1 | //===- LoopPeel.cpp -------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Loop Peeling Utilities. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "llvm/Transforms/Utils/LoopPeel.h" |
13 | #include "llvm/ADT/DenseMap.h" |
14 | #include "llvm/ADT/SmallVector.h" |
15 | #include "llvm/ADT/Statistic.h" |
16 | #include "llvm/Analysis/Loads.h" |
17 | #include "llvm/Analysis/LoopInfo.h" |
18 | #include "llvm/Analysis/LoopIterator.h" |
19 | #include "llvm/Analysis/ScalarEvolution.h" |
20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
21 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
22 | #include "llvm/Analysis/TargetTransformInfo.h" |
23 | #include "llvm/IR/BasicBlock.h" |
24 | #include "llvm/IR/Dominators.h" |
25 | #include "llvm/IR/Function.h" |
26 | #include "llvm/IR/InstrTypes.h" |
27 | #include "llvm/IR/Instruction.h" |
28 | #include "llvm/IR/Instructions.h" |
29 | #include "llvm/IR/LLVMContext.h" |
30 | #include "llvm/IR/MDBuilder.h" |
31 | #include "llvm/IR/PatternMatch.h" |
32 | #include "llvm/IR/ProfDataUtils.h" |
33 | #include "llvm/Support/Casting.h" |
34 | #include "llvm/Support/CommandLine.h" |
35 | #include "llvm/Support/Debug.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
38 | #include "llvm/Transforms/Utils/Cloning.h" |
39 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
40 | #include "llvm/Transforms/Utils/LoopUtils.h" |
41 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
42 | #include "llvm/Transforms/Utils/ValueMapper.h" |
43 | #include <algorithm> |
44 | #include <cassert> |
45 | #include <cstdint> |
46 | #include <optional> |
47 | |
48 | using namespace llvm; |
49 | using namespace llvm::PatternMatch; |
50 | using namespace llvm::SCEVPatternMatch; |
51 | |
52 | #define DEBUG_TYPE "loop-peel" |
53 | |
54 | STATISTIC(NumPeeled, "Number of loops peeled" ); |
55 | STATISTIC(NumPeeledEnd, "Number of loops peeled from end" ); |
56 | |
57 | static cl::opt<unsigned> UnrollPeelCount( |
58 | "unroll-peel-count" , cl::Hidden, |
59 | cl::desc("Set the unroll peeling count, for testing purposes" )); |
60 | |
61 | static cl::opt<bool> |
62 | UnrollAllowPeeling("unroll-allow-peeling" , cl::init(Val: true), cl::Hidden, |
63 | cl::desc("Allows loops to be peeled when the dynamic " |
64 | "trip count is known to be low." )); |
65 | |
66 | static cl::opt<bool> |
67 | UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling" , |
68 | cl::init(Val: false), cl::Hidden, |
69 | cl::desc("Allows loop nests to be peeled." )); |
70 | |
71 | static cl::opt<unsigned> UnrollPeelMaxCount( |
72 | "unroll-peel-max-count" , cl::init(Val: 7), cl::Hidden, |
73 | cl::desc("Max average trip count which will cause loop peeling." )); |
74 | |
75 | static cl::opt<unsigned> UnrollForcePeelCount( |
76 | "unroll-force-peel-count" , cl::init(Val: 0), cl::Hidden, |
77 | cl::desc("Force a peel count regardless of profiling information." )); |
78 | |
79 | static cl::opt<bool> DisableAdvancedPeeling( |
80 | "disable-advanced-peeling" , cl::init(Val: false), cl::Hidden, |
81 | cl::desc( |
82 | "Disable advance peeling. Issues for convergent targets (D134803)." )); |
83 | |
84 | static const char *PeeledCountMetaData = "llvm.loop.peeled.count" ; |
85 | |
86 | // Check whether we are capable of peeling this loop. |
87 | bool llvm::canPeel(const Loop *L) { |
88 | // Make sure the loop is in simplified form |
89 | if (!L->isLoopSimplifyForm()) |
90 | return false; |
91 | if (!DisableAdvancedPeeling) |
92 | return true; |
93 | |
94 | SmallVector<BasicBlock *, 4> Exits; |
95 | L->getUniqueNonLatchExitBlocks(ExitBlocks&: Exits); |
96 | // The latch must either be the only exiting block or all non-latch exit |
97 | // blocks have either a deopt or unreachable terminator or compose a chain of |
98 | // blocks where the last one is either deopt or unreachable terminated. Both |
99 | // deopt and unreachable terminators are a strong indication they are not |
100 | // taken. Note that this is a profitability check, not a legality check. Also |
101 | // note that LoopPeeling currently can only update the branch weights of latch |
102 | // blocks and branch weights to blocks with deopt or unreachable do not need |
103 | // updating. |
104 | return llvm::all_of(Range&: Exits, P: IsBlockFollowedByDeoptOrUnreachable); |
105 | } |
106 | |
107 | namespace { |
108 | |
109 | // As a loop is peeled, it may be the case that Phi nodes become |
110 | // loop-invariant (ie, known because there is only one choice). |
111 | // For example, consider the following function: |
112 | // void g(int); |
113 | // void binary() { |
114 | // int x = 0; |
115 | // int y = 0; |
116 | // int a = 0; |
117 | // for(int i = 0; i <100000; ++i) { |
118 | // g(x); |
119 | // x = y; |
120 | // g(a); |
121 | // y = a + 1; |
122 | // a = 5; |
123 | // } |
124 | // } |
125 | // Peeling 3 iterations is beneficial because the values for x, y and a |
126 | // become known. The IR for this loop looks something like the following: |
127 | // |
128 | // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ] |
129 | // %a = phi i32 [ 0, %entry ], [ 5, %if.end ] |
130 | // %y = phi i32 [ 0, %entry ], [ %add, %if.end ] |
131 | // %x = phi i32 [ 0, %entry ], [ %y, %if.end ] |
132 | // ... |
133 | // tail call void @_Z1gi(i32 signext %x) |
134 | // tail call void @_Z1gi(i32 signext %a) |
135 | // %add = add nuw nsw i32 %a, 1 |
136 | // %inc = add nuw nsw i32 %i, 1 |
137 | // %exitcond = icmp eq i32 %inc, 100000 |
138 | // br i1 %exitcond, label %for.cond.cleanup, label %for.body |
139 | // |
140 | // The arguments for the calls to g will become known after 3 iterations |
141 | // of the loop, because the phi nodes values become known after 3 iterations |
142 | // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations). |
143 | // The first iteration has g(0), g(0); the second has g(0), g(5); the |
144 | // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5). |
145 | // Now consider the phi nodes: |
146 | // %a is a phi with constants so it is determined after iteration 1. |
147 | // %y is a phi based on a constant and %a so it is determined on |
148 | // the iteration after %a is determined, so iteration 2. |
149 | // %x is a phi based on a constant and %y so it is determined on |
150 | // the iteration after %y, so iteration 3. |
151 | // %i is based on itself (and is an induction variable) so it is |
152 | // never determined. |
153 | // This means that peeling off 3 iterations will result in being able to |
154 | // remove the phi nodes for %a, %y, and %x. The arguments for the |
155 | // corresponding calls to g are determined and the code for computing |
156 | // x, y, and a can be removed. |
157 | // |
158 | // The PhiAnalyzer class calculates how many times a loop should be |
159 | // peeled based on the above analysis of the phi nodes in the loop while |
160 | // respecting the maximum specified. |
161 | class PhiAnalyzer { |
162 | public: |
163 | PhiAnalyzer(const Loop &L, unsigned MaxIterations); |
164 | |
165 | // Calculate the sufficient minimum number of iterations of the loop to peel |
166 | // such that phi instructions become determined (subject to allowable limits) |
167 | std::optional<unsigned> calculateIterationsToPeel(); |
168 | |
169 | protected: |
170 | using PeelCounter = std::optional<unsigned>; |
