | if (LHS == getEmptyKey() || LHS == getTombstoneKey() || |
3166 | RHS == getEmptyKey() || RHS == getTombstoneKey()) |
3167 | return LHS == RHS; |
3168 | return LHS->isIdenticalTo(I: RHS); |
3169 | } |
3170 | }; |
3171 | |
3172 | SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; |
3173 | // Set of unique CatchPads. |
3174 | SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, |
3175 | CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> |
3176 | HandlerSet; |
3177 | detail::DenseSetEmpty Empty; |
3178 | for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), |
3179 | E = CatchSwitch->handler_end(); |
3180 | I != E; ++I) { |
3181 | BasicBlock *HandlerBB = *I; |
3182 | if (DTU) |
3183 | ++NumPerSuccessorCases[HandlerBB]; |
3184 | auto *CatchPad = cast<CatchPadInst>(Val: HandlerBB->getFirstNonPHIIt()); |
3185 | if (!HandlerSet.insert(KV: {CatchPad, Empty}).second) { |
3186 | if (DTU) |
3187 | --NumPerSuccessorCases[HandlerBB]; |
3188 | CatchSwitch->removeHandler(HI: I); |
3189 | --I; |
3190 | --E; |
3191 | Changed = true; |
3192 | } |
3193 | } |
3194 | if (DTU) { |
3195 | std::vector<DominatorTree::UpdateType> Updates; |
3196 | for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) |
3197 | if (I.second == 0) |
3198 | Updates.push_back(x: {DominatorTree::Delete, BB, I.first}); |
3199 | DTU->applyUpdates(Updates); |
3200 | } |
3201 | } |
3202 | |
3203 | Changed |= ConstantFoldTerminator(BB, DeleteDeadConditions: true, TLI: nullptr, DTU); |
3204 | for (BasicBlock *Successor : successors(BB)) |
3205 | if (Reachable.insert(Ptr: Successor).second) |
3206 | Worklist.push_back(Elt: Successor); |
3207 | } while (!Worklist.empty()); |
3208 | return Changed; |
3209 | } |
3210 | |
3211 | Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { |
3212 | Instruction *TI = BB->getTerminator(); |
3213 | |
3214 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) |
3215 | return changeToCall(II, DTU); |
3216 | |
3217 | Instruction *NewTI; |
3218 | BasicBlock *UnwindDest; |
3219 | |
3220 | if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) { |
3221 | NewTI = CleanupReturnInst::Create(CleanupPad: CRI->getCleanupPad(), UnwindBB: nullptr, InsertBefore: CRI->getIterator()); |
3222 | UnwindDest = CRI->getUnwindDest(); |
3223 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: TI)) { |
3224 | auto *NewCatchSwitch = CatchSwitchInst::Create( |
3225 | ParentPad: CatchSwitch->getParentPad(), UnwindDest: nullptr, NumHandlers: CatchSwitch->getNumHandlers(), |
3226 | NameStr: CatchSwitch->getName(), InsertBefore: CatchSwitch->getIterator()); |
3227 | for (BasicBlock *PadBB : CatchSwitch->handlers()) |
3228 | NewCatchSwitch->addHandler(Dest: PadBB); |
3229 | |
3230 | NewTI = NewCatchSwitch; |
3231 | UnwindDest = CatchSwitch->getUnwindDest(); |
3232 | } else { |
3233 | llvm_unreachable("Could not find unwind successor" ); |
3234 | } |
3235 | |
3236 | NewTI->takeName(V: TI); |
3237 | NewTI->setDebugLoc(TI->getDebugLoc()); |
3238 | UnwindDest->removePredecessor(Pred: BB); |
3239 | TI->replaceAllUsesWith(V: NewTI); |
3240 | TI->eraseFromParent(); |
3241 | if (DTU) |
3242 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnwindDest}}); |
3243 | return NewTI; |
3244 | } |
3245 | |
3246 | /// removeUnreachableBlocks - Remove blocks that are not reachable, even |
3247 | /// if they are in a dead cycle. Return true if a change was made, false |
3248 | /// otherwise. |
3249 | bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, |
3250 | MemorySSAUpdater *MSSAU) { |
3251 | SmallPtrSet<BasicBlock *, 16> Reachable; |
3252 | bool Changed = markAliveBlocks(F, Reachable, DTU); |
3253 | |
3254 | // If there are unreachable blocks in the CFG... |
3255 | if (Reachable.size() == F.size()) |
3256 | return Changed; |
3257 | |
3258 | assert(Reachable.size() < F.size()); |
3259 | |
3260 | // Are there any blocks left to actually delete? |
3261 | SmallSetVector<BasicBlock *, 8> BlocksToRemove; |
3262 | for (BasicBlock &BB : F) { |
3263 | // Skip reachable basic blocks |
3264 | if (Reachable.count(Ptr: &BB)) |
3265 | continue; |
3266 | // Skip already-deleted blocks |
3267 | if (DTU && DTU->isBBPendingDeletion(DelBB: &BB)) |
3268 | continue; |
3269 | BlocksToRemove.insert(X: &BB); |
3270 | } |
3271 | |
3272 | if (BlocksToRemove.empty()) |
3273 | return Changed; |
3274 | |
3275 | Changed = true; |
3276 | NumRemoved += BlocksToRemove.size(); |
3277 | |
3278 | if (MSSAU) |
3279 | MSSAU->removeBlocks(DeadBlocks: BlocksToRemove); |
3280 | |
3281 | DeleteDeadBlocks(BBs: BlocksToRemove.takeVector(), DTU); |
3282 | |
3283 | return Changed; |
3284 | } |
3285 | |
3286 | /// If AAOnly is set, only intersect alias analysis metadata and preserve other |
3287 | /// known metadata. Unknown metadata is always dropped. |
3288 | static void combineMetadata(Instruction *K, const Instruction *J, |
3289 | bool DoesKMove, bool AAOnly = false) { |
3290 | SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
3291 | K->getAllMetadataOtherThanDebugLoc(MDs&: Metadata); |
3292 | for (const auto &MD : Metadata) { |
3293 | unsigned Kind = MD.first; |
3294 | MDNode *JMD = J->getMetadata(KindID: Kind); |
3295 | MDNode *KMD = MD.second; |
3296 | |
3297 | // TODO: Assert that this switch is exhaustive for fixed MD kinds. |
3298 | switch (Kind) { |
3299 | default: |
3300 | K->setMetadata(KindID: Kind, Node: nullptr); // Remove unknown metadata |
3301 | break; |
3302 | case LLVMContext::MD_dbg: |
3303 | llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg" ); |
3304 | case LLVMContext::MD_DIAssignID: |
3305 | if (!AAOnly) |
3306 | K->mergeDIAssignID(SourceInstructions: J); |
3307 | break; |
3308 | case LLVMContext::MD_tbaa: |
3309 | if (DoesKMove) |
3310 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericTBAA(A: JMD, B: KMD)); |
3311 | break; |
3312 | case LLVMContext::MD_alias_scope: |
3313 | if (DoesKMove) |
3314 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericAliasScope(A: JMD, B: KMD)); |
3315 | break; |
3316 | case LLVMContext::MD_noalias: |
3317 | case LLVMContext::MD_mem_parallel_loop_access: |
3318 | if (DoesKMove) |
3319 | K->setMetadata(KindID: Kind, Node: MDNode::intersect(A: JMD, B: KMD)); |
3320 | break; |
3321 | case LLVMContext::MD_access_group: |
3322 | if (DoesKMove) |
3323 | K->setMetadata(KindID: LLVMContext::MD_access_group, |
3324 | Node: intersectAccessGroups(Inst1: K, Inst2: J)); |
3325 | break; |
3326 | case LLVMContext::MD_range: |
3327 | if (!AAOnly && (DoesKMove || !K->hasMetadata(KindID: LLVMContext::MD_noundef))) |
