| 1 | //===- Local.cpp - Functions to perform local transformations -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This family of functions perform various local transformations to the |
| 10 | // program. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Utils/Local.h" |
| 15 | #include "llvm/ADT/APInt.h" |
| 16 | #include "llvm/ADT/DenseMap.h" |
| 17 | #include "llvm/ADT/DenseMapInfo.h" |
| 18 | #include "llvm/ADT/DenseSet.h" |
| 19 | #include "llvm/ADT/Hashing.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/SetVector.h" |
| 22 | #include "llvm/ADT/SmallPtrSet.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/Statistic.h" |
| 25 | #include "llvm/Analysis/AssumeBundleQueries.h" |
| 26 | #include "llvm/Analysis/ConstantFolding.h" |
| 27 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 28 | #include "llvm/Analysis/InstructionSimplify.h" |
| 29 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 30 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 32 | #include "llvm/Analysis/ValueTracking.h" |
| 33 | #include "llvm/Analysis/VectorUtils.h" |
| 34 | #include "llvm/BinaryFormat/Dwarf.h" |
| 35 | #include "llvm/IR/Argument.h" |
| 36 | #include "llvm/IR/Attributes.h" |
| 37 | #include "llvm/IR/BasicBlock.h" |
| 38 | #include "llvm/IR/CFG.h" |
| 39 | #include "llvm/IR/Constant.h" |
| 40 | #include "llvm/IR/ConstantRange.h" |
| 41 | #include "llvm/IR/Constants.h" |
| 42 | #include "llvm/IR/DIBuilder.h" |
| 43 | #include "llvm/IR/DataLayout.h" |
| 44 | #include "llvm/IR/DebugInfo.h" |
| 45 | #include "llvm/IR/DebugInfoMetadata.h" |
| 46 | #include "llvm/IR/DebugLoc.h" |
| 47 | #include "llvm/IR/DerivedTypes.h" |
| 48 | #include "llvm/IR/Dominators.h" |
| 49 | #include "llvm/IR/EHPersonalities.h" |
| 50 | #include "llvm/IR/Function.h" |
| 51 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 52 | #include "llvm/IR/IRBuilder.h" |
| 53 | #include "llvm/IR/InstrTypes.h" |
| 54 | #include "llvm/IR/Instruction.h" |
| 55 | #include "llvm/IR/Instructions.h" |
| 56 | #include "llvm/IR/IntrinsicInst.h" |
| 57 | #include "llvm/IR/Intrinsics.h" |
| 58 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
| 59 | #include "llvm/IR/LLVMContext.h" |
| 60 | #include "llvm/IR/MDBuilder.h" |
| 61 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
| 62 | #include "llvm/IR/Metadata.h" |
| 63 | #include "llvm/IR/Module.h" |
| 64 | #include "llvm/IR/PatternMatch.h" |
| 65 | #include "llvm/IR/ProfDataUtils.h" |
| 66 | #include "llvm/IR/Type.h" |
| 67 | #include "llvm/IR/Use.h" |
| 68 | #include "llvm/IR/User.h" |
| 69 | #include "llvm/IR/Value.h" |
| 70 | #include "llvm/IR/ValueHandle.h" |
| 71 | #include "llvm/Support/Casting.h" |
| 72 | #include "llvm/Support/CommandLine.h" |
| 73 | #include "llvm/Support/Compiler.h" |
| 74 | #include "llvm/Support/Debug.h" |
| 75 | #include "llvm/Support/ErrorHandling.h" |
| 76 | #include "llvm/Support/KnownBits.h" |
| 77 | #include "llvm/Support/raw_ostream.h" |
| 78 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 79 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 80 | #include <algorithm> |
| 81 | #include <cassert> |
| 82 | #include <cstdint> |
| 83 | #include <iterator> |
| 84 | #include <map> |
| 85 | #include <optional> |
| 86 | #include <utility> |
| 87 | |
| 88 | using namespace llvm; |
| 89 | using namespace llvm::PatternMatch; |
| 90 | |
| 91 | #define DEBUG_TYPE "local" |
| 92 | |
| 93 | STATISTIC(NumRemoved, "Number of unreachable basic blocks removed" ); |
| 94 | STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd" ); |
| 95 | |
| 96 | static cl::opt<bool> PHICSEDebugHash( |
| 97 | "phicse-debug-hash" , |
| 98 | #ifdef EXPENSIVE_CHECKS |
| 99 | cl::init(true), |
| 100 | #else |
| 101 | cl::init(Val: false), |
| 102 | #endif |
| 103 | cl::Hidden, |
| 104 | cl::desc("Perform extra assertion checking to verify that PHINodes's hash " |
| 105 | "function is well-behaved w.r.t. its isEqual predicate" )); |
| 106 | |
| 107 | static cl::opt<unsigned> PHICSENumPHISmallSize( |
| 108 | "phicse-num-phi-smallsize" , cl::init(Val: 32), cl::Hidden, |
| 109 | cl::desc( |
| 110 | "When the basic block contains not more than this number of PHI nodes, " |
| 111 | "perform a (faster!) exhaustive search instead of set-driven one." )); |
| 112 | |
| 113 | static cl::opt<unsigned> MaxPhiEntriesIncreaseAfterRemovingEmptyBlock( |
| 114 | "max-phi-entries-increase-after-removing-empty-block" , cl::init(Val: 1000), |
| 115 | cl::Hidden, |
| 116 | cl::desc("Stop removing an empty block if removing it will introduce more " |
| 117 | "than this number of phi entries in its successor" )); |
| 118 | |
| 119 | // Max recursion depth for collectBitParts used when detecting bswap and |
| 120 | // bitreverse idioms. |
| 121 | static const unsigned BitPartRecursionMaxDepth = 48; |
| 122 | |
| 123 | //===----------------------------------------------------------------------===// |
| 124 | // Local constant propagation. |
| 125 | // |
| 126 | |
| 127 | /// ConstantFoldTerminator - If a terminator instruction is predicated on a |
| 128 | /// constant value, convert it into an unconditional branch to the constant |
| 129 | /// destination. This is a nontrivial operation because the successors of this |
| 130 | /// basic block must have their PHI nodes updated. |
| 131 | /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch |
| 132 | /// conditions and indirectbr addresses this might make dead if |
| 133 | /// DeleteDeadConditions is true. |
| 134 | bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, |
| 135 | const TargetLibraryInfo *TLI, |
| 136 | DomTreeUpdater *DTU) { |
| 137 | Instruction *T = BB->getTerminator(); |
| 138 | IRBuilder<> Builder(T); |
| 139 | |
| 140 | // Branch - See if we are conditional jumping on constant |
| 141 | if (auto *BI = dyn_cast<BranchInst>(Val: T)) { |
| 142 | if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
| 143 | |
| 144 | BasicBlock *Dest1 = BI->getSuccessor(i: 0); |
| 145 | BasicBlock *Dest2 = BI->getSuccessor(i: 1); |
| 146 | |
| 147 | if (Dest2 == Dest1) { // Conditional branch to same location? |
| 148 | // This branch matches something like this: |
| 149 | // br bool %cond, label %Dest, label %Dest |
| 150 | // and changes it into: br label %Dest |
| 151 | |
| 152 | // Let the basic block know that we are letting go of one copy of it. |
| 153 | assert(BI->getParent() && "Terminator not inserted in block!" ); |
| 154 | Dest1->removePredecessor(Pred: BI->getParent()); |
| 155 | |
| 156 | // Replace the conditional branch with an unconditional one. |
| 157 | BranchInst *NewBI = Builder.CreateBr(Dest: Dest1); |
| 158 | |
| 159 | // Transfer the metadata to the new branch instruction. |
| 160 | NewBI->copyMetadata(SrcInst: *BI, WL: {LLVMContext::MD_loop, LLVMContext::MD_dbg, |
| 161 | LLVMContext::MD_annotation}); |
| 162 | |
| 163 | Value *Cond = BI->getCondition(); |
| 164 | BI->eraseFromParent(); |
| 165 | if (DeleteDeadConditions) |
| 166 | RecursivelyDeleteTriviallyDeadInstructions(V: Cond, TLI); |
| 167 | return true; |
| 168 | } |
| 169 | |
| 170 | if (auto *Cond = dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
| 171 | // Are we branching on constant? |
| 172 | // YES. Change to unconditional branch... |
| 173 | BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; |
| 174 | BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; |
| 175 | |
| 176 | // Let the basic block know that we are letting go of it. Based on this, |
| 177 | // it will adjust it's PHI nodes. |
| 178 | OldDest->removePredecessor(Pred: BB); |
| 179 | |
| 180 | // Replace the conditional branch with an unconditional one. |
| 181 | BranchInst *NewBI = Builder.CreateBr(Dest: Destination); |
| 182 | |
| 183 | // Transfer the metadata to the new branch instruction. |
| 184 | NewBI->copyMetadata(SrcInst: *BI, WL: {LLVMContext::MD_loop, LLVMContext::MD_dbg, |
| 185 | LLVMContext::MD_annotation}); |
| 186 | |
| 187 | BI->eraseFromParent(); |
| 188 | if (DTU) |
| 189 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, OldDest}}); |
| 190 | return true; |
| 191 | } |
| 192 | |
| 193 | return false; |
| 194 | } |
| 195 | |
| 196 | if (auto *SI = dyn_cast<SwitchInst>(Val: T)) { |
| 197 | // If we are switching on a constant, we can convert the switch to an |
| 198 | // unconditional branch. |
| 199 | auto *CI = dyn_cast<ConstantInt>(Val: SI->getCondition()); |
| 200 | BasicBlock *DefaultDest = SI->getDefaultDest(); |
| 201 | BasicBlock *TheOnlyDest = DefaultDest; |
| 202 | |
| 203 | // If the default is unreachable, ignore it when searching for TheOnlyDest. |
| 204 | if (SI->defaultDestUnreachable() && SI->getNumCases() > 0) |
| 205 | TheOnlyDest = SI->case_begin()->getCaseSuccessor(); |
| 206 | |
| 207 | bool Changed = false; |
| 208 | |
| 209 | // Figure out which case it goes to. |
| 210 | for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { |
| 211 | // Found case matching a constant operand? |
| 212 | if (It->getCaseValue() == CI) { |
| 213 | TheOnlyDest = It->getCaseSuccessor(); |
| 214 | break; |
| 215 | } |
| 216 | |
| 217 | // Check to see if this branch is going to the same place as the default |
| 218 | // dest. If so, eliminate it as an explicit compare. |
| 219 | if (It->getCaseSuccessor() == DefaultDest) { |
| 220 | MDNode *MD = getValidBranchWeightMDNode(I: *SI); |
| 221 | unsigned NCases = SI->getNumCases(); |
| 222 | // Fold the case metadata into the default if there will be any branches |
| 223 | // left, unless the metadata doesn't match the switch. |
| 224 | if (NCases > 1 && MD) { |
| 225 | // Collect branch weights into a vector. |
| 226 | SmallVector<uint32_t, 8> Weights; |
| 227 | extractBranchWeights(ProfileData: MD, Weights); |
| 228 | |
| 229 | // Merge weight of this case to the default weight. |
| 230 | unsigned Idx = It->getCaseIndex(); |
| 231 | // TODO: Add overflow check. |
| 232 | Weights[0] += Weights[Idx + 1]; |
| 233 | // Remove weight for this case. |
| 234 | std::swap(a&: Weights[Idx + 1], b&: Weights.back()); |
| 235 | Weights.pop_back(); |
| 236 | setBranchWeights(I&: *SI, Weights, IsExpected: hasBranchWeightOrigin(ProfileData: MD)); |
| 237 | } |
| 238 | // Remove this entry. |
| 239 | BasicBlock *ParentBB = SI->getParent(); |
| 240 | DefaultDest->removePredecessor(Pred: ParentBB); |
| 241 | It = SI->removeCase(I: It); |
| 242 | End = SI->case_end(); |
| 243 | |
| 244 | // Removing this case may have made the condition constant. In that |
| 245 | // case, update CI and restart iteration through the cases. |
| 246 | if (auto *NewCI = dyn_cast<ConstantInt>(Val: SI->getCondition())) { |
| 247 | CI = NewCI; |
| 248 | It = SI->case_begin(); |
| 249 | } |
| 250 | |
| 251 | Changed = true; |
| 252 | continue; |
| 253 | } |
| 254 | |
| 255 | // Otherwise, check to see if the switch only branches to one destination. |
| 256 | // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
| 257 | // destinations. |
| 258 | if (It->getCaseSuccessor() != TheOnlyDest) |
| 259 | TheOnlyDest = nullptr; |
| 260 | |
| 261 | // Increment this iterator as we haven't removed the case. |
| 262 | ++It; |
| 263 | } |
| 264 | |
| 265 | if (CI && !TheOnlyDest) { |
| 266 | // Branching on a constant, but not any of the cases, go to the default |
| 267 | // successor. |
| 268 | TheOnlyDest = SI->getDefaultDest(); |
| 269 | } |
| 270 | |
| 271 | // If we found a single destination that we can fold the switch into, do so |
| 272 | // now. |
| 273 | if (TheOnlyDest) { |
| 274 | // Insert the new branch. |
| 275 | Builder.CreateBr(Dest: TheOnlyDest); |
| 276 | BasicBlock *BB = SI->getParent(); |
| 277 | |
| 278 | SmallSet<BasicBlock *, 8> RemovedSuccessors; |
| 279 | |
| 280 | // Remove entries from PHI nodes which we no longer branch to... |
| 281 | BasicBlock *SuccToKeep = TheOnlyDest; |
| 282 | for (BasicBlock *Succ : successors(I: SI)) { |
| 283 | if (DTU && Succ != TheOnlyDest) |
| 284 | RemovedSuccessors.insert(Ptr: Succ); |
| 285 | // Found case matching a constant operand? |
| 286 | if (Succ == SuccToKeep) { |
| 287 | SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest |
| 288 | } else { |
| 289 | Succ->removePredecessor(Pred: BB); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | // Delete the old switch. |
| 294 | Value *Cond = SI->getCondition(); |
| 295 | SI->eraseFromParent(); |
| 296 | if (DeleteDeadConditions) |
| 297 | RecursivelyDeleteTriviallyDeadInstructions(V: Cond, TLI); |
| 298 | if (DTU) { |
| 299 | std::vector<DominatorTree::UpdateType> Updates; |
| 300 | Updates.reserve(n: RemovedSuccessors.size()); |
| 301 | for (auto *RemovedSuccessor : RemovedSuccessors) |
| 302 | Updates.push_back(x: {DominatorTree::Delete, BB, RemovedSuccessor}); |
| 303 | DTU->applyUpdates(Updates); |
| 304 | } |
| 305 | return true; |
| 306 | } |
| 307 | |
| 308 | if (SI->getNumCases() == 1) { |
| 309 | // Otherwise, we can fold this switch into a conditional branch |
| 310 | // instruction if it has only one non-default destination. |
| 311 | auto FirstCase = *SI->case_begin(); |
| 312 | Value *Cond = Builder.CreateICmpEQ(LHS: SI->getCondition(), |
| 313 | RHS: FirstCase.getCaseValue(), Name: "cond" ); |
| 314 | |
| 315 | // Insert the new branch. |
| 316 | BranchInst *NewBr = Builder.CreateCondBr(Cond, |
| 317 | True: FirstCase.getCaseSuccessor(), |
| 318 | False: SI->getDefaultDest()); |
| 319 | SmallVector<uint32_t> Weights; |
| 320 | if (extractBranchWeights(I: *SI, Weights) && Weights.size() == 2) { |
| 321 | uint32_t DefWeight = Weights[0]; |
| 322 | uint32_t CaseWeight = Weights[1]; |
| 323 | // The TrueWeight should be the weight for the single case of SI. |
| 324 | NewBr->setMetadata(KindID: LLVMContext::MD_prof, |
| 325 | Node: MDBuilder(BB->getContext()) |
| 326 | .createBranchWeights(TrueWeight: CaseWeight, FalseWeight: DefWeight)); |
| 327 | } |
| 328 | |
| 329 | // Update make.implicit metadata to the newly-created conditional branch. |
| 330 | MDNode *MakeImplicitMD = SI->getMetadata(KindID: LLVMContext::MD_make_implicit); |
| 331 | if (MakeImplicitMD) |
| 332 | NewBr->setMetadata(KindID: LLVMContext::MD_make_implicit, Node: MakeImplicitMD); |
| 333 | |
| 334 | // Delete the old switch. |
| 335 | SI->eraseFromParent(); |
| 336 | return true; |
| 337 | } |
| 338 | return Changed; |
| 339 | } |
| 340 | |
| 341 | if (auto *IBI = dyn_cast<IndirectBrInst>(Val: T)) { |
| 342 | // indirectbr blockaddress(@F, @BB) -> br label @BB |
| 343 | if (auto *BA = |
| 344 | dyn_cast<BlockAddress>(Val: IBI->getAddress()->stripPointerCasts())) { |
| 345 | BasicBlock *TheOnlyDest = BA->getBasicBlock(); |
| 346 | SmallSet<BasicBlock *, 8> RemovedSuccessors; |
| 347 | |
| 348 | // Insert the new branch. |
| 349 | Builder.CreateBr(Dest: TheOnlyDest); |
| 350 | |
| 351 | BasicBlock *SuccToKeep = TheOnlyDest; |
| 352 | for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| 353 | BasicBlock *DestBB = IBI->getDestination(i); |
| 354 | if (DTU && DestBB != TheOnlyDest) |
| 355 | RemovedSuccessors.insert(Ptr: DestBB); |
| 356 | if (IBI->getDestination(i) == SuccToKeep) { |
| 357 | SuccToKeep = nullptr; |
| 358 | } else { |
| 359 | DestBB->removePredecessor(Pred: BB); |
| 360 | } |
| 361 | } |
| 362 | Value *Address = IBI->getAddress(); |
| 363 | IBI->eraseFromParent(); |
| 364 | if (DeleteDeadConditions) |
| 365 | // Delete pointer cast instructions. |
| 366 | RecursivelyDeleteTriviallyDeadInstructions(V: Address, TLI); |
| 367 | |
| 368 | // Also zap the blockaddress constant if there are no users remaining, |
| 369 | // otherwise the destination is still marked as having its address taken. |
| 370 | if (BA->use_empty()) |
| 371 | BA->destroyConstant(); |
| 372 | |
| 373 | // If we didn't find our destination in the IBI successor list, then we |
| 374 | // have undefined behavior. Replace the unconditional branch with an |
| 375 | // 'unreachable' instruction. |
| 376 | if (SuccToKeep) { |
| 377 | BB->getTerminator()->eraseFromParent(); |
| 378 | new UnreachableInst(BB->getContext(), BB); |
| 379 | } |
| 380 | |
| 381 | if (DTU) { |
| 382 | std::vector<DominatorTree::UpdateType> Updates; |
| 383 | Updates.reserve(n: RemovedSuccessors.size()); |
| 384 | for (auto *RemovedSuccessor : RemovedSuccessors) |
| 385 | Updates.push_back(x: {DominatorTree::Delete, BB, RemovedSuccessor}); |
| 386 | DTU->applyUpdates(Updates); |
| 387 | } |
| 388 | return true; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | return false; |
| 393 | } |
| 394 | |
| 395 | //===----------------------------------------------------------------------===// |
| 396 | // Local dead code elimination. |
| 397 | // |
| 398 | |
| 399 | /// isInstructionTriviallyDead - Return true if the result produced by the |
| 400 | /// instruction is not used, and the instruction has no side effects. |
| 401 | /// |
| 402 | bool llvm::isInstructionTriviallyDead(Instruction *I, |
| 403 | const TargetLibraryInfo *TLI) { |
| 404 | if (!I->use_empty()) |
| 405 | return false; |
| 406 | return wouldInstructionBeTriviallyDead(I, TLI); |
| 407 | } |
| 408 | |
| 409 | bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( |
| 410 | Instruction *I, const TargetLibraryInfo *TLI) { |
| 411 | // Instructions that are "markers" and have implied meaning on code around |
| 412 | // them (without explicit uses), are not dead on unused paths. |
| 413 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) |
| 414 | if (II->getIntrinsicID() == Intrinsic::stacksave || |
| 415 | II->getIntrinsicID() == Intrinsic::launder_invariant_group || |
| 416 | II->isLifetimeStartOrEnd()) |
| 417 | return false; |
| 418 | return wouldInstructionBeTriviallyDead(I, TLI); |
| 419 | } |
| 420 | |
| 421 | bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, |
| 422 | const TargetLibraryInfo *TLI) { |
| 423 | if (I->isTerminator()) |
| 424 | return false; |
| 425 | |
| 426 | // We don't want the landingpad-like instructions removed by anything this |
| 427 | // general. |
| 428 | if (I->isEHPad()) |
| 429 | return false; |
| 430 | |
| 431 | // We don't want debug info removed by anything this general. |
| 432 | if (isa<DbgVariableIntrinsic>(Val: I)) |
| 433 | return false; |
| 434 | |
| 435 | if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(Val: I)) { |
| 436 | if (DLI->getLabel()) |
| 437 | return false; |
| 438 | return true; |
| 439 | } |
| 440 | |
| 441 | if (auto *CB = dyn_cast<CallBase>(Val: I)) |
| 442 | if (isRemovableAlloc(V: CB, TLI)) |
| 443 | return true; |
| 444 | |
| 445 | if (!I->willReturn()) { |
| 446 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 447 | if (!II) |
| 448 | return false; |
| 449 | |
| 450 | switch (II->getIntrinsicID()) { |
| 451 | case Intrinsic::experimental_guard: { |
| 452 | // Guards on true are operationally no-ops. In the future we can |
| 453 | // consider more sophisticated tradeoffs for guards considering potential |
| 454 | // for check widening, but for now we keep things simple. |
| 455 | auto *Cond = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 0)); |
| 456 | return Cond && Cond->isOne(); |
| 457 | } |
| 458 | // TODO: These intrinsics are not safe to remove, because this may remove |
| 459 | // a well-defined trap. |
| 460 | case Intrinsic::wasm_trunc_signed: |
| 461 | case Intrinsic::wasm_trunc_unsigned: |
| 462 | case Intrinsic::ptrauth_auth: |
| 463 | case Intrinsic::ptrauth_resign: |
| 464 | return true; |
| 465 | default: |
| 466 | return false; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | if (!I->mayHaveSideEffects()) |
| 471 | return true; |
| 472 | |
| 473 | // Special case intrinsics that "may have side effects" but can be deleted |
| 474 | // when dead. |
| 475 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 476 | // Safe to delete llvm.stacksave and launder.invariant.group if dead. |
| 477 | if (II->getIntrinsicID() == Intrinsic::stacksave || |
| 478 | II->getIntrinsicID() == Intrinsic::launder_invariant_group) |
| 479 | return true; |
| 480 | |
| 481 | // Intrinsics declare sideeffects to prevent them from moving, but they are |
| 482 | // nops without users. |
| 483 | if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || |
| 484 | II->getIntrinsicID() == Intrinsic::allow_ubsan_check) |
| 485 | return true; |
| 486 | |
| 487 | if (II->isLifetimeStartOrEnd()) { |
| 488 | auto *Arg = II->getArgOperand(i: 1); |
| 489 | // Lifetime intrinsics are dead when their right-hand is undef. |
| 490 | if (isa<UndefValue>(Val: Arg)) |
| 491 | return true; |
| 492 | // If the right-hand is an alloc, global, or argument and the only uses |
| 493 | // are lifetime intrinsics then the intrinsics are dead. |
| 494 | if (isa<AllocaInst>(Val: Arg) || isa<GlobalValue>(Val: Arg) || isa<Argument>(Val: Arg)) |
| 495 | return llvm::all_of(Range: Arg->uses(), P: [](Use &Use) { |
| 496 | return isa<LifetimeIntrinsic>(Val: Use.getUser()); |
| 497 | }); |
| 498 | return false; |
| 499 | } |
| 500 | |
| 501 | // Assumptions are dead if their condition is trivially true. |
| 502 | if (II->getIntrinsicID() == Intrinsic::assume && |
| 503 | isAssumeWithEmptyBundle(Assume: cast<AssumeInst>(Val: *II))) { |
| 504 | if (ConstantInt *Cond = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 0))) |
| 505 | return !Cond->isZero(); |
| 506 | |
| 507 | return false; |
| 508 | } |
| 509 | |
| 510 | if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(Val: I)) { |
| 511 | std::optional<fp::ExceptionBehavior> ExBehavior = |
| 512 | FPI->getExceptionBehavior(); |
| 513 | return *ExBehavior != fp::ebStrict; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | if (auto *Call = dyn_cast<CallBase>(Val: I)) { |
| 518 | if (Value *FreedOp = getFreedOperand(CB: Call, TLI)) |
| 519 | if (Constant *C = dyn_cast<Constant>(Val: FreedOp)) |
| 520 | return C->isNullValue() || isa<UndefValue>(Val: C); |
| 521 | if (isMathLibCallNoop(Call, TLI)) |
| 522 | return true; |
| 523 | } |
| 524 | |
| 525 | // Non-volatile atomic loads from constants can be removed. |
| 526 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
| 527 | if (auto *GV = dyn_cast<GlobalVariable>( |
| 528 | Val: LI->getPointerOperand()->stripPointerCasts())) |
| 529 | if (!LI->isVolatile() && GV->isConstant()) |
| 530 | return true; |
| 531 | |
| 532 | return false; |
| 533 | } |
| 534 | |
| 535 | /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a |
| 536 | /// trivially dead instruction, delete it. If that makes any of its operands |
| 537 | /// trivially dead, delete them too, recursively. Return true if any |
| 538 | /// instructions were deleted. |
| 539 | bool llvm::RecursivelyDeleteTriviallyDeadInstructions( |
| 540 | Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, |
| 541 | std::function<void(Value *)> AboutToDeleteCallback) { |
| 542 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 543 | if (!I || !isInstructionTriviallyDead(I, TLI)) |
| 544 | return false; |
| 545 | |
| 546 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 547 | DeadInsts.push_back(Elt: I); |
| 548 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, |
| 549 | AboutToDeleteCallback); |
| 550 | |
| 551 | return true; |
| 552 | } |
| 553 | |
| 554 | bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( |
| 555 | SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, |
| 556 | MemorySSAUpdater *MSSAU, |
| 557 | std::function<void(Value *)> AboutToDeleteCallback) { |
| 558 | unsigned S = 0, E = DeadInsts.size(), Alive = 0; |
| 559 | for (; S != E; ++S) { |
| 560 | auto *I = dyn_cast_or_null<Instruction>(Val&: DeadInsts[S]); |
| 561 | if (!I || !isInstructionTriviallyDead(I)) { |
| 562 | DeadInsts[S] = nullptr; |
| 563 | ++Alive; |
| 564 | } |
| 565 | } |
| 566 | if (Alive == E) |
| 567 | return false; |
| 568 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, |
| 569 | AboutToDeleteCallback); |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | void llvm::RecursivelyDeleteTriviallyDeadInstructions( |
| 574 | SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, |
| 575 | MemorySSAUpdater *MSSAU, |
| 576 | std::function<void(Value *)> AboutToDeleteCallback) { |
| 577 | // Process the dead instruction list until empty. |
| 578 | while (!DeadInsts.empty()) { |
| 579 | Value *V = DeadInsts.pop_back_val(); |
| 580 | Instruction *I = cast_or_null<Instruction>(Val: V); |
| 581 | if (!I) |
| 582 | continue; |
| 583 | assert(isInstructionTriviallyDead(I, TLI) && |
| 584 | "Live instruction found in dead worklist!" ); |
| 585 | assert(I->use_empty() && "Instructions with uses are not dead." ); |
| 586 | |
| 587 | // Don't lose the debug info while deleting the instructions. |
| 588 | salvageDebugInfo(I&: *I); |
| 589 | |