171 | const PeelCounter Unknown = std::nullopt; |
172 | |
173 | // Add 1 respecting Unknown and return Unknown if result over MaxIterations |
174 | PeelCounter addOne(PeelCounter PC) const { |
175 | if (PC == Unknown) |
176 | return Unknown; |
177 | return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown; |
178 | } |
179 | |
180 | // Calculate the number of iterations after which the given value |
181 | // becomes an invariant. |
182 | PeelCounter calculate(const Value &); |
183 | |
184 | const Loop &L; |
185 | const unsigned MaxIterations; |
186 | |
187 | // Map of Values to number of iterations to invariance |
188 | SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance; |
189 | }; |
190 | |
191 | PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations) |
192 | : L(L), MaxIterations(MaxIterations) { |
193 | assert(canPeel(&L) && "loop is not suitable for peeling" ); |
194 | assert(MaxIterations > 0 && "no peeling is allowed?" ); |
195 | } |
196 | |
197 | // This function calculates the number of iterations after which the value |
198 | // becomes an invariant. The pre-calculated values are memorized in a map. |
199 | // N.B. This number will be Unknown or <= MaxIterations. |
200 | // The function is calculated according to the following definition: |
201 | // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. |
202 | // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown) |
203 | // G(%y) = 0 if %y is a loop invariant |
204 | // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block |
205 | // G(%y) = TODO: if %y is an expression based on phis and loop invariants |
206 | // The example looks like: |
207 | // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration. |
208 | // %y = phi(0, 5) |
209 | // %a = %y + 1 |
210 | // G(%y) = Unknown otherwise (including phi not in header block) |
211 | PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) { |
212 | // If we already know the answer, take it from the map. |
213 | // Otherwise, place Unknown to map to avoid infinite recursion. Such |
214 | // cycles can never stop on an invariant. |
215 | auto [I, Inserted] = IterationsToInvariance.try_emplace(Key: &V, Args: Unknown); |
216 | if (!Inserted) |
217 | return I->second; |
218 | |
219 | if (L.isLoopInvariant(V: &V)) |
220 | // Loop invariant so known at start. |
221 | return (IterationsToInvariance[&V] = 0); |
222 | if (const PHINode *Phi = dyn_cast<PHINode>(Val: &V)) { |
223 | if (Phi->getParent() != L.getHeader()) { |
224 | // Phi is not in header block so Unknown. |
225 | assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved" ); |
226 | return Unknown; |
227 | } |
228 | // We need to analyze the input from the back edge and add 1. |
229 | Value *Input = Phi->getIncomingValueForBlock(BB: L.getLoopLatch()); |
230 | PeelCounter Iterations = calculate(V: *Input); |
231 | assert(IterationsToInvariance[Input] == Iterations && |
232 | "unexpected value saved" ); |
233 | return (IterationsToInvariance[Phi] = addOne(PC: Iterations)); |
234 | } |
235 | if (const Instruction *I = dyn_cast<Instruction>(Val: &V)) { |
236 | if (isa<CmpInst>(Val: I) || I->isBinaryOp()) { |
237 | // Binary instructions get the max of the operands. |
238 | PeelCounter LHS = calculate(V: *I->getOperand(i: 0)); |
239 | if (LHS == Unknown) |
240 | return Unknown; |
241 | PeelCounter RHS = calculate(V: *I->getOperand(i: 1)); |
242 | if (RHS == Unknown) |
243 | return Unknown; |
244 | return (IterationsToInvariance[I] = {std::max(a: *LHS, b: *RHS)}); |
245 | } |
246 | if (I->isCast()) |
247 | // Cast instructions get the value of the operand. |
248 | return (IterationsToInvariance[I] = calculate(V: *I->getOperand(i: 0))); |
249 | } |
250 | // TODO: handle more expressions |
251 | |
252 | // Everything else is Unknown. |
253 | assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved" ); |
254 | return Unknown; |
255 | } |
256 | |
257 | std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() { |
258 | unsigned Iterations = 0; |
259 | for (auto &PHI : L.getHeader()->phis()) { |
260 | PeelCounter ToInvariance = calculate(V: PHI); |
261 | if (ToInvariance != Unknown) { |
262 | assert(*ToInvariance <= MaxIterations && "bad result in phi analysis" ); |
263 | Iterations = std::max(a: Iterations, b: *ToInvariance); |
264 | if (Iterations == MaxIterations) |
265 | break; |
266 | } |
267 | } |
268 | assert((Iterations <= MaxIterations) && "bad result in phi analysis" ); |
269 | return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt; |
270 | } |
271 | |
272 | } // unnamed namespace |
273 | |
274 | // Try to find any invariant memory reads that will become dereferenceable in |
275 | // the remainder loop after peeling. The load must also be used (transitively) |
276 | // by an exit condition. Returns the number of iterations to peel off (at the |
277 | // moment either 0 or 1). |
278 | static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, |
279 | DominatorTree &DT, |
280 | AssumptionCache *AC) { |
281 | // Skip loops with a single exiting block, because there should be no benefit |
282 | // for the heuristic below. |
283 | if (L.getExitingBlock()) |
284 | return 0; |
285 | |
286 | // All non-latch exit blocks must have an UnreachableInst terminator. |
287 | // Otherwise the heuristic below may not be profitable. |
288 | SmallVector<BasicBlock *, 4> Exits; |
289 | L.getUniqueNonLatchExitBlocks(ExitBlocks&: Exits); |
290 | if (any_of(Range&: Exits, P: [](const BasicBlock *BB) { |
291 | return !isa<UnreachableInst>(Val: BB->getTerminator()); |
292 | })) |
293 | return 0; |
294 | |
295 | // Now look for invariant loads that dominate the latch and are not known to |
296 | // be dereferenceable. If there are such loads and no writes, they will become |
297 | // dereferenceable in the loop if the first iteration is peeled off. Also |
298 | // collect the set of instructions controlled by such loads. Only peel if an |
299 | // exit condition uses (transitively) such a load. |
300 | BasicBlock * = L.getHeader(); |
301 | BasicBlock *Latch = L.getLoopLatch(); |
302 | SmallPtrSet<Value *, 8> LoadUsers; |
303 | const DataLayout &DL = L.getHeader()->getDataLayout(); |
304 | for (BasicBlock *BB : L.blocks()) { |
305 | for (Instruction &I : *BB) { |
306 | if (I.mayWriteToMemory()) |
307 | return 0; |
308 | |
309 | if (LoadUsers.contains(Ptr: &I)) |
310 | LoadUsers.insert_range(R: I.users()); |
311 | // Do not look for reads in the header; they can already be hoisted |
312 | // without peeling. |
313 | if (BB == Header) |
314 | continue; |
315 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
316 | Value *Ptr = LI->getPointerOperand(); |
317 | if (DT.dominates(A: BB, B: Latch) && L.isLoopInvariant(V: Ptr) && |
318 | !isDereferenceablePointer(V: Ptr, Ty: LI->getType(), DL, CtxI: LI, AC, DT: &DT)) |
319 | LoadUsers.insert_range(R: I.users()); |
320 | } |
321 | } |
322 | } |
323 | SmallVector<BasicBlock *> ExitingBlocks; |
324 | L.getExitingBlocks(ExitingBlocks); |
325 | if (any_of(Range&: ExitingBlocks, P: [&LoadUsers](BasicBlock *Exiting) { |
326 | return LoadUsers.contains(Ptr: Exiting->getTerminator()); |
327 | })) |
328 | return 1; |
329 | return 0; |
330 | } |
331 | |
332 | bool llvm::canPeelLastIteration(const Loop &L, ScalarEvolution &SE) { |
333 | const SCEV *BTC = SE.getBackedgeTakenCount(L: &L); |