3328 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericRange(A: JMD, B: KMD)); |
3329 | break; |
3330 | case LLVMContext::MD_fpmath: |
3331 | if (!AAOnly) |
3332 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericFPMath(A: JMD, B: KMD)); |
3333 | break; |
3334 | case LLVMContext::MD_invariant_load: |
3335 | // If K moves, only set the !invariant.load if it is present in both |
3336 | // instructions. |
3337 | if (DoesKMove) |
3338 | K->setMetadata(KindID: Kind, Node: JMD); |
3339 | break; |
3340 | case LLVMContext::MD_nonnull: |
3341 | if (!AAOnly && (DoesKMove || !K->hasMetadata(KindID: LLVMContext::MD_noundef))) |
3342 | K->setMetadata(KindID: Kind, Node: JMD); |
3343 | break; |
3344 | case LLVMContext::MD_invariant_group: |
3345 | // Preserve !invariant.group in K. |
3346 | break; |
3347 | // Keep empty cases for prof, mmra, memprof, and callsite to prevent them |
3348 | // from being removed as unknown metadata. The actual merging is handled |
3349 | // separately below. |
3350 | case LLVMContext::MD_prof: |
3351 | case LLVMContext::MD_mmra: |
3352 | case LLVMContext::MD_memprof: |
3353 | case LLVMContext::MD_callsite: |
3354 | break; |
3355 | case LLVMContext::MD_align: |
3356 | if (!AAOnly && (DoesKMove || !K->hasMetadata(KindID: LLVMContext::MD_noundef))) |
3357 | K->setMetadata( |
3358 | KindID: Kind, Node: MDNode::getMostGenericAlignmentOrDereferenceable(A: JMD, B: KMD)); |
3359 | break; |
3360 | case LLVMContext::MD_dereferenceable: |
3361 | case LLVMContext::MD_dereferenceable_or_null: |
3362 | if (!AAOnly && DoesKMove) |
3363 | K->setMetadata(KindID: Kind, |
3364 | Node: MDNode::getMostGenericAlignmentOrDereferenceable(A: JMD, B: KMD)); |
3365 | break; |
3366 | case LLVMContext::MD_preserve_access_index: |
3367 | // Preserve !preserve.access.index in K. |
3368 | break; |
3369 | case LLVMContext::MD_noundef: |
3370 | // If K does move, keep noundef if it is present in both instructions. |
3371 | if (!AAOnly && DoesKMove) |
3372 | K->setMetadata(KindID: Kind, Node: JMD); |
3373 | break; |
3374 | case LLVMContext::MD_nontemporal: |
3375 | // Preserve !nontemporal if it is present on both instructions. |
3376 | if (!AAOnly) |
3377 | K->setMetadata(KindID: Kind, Node: JMD); |
3378 | break; |
3379 | case LLVMContext::MD_noalias_addrspace: |
3380 | if (DoesKMove) |
3381 | K->setMetadata(KindID: Kind, |
3382 | Node: MDNode::getMostGenericNoaliasAddrspace(A: JMD, B: KMD)); |
3383 | break; |
3384 | } |
3385 | } |
3386 | // Set !invariant.group from J if J has it. If both instructions have it |
3387 | // then we will just pick it from J - even when they are different. |
3388 | // Also make sure that K is load or store - f.e. combining bitcast with load |
3389 | // could produce bitcast with invariant.group metadata, which is invalid. |
3390 | // FIXME: we should try to preserve both invariant.group md if they are |
3391 | // different, but right now instruction can only have one invariant.group. |
3392 | if (auto *JMD = J->getMetadata(KindID: LLVMContext::MD_invariant_group)) |
3393 | if (isa<LoadInst>(Val: K) || isa<StoreInst>(Val: K)) |
3394 | K->setMetadata(KindID: LLVMContext::MD_invariant_group, Node: JMD); |
3395 | |
3396 | // Merge MMRAs. |
3397 | // This is handled separately because we also want to handle cases where K |
3398 | // doesn't have tags but J does. |
3399 | auto JMMRA = J->getMetadata(KindID: LLVMContext::MD_mmra); |
3400 | auto KMMRA = K->getMetadata(KindID: LLVMContext::MD_mmra); |
3401 | if (JMMRA || KMMRA) { |
3402 | K->setMetadata(KindID: LLVMContext::MD_mmra, |
3403 | Node: MMRAMetadata::combine(Ctx&: K->getContext(), A: JMMRA, B: KMMRA)); |
3404 | } |
3405 | |
3406 | // Merge memprof metadata. |
3407 | // Handle separately to support cases where only one instruction has the |
3408 | // metadata. |
3409 | auto *JMemProf = J->getMetadata(KindID: LLVMContext::MD_memprof); |
3410 | auto *KMemProf = K->getMetadata(KindID: LLVMContext::MD_memprof); |
3411 | if (!AAOnly && (JMemProf || KMemProf)) { |
3412 | K->setMetadata(KindID: LLVMContext::MD_memprof, |
3413 | Node: MDNode::getMergedMemProfMetadata(A: KMemProf, B: JMemProf)); |
3414 | } |
3415 | |
3416 | // Merge callsite metadata. |
3417 | // Handle separately to support cases where only one instruction has the |
3418 | // metadata. |
3419 | auto *JCallSite = J->getMetadata(KindID: LLVMContext::MD_callsite); |
3420 | auto *KCallSite = K->getMetadata(KindID: LLVMContext::MD_callsite); |
3421 | if (!AAOnly && (JCallSite || KCallSite)) { |
3422 | K->setMetadata(KindID: LLVMContext::MD_callsite, |
3423 | Node: MDNode::getMergedCallsiteMetadata(A: KCallSite, B: JCallSite)); |
3424 | } |
3425 | |
3426 | // Merge prof metadata. |
3427 | // Handle separately to support cases where only one instruction has the |
3428 | // metadata. |
3429 | auto *JProf = J->getMetadata(KindID: LLVMContext::MD_prof); |
3430 | auto *KProf = K->getMetadata(KindID: LLVMContext::MD_prof); |
3431 | if (!AAOnly && (JProf || KProf)) { |
3432 | K->setMetadata(KindID: LLVMContext::MD_prof, |
3433 | Node: MDNode::getMergedProfMetadata(A: KProf, B: JProf, AInstr: K, BInstr: J)); |
3434 | } |
3435 | } |
3436 | |
3437 | void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, |
3438 | bool DoesKMove) { |
3439 | combineMetadata(K, J, DoesKMove); |
3440 | } |
3441 | |
3442 | void llvm::combineAAMetadata(Instruction *K, const Instruction *J) { |
3443 | combineMetadata(K, J, /*DoesKMove=*/true, /*AAOnly=*/true); |
3444 | } |
3445 | |
3446 | void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { |
3447 | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; |
3448 | Source.getAllMetadata(MDs&: MD); |
3449 | MDBuilder MDB(Dest.getContext()); |
3450 | Type *NewType = Dest.getType(); |
3451 | const DataLayout &DL = Source.getDataLayout(); |
3452 | for (const auto &MDPair : MD) { |
3453 | unsigned ID = MDPair.first; |
3454 | MDNode *N = MDPair.second; |
3455 | // Note, essentially every kind of metadata should be preserved here! This |
3456 | // routine is supposed to clone a load instruction changing *only its type*. |
3457 | // The only metadata it makes sense to drop is metadata which is invalidated |
3458 | // when the pointer type changes. This should essentially never be the case |
3459 | // in LLVM, but we explicitly switch over only known metadata to be |
3460 | // conservatively correct. If you are adding metadata to LLVM which pertains |
3461 | // to loads, you almost certainly want to add it here. |