| 590 | if (AboutToDeleteCallback) |
| 591 | AboutToDeleteCallback(I); |
| 592 | |
| 593 | // Null out all of the instruction's operands to see if any operand becomes |
| 594 | // dead as we go. |
| 595 | for (Use &OpU : I->operands()) { |
| 596 | Value *OpV = OpU.get(); |
| 597 | OpU.set(nullptr); |
| 598 | |
| 599 | if (!OpV->use_empty()) |
| 600 | continue; |
| 601 | |
| 602 | // If the operand is an instruction that became dead as we nulled out the |
| 603 | // operand, and if it is 'trivially' dead, delete it in a future loop |
| 604 | // iteration. |
| 605 | if (Instruction *OpI = dyn_cast<Instruction>(Val: OpV)) |
| 606 | if (isInstructionTriviallyDead(I: OpI, TLI)) |
| 607 | DeadInsts.push_back(Elt: OpI); |
| 608 | } |
| 609 | if (MSSAU) |
| 610 | MSSAU->removeMemoryAccess(I); |
| 611 | |
| 612 | I->eraseFromParent(); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | bool llvm::replaceDbgUsesWithUndef(Instruction *I) { |
| 617 | SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| 618 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
| 619 | findDbgUsers(DbgInsts&: DbgUsers, V: I, DbgVariableRecords: &DPUsers); |
| 620 | for (auto *DII : DbgUsers) |
| 621 | DII->setKillLocation(); |
| 622 | for (auto *DVR : DPUsers) |
| 623 | DVR->setKillLocation(); |
| 624 | return !DbgUsers.empty() || !DPUsers.empty(); |
| 625 | } |
| 626 | |
| 627 | /// areAllUsesEqual - Check whether the uses of a value are all the same. |
| 628 | /// This is similar to Instruction::hasOneUse() except this will also return |
| 629 | /// true when there are no uses or multiple uses that all refer to the same |
| 630 | /// value. |
| 631 | static bool areAllUsesEqual(Instruction *I) { |
| 632 | Value::user_iterator UI = I->user_begin(); |
| 633 | Value::user_iterator UE = I->user_end(); |
| 634 | if (UI == UE) |
| 635 | return true; |
| 636 | |
| 637 | User *TheUse = *UI; |
| 638 | for (++UI; UI != UE; ++UI) { |
| 639 | if (*UI != TheUse) |
| 640 | return false; |
| 641 | } |
| 642 | return true; |
| 643 | } |
| 644 | |
| 645 | /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively |
| 646 | /// dead PHI node, due to being a def-use chain of single-use nodes that |
| 647 | /// either forms a cycle or is terminated by a trivially dead instruction, |
| 648 | /// delete it. If that makes any of its operands trivially dead, delete them |
| 649 | /// too, recursively. Return true if a change was made. |
| 650 | bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, |
| 651 | const TargetLibraryInfo *TLI, |
| 652 | llvm::MemorySSAUpdater *MSSAU) { |
| 653 | SmallPtrSet<Instruction*, 4> Visited; |
| 654 | for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); |
| 655 | I = cast<Instruction>(Val: *I->user_begin())) { |
| 656 | if (I->use_empty()) |
| 657 | return RecursivelyDeleteTriviallyDeadInstructions(V: I, TLI, MSSAU); |
| 658 | |
| 659 | // If we find an instruction more than once, we're on a cycle that |
| 660 | // won't prove fruitful. |
| 661 | if (!Visited.insert(Ptr: I).second) { |
| 662 | // Break the cycle and delete the instruction and its operands. |
| 663 | I->replaceAllUsesWith(V: PoisonValue::get(T: I->getType())); |
| 664 | (void)RecursivelyDeleteTriviallyDeadInstructions(V: I, TLI, MSSAU); |
| 665 | return true; |
| 666 | } |
| 667 | } |
| 668 | return false; |
| 669 | } |
| 670 | |
| 671 | static bool |
| 672 | simplifyAndDCEInstruction(Instruction *I, |
| 673 | SmallSetVector<Instruction *, 16> &WorkList, |
| 674 | const DataLayout &DL, |
| 675 | const TargetLibraryInfo *TLI) { |
| 676 | if (isInstructionTriviallyDead(I, TLI)) { |
| 677 | salvageDebugInfo(I&: *I); |
| 678 | |
| 679 | // Null out all of the instruction's operands to see if any operand becomes |
| 680 | // dead as we go. |
| 681 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| 682 | Value *OpV = I->getOperand(i); |
| 683 | I->setOperand(i, Val: nullptr); |
| 684 | |
| 685 | if (!OpV->use_empty() || I == OpV) |
| 686 | continue; |
| 687 | |
| 688 | // If the operand is an instruction that became dead as we nulled out the |
| 689 | // operand, and if it is 'trivially' dead, delete it in a future loop |
| 690 | // iteration. |
| 691 | if (Instruction *OpI = dyn_cast<Instruction>(Val: OpV)) |
| 692 | if (isInstructionTriviallyDead(I: OpI, TLI)) |
| 693 | WorkList.insert(X: OpI); |
| 694 | } |
| 695 | |
| 696 | I->eraseFromParent(); |
| 697 | |
| 698 | return true; |
| 699 | } |
| 700 | |
| 701 | if (Value *SimpleV = simplifyInstruction(I, Q: DL)) { |
| 702 | // Add the users to the worklist. CAREFUL: an instruction can use itself, |
| 703 | // in the case of a phi node. |
| 704 | for (User *U : I->users()) { |
| 705 | if (U != I) { |
| 706 | WorkList.insert(X: cast<Instruction>(Val: U)); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | // Replace the instruction with its simplified value. |
| 711 | bool Changed = false; |
| 712 | if (!I->use_empty()) { |
| 713 | I->replaceAllUsesWith(V: SimpleV); |
| 714 | Changed = true; |
| 715 | } |
| 716 | if (isInstructionTriviallyDead(I, TLI)) { |
| 717 | I->eraseFromParent(); |
| 718 | Changed = true; |
| 719 | } |
| 720 | return Changed; |
| 721 | } |
| 722 | return false; |
| 723 | } |
| 724 | |
| 725 | /// SimplifyInstructionsInBlock - Scan the specified basic block and try to |
| 726 | /// simplify any instructions in it and recursively delete dead instructions. |
| 727 | /// |
| 728 | /// This returns true if it changed the code, note that it can delete |
| 729 | /// instructions in other blocks as well in this block. |
| 730 | bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, |
| 731 | const TargetLibraryInfo *TLI) { |
| 732 | bool MadeChange = false; |
| 733 | const DataLayout &DL = BB->getDataLayout(); |
| 734 | |
| 735 | #ifndef NDEBUG |
| 736 | // In debug builds, ensure that the terminator of the block is never replaced |
| 737 | // or deleted by these simplifications. The idea of simplification is that it |
| 738 | // cannot introduce new instructions, and there is no way to replace the |
| 739 | // terminator of a block without introducing a new instruction. |
| 740 | AssertingVH<Instruction> TerminatorVH(&BB->back()); |
| 741 | #endif |
| 742 | |
| 743 | SmallSetVector<Instruction *, 16> WorkList; |
| 744 | // Iterate over the original function, only adding insts to the worklist |
| 745 | // if they actually need to be revisited. This avoids having to pre-init |
| 746 | // the worklist with the entire function's worth of instructions. |
| 747 | for (BasicBlock::iterator BI = BB->begin(), E = std::prev(x: BB->end()); |
| 748 | BI != E;) { |
| 749 | assert(!BI->isTerminator()); |
| 750 | Instruction *I = &*BI; |
| 751 | ++BI; |
| 752 | |
| 753 | // We're visiting this instruction now, so make sure it's not in the |
| 754 | // worklist from an earlier visit. |
| 755 | if (!WorkList.count(key: I)) |
| 756 | MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
| 757 | } |
| 758 | |
| 759 | while (!WorkList.empty()) { |
| 760 | Instruction *I = WorkList.pop_back_val(); |
| 761 | MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
| 762 | } |
| 763 | return MadeChange; |
| 764 | } |
| 765 | |
| 766 | //===----------------------------------------------------------------------===// |
| 767 | // Control Flow Graph Restructuring. |
| 768 | // |
| 769 | |
| 770 | void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, |
| 771 | DomTreeUpdater *DTU) { |
| 772 | |
| 773 | // If BB has single-entry PHI nodes, fold them. |
| 774 | while (PHINode *PN = dyn_cast<PHINode>(Val: DestBB->begin())) { |
| 775 | Value *NewVal = PN->getIncomingValue(i: 0); |
| 776 | // Replace self referencing PHI with poison, it must be dead. |
| 777 | if (NewVal == PN) NewVal = PoisonValue::get(T: PN->getType()); |
| 778 | PN->replaceAllUsesWith(V: NewVal); |
| 779 | PN->eraseFromParent(); |
| 780 | } |
| 781 | |
| 782 | BasicBlock *PredBB = DestBB->getSinglePredecessor(); |
| 783 | assert(PredBB && "Block doesn't have a single predecessor!" ); |
| 784 | |
| 785 | bool ReplaceEntryBB = PredBB->isEntryBlock(); |
| 786 | |
| 787 | // DTU updates: Collect all the edges that enter |
| 788 | // PredBB. These dominator edges will be redirected to DestBB. |
| 789 | SmallVector<DominatorTree::UpdateType, 32> Updates; |
| 790 | |
| 791 | if (DTU) { |
| 792 | // To avoid processing the same predecessor more than once. |
| 793 | SmallPtrSet<BasicBlock *, 2> SeenPreds; |
| 794 | Updates.reserve(N: Updates.size() + 2 * pred_size(BB: PredBB) + 1); |
| 795 | for (BasicBlock *PredOfPredBB : predecessors(BB: PredBB)) |
| 796 | // This predecessor of PredBB may already have DestBB as a successor. |
| 797 | if (PredOfPredBB != PredBB) |
| 798 | if (SeenPreds.insert(Ptr: PredOfPredBB).second) |
| 799 | Updates.push_back(Elt: {DominatorTree::Insert, PredOfPredBB, DestBB}); |
| 800 | SeenPreds.clear(); |
| 801 | for (BasicBlock *PredOfPredBB : predecessors(BB: PredBB)) |
| 802 | if (SeenPreds.insert(Ptr: PredOfPredBB).second) |
| 803 | Updates.push_back(Elt: {DominatorTree::Delete, PredOfPredBB, PredBB}); |
| 804 | Updates.push_back(Elt: {DominatorTree::Delete, PredBB, DestBB}); |
| 805 | } |
| 806 | |
| 807 | // Zap anything that took the address of DestBB. Not doing this will give the |
| 808 | // address an invalid value. |
| 809 | if (DestBB->hasAddressTaken()) { |
| 810 | BlockAddress *BA = BlockAddress::get(BB: DestBB); |
| 811 | Constant *Replacement = |
| 812 | ConstantInt::get(Ty: Type::getInt32Ty(C&: BA->getContext()), V: 1); |
| 813 | BA->replaceAllUsesWith(V: ConstantExpr::getIntToPtr(C: Replacement, |
| 814 | Ty: BA->getType())); |
| 815 | BA->destroyConstant(); |
| 816 | } |
| 817 | |
| 818 | // Anything that branched to PredBB now branches to DestBB. |
| 819 | PredBB->replaceAllUsesWith(V: DestBB); |
| 820 | |
| 821 | // Splice all the instructions from PredBB to DestBB. |
| 822 | PredBB->getTerminator()->eraseFromParent(); |
| 823 | DestBB->splice(ToIt: DestBB->begin(), FromBB: PredBB); |
| 824 | new UnreachableInst(PredBB->getContext(), PredBB); |
| 825 | |
| 826 | // If the PredBB is the entry block of the function, move DestBB up to |
| 827 | // become the entry block after we erase PredBB. |
| 828 | if (ReplaceEntryBB) |
| 829 | DestBB->moveAfter(MovePos: PredBB); |
| 830 | |
| 831 | if (DTU) { |
| 832 | assert(PredBB->size() == 1 && |
| 833 | isa<UnreachableInst>(PredBB->getTerminator()) && |
| 834 | "The successor list of PredBB isn't empty before " |
| 835 | "applying corresponding DTU updates." ); |
| 836 | DTU->applyUpdatesPermissive(Updates); |
| 837 | DTU->deleteBB(DelBB: PredBB); |
| 838 | // Recalculation of DomTree is needed when updating a forward DomTree and |
| 839 | // the Entry BB is replaced. |
| 840 | if (ReplaceEntryBB && DTU->hasDomTree()) { |
| 841 | // The entry block was removed and there is no external interface for |
| 842 | // the dominator tree to be notified of this change. In this corner-case |
| 843 | // we recalculate the entire tree. |
| 844 | DTU->recalculate(F&: *(DestBB->getParent())); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | else { |
| 849 | PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | /// Return true if we can choose one of these values to use in place of the |
| 854 | /// other. Note that we will always choose the non-undef value to keep. |
| 855 | static bool CanMergeValues(Value *First, Value *Second) { |
| 856 | return First == Second || isa<UndefValue>(Val: First) || isa<UndefValue>(Val: Second); |
| 857 | } |
| 858 | |
| 859 | /// Return true if we can fold BB, an almost-empty BB ending in an unconditional |
| 860 | /// branch to Succ, into Succ. |
| 861 | /// |
| 862 | /// Assumption: Succ is the single successor for BB. |
| 863 | static bool |
| 864 | CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, |
| 865 | const SmallPtrSetImpl<BasicBlock *> &BBPreds) { |
| 866 | assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!" ); |
| 867 | |
| 868 | LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " |
| 869 | << Succ->getName() << "\n" ); |
| 870 | // Shortcut, if there is only a single predecessor it must be BB and merging |
| 871 | // is always safe |
| 872 | if (Succ->getSinglePredecessor()) |
| 873 | return true; |
| 874 | |
| 875 | // Look at all the phi nodes in Succ, to see if they present a conflict when |
| 876 | // merging these blocks |
| 877 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(Val: I); ++I) { |
| 878 | PHINode *PN = cast<PHINode>(Val&: I); |
| 879 | |
| 880 | // If the incoming value from BB is again a PHINode in |
| 881 | // BB which has the same incoming value for *PI as PN does, we can |
| 882 | // merge the phi nodes and then the blocks can still be merged |
| 883 | PHINode *BBPN = dyn_cast<PHINode>(Val: PN->getIncomingValueForBlock(BB)); |
| 884 | if (BBPN && BBPN->getParent() == BB) { |
| 885 | for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
| 886 | BasicBlock *IBB = PN->getIncomingBlock(i: PI); |
| 887 | if (BBPreds.count(Ptr: IBB) && |
| 888 | !CanMergeValues(First: BBPN->getIncomingValueForBlock(BB: IBB), |
| 889 | Second: PN->getIncomingValue(i: PI))) { |
| 890 | LLVM_DEBUG(dbgs() |
| 891 | << "Can't fold, phi node " << PN->getName() << " in " |
| 892 | << Succ->getName() << " is conflicting with " |
| 893 | << BBPN->getName() << " with regard to common predecessor " |
| 894 | << IBB->getName() << "\n" ); |
| 895 | return false; |
| 896 | } |
| 897 | } |
| 898 | } else { |
| 899 | Value* Val = PN->getIncomingValueForBlock(BB); |
| 900 | for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
| 901 | // See if the incoming value for the common predecessor is equal to the |
| 902 | // one for BB, in which case this phi node will not prevent the merging |
| 903 | // of the block. |
| 904 | BasicBlock *IBB = PN->getIncomingBlock(i: PI); |
| 905 | if (BBPreds.count(Ptr: IBB) && |
| 906 | !CanMergeValues(First: Val, Second: PN->getIncomingValue(i: PI))) { |
| 907 | LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() |
| 908 | << " in " << Succ->getName() |
| 909 | << " is conflicting with regard to common " |
| 910 | << "predecessor " << IBB->getName() << "\n" ); |
| 911 | return false; |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | using PredBlockVector = SmallVector<BasicBlock *, 16>; |
| 921 | using IncomingValueMap = SmallDenseMap<BasicBlock *, Value *, 16>; |
| 922 | |
| 923 | /// Determines the value to use as the phi node input for a block. |
| 924 | /// |
| 925 | /// Select between \p OldVal any value that we know flows from \p BB |
| 926 | /// to a particular phi on the basis of which one (if either) is not |
| 927 | /// undef. Update IncomingValues based on the selected value. |
| 928 | /// |
| 929 | /// \param OldVal The value we are considering selecting. |
| 930 | /// \param BB The block that the value flows in from. |
| 931 | /// \param IncomingValues A map from block-to-value for other phi inputs |
| 932 | /// that we have examined. |
| 933 | /// |
| 934 | /// \returns the selected value. |
| 935 | static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, |
| 936 | IncomingValueMap &IncomingValues) { |
| 937 | if (!isa<UndefValue>(Val: OldVal)) { |
| 938 | assert((!IncomingValues.count(BB) || |
| 939 | IncomingValues.find(BB)->second == OldVal) && |
| 940 | "Expected OldVal to match incoming value from BB!" ); |
| 941 | |
| 942 | IncomingValues.insert(KV: std::make_pair(x&: BB, y&: OldVal)); |
| 943 | return OldVal; |
| 944 | } |
| 945 | |
| 946 | IncomingValueMap::const_iterator It = IncomingValues.find(Val: BB); |
| 947 | if (It != IncomingValues.end()) return It->second; |
| 948 | |
| 949 | return OldVal; |
| 950 | } |
| 951 | |
| 952 | /// Create a map from block to value for the operands of a |
| 953 | /// given phi. |
| 954 | /// |
| 955 | /// Create a map from block to value for each non-undef value flowing |
| 956 | /// into \p PN. |
| 957 | /// |
| 958 | /// \param PN The phi we are collecting the map for. |
| 959 | /// \param IncomingValues [out] The map from block to value for this phi. |
| 960 | static void gatherIncomingValuesToPhi(PHINode *PN, |
| 961 | IncomingValueMap &IncomingValues) { |
| 962 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 963 | BasicBlock *BB = PN->getIncomingBlock(i); |
| 964 | Value *V = PN->getIncomingValue(i); |
| 965 | |
| 966 | if (!isa<UndefValue>(Val: V)) |
| 967 | IncomingValues.insert(KV: std::make_pair(x&: BB, y&: V)); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | /// Replace the incoming undef values to a phi with the values |
| 972 | /// from a block-to-value map. |
| 973 | /// |
| 974 | /// \param PN The phi we are replacing the undefs in. |
| 975 | /// \param IncomingValues A map from block to value. |
| 976 | static void replaceUndefValuesInPhi(PHINode *PN, |
| 977 | const IncomingValueMap &IncomingValues) { |
| 978 | SmallVector<unsigned> TrueUndefOps; |
| 979 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 980 | Value *V = PN->getIncomingValue(i); |
| 981 | |
| 982 | if (!isa<UndefValue>(Val: V)) continue; |
| 983 | |
| 984 | BasicBlock *BB = PN->getIncomingBlock(i); |
| 985 | IncomingValueMap::const_iterator It = IncomingValues.find(Val: BB); |
| 986 | |
| 987 | // Keep track of undef/poison incoming values. Those must match, so we fix |
| 988 | // them up below if needed. |
| 989 | // Note: this is conservatively correct, but we could try harder and group |
| 990 | // the undef values per incoming basic block. |
| 991 | if (It == IncomingValues.end()) { |
| 992 | TrueUndefOps.push_back(Elt: i); |
| 993 | continue; |
| 994 | } |
| 995 | |
| 996 | // There is a defined value for this incoming block, so map this undef |
| 997 | // incoming value to the defined value. |
| 998 | PN->setIncomingValue(i, V: It->second); |
| 999 | } |
| 1000 | |
| 1001 | // If there are both undef and poison values incoming, then convert those |
| 1002 | // values to undef. It is invalid to have different values for the same |
| 1003 | // incoming block. |
| 1004 | unsigned PoisonCount = count_if(Range&: TrueUndefOps, P: [&](unsigned i) { |
| 1005 | return isa<PoisonValue>(Val: PN->getIncomingValue(i)); |
| 1006 | }); |
| 1007 | if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { |
| 1008 | for (unsigned i : TrueUndefOps) |
| 1009 | PN->setIncomingValue(i, V: UndefValue::get(T: PN->getType())); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | // Only when they shares a single common predecessor, return true. |
| 1014 | // Only handles cases when BB can't be merged while its predecessors can be |
| 1015 | // redirected. |
| 1016 | static bool |
| 1017 | CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, |
| 1018 | const SmallPtrSetImpl<BasicBlock *> &BBPreds, |
| 1019 | BasicBlock *&CommonPred) { |
| 1020 | |
| 1021 | // There must be phis in BB, otherwise BB will be merged into Succ directly |
| 1022 | if (BB->phis().empty() || Succ->phis().empty()) |
| 1023 | return false; |
| 1024 | |
| 1025 | // BB must have predecessors not shared that can be redirected to Succ |
| 1026 | if (!BB->hasNPredecessorsOrMore(N: 2)) |
| 1027 | return false; |
| 1028 | |
| 1029 | if (any_of(Range: BBPreds, P: [](const BasicBlock *Pred) { |
| 1030 | return isa<IndirectBrInst>(Val: Pred->getTerminator()); |
| 1031 | })) |
| 1032 | return false; |
| 1033 | |
| 1034 | // Get the single common predecessor of both BB and Succ. Return false |
| 1035 | // when there are more than one common predecessors. |
| 1036 | for (BasicBlock *SuccPred : predecessors(BB: Succ)) { |
| 1037 | if (BBPreds.count(Ptr: SuccPred)) { |
| 1038 | if (CommonPred) |
| 1039 | return false; |
| 1040 | CommonPred = SuccPred; |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | return true; |
| 1045 | } |
| 1046 | |
| 1047 | /// Check whether removing \p BB will make the phis in its \p Succ have too |
| 1048 | /// many incoming entries. This function does not check whether \p BB is |
| 1049 | /// foldable or not. |
| 1050 | static bool introduceTooManyPhiEntries(BasicBlock *BB, BasicBlock *Succ) { |
| 1051 | // If BB only has one predecessor, then removing it will not introduce more |
| 1052 | // incoming edges for phis. |
| 1053 | if (BB->hasNPredecessors(N: 1)) |
| 1054 | return false; |
| 1055 | unsigned NumPreds = pred_size(BB); |
| 1056 | unsigned NumChangedPhi = 0; |
| 1057 | for (auto &Phi : Succ->phis()) { |
| 1058 | // If the incoming value is a phi and the phi is defined in BB, |
| 1059 | // then removing BB will not increase the total phi entries of the ir. |
| 1060 | if (auto *IncomingPhi = dyn_cast<PHINode>(Val: Phi.getIncomingValueForBlock(BB))) |
| 1061 | if (IncomingPhi->getParent() == BB) |
| 1062 | continue; |
| 1063 | // Otherwise, we need to add entries to the phi |
| 1064 | NumChangedPhi++; |
| 1065 | } |
| 1066 | // For every phi that needs to be changed, (NumPreds - 1) new entries will be |
| 1067 | // added. If the total increase in phi entries exceeds |
| 1068 | // MaxPhiEntriesIncreaseAfterRemovingEmptyBlock, it will be considered as |
| 1069 | // introducing too many new phi entries. |
| 1070 | return (NumPreds - 1) * NumChangedPhi > |
| 1071 | MaxPhiEntriesIncreaseAfterRemovingEmptyBlock; |
| 1072 | } |
| 1073 | |
| 1074 | /// Replace a value flowing from a block to a phi with |
| 1075 | /// potentially multiple instances of that value flowing from the |
| 1076 | /// block's predecessors to the phi. |
| 1077 | /// |
| 1078 | /// \param BB The block with the value flowing into the phi. |
| 1079 | /// \param BBPreds The predecessors of BB. |
| 1080 | /// \param PN The phi that we are updating. |
| 1081 | /// \param CommonPred The common predecessor of BB and PN's BasicBlock |
| 1082 | static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, |
| 1083 | const PredBlockVector &BBPreds, |
| 1084 | PHINode *PN, |
| 1085 | BasicBlock *CommonPred) { |
| 1086 | Value *OldVal = PN->removeIncomingValue(BB, DeletePHIIfEmpty: false); |
| 1087 | assert(OldVal && "No entry in PHI for Pred BB!" ); |
| 1088 | |
| 1089 | IncomingValueMap IncomingValues; |
| 1090 | |
| 1091 | // We are merging two blocks - BB, and the block containing PN - and |
| 1092 | // as a result we need to redirect edges from the predecessors of BB |
| 1093 | // to go to the block containing PN, and update PN |
| 1094 | // accordingly. Since we allow merging blocks in the case where the |
| 1095 | // predecessor and successor blocks both share some predecessors, |
| 1096 | // and where some of those common predecessors might have undef |
| 1097 | // values flowing into PN, we want to rewrite those values to be |
| 1098 | // consistent with the non-undef values. |
| 1099 | |
| 1100 | gatherIncomingValuesToPhi(PN, IncomingValues); |
| 1101 | |
| 1102 | // If this incoming value is one of the PHI nodes in BB, the new entries |
| 1103 | // in the PHI node are the entries from the old PHI. |
| 1104 | if (isa<PHINode>(Val: OldVal) && cast<PHINode>(Val: OldVal)->getParent() == BB) { |
| 1105 | PHINode *OldValPN = cast<PHINode>(Val: OldVal); |
| 1106 | for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { |
| 1107 | // Note that, since we are merging phi nodes and BB and Succ might |
| 1108 | // have common predecessors, we could end up with a phi node with |
| 1109 | // identical incoming branches. This will be cleaned up later (and |
| 1110 | // will trigger asserts if we try to clean it up now, without also |
| 1111 | // simplifying the corresponding conditional branch). |
| 1112 | BasicBlock *PredBB = OldValPN->getIncomingBlock(i); |
| 1113 | |
| 1114 | if (PredBB == CommonPred) |
| 1115 | continue; |
| 1116 | |
| 1117 | Value *PredVal = OldValPN->getIncomingValue(i); |
| 1118 | Value *Selected = |
| 1119 | selectIncomingValueForBlock(OldVal: PredVal, BB: PredBB, IncomingValues); |
| 1120 | |
| 1121 | // And add a new incoming value for this predecessor for the |
| 1122 | // newly retargeted branch. |
| 1123 | PN->addIncoming(V: Selected, BB: PredBB); |
| 1124 | } |
| 1125 | if (CommonPred) |
| 1126 | PN->addIncoming(V: OldValPN->getIncomingValueForBlock(BB: CommonPred), BB); |
| 1127 | |
| 1128 | } else { |
| 1129 | for (BasicBlock *PredBB : BBPreds) { |
| 1130 | // Update existing incoming values in PN for this |
| 1131 | // predecessor of BB. |
| 1132 | if (PredBB == CommonPred) |
| 1133 | continue; |
| 1134 | |
| 1135 | Value *Selected = |
| 1136 | selectIncomingValueForBlock(OldVal, BB: PredBB, IncomingValues); |
| 1137 | |
| 1138 | // And add a new incoming value for this predecessor for the |
| 1139 | // newly retargeted branch. |