334 | if (isa<SCEVCouldNotCompute>(Val: BTC)) |
335 | return false; |
336 | |
337 | // Check if the exit condition of the loop can be adjusted by the peeling |
338 | // codegen. For now, it must |
339 | // * exit via the latch, |
340 | // * the exit condition must be a NE/EQ compare of an induction with step |
341 | // of 1 and must only be used by the exiting branch. |
342 | BasicBlock *Latch = L.getLoopLatch(); |
343 | Value *Inc; |
344 | Value *Bound; |
345 | CmpPredicate Pred; |
346 | BasicBlock *Succ1; |
347 | BasicBlock *Succ2; |
348 | return Latch && Latch == L.getExitingBlock() && |
349 | match(V: Latch->getTerminator(), |
350 | P: m_Br(C: m_OneUse(SubPattern: m_ICmp(Pred, L: m_Value(V&: Inc), R: m_Value(V&: Bound))), |
351 | T: m_BasicBlock(V&: Succ1), F: m_BasicBlock(V&: Succ2))) && |
352 | ((Pred == CmpInst::ICMP_EQ && Succ2 == L.getHeader()) || |
353 | (Pred == CmpInst::ICMP_NE && Succ1 == L.getHeader())) && |
354 | Bound->getType()->isIntegerTy() && |
355 | SE.isLoopInvariant(S: SE.getSCEV(V: Bound), L: &L) && |
356 | match(S: SE.getSCEV(V: Inc), |
357 | P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_One(), L: m_SpecificLoop(L: &L))); |
358 | } |
359 | |
360 | /// Returns true if the last iteration can be peeled off and the condition (Pred |
361 | /// LeftAR, RightSCEV) is known at the last iteration and the inverse condition |
362 | /// is known at the second-to-last. |
363 | static bool shouldPeelLastIteration(Loop &L, CmpPredicate Pred, |
364 | const SCEVAddRecExpr *LeftAR, |
365 | const SCEV *RightSCEV, ScalarEvolution &SE, |
366 | const TargetTransformInfo &TTI) { |
367 | if (!canPeelLastIteration(L, SE)) |
368 | return false; |
369 | |
370 | const SCEV *BTC = SE.getBackedgeTakenCount(L: &L); |
371 | SCEVExpander Expander(SE, L.getHeader()->getDataLayout(), "loop-peel" ); |
372 | if (!SE.isKnownNonZero(S: BTC) && |
373 | Expander.isHighCostExpansion(Exprs: BTC, L: &L, Budget: SCEVCheapExpansionBudget, TTI: &TTI, |
374 | At: L.getLoopPredecessor()->getTerminator())) |
375 | return false; |
376 | |
377 | auto Guards = ScalarEvolution::LoopGuards::collect(L: &L, SE); |
378 | BTC = SE.applyLoopGuards(Expr: BTC, Guards); |
379 | RightSCEV = SE.applyLoopGuards(Expr: RightSCEV, Guards); |
380 | const SCEV *ValAtLastIter = LeftAR->evaluateAtIteration(It: BTC, SE); |
381 | const SCEV *ValAtSecondToLastIter = LeftAR->evaluateAtIteration( |
382 | It: SE.getMinusSCEV(LHS: BTC, RHS: SE.getOne(Ty: BTC->getType())), SE); |
383 | |
384 | return SE.isKnownPredicate(Pred: ICmpInst::getInversePredicate(pred: Pred), LHS: ValAtLastIter, |
385 | RHS: RightSCEV) && |
386 | SE.isKnownPredicate(Pred, LHS: ValAtSecondToLastIter, RHS: RightSCEV); |
387 | } |
388 | |
389 | // Return the number of iterations to peel off from the beginning and end of the |
390 | // loop respectively, that make conditions in the body true/false. For example, |
391 | // if we peel 2 iterations off the loop below, the condition i < 2 can be |
392 | // evaluated at compile time. |
393 | // |
394 | // for (i = 0; i < n; i++) |
395 | // if (i < 2) |
396 | // .. |
397 | // else |
398 | // .. |
399 | // } |
400 | static std::pair<unsigned, unsigned> |
401 | countToEliminateCompares(Loop &L, unsigned MaxPeelCount, ScalarEvolution &SE, |
402 | const TargetTransformInfo &TTI) { |
403 | assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form" ); |
404 | unsigned DesiredPeelCount = 0; |
405 | unsigned DesiredPeelCountLast = 0; |
406 | |
407 | // Do not peel the entire loop. |
408 | const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(L: &L); |
409 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: BE)) |
410 | MaxPeelCount = |
411 | std::min(a: (unsigned)SC->getAPInt().getLimitedValue() - 1, b: MaxPeelCount); |
412 | |
413 | // Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied; |
414 | // return true if inversed condition become known before reaching the |
415 | // MaxPeelCount limit. |
416 | auto PeelWhilePredicateIsKnown = |
417 | [&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV, |
418 | const SCEV *Step, ICmpInst::Predicate Pred) { |
419 | while (PeelCount < MaxPeelCount && |
420 | SE.isKnownPredicate(Pred, LHS: IterVal, RHS: BoundSCEV)) { |
421 | IterVal = SE.getAddExpr(LHS: IterVal, RHS: Step); |
422 | ++PeelCount; |
423 | } |
424 | return SE.isKnownPredicate(Pred: ICmpInst::getInversePredicate(pred: Pred), LHS: IterVal, |
425 | RHS: BoundSCEV); |
426 | }; |
427 | |
428 | const unsigned MaxDepth = 4; |
429 | std::function<void(Value *, unsigned)> ComputePeelCount = |
430 | [&](Value *Condition, unsigned Depth) -> void { |
431 | if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth) |
432 | return; |
433 | |
434 | Value *LeftVal, *RightVal; |
435 | if (match(V: Condition, P: m_And(L: m_Value(V&: LeftVal), R: m_Value(V&: RightVal))) || |
436 | match(V: Condition, P: m_Or(L: m_Value(V&: LeftVal), R: m_Value(V&: RightVal)))) { |
437 | ComputePeelCount(LeftVal, Depth + 1); |
438 | ComputePeelCount(RightVal, Depth + 1); |
439 | return; |
440 | } |
441 | |
442 | CmpPredicate Pred; |
443 | if (!match(V: Condition, P: m_ICmp(Pred, L: m_Value(V&: LeftVal), R: m_Value(V&: RightVal)))) |
444 | return; |
445 | |
446 | const SCEV *LeftSCEV = SE.getSCEV(V: LeftVal); |
447 | const SCEV *RightSCEV = SE.getSCEV(V: RightVal); |
448 | |
449 | // Do not consider predicates that are known to be true or false |
450 | // independently of the loop iteration. |
451 | if (SE.evaluatePredicate(Pred, LHS: LeftSCEV, RHS: RightSCEV)) |
452 | return; |
453 | |
454 | // Check if we have a condition with one AddRec and one non AddRec |
455 | // expression. Normalize LeftSCEV to be the AddRec. |
456 | if (!isa<SCEVAddRecExpr>(Val: LeftSCEV)) { |
457 | if (isa<SCEVAddRecExpr>(Val: RightSCEV)) { |
458 | std::swap(a&: LeftSCEV, b&: RightSCEV); |
459 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
460 | } else |
461 | return; |
462 | } |
463 | |
464 | const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(Val: LeftSCEV); |
465 | |
466 | // Avoid huge SCEV computations in the loop below, make sure we only |
467 | // consider AddRecs of the loop we are trying to peel. |
468 | if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) |
469 | return; |
470 | if (!(ICmpInst::isEquality(P: Pred) && LeftAR->hasNoSelfWrap()) && |
471 | !SE.getMonotonicPredicateType(LHS: LeftAR, Pred)) |
472 | return; |
473 | |
474 | // Check if extending the current DesiredPeelCount lets us evaluate Pred |
475 | // or !Pred in the loop body statically. |
476 | unsigned NewPeelCount = DesiredPeelCount; |
477 | |
478 | const SCEV *IterVal = LeftAR->evaluateAtIteration( |
479 | It: SE.getConstant(Ty: LeftSCEV->getType(), V: NewPeelCount), SE); |
480 | |
481 | // If the original condition is not known, get the negated predicate |
482 | // (which holds on the else branch) and check if it is known. This allows |
483 | // us to peel of iterations that make the original condition false. |
484 | if (!SE.isKnownPredicate(Pred, LHS: IterVal, RHS: RightSCEV)) |
485 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
486 | |
487 | const SCEV *Step = LeftAR->getStepRecurrence(SE); |
488 | if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step, |
489 | Pred)) { |
490 | if (shouldPeelLastIteration(L, Pred, LeftAR, RightSCEV, SE, TTI)) |
