1 | //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements some loop unrolling utilities. It does not define any |
10 | // actual pass or policy, but provides a single function to perform loop |
11 | // unrolling. |
12 | // |
13 | // The process of unrolling can produce extraneous basic blocks linked with |
14 | // unconditional branches. This will be corrected in the future. |
15 | // |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/ScopedHashTable.h" |
22 | #include "llvm/ADT/SetVector.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/Statistic.h" |
25 | #include "llvm/ADT/StringRef.h" |
26 | #include "llvm/ADT/Twine.h" |
27 | #include "llvm/Analysis/AliasAnalysis.h" |
28 | #include "llvm/Analysis/AssumptionCache.h" |
29 | #include "llvm/Analysis/DomTreeUpdater.h" |
30 | #include "llvm/Analysis/InstructionSimplify.h" |
31 | #include "llvm/Analysis/LoopInfo.h" |
32 | #include "llvm/Analysis/LoopIterator.h" |
33 | #include "llvm/Analysis/MemorySSA.h" |
34 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
35 | #include "llvm/Analysis/ScalarEvolution.h" |
36 | #include "llvm/IR/BasicBlock.h" |
37 | #include "llvm/IR/CFG.h" |
38 | #include "llvm/IR/Constants.h" |
39 | #include "llvm/IR/DebugInfoMetadata.h" |
40 | #include "llvm/IR/DebugLoc.h" |
41 | #include "llvm/IR/DiagnosticInfo.h" |
42 | #include "llvm/IR/Dominators.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/Instruction.h" |
45 | #include "llvm/IR/Instructions.h" |
46 | #include "llvm/IR/IntrinsicInst.h" |
47 | #include "llvm/IR/Metadata.h" |
48 | #include "llvm/IR/PatternMatch.h" |
49 | #include "llvm/IR/Use.h" |
50 | #include "llvm/IR/User.h" |
51 | #include "llvm/IR/ValueHandle.h" |
52 | #include "llvm/IR/ValueMap.h" |
53 | #include "llvm/Support/Casting.h" |
54 | #include "llvm/Support/CommandLine.h" |
55 | #include "llvm/Support/Debug.h" |
56 | #include "llvm/Support/GenericDomTree.h" |
57 | #include "llvm/Support/raw_ostream.h" |
58 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
59 | #include "llvm/Transforms/Utils/Cloning.h" |
60 | #include "llvm/Transforms/Utils/Local.h" |
61 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
62 | #include "llvm/Transforms/Utils/LoopUtils.h" |
63 | #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
64 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
65 | #include "llvm/Transforms/Utils/ValueMapper.h" |
66 | #include <assert.h> |
67 | #include <numeric> |
68 | #include <type_traits> |
69 | #include <vector> |
70 | |
71 | namespace llvm { |
72 | class DataLayout; |
73 | class Value; |
74 | } // namespace llvm |
75 | |
76 | using namespace llvm; |
77 | |
78 | #define DEBUG_TYPE "loop-unroll" |
79 | |
80 | // TODO: Should these be here or in LoopUnroll? |
81 | STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled" ); |
82 | STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)" ); |
83 | STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " |
84 | "latch (completely or otherwise)" ); |
85 | |
86 | static cl::opt<bool> |
87 | UnrollRuntimeEpilog("unroll-runtime-epilog" , cl::init(Val: false), cl::Hidden, |
88 | cl::desc("Allow runtime unrolled loops to be unrolled " |
89 | "with epilog instead of prolog." )); |
90 | |
91 | static cl::opt<bool> |
92 | UnrollVerifyDomtree("unroll-verify-domtree" , cl::Hidden, |
93 | cl::desc("Verify domtree after unrolling" ), |
94 | #ifdef EXPENSIVE_CHECKS |
95 | cl::init(true) |
96 | #else |
97 | cl::init(Val: false) |
98 | #endif |
99 | ); |
100 | |
101 | static cl::opt<bool> |
102 | UnrollVerifyLoopInfo("unroll-verify-loopinfo" , cl::Hidden, |