| 1140 | PN->addIncoming(V: Selected, BB: PredBB); |
| 1141 | } |
| 1142 | if (CommonPred) |
| 1143 | PN->addIncoming(V: OldVal, BB); |
| 1144 | } |
| 1145 | |
| 1146 | replaceUndefValuesInPhi(PN, IncomingValues); |
| 1147 | } |
| 1148 | |
| 1149 | bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, |
| 1150 | DomTreeUpdater *DTU) { |
| 1151 | assert(BB != &BB->getParent()->getEntryBlock() && |
| 1152 | "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!" ); |
| 1153 | |
| 1154 | // We can't simplify infinite loops. |
| 1155 | BasicBlock *Succ = cast<BranchInst>(Val: BB->getTerminator())->getSuccessor(i: 0); |
| 1156 | if (BB == Succ) |
| 1157 | return false; |
| 1158 | |
| 1159 | SmallPtrSet<BasicBlock *, 16> BBPreds(llvm::from_range, predecessors(BB)); |
| 1160 | |
| 1161 | // The single common predecessor of BB and Succ when BB cannot be killed |
| 1162 | BasicBlock *CommonPred = nullptr; |
| 1163 | |
| 1164 | bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); |
| 1165 | |
| 1166 | // Even if we can not fold BB into Succ, we may be able to redirect the |
| 1167 | // predecessors of BB to Succ. |
| 1168 | bool BBPhisMergeable = BBKillable || CanRedirectPredsOfEmptyBBToSucc( |
| 1169 | BB, Succ, BBPreds, CommonPred); |
| 1170 | |
| 1171 | if ((!BBKillable && !BBPhisMergeable) || introduceTooManyPhiEntries(BB, Succ)) |
| 1172 | return false; |
| 1173 | |
| 1174 | // Check to see if merging these blocks/phis would cause conflicts for any of |
| 1175 | // the phi nodes in BB or Succ. If not, we can safely merge. |
| 1176 | |
| 1177 | // Check for cases where Succ has multiple predecessors and a PHI node in BB |
| 1178 | // has uses which will not disappear when the PHI nodes are merged. It is |
| 1179 | // possible to handle such cases, but difficult: it requires checking whether |
| 1180 | // BB dominates Succ, which is non-trivial to calculate in the case where |
| 1181 | // Succ has multiple predecessors. Also, it requires checking whether |
| 1182 | // constructing the necessary self-referential PHI node doesn't introduce any |
| 1183 | // conflicts; this isn't too difficult, but the previous code for doing this |
| 1184 | // was incorrect. |
| 1185 | // |
| 1186 | // Note that if this check finds a live use, BB dominates Succ, so BB is |
| 1187 | // something like a loop pre-header (or rarely, a part of an irreducible CFG); |
| 1188 | // folding the branch isn't profitable in that case anyway. |
| 1189 | if (!Succ->getSinglePredecessor()) { |
| 1190 | BasicBlock::iterator BBI = BB->begin(); |
| 1191 | while (isa<PHINode>(Val: *BBI)) { |
| 1192 | for (Use &U : BBI->uses()) { |
| 1193 | if (PHINode* PN = dyn_cast<PHINode>(Val: U.getUser())) { |
| 1194 | if (PN->getIncomingBlock(U) != BB) |
| 1195 | return false; |
| 1196 | } else { |
| 1197 | return false; |
| 1198 | } |
| 1199 | } |
| 1200 | ++BBI; |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | if (BBPhisMergeable && CommonPred) |
| 1205 | LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() |
| 1206 | << " and " << Succ->getName() << " : " |
| 1207 | << CommonPred->getName() << "\n" ); |
| 1208 | |
| 1209 | // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop |
| 1210 | // metadata. |
| 1211 | // |
| 1212 | // FIXME: This is a stop-gap solution to preserve inner-loop metadata given |
| 1213 | // current status (that loop metadata is implemented as metadata attached to |
| 1214 | // the branch instruction in the loop latch block). To quote from review |
| 1215 | // comments, "the current representation of loop metadata (using a loop latch |
| 1216 | // terminator attachment) is known to be fundamentally broken. Loop latches |
| 1217 | // are not uniquely associated with loops (both in that a latch can be part of |
| 1218 | // multiple loops and a loop may have multiple latches). Loop headers are. The |
| 1219 | // solution to this problem is also known: Add support for basic block |
| 1220 | // metadata, and attach loop metadata to the loop header." |
| 1221 | // |
| 1222 | // Why bail out: |
| 1223 | // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is |
| 1224 | // the latch for inner-loop (see reason below), so bail out to prerserve |
| 1225 | // inner-loop metadata rather than eliminating 'BB' and attaching its metadata |
| 1226 | // to this inner-loop. |
| 1227 | // - The reason we believe 'BB' and 'BB->Pred' have different inner-most |
| 1228 | // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, |
| 1229 | // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of |
| 1230 | // one self-looping basic block, which is contradictory with the assumption. |
| 1231 | // |
| 1232 | // To illustrate how inner-loop metadata is dropped: |
| 1233 | // |
| 1234 | // CFG Before |
| 1235 | // |
| 1236 | // BB is while.cond.exit, attached with loop metdata md2. |
| 1237 | // BB->Pred is for.body, attached with loop metadata md1. |
| 1238 | // |
| 1239 | // entry |
| 1240 | // | |
| 1241 | // v |
| 1242 | // ---> while.cond -------------> while.end |
| 1243 | // | | |
| 1244 | // | v |
| 1245 | // | while.body |
| 1246 | // | | |
| 1247 | // | v |
| 1248 | // | for.body <---- (md1) |
| 1249 | // | | |______| |
| 1250 | // | v |
| 1251 | // | while.cond.exit (md2) |
| 1252 | // | | |
| 1253 | // |_______| |
| 1254 | // |
| 1255 | // CFG After |
| 1256 | // |
| 1257 | // while.cond1 is the merge of while.cond.exit and while.cond above. |
| 1258 | // for.body is attached with md2, and md1 is dropped. |
| 1259 | // If LoopSimplify runs later (as a part of loop pass), it could create |
| 1260 | // dedicated exits for inner-loop (essentially adding `while.cond.exit` |
| 1261 | // back), but won't it won't see 'md1' nor restore it for the inner-loop. |
| 1262 | // |
| 1263 | // entry |
| 1264 | // | |
| 1265 | // v |
| 1266 | // ---> while.cond1 -------------> while.end |
| 1267 | // | | |
| 1268 | // | v |
| 1269 | // | while.body |
| 1270 | // | | |
| 1271 | // | v |
| 1272 | // | for.body <---- (md2) |
| 1273 | // |_______| |______| |
| 1274 | if (Instruction *TI = BB->getTerminator()) |
| 1275 | if (TI->hasNonDebugLocLoopMetadata()) |
| 1276 | for (BasicBlock *Pred : predecessors(BB)) |
| 1277 | if (Instruction *PredTI = Pred->getTerminator()) |
| 1278 | if (PredTI->hasNonDebugLocLoopMetadata()) |
| 1279 | return false; |
| 1280 | |
| 1281 | if (BBKillable) |
| 1282 | LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); |
| 1283 | else if (BBPhisMergeable) |
| 1284 | LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); |
| 1285 | |
| 1286 | SmallVector<DominatorTree::UpdateType, 32> Updates; |
| 1287 | |
| 1288 | if (DTU) { |
| 1289 | // To avoid processing the same predecessor more than once. |
| 1290 | SmallPtrSet<BasicBlock *, 8> SeenPreds; |
| 1291 | // All predecessors of BB (except the common predecessor) will be moved to |
| 1292 | // Succ. |
| 1293 | Updates.reserve(N: Updates.size() + 2 * pred_size(BB) + 1); |
| 1294 | SmallPtrSet<BasicBlock *, 16> SuccPreds(llvm::from_range, |
| 1295 | predecessors(BB: Succ)); |
| 1296 | for (auto *PredOfBB : predecessors(BB)) { |
| 1297 | // Do not modify those common predecessors of BB and Succ |
| 1298 | if (!SuccPreds.contains(Ptr: PredOfBB)) |
| 1299 | if (SeenPreds.insert(Ptr: PredOfBB).second) |
| 1300 | Updates.push_back(Elt: {DominatorTree::Insert, PredOfBB, Succ}); |
| 1301 | } |
| 1302 | |
| 1303 | SeenPreds.clear(); |
| 1304 | |
| 1305 | for (auto *PredOfBB : predecessors(BB)) |
| 1306 | // When BB cannot be killed, do not remove the edge between BB and |
| 1307 | // CommonPred. |
| 1308 | if (SeenPreds.insert(Ptr: PredOfBB).second && PredOfBB != CommonPred) |
| 1309 | Updates.push_back(Elt: {DominatorTree::Delete, PredOfBB, BB}); |
| 1310 | |
| 1311 | if (BBKillable) |
| 1312 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
| 1313 | } |
| 1314 | |
| 1315 | if (isa<PHINode>(Val: Succ->begin())) { |
| 1316 | // If there is more than one pred of succ, and there are PHI nodes in |
| 1317 | // the successor, then we need to add incoming edges for the PHI nodes |
| 1318 | // |
| 1319 | const PredBlockVector BBPreds(predecessors(BB)); |
| 1320 | |
| 1321 | // Loop over all of the PHI nodes in the successor of BB. |
| 1322 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(Val: I); ++I) { |
| 1323 | PHINode *PN = cast<PHINode>(Val&: I); |
| 1324 | redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | if (Succ->getSinglePredecessor()) { |
| 1329 | // BB is the only predecessor of Succ, so Succ will end up with exactly |
| 1330 | // the same predecessors BB had. |
| 1331 | // Copy over any phi, debug or lifetime instruction. |
| 1332 | BB->getTerminator()->eraseFromParent(); |
| 1333 | Succ->splice(ToIt: Succ->getFirstNonPHIIt(), FromBB: BB); |
| 1334 | } else { |
| 1335 | while (PHINode *PN = dyn_cast<PHINode>(Val: &BB->front())) { |
| 1336 | // We explicitly check for such uses for merging phis. |
| 1337 | assert(PN->use_empty() && "There shouldn't be any uses here!" ); |
| 1338 | PN->eraseFromParent(); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | // If the unconditional branch we replaced contains non-debug llvm.loop |
| 1343 | // metadata, we add the metadata to the branch instructions in the |
| 1344 | // predecessors. |
| 1345 | if (Instruction *TI = BB->getTerminator()) |
| 1346 | if (TI->hasNonDebugLocLoopMetadata()) { |
| 1347 | MDNode *LoopMD = TI->getMetadata(KindID: LLVMContext::MD_loop); |
| 1348 | for (BasicBlock *Pred : predecessors(BB)) |
| 1349 | Pred->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: LoopMD); |
| 1350 | } |
| 1351 | |
| 1352 | if (BBKillable) { |
| 1353 | // Everything that jumped to BB now goes to Succ. |
| 1354 | BB->replaceAllUsesWith(V: Succ); |
| 1355 | |
| 1356 | if (!Succ->hasName()) |
| 1357 | Succ->takeName(V: BB); |
| 1358 | |
| 1359 | // Clear the successor list of BB to match updates applying to DTU later. |
| 1360 | if (BB->getTerminator()) |
| 1361 | BB->back().eraseFromParent(); |
| 1362 | |
| 1363 | new UnreachableInst(BB->getContext(), BB); |
| 1364 | assert(succ_empty(BB) && "The successor list of BB isn't empty before " |
| 1365 | "applying corresponding DTU updates." ); |
| 1366 | } else if (BBPhisMergeable) { |
| 1367 | // Everything except CommonPred that jumped to BB now goes to Succ. |
| 1368 | BB->replaceUsesWithIf(New: Succ, ShouldReplace: [BBPreds, CommonPred](Use &U) -> bool { |
| 1369 | if (Instruction *UseInst = dyn_cast<Instruction>(Val: U.getUser())) |
| 1370 | return UseInst->getParent() != CommonPred && |
| 1371 | BBPreds.contains(Ptr: UseInst->getParent()); |
| 1372 | return false; |
| 1373 | }); |
| 1374 | } |
| 1375 | |
| 1376 | if (DTU) |
| 1377 | DTU->applyUpdates(Updates); |
| 1378 | |
| 1379 | if (BBKillable) |
| 1380 | DeleteDeadBlock(BB, DTU); |
| 1381 | |
| 1382 | return true; |
| 1383 | } |
| 1384 | |
| 1385 | static bool |
| 1386 | EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, |
| 1387 | SmallPtrSetImpl<PHINode *> &ToRemove) { |
| 1388 | // This implementation doesn't currently consider undef operands |
| 1389 | // specially. Theoretically, two phis which are identical except for |
| 1390 | // one having an undef where the other doesn't could be collapsed. |
| 1391 | |
| 1392 | bool Changed = false; |
| 1393 | |
| 1394 | // Examine each PHI. |
| 1395 | // Note that increment of I must *NOT* be in the iteration_expression, since |
| 1396 | // we don't want to immediately advance when we restart from the beginning. |
| 1397 | for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(Val&: I);) { |
| 1398 | ++I; |
| 1399 | // Is there an identical PHI node in this basic block? |
| 1400 | // Note that we only look in the upper square's triangle, |
| 1401 | // we already checked that the lower triangle PHI's aren't identical. |
| 1402 | for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(Val&: J); ++J) { |
| 1403 | if (ToRemove.contains(Ptr: DuplicatePN)) |
| 1404 | continue; |
| 1405 | if (!DuplicatePN->isIdenticalToWhenDefined(I: PN)) |
| 1406 | continue; |
| 1407 | // A duplicate. Replace this PHI with the base PHI. |
| 1408 | ++NumPHICSEs; |
| 1409 | DuplicatePN->replaceAllUsesWith(V: PN); |
| 1410 | ToRemove.insert(Ptr: DuplicatePN); |
| 1411 | Changed = true; |
| 1412 | |
| 1413 | // The RAUW can change PHIs that we already visited. |
| 1414 | I = BB->begin(); |
| 1415 | break; // Start over from the beginning. |
| 1416 | } |
| 1417 | } |
| 1418 | return Changed; |
| 1419 | } |
| 1420 | |
| 1421 | static bool |
| 1422 | EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, |
| 1423 | SmallPtrSetImpl<PHINode *> &ToRemove) { |
| 1424 | // This implementation doesn't currently consider undef operands |
| 1425 | // specially. Theoretically, two phis which are identical except for |
| 1426 | // one having an undef where the other doesn't could be collapsed. |
| 1427 | |
| 1428 | struct PHIDenseMapInfo { |
| 1429 | static PHINode *getEmptyKey() { |
| 1430 | return DenseMapInfo<PHINode *>::getEmptyKey(); |
| 1431 | } |
| 1432 | |
| 1433 | static PHINode *getTombstoneKey() { |
| 1434 | return DenseMapInfo<PHINode *>::getTombstoneKey(); |
| 1435 | } |
| 1436 | |
| 1437 | static bool isSentinel(PHINode *PN) { |
| 1438 | return PN == getEmptyKey() || PN == getTombstoneKey(); |
| 1439 | } |
| 1440 | |
| 1441 | // WARNING: this logic must be kept in sync with |
| 1442 | // Instruction::isIdenticalToWhenDefined()! |
| 1443 | static unsigned getHashValueImpl(PHINode *PN) { |
| 1444 | // Compute a hash value on the operands. Instcombine will likely have |
| 1445 | // sorted them, which helps expose duplicates, but we have to check all |
| 1446 | // the operands to be safe in case instcombine hasn't run. |
| 1447 | return static_cast<unsigned>( |
| 1448 | hash_combine(args: hash_combine_range(R: PN->operand_values()), |
| 1449 | args: hash_combine_range(R: PN->blocks()))); |
| 1450 | } |
| 1451 | |
| 1452 | static unsigned getHashValue(PHINode *PN) { |
| 1453 | #ifndef NDEBUG |
| 1454 | // If -phicse-debug-hash was specified, return a constant -- this |
| 1455 | // will force all hashing to collide, so we'll exhaustively search |
| 1456 | // the table for a match, and the assertion in isEqual will fire if |
| 1457 | // there's a bug causing equal keys to hash differently. |
| 1458 | if (PHICSEDebugHash) |
| 1459 | return 0; |
| 1460 | #endif |
| 1461 | return getHashValueImpl(PN); |
| 1462 | } |
| 1463 | |
| 1464 | static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { |
| 1465 | if (isSentinel(PN: LHS) || isSentinel(PN: RHS)) |
| 1466 | return LHS == RHS; |
| 1467 | return LHS->isIdenticalTo(I: RHS); |
| 1468 | } |
| 1469 | |
| 1470 | static bool isEqual(PHINode *LHS, PHINode *RHS) { |
| 1471 | // These comparisons are nontrivial, so assert that equality implies |
| 1472 | // hash equality (DenseMap demands this as an invariant). |
| 1473 | bool Result = isEqualImpl(LHS, RHS); |
| 1474 | assert(!Result || (isSentinel(LHS) && LHS == RHS) || |
| 1475 | getHashValueImpl(LHS) == getHashValueImpl(RHS)); |
| 1476 | return Result; |
| 1477 | } |
| 1478 | }; |
| 1479 | |
| 1480 | // Set of unique PHINodes. |
| 1481 | DenseSet<PHINode *, PHIDenseMapInfo> PHISet; |
| 1482 | PHISet.reserve(Size: 4 * PHICSENumPHISmallSize); |
| 1483 | |
| 1484 | // Examine each PHI. |
| 1485 | bool Changed = false; |
| 1486 | for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(Val: I++);) { |
| 1487 | if (ToRemove.contains(Ptr: PN)) |
| 1488 | continue; |
| 1489 | auto Inserted = PHISet.insert(V: PN); |
| 1490 | if (!Inserted.second) { |
| 1491 | // A duplicate. Replace this PHI with its duplicate. |
| 1492 | ++NumPHICSEs; |
| 1493 | PN->replaceAllUsesWith(V: *Inserted.first); |
| 1494 | ToRemove.insert(Ptr: PN); |
| 1495 | Changed = true; |
| 1496 | |
| 1497 | // The RAUW can change PHIs that we already visited. Start over from the |
| 1498 | // beginning. |
| 1499 | PHISet.clear(); |
| 1500 | I = BB->begin(); |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | return Changed; |
| 1505 | } |
| 1506 | |
| 1507 | bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, |
| 1508 | SmallPtrSetImpl<PHINode *> &ToRemove) { |
| 1509 | if ( |
| 1510 | #ifndef NDEBUG |
| 1511 | !PHICSEDebugHash && |
| 1512 | #endif |
| 1513 | hasNItemsOrLess(C: BB->phis(), N: PHICSENumPHISmallSize)) |
| 1514 | return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); |
| 1515 | return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); |
| 1516 | } |
| 1517 | |
| 1518 | bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { |
| 1519 | SmallPtrSet<PHINode *, 8> ToRemove; |
| 1520 | bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); |
| 1521 | for (PHINode *PN : ToRemove) |
| 1522 | PN->eraseFromParent(); |
| 1523 | return Changed; |
| 1524 | } |
| 1525 | |
| 1526 | Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, |
| 1527 | const DataLayout &DL) { |
| 1528 | V = V->stripPointerCasts(); |
| 1529 | |
| 1530 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: V)) { |
| 1531 | // TODO: Ideally, this function would not be called if PrefAlign is smaller |
| 1532 | // than the current alignment, as the known bits calculation should have |
| 1533 | // already taken it into account. However, this is not always the case, |
| 1534 | // as computeKnownBits() has a depth limit, while stripPointerCasts() |
| 1535 | // doesn't. |
| 1536 | Align CurrentAlign = AI->getAlign(); |
| 1537 | if (PrefAlign <= CurrentAlign) |
| 1538 | return CurrentAlign; |
| 1539 | |
| 1540 | // If the preferred alignment is greater than the natural stack alignment |
| 1541 | // then don't round up. This avoids dynamic stack realignment. |
| 1542 | MaybeAlign StackAlign = DL.getStackAlignment(); |
| 1543 | if (StackAlign && PrefAlign > *StackAlign) |
| 1544 | return CurrentAlign; |
| 1545 | AI->setAlignment(PrefAlign); |
| 1546 | return PrefAlign; |
| 1547 | } |
| 1548 | |
| 1549 | if (auto *GV = dyn_cast<GlobalVariable>(Val: V)) { |
| 1550 | // TODO: as above, this shouldn't be necessary. |
| 1551 | Align CurrentAlign = GV->getPointerAlignment(DL); |
| 1552 | if (PrefAlign <= CurrentAlign) |
| 1553 | return CurrentAlign; |
| 1554 | |
| 1555 | // If there is a large requested alignment and we can, bump up the alignment |
| 1556 | // of the global. If the memory we set aside for the global may not be the |
| 1557 | // memory used by the final program then it is impossible for us to reliably |
| 1558 | // enforce the preferred alignment. |
| 1559 | if (!GV->canIncreaseAlignment()) |
| 1560 | return CurrentAlign; |
| 1561 | |
| 1562 | if (GV->isThreadLocal()) { |
| 1563 | unsigned MaxTLSAlign = GV->getParent()->getMaxTLSAlignment() / CHAR_BIT; |
| 1564 | if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) |
| 1565 | PrefAlign = Align(MaxTLSAlign); |
| 1566 | } |
| 1567 | |
| 1568 | GV->setAlignment(PrefAlign); |
| 1569 | return PrefAlign; |
| 1570 | } |
| 1571 | |
| 1572 | return Align(1); |
| 1573 | } |
| 1574 | |
| 1575 | Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, |
| 1576 | const DataLayout &DL, |
| 1577 | const Instruction *CxtI, |
| 1578 | AssumptionCache *AC, |
| 1579 | const DominatorTree *DT) { |
| 1580 | assert(V->getType()->isPointerTy() && |
| 1581 | "getOrEnforceKnownAlignment expects a pointer!" ); |
| 1582 | |
| 1583 | KnownBits Known = computeKnownBits(V, DL, AC, CxtI, DT); |
| 1584 | unsigned TrailZ = Known.countMinTrailingZeros(); |
| 1585 | |
| 1586 | // Avoid trouble with ridiculously large TrailZ values, such as |
| 1587 | // those computed from a null pointer. |
| 1588 | // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). |
| 1589 | TrailZ = std::min(a: TrailZ, b: +Value::MaxAlignmentExponent); |
| 1590 | |
| 1591 | Align Alignment = Align(1ull << std::min(a: Known.getBitWidth() - 1, b: TrailZ)); |
| 1592 | |
| 1593 | if (PrefAlign && *PrefAlign > Alignment) |
| 1594 | Alignment = std::max(a: Alignment, b: tryEnforceAlignment(V, PrefAlign: *PrefAlign, DL)); |
| 1595 | |
| 1596 | // We don't need to make any adjustment. |
| 1597 | return Alignment; |
| 1598 | } |
| 1599 | |
| 1600 | ///===---------------------------------------------------------------------===// |
| 1601 | /// Dbg Intrinsic utilities |
| 1602 | /// |
| 1603 | |
| 1604 | /// See if there is a dbg.value intrinsic for DIVar for the PHI node. |
| 1605 | static bool PhiHasDebugValue(DILocalVariable *DIVar, |
| 1606 | DIExpression *DIExpr, |
| 1607 | PHINode *APN) { |
| 1608 | // Since we can't guarantee that the original dbg.declare intrinsic |
| 1609 | // is removed by LowerDbgDeclare(), we need to make sure that we are |
| 1610 | // not inserting the same dbg.value intrinsic over and over. |
| 1611 | SmallVector<DbgValueInst *, 1> DbgValues; |
| 1612 | SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; |
| 1613 | findDbgValues(DbgValues, V: APN, DbgVariableRecords: &DbgVariableRecords); |
| 1614 | for (auto *DVI : DbgValues) { |
| 1615 | assert(is_contained(DVI->getValues(), APN)); |
| 1616 | if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) |
| 1617 | return true; |
| 1618 | } |
| 1619 | for (auto *DVR : DbgVariableRecords) { |
| 1620 | assert(is_contained(DVR->location_ops(), APN)); |
| 1621 | if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) |
| 1622 | return true; |
| 1623 | } |
| 1624 | return false; |
| 1625 | } |
| 1626 | |
| 1627 | /// Check if the alloc size of \p ValTy is large enough to cover the variable |
| 1628 | /// (or fragment of the variable) described by \p DII. |
| 1629 | /// |
| 1630 | /// This is primarily intended as a helper for the different |
| 1631 | /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted |
| 1632 | /// describes an alloca'd variable, so we need to use the alloc size of the |
| 1633 | /// value when doing the comparison. E.g. an i1 value will be identified as |
| 1634 | /// covering an n-bit fragment, if the store size of i1 is at least n bits. |
| 1635 | static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { |
| 1636 | const DataLayout &DL = DII->getDataLayout(); |
| 1637 | TypeSize ValueSize = DL.getTypeAllocSizeInBits(Ty: ValTy); |
| 1638 | if (std::optional<uint64_t> FragmentSize = |
| 1639 | DII->getExpression()->getActiveBits(Var: DII->getVariable())) |
| 1640 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: TypeSize::getFixed(ExactSize: *FragmentSize)); |
| 1641 | |
| 1642 | // We can't always calculate the size of the DI variable (e.g. if it is a |
| 1643 | // VLA). Try to use the size of the alloca that the dbg intrinsic describes |
| 1644 | // instead. |
| 1645 | if (DII->isAddressOfVariable()) { |
| 1646 | // DII should have exactly 1 location when it is an address. |
| 1647 | assert(DII->getNumVariableLocationOps() == 1 && |
| 1648 | "address of variable must have exactly 1 location operand." ); |
| 1649 | if (auto *AI = |
| 1650 | dyn_cast_or_null<AllocaInst>(Val: DII->getVariableLocationOp(OpIdx: 0))) { |
| 1651 | if (std::optional<TypeSize> FragmentSize = |
| 1652 | AI->getAllocationSizeInBits(DL)) { |
| 1653 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: *FragmentSize); |
| 1654 | } |
| 1655 | } |
| 1656 | } |
| 1657 | // Could not determine size of variable. Conservatively return false. |
| 1658 | return false; |
| 1659 | } |
| 1660 | // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, |
| 1661 | // the replacement for dbg.values. |
| 1662 | static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { |
| 1663 | const DataLayout &DL = DVR->getModule()->getDataLayout(); |
| 1664 | TypeSize ValueSize = DL.getTypeAllocSizeInBits(Ty: ValTy); |
| 1665 | if (std::optional<uint64_t> FragmentSize = |
| 1666 | DVR->getExpression()->getActiveBits(Var: DVR->getVariable())) |
| 1667 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: TypeSize::getFixed(ExactSize: *FragmentSize)); |
| 1668 | |
| 1669 | // We can't always calculate the size of the DI variable (e.g. if it is a |
| 1670 | // VLA). Try to use the size of the alloca that the dbg intrinsic describes |
| 1671 | // instead. |
| 1672 | if (DVR->isAddressOfVariable()) { |
| 1673 | // DVR should have exactly 1 location when it is an address. |
| 1674 | assert(DVR->getNumVariableLocationOps() == 1 && |
| 1675 | "address of variable must have exactly 1 location operand." ); |
| 1676 | if (auto *AI = |
| 1677 | dyn_cast_or_null<AllocaInst>(Val: DVR->getVariableLocationOp(OpIdx: 0))) { |
| 1678 | if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { |
| 1679 | return TypeSize::isKnownGE(LHS: ValueSize, RHS: *FragmentSize); |
| 1680 | } |
| 1681 | } |
| 1682 | } |