491 | DesiredPeelCountLast = 1; |
492 | return; |
493 | } |
494 | |
495 | // However, for equality comparisons, that isn't always sufficient to |
496 | // eliminate the comparsion in loop body, we may need to peel one more |
497 | // iteration. See if that makes !Pred become unknown again. |
498 | const SCEV *NextIterVal = SE.getAddExpr(LHS: IterVal, RHS: Step); |
499 | if (ICmpInst::isEquality(P: Pred) && |
500 | !SE.isKnownPredicate(Pred: ICmpInst::getInversePredicate(pred: Pred), LHS: NextIterVal, |
501 | RHS: RightSCEV) && |
502 | !SE.isKnownPredicate(Pred, LHS: IterVal, RHS: RightSCEV) && |
503 | SE.isKnownPredicate(Pred, LHS: NextIterVal, RHS: RightSCEV)) { |
504 | if (NewPeelCount >= MaxPeelCount) |
505 | return; // Need to peel one more iteration, but can't. Give up. |
506 | ++NewPeelCount; // Great! |
507 | } |
508 | |
509 | DesiredPeelCount = std::max(a: DesiredPeelCount, b: NewPeelCount); |
510 | DesiredPeelCountLast = std::max(a: DesiredPeelCountLast, b: NewPeelCount); |
511 | }; |
512 | |
513 | auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) { |
514 | if (!MinMax->getType()->isIntegerTy()) |
515 | return; |
516 | Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS(); |
517 | const SCEV *BoundSCEV, *IterSCEV; |
518 | if (L.isLoopInvariant(V: LHS)) { |
519 | BoundSCEV = SE.getSCEV(V: LHS); |
520 | IterSCEV = SE.getSCEV(V: RHS); |
521 | } else if (L.isLoopInvariant(V: RHS)) { |
522 | BoundSCEV = SE.getSCEV(V: RHS); |
523 | IterSCEV = SE.getSCEV(V: LHS); |
524 | } else |
525 | return; |
526 | const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: IterSCEV); |
527 | // For simplicity, we support only affine recurrences. |
528 | if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L) |
529 | return; |
530 | const SCEV *Step = AddRec->getStepRecurrence(SE); |
531 | bool IsSigned = MinMax->isSigned(); |
532 | // To minimize number of peeled iterations, we use strict relational |
533 | // predicates here. |
534 | ICmpInst::Predicate Pred; |
535 | if (SE.isKnownPositive(S: Step)) |
536 | Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
537 | else if (SE.isKnownNegative(S: Step)) |
538 | Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
539 | else |
540 | return; |
541 | // Check that AddRec is not wrapping. |
542 | if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap())) |
543 | return; |
544 | unsigned NewPeelCount = DesiredPeelCount; |
545 | const SCEV *IterVal = AddRec->evaluateAtIteration( |
546 | It: SE.getConstant(Ty: AddRec->getType(), V: NewPeelCount), SE); |
547 | if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step, |
548 | Pred)) { |
549 | if (shouldPeelLastIteration(L, Pred, LeftAR: AddRec, RightSCEV: BoundSCEV, SE, TTI)) |
550 | DesiredPeelCountLast = 1; |
551 | return; |
552 | } |
553 | DesiredPeelCount = NewPeelCount; |
554 | }; |
555 | |
556 | for (BasicBlock *BB : L.blocks()) { |
557 | for (Instruction &I : *BB) { |
558 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: &I)) |
559 | ComputePeelCount(SI->getCondition(), 0); |
560 | if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(Val: &I)) |
561 | ComputePeelCountMinMax(MinMax); |
562 | } |
563 | |
564 | auto *BI = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
565 | if (!BI || BI->isUnconditional()) |
566 | continue; |
567 | |
568 | // Ignore loop exit condition. |
569 | if (L.getLoopLatch() == BB) |
570 | continue; |
571 | |
572 | ComputePeelCount(BI->getCondition(), 0); |
573 | } |
574 | |
575 | return {DesiredPeelCount, DesiredPeelCountLast}; |
576 | } |
577 | |
578 | /// This "heuristic" exactly matches implicit behavior which used to exist |
579 | /// inside getLoopEstimatedTripCount. It was added here to keep an |
580 | /// improvement inside that API from causing peeling to become more aggressive. |
581 | /// This should probably be removed. |
582 | static bool violatesLegacyMultiExitLoopCheck(Loop *L) { |
583 | BasicBlock *Latch = L->getLoopLatch(); |
584 | if (!Latch) |
585 | return true; |
586 | |
587 | BranchInst *LatchBR = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
588 | if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(BB: Latch)) |
589 | return true; |
590 | |
591 | assert((LatchBR->getSuccessor(0) == L->getHeader() || |
592 | LatchBR->getSuccessor(1) == L->getHeader()) && |
593 | "At least one edge out of the latch must go to the header" ); |
594 | |
595 | SmallVector<BasicBlock *, 4> ExitBlocks; |
596 | L->getUniqueNonLatchExitBlocks(ExitBlocks); |
597 | return any_of(Range&: ExitBlocks, P: [](const BasicBlock *EB) { |
598 | return !EB->getTerminatingDeoptimizeCall(); |
599 | }); |
600 | } |
601 | |
602 | |
603 | // Return the number of iterations we want to peel off. |
604 | void llvm::computePeelCount(Loop *L, unsigned LoopSize, |
605 | TargetTransformInfo::PeelingPreferences &PP, |
606 | unsigned TripCount, DominatorTree &DT, |
607 | ScalarEvolution &SE, const TargetTransformInfo &TTI, |
608 | AssumptionCache *AC, unsigned Threshold) { |
609 | assert(LoopSize > 0 && "Zero loop size is not allowed!" ); |
610 | // Save the PP.PeelCount value set by the target in |
611 | // TTI.getPeelingPreferences or by the flag -unroll-peel-count. |
612 | unsigned TargetPeelCount = PP.PeelCount; |
613 | PP.PeelCount = 0; |
614 | PP.PeelLast = false; |
615 | if (!canPeel(L)) |
616 | return; |
617 | |
618 | // Only try to peel innermost loops by default. |
619 | // The constraint can be relaxed by the target in TTI.getPeelingPreferences |
620 | // or by the flag -unroll-allow-loop-nests-peeling. |
621 | if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) |
622 | return; |
623 | |
624 | // If the user provided a peel count, use that. |
625 | bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; |
626 | if (UserPeelCount) { |
627 | LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount |
628 | << " iterations.\n" ); |
629 | PP.PeelCount = UnrollForcePeelCount; |
630 | PP.PeelProfiledIterations = true; |
631 | return; |
632 | } |
633 | |
634 | // Skip peeling if it's disabled. |
635 | if (!PP.AllowPeeling) |
636 | return; |
637 | |
638 | // Check that we can peel at least one iteration. |
639 | if (2 * LoopSize > Threshold) |
640 | return; |
641 | |
642 | unsigned AlreadyPeeled = 0; |
643 | if (auto Peeled = getOptionalIntLoopAttribute(TheLoop: L, Name: PeeledCountMetaData)) |
644 | AlreadyPeeled = *Peeled; |
645 | // Stop if we already peeled off the maximum number of iterations. |
646 | if (AlreadyPeeled >= UnrollPeelMaxCount) |
647 | return; |
648 | |
649 | // Pay respect to limitations implied by loop size and the max peel count. |
650 | unsigned MaxPeelCount = UnrollPeelMaxCount; |
651 | MaxPeelCount = std::min(a: MaxPeelCount, b: Threshold / LoopSize - 1); |
652 | |
653 | // Start the max computation with the PP.PeelCount value set by the target |
654 | // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. |
655 | unsigned DesiredPeelCount = TargetPeelCount; |
656 | |
657 | // Here we try to get rid of Phis which become invariants after 1, 2, ..., N |
658 | // iterations of the loop. For this we compute the number for iterations after |
659 | // which every Phi is guaranteed to become an invariant, and try to peel the |
660 | // maximum number of iterations among these values, thus turning all those |