103 | cl::desc("Verify loopinfo after unrolling" ), |
104 | #ifdef EXPENSIVE_CHECKS |
105 | cl::init(true) |
106 | #else |
107 | cl::init(Val: false) |
108 | #endif |
109 | ); |
110 | |
111 | |
112 | /// Check if unrolling created a situation where we need to insert phi nodes to |
113 | /// preserve LCSSA form. |
114 | /// \param Blocks is a vector of basic blocks representing unrolled loop. |
115 | /// \param L is the outer loop. |
116 | /// It's possible that some of the blocks are in L, and some are not. In this |
117 | /// case, if there is a use is outside L, and definition is inside L, we need to |
118 | /// insert a phi-node, otherwise LCSSA will be broken. |
119 | /// The function is just a helper function for llvm::UnrollLoop that returns |
120 | /// true if this situation occurs, indicating that LCSSA needs to be fixed. |
121 | static bool needToInsertPhisForLCSSA(Loop *L, |
122 | const std::vector<BasicBlock *> &Blocks, |
123 | LoopInfo *LI) { |
124 | for (BasicBlock *BB : Blocks) { |
125 | if (LI->getLoopFor(BB) == L) |
126 | continue; |
127 | for (Instruction &I : *BB) { |
128 | for (Use &U : I.operands()) { |
129 | if (const auto *Def = dyn_cast<Instruction>(Val&: U)) { |
130 | Loop *DefLoop = LI->getLoopFor(BB: Def->getParent()); |
131 | if (!DefLoop) |
132 | continue; |
133 | if (DefLoop->contains(L)) |
134 | return true; |
135 | } |
136 | } |
137 | } |
138 | } |
139 | return false; |
140 | } |
141 | |
142 | /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary |
143 | /// and adds a mapping from the original loop to the new loop to NewLoops. |
144 | /// Returns nullptr if no new loop was created and a pointer to the |
145 | /// original loop OriginalBB was part of otherwise. |
146 | const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, |
147 | BasicBlock *ClonedBB, LoopInfo *LI, |
148 | NewLoopsMap &NewLoops) { |
149 | // Figure out which loop New is in. |
150 | const Loop *OldLoop = LI->getLoopFor(BB: OriginalBB); |
151 | assert(OldLoop && "Should (at least) be in the loop being unrolled!" ); |
152 | |
153 | Loop *&NewLoop = NewLoops[OldLoop]; |
154 | if (!NewLoop) { |
155 | // Found a new sub-loop. |
156 | assert(OriginalBB == OldLoop->getHeader() && |
157 | "Header should be first in RPO" ); |
158 | |
159 | NewLoop = LI->AllocateLoop(); |
160 | Loop *NewLoopParent = NewLoops.lookup(Val: OldLoop->getParentLoop()); |
161 | |
162 | if (NewLoopParent) |
163 | NewLoopParent->addChildLoop(NewChild: NewLoop); |
164 | else |
165 | LI->addTopLevelLoop(New: NewLoop); |
166 | |
167 | NewLoop->addBasicBlockToLoop(NewBB: ClonedBB, LI&: *LI); |
168 | return OldLoop; |
169 | } else { |
170 | NewLoop->addBasicBlockToLoop(NewBB: ClonedBB, LI&: *LI); |
171 | return nullptr; |
172 | } |
173 | } |
174 | |
175 | /// The function chooses which type of unroll (epilog or prolog) is more |
176 | /// profitabale. |
177 | /// Epilog unroll is more profitable when there is PHI that starts from |
178 | /// constant. In this case epilog will leave PHI start from constant, |
179 | /// but prolog will convert it to non-constant. |
180 | /// |
181 | /// loop: |
182 | /// PN = PHI [I, Latch], [CI, PreHeader] |
183 | /// I = foo(PN) |
184 | /// ... |
185 | /// |
186 | /// Epilog unroll case. |
187 | /// loop: |
188 | /// PN = PHI [I2, Latch], [CI, PreHeader] |
189 | /// I1 = foo(PN) |
190 | /// I2 = foo(I1) |
191 | /// ... |
192 | /// Prolog unroll case. |
193 | /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] |
194 | /// loop: |
195 | /// PN = PHI [I2, Latch], [NewPN, PreHeader] |