| 1683 | // Could not determine size of variable. Conservatively return false. |
| 1684 | return false; |
| 1685 | } |
| 1686 | |
| 1687 | static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, |
| 1688 | DILocalVariable *DIVar, |
| 1689 | DIExpression *DIExpr, |
| 1690 | const DebugLoc &NewLoc, |
| 1691 | BasicBlock::iterator Instr) { |
| 1692 | ValueAsMetadata *DVAM = ValueAsMetadata::get(V: DV); |
| 1693 | DbgVariableRecord *DVRec = |
| 1694 | new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); |
| 1695 | Instr->getParent()->insertDbgRecordBefore(DR: DVRec, Here: Instr); |
| 1696 | } |
| 1697 | |
| 1698 | static void insertDbgValueOrDbgVariableRecordAfter( |
| 1699 | DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, |
| 1700 | const DebugLoc &NewLoc, Instruction *Instr) { |
| 1701 | BasicBlock::iterator NextIt = std::next(x: Instr->getIterator()); |
| 1702 | NextIt.setHeadBit(true); |
| 1703 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, Instr: NextIt); |
| 1704 | } |
| 1705 | |
| 1706 | /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value |
| 1707 | /// that has an associated llvm.dbg.declare intrinsic. |
| 1708 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| 1709 | StoreInst *SI, DIBuilder &Builder) { |
| 1710 | assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); |
| 1711 | auto *DIVar = DII->getVariable(); |
| 1712 | assert(DIVar && "Missing variable" ); |
| 1713 | auto *DIExpr = DII->getExpression(); |
| 1714 | Value *DV = SI->getValueOperand(); |
| 1715 | |
| 1716 | DebugLoc NewLoc = getDebugValueLoc(DII); |
| 1717 | |
| 1718 | // If the alloca describes the variable itself, i.e. the expression in the |
| 1719 | // dbg.declare doesn't start with a dereference, we can perform the |
| 1720 | // conversion if the value covers the entire fragment of DII. |
| 1721 | // If the alloca describes the *address* of DIVar, i.e. DIExpr is |
| 1722 | // *just* a DW_OP_deref, we use DV as is for the dbg.value. |
| 1723 | // We conservatively ignore other dereferences, because the following two are |
| 1724 | // not equivalent: |
| 1725 | // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) |
| 1726 | // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) |
| 1727 | // The former is adding 2 to the address of the variable, whereas the latter |
| 1728 | // is adding 2 to the value of the variable. As such, we insist on just a |
| 1729 | // deref expression. |
| 1730 | bool CanConvert = |
| 1731 | DIExpr->isDeref() || (!DIExpr->startsWithDeref() && |
| 1732 | valueCoversEntireFragment(ValTy: DV->getType(), DII)); |
| 1733 | if (CanConvert) { |
| 1734 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
| 1735 | Instr: SI->getIterator()); |
| 1736 | return; |
| 1737 | } |
| 1738 | |
| 1739 | // FIXME: If storing to a part of the variable described by the dbg.declare, |
| 1740 | // then we want to insert a dbg.value for the corresponding fragment. |
| 1741 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII |
| 1742 | << '\n'); |
| 1743 | // For now, when there is a store to parts of the variable (but we do not |
| 1744 | // know which part) we insert an dbg.value intrinsic to indicate that we |
| 1745 | // know nothing about the variable's content. |
| 1746 | DV = PoisonValue::get(T: DV->getType()); |
| 1747 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
| 1748 | Instr: SI->getIterator()); |
| 1749 | } |
| 1750 | |
| 1751 | static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { |
| 1752 | int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; |
| 1753 | return DIExpression::get(Context&: DIExpr->getContext(), |
| 1754 | Elements: DIExpr->getElements().drop_front(N: NumEltDropped)); |
| 1755 | } |
| 1756 | |
| 1757 | void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, |
| 1758 | DIBuilder &Builder) { |
| 1759 | auto *DIVar = DII->getVariable(); |
| 1760 | assert(DIVar && "Missing variable" ); |
| 1761 | auto *DIExpr = DII->getExpression(); |
| 1762 | DIExpr = dropInitialDeref(DIExpr); |
| 1763 | Value *DV = SI->getValueOperand(); |
| 1764 | |
| 1765 | DebugLoc NewLoc = getDebugValueLoc(DII); |
| 1766 | |
| 1767 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
| 1768 | Instr: SI->getIterator()); |
| 1769 | } |
| 1770 | |
| 1771 | /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value |
| 1772 | /// that has an associated llvm.dbg.declare intrinsic. |
| 1773 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| 1774 | LoadInst *LI, DIBuilder &Builder) { |
| 1775 | auto *DIVar = DII->getVariable(); |
| 1776 | auto *DIExpr = DII->getExpression(); |
| 1777 | assert(DIVar && "Missing variable" ); |
| 1778 | |
| 1779 | if (!valueCoversEntireFragment(ValTy: LI->getType(), DII)) { |
| 1780 | // FIXME: If only referring to a part of the variable described by the |
| 1781 | // dbg.declare, then we want to insert a dbg.value for the corresponding |
| 1782 | // fragment. |
| 1783 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| 1784 | << *DII << '\n'); |
| 1785 | return; |
| 1786 | } |
| 1787 | |
| 1788 | DebugLoc NewLoc = getDebugValueLoc(DII); |
| 1789 | |
| 1790 | // We are now tracking the loaded value instead of the address. In the |
| 1791 | // future if multi-location support is added to the IR, it might be |
| 1792 | // preferable to keep tracking both the loaded value and the original |
| 1793 | // address in case the alloca can not be elided. |
| 1794 | insertDbgValueOrDbgVariableRecordAfter(Builder, DV: LI, DIVar, DIExpr, NewLoc, |
| 1795 | Instr: LI); |
| 1796 | } |
| 1797 | |
| 1798 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, |
| 1799 | StoreInst *SI, DIBuilder &Builder) { |
| 1800 | assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); |
| 1801 | auto *DIVar = DVR->getVariable(); |
| 1802 | assert(DIVar && "Missing variable" ); |
| 1803 | auto *DIExpr = DVR->getExpression(); |
| 1804 | Value *DV = SI->getValueOperand(); |
| 1805 | |
| 1806 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
| 1807 | |
| 1808 | // If the alloca describes the variable itself, i.e. the expression in the |
| 1809 | // dbg.declare doesn't start with a dereference, we can perform the |
| 1810 | // conversion if the value covers the entire fragment of DII. |
| 1811 | // If the alloca describes the *address* of DIVar, i.e. DIExpr is |
| 1812 | // *just* a DW_OP_deref, we use DV as is for the dbg.value. |
| 1813 | // We conservatively ignore other dereferences, because the following two are |
| 1814 | // not equivalent: |
| 1815 | // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) |
| 1816 | // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) |
| 1817 | // The former is adding 2 to the address of the variable, whereas the latter |
| 1818 | // is adding 2 to the value of the variable. As such, we insist on just a |
| 1819 | // deref expression. |
| 1820 | bool CanConvert = |
| 1821 | DIExpr->isDeref() || (!DIExpr->startsWithDeref() && |
| 1822 | valueCoversEntireFragment(ValTy: DV->getType(), DVR)); |
| 1823 | if (CanConvert) { |
| 1824 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
| 1825 | Instr: SI->getIterator()); |
| 1826 | return; |
| 1827 | } |
| 1828 | |
| 1829 | // FIXME: If storing to a part of the variable described by the dbg.declare, |
| 1830 | // then we want to insert a dbg.value for the corresponding fragment. |
| 1831 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR |
| 1832 | << '\n'); |
| 1833 | |
| 1834 | // For now, when there is a store to parts of the variable (but we do not |
| 1835 | // know which part) we insert an dbg.value intrinsic to indicate that we |
| 1836 | // know nothing about the variable's content. |
| 1837 | DV = PoisonValue::get(T: DV->getType()); |
| 1838 | ValueAsMetadata *DVAM = ValueAsMetadata::get(V: DV); |
| 1839 | DbgVariableRecord *NewDVR = |
| 1840 | new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); |
| 1841 | SI->getParent()->insertDbgRecordBefore(DR: NewDVR, Here: SI->getIterator()); |
| 1842 | } |
| 1843 | |
| 1844 | void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, |
| 1845 | DIBuilder &Builder) { |
| 1846 | auto *DIVar = DVR->getVariable(); |
| 1847 | assert(DIVar && "Missing variable" ); |
| 1848 | auto *DIExpr = DVR->getExpression(); |
| 1849 | DIExpr = dropInitialDeref(DIExpr); |
| 1850 | Value *DV = SI->getValueOperand(); |
| 1851 | |
| 1852 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
| 1853 | |
| 1854 | insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, |
| 1855 | Instr: SI->getIterator()); |
| 1856 | } |
| 1857 | |
| 1858 | /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated |
| 1859 | /// llvm.dbg.declare intrinsic. |
| 1860 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| 1861 | PHINode *APN, DIBuilder &Builder) { |
| 1862 | auto *DIVar = DII->getVariable(); |
| 1863 | auto *DIExpr = DII->getExpression(); |
| 1864 | assert(DIVar && "Missing variable" ); |
| 1865 | |
| 1866 | if (PhiHasDebugValue(DIVar, DIExpr, APN)) |
| 1867 | return; |
| 1868 | |
| 1869 | if (!valueCoversEntireFragment(ValTy: APN->getType(), DII)) { |
| 1870 | // FIXME: If only referring to a part of the variable described by the |
| 1871 | // dbg.declare, then we want to insert a dbg.value for the corresponding |
| 1872 | // fragment. |
| 1873 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| 1874 | << *DII << '\n'); |
| 1875 | return; |
| 1876 | } |
| 1877 | |
| 1878 | BasicBlock *BB = APN->getParent(); |
| 1879 | auto InsertionPt = BB->getFirstInsertionPt(); |
| 1880 | |
| 1881 | DebugLoc NewLoc = getDebugValueLoc(DII); |
| 1882 | |
| 1883 | // The block may be a catchswitch block, which does not have a valid |
| 1884 | // insertion point. |
| 1885 | // FIXME: Insert dbg.value markers in the successors when appropriate. |
| 1886 | if (InsertionPt != BB->end()) { |
| 1887 | insertDbgValueOrDbgVariableRecord(Builder, DV: APN, DIVar, DIExpr, NewLoc, |
| 1888 | Instr: InsertionPt); |
| 1889 | } |
| 1890 | } |
| 1891 | |
| 1892 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, |
| 1893 | DIBuilder &Builder) { |
| 1894 | auto *DIVar = DVR->getVariable(); |
| 1895 | auto *DIExpr = DVR->getExpression(); |
| 1896 | assert(DIVar && "Missing variable" ); |
| 1897 | |
| 1898 | if (!valueCoversEntireFragment(ValTy: LI->getType(), DVR)) { |
| 1899 | // FIXME: If only referring to a part of the variable described by the |
| 1900 | // dbg.declare, then we want to insert a DbgVariableRecord for the |
| 1901 | // corresponding fragment. |
| 1902 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " |
| 1903 | << *DVR << '\n'); |
| 1904 | return; |
| 1905 | } |
| 1906 | |
| 1907 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
| 1908 | |
| 1909 | // We are now tracking the loaded value instead of the address. In the |
| 1910 | // future if multi-location support is added to the IR, it might be |
| 1911 | // preferable to keep tracking both the loaded value and the original |
| 1912 | // address in case the alloca can not be elided. |
| 1913 | |
| 1914 | // Create a DbgVariableRecord directly and insert. |
| 1915 | ValueAsMetadata *LIVAM = ValueAsMetadata::get(V: LI); |
| 1916 | DbgVariableRecord *DV = |
| 1917 | new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); |
| 1918 | LI->getParent()->insertDbgRecordAfter(DR: DV, I: LI); |
| 1919 | } |
| 1920 | |
| 1921 | /// Determine whether this alloca is either a VLA or an array. |
| 1922 | static bool isArray(AllocaInst *AI) { |
| 1923 | return AI->isArrayAllocation() || |
| 1924 | (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); |
| 1925 | } |
| 1926 | |
| 1927 | /// Determine whether this alloca is a structure. |
| 1928 | static bool isStructure(AllocaInst *AI) { |
| 1929 | return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); |
| 1930 | } |
| 1931 | void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, |
| 1932 | DIBuilder &Builder) { |
| 1933 | auto *DIVar = DVR->getVariable(); |
| 1934 | auto *DIExpr = DVR->getExpression(); |
| 1935 | assert(DIVar && "Missing variable" ); |
| 1936 | |
| 1937 | if (PhiHasDebugValue(DIVar, DIExpr, APN)) |
| 1938 | return; |
| 1939 | |
| 1940 | if (!valueCoversEntireFragment(ValTy: APN->getType(), DVR)) { |
| 1941 | // FIXME: If only referring to a part of the variable described by the |
| 1942 | // dbg.declare, then we want to insert a DbgVariableRecord for the |
| 1943 | // corresponding fragment. |
| 1944 | LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " |
| 1945 | << *DVR << '\n'); |
| 1946 | return; |
| 1947 | } |
| 1948 | |
| 1949 | BasicBlock *BB = APN->getParent(); |
| 1950 | auto InsertionPt = BB->getFirstInsertionPt(); |
| 1951 | |
| 1952 | DebugLoc NewLoc = getDebugValueLoc(DVR); |
| 1953 | |
| 1954 | // The block may be a catchswitch block, which does not have a valid |
| 1955 | // insertion point. |
| 1956 | // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. |
| 1957 | if (InsertionPt != BB->end()) { |
| 1958 | insertDbgValueOrDbgVariableRecord(Builder, DV: APN, DIVar, DIExpr, NewLoc, |
| 1959 | Instr: InsertionPt); |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set |
| 1964 | /// of llvm.dbg.value intrinsics. |
| 1965 | bool llvm::LowerDbgDeclare(Function &F) { |
| 1966 | bool Changed = false; |
| 1967 | DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); |
| 1968 | SmallVector<DbgDeclareInst *, 4> Dbgs; |
| 1969 | SmallVector<DbgVariableRecord *> DVRs; |
| 1970 | for (auto &FI : F) { |
| 1971 | for (Instruction &BI : FI) { |
| 1972 | if (auto *DDI = dyn_cast<DbgDeclareInst>(Val: &BI)) |
| 1973 | Dbgs.push_back(Elt: DDI); |
| 1974 | for (DbgVariableRecord &DVR : filterDbgVars(R: BI.getDbgRecordRange())) { |
| 1975 | if (DVR.getType() == DbgVariableRecord::LocationType::Declare) |
| 1976 | DVRs.push_back(Elt: &DVR); |
| 1977 | } |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | if (Dbgs.empty() && DVRs.empty()) |
| 1982 | return Changed; |
| 1983 | |
| 1984 | auto LowerOne = [&](auto *DDI) { |
| 1985 | AllocaInst *AI = |
| 1986 | dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); |
| 1987 | // If this is an alloca for a scalar variable, insert a dbg.value |
| 1988 | // at each load and store to the alloca and erase the dbg.declare. |
| 1989 | // The dbg.values allow tracking a variable even if it is not |
| 1990 | // stored on the stack, while the dbg.declare can only describe |
| 1991 | // the stack slot (and at a lexical-scope granularity). Later |
| 1992 | // passes will attempt to elide the stack slot. |
| 1993 | if (!AI || isArray(AI) || isStructure(AI)) |
| 1994 | return; |
| 1995 | |
| 1996 | // A volatile load/store means that the alloca can't be elided anyway. |
| 1997 | if (llvm::any_of(AI->users(), [](User *U) -> bool { |
| 1998 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: U)) |
| 1999 | return LI->isVolatile(); |
| 2000 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) |
| 2001 | return SI->isVolatile(); |
| 2002 | return false; |
| 2003 | })) |
| 2004 | return; |
| 2005 | |
| 2006 | SmallVector<const Value *, 8> WorkList; |
| 2007 | WorkList.push_back(Elt: AI); |
| 2008 | while (!WorkList.empty()) { |
| 2009 | const Value *V = WorkList.pop_back_val(); |
| 2010 | for (const auto &AIUse : V->uses()) { |
| 2011 | User *U = AIUse.getUser(); |
| 2012 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
| 2013 | if (AIUse.getOperandNo() == 1) |
| 2014 | ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| 2015 | } else if (LoadInst *LI = dyn_cast<LoadInst>(Val: U)) { |
| 2016 | ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| 2017 | } else if (CallInst *CI = dyn_cast<CallInst>(Val: U)) { |
| 2018 | // This is a call by-value or some other instruction that takes a |
| 2019 | // pointer to the variable. Insert a *value* intrinsic that describes |
| 2020 | // the variable by dereferencing the alloca. |
| 2021 | if (!CI->isLifetimeStartOrEnd()) { |
| 2022 | DebugLoc NewLoc = getDebugValueLoc(DDI); |
| 2023 | auto *DerefExpr = |
| 2024 | DIExpression::append(Expr: DDI->getExpression(), Ops: dwarf::DW_OP_deref); |
| 2025 | insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), |
| 2026 | DerefExpr, NewLoc, |
| 2027 | CI->getIterator()); |
| 2028 | } |
| 2029 | } else if (BitCastInst *BI = dyn_cast<BitCastInst>(Val: U)) { |
| 2030 | if (BI->getType()->isPointerTy()) |
| 2031 | WorkList.push_back(Elt: BI); |
| 2032 | } |
| 2033 | } |
| 2034 | } |
| 2035 | DDI->eraseFromParent(); |
| 2036 | Changed = true; |
| 2037 | }; |
| 2038 | |
| 2039 | for_each(Range&: Dbgs, F: LowerOne); |
| 2040 | for_each(Range&: DVRs, F: LowerOne); |
| 2041 | |
| 2042 | if (Changed) |
| 2043 | for (BasicBlock &BB : F) |
| 2044 | RemoveRedundantDbgInstrs(BB: &BB); |
| 2045 | |
| 2046 | return Changed; |
| 2047 | } |
| 2048 | |
| 2049 | // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the |
| 2050 | // debug-info out of the block's DbgVariableRecords rather than dbg.value |
| 2051 | // intrinsics. |
| 2052 | static void |
| 2053 | insertDbgVariableRecordsForPHIs(BasicBlock *BB, |
| 2054 | SmallVectorImpl<PHINode *> &InsertedPHIs) { |
| 2055 | assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from." ); |
| 2056 | if (InsertedPHIs.size() == 0) |
| 2057 | return; |
| 2058 | |
| 2059 | // Map existing PHI nodes to their DbgVariableRecords. |
| 2060 | DenseMap<Value *, DbgVariableRecord *> DbgValueMap; |
| 2061 | for (auto &I : *BB) { |
| 2062 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 2063 | for (Value *V : DVR.location_ops()) |
| 2064 | if (auto *Loc = dyn_cast_or_null<PHINode>(Val: V)) |
| 2065 | DbgValueMap.insert(KV: {Loc, &DVR}); |
| 2066 | } |
| 2067 | } |
| 2068 | if (DbgValueMap.size() == 0) |
| 2069 | return; |
| 2070 | |
| 2071 | // Map a pair of the destination BB and old DbgVariableRecord to the new |
| 2072 | // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use |
| 2073 | // more than one of the inserted PHIs in the same destination BB, we can |
| 2074 | // update the same DbgVariableRecord with all the new PHIs instead of creating |
| 2075 | // one copy for each. |
| 2076 | MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> |
| 2077 | NewDbgValueMap; |
| 2078 | // Then iterate through the new PHIs and look to see if they use one of the |
| 2079 | // previously mapped PHIs. If so, create a new DbgVariableRecord that will |
| 2080 | // propagate the info through the new PHI. If we use more than one new PHI in |
| 2081 | // a single destination BB with the same old dbg.value, merge the updates so |
| 2082 | // that we get a single new DbgVariableRecord with all the new PHIs. |
| 2083 | for (auto PHI : InsertedPHIs) { |
| 2084 | BasicBlock *Parent = PHI->getParent(); |
| 2085 | // Avoid inserting a debug-info record into an EH block. |
| 2086 | if (Parent->getFirstNonPHIIt()->isEHPad()) |
| 2087 | continue; |
| 2088 | for (auto VI : PHI->operand_values()) { |
| 2089 | auto V = DbgValueMap.find(Val: VI); |
| 2090 | if (V != DbgValueMap.end()) { |
| 2091 | DbgVariableRecord *DbgII = cast<DbgVariableRecord>(Val: V->second); |
| 2092 | auto NewDI = NewDbgValueMap.find(Key: {Parent, DbgII}); |
| 2093 | if (NewDI == NewDbgValueMap.end()) { |
| 2094 | DbgVariableRecord *NewDbgII = DbgII->clone(); |
| 2095 | NewDI = NewDbgValueMap.insert(KV: {{Parent, DbgII}, NewDbgII}).first; |
| 2096 | } |
| 2097 | DbgVariableRecord *NewDbgII = NewDI->second; |
| 2098 | // If PHI contains VI as an operand more than once, we may |
| 2099 | // replaced it in NewDbgII; confirm that it is present. |
| 2100 | if (is_contained(Range: NewDbgII->location_ops(), Element: VI)) |
| 2101 | NewDbgII->replaceVariableLocationOp(OldValue: VI, NewValue: PHI); |
| 2102 | } |
| 2103 | } |
| 2104 | } |
| 2105 | // Insert the new DbgVariableRecords into their destination blocks. |
| 2106 | for (auto DI : NewDbgValueMap) { |
| 2107 | BasicBlock *Parent = DI.first.first; |
| 2108 | DbgVariableRecord *NewDbgII = DI.second; |
| 2109 | auto InsertionPt = Parent->getFirstInsertionPt(); |
| 2110 | assert(InsertionPt != Parent->end() && "Ill-formed basic block" ); |
| 2111 | |
| 2112 | Parent->insertDbgRecordBefore(DR: NewDbgII, Here: InsertionPt); |
| 2113 | } |
| 2114 | } |
| 2115 | |
| 2116 | /// Propagate dbg.value intrinsics through the newly inserted PHIs. |
| 2117 | void llvm::insertDebugValuesForPHIs(BasicBlock *BB, |
| 2118 | SmallVectorImpl<PHINode *> &InsertedPHIs) { |
| 2119 | assert(BB && "No BasicBlock to clone dbg.value(s) from." ); |
| 2120 | if (InsertedPHIs.size() == 0) |
| 2121 | return; |
| 2122 | |
| 2123 | insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); |
| 2124 | |
| 2125 | // Map existing PHI nodes to their dbg.values. |
| 2126 | ValueToValueMapTy DbgValueMap; |
| 2127 | for (auto &I : *BB) { |
| 2128 | if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(Val: &I)) { |
| 2129 | for (Value *V : DbgII->location_ops()) |
| 2130 | if (auto *Loc = dyn_cast_or_null<PHINode>(Val: V)) |
| 2131 | DbgValueMap.insert(KV: {Loc, DbgII}); |
| 2132 | } |
| 2133 | } |
| 2134 | if (DbgValueMap.size() == 0) |
| 2135 | return; |
| 2136 | |
| 2137 | // Map a pair of the destination BB and old dbg.value to the new dbg.value, |
| 2138 | // so that if a dbg.value is being rewritten to use more than one of the |
| 2139 | // inserted PHIs in the same destination BB, we can update the same dbg.value |
| 2140 | // with all the new PHIs instead of creating one copy for each. |
| 2141 | MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, |
| 2142 | DbgVariableIntrinsic *> |
| 2143 | NewDbgValueMap; |
| 2144 | // Then iterate through the new PHIs and look to see if they use one of the |
| 2145 | // previously mapped PHIs. If so, create a new dbg.value intrinsic that will |
| 2146 | // propagate the info through the new PHI. If we use more than one new PHI in |
| 2147 | // a single destination BB with the same old dbg.value, merge the updates so |
| 2148 | // that we get a single new dbg.value with all the new PHIs. |
| 2149 | for (auto *PHI : InsertedPHIs) { |
| 2150 | BasicBlock *Parent = PHI->getParent(); |
| 2151 | // Avoid inserting an intrinsic into an EH block. |
| 2152 | if (Parent->getFirstNonPHIIt()->isEHPad()) |
| 2153 | continue; |
| 2154 | for (auto *VI : PHI->operand_values()) { |
| 2155 | auto V = DbgValueMap.find(Val: VI); |
| 2156 | if (V != DbgValueMap.end()) { |
| 2157 | auto *DbgII = cast<DbgVariableIntrinsic>(Val&: V->second); |
| 2158 | auto [NewDI, Inserted] = NewDbgValueMap.try_emplace(Key: {Parent, DbgII}); |
| 2159 | if (Inserted) |
| 2160 | NewDI->second = cast<DbgVariableIntrinsic>(Val: DbgII->clone()); |
| 2161 | DbgVariableIntrinsic *NewDbgII = NewDI->second; |
| 2162 | // If PHI contains VI as an operand more than once, we may |
| 2163 | // replaced it in NewDbgII; confirm that it is present. |
| 2164 | if (is_contained(Range: NewDbgII->location_ops(), Element: VI)) |
| 2165 | NewDbgII->replaceVariableLocationOp(OldValue: VI, NewValue: PHI); |
| 2166 | } |
| 2167 | } |
| 2168 | } |
| 2169 | // Insert thew new dbg.values into their destination blocks. |
| 2170 | for (auto DI : NewDbgValueMap) { |
| 2171 | BasicBlock *Parent = DI.first.first; |
| 2172 | auto *NewDbgII = DI.second; |
| 2173 | auto InsertionPt = Parent->getFirstInsertionPt(); |
| 2174 | assert(InsertionPt != Parent->end() && "Ill-formed basic block" ); |
| 2175 | NewDbgII->insertBefore(InsertPos: InsertionPt); |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, |
| 2180 | DIBuilder &Builder, uint8_t DIExprFlags, |
| 2181 | int Offset) { |
| 2182 | TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(V: Address); |
| 2183 | TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(V: Address); |
| 2184 | |
| 2185 | auto ReplaceOne = [&](auto *DII) { |
| 2186 | assert(DII->getVariable() && "Missing variable" ); |
| 2187 | auto *DIExpr = DII->getExpression(); |
| 2188 | DIExpr = DIExpression::prepend(Expr: DIExpr, Flags: DIExprFlags, Offset); |
| 2189 | DII->setExpression(DIExpr); |
| 2190 | DII->replaceVariableLocationOp(Address, NewAddress); |
| 2191 | }; |
| 2192 | |
| 2193 | for_each(Range&: DbgDeclares, F: ReplaceOne); |
| 2194 | for_each(Range&: DVRDeclares, F: ReplaceOne); |
| 2195 | |
| 2196 | return !DbgDeclares.empty() || !DVRDeclares.empty(); |
| 2197 | } |
| 2198 | |
| 2199 | static void updateOneDbgValueForAlloca(const DebugLoc &Loc, |
| 2200 | DILocalVariable *DIVar, |
| 2201 | DIExpression *DIExpr, Value *NewAddress, |
| 2202 | DbgValueInst *DVI, |
| 2203 | DbgVariableRecord *DVR, |
| 2204 | DIBuilder &Builder, int Offset) { |
| 2205 | assert(DIVar && "Missing variable" ); |
| 2206 | |