3462 | switch (ID) { |
3463 | case LLVMContext::MD_dbg: |
3464 | case LLVMContext::MD_tbaa: |
3465 | case LLVMContext::MD_prof: |
3466 | case LLVMContext::MD_fpmath: |
3467 | case LLVMContext::MD_tbaa_struct: |
3468 | case LLVMContext::MD_invariant_load: |
3469 | case LLVMContext::MD_alias_scope: |
3470 | case LLVMContext::MD_noalias: |
3471 | case LLVMContext::MD_nontemporal: |
3472 | case LLVMContext::MD_mem_parallel_loop_access: |
3473 | case LLVMContext::MD_access_group: |
3474 | case LLVMContext::MD_noundef: |
3475 | case LLVMContext::MD_noalias_addrspace: |
3476 | // All of these directly apply. |
3477 | Dest.setMetadata(KindID: ID, Node: N); |
3478 | break; |
3479 | |
3480 | case LLVMContext::MD_nonnull: |
3481 | copyNonnullMetadata(OldLI: Source, N, NewLI&: Dest); |
3482 | break; |
3483 | |
3484 | case LLVMContext::MD_align: |
3485 | case LLVMContext::MD_dereferenceable: |
3486 | case LLVMContext::MD_dereferenceable_or_null: |
3487 | // These only directly apply if the new type is also a pointer. |
3488 | if (NewType->isPointerTy()) |
3489 | Dest.setMetadata(KindID: ID, Node: N); |
3490 | break; |
3491 | |
3492 | case LLVMContext::MD_range: |
3493 | copyRangeMetadata(DL, OldLI: Source, N, NewLI&: Dest); |
3494 | break; |
3495 | } |
3496 | } |
3497 | } |
3498 | |
3499 | void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { |
3500 | auto *ReplInst = dyn_cast<Instruction>(Val: Repl); |
3501 | if (!ReplInst) |
3502 | return; |
3503 | |
3504 | // Patch the replacement so that it is not more restrictive than the value |
3505 | // being replaced. |
3506 | WithOverflowInst *UnusedWO; |
3507 | // When replacing the result of a llvm.*.with.overflow intrinsic with a |
3508 | // overflowing binary operator, nuw/nsw flags may no longer hold. |
3509 | if (isa<OverflowingBinaryOperator>(Val: ReplInst) && |
3510 | match(V: I, P: m_ExtractValue<0>(V: m_WithOverflowInst(I&: UnusedWO)))) |
3511 | ReplInst->dropPoisonGeneratingFlags(); |
3512 | // Note that if 'I' is a load being replaced by some operation, |
3513 | // for example, by an arithmetic operation, then andIRFlags() |
3514 | // would just erase all math flags from the original arithmetic |
3515 | // operation, which is clearly not wanted and not needed. |
3516 | else if (!isa<LoadInst>(Val: I)) |
3517 | ReplInst->andIRFlags(V: I); |
3518 | |
3519 | // Handle attributes. |
3520 | if (auto *CB1 = dyn_cast<CallBase>(Val: ReplInst)) { |
3521 | if (auto *CB2 = dyn_cast<CallBase>(Val: I)) { |
3522 | bool Success = CB1->tryIntersectAttributes(Other: CB2); |
3523 | assert(Success && "We should not be trying to sink callbases " |
3524 | "with non-intersectable attributes" ); |
3525 | // For NDEBUG Compile. |
3526 | (void)Success; |
3527 | } |
3528 | } |
3529 | |
3530 | // FIXME: If both the original and replacement value are part of the |
3531 | // same control-flow region (meaning that the execution of one |
3532 | // guarantees the execution of the other), then we can combine the |
3533 | // noalias scopes here and do better than the general conservative |
3534 | // answer used in combineMetadata(). |
3535 | |
3536 | // In general, GVN unifies expressions over different control-flow |
3537 | // regions, and so we need a conservative combination of the noalias |
3538 | // scopes. |
3539 | combineMetadataForCSE(K: ReplInst, J: I, DoesKMove: false); |
3540 | } |
3541 | |
3542 | template <typename RootType, typename ShouldReplaceFn> |
3543 | static unsigned replaceDominatedUsesWith(Value *From, Value *To, |
3544 | const RootType &Root, |
3545 | const ShouldReplaceFn &ShouldReplace) { |
3546 | assert(From->getType() == To->getType()); |
3547 | |
3548 | unsigned Count = 0; |
3549 | for (Use &U : llvm::make_early_inc_range(Range: From->uses())) { |
3550 | auto *II = dyn_cast<IntrinsicInst>(Val: U.getUser()); |
3551 | if (II && II->getIntrinsicID() == Intrinsic::fake_use) |
3552 | continue; |
3553 | if (!ShouldReplace(Root, U)) |
3554 | continue; |
3555 | LLVM_DEBUG(dbgs() << "Replace dominated use of '" ; |
3556 | From->printAsOperand(dbgs()); |
3557 | dbgs() << "' with " << *To << " in " << *U.getUser() << "\n" ); |
3558 | U.set(To); |
3559 | ++Count; |
3560 | } |
3561 | return Count; |
3562 | } |
3563 | |
3564 | unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { |
3565 | assert(From->getType() == To->getType()); |
3566 | auto *BB = From->getParent(); |
3567 | unsigned Count = 0; |
3568 | |
3569 | for (Use &U : llvm::make_early_inc_range(Range: From->uses())) { |
3570 | auto *I = cast<Instruction>(Val: U.getUser()); |
3571 | if (I->getParent() == BB) |
3572 | continue; |
3573 | U.set(To); |
3574 | ++Count; |
3575 | } |
3576 | return Count; |
3577 | } |
3578 | |
3579 | unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
3580 | DominatorTree &DT, |
3581 | const BasicBlockEdge &Root) { |
3582 | auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { |
3583 | return DT.dominates(BBE: Root, U); |
3584 | }; |
3585 | return ::replaceDominatedUsesWith(From, To, Root, ShouldReplace: Dominates); |
3586 | } |
3587 | |
3588 | unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
3589 | DominatorTree &DT, |
3590 | const BasicBlock *BB) { |
3591 | auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { |
3592 | return DT.dominates(BB, U); |
3593 | }; |
3594 | return ::replaceDominatedUsesWith(From, To, Root: BB, ShouldReplace: Dominates); |
3595 | } |
3596 | |
3597 | unsigned llvm::replaceDominatedUsesWithIf( |
3598 | Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, |
3599 | function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { |
3600 | auto DominatesAndShouldReplace = |
3601 | [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { |
3602 | return DT.dominates(BBE: Root, U) && ShouldReplace(U, To); |
3603 | }; |
3604 | return ::replaceDominatedUsesWith(From, To, Root, ShouldReplace: DominatesAndShouldReplace); |
3605 | } |
3606 | |
3607 | unsigned llvm::replaceDominatedUsesWithIf( |
3608 | Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, |
3609 | function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { |
3610 | auto DominatesAndShouldReplace = [&DT, &ShouldReplace, |
3611 | To](const BasicBlock *BB, const Use &U) { |
3612 | return DT.dominates(BB, U) && ShouldReplace(U, To); |
3613 | }; |
3614 | return ::replaceDominatedUsesWith(From, To, Root: BB, ShouldReplace: DominatesAndShouldReplace); |
3615 | } |
3616 | |
3617 | bool llvm::callsGCLeafFunction(const CallBase *Call, |
3618 | const TargetLibraryInfo &TLI) { |