196 | /// I1 = foo(PN) |
197 | /// I2 = foo(I1) |
198 | /// ... |
199 | /// |
200 | static bool isEpilogProfitable(Loop *L) { |
201 | BasicBlock * = L->getLoopPreheader(); |
202 | BasicBlock * = L->getHeader(); |
203 | assert(PreHeader && Header); |
204 | for (const PHINode &PN : Header->phis()) { |
205 | if (isa<ConstantInt>(Val: PN.getIncomingValueForBlock(BB: PreHeader))) |
206 | return true; |
207 | } |
208 | return false; |
209 | } |
210 | |
211 | struct LoadValue { |
212 | Instruction *DefI = nullptr; |
213 | unsigned Generation = 0; |
214 | LoadValue() = default; |
215 | LoadValue(Instruction *Inst, unsigned Generation) |
216 | : DefI(Inst), Generation(Generation) {} |
217 | }; |
218 | |
219 | class StackNode { |
220 | ScopedHashTable<const SCEV *, LoadValue>::ScopeTy LoadScope; |
221 | unsigned CurrentGeneration; |
222 | unsigned ChildGeneration; |
223 | DomTreeNode *Node; |
224 | DomTreeNode::const_iterator ChildIter; |
225 | DomTreeNode::const_iterator EndIter; |
226 | bool Processed = false; |
227 | |
228 | public: |
229 | StackNode(ScopedHashTable<const SCEV *, LoadValue> &AvailableLoads, |
230 | unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child, |
231 | DomTreeNode::const_iterator End) |
232 | : LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg), |
233 | Node(N), ChildIter(Child), EndIter(End) {} |
234 | // Accessors. |
235 | unsigned currentGeneration() const { return CurrentGeneration; } |
236 | unsigned childGeneration() const { return ChildGeneration; } |
237 | void childGeneration(unsigned generation) { ChildGeneration = generation; } |
238 | DomTreeNode *node() { return Node; } |
239 | DomTreeNode::const_iterator childIter() const { return ChildIter; } |
240 | |
241 | DomTreeNode *nextChild() { |
242 | DomTreeNode *Child = *ChildIter; |
243 | ++ChildIter; |
244 | return Child; |
245 | } |
246 | |
247 | DomTreeNode::const_iterator end() const { return EndIter; } |
248 | bool isProcessed() const { return Processed; } |
249 | void process() { Processed = true; } |
250 | }; |
251 | |
252 | Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration, |
253 | BatchAAResults &BAA, |
254 | function_ref<MemorySSA *()> GetMSSA) { |
255 | if (!LV.DefI) |
256 | return nullptr; |
257 | if (LV.DefI->getType() != LI->getType()) |
258 | return nullptr; |
259 | if (LV.Generation != CurrentGeneration) { |
260 | MemorySSA *MSSA = GetMSSA(); |
261 | if (!MSSA) |
262 | return nullptr; |
263 | auto *EarlierMA = MSSA->getMemoryAccess(I: LV.DefI); |
264 | MemoryAccess *LaterDef = |
265 | MSSA->getWalker()->getClobberingMemoryAccess(I: LI, AA&: BAA); |
266 | if (!MSSA->dominates(A: LaterDef, B: EarlierMA)) |
267 | return nullptr; |
268 | } |
269 | return LV.DefI; |
270 | } |
271 | |
272 | void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, |
273 | BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) { |
274 | ScopedHashTable<const SCEV *, LoadValue> AvailableLoads; |
275 | SmallVector<std::unique_ptr<StackNode>> NodesToProcess; |
276 | DomTreeNode * = DT.getNode(BB: L->getHeader()); |
277 | NodesToProcess.emplace_back(Args: new StackNode(AvailableLoads, 0, HeaderD, |
278 | HeaderD->begin(), HeaderD->end())); |
279 | |
280 | unsigned CurrentGeneration = 0; |
281 | while (!NodesToProcess.empty()) { |
282 | StackNode *NodeToProcess = &*NodesToProcess.back(); |
283 | |
284 | CurrentGeneration = NodeToProcess->currentGeneration(); |
285 | |
286 | if (!NodeToProcess->isProcessed()) { |
287 | // Process the node. |
288 | |
289 | // If this block has a single predecessor, then the predecessor is the |