661 | // Phis into invariants. |
662 | if (MaxPeelCount > DesiredPeelCount) { |
663 | // Check how many iterations are useful for resolving Phis |
664 | auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel(); |
665 | if (NumPeels) |
666 | DesiredPeelCount = std::max(a: DesiredPeelCount, b: *NumPeels); |
667 | } |
668 | |
669 | const auto &[CountToEliminateCmps, CountToEliminateCmpsLast] = |
670 | countToEliminateCompares(L&: *L, MaxPeelCount, SE, TTI); |
671 | DesiredPeelCount = std::max(a: DesiredPeelCount, b: CountToEliminateCmps); |
672 | |
673 | if (DesiredPeelCount == 0) |
674 | DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(L&: *L, DT, AC); |
675 | |
676 | if (DesiredPeelCount > 0) { |
677 | DesiredPeelCount = std::min(a: DesiredPeelCount, b: MaxPeelCount); |
678 | // Consider max peel count limitation. |
679 | assert(DesiredPeelCount > 0 && "Wrong loop size estimation?" ); |
680 | if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { |
681 | LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount |
682 | << " iteration(s) to turn" |
683 | << " some Phis into invariants.\n" ); |
684 | PP.PeelCount = DesiredPeelCount; |
685 | PP.PeelProfiledIterations = false; |
686 | PP.PeelLast = false; |
687 | return; |
688 | } |
689 | } |
690 | |
691 | if (CountToEliminateCmpsLast > 0) { |
692 | unsigned DesiredPeelCountLast = |
693 | std::min(a: CountToEliminateCmpsLast, b: MaxPeelCount); |
694 | // Consider max peel count limitation. |
695 | assert(DesiredPeelCountLast > 0 && "Wrong loop size estimation?" ); |
696 | if (DesiredPeelCountLast + AlreadyPeeled <= UnrollPeelMaxCount) { |
697 | LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount |
698 | << " iteration(s) to turn" |
699 | << " some Phis into invariants.\n" ); |
700 | PP.PeelCount = DesiredPeelCountLast; |
701 | PP.PeelProfiledIterations = false; |
702 | PP.PeelLast = true; |
703 | return; |
704 | } |
705 | } |
706 | |
707 | // Bail if we know the statically calculated trip count. |
708 | // In this case we rather prefer partial unrolling. |
709 | if (TripCount) |
710 | return; |
711 | |
712 | // Do not apply profile base peeling if it is disabled. |
713 | if (!PP.PeelProfiledIterations) |
714 | return; |
715 | // If we don't know the trip count, but have reason to believe the average |
716 | // trip count is low, peeling should be beneficial, since we will usually |
717 | // hit the peeled section. |
718 | // We only do this in the presence of profile information, since otherwise |
719 | // our estimates of the trip count are not reliable enough. |
720 | if (L->getHeader()->getParent()->hasProfileData()) { |
721 | if (violatesLegacyMultiExitLoopCheck(L)) |
722 | return; |
723 | std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L); |
724 | if (!EstimatedTripCount) |
725 | return; |
726 | |
727 | LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " |
728 | << *EstimatedTripCount << "\n" ); |
729 | |
730 | if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { |
731 | unsigned PeelCount = *EstimatedTripCount; |
732 | LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n" ); |
733 | PP.PeelCount = PeelCount; |
734 | return; |
735 | } |
736 | LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n" ); |
737 | LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n" ); |
738 | LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n" ); |
739 | LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n" ); |
740 | LLVM_DEBUG(dbgs() << "Max peel count by cost: " |
741 | << (Threshold / LoopSize - 1) << "\n" ); |
742 | } |
743 | } |
744 | |
745 | struct WeightInfo { |
746 | // Weights for current iteration. |
747 | SmallVector<uint32_t> Weights; |
748 | // Weights to subtract after each iteration. |
749 | const SmallVector<uint32_t> SubWeights; |
750 | }; |
751 | |
752 | /// Update the branch weights of an exiting block of a peeled-off loop |
753 | /// iteration. |
754 | /// Let F is a weight of the edge to continue (fallthrough) into the loop. |
755 | /// Let E is a weight of the edge to an exit. |
756 | /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to |
757 | /// go to exit. |
758 | /// Then, Estimated ExitCount = F / E. |
759 | /// For I-th (counting from 0) peeled off iteration we set the weights for |
760 | /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, |
761 | /// The probability to go to exit 1/(EC-I) increases. At the same time |
762 | /// the estimated exit count in the remainder loop reduces by I. |
763 | /// To avoid dealing with division rounding we can just multiple both part |
764 | /// of weights to E and use weight as (F - I * E, E). |
765 | static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { |
766 | setBranchWeights(I&: *Term, Weights: Info.Weights, /*IsExpected=*/false); |
767 | for (auto [Idx, SubWeight] : enumerate(First: Info.SubWeights)) |
768 | if (SubWeight != 0) |
769 | // Don't set the probability of taking the edge from latch to loop header |
770 | // to less than 1:1 ratio (meaning Weight should not be lower than |
771 | // SubWeight), as this could significantly reduce the loop's hotness, |
772 | // which would be incorrect in the case of underestimating the trip count. |
773 | Info.Weights[Idx] = |
774 | Info.Weights[Idx] > SubWeight |
775 | ? std::max(a: Info.Weights[Idx] - SubWeight, b: SubWeight) |
776 | : SubWeight; |
777 | } |
778 | |
779 | /// Initialize the weights for all exiting blocks. |
780 | static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos, |
781 | Loop *L) { |
782 | SmallVector<BasicBlock *> ExitingBlocks; |
783 | L->getExitingBlocks(ExitingBlocks); |
784 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
785 | Instruction *Term = ExitingBlock->getTerminator(); |
786 | SmallVector<uint32_t> Weights; |
787 | if (!extractBranchWeights(I: *Term, Weights)) |
788 | continue; |
789 | |
790 | // See the comment on updateBranchWeights() for an explanation of what we |
791 | // do here. |
792 | uint32_t FallThroughWeights = 0; |
793 | uint32_t ExitWeights = 0; |
794 | for (auto [Succ, Weight] : zip(t: successors(I: Term), u&: Weights)) { |
795 | if (L->contains(BB: Succ)) |
796 | FallThroughWeights += Weight; |
797 | else |
798 | ExitWeights += Weight; |
799 | } |
800 | |
801 | // Don't try to update weights for degenerate case. |
802 | if (FallThroughWeights == 0) |
803 | continue; |
804 | |
805 | SmallVector<uint32_t> SubWeights; |
806 | for (auto [Succ, Weight] : zip(t: successors(I: Term), u&: Weights)) { |
807 | if (!L->contains(BB: Succ)) { |
808 | // Exit weights stay the same. |
809 | SubWeights.push_back(Elt: 0); |
810 | continue; |
811 | } |
812 | |
813 | // Subtract exit weights on each iteration, distributed across all |
814 | // fallthrough edges. |
815 | double W = (double)Weight / (double)FallThroughWeights; |
816 | SubWeights.push_back(Elt: (uint32_t)(ExitWeights * W)); |
817 | } |
818 | |
819 | WeightInfos.insert(KV: {Term, {.Weights: std::move(Weights), .SubWeights: std::move(SubWeights)}}); |
820 | } |
821 | } |
822 | |
823 | /// Clones the body of the loop L, putting it between \p InsertTop and \p |
824 | /// InsertBot. |
825 | /// \param IterNumber The serial number of the iteration currently being |
826 | /// peeled off. |
827 | /// \param PeelLast Peel off the last iterations from \p L. |