3619 | // Check if the function is specifically marked as a gc leaf function. |
3620 | if (Call->hasFnAttr(Kind: "gc-leaf-function" )) |
3621 | return true; |
3622 | if (const Function *F = Call->getCalledFunction()) { |
3623 | if (F->hasFnAttribute(Kind: "gc-leaf-function" )) |
3624 | return true; |
3625 | |
3626 | if (auto IID = F->getIntrinsicID()) { |
3627 | // Most LLVM intrinsics do not take safepoints. |
3628 | return IID != Intrinsic::experimental_gc_statepoint && |
3629 | IID != Intrinsic::experimental_deoptimize && |
3630 | IID != Intrinsic::memcpy_element_unordered_atomic && |
3631 | IID != Intrinsic::memmove_element_unordered_atomic; |
3632 | } |
3633 | } |
3634 | |
3635 | // Lib calls can be materialized by some passes, and won't be |
3636 | // marked as 'gc-leaf-function.' All available Libcalls are |
3637 | // GC-leaf. |
3638 | LibFunc LF; |
3639 | if (TLI.getLibFunc(CB: *Call, F&: LF)) { |
3640 | return TLI.has(F: LF); |
3641 | } |
3642 | |
3643 | return false; |
3644 | } |
3645 | |
3646 | void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, |
3647 | LoadInst &NewLI) { |
3648 | auto *NewTy = NewLI.getType(); |
3649 | |
3650 | // This only directly applies if the new type is also a pointer. |
3651 | if (NewTy->isPointerTy()) { |
3652 | NewLI.setMetadata(KindID: LLVMContext::MD_nonnull, Node: N); |
3653 | return; |
3654 | } |
3655 | |
3656 | // The only other translation we can do is to integral loads with !range |
3657 | // metadata. |
3658 | if (!NewTy->isIntegerTy()) |
3659 | return; |
3660 | |
3661 | MDBuilder MDB(NewLI.getContext()); |
3662 | const Value *Ptr = OldLI.getPointerOperand(); |
3663 | auto *ITy = cast<IntegerType>(Val: NewTy); |
3664 | auto *NullInt = ConstantExpr::getPtrToInt( |
3665 | C: ConstantPointerNull::get(T: cast<PointerType>(Val: Ptr->getType())), Ty: ITy); |
3666 | auto *NonNullInt = ConstantExpr::getAdd(C1: NullInt, C2: ConstantInt::get(Ty: ITy, V: 1)); |
3667 | NewLI.setMetadata(KindID: LLVMContext::MD_range, |
3668 | Node: MDB.createRange(Lo: NonNullInt, Hi: NullInt)); |
3669 | } |
3670 | |
3671 | void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, |
3672 | MDNode *N, LoadInst &NewLI) { |
3673 | auto *NewTy = NewLI.getType(); |
3674 | // Simply copy the metadata if the type did not change. |
3675 | if (NewTy == OldLI.getType()) { |
3676 | NewLI.setMetadata(KindID: LLVMContext::MD_range, Node: N); |
3677 | return; |
3678 | } |
3679 | |
3680 | // Give up unless it is converted to a pointer where there is a single very |
3681 | // valuable mapping we can do reliably. |
3682 | // FIXME: It would be nice to propagate this in more ways, but the type |
3683 | // conversions make it hard. |
3684 | if (!NewTy->isPointerTy()) |
3685 | return; |
3686 | |
3687 | unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); |
3688 | if (BitWidth == OldLI.getType()->getScalarSizeInBits() && |
3689 | !getConstantRangeFromMetadata(RangeMD: *N).contains(Val: APInt(BitWidth, 0))) { |
3690 | MDNode *NN = MDNode::get(Context&: OldLI.getContext(), MDs: {}); |
3691 | NewLI.setMetadata(KindID: LLVMContext::MD_nonnull, Node: NN); |
3692 | } |
3693 | } |
3694 | |
3695 | void llvm::dropDebugUsers(Instruction &I) { |
3696 | SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
3697 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
3698 | findDbgUsers(DbgInsts&: DbgUsers, V: &I, DbgVariableRecords: &DPUsers); |
3699 | for (auto *DII : DbgUsers) |
3700 | DII->eraseFromParent(); |
3701 | for (auto *DVR : DPUsers) |
3702 | DVR->eraseFromParent(); |
3703 | } |
3704 | |
3705 | void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, |
3706 | BasicBlock *BB) { |
3707 | // Since we are moving the instructions out of its basic block, we do not |
3708 | // retain their original debug locations (DILocations) and debug intrinsic |
3709 | // instructions. |
3710 | // |
3711 | // Doing so would degrade the debugging experience and adversely affect the |
3712 | // accuracy of profiling information. |
3713 | // |
3714 | // Currently, when hoisting the instructions, we take the following actions: |
3715 | // - Remove their debug intrinsic instructions. |
3716 | // - Set their debug locations to the values from the insertion point. |
3717 | // |
3718 | // As per PR39141 (comment #8), the more fundamental reason why the dbg.values |
3719 | // need to be deleted, is because there will not be any instructions with a |
3720 | // DILocation in either branch left after performing the transformation. We |
3721 | // can only insert a dbg.value after the two branches are joined again. |
3722 | // |
3723 | // See PR38762, PR39243 for more details. |
3724 | // |
3725 | // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to |
3726 | // encode predicated DIExpressions that yield different results on different |
3727 | // code paths. |
3728 | |
3729 | for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
3730 | Instruction *I = &*II; |
3731 | I->dropUBImplyingAttrsAndMetadata(); |
3732 | if (I->isUsedByMetadata()) |
3733 | dropDebugUsers(I&: *I); |
3734 | // RemoveDIs: drop debug-info too as the following code does. |
3735 | I->dropDbgRecords(); |
3736 | if (I->isDebugOrPseudoInst()) { |
3737 | // Remove DbgInfo and pseudo probe Intrinsics. |
3738 | II = I->eraseFromParent(); |
3739 | continue; |
3740 | } |
3741 | I->setDebugLoc(InsertPt->getDebugLoc()); |
3742 | ++II; |
3743 | } |
3744 | DomBlock->splice(ToIt: InsertPt->getIterator(), FromBB: BB, FromBeginIt: BB->begin(), |
3745 | FromEndIt: BB->getTerminator()->getIterator()); |
3746 | } |
3747 | |
3748 | DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, |
3749 | Type &Ty) { |
3750 | // Create integer constant expression. |
3751 | auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { |
3752 | const APInt &API = cast<ConstantInt>(Val: &CV)->getValue(); |
3753 | std::optional<int64_t> InitIntOpt = API.trySExtValue(); |
3754 | return InitIntOpt ? DIB.createConstantValueExpression( |
3755 | Val: static_cast<uint64_t>(*InitIntOpt)) |
3756 | : nullptr; |
3757 | }; |
3758 | |
3759 | if (isa<ConstantInt>(Val: C)) |
3760 | return createIntegerExpression(C); |
3761 | |
3762 | auto *FP = dyn_cast<ConstantFP>(Val: &C); |
3763 | if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { |
3764 | const APFloat &APF = FP->getValueAPF(); |
3765 | APInt const &API = APF.bitcastToAPInt(); |
3766 | if (auto Temp = API.getZExtValue()) |
3767 | return DIB.createConstantValueExpression(Val: static_cast<uint64_t>(Temp)); |