290 | // parent |
291 | // of the domtree node and all of the live out memory values are still |
292 | // current in this block. If this block has multiple predecessors, then |
293 | // they could have invalidated the live-out memory values of our parent |
294 | // value. For now, just be conservative and invalidate memory if this |
295 | // block has multiple predecessors. |
296 | if (!NodeToProcess->node()->getBlock()->getSinglePredecessor()) |
297 | ++CurrentGeneration; |
298 | for (auto &I : make_early_inc_range(Range&: *NodeToProcess->node()->getBlock())) { |
299 | |
300 | auto *Load = dyn_cast<LoadInst>(Val: &I); |
301 | if (!Load || !Load->isSimple()) { |
302 | if (I.mayWriteToMemory()) |
303 | CurrentGeneration++; |
304 | continue; |
305 | } |
306 | |
307 | const SCEV *PtrSCEV = SE.getSCEV(V: Load->getPointerOperand()); |
308 | LoadValue LV = AvailableLoads.lookup(Key: PtrSCEV); |
309 | if (Value *M = |
310 | getMatchingValue(LV, LI: Load, CurrentGeneration, BAA, GetMSSA)) { |
311 | if (LI.replacementPreservesLCSSAForm(From: Load, To: M)) { |
312 | Load->replaceAllUsesWith(V: M); |
313 | Load->eraseFromParent(); |
314 | } |
315 | } else { |
316 | AvailableLoads.insert(Key: PtrSCEV, Val: LoadValue(Load, CurrentGeneration)); |
317 | } |
318 | } |
319 | NodeToProcess->childGeneration(generation: CurrentGeneration); |
320 | NodeToProcess->process(); |
321 | } else if (NodeToProcess->childIter() != NodeToProcess->end()) { |
322 | // Push the next child onto the stack. |
323 | DomTreeNode *Child = NodeToProcess->nextChild(); |
324 | if (!L->contains(BB: Child->getBlock())) |
325 | continue; |
326 | NodesToProcess.emplace_back( |
327 | Args: new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child, |
328 | Child->begin(), Child->end())); |
329 | } else { |
330 | // It has been processed, and there are no more children to process, |
331 | // so delete it and pop it off the stack. |
332 | NodesToProcess.pop_back(); |
333 | } |
334 | } |
335 | } |
336 | |
337 | /// Perform some cleanup and simplifications on loops after unrolling. It is |
338 | /// useful to simplify the IV's in the new loop, as well as do a quick |
339 | /// simplify/dce pass of the instructions. |
340 | void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, |
341 | ScalarEvolution *SE, DominatorTree *DT, |
342 | AssumptionCache *AC, |
343 | const TargetTransformInfo *TTI, |
344 | AAResults *AA) { |
345 | using namespace llvm::PatternMatch; |
346 | |
347 | // Simplify any new induction variables in the partially unrolled loop. |
348 | if (SE && SimplifyIVs) { |
349 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
350 | simplifyLoopIVs(L, SE, DT, LI, TTI, Dead&: DeadInsts); |
351 | |
352 | // Aggressively clean up dead instructions that simplifyLoopIVs already |
353 | // identified. Any remaining should be cleaned up below. |
354 | while (!DeadInsts.empty()) { |
355 | Value *V = DeadInsts.pop_back_val(); |
356 | if (Instruction *Inst = dyn_cast_or_null<Instruction>(Val: V)) |
357 | RecursivelyDeleteTriviallyDeadInstructions(V: Inst); |
358 | } |
359 | |
360 | if (AA) { |
361 | std::unique_ptr<MemorySSA> MSSA = nullptr; |
362 | BatchAAResults BAA(*AA); |
363 | loadCSE(L, DT&: *DT, SE&: *SE, LI&: *LI, BAA, GetMSSA: [L, AA, DT, &MSSA]() -> MemorySSA * { |
364 | if (!MSSA) |
365 | MSSA.reset(p: new MemorySSA(*L, AA, DT)); |
366 | return &*MSSA; |
367 | }); |
368 | } |
369 | } |
370 | |
371 | // At this point, the code is well formed. Perform constprop, instsimplify, |
372 | // and dce. |