| 2207 | // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it |
| 2208 | // should do with the alloca pointer is dereference it. Otherwise we don't |
| 2209 | // know how to handle it and give up. |
| 2210 | if (!DIExpr || DIExpr->getNumElements() < 1 || |
| 2211 | DIExpr->getElement(I: 0) != dwarf::DW_OP_deref) |
| 2212 | return; |
| 2213 | |
| 2214 | // Insert the offset before the first deref. |
| 2215 | if (Offset) |
| 2216 | DIExpr = DIExpression::prepend(Expr: DIExpr, Flags: 0, Offset); |
| 2217 | |
| 2218 | if (DVI) { |
| 2219 | DVI->setExpression(DIExpr); |
| 2220 | DVI->replaceVariableLocationOp(OpIdx: 0u, NewValue: NewAddress); |
| 2221 | } else { |
| 2222 | assert(DVR); |
| 2223 | DVR->setExpression(DIExpr); |
| 2224 | DVR->replaceVariableLocationOp(OpIdx: 0u, NewValue: NewAddress); |
| 2225 | } |
| 2226 | } |
| 2227 | |
| 2228 | void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, |
| 2229 | DIBuilder &Builder, int Offset) { |
| 2230 | SmallVector<DbgValueInst *, 1> DbgUsers; |
| 2231 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
| 2232 | findDbgValues(DbgValues&: DbgUsers, V: AI, DbgVariableRecords: &DPUsers); |
| 2233 | |
| 2234 | // Attempt to replace dbg.values that use this alloca. |
| 2235 | for (auto *DVI : DbgUsers) |
| 2236 | updateOneDbgValueForAlloca(Loc: DVI->getDebugLoc(), DIVar: DVI->getVariable(), |
| 2237 | DIExpr: DVI->getExpression(), NewAddress: NewAllocaAddress, DVI, |
| 2238 | DVR: nullptr, Builder, Offset); |
| 2239 | |
| 2240 | // Replace any DbgVariableRecords that use this alloca. |
| 2241 | for (DbgVariableRecord *DVR : DPUsers) |
| 2242 | updateOneDbgValueForAlloca(Loc: DVR->getDebugLoc(), DIVar: DVR->getVariable(), |
| 2243 | DIExpr: DVR->getExpression(), NewAddress: NewAllocaAddress, DVI: nullptr, |
| 2244 | DVR, Builder, Offset); |
| 2245 | } |
| 2246 | |
| 2247 | /// Where possible to salvage debug information for \p I do so. |
| 2248 | /// If not possible mark undef. |
| 2249 | void llvm::salvageDebugInfo(Instruction &I) { |
| 2250 | SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| 2251 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
| 2252 | findDbgUsers(DbgInsts&: DbgUsers, V: &I, DbgVariableRecords: &DPUsers); |
| 2253 | salvageDebugInfoForDbgValues(I, Insns: DbgUsers, DPInsns: DPUsers); |
| 2254 | } |
| 2255 | |
| 2256 | template <typename T> static void salvageDbgAssignAddress(T *Assign) { |
| 2257 | Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); |
| 2258 | // Only instructions can be salvaged at the moment. |
| 2259 | if (!I) |
| 2260 | return; |
| 2261 | |
| 2262 | assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && |
| 2263 | "address-expression shouldn't have fragment info" ); |
| 2264 | |
| 2265 | // The address component of a dbg.assign cannot be variadic. |
| 2266 | uint64_t CurrentLocOps = 0; |
| 2267 | SmallVector<Value *, 4> AdditionalValues; |
| 2268 | SmallVector<uint64_t, 16> Ops; |
| 2269 | Value *NewV = salvageDebugInfoImpl(I&: *I, CurrentLocOps, Ops, AdditionalValues); |
| 2270 | |
| 2271 | // Check if the salvage failed. |
| 2272 | if (!NewV) |
| 2273 | return; |
| 2274 | |
| 2275 | DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( |
| 2276 | Expr: Assign->getAddressExpression(), Ops, ArgNo: 0, /*StackValue=*/false); |
| 2277 | assert(!SalvagedExpr->getFragmentInfo().has_value() && |
| 2278 | "address-expression shouldn't have fragment info" ); |
| 2279 | |
| 2280 | SalvagedExpr = SalvagedExpr->foldConstantMath(); |
| 2281 | |
| 2282 | // Salvage succeeds if no additional values are required. |
| 2283 | if (AdditionalValues.empty()) { |
| 2284 | Assign->setAddress(NewV); |
| 2285 | Assign->setAddressExpression(SalvagedExpr); |
| 2286 | } else { |
| 2287 | Assign->setKillAddress(); |
| 2288 | } |
| 2289 | } |
| 2290 | |
| 2291 | void llvm::salvageDebugInfoForDbgValues( |
| 2292 | Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, |
| 2293 | ArrayRef<DbgVariableRecord *> DPUsers) { |
| 2294 | // These are arbitrary chosen limits on the maximum number of values and the |
| 2295 | // maximum size of a debug expression we can salvage up to, used for |
| 2296 | // performance reasons. |
| 2297 | const unsigned MaxDebugArgs = 16; |
| 2298 | const unsigned MaxExpressionSize = 128; |
| 2299 | bool Salvaged = false; |
| 2300 | |
| 2301 | for (auto *DII : DbgUsers) { |
| 2302 | if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: DII)) { |
| 2303 | if (DAI->getAddress() == &I) { |
| 2304 | salvageDbgAssignAddress(Assign: DAI); |
| 2305 | Salvaged = true; |
| 2306 | } |
| 2307 | if (DAI->getValue() != &I) |
| 2308 | continue; |
| 2309 | } |
| 2310 | |
| 2311 | // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly |
| 2312 | // pointing out the value as a DWARF memory location description. |
| 2313 | bool StackValue = isa<DbgValueInst>(Val: DII); |
| 2314 | auto DIILocation = DII->location_ops(); |
| 2315 | assert( |
| 2316 | is_contained(DIILocation, &I) && |
| 2317 | "DbgVariableIntrinsic must use salvaged instruction as its location" ); |
| 2318 | SmallVector<Value *, 4> AdditionalValues; |
| 2319 | // `I` may appear more than once in DII's location ops, and each use of `I` |
| 2320 | // must be updated in the DIExpression and potentially have additional |
| 2321 | // values added; thus we call salvageDebugInfoImpl for each `I` instance in |
| 2322 | // DIILocation. |
| 2323 | Value *Op0 = nullptr; |
| 2324 | DIExpression *SalvagedExpr = DII->getExpression(); |
| 2325 | auto LocItr = find(Range&: DIILocation, Val: &I); |
| 2326 | while (SalvagedExpr && LocItr != DIILocation.end()) { |
| 2327 | SmallVector<uint64_t, 16> Ops; |
| 2328 | unsigned LocNo = std::distance(first: DIILocation.begin(), last: LocItr); |
| 2329 | uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); |
| 2330 | Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); |
| 2331 | if (!Op0) |
| 2332 | break; |
| 2333 | SalvagedExpr = |
| 2334 | DIExpression::appendOpsToArg(Expr: SalvagedExpr, Ops, ArgNo: LocNo, StackValue); |
| 2335 | LocItr = std::find(first: ++LocItr, last: DIILocation.end(), val: &I); |
| 2336 | } |
| 2337 | // salvageDebugInfoImpl should fail on examining the first element of |
| 2338 | // DbgUsers, or none of them. |
| 2339 | if (!Op0) |
| 2340 | break; |
| 2341 | |
| 2342 | SalvagedExpr = SalvagedExpr->foldConstantMath(); |
| 2343 | DII->replaceVariableLocationOp(OldValue: &I, NewValue: Op0); |
| 2344 | bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; |
| 2345 | if (AdditionalValues.empty() && IsValidSalvageExpr) { |
| 2346 | DII->setExpression(SalvagedExpr); |
| 2347 | } else if (isa<DbgValueInst>(Val: DII) && IsValidSalvageExpr && |
| 2348 | DII->getNumVariableLocationOps() + AdditionalValues.size() <= |
| 2349 | MaxDebugArgs) { |
| 2350 | DII->addVariableLocationOps(NewValues: AdditionalValues, NewExpr: SalvagedExpr); |
| 2351 | } else { |
| 2352 | // Do not salvage using DIArgList for dbg.declare, as it is not currently |
| 2353 | // supported in those instructions. Also do not salvage if the resulting |
| 2354 | // DIArgList would contain an unreasonably large number of values. |
| 2355 | DII->setKillLocation(); |
| 2356 | } |
| 2357 | LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); |
| 2358 | Salvaged = true; |
| 2359 | } |
| 2360 | // Duplicate of above block for DbgVariableRecords. |
| 2361 | for (auto *DVR : DPUsers) { |
| 2362 | if (DVR->isDbgAssign()) { |
| 2363 | if (DVR->getAddress() == &I) { |
| 2364 | salvageDbgAssignAddress(Assign: DVR); |
| 2365 | Salvaged = true; |
| 2366 | } |
| 2367 | if (DVR->getValue() != &I) |
| 2368 | continue; |
| 2369 | } |
| 2370 | |
| 2371 | // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they |
| 2372 | // are implicitly pointing out the value as a DWARF memory location |
| 2373 | // description. |
| 2374 | bool StackValue = |
| 2375 | DVR->getType() != DbgVariableRecord::LocationType::Declare; |
| 2376 | auto DVRLocation = DVR->location_ops(); |
| 2377 | assert( |
| 2378 | is_contained(DVRLocation, &I) && |
| 2379 | "DbgVariableIntrinsic must use salvaged instruction as its location" ); |
| 2380 | SmallVector<Value *, 4> AdditionalValues; |
| 2381 | // 'I' may appear more than once in DVR's location ops, and each use of 'I' |
| 2382 | // must be updated in the DIExpression and potentially have additional |
| 2383 | // values added; thus we call salvageDebugInfoImpl for each 'I' instance in |
| 2384 | // DVRLocation. |
| 2385 | Value *Op0 = nullptr; |
| 2386 | DIExpression *SalvagedExpr = DVR->getExpression(); |
| 2387 | auto LocItr = find(Range&: DVRLocation, Val: &I); |
| 2388 | while (SalvagedExpr && LocItr != DVRLocation.end()) { |
| 2389 | SmallVector<uint64_t, 16> Ops; |
| 2390 | unsigned LocNo = std::distance(first: DVRLocation.begin(), last: LocItr); |
| 2391 | uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); |
| 2392 | Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); |
| 2393 | if (!Op0) |
| 2394 | break; |
| 2395 | SalvagedExpr = |
| 2396 | DIExpression::appendOpsToArg(Expr: SalvagedExpr, Ops, ArgNo: LocNo, StackValue); |
| 2397 | LocItr = std::find(first: ++LocItr, last: DVRLocation.end(), val: &I); |
| 2398 | } |
| 2399 | // salvageDebugInfoImpl should fail on examining the first element of |
| 2400 | // DbgUsers, or none of them. |
| 2401 | if (!Op0) |
| 2402 | break; |
| 2403 | |
| 2404 | SalvagedExpr = SalvagedExpr->foldConstantMath(); |
| 2405 | DVR->replaceVariableLocationOp(OldValue: &I, NewValue: Op0); |
| 2406 | bool IsValidSalvageExpr = |
| 2407 | SalvagedExpr->getNumElements() <= MaxExpressionSize; |
| 2408 | if (AdditionalValues.empty() && IsValidSalvageExpr) { |
| 2409 | DVR->setExpression(SalvagedExpr); |
| 2410 | } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && |
| 2411 | IsValidSalvageExpr && |
| 2412 | DVR->getNumVariableLocationOps() + AdditionalValues.size() <= |
| 2413 | MaxDebugArgs) { |
| 2414 | DVR->addVariableLocationOps(NewValues: AdditionalValues, NewExpr: SalvagedExpr); |
| 2415 | } else { |
| 2416 | // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is |
| 2417 | // currently only valid for stack value expressions. |
| 2418 | // Also do not salvage if the resulting DIArgList would contain an |
| 2419 | // unreasonably large number of values. |
| 2420 | DVR->setKillLocation(); |
| 2421 | } |
| 2422 | LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); |
| 2423 | Salvaged = true; |
| 2424 | } |
| 2425 | |
| 2426 | if (Salvaged) |
| 2427 | return; |
| 2428 | |
| 2429 | for (auto *DII : DbgUsers) |
| 2430 | DII->setKillLocation(); |
| 2431 | |
| 2432 | for (auto *DVR : DPUsers) |
| 2433 | DVR->setKillLocation(); |
| 2434 | } |
| 2435 | |
| 2436 | Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, |
| 2437 | uint64_t CurrentLocOps, |
| 2438 | SmallVectorImpl<uint64_t> &Opcodes, |
| 2439 | SmallVectorImpl<Value *> &AdditionalValues) { |
| 2440 | unsigned BitWidth = DL.getIndexSizeInBits(AS: GEP->getPointerAddressSpace()); |
| 2441 | // Rewrite a GEP into a DIExpression. |
| 2442 | SmallMapVector<Value *, APInt, 4> VariableOffsets; |
| 2443 | APInt ConstantOffset(BitWidth, 0); |
| 2444 | if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) |
| 2445 | return nullptr; |
| 2446 | if (!VariableOffsets.empty() && !CurrentLocOps) { |
| 2447 | Opcodes.insert(I: Opcodes.begin(), IL: {dwarf::DW_OP_LLVM_arg, 0}); |
| 2448 | CurrentLocOps = 1; |
| 2449 | } |
| 2450 | for (const auto &Offset : VariableOffsets) { |
| 2451 | AdditionalValues.push_back(Elt: Offset.first); |
| 2452 | assert(Offset.second.isStrictlyPositive() && |
| 2453 | "Expected strictly positive multiplier for offset." ); |
| 2454 | Opcodes.append(IL: {dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, |
| 2455 | Offset.second.getZExtValue(), dwarf::DW_OP_mul, |
| 2456 | dwarf::DW_OP_plus}); |
| 2457 | } |
| 2458 | DIExpression::appendOffset(Ops&: Opcodes, Offset: ConstantOffset.getSExtValue()); |
| 2459 | return GEP->getOperand(i_nocapture: 0); |
| 2460 | } |
| 2461 | |
| 2462 | uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { |
| 2463 | switch (Opcode) { |
| 2464 | case Instruction::Add: |
| 2465 | return dwarf::DW_OP_plus; |
| 2466 | case Instruction::Sub: |
| 2467 | return dwarf::DW_OP_minus; |
| 2468 | case Instruction::Mul: |
| 2469 | return dwarf::DW_OP_mul; |
| 2470 | case Instruction::SDiv: |
| 2471 | return dwarf::DW_OP_div; |
| 2472 | case Instruction::SRem: |
| 2473 | return dwarf::DW_OP_mod; |
| 2474 | case Instruction::Or: |
| 2475 | return dwarf::DW_OP_or; |
| 2476 | case Instruction::And: |
| 2477 | return dwarf::DW_OP_and; |
| 2478 | case Instruction::Xor: |
| 2479 | return dwarf::DW_OP_xor; |
| 2480 | case Instruction::Shl: |
| 2481 | return dwarf::DW_OP_shl; |
| 2482 | case Instruction::LShr: |
| 2483 | return dwarf::DW_OP_shr; |
| 2484 | case Instruction::AShr: |
| 2485 | return dwarf::DW_OP_shra; |
| 2486 | default: |
| 2487 | // TODO: Salvage from each kind of binop we know about. |
| 2488 | return 0; |
| 2489 | } |
| 2490 | } |
| 2491 | |
| 2492 | static void handleSSAValueOperands(uint64_t CurrentLocOps, |
| 2493 | SmallVectorImpl<uint64_t> &Opcodes, |
| 2494 | SmallVectorImpl<Value *> &AdditionalValues, |
| 2495 | Instruction *I) { |
| 2496 | if (!CurrentLocOps) { |
| 2497 | Opcodes.append(IL: {dwarf::DW_OP_LLVM_arg, 0}); |
| 2498 | CurrentLocOps = 1; |
| 2499 | } |
| 2500 | Opcodes.append(IL: {dwarf::DW_OP_LLVM_arg, CurrentLocOps}); |
| 2501 | AdditionalValues.push_back(Elt: I->getOperand(i: 1)); |
| 2502 | } |
| 2503 | |
| 2504 | Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, |
| 2505 | SmallVectorImpl<uint64_t> &Opcodes, |
| 2506 | SmallVectorImpl<Value *> &AdditionalValues) { |
| 2507 | // Handle binary operations with constant integer operands as a special case. |
| 2508 | auto *ConstInt = dyn_cast<ConstantInt>(Val: BI->getOperand(i_nocapture: 1)); |
| 2509 | // Values wider than 64 bits cannot be represented within a DIExpression. |
| 2510 | if (ConstInt && ConstInt->getBitWidth() > 64) |
| 2511 | return nullptr; |
| 2512 | |
| 2513 | Instruction::BinaryOps BinOpcode = BI->getOpcode(); |
| 2514 | // Push any Constant Int operand onto the expression stack. |
| 2515 | if (ConstInt) { |
| 2516 | uint64_t Val = ConstInt->getSExtValue(); |
| 2517 | // Add or Sub Instructions with a constant operand can potentially be |
| 2518 | // simplified. |
| 2519 | if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { |
| 2520 | uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); |
| 2521 | DIExpression::appendOffset(Ops&: Opcodes, Offset); |
| 2522 | return BI->getOperand(i_nocapture: 0); |
| 2523 | } |
| 2524 | Opcodes.append(IL: {dwarf::DW_OP_constu, Val}); |
| 2525 | } else { |
| 2526 | handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, I: BI); |
| 2527 | } |
| 2528 | |
| 2529 | // Add salvaged binary operator to expression stack, if it has a valid |
| 2530 | // representation in a DIExpression. |
| 2531 | uint64_t DwarfBinOp = getDwarfOpForBinOp(Opcode: BinOpcode); |
| 2532 | if (!DwarfBinOp) |
| 2533 | return nullptr; |
| 2534 | Opcodes.push_back(Elt: DwarfBinOp); |
| 2535 | return BI->getOperand(i_nocapture: 0); |
| 2536 | } |
| 2537 | |
| 2538 | uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { |
| 2539 | // The signedness of the operation is implicit in the typed stack, signed and |
| 2540 | // unsigned instructions map to the same DWARF opcode. |
| 2541 | switch (Pred) { |
| 2542 | case CmpInst::ICMP_EQ: |
| 2543 | return dwarf::DW_OP_eq; |
| 2544 | case CmpInst::ICMP_NE: |
| 2545 | return dwarf::DW_OP_ne; |
| 2546 | case CmpInst::ICMP_UGT: |
| 2547 | case CmpInst::ICMP_SGT: |
| 2548 | return dwarf::DW_OP_gt; |
| 2549 | case CmpInst::ICMP_UGE: |
| 2550 | case CmpInst::ICMP_SGE: |
| 2551 | return dwarf::DW_OP_ge; |
| 2552 | case CmpInst::ICMP_ULT: |
| 2553 | case CmpInst::ICMP_SLT: |
| 2554 | return dwarf::DW_OP_lt; |
| 2555 | case CmpInst::ICMP_ULE: |
| 2556 | case CmpInst::ICMP_SLE: |
| 2557 | return dwarf::DW_OP_le; |
| 2558 | default: |
| 2559 | return 0; |
| 2560 | } |
| 2561 | } |
| 2562 | |
| 2563 | Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, |
| 2564 | SmallVectorImpl<uint64_t> &Opcodes, |
| 2565 | SmallVectorImpl<Value *> &AdditionalValues) { |
| 2566 | // Handle icmp operations with constant integer operands as a special case. |
| 2567 | auto *ConstInt = dyn_cast<ConstantInt>(Val: Icmp->getOperand(i_nocapture: 1)); |
| 2568 | // Values wider than 64 bits cannot be represented within a DIExpression. |
| 2569 | if (ConstInt && ConstInt->getBitWidth() > 64) |
| 2570 | return nullptr; |
| 2571 | // Push any Constant Int operand onto the expression stack. |
| 2572 | if (ConstInt) { |
| 2573 | if (Icmp->isSigned()) |
| 2574 | Opcodes.push_back(Elt: dwarf::DW_OP_consts); |
| 2575 | else |
| 2576 | Opcodes.push_back(Elt: dwarf::DW_OP_constu); |
| 2577 | uint64_t Val = ConstInt->getSExtValue(); |
| 2578 | Opcodes.push_back(Elt: Val); |
| 2579 | } else { |
| 2580 | handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, I: Icmp); |
| 2581 | } |
| 2582 | |
| 2583 | // Add salvaged binary operator to expression stack, if it has a valid |
| 2584 | // representation in a DIExpression. |
| 2585 | uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Pred: Icmp->getPredicate()); |
| 2586 | if (!DwarfIcmpOp) |
| 2587 | return nullptr; |
| 2588 | Opcodes.push_back(Elt: DwarfIcmpOp); |
| 2589 | return Icmp->getOperand(i_nocapture: 0); |
| 2590 | } |
| 2591 | |
| 2592 | Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, |
| 2593 | SmallVectorImpl<uint64_t> &Ops, |
| 2594 | SmallVectorImpl<Value *> &AdditionalValues) { |
| 2595 | auto &M = *I.getModule(); |
| 2596 | auto &DL = M.getDataLayout(); |
| 2597 | |
| 2598 | if (auto *CI = dyn_cast<CastInst>(Val: &I)) { |
| 2599 | Value *FromValue = CI->getOperand(i_nocapture: 0); |
| 2600 | // No-op casts are irrelevant for debug info. |
| 2601 | if (CI->isNoopCast(DL)) { |
| 2602 | return FromValue; |
| 2603 | } |
| 2604 | |
| 2605 | Type *Type = CI->getType(); |
| 2606 | if (Type->isPointerTy()) |
| 2607 | Type = DL.getIntPtrType(Type); |
| 2608 | // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. |
| 2609 | if (Type->isVectorTy() || |
| 2610 | !(isa<TruncInst>(Val: &I) || isa<SExtInst>(Val: &I) || isa<ZExtInst>(Val: &I) || |
| 2611 | isa<IntToPtrInst>(Val: &I) || isa<PtrToIntInst>(Val: &I))) |
| 2612 | return nullptr; |
| 2613 | |
| 2614 | llvm::Type *FromType = FromValue->getType(); |
| 2615 | if (FromType->isPointerTy()) |
| 2616 | FromType = DL.getIntPtrType(FromType); |
| 2617 | |
| 2618 | unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); |
| 2619 | unsigned ToTypeBitSize = Type->getScalarSizeInBits(); |
| 2620 | |
| 2621 | auto ExtOps = DIExpression::getExtOps(FromSize: FromTypeBitSize, ToSize: ToTypeBitSize, |
| 2622 | Signed: isa<SExtInst>(Val: &I)); |
| 2623 | Ops.append(in_start: ExtOps.begin(), in_end: ExtOps.end()); |
| 2624 | return FromValue; |
| 2625 | } |
| 2626 | |
| 2627 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) |
| 2628 | return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Opcodes&: Ops, AdditionalValues); |
| 2629 | if (auto *BI = dyn_cast<BinaryOperator>(Val: &I)) |
| 2630 | return getSalvageOpsForBinOp(BI, CurrentLocOps, Opcodes&: Ops, AdditionalValues); |
| 2631 | if (auto *IC = dyn_cast<ICmpInst>(Val: &I)) |
| 2632 | return getSalvageOpsForIcmpOp(Icmp: IC, CurrentLocOps, Opcodes&: Ops, AdditionalValues); |
| 2633 | |
| 2634 | // *Not* to do: we should not attempt to salvage load instructions, |
| 2635 | // because the validity and lifetime of a dbg.value containing |
| 2636 | // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. |
| 2637 | return nullptr; |
| 2638 | } |
| 2639 | |
| 2640 | /// A replacement for a dbg.value expression. |
| 2641 | using DbgValReplacement = std::optional<DIExpression *>; |
| 2642 | |
| 2643 | /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, |
| 2644 | /// possibly moving/undefing users to prevent use-before-def. Returns true if |
| 2645 | /// changes are made. |
| 2646 | static bool rewriteDebugUsers( |
| 2647 | Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, |
| 2648 | function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, |
| 2649 | function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { |
| 2650 | // Find debug users of From. |
| 2651 | SmallVector<DbgVariableIntrinsic *, 1> Users; |
| 2652 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
| 2653 | findDbgUsers(DbgInsts&: Users, V: &From, DbgVariableRecords: &DPUsers); |
| 2654 | if (Users.empty() && DPUsers.empty()) |
| 2655 | return false; |
| 2656 | |
| 2657 | // Prevent use-before-def of To. |
| 2658 | bool Changed = false; |
| 2659 | |
| 2660 | SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; |
| 2661 | SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; |
| 2662 | if (isa<Instruction>(Val: &To)) { |
| 2663 | bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; |
| 2664 | |
| 2665 | for (auto *DII : Users) { |
| 2666 | // It's common to see a debug user between From and DomPoint. Move it |
| 2667 | // after DomPoint to preserve the variable update without any reordering. |
| 2668 | if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { |
| 2669 | LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); |
| 2670 | DII->moveAfter(MovePos: &DomPoint); |
| 2671 | Changed = true; |
| 2672 | |
| 2673 | // Users which otherwise aren't dominated by the replacement value must |
| 2674 | // be salvaged or deleted. |
| 2675 | } else if (!DT.dominates(Def: &DomPoint, User: DII)) { |
| 2676 | UndefOrSalvage.insert(Ptr: DII); |
| 2677 | } |
| 2678 | } |
| 2679 | |
| 2680 | // DbgVariableRecord implementation of the above. |
| 2681 | for (auto *DVR : DPUsers) { |
| 2682 | Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; |
| 2683 | Instruction *NextNonDebug = MarkedInstr; |
| 2684 | // The next instruction might still be a dbg.declare, skip over it. |
| 2685 | if (isa<DbgVariableIntrinsic>(Val: NextNonDebug)) |
| 2686 | NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); |
| 2687 | |
| 2688 | if (DomPointAfterFrom && NextNonDebug == &DomPoint) { |
| 2689 | LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); |
| 2690 | DVR->removeFromParent(); |
| 2691 | // Ensure there's a marker. |
| 2692 | DomPoint.getParent()->insertDbgRecordAfter(DR: DVR, I: &DomPoint); |
| 2693 | Changed = true; |
| 2694 | } else if (!DT.dominates(Def: &DomPoint, User: MarkedInstr)) { |
| 2695 | UndefOrSalvageDVR.insert(Ptr: DVR); |
| 2696 | } |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | // Update debug users without use-before-def risk. |
| 2701 | for (auto *DII : Users) { |
| 2702 | if (UndefOrSalvage.count(Ptr: DII)) |
| 2703 | continue; |
| 2704 | |
| 2705 | DbgValReplacement DVRepl = RewriteExpr(*DII); |
| 2706 | if (!DVRepl) |
| 2707 | continue; |
| 2708 | |
| 2709 | DII->replaceVariableLocationOp(OldValue: &From, NewValue: &To); |
| 2710 | DII->setExpression(*DVRepl); |
| 2711 | LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); |
| 2712 | Changed = true; |
| 2713 | } |
| 2714 | for (auto *DVR : DPUsers) { |
| 2715 | if (UndefOrSalvageDVR.count(Ptr: DVR)) |
| 2716 | continue; |
| 2717 | |
| 2718 | DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); |
| 2719 | if (!DVRepl) |
| 2720 | continue; |
| 2721 | |
| 2722 | DVR->replaceVariableLocationOp(OldValue: &From, NewValue: &To); |
| 2723 | DVR->setExpression(*DVRepl); |
| 2724 | LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); |
| 2725 | Changed = true; |
| 2726 | } |
| 2727 | |
| 2728 | if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { |
| 2729 | // Try to salvage the remaining debug users. |
| 2730 | salvageDebugInfo(I&: From); |
| 2731 | Changed = true; |
| 2732 | } |
| 2733 | |
| 2734 | return Changed; |
| 2735 | } |
| 2736 | |
| 2737 | /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would |
| 2738 | /// losslessly preserve the bits and semantics of the value. This predicate is |
| 2739 | /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. |
| 2740 | /// |
| 2741 | /// Note that Type::canLosslesslyBitCastTo is not suitable here because it |
| 2742 | /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, |
| 2743 | /// and also does not allow lossless pointer <-> integer conversions. |
| 2744 | static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, |
| 2745 | Type *ToTy) { |
| 2746 | // Trivially compatible types. |
| 2747 | if (FromTy == ToTy) |
| 2748 | return true; |
| 2749 | |
| 2750 | // Handle compatible pointer <-> integer conversions. |