3768 | return DIB.createConstantValueExpression(Val: *API.getRawData()); |
3769 | } |
3770 | |
3771 | if (!Ty.isPointerTy()) |
3772 | return nullptr; |
3773 | |
3774 | if (isa<ConstantPointerNull>(Val: C)) |
3775 | return DIB.createConstantValueExpression(Val: 0); |
3776 | |
3777 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: &C)) |
3778 | if (CE->getOpcode() == Instruction::IntToPtr) { |
3779 | const Value *V = CE->getOperand(i_nocapture: 0); |
3780 | if (auto CI = dyn_cast_or_null<ConstantInt>(Val: V)) |
3781 | return createIntegerExpression(*CI); |
3782 | } |
3783 | return nullptr; |
3784 | } |
3785 | |
3786 | void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { |
3787 | auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { |
3788 | for (auto *Op : Set) { |
3789 | auto I = Mapping.find(Op); |
3790 | if (I != Mapping.end()) |
3791 | DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); |
3792 | } |
3793 | }; |
3794 | auto RemapAssignAddress = [&Mapping](auto *DA) { |
3795 | auto I = Mapping.find(DA->getAddress()); |
3796 | if (I != Mapping.end()) |
3797 | DA->setAddress(I->second); |
3798 | }; |
3799 | if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Val: Inst)) |
3800 | RemapDebugOperands(DVI, DVI->location_ops()); |
3801 | if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Val: Inst)) |
3802 | RemapAssignAddress(DAI); |
3803 | for (DbgVariableRecord &DVR : filterDbgVars(R: Inst->getDbgRecordRange())) { |
3804 | RemapDebugOperands(&DVR, DVR.location_ops()); |
3805 | if (DVR.isDbgAssign()) |
3806 | RemapAssignAddress(&DVR); |
3807 | } |
3808 | } |
3809 | |
3810 | namespace { |
3811 | |
3812 | /// A potential constituent of a bitreverse or bswap expression. See |
3813 | /// collectBitParts for a fuller explanation. |
3814 | struct BitPart { |
3815 | BitPart(Value *P, unsigned BW) : Provider(P) { |
3816 | Provenance.resize(N: BW); |
3817 | } |
3818 | |
3819 | /// The Value that this is a bitreverse/bswap of. |
3820 | Value *Provider; |
3821 | |
3822 | /// The "provenance" of each bit. Provenance[A] = B means that bit A |
3823 | /// in Provider becomes bit B in the result of this expression. |
3824 | SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. |
3825 | |
3826 | enum { Unset = -1 }; |
3827 | }; |
3828 | |
3829 | } // end anonymous namespace |
3830 | |
3831 | /// Analyze the specified subexpression and see if it is capable of providing |
3832 | /// pieces of a bswap or bitreverse. The subexpression provides a potential |
3833 | /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in |
3834 | /// the output of the expression came from a corresponding bit in some other |
3835 | /// value. This function is recursive, and the end result is a mapping of |
3836 | /// bitnumber to bitnumber. It is the caller's responsibility to validate that |
3837 | /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. |
3838 | /// |
3839 | /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know |
3840 | /// that the expression deposits the low byte of %X into the high byte of the |
3841 | /// result and that all other bits are zero. This expression is accepted and a |
3842 | /// BitPart is returned with Provider set to %X and Provenance[24-31] set to |
3843 | /// [0-7]. |
3844 | /// |
3845 | /// For vector types, all analysis is performed at the per-element level. No |
3846 | /// cross-element analysis is supported (shuffle/insertion/reduction), and all |
3847 | /// constant masks must be splatted across all elements. |
3848 | /// |
3849 | /// To avoid revisiting values, the BitPart results are memoized into the |
3850 | /// provided map. To avoid unnecessary copying of BitParts, BitParts are |
3851 | /// constructed in-place in the \c BPS map. Because of this \c BPS needs to |
3852 | /// store BitParts objects, not pointers. As we need the concept of a nullptr |
3853 | /// BitParts (Value has been analyzed and the analysis failed), we an Optional |
3854 | /// type instead to provide the same functionality. |
3855 | /// |
3856 | /// Because we pass around references into \c BPS, we must use a container that |
3857 | /// does not invalidate internal references (std::map instead of DenseMap). |
3858 | static const std::optional<BitPart> & |
3859 | collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, |
3860 | std::map<Value *, std::optional<BitPart>> &BPS, int Depth, |
3861 | bool &FoundRoot) { |
3862 | auto [I, Inserted] = BPS.try_emplace(k: V); |
3863 | if (!Inserted) |
3864 | return I->second; |
3865 | |
3866 | auto &Result = I->second; |
3867 | auto BitWidth = V->getType()->getScalarSizeInBits(); |
3868 | |
3869 | // Can't do integer/elements > 128 bits. |
3870 | if (BitWidth > 128) |
3871 | return Result; |
3872 | |
3873 | // Prevent stack overflow by limiting the recursion depth |
3874 | if (Depth == BitPartRecursionMaxDepth) { |
3875 | LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n" ); |
3876 | return Result; |
3877 | } |
3878 | |
3879 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
3880 | Value *X, *Y; |
3881 | const APInt *C; |
3882 | |
3883 | // If this is an or instruction, it may be an inner node of the bswap. |
3884 | if (match(V, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y)))) { |
3885 | // Check we have both sources and they are from the same provider. |
3886 | const auto &A = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
3887 | Depth: Depth + 1, FoundRoot); |
3888 | if (!A || !A->Provider) |
3889 | return Result; |
3890 | |
3891 | const auto &B = collectBitParts(V: Y, MatchBSwaps, MatchBitReversals, BPS, |
3892 | Depth: Depth + 1, FoundRoot); |
3893 | if (!B || A->Provider != B->Provider) |
3894 | return Result; |
3895 | |
3896 | // Try and merge the two together. |
3897 | Result = BitPart(A->Provider, BitWidth); |
3898 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { |
3899 | if (A->Provenance[BitIdx] != BitPart::Unset && |
3900 | B->Provenance[BitIdx] != BitPart::Unset && |
3901 | A->Provenance[BitIdx] != B->Provenance[BitIdx]) |
3902 | return Result = std::nullopt; |
3903 | |
3904 | if (A->Provenance[BitIdx] == BitPart::Unset) |
3905 | Result->Provenance[BitIdx] = B->Provenance[BitIdx]; |
3906 | else |
3907 | Result->Provenance[BitIdx] = A->Provenance[BitIdx]; |
3908 | } |
3909 | |
3910 | return Result; |
3911 | } |
3912 | |
3913 | // If this is a logical shift by a constant, recurse then shift the result. |
3914 | if (match(V, P: m_LogicalShift(L: m_Value(V&: X), R: m_APInt(Res&: C)))) { |