373 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
374 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
375 | for (BasicBlock *BB : L->getBlocks()) { |
376 | // Remove repeated debug instructions after loop unrolling. |
377 | if (BB->getParent()->getSubprogram()) |
378 | RemoveRedundantDbgInstrs(BB); |
379 | |
380 | for (Instruction &Inst : llvm::make_early_inc_range(Range&: *BB)) { |
381 | if (Value *V = simplifyInstruction(I: &Inst, Q: {DL, nullptr, DT, AC})) |
382 | if (LI->replacementPreservesLCSSAForm(From: &Inst, To: V)) |
383 | Inst.replaceAllUsesWith(V); |
384 | if (isInstructionTriviallyDead(I: &Inst)) |
385 | DeadInsts.emplace_back(Args: &Inst); |
386 | |
387 | // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in |
388 | // unrolled loops, and handling this early allows following code to |
389 | // identify the IV as a "simple recurrence" without first folding away |
390 | // a long chain of adds. |
391 | { |
392 | Value *X; |
393 | const APInt *C1, *C2; |
394 | if (match(V: &Inst, P: m_Add(L: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C1)), R: m_APInt(Res&: C2)))) { |
395 | auto *InnerI = dyn_cast<Instruction>(Val: Inst.getOperand(i: 0)); |
396 | auto *InnerOBO = cast<OverflowingBinaryOperator>(Val: Inst.getOperand(i: 0)); |
397 | bool SignedOverflow; |
398 | APInt NewC = C1->sadd_ov(RHS: *C2, Overflow&: SignedOverflow); |
399 | Inst.setOperand(i: 0, Val: X); |
400 | Inst.setOperand(i: 1, Val: ConstantInt::get(Ty: Inst.getType(), V: NewC)); |
401 | Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() && |
402 | InnerOBO->hasNoUnsignedWrap()); |
403 | Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() && |
404 | InnerOBO->hasNoSignedWrap() && |
405 | !SignedOverflow); |
406 | if (InnerI && isInstructionTriviallyDead(I: InnerI)) |
407 | DeadInsts.emplace_back(Args&: InnerI); |
408 | } |
409 | } |
410 | } |
411 | // We can't do recursive deletion until we're done iterating, as we might |
412 | // have a phi which (potentially indirectly) uses instructions later in |
413 | // the block we're iterating through. |
414 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); |
415 | } |
416 | } |
417 | |
418 | // Loops containing convergent instructions that are uncontrolled or controlled |
419 | // from outside the loop must have a count that divides their TripMultiple. |
420 | LLVM_ATTRIBUTE_USED |
421 | static bool canHaveUnrollRemainder(const Loop *L) { |
422 | if (getLoopConvergenceHeart(TheLoop: L)) |
423 | return false; |
424 | |
425 | // Check for uncontrolled convergent operations. |
426 | for (auto &BB : L->blocks()) { |
427 | for (auto &I : *BB) { |
428 | if (isa<ConvergenceControlInst>(Val: I)) |
429 | return true; |
430 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
431 | if (CB->isConvergent()) |
432 | return CB->getConvergenceControlToken(); |
433 | } |
434 | } |
435 | return true; |
436 | } |
437 | |
438 | /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling |
439 | /// can only fail when the loop's latch block is not terminated by a conditional |
440 | /// branch instruction. However, if the trip count (and multiple) are not known, |
441 | /// loop unrolling will mostly produce more code that is no faster. |
442 | /// |
443 | /// If Runtime is true then UnrollLoop will try to insert a prologue or |
444 | /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop |
445 | /// will not runtime-unroll the loop if computing the run-time trip count will |
446 | /// be expensive and AllowExpensiveTripCount is false. |
447 | /// |