| 2751 | if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { |
| 2752 | bool SameSize = DL.getTypeSizeInBits(Ty: FromTy) == DL.getTypeSizeInBits(Ty: ToTy); |
| 2753 | bool LosslessConversion = !DL.isNonIntegralPointerType(Ty: FromTy) && |
| 2754 | !DL.isNonIntegralPointerType(Ty: ToTy); |
| 2755 | return SameSize && LosslessConversion; |
| 2756 | } |
| 2757 | |
| 2758 | // TODO: This is not exhaustive. |
| 2759 | return false; |
| 2760 | } |
| 2761 | |
| 2762 | bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, |
| 2763 | Instruction &DomPoint, DominatorTree &DT) { |
| 2764 | // Exit early if From has no debug users. |
| 2765 | if (!From.isUsedByMetadata()) |
| 2766 | return false; |
| 2767 | |
| 2768 | assert(&From != &To && "Can't replace something with itself" ); |
| 2769 | |
| 2770 | Type *FromTy = From.getType(); |
| 2771 | Type *ToTy = To.getType(); |
| 2772 | |
| 2773 | auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
| 2774 | return DII.getExpression(); |
| 2775 | }; |
| 2776 | auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { |
| 2777 | return DVR.getExpression(); |
| 2778 | }; |
| 2779 | |
| 2780 | // Handle no-op conversions. |
| 2781 | Module &M = *From.getModule(); |
| 2782 | const DataLayout &DL = M.getDataLayout(); |
| 2783 | if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) |
| 2784 | return rewriteDebugUsers(From, To, DomPoint, DT, RewriteExpr: Identity, RewriteDVRExpr: IdentityDVR); |
| 2785 | |
| 2786 | // Handle integer-to-integer widening and narrowing. |
| 2787 | // FIXME: Use DW_OP_convert when it's available everywhere. |
| 2788 | if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { |
| 2789 | uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); |
| 2790 | uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); |
| 2791 | assert(FromBits != ToBits && "Unexpected no-op conversion" ); |
| 2792 | |
| 2793 | // When the width of the result grows, assume that a debugger will only |
| 2794 | // access the low `FromBits` bits when inspecting the source variable. |
| 2795 | if (FromBits < ToBits) |
| 2796 | return rewriteDebugUsers(From, To, DomPoint, DT, RewriteExpr: Identity, RewriteDVRExpr: IdentityDVR); |
| 2797 | |
| 2798 | // The width of the result has shrunk. Use sign/zero extension to describe |
| 2799 | // the source variable's high bits. |
| 2800 | auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
| 2801 | DILocalVariable *Var = DII.getVariable(); |
| 2802 | |
| 2803 | // Without knowing signedness, sign/zero extension isn't possible. |
| 2804 | auto Signedness = Var->getSignedness(); |
| 2805 | if (!Signedness) |
| 2806 | return std::nullopt; |
| 2807 | |
| 2808 | bool Signed = *Signedness == DIBasicType::Signedness::Signed; |
| 2809 | return DIExpression::appendExt(Expr: DII.getExpression(), FromSize: ToBits, ToSize: FromBits, |
| 2810 | Signed); |
| 2811 | }; |
| 2812 | // RemoveDIs: duplicate implementation working on DbgVariableRecords rather |
| 2813 | // than on dbg.value intrinsics. |
| 2814 | auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { |
| 2815 | DILocalVariable *Var = DVR.getVariable(); |
| 2816 | |
| 2817 | // Without knowing signedness, sign/zero extension isn't possible. |
| 2818 | auto Signedness = Var->getSignedness(); |
| 2819 | if (!Signedness) |
| 2820 | return std::nullopt; |
| 2821 | |
| 2822 | bool Signed = *Signedness == DIBasicType::Signedness::Signed; |
| 2823 | return DIExpression::appendExt(Expr: DVR.getExpression(), FromSize: ToBits, ToSize: FromBits, |
| 2824 | Signed); |
| 2825 | }; |
| 2826 | return rewriteDebugUsers(From, To, DomPoint, DT, RewriteExpr: SignOrZeroExt, |
| 2827 | RewriteDVRExpr: SignOrZeroExtDVR); |
| 2828 | } |
| 2829 | |
| 2830 | // TODO: Floating-point conversions, vectors. |
| 2831 | return false; |
| 2832 | } |
| 2833 | |
| 2834 | bool llvm::handleUnreachableTerminator( |
| 2835 | Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { |
| 2836 | bool Changed = false; |
| 2837 | // RemoveDIs: erase debug-info on this instruction manually. |
| 2838 | I->dropDbgRecords(); |
| 2839 | for (Use &U : I->operands()) { |
| 2840 | Value *Op = U.get(); |
| 2841 | if (isa<Instruction>(Val: Op) && !Op->getType()->isTokenTy()) { |
| 2842 | U.set(PoisonValue::get(T: Op->getType())); |
| 2843 | PoisonedValues.push_back(Elt: Op); |
| 2844 | Changed = true; |
| 2845 | } |
| 2846 | } |
| 2847 | |
| 2848 | return Changed; |
| 2849 | } |
| 2850 | |
| 2851 | unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { |
| 2852 | unsigned NumDeadInst = 0; |
| 2853 | // Delete the instructions backwards, as it has a reduced likelihood of |
| 2854 | // having to update as many def-use and use-def chains. |
| 2855 | Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. |
| 2856 | SmallVector<Value *> Uses; |
| 2857 | handleUnreachableTerminator(I: EndInst, PoisonedValues&: Uses); |
| 2858 | |
| 2859 | while (EndInst != &BB->front()) { |
| 2860 | // Delete the next to last instruction. |
| 2861 | Instruction *Inst = &*--EndInst->getIterator(); |
| 2862 | if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) |
| 2863 | Inst->replaceAllUsesWith(V: PoisonValue::get(T: Inst->getType())); |
| 2864 | if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { |
| 2865 | // EHPads can't have DbgVariableRecords attached to them, but it might be |
| 2866 | // possible for things with token type. |
| 2867 | Inst->dropDbgRecords(); |
| 2868 | EndInst = Inst; |
| 2869 | continue; |
| 2870 | } |
| 2871 | ++NumDeadInst; |
| 2872 | // RemoveDIs: erasing debug-info must be done manually. |
| 2873 | Inst->dropDbgRecords(); |
| 2874 | Inst->eraseFromParent(); |
| 2875 | } |
| 2876 | return NumDeadInst; |
| 2877 | } |
| 2878 | |
| 2879 | unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, |
| 2880 | DomTreeUpdater *DTU, |
| 2881 | MemorySSAUpdater *MSSAU) { |
| 2882 | BasicBlock *BB = I->getParent(); |
| 2883 | |
| 2884 | if (MSSAU) |
| 2885 | MSSAU->changeToUnreachable(I); |
| 2886 | |
| 2887 | SmallSet<BasicBlock *, 8> UniqueSuccessors; |
| 2888 | |
| 2889 | // Loop over all of the successors, removing BB's entry from any PHI |
| 2890 | // nodes. |
| 2891 | for (BasicBlock *Successor : successors(BB)) { |
| 2892 | Successor->removePredecessor(Pred: BB, KeepOneInputPHIs: PreserveLCSSA); |
| 2893 | if (DTU) |
| 2894 | UniqueSuccessors.insert(Ptr: Successor); |
| 2895 | } |
| 2896 | auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); |
| 2897 | UI->setDebugLoc(I->getDebugLoc()); |
| 2898 | |
| 2899 | // All instructions after this are dead. |
| 2900 | unsigned NumInstrsRemoved = 0; |
| 2901 | BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); |
| 2902 | while (BBI != BBE) { |
| 2903 | if (!BBI->use_empty()) |
| 2904 | BBI->replaceAllUsesWith(V: PoisonValue::get(T: BBI->getType())); |
| 2905 | BBI++->eraseFromParent(); |
| 2906 | ++NumInstrsRemoved; |
| 2907 | } |
| 2908 | if (DTU) { |
| 2909 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
| 2910 | Updates.reserve(N: UniqueSuccessors.size()); |
| 2911 | for (BasicBlock *UniqueSuccessor : UniqueSuccessors) |
| 2912 | Updates.push_back(Elt: {DominatorTree::Delete, BB, UniqueSuccessor}); |
| 2913 | DTU->applyUpdates(Updates); |
| 2914 | } |
| 2915 | BB->flushTerminatorDbgRecords(); |
| 2916 | return NumInstrsRemoved; |
| 2917 | } |
| 2918 | |
| 2919 | CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { |
| 2920 | SmallVector<Value *, 8> Args(II->args()); |
| 2921 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 2922 | II->getOperandBundlesAsDefs(Defs&: OpBundles); |
| 2923 | CallInst *NewCall = CallInst::Create(Ty: II->getFunctionType(), |
| 2924 | Func: II->getCalledOperand(), Args, Bundles: OpBundles); |
| 2925 | NewCall->setCallingConv(II->getCallingConv()); |
| 2926 | NewCall->setAttributes(II->getAttributes()); |
| 2927 | NewCall->setDebugLoc(II->getDebugLoc()); |
| 2928 | NewCall->copyMetadata(SrcInst: *II); |
| 2929 | |
| 2930 | // If the invoke had profile metadata, try converting them for CallInst. |
| 2931 | uint64_t TotalWeight; |
| 2932 | if (NewCall->extractProfTotalWeight(TotalVal&: TotalWeight)) { |
| 2933 | // Set the total weight if it fits into i32, otherwise reset. |
| 2934 | MDBuilder MDB(NewCall->getContext()); |
| 2935 | auto NewWeights = uint32_t(TotalWeight) != TotalWeight |
| 2936 | ? nullptr |
| 2937 | : MDB.createBranchWeights(Weights: {uint32_t(TotalWeight)}); |
| 2938 | NewCall->setMetadata(KindID: LLVMContext::MD_prof, Node: NewWeights); |
| 2939 | } |
| 2940 | |
| 2941 | return NewCall; |
| 2942 | } |
| 2943 | |
| 2944 | // changeToCall - Convert the specified invoke into a normal call. |
| 2945 | CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { |
| 2946 | CallInst *NewCall = createCallMatchingInvoke(II); |
| 2947 | NewCall->takeName(V: II); |
| 2948 | NewCall->insertBefore(InsertPos: II->getIterator()); |
| 2949 | II->replaceAllUsesWith(V: NewCall); |
| 2950 | |
| 2951 | // Follow the call by a branch to the normal destination. |
| 2952 | BasicBlock *NormalDestBB = II->getNormalDest(); |
| 2953 | auto *BI = BranchInst::Create(IfTrue: NormalDestBB, InsertBefore: II->getIterator()); |
| 2954 | // Although it takes place after the call itself, the new branch is still |
| 2955 | // performing part of the control-flow functionality of the invoke, so we use |
| 2956 | // II's DebugLoc. |
| 2957 | BI->setDebugLoc(II->getDebugLoc()); |
| 2958 | |
| 2959 | // Update PHI nodes in the unwind destination |
| 2960 | BasicBlock *BB = II->getParent(); |
| 2961 | BasicBlock *UnwindDestBB = II->getUnwindDest(); |
| 2962 | UnwindDestBB->removePredecessor(Pred: BB); |
| 2963 | II->eraseFromParent(); |
| 2964 | if (DTU) |
| 2965 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnwindDestBB}}); |
| 2966 | return NewCall; |
| 2967 | } |
| 2968 | |
| 2969 | BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, |
| 2970 | BasicBlock *UnwindEdge, |
| 2971 | DomTreeUpdater *DTU) { |
| 2972 | BasicBlock *BB = CI->getParent(); |
| 2973 | |
| 2974 | // Convert this function call into an invoke instruction. First, split the |
| 2975 | // basic block. |
| 2976 | BasicBlock *Split = SplitBlock(Old: BB, SplitPt: CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, |
| 2977 | BBName: CI->getName() + ".noexc" ); |
| 2978 | |
| 2979 | // Delete the unconditional branch inserted by SplitBlock |
| 2980 | BB->back().eraseFromParent(); |
| 2981 | |
| 2982 | // Create the new invoke instruction. |
| 2983 | SmallVector<Value *, 8> InvokeArgs(CI->args()); |
| 2984 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 2985 | |
| 2986 | CI->getOperandBundlesAsDefs(Defs&: OpBundles); |
| 2987 | |
| 2988 | // Note: we're round tripping operand bundles through memory here, and that |
| 2989 | // can potentially be avoided with a cleverer API design that we do not have |
| 2990 | // as of this time. |
| 2991 | |
| 2992 | InvokeInst *II = |
| 2993 | InvokeInst::Create(Ty: CI->getFunctionType(), Func: CI->getCalledOperand(), IfNormal: Split, |
| 2994 | IfException: UnwindEdge, Args: InvokeArgs, Bundles: OpBundles, NameStr: CI->getName(), InsertBefore: BB); |
| 2995 | II->setDebugLoc(CI->getDebugLoc()); |
| 2996 | II->setCallingConv(CI->getCallingConv()); |
| 2997 | II->setAttributes(CI->getAttributes()); |
| 2998 | II->setMetadata(KindID: LLVMContext::MD_prof, Node: CI->getMetadata(KindID: LLVMContext::MD_prof)); |
| 2999 | |
| 3000 | if (DTU) |
| 3001 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, BB, UnwindEdge}}); |
| 3002 | |
| 3003 | // Make sure that anything using the call now uses the invoke! This also |
| 3004 | // updates the CallGraph if present, because it uses a WeakTrackingVH. |
| 3005 | CI->replaceAllUsesWith(V: II); |
| 3006 | |
| 3007 | // Delete the original call |
| 3008 | Split->front().eraseFromParent(); |
| 3009 | return Split; |
| 3010 | } |
| 3011 | |
| 3012 | static bool markAliveBlocks(Function &F, |
| 3013 | SmallPtrSetImpl<BasicBlock *> &Reachable, |
| 3014 | DomTreeUpdater *DTU = nullptr) { |
| 3015 | SmallVector<BasicBlock*, 128> Worklist; |
| 3016 | BasicBlock *BB = &F.front(); |
| 3017 | Worklist.push_back(Elt: BB); |
| 3018 | Reachable.insert(Ptr: BB); |
| 3019 | bool Changed = false; |
| 3020 | do { |
| 3021 | BB = Worklist.pop_back_val(); |
| 3022 | |
| 3023 | // Do a quick scan of the basic block, turning any obviously unreachable |
| 3024 | // instructions into LLVM unreachable insts. The instruction combining pass |
| 3025 | // canonicalizes unreachable insts into stores to null or undef. |
| 3026 | for (Instruction &I : *BB) { |
| 3027 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) { |
| 3028 | Value *Callee = CI->getCalledOperand(); |
| 3029 | // Handle intrinsic calls. |
| 3030 | if (Function *F = dyn_cast<Function>(Val: Callee)) { |
| 3031 | auto IntrinsicID = F->getIntrinsicID(); |
| 3032 | // Assumptions that are known to be false are equivalent to |
| 3033 | // unreachable. Also, if the condition is undefined, then we make the |
| 3034 | // choice most beneficial to the optimizer, and choose that to also be |
| 3035 | // unreachable. |
| 3036 | if (IntrinsicID == Intrinsic::assume) { |
| 3037 | if (match(V: CI->getArgOperand(i: 0), P: m_CombineOr(L: m_Zero(), R: m_Undef()))) { |
| 3038 | // Don't insert a call to llvm.trap right before the unreachable. |
| 3039 | changeToUnreachable(I: CI, PreserveLCSSA: false, DTU); |
| 3040 | Changed = true; |
| 3041 | break; |
| 3042 | } |
| 3043 | } else if (IntrinsicID == Intrinsic::experimental_guard) { |
| 3044 | // A call to the guard intrinsic bails out of the current |
| 3045 | // compilation unit if the predicate passed to it is false. If the |
| 3046 | // predicate is a constant false, then we know the guard will bail |
| 3047 | // out of the current compile unconditionally, so all code following |
| 3048 | // it is dead. |
| 3049 | // |
| 3050 | // Note: unlike in llvm.assume, it is not "obviously profitable" for |
| 3051 | // guards to treat `undef` as `false` since a guard on `undef` can |
| 3052 | // still be useful for widening. |
| 3053 | if (match(V: CI->getArgOperand(i: 0), P: m_Zero())) |
| 3054 | if (!isa<UnreachableInst>(Val: CI->getNextNode())) { |
| 3055 | changeToUnreachable(I: CI->getNextNode(), PreserveLCSSA: false, DTU); |
| 3056 | Changed = true; |
| 3057 | break; |
| 3058 | } |
| 3059 | } |
| 3060 | } else if ((isa<ConstantPointerNull>(Val: Callee) && |
| 3061 | !NullPointerIsDefined(F: CI->getFunction(), |
| 3062 | AS: cast<PointerType>(Val: Callee->getType()) |
| 3063 | ->getAddressSpace())) || |
| 3064 | isa<UndefValue>(Val: Callee)) { |
| 3065 | changeToUnreachable(I: CI, PreserveLCSSA: false, DTU); |
| 3066 | Changed = true; |
| 3067 | break; |
| 3068 | } |
| 3069 | if (CI->doesNotReturn() && !CI->isMustTailCall()) { |
| 3070 | // If we found a call to a no-return function, insert an unreachable |
| 3071 | // instruction after it. Make sure there isn't *already* one there |
| 3072 | // though. |
| 3073 | if (!isa<UnreachableInst>(Val: CI->getNextNonDebugInstruction())) { |
| 3074 | // Don't insert a call to llvm.trap right before the unreachable. |
| 3075 | changeToUnreachable(I: CI->getNextNonDebugInstruction(), PreserveLCSSA: false, DTU); |
| 3076 | Changed = true; |
| 3077 | } |
| 3078 | break; |
| 3079 | } |
| 3080 | } else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
| 3081 | // Store to undef and store to null are undefined and used to signal |
| 3082 | // that they should be changed to unreachable by passes that can't |
| 3083 | // modify the CFG. |
| 3084 | |
| 3085 | // Don't touch volatile stores. |
| 3086 | if (SI->isVolatile()) continue; |
| 3087 | |
| 3088 | Value *Ptr = SI->getOperand(i_nocapture: 1); |
| 3089 | |
| 3090 | if (isa<UndefValue>(Val: Ptr) || |
| 3091 | (isa<ConstantPointerNull>(Val: Ptr) && |
| 3092 | !NullPointerIsDefined(F: SI->getFunction(), |
| 3093 | AS: SI->getPointerAddressSpace()))) { |
| 3094 | changeToUnreachable(I: SI, PreserveLCSSA: false, DTU); |
| 3095 | Changed = true; |
| 3096 | break; |
| 3097 | } |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | Instruction *Terminator = BB->getTerminator(); |
| 3102 | if (auto *II = dyn_cast<InvokeInst>(Val: Terminator)) { |
| 3103 | // Turn invokes that call 'nounwind' functions into ordinary calls. |
| 3104 | Value *Callee = II->getCalledOperand(); |
| 3105 | if ((isa<ConstantPointerNull>(Val: Callee) && |
| 3106 | !NullPointerIsDefined(F: BB->getParent())) || |
| 3107 | isa<UndefValue>(Val: Callee)) { |
| 3108 | changeToUnreachable(I: II, PreserveLCSSA: false, DTU); |
| 3109 | Changed = true; |
| 3110 | } else { |
| 3111 | if (II->doesNotReturn() && |
| 3112 | !isa<UnreachableInst>(Val: II->getNormalDest()->front())) { |
| 3113 | // If we found an invoke of a no-return function, |
| 3114 | // create a new empty basic block with an `unreachable` terminator, |
| 3115 | // and set it as the normal destination for the invoke, |
| 3116 | // unless that is already the case. |
| 3117 | // Note that the original normal destination could have other uses. |
| 3118 | BasicBlock *OrigNormalDest = II->getNormalDest(); |
| 3119 | OrigNormalDest->removePredecessor(Pred: II->getParent()); |
| 3120 | LLVMContext &Ctx = II->getContext(); |
| 3121 | BasicBlock *UnreachableNormalDest = BasicBlock::Create( |
| 3122 | Context&: Ctx, Name: OrigNormalDest->getName() + ".unreachable" , |
| 3123 | Parent: II->getFunction(), InsertBefore: OrigNormalDest); |
| 3124 | auto *UI = new UnreachableInst(Ctx, UnreachableNormalDest); |
| 3125 | UI->setDebugLoc(DebugLoc::getTemporary()); |
| 3126 | II->setNormalDest(UnreachableNormalDest); |
| 3127 | if (DTU) |
| 3128 | DTU->applyUpdates( |
| 3129 | Updates: {{DominatorTree::Delete, BB, OrigNormalDest}, |
| 3130 | {DominatorTree::Insert, BB, UnreachableNormalDest}}); |
| 3131 | Changed = true; |
| 3132 | } |
| 3133 | if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(F: &F)) { |
| 3134 | if (II->use_empty() && !II->mayHaveSideEffects()) { |
| 3135 | // jump to the normal destination branch. |
| 3136 | BasicBlock *NormalDestBB = II->getNormalDest(); |
| 3137 | BasicBlock *UnwindDestBB = II->getUnwindDest(); |
| 3138 | BranchInst::Create(IfTrue: NormalDestBB, InsertBefore: II->getIterator()); |
| 3139 | UnwindDestBB->removePredecessor(Pred: II->getParent()); |
| 3140 | II->eraseFromParent(); |
| 3141 | if (DTU) |
| 3142 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnwindDestBB}}); |
| 3143 | } else |
| 3144 | changeToCall(II, DTU); |
| 3145 | Changed = true; |
| 3146 | } |
| 3147 | } |
| 3148 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: Terminator)) { |
| 3149 | // Remove catchpads which cannot be reached. |
| 3150 | struct CatchPadDenseMapInfo { |
| 3151 | static CatchPadInst *getEmptyKey() { |
| 3152 | return DenseMapInfo<CatchPadInst *>::getEmptyKey(); |
| 3153 | } |
| 3154 | |
| 3155 | static CatchPadInst *getTombstoneKey() { |
| 3156 | return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); |
| 3157 | } |
| 3158 | |
| 3159 | static unsigned getHashValue(CatchPadInst *CatchPad) { |
| 3160 | return static_cast<unsigned>(hash_combine_range( |
| 3161 | first: CatchPad->value_op_begin(), last: CatchPad->value_op_end())); |
| 3162 | } |
| 3163 | |
| 3164 | static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { |
| 3165 | if (LHS == getEmptyKey() || LHS == getTombstoneKey() || |
| 3166 | RHS == getEmptyKey() || RHS == getTombstoneKey()) |
| 3167 | return LHS == RHS; |
| 3168 | return LHS->isIdenticalTo(I: RHS); |
| 3169 | } |
| 3170 | }; |
| 3171 | |
| 3172 | SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; |
| 3173 | // Set of unique CatchPads. |
| 3174 | SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, |
| 3175 | CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> |
| 3176 | HandlerSet; |
| 3177 | detail::DenseSetEmpty Empty; |
| 3178 | for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), |
| 3179 | E = CatchSwitch->handler_end(); |
| 3180 | I != E; ++I) { |
| 3181 | BasicBlock *HandlerBB = *I; |
| 3182 | if (DTU) |
| 3183 | ++NumPerSuccessorCases[HandlerBB]; |
| 3184 | auto *CatchPad = cast<CatchPadInst>(Val: HandlerBB->getFirstNonPHIIt()); |
| 3185 | if (!HandlerSet.insert(KV: {CatchPad, Empty}).second) { |
| 3186 | if (DTU) |
| 3187 | --NumPerSuccessorCases[HandlerBB]; |
| 3188 | CatchSwitch->removeHandler(HI: I); |
| 3189 | --I; |
| 3190 | --E; |
| 3191 | Changed = true; |
| 3192 | } |
| 3193 | } |
| 3194 | if (DTU) { |
| 3195 | std::vector<DominatorTree::UpdateType> Updates; |
| 3196 | for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) |
| 3197 | if (I.second == 0) |
| 3198 | Updates.push_back(x: {DominatorTree::Delete, BB, I.first}); |
| 3199 | DTU->applyUpdates(Updates); |
| 3200 | } |
| 3201 | } |
| 3202 | |
| 3203 | Changed |= ConstantFoldTerminator(BB, DeleteDeadConditions: true, TLI: nullptr, DTU); |
| 3204 | for (BasicBlock *Successor : successors(BB)) |
| 3205 | if (Reachable.insert(Ptr: Successor).second) |
| 3206 | Worklist.push_back(Elt: Successor); |
| 3207 | } while (!Worklist.empty()); |
| 3208 | return Changed; |
| 3209 | } |
| 3210 | |
| 3211 | Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { |
| 3212 | Instruction *TI = BB->getTerminator(); |
| 3213 | |
| 3214 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) |
| 3215 | return changeToCall(II, DTU); |
| 3216 | |
| 3217 | Instruction *NewTI; |
| 3218 | BasicBlock *UnwindDest; |
| 3219 | |
| 3220 | if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) { |
| 3221 | NewTI = CleanupReturnInst::Create(CleanupPad: CRI->getCleanupPad(), UnwindBB: nullptr, InsertBefore: CRI->getIterator()); |
| 3222 | UnwindDest = CRI->getUnwindDest(); |
| 3223 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: TI)) { |
| 3224 | auto *NewCatchSwitch = CatchSwitchInst::Create( |
| 3225 | ParentPad: CatchSwitch->getParentPad(), UnwindDest: nullptr, NumHandlers: CatchSwitch->getNumHandlers(), |
| 3226 | NameStr: CatchSwitch->getName(), InsertBefore: CatchSwitch->getIterator()); |
| 3227 | for (BasicBlock *PadBB : CatchSwitch->handlers()) |
| 3228 | NewCatchSwitch->addHandler(Dest: PadBB); |
| 3229 | |
| 3230 | NewTI = NewCatchSwitch; |
| 3231 | UnwindDest = CatchSwitch->getUnwindDest(); |
| 3232 | } else { |
| 3233 | llvm_unreachable("Could not find unwind successor" ); |
| 3234 | } |
| 3235 | |
| 3236 | NewTI->takeName(V: TI); |
| 3237 | NewTI->setDebugLoc(TI->getDebugLoc()); |
| 3238 | UnwindDest->removePredecessor(Pred: BB); |
| 3239 | TI->replaceAllUsesWith(V: NewTI); |
| 3240 | TI->eraseFromParent(); |
| 3241 | if (DTU) |
| 3242 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnwindDest}}); |
| 3243 | return NewTI; |
| 3244 | } |
| 3245 | |
| 3246 | /// removeUnreachableBlocks - Remove blocks that are not reachable, even |
| 3247 | /// if they are in a dead cycle. Return true if a change was made, false |
| 3248 | /// otherwise. |
| 3249 | bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, |
| 3250 | MemorySSAUpdater *MSSAU) { |
| 3251 | SmallPtrSet<BasicBlock *, 16> Reachable; |
| 3252 | bool Changed = markAliveBlocks(F, Reachable, DTU); |
| 3253 | |
| 3254 | // If there are unreachable blocks in the CFG... |
| 3255 | if (Reachable.size() == F.size()) |
| 3256 | return Changed; |
| 3257 | |
| 3258 | assert(Reachable.size() < F.size()); |
| 3259 | |
| 3260 | // Are there any blocks left to actually delete? |
| 3261 | SmallSetVector<BasicBlock *, 8> BlocksToRemove; |
| 3262 | for (BasicBlock &BB : F) { |
| 3263 | // Skip reachable basic blocks |
| 3264 | if (Reachable.count(Ptr: &BB)) |
| 3265 | continue; |
| 3266 | // Skip already-deleted blocks |
| 3267 | if (DTU && DTU->isBBPendingDeletion(DelBB: &BB)) |
| 3268 | continue; |
| 3269 | BlocksToRemove.insert(X: &BB); |
| 3270 | } |
| 3271 | |
| 3272 | if (BlocksToRemove.empty()) |
| 3273 | return Changed; |
| 3274 | |
| 3275 | Changed = true; |
| 3276 | NumRemoved += BlocksToRemove.size(); |
| 3277 | |
| 3278 | if (MSSAU) |
| 3279 | MSSAU->removeBlocks(DeadBlocks: BlocksToRemove); |
| 3280 | |
| 3281 | DeleteDeadBlocks(BBs: BlocksToRemove.takeVector(), DTU); |
| 3282 | |
| 3283 | return Changed; |
| 3284 | } |
| 3285 | |
| 3286 | /// If AAOnly is set, only intersect alias analysis metadata and preserve other |
| 3287 | /// known metadata. Unknown metadata is always dropped. |
| 3288 | static void combineMetadata(Instruction *K, const Instruction *J, |
| 3289 | bool DoesKMove, bool AAOnly = false) { |
| 3290 | SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
| 3291 | K->getAllMetadataOtherThanDebugLoc(MDs&: Metadata); |