3915 | const APInt &BitShift = *C; |
3916 | |
3917 | // Ensure the shift amount is defined. |
3918 | if (BitShift.uge(RHS: BitWidth)) |
3919 | return Result; |
3920 | |
3921 | // For bswap-only, limit shift amounts to whole bytes, for an early exit. |
3922 | if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) |
3923 | return Result; |
3924 | |
3925 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
3926 | Depth: Depth + 1, FoundRoot); |
3927 | if (!Res) |
3928 | return Result; |
3929 | Result = Res; |
3930 | |
3931 | // Perform the "shift" on BitProvenance. |
3932 | auto &P = Result->Provenance; |
3933 | if (I->getOpcode() == Instruction::Shl) { |
3934 | P.erase(CS: std::prev(x: P.end(), n: BitShift.getZExtValue()), CE: P.end()); |
3935 | P.insert(I: P.begin(), NumToInsert: BitShift.getZExtValue(), Elt: BitPart::Unset); |
3936 | } else { |
3937 | P.erase(CS: P.begin(), CE: std::next(x: P.begin(), n: BitShift.getZExtValue())); |
3938 | P.insert(I: P.end(), NumToInsert: BitShift.getZExtValue(), Elt: BitPart::Unset); |
3939 | } |
3940 | |
3941 | return Result; |
3942 | } |
3943 | |
3944 | // If this is a logical 'and' with a mask that clears bits, recurse then |
3945 | // unset the appropriate bits. |
3946 | if (match(V, P: m_And(L: m_Value(V&: X), R: m_APInt(Res&: C)))) { |
3947 | const APInt &AndMask = *C; |
3948 | |
3949 | // Check that the mask allows a multiple of 8 bits for a bswap, for an |
3950 | // early exit. |
3951 | unsigned NumMaskedBits = AndMask.popcount(); |
3952 | if (!MatchBitReversals && (NumMaskedBits % 8) != 0) |
3953 | return Result; |
3954 | |
3955 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
3956 | Depth: Depth + 1, FoundRoot); |
3957 | if (!Res) |
3958 | return Result; |
3959 | Result = Res; |
3960 | |
3961 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
3962 | // If the AndMask is zero for this bit, clear the bit. |
3963 | if (AndMask[BitIdx] == 0) |
3964 | Result->Provenance[BitIdx] = BitPart::Unset; |
3965 | return Result; |
3966 | } |
3967 | |
3968 | // If this is a zext instruction zero extend the result. |
3969 | if (match(V, P: m_ZExt(Op: m_Value(V&: X)))) { |
3970 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
3971 | Depth: Depth + 1, FoundRoot); |
3972 | if (!Res) |
3973 | return Result; |
3974 | |
3975 | Result = BitPart(Res->Provider, BitWidth); |
3976 | auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); |
3977 | for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) |
3978 | Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; |
3979 | for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) |
3980 | Result->Provenance[BitIdx] = BitPart::Unset; |
3981 | return Result; |
3982 | } |
3983 | |
3984 | // If this is a truncate instruction, extract the lower bits. |
3985 | if (match(V, P: m_Trunc(Op: m_Value(V&: X)))) { |
3986 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
3987 | Depth: Depth + 1, FoundRoot); |
3988 | if (!Res) |
3989 | return Result; |
3990 | |
3991 | Result = BitPart(Res->Provider, BitWidth); |
3992 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
3993 | Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; |
3994 | return Result; |
3995 | } |
3996 | |
3997 | // BITREVERSE - most likely due to us previous matching a partial |
3998 | // bitreverse. |
3999 | if (match(V, P: m_BitReverse(Op0: m_Value(V&: X)))) { |
4000 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
4001 | Depth: Depth + 1, FoundRoot); |
4002 | if (!Res) |
4003 | return Result; |
4004 | |
4005 | Result = BitPart(Res->Provider, BitWidth); |
4006 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
4007 | Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; |
4008 | return Result; |
4009 | } |
4010 | |
4011 | // BSWAP - most likely due to us previous matching a partial bswap. |
4012 | if (match(V, P: m_BSwap(Op0: m_Value(V&: X)))) { |
4013 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
4014 | Depth: Depth + 1, FoundRoot); |
4015 | if (!Res) |
4016 | return Result; |
4017 | |
4018 | unsigned ByteWidth = BitWidth / 8; |
4019 | Result = BitPart(Res->Provider, BitWidth); |
4020 | for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { |
4021 | unsigned ByteBitOfs = ByteIdx * 8; |
4022 | for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) |
4023 | Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = |
4024 | Res->Provenance[ByteBitOfs + BitIdx]; |
4025 | } |
4026 | return Result; |
4027 | } |
4028 | |
4029 | // Funnel 'double' shifts take 3 operands, 2 inputs and the shift |
4030 | // amount (modulo). |
4031 | // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
4032 | // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
4033 | if (match(V, P: m_FShl(Op0: m_Value(V&: X), Op1: m_Value(V&: Y), Op2: m_APInt(Res&: C))) || |
4034 | match(V, P: m_FShr(Op0: m_Value(V&: X), Op1: m_Value(V&: Y), Op2: m_APInt(Res&: C)))) { |
4035 | // We can treat fshr as a fshl by flipping the modulo amount. |
4036 | unsigned ModAmt = C->urem(RHS: BitWidth); |
4037 | if (cast<IntrinsicInst>(Val: I)->getIntrinsicID() == Intrinsic::fshr) |
4038 | ModAmt = BitWidth - ModAmt; |
4039 | |
4040 | // For bswap-only, limit shift amounts to whole bytes, for an early exit. |
4041 | if (!MatchBitReversals && (ModAmt % 8) != 0) |
4042 | return Result; |
4043 | |
4044 | // Check we have both sources and they are from the same provider. |
4045 | const auto &LHS = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
4046 | Depth: Depth + 1, FoundRoot); |
4047 | if (!LHS || !LHS->Provider) |
4048 | return Result; |
4049 | |
4050 | const auto &RHS = collectBitParts(V: Y, MatchBSwaps, MatchBitReversals, BPS, |
4051 | Depth: Depth + 1, FoundRoot); |
4052 | if (!RHS || LHS->Provider != RHS->Provider) |
4053 | return Result; |
4054 | |
4055 | unsigned StartBitRHS = BitWidth - ModAmt; |
4056 | Result = BitPart(LHS->Provider, BitWidth); |
4057 | for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) |
4058 | Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; |
4059 | for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) |
4060 | Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; |
4061 | return Result; |
4062 | } |
4063 | } |
4064 | |
4065 | // If we've already found a root input value then we're never going to merge |
4066 | // these back together. |
4067 | if (FoundRoot) |
4068 | return Result; |
4069 | |
4070 | // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must |
4071 | // be the root input value to the bswap/bitreverse. |