828 | /// \param ExitEdges The exit edges of the original loop. |
829 | /// \param[out] NewBlocks A list of the blocks in the newly created clone |
830 | /// \param[out] VMap The value map between the loop and the new clone. |
831 | /// \param LoopBlocks A helper for DFS-traversal of the loop. |
832 | /// \param LVMap A value-map that maps instructions from the original loop to |
833 | /// instructions in the last peeled-off iteration. |
834 | static void cloneLoopBlocks( |
835 | Loop *L, unsigned IterNumber, bool PeelLast, BasicBlock *InsertTop, |
836 | BasicBlock *InsertBot, BasicBlock *, |
837 | SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, |
838 | SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, |
839 | ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, |
840 | LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes, |
841 | ScalarEvolution &SE) { |
842 | BasicBlock * = L->getHeader(); |
843 | BasicBlock *Latch = L->getLoopLatch(); |
844 | BasicBlock * = L->getLoopPreheader(); |
845 | |
846 | Function *F = Header->getParent(); |
847 | LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); |
848 | LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); |
849 | Loop *ParentLoop = L->getParentLoop(); |
850 | |
851 | // For each block in the original loop, create a new copy, |
852 | // and update the value map with the newly created values. |
853 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
854 | BasicBlock *NewBB = CloneBasicBlock(BB: *BB, VMap, NameSuffix: ".peel" , F); |
855 | NewBlocks.push_back(Elt: NewBB); |
856 | |
857 | // If an original block is an immediate child of the loop L, its copy |
858 | // is a child of a ParentLoop after peeling. If a block is a child of |
859 | // a nested loop, it is handled in the cloneLoop() call below. |
860 | if (ParentLoop && LI->getLoopFor(BB: *BB) == L) |
861 | ParentLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
862 | |
863 | VMap[*BB] = NewBB; |
864 | |
865 | // If dominator tree is available, insert nodes to represent cloned blocks. |
866 | if (DT) { |
867 | if (Header == *BB) |
868 | DT->addNewBlock(BB: NewBB, DomBB: InsertTop); |
869 | else { |
870 | DomTreeNode *IDom = DT->getNode(BB: *BB)->getIDom(); |
871 | // VMap must contain entry for IDom, as the iteration order is RPO. |
872 | DT->addNewBlock(BB: NewBB, DomBB: cast<BasicBlock>(Val&: VMap[IDom->getBlock()])); |
873 | } |
874 | } |
875 | } |
876 | |
877 | { |
878 | // Identify what other metadata depends on the cloned version. After |
879 | // cloning, replace the metadata with the corrected version for both |
880 | // memory instructions and noalias intrinsics. |
881 | std::string Ext = (Twine("Peel" ) + Twine(IterNumber)).str(); |
882 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes: LoopLocalNoAliasDeclScopes, NewBlocks, |
883 | Context&: Header->getContext(), Ext); |
884 | } |
885 | |
886 | // Recursively create the new Loop objects for nested loops, if any, |
887 | // to preserve LoopInfo. |
888 | for (Loop *ChildLoop : *L) { |
889 | cloneLoop(L: ChildLoop, PL: ParentLoop, VM&: VMap, LI, LPM: nullptr); |
890 | } |
891 | |
892 | // Hook-up the control flow for the newly inserted blocks. |
893 | // The new header is hooked up directly to the "top", which is either |
894 | // the original loop preheader (for the first iteration) or the previous |
895 | // iteration's exiting block (for every other iteration) |
896 | InsertTop->getTerminator()->setSuccessor(Idx: 0, BB: cast<BasicBlock>(Val&: VMap[Header])); |
897 | |
898 | // Similarly, for the latch: |
899 | // The original exiting edge is still hooked up to the loop exit. |
900 | BasicBlock *NewLatch = cast<BasicBlock>(Val&: VMap[Latch]); |
901 | if (PeelLast) { |
902 | // This is the last iteration and we definitely will go to the exit. Just |
903 | // set both successors to InsertBot and let the branch be simplified later. |
904 | assert(IterNumber == 0 && "Only peeling a single iteration implemented." ); |
905 | auto *LatchTerm = cast<BranchInst>(Val: NewLatch->getTerminator()); |
906 | LatchTerm->setSuccessor(idx: 0, NewSucc: InsertBot); |
907 | LatchTerm->setSuccessor(idx: 1, NewSucc: InsertBot); |
908 | } else { |
909 | auto *LatchTerm = cast<Instruction>(Val: NewLatch->getTerminator()); |
910 | // The backedge now goes to the "bottom", which is either the loop's real |
911 | // header (for the last peeled iteration) or the copied header of the next |
912 | // iteration (for every other iteration) |
913 | for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) { |
914 | if (LatchTerm->getSuccessor(Idx: idx) == Header) { |
915 | LatchTerm->setSuccessor(Idx: idx, BB: InsertBot); |
916 | break; |
917 | } |
918 | } |
919 | } |
920 | if (DT) |
921 | DT->changeImmediateDominator(BB: InsertBot, NewBB: NewLatch); |
922 | |
923 | // The new copy of the loop body starts with a bunch of PHI nodes |
924 | // that pick an incoming value from either the preheader, or the previous |
925 | // loop iteration. Since this copy is no longer part of the loop, we |
926 | // resolve this statically: |
927 | if (PeelLast) { |
928 | // For the last iteration, we introduce new phis for each header phi in |
929 | // InsertTop, using the incoming value from the preheader for the original |
930 | // preheader (when skipping the main loop) and the incoming value from the |
931 | // latch for the latch (when continuing from the main loop). |
932 | IRBuilder<> B(InsertTop, InsertTop->getFirstNonPHIIt()); |
933 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) { |
934 | PHINode *NewPHI = cast<PHINode>(Val&: VMap[&*I]); |
935 | PHINode *PN = B.CreatePHI(Ty: NewPHI->getType(), NumReservedValues: 2); |
936 | NewPHI->eraseFromParent(); |
937 | if (OrigPreHeader) |
938 | PN->addIncoming(V: cast<PHINode>(Val: &*I)->getIncomingValueForBlock(BB: PreHeader), |
939 | BB: OrigPreHeader); |
940 | |
941 | PN->addIncoming(V: cast<PHINode>(Val: &*I)->getIncomingValueForBlock(BB: Latch), |
942 | BB: Latch); |
943 | VMap[&*I] = PN; |
944 | } |
945 | } else { |
946 | // For the first iteration, we use the value from the preheader directly. |
947 | // For any other iteration, we replace the phi with the value generated by |
948 | // the immediately preceding clone of the loop body (which represents |
949 | // the previous iteration). |
950 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) { |
951 | PHINode *NewPHI = cast<PHINode>(Val&: VMap[&*I]); |
952 | if (IterNumber == 0) { |
953 | VMap[&*I] = NewPHI->getIncomingValueForBlock(BB: PreHeader); |
954 | } else { |
955 | Value *LatchVal = NewPHI->getIncomingValueForBlock(BB: Latch); |
956 | Instruction *LatchInst = dyn_cast<Instruction>(Val: LatchVal); |
957 | if (LatchInst && L->contains(Inst: LatchInst)) |
958 | VMap[&*I] = LVMap[LatchInst]; |
959 | else |
960 | VMap[&*I] = LatchVal; |
961 | } |
962 | NewPHI->eraseFromParent(); |
963 | } |
964 | } |
965 | |
966 | // Fix up the outgoing values - we need to add a value for the iteration |
967 | // we've just created. Note that this must happen *after* the incoming |
968 | // values are adjusted, since the value going out of the latch may also be |
969 | // a value coming into the header. |
970 | for (auto Edge : ExitEdges) |
971 | for (PHINode &PHI : Edge.second->phis()) { |
972 | Value *LatchVal = PHI.getIncomingValueForBlock(BB: Edge.first); |