448 | /// The LoopInfo Analysis that is passed will be kept consistent. |
449 | /// |
450 | /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and |
451 | /// DominatorTree if they are non-null. |
452 | /// |
453 | /// If RemainderLoop is non-null, it will receive the remainder loop (if |
454 | /// required and not fully unrolled). |
455 | LoopUnrollResult |
456 | llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, |
457 | ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, |
458 | const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, |
459 | bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) { |
460 | assert(DT && "DomTree is required" ); |
461 | |
462 | if (!L->getLoopPreheader()) { |
463 | LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n" ); |
464 | return LoopUnrollResult::Unmodified; |
465 | } |
466 | |
467 | if (!L->getLoopLatch()) { |
468 | LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n" ); |
469 | return LoopUnrollResult::Unmodified; |
470 | } |
471 | |
472 | // Loops with indirectbr cannot be cloned. |
473 | if (!L->isSafeToClone()) { |
474 | LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n" ); |
475 | return LoopUnrollResult::Unmodified; |
476 | } |
477 | |
478 | if (L->getHeader()->hasAddressTaken()) { |
479 | // The loop-rotate pass can be helpful to avoid this in many cases. |
480 | LLVM_DEBUG( |
481 | dbgs() << " Won't unroll loop: address of header block is taken.\n" ); |
482 | return LoopUnrollResult::Unmodified; |
483 | } |
484 | |
485 | assert(ULO.Count > 0); |
486 | |
487 | // All these values should be taken only after peeling because they might have |
488 | // changed. |
489 | BasicBlock * = L->getLoopPreheader(); |
490 | BasicBlock * = L->getHeader(); |
491 | BasicBlock *LatchBlock = L->getLoopLatch(); |
492 | SmallVector<BasicBlock *, 4> ExitBlocks; |
493 | L->getExitBlocks(ExitBlocks); |
494 | std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); |
495 | |
496 | const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); |
497 | const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); |
498 | unsigned EstimatedLoopInvocationWeight = 0; |
499 | std::optional<unsigned> OriginalTripCount = |
500 | llvm::getLoopEstimatedTripCount(L, EstimatedLoopInvocationWeight: &EstimatedLoopInvocationWeight); |
501 | |
502 | // Effectively "DCE" unrolled iterations that are beyond the max tripcount |
503 | // and will never be executed. |
504 | if (MaxTripCount && ULO.Count > MaxTripCount) |
505 | ULO.Count = MaxTripCount; |
506 | |
507 | struct ExitInfo { |
508 | unsigned TripCount; |
509 | unsigned TripMultiple; |
510 | unsigned BreakoutTrip; |
511 | bool ExitOnTrue; |
512 | BasicBlock *FirstExitingBlock = nullptr; |
513 | SmallVector<BasicBlock *> ExitingBlocks; |
514 | }; |
515 | DenseMap<BasicBlock *, ExitInfo> ExitInfos; |
516 | SmallVector<BasicBlock *, 4> ExitingBlocks; |
517 | L->getExitingBlocks(ExitingBlocks); |
518 | for (auto *ExitingBlock : ExitingBlocks) { |
519 | // The folding code is not prepared to deal with non-branch instructions |
520 | // right now. |
521 | auto *BI = dyn_cast<BranchInst>(Val: ExitingBlock->getTerminator()); |
522 | if (!BI) |
523 | continue; |
524 | |
525 | ExitInfo &Info = ExitInfos[ExitingBlock]; |
526 | Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); |
527 | Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); |
528 | if (Info.TripCount != 0) { |
529 | Info.BreakoutTrip = Info.TripCount % ULO.Count; |
530 | Info.TripMultiple = 0; |
531 | } else { |
532 | Info.BreakoutTrip = Info.TripMultiple = |