| 3292 | for (const auto &MD : Metadata) { |
| 3293 | unsigned Kind = MD.first; |
| 3294 | MDNode *JMD = J->getMetadata(KindID: Kind); |
| 3295 | MDNode *KMD = MD.second; |
| 3296 | |
| 3297 | // TODO: Assert that this switch is exhaustive for fixed MD kinds. |
| 3298 | switch (Kind) { |
| 3299 | default: |
| 3300 | K->setMetadata(KindID: Kind, Node: nullptr); // Remove unknown metadata |
| 3301 | break; |
| 3302 | case LLVMContext::MD_dbg: |
| 3303 | llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg" ); |
| 3304 | case LLVMContext::MD_DIAssignID: |
| 3305 | if (!AAOnly) |
| 3306 | K->mergeDIAssignID(SourceInstructions: J); |
| 3307 | break; |
| 3308 | case LLVMContext::MD_tbaa: |
| 3309 | if (DoesKMove) |
| 3310 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericTBAA(A: JMD, B: KMD)); |
| 3311 | break; |
| 3312 | case LLVMContext::MD_alias_scope: |
| 3313 | if (DoesKMove) |
| 3314 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericAliasScope(A: JMD, B: KMD)); |
| 3315 | break; |
| 3316 | case LLVMContext::MD_noalias: |
| 3317 | case LLVMContext::MD_mem_parallel_loop_access: |
| 3318 | if (DoesKMove) |
| 3319 | K->setMetadata(KindID: Kind, Node: MDNode::intersect(A: JMD, B: KMD)); |
| 3320 | break; |
| 3321 | case LLVMContext::MD_access_group: |
| 3322 | if (DoesKMove) |
| 3323 | K->setMetadata(KindID: LLVMContext::MD_access_group, |
| 3324 | Node: intersectAccessGroups(Inst1: K, Inst2: J)); |
| 3325 | break; |
| 3326 | case LLVMContext::MD_range: |
| 3327 | if (!AAOnly && (DoesKMove || !K->hasMetadata(KindID: LLVMContext::MD_noundef))) |
| 3328 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericRange(A: JMD, B: KMD)); |
| 3329 | break; |
| 3330 | case LLVMContext::MD_fpmath: |
| 3331 | if (!AAOnly) |
| 3332 | K->setMetadata(KindID: Kind, Node: MDNode::getMostGenericFPMath(A: JMD, B: KMD)); |
| 3333 | break; |
| 3334 | case LLVMContext::MD_invariant_load: |
| 3335 | // If K moves, only set the !invariant.load if it is present in both |
| 3336 | // instructions. |
| 3337 | if (DoesKMove) |
| 3338 | K->setMetadata(KindID: Kind, Node: JMD); |
| 3339 | break; |
| 3340 | case LLVMContext::MD_nonnull: |
| 3341 | if (!AAOnly && (DoesKMove || !K->hasMetadata(KindID: LLVMContext::MD_noundef))) |
| 3342 | K->setMetadata(KindID: Kind, Node: JMD); |
| 3343 | break; |
| 3344 | case LLVMContext::MD_invariant_group: |
| 3345 | // Preserve !invariant.group in K. |
| 3346 | break; |
| 3347 | // Keep empty cases for prof, mmra, memprof, and callsite to prevent them |
| 3348 | // from being removed as unknown metadata. The actual merging is handled |
| 3349 | // separately below. |
| 3350 | case LLVMContext::MD_prof: |
| 3351 | case LLVMContext::MD_mmra: |
| 3352 | case LLVMContext::MD_memprof: |
| 3353 | case LLVMContext::MD_callsite: |
| 3354 | break; |
| 3355 | case LLVMContext::MD_align: |
| 3356 | if (!AAOnly && (DoesKMove || !K->hasMetadata(KindID: LLVMContext::MD_noundef))) |
| 3357 | K->setMetadata( |
| 3358 | KindID: Kind, Node: MDNode::getMostGenericAlignmentOrDereferenceable(A: JMD, B: KMD)); |
| 3359 | break; |
| 3360 | case LLVMContext::MD_dereferenceable: |
| 3361 | case LLVMContext::MD_dereferenceable_or_null: |
| 3362 | if (!AAOnly && DoesKMove) |
| 3363 | K->setMetadata(KindID: Kind, |
| 3364 | Node: MDNode::getMostGenericAlignmentOrDereferenceable(A: JMD, B: KMD)); |
| 3365 | break; |
| 3366 | case LLVMContext::MD_preserve_access_index: |
| 3367 | // Preserve !preserve.access.index in K. |
| 3368 | break; |
| 3369 | case LLVMContext::MD_noundef: |
| 3370 | // If K does move, keep noundef if it is present in both instructions. |
| 3371 | if (!AAOnly && DoesKMove) |
| 3372 | K->setMetadata(KindID: Kind, Node: JMD); |
| 3373 | break; |
| 3374 | case LLVMContext::MD_nontemporal: |
| 3375 | // Preserve !nontemporal if it is present on both instructions. |
| 3376 | if (!AAOnly) |
| 3377 | K->setMetadata(KindID: Kind, Node: JMD); |
| 3378 | break; |
| 3379 | case LLVMContext::MD_noalias_addrspace: |
| 3380 | if (DoesKMove) |
| 3381 | K->setMetadata(KindID: Kind, |
| 3382 | Node: MDNode::getMostGenericNoaliasAddrspace(A: JMD, B: KMD)); |
| 3383 | break; |
| 3384 | } |
| 3385 | } |
| 3386 | // Set !invariant.group from J if J has it. If both instructions have it |
| 3387 | // then we will just pick it from J - even when they are different. |
| 3388 | // Also make sure that K is load or store - f.e. combining bitcast with load |
| 3389 | // could produce bitcast with invariant.group metadata, which is invalid. |
| 3390 | // FIXME: we should try to preserve both invariant.group md if they are |
| 3391 | // different, but right now instruction can only have one invariant.group. |
| 3392 | if (auto *JMD = J->getMetadata(KindID: LLVMContext::MD_invariant_group)) |
| 3393 | if (isa<LoadInst>(Val: K) || isa<StoreInst>(Val: K)) |
| 3394 | K->setMetadata(KindID: LLVMContext::MD_invariant_group, Node: JMD); |
| 3395 | |
| 3396 | // Merge MMRAs. |
| 3397 | // This is handled separately because we also want to handle cases where K |
| 3398 | // doesn't have tags but J does. |
| 3399 | auto JMMRA = J->getMetadata(KindID: LLVMContext::MD_mmra); |
| 3400 | auto KMMRA = K->getMetadata(KindID: LLVMContext::MD_mmra); |
| 3401 | if (JMMRA || KMMRA) { |
| 3402 | K->setMetadata(KindID: LLVMContext::MD_mmra, |
| 3403 | Node: MMRAMetadata::combine(Ctx&: K->getContext(), A: JMMRA, B: KMMRA)); |
| 3404 | } |
| 3405 | |
| 3406 | // Merge memprof metadata. |
| 3407 | // Handle separately to support cases where only one instruction has the |
| 3408 | // metadata. |
| 3409 | auto *JMemProf = J->getMetadata(KindID: LLVMContext::MD_memprof); |
| 3410 | auto *KMemProf = K->getMetadata(KindID: LLVMContext::MD_memprof); |
| 3411 | if (!AAOnly && (JMemProf || KMemProf)) { |
| 3412 | K->setMetadata(KindID: LLVMContext::MD_memprof, |
| 3413 | Node: MDNode::getMergedMemProfMetadata(A: KMemProf, B: JMemProf)); |
| 3414 | } |
| 3415 | |
| 3416 | // Merge callsite metadata. |
| 3417 | // Handle separately to support cases where only one instruction has the |
| 3418 | // metadata. |
| 3419 | auto *JCallSite = J->getMetadata(KindID: LLVMContext::MD_callsite); |
| 3420 | auto *KCallSite = K->getMetadata(KindID: LLVMContext::MD_callsite); |
| 3421 | if (!AAOnly && (JCallSite || KCallSite)) { |
| 3422 | K->setMetadata(KindID: LLVMContext::MD_callsite, |
| 3423 | Node: MDNode::getMergedCallsiteMetadata(A: KCallSite, B: JCallSite)); |
| 3424 | } |
| 3425 | |
| 3426 | // Merge prof metadata. |
| 3427 | // Handle separately to support cases where only one instruction has the |
| 3428 | // metadata. |
| 3429 | auto *JProf = J->getMetadata(KindID: LLVMContext::MD_prof); |
| 3430 | auto *KProf = K->getMetadata(KindID: LLVMContext::MD_prof); |
| 3431 | if (!AAOnly && (JProf || KProf)) { |
| 3432 | K->setMetadata(KindID: LLVMContext::MD_prof, |
| 3433 | Node: MDNode::getMergedProfMetadata(A: KProf, B: JProf, AInstr: K, BInstr: J)); |
| 3434 | } |
| 3435 | } |
| 3436 | |
| 3437 | void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, |
| 3438 | bool DoesKMove) { |
| 3439 | combineMetadata(K, J, DoesKMove); |
| 3440 | } |
| 3441 | |
| 3442 | void llvm::combineAAMetadata(Instruction *K, const Instruction *J) { |
| 3443 | combineMetadata(K, J, /*DoesKMove=*/true, /*AAOnly=*/true); |
| 3444 | } |
| 3445 | |
| 3446 | void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { |
| 3447 | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; |
| 3448 | Source.getAllMetadata(MDs&: MD); |
| 3449 | MDBuilder MDB(Dest.getContext()); |
| 3450 | Type *NewType = Dest.getType(); |
| 3451 | const DataLayout &DL = Source.getDataLayout(); |
| 3452 | for (const auto &MDPair : MD) { |
| 3453 | unsigned ID = MDPair.first; |
| 3454 | MDNode *N = MDPair.second; |
| 3455 | // Note, essentially every kind of metadata should be preserved here! This |
| 3456 | // routine is supposed to clone a load instruction changing *only its type*. |
| 3457 | // The only metadata it makes sense to drop is metadata which is invalidated |
| 3458 | // when the pointer type changes. This should essentially never be the case |
| 3459 | // in LLVM, but we explicitly switch over only known metadata to be |
| 3460 | // conservatively correct. If you are adding metadata to LLVM which pertains |
| 3461 | // to loads, you almost certainly want to add it here. |
| 3462 | switch (ID) { |
| 3463 | case LLVMContext::MD_dbg: |
| 3464 | case LLVMContext::MD_tbaa: |
| 3465 | case LLVMContext::MD_prof: |
| 3466 | case LLVMContext::MD_fpmath: |
| 3467 | case LLVMContext::MD_tbaa_struct: |
| 3468 | case LLVMContext::MD_invariant_load: |
| 3469 | case LLVMContext::MD_alias_scope: |
| 3470 | case LLVMContext::MD_noalias: |
| 3471 | case LLVMContext::MD_nontemporal: |
| 3472 | case LLVMContext::MD_mem_parallel_loop_access: |
| 3473 | case LLVMContext::MD_access_group: |
| 3474 | case LLVMContext::MD_noundef: |
| 3475 | case LLVMContext::MD_noalias_addrspace: |
| 3476 | // All of these directly apply. |
| 3477 | Dest.setMetadata(KindID: ID, Node: N); |
| 3478 | break; |
| 3479 | |
| 3480 | case LLVMContext::MD_nonnull: |
| 3481 | copyNonnullMetadata(OldLI: Source, N, NewLI&: Dest); |
| 3482 | break; |
| 3483 | |
| 3484 | case LLVMContext::MD_align: |
| 3485 | case LLVMContext::MD_dereferenceable: |
| 3486 | case LLVMContext::MD_dereferenceable_or_null: |
| 3487 | // These only directly apply if the new type is also a pointer. |
| 3488 | if (NewType->isPointerTy()) |
| 3489 | Dest.setMetadata(KindID: ID, Node: N); |
| 3490 | break; |
| 3491 | |
| 3492 | case LLVMContext::MD_range: |
| 3493 | copyRangeMetadata(DL, OldLI: Source, N, NewLI&: Dest); |
| 3494 | break; |
| 3495 | } |
| 3496 | } |
| 3497 | } |
| 3498 | |
| 3499 | void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { |
| 3500 | auto *ReplInst = dyn_cast<Instruction>(Val: Repl); |
| 3501 | if (!ReplInst) |
| 3502 | return; |
| 3503 | |
| 3504 | // Patch the replacement so that it is not more restrictive than the value |
| 3505 | // being replaced. |
| 3506 | WithOverflowInst *UnusedWO; |
| 3507 | // When replacing the result of a llvm.*.with.overflow intrinsic with a |
| 3508 | // overflowing binary operator, nuw/nsw flags may no longer hold. |
| 3509 | if (isa<OverflowingBinaryOperator>(Val: ReplInst) && |
| 3510 | match(V: I, P: m_ExtractValue<0>(V: m_WithOverflowInst(I&: UnusedWO)))) |
| 3511 | ReplInst->dropPoisonGeneratingFlags(); |
| 3512 | // Note that if 'I' is a load being replaced by some operation, |
| 3513 | // for example, by an arithmetic operation, then andIRFlags() |
| 3514 | // would just erase all math flags from the original arithmetic |
| 3515 | // operation, which is clearly not wanted and not needed. |
| 3516 | else if (!isa<LoadInst>(Val: I)) |
| 3517 | ReplInst->andIRFlags(V: I); |
| 3518 | |
| 3519 | // Handle attributes. |
| 3520 | if (auto *CB1 = dyn_cast<CallBase>(Val: ReplInst)) { |
| 3521 | if (auto *CB2 = dyn_cast<CallBase>(Val: I)) { |
| 3522 | bool Success = CB1->tryIntersectAttributes(Other: CB2); |
| 3523 | assert(Success && "We should not be trying to sink callbases " |
| 3524 | "with non-intersectable attributes" ); |
| 3525 | // For NDEBUG Compile. |
| 3526 | (void)Success; |
| 3527 | } |
| 3528 | } |
| 3529 | |
| 3530 | // FIXME: If both the original and replacement value are part of the |
| 3531 | // same control-flow region (meaning that the execution of one |
| 3532 | // guarantees the execution of the other), then we can combine the |
| 3533 | // noalias scopes here and do better than the general conservative |
| 3534 | // answer used in combineMetadata(). |
| 3535 | |
| 3536 | // In general, GVN unifies expressions over different control-flow |
| 3537 | // regions, and so we need a conservative combination of the noalias |
| 3538 | // scopes. |
| 3539 | combineMetadataForCSE(K: ReplInst, J: I, DoesKMove: false); |
| 3540 | } |
| 3541 | |
| 3542 | template <typename RootType, typename ShouldReplaceFn> |
| 3543 | static unsigned replaceDominatedUsesWith(Value *From, Value *To, |
| 3544 | const RootType &Root, |
| 3545 | const ShouldReplaceFn &ShouldReplace) { |
| 3546 | assert(From->getType() == To->getType()); |
| 3547 | |
| 3548 | unsigned Count = 0; |
| 3549 | for (Use &U : llvm::make_early_inc_range(Range: From->uses())) { |
| 3550 | auto *II = dyn_cast<IntrinsicInst>(Val: U.getUser()); |
| 3551 | if (II && II->getIntrinsicID() == Intrinsic::fake_use) |
| 3552 | continue; |
| 3553 | if (!ShouldReplace(Root, U)) |
| 3554 | continue; |
| 3555 | LLVM_DEBUG(dbgs() << "Replace dominated use of '" ; |
| 3556 | From->printAsOperand(dbgs()); |
| 3557 | dbgs() << "' with " << *To << " in " << *U.getUser() << "\n" ); |
| 3558 | U.set(To); |
| 3559 | ++Count; |
| 3560 | } |
| 3561 | return Count; |
| 3562 | } |
| 3563 | |
| 3564 | unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { |
| 3565 | assert(From->getType() == To->getType()); |
| 3566 | auto *BB = From->getParent(); |
| 3567 | unsigned Count = 0; |
| 3568 | |
| 3569 | for (Use &U : llvm::make_early_inc_range(Range: From->uses())) { |
| 3570 | auto *I = cast<Instruction>(Val: U.getUser()); |
| 3571 | if (I->getParent() == BB) |
| 3572 | continue; |
| 3573 | U.set(To); |
| 3574 | ++Count; |
| 3575 | } |
| 3576 | return Count; |
| 3577 | } |
| 3578 | |
| 3579 | unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
| 3580 | DominatorTree &DT, |
| 3581 | const BasicBlockEdge &Root) { |
| 3582 | auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { |
| 3583 | return DT.dominates(BBE: Root, U); |
| 3584 | }; |
| 3585 | return ::replaceDominatedUsesWith(From, To, Root, ShouldReplace: Dominates); |
| 3586 | } |
| 3587 | |
| 3588 | unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
| 3589 | DominatorTree &DT, |
| 3590 | const BasicBlock *BB) { |
| 3591 | auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { |
| 3592 | return DT.dominates(BB, U); |
| 3593 | }; |
| 3594 | return ::replaceDominatedUsesWith(From, To, Root: BB, ShouldReplace: Dominates); |
| 3595 | } |
| 3596 | |
| 3597 | unsigned llvm::replaceDominatedUsesWithIf( |
| 3598 | Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, |
| 3599 | function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { |
| 3600 | auto DominatesAndShouldReplace = |
| 3601 | [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { |
| 3602 | return DT.dominates(BBE: Root, U) && ShouldReplace(U, To); |
| 3603 | }; |
| 3604 | return ::replaceDominatedUsesWith(From, To, Root, ShouldReplace: DominatesAndShouldReplace); |
| 3605 | } |
| 3606 | |
| 3607 | unsigned llvm::replaceDominatedUsesWithIf( |
| 3608 | Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, |
| 3609 | function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { |
| 3610 | auto DominatesAndShouldReplace = [&DT, &ShouldReplace, |
| 3611 | To](const BasicBlock *BB, const Use &U) { |
| 3612 | return DT.dominates(BB, U) && ShouldReplace(U, To); |
| 3613 | }; |
| 3614 | return ::replaceDominatedUsesWith(From, To, Root: BB, ShouldReplace: DominatesAndShouldReplace); |
| 3615 | } |
| 3616 | |
| 3617 | bool llvm::callsGCLeafFunction(const CallBase *Call, |
| 3618 | const TargetLibraryInfo &TLI) { |
| 3619 | // Check if the function is specifically marked as a gc leaf function. |
| 3620 | if (Call->hasFnAttr(Kind: "gc-leaf-function" )) |
| 3621 | return true; |
| 3622 | if (const Function *F = Call->getCalledFunction()) { |
| 3623 | if (F->hasFnAttribute(Kind: "gc-leaf-function" )) |
| 3624 | return true; |
| 3625 | |
| 3626 | if (auto IID = F->getIntrinsicID()) { |
| 3627 | // Most LLVM intrinsics do not take safepoints. |
| 3628 | return IID != Intrinsic::experimental_gc_statepoint && |
| 3629 | IID != Intrinsic::experimental_deoptimize && |
| 3630 | IID != Intrinsic::memcpy_element_unordered_atomic && |
| 3631 | IID != Intrinsic::memmove_element_unordered_atomic; |
| 3632 | } |
| 3633 | } |
| 3634 | |
| 3635 | // Lib calls can be materialized by some passes, and won't be |
| 3636 | // marked as 'gc-leaf-function.' All available Libcalls are |
| 3637 | // GC-leaf. |
| 3638 | LibFunc LF; |
| 3639 | if (TLI.getLibFunc(CB: *Call, F&: LF)) { |
| 3640 | return TLI.has(F: LF); |
| 3641 | } |
| 3642 | |
| 3643 | return false; |
| 3644 | } |
| 3645 | |
| 3646 | void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, |
| 3647 | LoadInst &NewLI) { |
| 3648 | auto *NewTy = NewLI.getType(); |
| 3649 | |
| 3650 | // This only directly applies if the new type is also a pointer. |
| 3651 | if (NewTy->isPointerTy()) { |
| 3652 | NewLI.setMetadata(KindID: LLVMContext::MD_nonnull, Node: N); |
| 3653 | return; |
| 3654 | } |
| 3655 | |
| 3656 | // The only other translation we can do is to integral loads with !range |
| 3657 | // metadata. |
| 3658 | if (!NewTy->isIntegerTy()) |
| 3659 | return; |
| 3660 | |
| 3661 | MDBuilder MDB(NewLI.getContext()); |
| 3662 | const Value *Ptr = OldLI.getPointerOperand(); |
| 3663 | auto *ITy = cast<IntegerType>(Val: NewTy); |
| 3664 | auto *NullInt = ConstantExpr::getPtrToInt( |
| 3665 | C: ConstantPointerNull::get(T: cast<PointerType>(Val: Ptr->getType())), Ty: ITy); |
| 3666 | auto *NonNullInt = ConstantExpr::getAdd(C1: NullInt, C2: ConstantInt::get(Ty: ITy, V: 1)); |
| 3667 | NewLI.setMetadata(KindID: LLVMContext::MD_range, |
| 3668 | Node: MDB.createRange(Lo: NonNullInt, Hi: NullInt)); |
| 3669 | } |
| 3670 | |
| 3671 | void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, |
| 3672 | MDNode *N, LoadInst &NewLI) { |
| 3673 | auto *NewTy = NewLI.getType(); |
| 3674 | // Simply copy the metadata if the type did not change. |
| 3675 | if (NewTy == OldLI.getType()) { |
| 3676 | NewLI.setMetadata(KindID: LLVMContext::MD_range, Node: N); |
| 3677 | return; |
| 3678 | } |
| 3679 | |
| 3680 | // Give up unless it is converted to a pointer where there is a single very |
| 3681 | // valuable mapping we can do reliably. |
| 3682 | // FIXME: It would be nice to propagate this in more ways, but the type |
| 3683 | // conversions make it hard. |
| 3684 | if (!NewTy->isPointerTy()) |
| 3685 | return; |
| 3686 | |
| 3687 | unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); |
| 3688 | if (BitWidth == OldLI.getType()->getScalarSizeInBits() && |
| 3689 | !getConstantRangeFromMetadata(RangeMD: *N).contains(Val: APInt(BitWidth, 0))) { |
| 3690 | MDNode *NN = MDNode::get(Context&: OldLI.getContext(), MDs: {}); |
| 3691 | NewLI.setMetadata(KindID: LLVMContext::MD_nonnull, Node: NN); |
| 3692 | } |
| 3693 | } |
| 3694 | |
| 3695 | void llvm::dropDebugUsers(Instruction &I) { |
| 3696 | SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| 3697 | SmallVector<DbgVariableRecord *, 1> DPUsers; |
| 3698 | findDbgUsers(DbgInsts&: DbgUsers, V: &I, DbgVariableRecords: &DPUsers); |
| 3699 | for (auto *DII : DbgUsers) |
| 3700 | DII->eraseFromParent(); |
| 3701 | for (auto *DVR : DPUsers) |
| 3702 | DVR->eraseFromParent(); |
| 3703 | } |
| 3704 | |
| 3705 | void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, |
| 3706 | BasicBlock *BB) { |
| 3707 | // Since we are moving the instructions out of its basic block, we do not |
| 3708 | // retain their original debug locations (DILocations) and debug intrinsic |
| 3709 | // instructions. |
| 3710 | // |
| 3711 | // Doing so would degrade the debugging experience and adversely affect the |
| 3712 | // accuracy of profiling information. |
| 3713 | // |
| 3714 | // Currently, when hoisting the instructions, we take the following actions: |
| 3715 | // - Remove their debug intrinsic instructions. |
| 3716 | // - Set their debug locations to the values from the insertion point. |
| 3717 | // |
| 3718 | // As per PR39141 (comment #8), the more fundamental reason why the dbg.values |
| 3719 | // need to be deleted, is because there will not be any instructions with a |
| 3720 | // DILocation in either branch left after performing the transformation. We |
| 3721 | // can only insert a dbg.value after the two branches are joined again. |
| 3722 | // |
| 3723 | // See PR38762, PR39243 for more details. |
| 3724 | // |
| 3725 | // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to |
| 3726 | // encode predicated DIExpressions that yield different results on different |
| 3727 | // code paths. |
| 3728 | |
| 3729 | for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
| 3730 | Instruction *I = &*II; |
| 3731 | I->dropUBImplyingAttrsAndMetadata(); |
| 3732 | if (I->isUsedByMetadata()) |
| 3733 | dropDebugUsers(I&: *I); |
| 3734 | // RemoveDIs: drop debug-info too as the following code does. |
| 3735 | I->dropDbgRecords(); |
| 3736 | if (I->isDebugOrPseudoInst()) { |
| 3737 | // Remove DbgInfo and pseudo probe Intrinsics. |
| 3738 | II = I->eraseFromParent(); |
| 3739 | continue; |
| 3740 | } |
| 3741 | I->setDebugLoc(InsertPt->getDebugLoc()); |
| 3742 | ++II; |
| 3743 | } |
| 3744 | DomBlock->splice(ToIt: InsertPt->getIterator(), FromBB: BB, FromBeginIt: BB->begin(), |
| 3745 | FromEndIt: BB->getTerminator()->getIterator()); |
| 3746 | } |
| 3747 | |
| 3748 | DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, |
| 3749 | Type &Ty) { |
| 3750 | // Create integer constant expression. |
| 3751 | auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { |
| 3752 | const APInt &API = cast<ConstantInt>(Val: &CV)->getValue(); |
| 3753 | std::optional<int64_t> InitIntOpt = API.trySExtValue(); |
| 3754 | return InitIntOpt ? DIB.createConstantValueExpression( |
| 3755 | Val: static_cast<uint64_t>(*InitIntOpt)) |
| 3756 | : nullptr; |
| 3757 | }; |
| 3758 | |
| 3759 | if (isa<ConstantInt>(Val: C)) |
| 3760 | return createIntegerExpression(C); |
| 3761 | |
| 3762 | auto *FP = dyn_cast<ConstantFP>(Val: &C); |
| 3763 | if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { |
| 3764 | const APFloat &APF = FP->getValueAPF(); |
| 3765 | APInt const &API = APF.bitcastToAPInt(); |
| 3766 | if (auto Temp = API.getZExtValue()) |
| 3767 | return DIB.createConstantValueExpression(Val: static_cast<uint64_t>(Temp)); |
| 3768 | return DIB.createConstantValueExpression(Val: *API.getRawData()); |
| 3769 | } |
| 3770 | |
| 3771 | if (!Ty.isPointerTy()) |
| 3772 | return nullptr; |
| 3773 | |
| 3774 | if (isa<ConstantPointerNull>(Val: C)) |
| 3775 | return DIB.createConstantValueExpression(Val: 0); |
| 3776 | |
| 3777 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: &C)) |
| 3778 | if (CE->getOpcode() == Instruction::IntToPtr) { |
| 3779 | const Value *V = CE->getOperand(i_nocapture: 0); |
| 3780 | if (auto CI = dyn_cast_or_null<ConstantInt>(Val: V)) |
| 3781 | return createIntegerExpression(*CI); |
| 3782 | } |
| 3783 | return nullptr; |
| 3784 | } |
| 3785 | |
| 3786 | void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { |
| 3787 | auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { |
| 3788 | for (auto *Op : Set) { |
| 3789 | auto I = Mapping.find(Op); |
| 3790 | if (I != Mapping.end()) |
| 3791 | DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); |
| 3792 | } |
| 3793 | }; |
| 3794 | auto RemapAssignAddress = [&Mapping](auto *DA) { |
| 3795 | auto I = Mapping.find(DA->getAddress()); |
| 3796 | if (I != Mapping.end()) |
| 3797 | DA->setAddress(I->second); |
| 3798 | }; |
| 3799 | if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Val: Inst)) |
| 3800 | RemapDebugOperands(DVI, DVI->location_ops()); |
| 3801 | if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Val: Inst)) |
| 3802 | RemapAssignAddress(DAI); |
| 3803 | for (DbgVariableRecord &DVR : filterDbgVars(R: Inst->getDbgRecordRange())) { |
| 3804 | RemapDebugOperands(&DVR, DVR.location_ops()); |
| 3805 | if (DVR.isDbgAssign()) |
| 3806 | RemapAssignAddress(&DVR); |
| 3807 | } |
| 3808 | } |
| 3809 | |
| 3810 | namespace { |
| 3811 | |
| 3812 | /// A potential constituent of a bitreverse or bswap expression. See |
| 3813 | /// collectBitParts for a fuller explanation. |
| 3814 | struct BitPart { |
| 3815 | BitPart(Value *P, unsigned BW) : Provider(P) { |
| 3816 | Provenance.resize(N: BW); |
| 3817 | } |
| 3818 | |
| 3819 | /// The Value that this is a bitreverse/bswap of. |
| 3820 | Value *Provider; |
| 3821 | |
| 3822 | /// The "provenance" of each bit. Provenance[A] = B means that bit A |
| 3823 | /// in Provider becomes bit B in the result of this expression. |
| 3824 | SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. |
| 3825 | |
| 3826 | enum { Unset = -1 }; |
| 3827 | }; |
| 3828 | |
| 3829 | } // end anonymous namespace |
| 3830 | |
| 3831 | /// Analyze the specified subexpression and see if it is capable of providing |
| 3832 | /// pieces of a bswap or bitreverse. The subexpression provides a potential |