4072 | FoundRoot = true; |
4073 | Result = BitPart(V, BitWidth); |
4074 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
4075 | Result->Provenance[BitIdx] = BitIdx; |
4076 | return Result; |
4077 | } |
4078 | |
4079 | static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, |
4080 | unsigned BitWidth) { |
4081 | if (From % 8 != To % 8) |
4082 | return false; |
4083 | // Convert from bit indices to byte indices and check for a byte reversal. |
4084 | From >>= 3; |
4085 | To >>= 3; |
4086 | BitWidth >>= 3; |
4087 | return From == BitWidth - To - 1; |
4088 | } |
4089 | |
4090 | static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, |
4091 | unsigned BitWidth) { |
4092 | return From == BitWidth - To - 1; |
4093 | } |
4094 | |
4095 | bool llvm::recognizeBSwapOrBitReverseIdiom( |
4096 | Instruction *I, bool MatchBSwaps, bool MatchBitReversals, |
4097 | SmallVectorImpl<Instruction *> &InsertedInsts) { |
4098 | if (!match(V: I, P: m_Or(L: m_Value(), R: m_Value())) && |
4099 | !match(V: I, P: m_FShl(Op0: m_Value(), Op1: m_Value(), Op2: m_Value())) && |
4100 | !match(V: I, P: m_FShr(Op0: m_Value(), Op1: m_Value(), Op2: m_Value())) && |
4101 | !match(V: I, P: m_BSwap(Op0: m_Value()))) |
4102 | return false; |
4103 | if (!MatchBSwaps && !MatchBitReversals) |
4104 | return false; |
4105 | Type *ITy = I->getType(); |
4106 | if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() == 1 || |
4107 | ITy->getScalarSizeInBits() > 128) |
4108 | return false; // Can't do integer/elements > 128 bits. |
4109 | |
4110 | // Try to find all the pieces corresponding to the bswap. |
4111 | bool FoundRoot = false; |
4112 | std::map<Value *, std::optional<BitPart>> BPS; |
4113 | const auto &Res = |
4114 | collectBitParts(V: I, MatchBSwaps, MatchBitReversals, BPS, Depth: 0, FoundRoot); |
4115 | if (!Res) |
4116 | return false; |
4117 | ArrayRef<int8_t> BitProvenance = Res->Provenance; |
4118 | assert(all_of(BitProvenance, |
4119 | [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && |
4120 | "Illegal bit provenance index" ); |
4121 | |
4122 | // If the upper bits are zero, then attempt to perform as a truncated op. |
4123 | Type *DemandedTy = ITy; |
4124 | if (BitProvenance.back() == BitPart::Unset) { |
4125 | while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) |
4126 | BitProvenance = BitProvenance.drop_back(); |
4127 | if (BitProvenance.empty()) |
4128 | return false; // TODO - handle null value? |
4129 | DemandedTy = Type::getIntNTy(C&: I->getContext(), N: BitProvenance.size()); |
4130 | if (auto *IVecTy = dyn_cast<VectorType>(Val: ITy)) |
4131 | DemandedTy = VectorType::get(ElementType: DemandedTy, Other: IVecTy); |
4132 | } |
4133 | |
4134 | // Check BitProvenance hasn't found a source larger than the result type. |
4135 | unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); |
4136 | if (DemandedBW > ITy->getScalarSizeInBits()) |
4137 | return false; |
4138 | |
4139 | // Now, is the bit permutation correct for a bswap or a bitreverse? We can |
4140 | // only byteswap values with an even number of bytes. |
4141 | APInt DemandedMask = APInt::getAllOnes(numBits: DemandedBW); |
4142 | bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; |
4143 | bool OKForBitReverse = MatchBitReversals; |
4144 | for (unsigned BitIdx = 0; |
4145 | (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { |
4146 | if (BitProvenance[BitIdx] == BitPart::Unset) { |
4147 | DemandedMask.clearBit(BitPosition: BitIdx); |
4148 | continue; |
4149 | } |
4150 | OKForBSwap &= bitTransformIsCorrectForBSwap(From: BitProvenance[BitIdx], To: BitIdx, |
4151 | BitWidth: DemandedBW); |
4152 | OKForBitReverse &= bitTransformIsCorrectForBitReverse(From: BitProvenance[BitIdx], |
4153 | To: BitIdx, BitWidth: DemandedBW); |
4154 | } |
4155 | |
4156 | Intrinsic::ID Intrin; |
4157 | if (OKForBSwap) |
4158 | Intrin = Intrinsic::bswap; |
4159 | else if (OKForBitReverse) |
4160 | Intrin = Intrinsic::bitreverse; |
4161 | else |
4162 | return false; |
4163 | |
4164 | Function *F = |
4165 | Intrinsic::getOrInsertDeclaration(M: I->getModule(), id: Intrin, Tys: DemandedTy); |
4166 | Value *Provider = Res->Provider; |
4167 | |
4168 | // We may need to truncate the provider. |
4169 | if (DemandedTy != Provider->getType()) { |
4170 | auto *Trunc = |
4171 | CastInst::CreateIntegerCast(S: Provider, Ty: DemandedTy, isSigned: false, Name: "trunc" , InsertBefore: I->getIterator()); |
4172 | InsertedInsts.push_back(Elt: Trunc); |
4173 | Provider = Trunc; |
4174 | } |
4175 | |
4176 | Instruction *Result = CallInst::Create(Func: F, Args: Provider, NameStr: "rev" , InsertBefore: I->getIterator()); |
4177 | InsertedInsts.push_back(Elt: Result); |
4178 | |
4179 | if (!DemandedMask.isAllOnes()) { |
4180 | auto *Mask = ConstantInt::get(Ty: DemandedTy, V: DemandedMask); |
4181 | Result = BinaryOperator::Create(Op: Instruction::And, S1: Result, S2: Mask, Name: "mask" , InsertBefore: I->getIterator()); |
4182 | InsertedInsts.push_back(Elt: Result); |
4183 | } |
4184 | |
4185 | // We may need to zeroextend back to the result type. |
4186 | if (ITy != Result->getType()) { |
4187 | auto *ExtInst = CastInst::CreateIntegerCast(S: Result, Ty: ITy, isSigned: false, Name: "zext" , InsertBefore: I->getIterator()); |
4188 | InsertedInsts.push_back(Elt: ExtInst); |
4189 | } |
4190 | |
4191 | return true; |
4192 | } |
4193 | |
4194 | // CodeGen has special handling for some string functions that may replace |
4195 | // them with target-specific intrinsics. Since that'd skip our interceptors |
4196 | // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, |
4197 | // we mark affected calls as NoBuiltin, which will disable optimization |
4198 | // in CodeGen. |
4199 | void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( |
4200 | CallInst *CI, const TargetLibraryInfo *TLI) { |
4201 | Function *F = CI->getCalledFunction(); |
4202 | LibFunc Func; |
4203 | if (F && !F->hasLocalLinkage() && F->hasName() && |
4204 | TLI->getLibFunc(funcName: F->getName(), F&: Func) && TLI->hasOptimizedCodeGen(F: Func) && |
4205 | !F->doesNotAccessMemory()) |
4206 | CI->addFnAttr(Kind: Attribute::NoBuiltin); |
4207 | } |
4208 | |
4209 | bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { |
4210 | const auto *Op = I->getOperand(i: OpIdx); |
4211 | // We can't have a PHI with a metadata type. |
4212 | if (Op->getType()->isMetadataTy()) |
4213 | return false; |
4214 | |
4215 | // swifterror pointers can only be used by a load, store, or as a swifterror |