533 | (unsigned)std::gcd(m: ULO.Count, n: Info.TripMultiple); |
534 | } |
535 | Info.ExitOnTrue = !L->contains(BB: BI->getSuccessor(i: 0)); |
536 | Info.ExitingBlocks.push_back(Elt: ExitingBlock); |
537 | LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() |
538 | << ": TripCount=" << Info.TripCount |
539 | << ", TripMultiple=" << Info.TripMultiple |
540 | << ", BreakoutTrip=" << Info.BreakoutTrip << "\n" ); |
541 | } |
542 | |
543 | // Are we eliminating the loop control altogether? Note that we can know |
544 | // we're eliminating the backedge without knowing exactly which iteration |
545 | // of the unrolled body exits. |
546 | const bool CompletelyUnroll = ULO.Count == MaxTripCount; |
547 | |
548 | const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; |
549 | |
550 | // There's no point in performing runtime unrolling if this unroll count |
551 | // results in a full unroll. |
552 | if (CompletelyUnroll) |
553 | ULO.Runtime = false; |
554 | |
555 | // Go through all exits of L and see if there are any phi-nodes there. We just |
556 | // conservatively assume that they're inserted to preserve LCSSA form, which |
557 | // means that complete unrolling might break this form. We need to either fix |
558 | // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For |
559 | // now we just recompute LCSSA for the outer loop, but it should be possible |
560 | // to fix it in-place. |
561 | bool NeedToFixLCSSA = |
562 | PreserveLCSSA && CompletelyUnroll && |
563 | any_of(Range&: ExitBlocks, |
564 | P: [](const BasicBlock *BB) { return isa<PHINode>(Val: BB->begin()); }); |
565 | |
566 | // The current loop unroll pass can unroll loops that have |
567 | // (1) single latch; and |
568 | // (2a) latch is unconditional; or |
569 | // (2b) latch is conditional and is an exiting block |
570 | // FIXME: The implementation can be extended to work with more complicated |
571 | // cases, e.g. loops with multiple latches. |
572 | BranchInst *LatchBI = dyn_cast<BranchInst>(Val: LatchBlock->getTerminator()); |
573 | |
574 | // A conditional branch which exits the loop, which can be optimized to an |
575 | // unconditional branch in the unrolled loop in some cases. |
576 | bool LatchIsExiting = L->isLoopExiting(BB: LatchBlock); |
577 | if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { |
578 | LLVM_DEBUG( |
579 | dbgs() << "Can't unroll; a conditional latch must exit the loop" ); |
580 | return LoopUnrollResult::Unmodified; |
581 | } |
582 | |
583 | assert((!ULO.Runtime || canHaveUnrollRemainder(L)) && |
584 | "Can't runtime unroll if loop contains a convergent operation." ); |
585 | |
586 | bool EpilogProfitability = |
587 | UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog |
588 | : isEpilogProfitable(L); |
589 | |
590 | if (ULO.Runtime && |
591 | !UnrollRuntimeLoopRemainder(L, Count: ULO.Count, AllowExpensiveTripCount: ULO.AllowExpensiveTripCount, |
592 | UseEpilogRemainder: EpilogProfitability, UnrollRemainder: ULO.UnrollRemainder, |
593 | ForgetAllSCEV: ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, |
594 | PreserveLCSSA, SCEVExpansionBudget: ULO.SCEVExpansionBudget, |
595 | RuntimeUnrollMultiExit: ULO.RuntimeUnrollMultiExit, ResultLoop: RemainderLoop)) { |
596 | if (ULO.Force) |
597 | ULO.Runtime = false; |
598 | else { |
599 | LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " |
600 | "generated when assuming runtime trip count\n" ); |
601 | return LoopUnrollResult::Unmodified; |
602 | } |
603 | } |
604 | |
605 | using namespace ore; |
606 | // Report the unrolling decision. |
607 | if (CompletelyUnroll) { |