973 | Instruction *LatchInst = dyn_cast<Instruction>(Val: LatchVal); |
974 | if (LatchInst && L->contains(Inst: LatchInst)) |
975 | LatchVal = VMap[LatchVal]; |
976 | PHI.addIncoming(V: LatchVal, BB: cast<BasicBlock>(Val&: VMap[Edge.first])); |
977 | SE.forgetLcssaPhiWithNewPredecessor(L, V: &PHI); |
978 | } |
979 | |
980 | // LastValueMap is updated with the values for the current loop |
981 | // which are used the next time this function is called. |
982 | for (auto KV : VMap) |
983 | LVMap[KV.first] = KV.second; |
984 | } |
985 | |
986 | TargetTransformInfo::PeelingPreferences |
987 | llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, |
988 | const TargetTransformInfo &TTI, |
989 | std::optional<bool> UserAllowPeeling, |
990 | std::optional<bool> UserAllowProfileBasedPeeling, |
991 | bool UnrollingSpecficValues) { |
992 | TargetTransformInfo::PeelingPreferences PP; |
993 | |
994 | // Set the default values. |
995 | PP.PeelCount = 0; |
996 | PP.AllowPeeling = true; |
997 | PP.AllowLoopNestsPeeling = false; |
998 | PP.PeelLast = false; |
999 | PP.PeelProfiledIterations = true; |
1000 | |
1001 | // Get the target specifc values. |
1002 | TTI.getPeelingPreferences(L, SE, PP); |
1003 | |
1004 | // User specified values using cl::opt. |
1005 | if (UnrollingSpecficValues) { |
1006 | if (UnrollPeelCount.getNumOccurrences() > 0) |
1007 | PP.PeelCount = UnrollPeelCount; |
1008 | if (UnrollAllowPeeling.getNumOccurrences() > 0) |
1009 | PP.AllowPeeling = UnrollAllowPeeling; |
1010 | if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) |
1011 | PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; |
1012 | } |
1013 | |
1014 | // User specifed values provided by argument. |
1015 | if (UserAllowPeeling) |
1016 | PP.AllowPeeling = *UserAllowPeeling; |
1017 | if (UserAllowProfileBasedPeeling) |
1018 | PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; |
1019 | |
1020 | return PP; |
1021 | } |
1022 | |
1023 | /// Peel off the first \p PeelCount iterations of loop \p L. |
1024 | /// |
1025 | /// Note that this does not peel them off as a single straight-line block. |
1026 | /// Rather, each iteration is peeled off separately, and needs to check the |
1027 | /// exit condition. |
1028 | /// For loops that dynamically execute \p PeelCount iterations or less |
1029 | /// this provides a benefit, since the peeled off iterations, which account |
1030 | /// for the bulk of dynamic execution, can be further simplified by scalar |
1031 | /// optimizations. |
1032 | bool llvm::peelLoop(Loop *L, unsigned PeelCount, bool PeelLast, LoopInfo *LI, |
1033 | ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, |
1034 | bool PreserveLCSSA, ValueToValueMapTy &LVMap) { |
1035 | assert(PeelCount > 0 && "Attempt to peel out zero iterations?" ); |
1036 | assert(canPeel(L) && "Attempt to peel a loop which is not peelable?" ); |
1037 | assert((!PeelLast || (canPeelLastIteration(*L, *SE) && PeelCount == 1)) && |
1038 | "when peeling the last iteration, the loop must be supported and can " |
1039 | "only peel a single iteration" ); |
1040 | |
1041 | LoopBlocksDFS LoopBlocks(L); |
1042 | LoopBlocks.perform(LI); |
1043 | |
1044 | BasicBlock * = L->getHeader(); |
1045 | BasicBlock * = L->getLoopPreheader(); |
1046 | BasicBlock *Latch = L->getLoopLatch(); |
1047 | SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; |
1048 | L->getExitEdges(ExitEdges); |
1049 | |
1050 | // Remember dominators of blocks we might reach through exits to change them |
1051 | // later. Immediate dominator of such block might change, because we add more |
1052 | // routes which can lead to the exit: we can reach it from the peeled |
1053 | // iterations too. |
1054 | DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; |
1055 | for (auto *BB : L->blocks()) { |
1056 | auto *BBDomNode = DT.getNode(BB); |
1057 | SmallVector<BasicBlock *, 16> ChildrenToUpdate; |
1058 | for (auto *ChildDomNode : BBDomNode->children()) { |
1059 | auto *ChildBB = ChildDomNode->getBlock(); |
1060 | if (!L->contains(BB: ChildBB)) |
1061 | ChildrenToUpdate.push_back(Elt: ChildBB); |
1062 | } |
1063 | // The new idom of the block will be the nearest common dominator |
1064 | // of all copies of the previous idom. This is equivalent to the |
1065 | // nearest common dominator of the previous idom and the first latch, |
1066 | // which dominates all copies of the previous idom. |
1067 | BasicBlock *NewIDom = DT.findNearestCommonDominator(A: BB, B: Latch); |
1068 | for (auto *ChildBB : ChildrenToUpdate) |
1069 | NonLoopBlocksIDom[ChildBB] = NewIDom; |
1070 | } |
1071 | |
1072 | Function *F = Header->getParent(); |
1073 | |
1074 | // Set up all the necessary basic blocks. |
1075 | BasicBlock *InsertTop; |
1076 | BasicBlock *InsertBot; |
1077 | BasicBlock * = nullptr; |
1078 | DenseMap<Instruction *, Value *> ExitValues; |
1079 | if (PeelLast) { |
1080 | // It is convenient to split the single exit block from the latch the |
1081 | // into 3 parts - two blocks to anchor the peeled copy of the loop body, |
1082 | // and a new final exit block. |
1083 | |
1084 | // Peeling the last iteration transforms. |
1085 | // |
1086 | // PreHeader: |
1087 | // ... |
1088 | // Header: |
1089 | // LoopBody |
1090 | // If (cond) goto Header |
1091 | // Exit: |
1092 | // |
1093 | // into |
1094 | // |
1095 | // Header: |
1096 | // LoopBody |
1097 | // If (cond) goto Header |
1098 | // InsertTop: |
1099 | // LoopBody |
1100 | // If (!cond) goto InsertBot |
1101 | // InsertBot: |
1102 | // Exit: |
1103 | // ... |
1104 | BasicBlock *Exit = L->getExitBlock(); |
1105 | for (PHINode &P : Exit->phis()) |
1106 | ExitValues[&P] = P.getIncomingValueForBlock(BB: Latch); |
1107 | |
1108 | const SCEV *BTC = SE->getBackedgeTakenCount(L); |
1109 | |
1110 | InsertTop = SplitEdge(From: Latch, To: Exit, DT: &DT, LI); |
1111 | InsertBot = SplitBlock(Old: InsertTop, SplitPt: InsertTop->getTerminator(), DT: &DT, LI); |
1112 | |
1113 | InsertTop->setName(Exit->getName() + ".peel.begin" ); |
1114 | InsertBot->setName(Exit->getName() + ".peel.next" ); |
1115 | NewPreHeader = nullptr; |
1116 | |
1117 | // If the original loop may only execute a single iteration we need to |
1118 | // insert a trip count check and skip the original loop with the last |
1119 | // iteration peeled off if necessary. |
1120 | if (!SE->isKnownNonZero(S: BTC)) { |
1121 | NewPreHeader = SplitEdge(From: PreHeader, To: Header, DT: &DT, LI); |
1122 | SCEVExpander Expander(*SE, Latch->getDataLayout(), "loop-peel" ); |
1123 | |
1124 | BranchInst * = cast<BranchInst>(Val: PreHeader->getTerminator()); |
1125 | Value *BTCValue = |
1126 | Expander.expandCodeFor(SH: BTC, Ty: BTC->getType(), I: PreHeaderBR); |
1127 | IRBuilder<> B(PreHeaderBR); |
1128 | Value *Cond = |
1129 | B.CreateICmpNE(LHS: BTCValue, RHS: ConstantInt::get(Ty: BTCValue->getType(), V: 0)); |
1130 | B.CreateCondBr(Cond, True: NewPreHeader, False: InsertTop); |
1131 | PreHeaderBR->eraseFromParent(); |
1132 | |
1133 | // PreHeader now dominates InsertTop. |
1134 | DT.changeImmediateDominator(BB: InsertTop, NewBB: PreHeader); |
1135 | } |
1136 | } else { |
1137 | // It is convenient to split the preheader into 3 parts - two blocks to |
1138 | // anchor the peeled copy of the loop body, and a new preheader for the |
1139 | // "real" loop. |