| 3833 | /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in |
| 3834 | /// the output of the expression came from a corresponding bit in some other |
| 3835 | /// value. This function is recursive, and the end result is a mapping of |
| 3836 | /// bitnumber to bitnumber. It is the caller's responsibility to validate that |
| 3837 | /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. |
| 3838 | /// |
| 3839 | /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know |
| 3840 | /// that the expression deposits the low byte of %X into the high byte of the |
| 3841 | /// result and that all other bits are zero. This expression is accepted and a |
| 3842 | /// BitPart is returned with Provider set to %X and Provenance[24-31] set to |
| 3843 | /// [0-7]. |
| 3844 | /// |
| 3845 | /// For vector types, all analysis is performed at the per-element level. No |
| 3846 | /// cross-element analysis is supported (shuffle/insertion/reduction), and all |
| 3847 | /// constant masks must be splatted across all elements. |
| 3848 | /// |
| 3849 | /// To avoid revisiting values, the BitPart results are memoized into the |
| 3850 | /// provided map. To avoid unnecessary copying of BitParts, BitParts are |
| 3851 | /// constructed in-place in the \c BPS map. Because of this \c BPS needs to |
| 3852 | /// store BitParts objects, not pointers. As we need the concept of a nullptr |
| 3853 | /// BitParts (Value has been analyzed and the analysis failed), we an Optional |
| 3854 | /// type instead to provide the same functionality. |
| 3855 | /// |
| 3856 | /// Because we pass around references into \c BPS, we must use a container that |
| 3857 | /// does not invalidate internal references (std::map instead of DenseMap). |
| 3858 | static const std::optional<BitPart> & |
| 3859 | collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, |
| 3860 | std::map<Value *, std::optional<BitPart>> &BPS, int Depth, |
| 3861 | bool &FoundRoot) { |
| 3862 | auto [I, Inserted] = BPS.try_emplace(k: V); |
| 3863 | if (!Inserted) |
| 3864 | return I->second; |
| 3865 | |
| 3866 | auto &Result = I->second; |
| 3867 | auto BitWidth = V->getType()->getScalarSizeInBits(); |
| 3868 | |
| 3869 | // Can't do integer/elements > 128 bits. |
| 3870 | if (BitWidth > 128) |
| 3871 | return Result; |
| 3872 | |
| 3873 | // Prevent stack overflow by limiting the recursion depth |
| 3874 | if (Depth == BitPartRecursionMaxDepth) { |
| 3875 | LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n" ); |
| 3876 | return Result; |
| 3877 | } |
| 3878 | |
| 3879 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 3880 | Value *X, *Y; |
| 3881 | const APInt *C; |
| 3882 | |
| 3883 | // If this is an or instruction, it may be an inner node of the bswap. |
| 3884 | if (match(V, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y)))) { |
| 3885 | // Check we have both sources and they are from the same provider. |
| 3886 | const auto &A = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 3887 | Depth: Depth + 1, FoundRoot); |
| 3888 | if (!A || !A->Provider) |
| 3889 | return Result; |
| 3890 | |
| 3891 | const auto &B = collectBitParts(V: Y, MatchBSwaps, MatchBitReversals, BPS, |
| 3892 | Depth: Depth + 1, FoundRoot); |
| 3893 | if (!B || A->Provider != B->Provider) |
| 3894 | return Result; |
| 3895 | |
| 3896 | // Try and merge the two together. |
| 3897 | Result = BitPart(A->Provider, BitWidth); |
| 3898 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { |
| 3899 | if (A->Provenance[BitIdx] != BitPart::Unset && |
| 3900 | B->Provenance[BitIdx] != BitPart::Unset && |
| 3901 | A->Provenance[BitIdx] != B->Provenance[BitIdx]) |
| 3902 | return Result = std::nullopt; |
| 3903 | |
| 3904 | if (A->Provenance[BitIdx] == BitPart::Unset) |
| 3905 | Result->Provenance[BitIdx] = B->Provenance[BitIdx]; |
| 3906 | else |
| 3907 | Result->Provenance[BitIdx] = A->Provenance[BitIdx]; |
| 3908 | } |
| 3909 | |
| 3910 | return Result; |
| 3911 | } |
| 3912 | |
| 3913 | // If this is a logical shift by a constant, recurse then shift the result. |
| 3914 | if (match(V, P: m_LogicalShift(L: m_Value(V&: X), R: m_APInt(Res&: C)))) { |
| 3915 | const APInt &BitShift = *C; |
| 3916 | |
| 3917 | // Ensure the shift amount is defined. |
| 3918 | if (BitShift.uge(RHS: BitWidth)) |
| 3919 | return Result; |
| 3920 | |
| 3921 | // For bswap-only, limit shift amounts to whole bytes, for an early exit. |
| 3922 | if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) |
| 3923 | return Result; |
| 3924 | |
| 3925 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 3926 | Depth: Depth + 1, FoundRoot); |
| 3927 | if (!Res) |
| 3928 | return Result; |
| 3929 | Result = Res; |
| 3930 | |
| 3931 | // Perform the "shift" on BitProvenance. |
| 3932 | auto &P = Result->Provenance; |
| 3933 | if (I->getOpcode() == Instruction::Shl) { |
| 3934 | P.erase(CS: std::prev(x: P.end(), n: BitShift.getZExtValue()), CE: P.end()); |
| 3935 | P.insert(I: P.begin(), NumToInsert: BitShift.getZExtValue(), Elt: BitPart::Unset); |
| 3936 | } else { |
| 3937 | P.erase(CS: P.begin(), CE: std::next(x: P.begin(), n: BitShift.getZExtValue())); |
| 3938 | P.insert(I: P.end(), NumToInsert: BitShift.getZExtValue(), Elt: BitPart::Unset); |
| 3939 | } |
| 3940 | |
| 3941 | return Result; |
| 3942 | } |
| 3943 | |
| 3944 | // If this is a logical 'and' with a mask that clears bits, recurse then |
| 3945 | // unset the appropriate bits. |
| 3946 | if (match(V, P: m_And(L: m_Value(V&: X), R: m_APInt(Res&: C)))) { |
| 3947 | const APInt &AndMask = *C; |
| 3948 | |
| 3949 | // Check that the mask allows a multiple of 8 bits for a bswap, for an |
| 3950 | // early exit. |
| 3951 | unsigned NumMaskedBits = AndMask.popcount(); |
| 3952 | if (!MatchBitReversals && (NumMaskedBits % 8) != 0) |
| 3953 | return Result; |
| 3954 | |
| 3955 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 3956 | Depth: Depth + 1, FoundRoot); |
| 3957 | if (!Res) |
| 3958 | return Result; |
| 3959 | Result = Res; |
| 3960 | |
| 3961 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| 3962 | // If the AndMask is zero for this bit, clear the bit. |
| 3963 | if (AndMask[BitIdx] == 0) |
| 3964 | Result->Provenance[BitIdx] = BitPart::Unset; |
| 3965 | return Result; |
| 3966 | } |
| 3967 | |
| 3968 | // If this is a zext instruction zero extend the result. |
| 3969 | if (match(V, P: m_ZExt(Op: m_Value(V&: X)))) { |
| 3970 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 3971 | Depth: Depth + 1, FoundRoot); |
| 3972 | if (!Res) |
| 3973 | return Result; |
| 3974 | |
| 3975 | Result = BitPart(Res->Provider, BitWidth); |
| 3976 | auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); |
| 3977 | for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) |
| 3978 | Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; |
| 3979 | for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) |
| 3980 | Result->Provenance[BitIdx] = BitPart::Unset; |
| 3981 | return Result; |
| 3982 | } |
| 3983 | |
| 3984 | // If this is a truncate instruction, extract the lower bits. |
| 3985 | if (match(V, P: m_Trunc(Op: m_Value(V&: X)))) { |
| 3986 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 3987 | Depth: Depth + 1, FoundRoot); |
| 3988 | if (!Res) |
| 3989 | return Result; |
| 3990 | |
| 3991 | Result = BitPart(Res->Provider, BitWidth); |
| 3992 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| 3993 | Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; |
| 3994 | return Result; |
| 3995 | } |
| 3996 | |
| 3997 | // BITREVERSE - most likely due to us previous matching a partial |
| 3998 | // bitreverse. |
| 3999 | if (match(V, P: m_BitReverse(Op0: m_Value(V&: X)))) { |
| 4000 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 4001 | Depth: Depth + 1, FoundRoot); |
| 4002 | if (!Res) |
| 4003 | return Result; |
| 4004 | |
| 4005 | Result = BitPart(Res->Provider, BitWidth); |
| 4006 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| 4007 | Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; |
| 4008 | return Result; |
| 4009 | } |
| 4010 | |
| 4011 | // BSWAP - most likely due to us previous matching a partial bswap. |
| 4012 | if (match(V, P: m_BSwap(Op0: m_Value(V&: X)))) { |
| 4013 | const auto &Res = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 4014 | Depth: Depth + 1, FoundRoot); |
| 4015 | if (!Res) |
| 4016 | return Result; |
| 4017 | |
| 4018 | unsigned ByteWidth = BitWidth / 8; |
| 4019 | Result = BitPart(Res->Provider, BitWidth); |
| 4020 | for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { |
| 4021 | unsigned ByteBitOfs = ByteIdx * 8; |
| 4022 | for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) |
| 4023 | Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = |
| 4024 | Res->Provenance[ByteBitOfs + BitIdx]; |
| 4025 | } |
| 4026 | return Result; |
| 4027 | } |
| 4028 | |
| 4029 | // Funnel 'double' shifts take 3 operands, 2 inputs and the shift |
| 4030 | // amount (modulo). |
| 4031 | // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
| 4032 | // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| 4033 | if (match(V, P: m_FShl(Op0: m_Value(V&: X), Op1: m_Value(V&: Y), Op2: m_APInt(Res&: C))) || |
| 4034 | match(V, P: m_FShr(Op0: m_Value(V&: X), Op1: m_Value(V&: Y), Op2: m_APInt(Res&: C)))) { |
| 4035 | // We can treat fshr as a fshl by flipping the modulo amount. |
| 4036 | unsigned ModAmt = C->urem(RHS: BitWidth); |
| 4037 | if (cast<IntrinsicInst>(Val: I)->getIntrinsicID() == Intrinsic::fshr) |
| 4038 | ModAmt = BitWidth - ModAmt; |
| 4039 | |
| 4040 | // For bswap-only, limit shift amounts to whole bytes, for an early exit. |
| 4041 | if (!MatchBitReversals && (ModAmt % 8) != 0) |
| 4042 | return Result; |
| 4043 | |
| 4044 | // Check we have both sources and they are from the same provider. |
| 4045 | const auto &LHS = collectBitParts(V: X, MatchBSwaps, MatchBitReversals, BPS, |
| 4046 | Depth: Depth + 1, FoundRoot); |
| 4047 | if (!LHS || !LHS->Provider) |
| 4048 | return Result; |
| 4049 | |
| 4050 | const auto &RHS = collectBitParts(V: Y, MatchBSwaps, MatchBitReversals, BPS, |
| 4051 | Depth: Depth + 1, FoundRoot); |
| 4052 | if (!RHS || LHS->Provider != RHS->Provider) |
| 4053 | return Result; |
| 4054 | |
| 4055 | unsigned StartBitRHS = BitWidth - ModAmt; |
| 4056 | Result = BitPart(LHS->Provider, BitWidth); |
| 4057 | for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) |
| 4058 | Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; |
| 4059 | for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) |
| 4060 | Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; |
| 4061 | return Result; |
| 4062 | } |
| 4063 | } |
| 4064 | |
| 4065 | // If we've already found a root input value then we're never going to merge |
| 4066 | // these back together. |
| 4067 | if (FoundRoot) |
| 4068 | return Result; |
| 4069 | |
| 4070 | // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must |
| 4071 | // be the root input value to the bswap/bitreverse. |
| 4072 | FoundRoot = true; |
| 4073 | Result = BitPart(V, BitWidth); |
| 4074 | for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| 4075 | Result->Provenance[BitIdx] = BitIdx; |
| 4076 | return Result; |
| 4077 | } |
| 4078 | |
| 4079 | static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, |
| 4080 | unsigned BitWidth) { |
| 4081 | if (From % 8 != To % 8) |
| 4082 | return false; |
| 4083 | // Convert from bit indices to byte indices and check for a byte reversal. |
| 4084 | From >>= 3; |
| 4085 | To >>= 3; |
| 4086 | BitWidth >>= 3; |
| 4087 | return From == BitWidth - To - 1; |
| 4088 | } |
| 4089 | |
| 4090 | static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, |
| 4091 | unsigned BitWidth) { |
| 4092 | return From == BitWidth - To - 1; |
| 4093 | } |
| 4094 | |
| 4095 | bool llvm::recognizeBSwapOrBitReverseIdiom( |
| 4096 | Instruction *I, bool MatchBSwaps, bool MatchBitReversals, |
| 4097 | SmallVectorImpl<Instruction *> &InsertedInsts) { |
| 4098 | if (!match(V: I, P: m_Or(L: m_Value(), R: m_Value())) && |
| 4099 | !match(V: I, P: m_FShl(Op0: m_Value(), Op1: m_Value(), Op2: m_Value())) && |
| 4100 | !match(V: I, P: m_FShr(Op0: m_Value(), Op1: m_Value(), Op2: m_Value())) && |
| 4101 | !match(V: I, P: m_BSwap(Op0: m_Value()))) |
| 4102 | return false; |
| 4103 | if (!MatchBSwaps && !MatchBitReversals) |
| 4104 | return false; |
| 4105 | Type *ITy = I->getType(); |
| 4106 | if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() == 1 || |
| 4107 | ITy->getScalarSizeInBits() > 128) |
| 4108 | return false; // Can't do integer/elements > 128 bits. |
| 4109 | |
| 4110 | // Try to find all the pieces corresponding to the bswap. |
| 4111 | bool FoundRoot = false; |
| 4112 | std::map<Value *, std::optional<BitPart>> BPS; |
| 4113 | const auto &Res = |
| 4114 | collectBitParts(V: I, MatchBSwaps, MatchBitReversals, BPS, Depth: 0, FoundRoot); |
| 4115 | if (!Res) |
| 4116 | return false; |
| 4117 | ArrayRef<int8_t> BitProvenance = Res->Provenance; |
| 4118 | assert(all_of(BitProvenance, |
| 4119 | [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && |
| 4120 | "Illegal bit provenance index" ); |
| 4121 | |
| 4122 | // If the upper bits are zero, then attempt to perform as a truncated op. |
| 4123 | Type *DemandedTy = ITy; |
| 4124 | if (BitProvenance.back() == BitPart::Unset) { |
| 4125 | while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) |
| 4126 | BitProvenance = BitProvenance.drop_back(); |
| 4127 | if (BitProvenance.empty()) |
| 4128 | return false; // TODO - handle null value? |
| 4129 | DemandedTy = Type::getIntNTy(C&: I->getContext(), N: BitProvenance.size()); |
| 4130 | if (auto *IVecTy = dyn_cast<VectorType>(Val: ITy)) |
| 4131 | DemandedTy = VectorType::get(ElementType: DemandedTy, Other: IVecTy); |
| 4132 | } |
| 4133 | |
| 4134 | // Check BitProvenance hasn't found a source larger than the result type. |
| 4135 | unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); |
| 4136 | if (DemandedBW > ITy->getScalarSizeInBits()) |
| 4137 | return false; |
| 4138 | |
| 4139 | // Now, is the bit permutation correct for a bswap or a bitreverse? We can |
| 4140 | // only byteswap values with an even number of bytes. |
| 4141 | APInt DemandedMask = APInt::getAllOnes(numBits: DemandedBW); |
| 4142 | bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; |
| 4143 | bool OKForBitReverse = MatchBitReversals; |
| 4144 | for (unsigned BitIdx = 0; |
| 4145 | (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { |
| 4146 | if (BitProvenance[BitIdx] == BitPart::Unset) { |
| 4147 | DemandedMask.clearBit(BitPosition: BitIdx); |
| 4148 | continue; |
| 4149 | } |
| 4150 | OKForBSwap &= bitTransformIsCorrectForBSwap(From: BitProvenance[BitIdx], To: BitIdx, |
| 4151 | BitWidth: DemandedBW); |
| 4152 | OKForBitReverse &= bitTransformIsCorrectForBitReverse(From: BitProvenance[BitIdx], |
| 4153 | To: BitIdx, BitWidth: DemandedBW); |
| 4154 | } |
| 4155 | |
| 4156 | Intrinsic::ID Intrin; |
| 4157 | if (OKForBSwap) |
| 4158 | Intrin = Intrinsic::bswap; |
| 4159 | else if (OKForBitReverse) |
| 4160 | Intrin = Intrinsic::bitreverse; |
| 4161 | else |
| 4162 | return false; |
| 4163 | |
| 4164 | Function *F = |
| 4165 | Intrinsic::getOrInsertDeclaration(M: I->getModule(), id: Intrin, Tys: DemandedTy); |
| 4166 | Value *Provider = Res->Provider; |
| 4167 | |
| 4168 | // We may need to truncate the provider. |
| 4169 | if (DemandedTy != Provider->getType()) { |
| 4170 | auto *Trunc = |
| 4171 | CastInst::CreateIntegerCast(S: Provider, Ty: DemandedTy, isSigned: false, Name: "trunc" , InsertBefore: I->getIterator()); |
| 4172 | InsertedInsts.push_back(Elt: Trunc); |
| 4173 | Provider = Trunc; |
| 4174 | } |
| 4175 | |
| 4176 | Instruction *Result = CallInst::Create(Func: F, Args: Provider, NameStr: "rev" , InsertBefore: I->getIterator()); |
| 4177 | InsertedInsts.push_back(Elt: Result); |
| 4178 | |
| 4179 | if (!DemandedMask.isAllOnes()) { |
| 4180 | auto *Mask = ConstantInt::get(Ty: DemandedTy, V: DemandedMask); |
| 4181 | Result = BinaryOperator::Create(Op: Instruction::And, S1: Result, S2: Mask, Name: "mask" , InsertBefore: I->getIterator()); |
| 4182 | InsertedInsts.push_back(Elt: Result); |
| 4183 | } |
| 4184 | |
| 4185 | // We may need to zeroextend back to the result type. |
| 4186 | if (ITy != Result->getType()) { |
| 4187 | auto *ExtInst = CastInst::CreateIntegerCast(S: Result, Ty: ITy, isSigned: false, Name: "zext" , InsertBefore: I->getIterator()); |
| 4188 | InsertedInsts.push_back(Elt: ExtInst); |
| 4189 | } |
| 4190 | |
| 4191 | return true; |
| 4192 | } |
| 4193 | |
| 4194 | // CodeGen has special handling for some string functions that may replace |
| 4195 | // them with target-specific intrinsics. Since that'd skip our interceptors |
| 4196 | // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, |
| 4197 | // we mark affected calls as NoBuiltin, which will disable optimization |
| 4198 | // in CodeGen. |
| 4199 | void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( |
| 4200 | CallInst *CI, const TargetLibraryInfo *TLI) { |
| 4201 | Function *F = CI->getCalledFunction(); |
| 4202 | LibFunc Func; |
| 4203 | if (F && !F->hasLocalLinkage() && F->hasName() && |
| 4204 | TLI->getLibFunc(funcName: F->getName(), F&: Func) && TLI->hasOptimizedCodeGen(F: Func) && |
| 4205 | !F->doesNotAccessMemory()) |
| 4206 | CI->addFnAttr(Kind: Attribute::NoBuiltin); |
| 4207 | } |
| 4208 | |
| 4209 | bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { |
| 4210 | const auto *Op = I->getOperand(i: OpIdx); |
| 4211 | // We can't have a PHI with a metadata type. |
| 4212 | if (Op->getType()->isMetadataTy()) |
| 4213 | return false; |
| 4214 | |
| 4215 | // swifterror pointers can only be used by a load, store, or as a swifterror |
| 4216 | // argument; swifterror pointers are not allowed to be used in select or phi |
| 4217 | // instructions. |
| 4218 | if (Op->isSwiftError()) |
| 4219 | return false; |
| 4220 | |
| 4221 | // Early exit. |
| 4222 | if (!isa<Constant, InlineAsm>(Val: Op)) |
| 4223 | return true; |
| 4224 | |
| 4225 | switch (I->getOpcode()) { |
| 4226 | default: |
| 4227 | return true; |
| 4228 | case Instruction::Call: |
| 4229 | case Instruction::Invoke: { |
| 4230 | const auto &CB = cast<CallBase>(Val: *I); |
| 4231 | |
| 4232 | // Can't handle inline asm. Skip it. |
| 4233 | if (CB.isInlineAsm()) |
| 4234 | return false; |
| 4235 | |
| 4236 | // Constant bundle operands may need to retain their constant-ness for |
| 4237 | // correctness. |
| 4238 | if (CB.isBundleOperand(Idx: OpIdx)) |
| 4239 | return false; |
| 4240 | |
| 4241 | if (OpIdx < CB.arg_size()) { |
| 4242 | // Some variadic intrinsics require constants in the variadic arguments, |
| 4243 | // which currently aren't markable as immarg. |
| 4244 | if (isa<IntrinsicInst>(Val: CB) && |
| 4245 | OpIdx >= CB.getFunctionType()->getNumParams()) { |
| 4246 | // This is known to be OK for stackmap. |
| 4247 | return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; |
| 4248 | } |
| 4249 | |
| 4250 | // gcroot is a special case, since it requires a constant argument which |
| 4251 | // isn't also required to be a simple ConstantInt. |
| 4252 | if (CB.getIntrinsicID() == Intrinsic::gcroot) |
| 4253 | return false; |
| 4254 | |
| 4255 | // Some intrinsic operands are required to be immediates. |
| 4256 | return !CB.paramHasAttr(ArgNo: OpIdx, Kind: Attribute::ImmArg); |
| 4257 | } |
| 4258 | |
| 4259 | // It is never allowed to replace the call argument to an intrinsic, but it |
| 4260 | // may be possible for a call. |
| 4261 | return !isa<IntrinsicInst>(Val: CB); |
| 4262 | } |
| 4263 | case Instruction::ShuffleVector: |
| 4264 | // Shufflevector masks are constant. |
| 4265 | return OpIdx != 2; |
| 4266 | case Instruction::Switch: |
| 4267 | case Instruction::ExtractValue: |
| 4268 | // All operands apart from the first are constant. |
| 4269 | return OpIdx == 0; |
| 4270 | case Instruction::InsertValue: |
| 4271 | // All operands apart from the first and the second are constant. |
| 4272 | return OpIdx < 2; |
| 4273 | case Instruction::Alloca: |
| 4274 | // Static allocas (constant size in the entry block) are handled by |
| 4275 | // prologue/epilogue insertion so they're free anyway. We definitely don't |
| 4276 | // want to make them non-constant. |
| 4277 | return !cast<AllocaInst>(Val: I)->isStaticAlloca(); |
| 4278 | case Instruction::GetElementPtr: |
| 4279 | if (OpIdx == 0) |
| 4280 | return true; |
| 4281 | gep_type_iterator It = gep_type_begin(GEP: I); |
| 4282 | for (auto E = std::next(x: It, n: OpIdx); It != E; ++It) |
| 4283 | if (It.isStruct()) |
| 4284 | return false; |
| 4285 | return true; |
| 4286 | } |
| 4287 | } |
| 4288 | |
| 4289 | Value *llvm::invertCondition(Value *Condition) { |
| 4290 | // First: Check if it's a constant |
| 4291 | if (Constant *C = dyn_cast<Constant>(Val: Condition)) |
| 4292 | return ConstantExpr::getNot(C); |
| 4293 | |
| 4294 | // Second: If the condition is already inverted, return the original value |
| 4295 | Value *NotCondition; |
| 4296 | if (match(V: Condition, P: m_Not(V: m_Value(V&: NotCondition)))) |
| 4297 | return NotCondition; |
| 4298 | |
| 4299 | BasicBlock *Parent = nullptr; |
| 4300 | Instruction *Inst = dyn_cast<Instruction>(Val: Condition); |
| 4301 | if (Inst) |
| 4302 | Parent = Inst->getParent(); |
| 4303 | else if (Argument *Arg = dyn_cast<Argument>(Val: Condition)) |
| 4304 | Parent = &Arg->getParent()->getEntryBlock(); |
| 4305 | assert(Parent && "Unsupported condition to invert" ); |
| 4306 | |
| 4307 | // Third: Check all the users for an invert |
| 4308 | for (User *U : Condition->users()) |
| 4309 | if (Instruction *I = dyn_cast<Instruction>(Val: U)) |
| 4310 | if (I->getParent() == Parent && match(V: I, P: m_Not(V: m_Specific(V: Condition)))) |
| 4311 | return I; |
| 4312 | |
| 4313 | // Last option: Create a new instruction |
| 4314 | auto *Inverted = |
| 4315 | BinaryOperator::CreateNot(Op: Condition, Name: Condition->getName() + ".inv" ); |
| 4316 | if (Inst && !isa<PHINode>(Val: Inst)) |
| 4317 | Inverted->insertAfter(InsertPos: Inst->getIterator()); |
| 4318 | else |
| 4319 | Inverted->insertBefore(InsertPos: Parent->getFirstInsertionPt()); |
| 4320 | return Inverted; |
| 4321 | } |
| 4322 | |
| 4323 | bool llvm::inferAttributesFromOthers(Function &F) { |
| 4324 | // Note: We explicitly check for attributes rather than using cover functions |
| 4325 | // because some of the cover functions include the logic being implemented. |
| 4326 | |
| 4327 | bool Changed = false; |
| 4328 | // readnone + not convergent implies nosync |
| 4329 | if (!F.hasFnAttribute(Kind: Attribute::NoSync) && |
| 4330 | F.doesNotAccessMemory() && !F.isConvergent()) { |
| 4331 | F.setNoSync(); |
| 4332 | Changed = true; |
| 4333 | } |
| 4334 | |
| 4335 | // readonly implies nofree |
| 4336 | if (!F.hasFnAttribute(Kind: Attribute::NoFree) && F.onlyReadsMemory()) { |
| 4337 | F.setDoesNotFreeMemory(); |
| 4338 | Changed = true; |
| 4339 | } |
| 4340 | |
| 4341 | // willreturn implies mustprogress |
| 4342 | if (!F.hasFnAttribute(Kind: Attribute::MustProgress) && F.willReturn()) { |
| 4343 | F.setMustProgress(); |
| 4344 | Changed = true; |
| 4345 | } |
| 4346 | |
| 4347 | // TODO: There are a bunch of cases of restrictive memory effects we |
| 4348 | // can infer by inspecting arguments of argmemonly-ish functions. |
| 4349 | |
| 4350 | return Changed; |
| 4351 | } |
| 4352 | |
| 4353 | void OverflowTracking::mergeFlags(Instruction &I) { |
| 4354 | #ifndef NDEBUG |
| 4355 | if (Opcode) |
| 4356 | assert(Opcode == I.getOpcode() && |
| 4357 | "can only use mergeFlags on instructions with matching opcodes" ); |
| 4358 | else |
| 4359 | Opcode = I.getOpcode(); |
| 4360 | #endif |
| 4361 | if (isa<OverflowingBinaryOperator>(Val: &I)) { |
| 4362 | HasNUW &= I.hasNoUnsignedWrap(); |
| 4363 | HasNSW &= I.hasNoSignedWrap(); |
| 4364 | } |
| 4365 | if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(Val: &I)) |
| 4366 | IsDisjoint &= DisjointOp->isDisjoint(); |
| 4367 | } |
| 4368 | |
| 4369 | void OverflowTracking::applyFlags(Instruction &I) { |
| 4370 | I.clearSubclassOptionalData(); |
| 4371 | if (I.getOpcode() == Instruction::Add || |
| 4372 | (I.getOpcode() == Instruction::Mul && AllKnownNonZero)) { |
| 4373 | if (HasNUW) |
| 4374 | I.setHasNoUnsignedWrap(); |
| 4375 | if (HasNSW && (AllKnownNonNegative || HasNUW)) |
| 4376 | I.setHasNoSignedWrap(); |
| 4377 | } |
| 4378 | if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(Val: &I)) |
| 4379 | DisjointOp->setIsDisjoint(IsDisjoint); |
| 4380 | } |
| 4381 | |