4216 | // argument; swifterror pointers are not allowed to be used in select or phi |
4217 | // instructions. |
4218 | if (Op->isSwiftError()) |
4219 | return false; |
4220 | |
4221 | // Early exit. |
4222 | if (!isa<Constant, InlineAsm>(Val: Op)) |
4223 | return true; |
4224 | |
4225 | switch (I->getOpcode()) { |
4226 | default: |
4227 | return true; |
4228 | case Instruction::Call: |
4229 | case Instruction::Invoke: { |
4230 | const auto &CB = cast<CallBase>(Val: *I); |
4231 | |
4232 | // Can't handle inline asm. Skip it. |
4233 | if (CB.isInlineAsm()) |
4234 | return false; |
4235 | |
4236 | // Constant bundle operands may need to retain their constant-ness for |
4237 | // correctness. |
4238 | if (CB.isBundleOperand(Idx: OpIdx)) |
4239 | return false; |
4240 | |
4241 | if (OpIdx < CB.arg_size()) { |
4242 | // Some variadic intrinsics require constants in the variadic arguments, |
4243 | // which currently aren't markable as immarg. |
4244 | if (isa<IntrinsicInst>(Val: CB) && |
4245 | OpIdx >= CB.getFunctionType()->getNumParams()) { |
4246 | // This is known to be OK for stackmap. |
4247 | return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; |
4248 | } |
4249 | |
4250 | // gcroot is a special case, since it requires a constant argument which |
4251 | // isn't also required to be a simple ConstantInt. |
4252 | if (CB.getIntrinsicID() == Intrinsic::gcroot) |
4253 | return false; |
4254 | |
4255 | // Some intrinsic operands are required to be immediates. |
4256 | return !CB.paramHasAttr(ArgNo: OpIdx, Kind: Attribute::ImmArg); |
4257 | } |
4258 | |
4259 | // It is never allowed to replace the call argument to an intrinsic, but it |
4260 | // may be possible for a call. |
4261 | return !isa<IntrinsicInst>(Val: CB); |
4262 | } |
4263 | case Instruction::ShuffleVector: |
4264 | // Shufflevector masks are constant. |
4265 | return OpIdx != 2; |
4266 | case Instruction::Switch: |
4267 | case Instruction::ExtractValue: |
4268 | // All operands apart from the first are constant. |
4269 | return OpIdx == 0; |
4270 | case Instruction::InsertValue: |
4271 | // All operands apart from the first and the second are constant. |
4272 | return OpIdx < 2; |
4273 | case Instruction::Alloca: |
4274 | // Static allocas (constant size in the entry block) are handled by |
4275 | // prologue/epilogue insertion so they're free anyway. We definitely don't |
4276 | // want to make them non-constant. |
4277 | return !cast<AllocaInst>(Val: I)->isStaticAlloca(); |
4278 | case Instruction::GetElementPtr: |
4279 | if (OpIdx == 0) |
4280 | return true; |
4281 | gep_type_iterator It = gep_type_begin(GEP: I); |
4282 | for (auto E = std::next(x: It, n: OpIdx); It != E; ++It) |
4283 | if (It.isStruct()) |
4284 | return false; |
4285 | return true; |
4286 | } |
4287 | } |
4288 | |
4289 | Value *llvm::invertCondition(Value *Condition) { |
4290 | // First: Check if it's a constant |
4291 | if (Constant *C = dyn_cast<Constant>(Val: Condition)) |
4292 | return ConstantExpr::getNot(C); |
4293 | |
4294 | // Second: If the condition is already inverted, return the original value |
4295 | Value *NotCondition; |
4296 | if (match(V: Condition, P: m_Not(V: m_Value(V&: NotCondition)))) |
4297 | return NotCondition; |
4298 | |
4299 | BasicBlock *Parent = nullptr; |
4300 | Instruction *Inst = dyn_cast<Instruction>(Val: Condition); |
4301 | if (Inst) |
4302 | Parent = Inst->getParent(); |
4303 | else if (Argument *Arg = dyn_cast<Argument>(Val: Condition)) |
4304 | Parent = &Arg->getParent()->getEntryBlock(); |
4305 | assert(Parent && "Unsupported condition to invert" ); |
4306 | |
4307 | // Third: Check all the users for an invert |
4308 | for (User *U : Condition->users()) |
4309 | if (Instruction *I = dyn_cast<Instruction>(Val: U)) |
4310 | if (I->getParent() == Parent && match(V: I, P: m_Not(V: m_Specific(V: Condition)))) |
4311 | return I; |
4312 | |
4313 | // Last option: Create a new instruction |
4314 | auto *Inverted = |
4315 | BinaryOperator::CreateNot(Op: Condition, Name: Condition->getName() + ".inv" ); |
4316 | if (Inst && !isa<PHINode>(Val: Inst)) |
4317 | Inverted->insertAfter(InsertPos: Inst->getIterator()); |
4318 | else |
4319 | Inverted->insertBefore(InsertPos: Parent->getFirstInsertionPt()); |
4320 | return Inverted; |
4321 | } |
4322 | |
4323 | bool llvm::inferAttributesFromOthers(Function &F) { |
4324 | // Note: We explicitly check for attributes rather than using cover functions |
4325 | // because some of the cover functions include the logic being implemented. |
4326 | |
4327 | bool Changed = false; |
4328 | // readnone + not convergent implies nosync |
4329 | if (!F.hasFnAttribute(Kind: Attribute::NoSync) && |
4330 | F.doesNotAccessMemory() && !F.isConvergent()) { |
4331 | F.setNoSync(); |
4332 | Changed = true; |
4333 | } |
4334 | |
4335 | // readonly implies nofree |
4336 | if (!F.hasFnAttribute(Kind: Attribute::NoFree) && F.onlyReadsMemory()) { |
4337 | F.setDoesNotFreeMemory(); |
4338 | Changed = true; |
4339 | } |
4340 | |
4341 | // willreturn implies mustprogress |
4342 | if (!F.hasFnAttribute(Kind: Attribute::MustProgress) && F.willReturn()) { |
4343 | F.setMustProgress(); |
4344 | Changed = true; |
4345 | } |
4346 | |
4347 | // TODO: There are a bunch of cases of restrictive memory effects we |
4348 | // can infer by inspecting arguments of argmemonly-ish functions. |
4349 | |
4350 | return Changed; |
4351 | } |
4352 | |
4353 | void OverflowTracking::mergeFlags(Instruction &I) { |
4354 | #ifndef NDEBUG |
4355 | if (Opcode) |
4356 | assert(Opcode == I.getOpcode() && |
4357 | "can only use mergeFlags on instructions with matching opcodes" ); |
4358 | else |
4359 | Opcode = I.getOpcode(); |
4360 | #endif |
4361 | if (isa<OverflowingBinaryOperator>(Val: &I)) { |
4362 | HasNUW &= I.hasNoUnsignedWrap(); |
4363 | HasNSW &= I.hasNoSignedWrap(); |
4364 | } |
4365 | if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(Val: &I)) |
4366 | IsDisjoint &= DisjointOp->isDisjoint(); |
4367 | } |
4368 | |
4369 | void OverflowTracking::applyFlags(Instruction &I) { |
4370 | I.clearSubclassOptionalData(); |
4371 | if (I.getOpcode() == Instruction::Add || |
4372 | (I.getOpcode() == Instruction::Mul && AllKnownNonZero)) { |
4373 | if (HasNUW) |
4374 | I.setHasNoUnsignedWrap(); |
4375 | if (HasNSW && (AllKnownNonNegative || HasNUW)) |
4376 | I.setHasNoSignedWrap(); |
4377 | } |
4378 | if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(Val: &I)) |
4379 | DisjointOp->setIsDisjoint(IsDisjoint); |
4380 | } |
4381 | |