1140 | |
1141 | // Peeling the first iteration transforms. |
1142 | // |
1143 | // PreHeader: |
1144 | // ... |
1145 | // Header: |
1146 | // LoopBody |
1147 | // If (cond) goto Header |
1148 | // Exit: |
1149 | // |
1150 | // into |
1151 | // |
1152 | // InsertTop: |
1153 | // LoopBody |
1154 | // If (!cond) goto Exit |
1155 | // InsertBot: |
1156 | // NewPreHeader: |
1157 | // ... |
1158 | // Header: |
1159 | // LoopBody |
1160 | // If (cond) goto Header |
1161 | // Exit: |
1162 | // |
1163 | // Each following iteration will split the current bottom anchor in two, |
1164 | // and put the new copy of the loop body between these two blocks. That |
1165 | // is, after peeling another iteration from the example above, we'll |
1166 | // split InsertBot, and get: |
1167 | // |
1168 | // InsertTop: |
1169 | // LoopBody |
1170 | // If (!cond) goto Exit |
1171 | // InsertBot: |
1172 | // LoopBody |
1173 | // If (!cond) goto Exit |
1174 | // InsertBot.next: |
1175 | // NewPreHeader: |
1176 | // ... |
1177 | // Header: |
1178 | // LoopBody |
1179 | // If (cond) goto Header |
1180 | // Exit: |
1181 | // |
1182 | InsertTop = SplitEdge(From: PreHeader, To: Header, DT: &DT, LI); |
1183 | InsertBot = SplitBlock(Old: InsertTop, SplitPt: InsertTop->getTerminator(), DT: &DT, LI); |
1184 | NewPreHeader = SplitBlock(Old: InsertBot, SplitPt: InsertBot->getTerminator(), DT: &DT, LI); |
1185 | |
1186 | InsertTop->setName(Header->getName() + ".peel.begin" ); |
1187 | InsertBot->setName(Header->getName() + ".peel.next" ); |
1188 | NewPreHeader->setName(PreHeader->getName() + ".peel.newph" ); |
1189 | } |
1190 | |
1191 | Instruction *LatchTerm = |
1192 | cast<Instruction>(Val: cast<BasicBlock>(Val: Latch)->getTerminator()); |
1193 | |
1194 | // If we have branch weight information, we'll want to update it for the |
1195 | // newly created branches. |
1196 | DenseMap<Instruction *, WeightInfo> Weights; |
1197 | initBranchWeights(WeightInfos&: Weights, L); |
1198 | |
1199 | // Identify what noalias metadata is inside the loop: if it is inside the |
1200 | // loop, the associated metadata must be cloned for each iteration. |
1201 | SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; |
1202 | identifyNoAliasScopesToClone(BBs: L->getBlocks(), NoAliasDeclScopes&: LoopLocalNoAliasDeclScopes); |
1203 | |
1204 | // For each peeled-off iteration, make a copy of the loop. |
1205 | ValueToValueMapTy VMap; |
1206 | for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { |
1207 | SmallVector<BasicBlock *, 8> NewBlocks; |
1208 | |
1209 | cloneLoopBlocks(L, IterNumber: Iter, PeelLast, InsertTop, InsertBot, |
1210 | OrigPreHeader: NewPreHeader ? PreHeader : nullptr, ExitEdges, NewBlocks, |
1211 | LoopBlocks, VMap, LVMap, DT: &DT, LI, |
1212 | LoopLocalNoAliasDeclScopes, SE&: *SE); |
1213 | |
1214 | // Remap to use values from the current iteration instead of the |
1215 | // previous one. |
1216 | remapInstructionsInBlocks(Blocks: NewBlocks, VMap); |
1217 | |
1218 | if (Iter == 0) { |
1219 | if (PeelLast) { |
1220 | // Adjust the exit condition so the loop exits one iteration early. |
1221 | // For now we simply subtract one form the second operand of the |
1222 | // exit condition. This relies on the peel count computation to |
1223 | // check that this is actually legal. In particular, it ensures that |
1224 | // the first operand of the compare is an AddRec with step 1 and we |
1225 | // execute more than one iteration. |
1226 | auto *Cmp = |
1227 | cast<ICmpInst>(Val: L->getLoopLatch()->getTerminator()->getOperand(i: 0)); |
1228 | IRBuilder B(Cmp); |
1229 | Cmp->setOperand( |
1230 | i_nocapture: 1, Val_nocapture: B.CreateSub(LHS: Cmp->getOperand(i_nocapture: 1), |
1231 | RHS: ConstantInt::get(Ty: Cmp->getOperand(i_nocapture: 1)->getType(), V: 1))); |
1232 | } else { |
1233 | // Update IDoms of the blocks reachable through exits. |
1234 | for (auto BBIDom : NonLoopBlocksIDom) |
1235 | DT.changeImmediateDominator(BB: BBIDom.first, |
1236 | NewBB: cast<BasicBlock>(Val&: LVMap[BBIDom.second])); |
1237 | } |
1238 | } |
1239 | |
1240 | #ifdef EXPENSIVE_CHECKS |
1241 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
1242 | #endif |
1243 | |
1244 | for (auto &[Term, Info] : Weights) { |
1245 | auto *TermCopy = cast<Instruction>(Val&: VMap[Term]); |
1246 | updateBranchWeights(Term: TermCopy, Info); |
1247 | } |
1248 | |
1249 | // Remove Loop metadata from the latch branch instruction |
1250 | // because it is not the Loop's latch branch anymore. |
1251 | auto *LatchTermCopy = cast<Instruction>(Val&: VMap[LatchTerm]); |
1252 | LatchTermCopy->setMetadata(KindID: LLVMContext::MD_loop, Node: nullptr); |
1253 | |
1254 | InsertTop = InsertBot; |
1255 | InsertBot = SplitBlock(Old: InsertBot, SplitPt: InsertBot->getTerminator(), DT: &DT, LI); |
1256 | InsertBot->setName(Header->getName() + ".peel.next" ); |
1257 | |
1258 | F->splice(ToIt: InsertTop->getIterator(), FromF: F, FromBeginIt: NewBlocks[0]->getIterator(), |
1259 | FromEndIt: F->end()); |
1260 | } |
1261 | |
1262 | if (PeelLast) { |
1263 | // Now adjust users of the original exit values by replacing them with the |
1264 | // exit value from the peeled iteration and remove them. |
1265 | for (const auto &[P, E] : ExitValues) { |
1266 | Instruction *ExitInst = dyn_cast<Instruction>(Val: E); |
1267 | if (ExitInst && L->contains(Inst: ExitInst)) |
1268 | P->replaceAllUsesWith(V: &*VMap[ExitInst]); |
1269 | else |
1270 | P->replaceAllUsesWith(V: E); |
1271 | P->eraseFromParent(); |
1272 | } |
1273 | formLCSSA(L&: *L, DT, LI, SE); |
1274 | } else { |
1275 | // Now adjust the phi nodes in the loop header to get their initial values |
1276 | // from the last peeled-off iteration instead of the preheader. |
1277 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) { |
1278 | PHINode *PHI = cast<PHINode>(Val&: I); |
1279 | Value *NewVal = PHI->getIncomingValueForBlock(BB: Latch); |
1280 | Instruction *LatchInst = dyn_cast<Instruction>(Val: NewVal); |
1281 | if (LatchInst && L->contains(Inst: LatchInst)) |
1282 | NewVal = LVMap[LatchInst]; |
1283 | |
1284 | PHI->setIncomingValueForBlock(BB: NewPreHeader, V: NewVal); |
1285 | } |
1286 | } |
1287 | |
1288 | for (const auto &[Term, Info] : Weights) { |
1289 | setBranchWeights(I&: *Term, Weights: Info.Weights, /*IsExpected=*/false); |
1290 | } |
1291 | |
1292 | // Update Metadata for count of peeled off iterations. |
1293 | unsigned AlreadyPeeled = 0; |
1294 | if (auto Peeled = getOptionalIntLoopAttribute(TheLoop: L, Name: PeeledCountMetaData)) |
1295 | AlreadyPeeled = *Peeled; |
1296 | addStringMetadataToLoop(TheLoop: L, MDString: PeeledCountMetaData, V: AlreadyPeeled + PeelCount); |
1297 | |
1298 | if (Loop *ParentLoop = L->getParentLoop()) |
1299 | L = ParentLoop; |
1300 | |
1301 | // We modified the loop, update SE. |
1302 | SE->forgetTopmostLoop(L); |
1303 | SE->forgetBlockAndLoopDispositions(); |
1304 | |
1305 | #ifdef EXPENSIVE_CHECKS |
1306 | // Finally DomtTree must be correct. |
1307 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
1308 | #endif |
1309 | |
1310 | // FIXME: Incrementally update loop-simplify |
1311 | simplifyLoop(L, DT: &DT, LI, SE, AC, MSSAU: nullptr, PreserveLCSSA); |
1312 | |
1313 | NumPeeled++; |
1314 | NumPeeledEnd += PeelLast; |
1315 | |
1316 | return true; |
1317 | } |
1318 | |