608 | LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() |
609 | << " with trip count " << ULO.Count << "!\n" ); |
610 | if (ORE) |
611 | ORE->emit(RemarkBuilder: [&]() { |
612 | return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled" , L->getStartLoc(), |
613 | L->getHeader()) |
614 | << "completely unrolled loop with " |
615 | << NV("UnrollCount" , ULO.Count) << " iterations" ; |
616 | }); |
617 | } else { |
618 | LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " |
619 | << ULO.Count); |
620 | if (ULO.Runtime) |
621 | LLVM_DEBUG(dbgs() << " with run-time trip count" ); |
622 | LLVM_DEBUG(dbgs() << "!\n" ); |
623 | |
624 | if (ORE) |
625 | ORE->emit(RemarkBuilder: [&]() { |
626 | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled" , L->getStartLoc(), |
627 | L->getHeader()); |
628 | Diag << "unrolled loop by a factor of " << NV("UnrollCount" , ULO.Count); |
629 | if (ULO.Runtime) |
630 | Diag << " with run-time trip count" ; |
631 | return Diag; |
632 | }); |
633 | } |
634 | |
635 | // We are going to make changes to this loop. SCEV may be keeping cached info |
636 | // about it, in particular about backedge taken count. The changes we make |
637 | // are guaranteed to invalidate this information for our loop. It is tempting |
638 | // to only invalidate the loop being unrolled, but it is incorrect as long as |
639 | // all exiting branches from all inner loops have impact on the outer loops, |
640 | // and if something changes inside them then any of outer loops may also |
641 | // change. When we forget outermost loop, we also forget all contained loops |
642 | // and this is what we need here. |
643 | if (SE) { |
644 | if (ULO.ForgetAllSCEV) |
645 | SE->forgetAllLoops(); |
646 | else { |
647 | SE->forgetTopmostLoop(L); |
648 | SE->forgetBlockAndLoopDispositions(); |
649 | } |
650 | } |
651 | |
652 | if (!LatchIsExiting) |
653 | ++NumUnrolledNotLatch; |
654 | |
655 | // For the first iteration of the loop, we should use the precloned values for |
656 | // PHI nodes. Insert associations now. |
657 | ValueToValueMapTy LastValueMap; |
658 | std::vector<PHINode*> OrigPHINode; |
659 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) { |
660 | OrigPHINode.push_back(x: cast<PHINode>(Val&: I)); |
661 | } |
662 | |
663 | std::vector<BasicBlock *> ; |
664 | std::vector<BasicBlock *> Latches; |
665 | Headers.push_back(x: Header); |
666 | Latches.push_back(x: LatchBlock); |
667 | |
668 | // The current on-the-fly SSA update requires blocks to be processed in |
669 | // reverse postorder so that LastValueMap contains the correct value at each |
670 | // exit. |
671 | LoopBlocksDFS DFS(L); |
672 | DFS.perform(LI); |
673 | |
674 | // Stash the DFS iterators before adding blocks to the loop. |
675 | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
676 | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
677 | |
678 | std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); |
679 | |
680 | // Loop Unrolling might create new loops. While we do preserve LoopInfo, we |
681 | // might break loop-simplified form for these loops (as they, e.g., would |
682 | // share the same exit blocks). We'll keep track of loops for which we can |
683 | // break this so that later we can re-simplify them. |
684 | SmallSetVector<Loop *, 4> LoopsToSimplify; |
685 | LoopsToSimplify.insert_range(R&: *L); |
686 | |
687 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
688 | // factors to the discriminators. |
689 | if (Header->getParent()->shouldEmitDebugInfoForProfiling() && |
690 | !EnableFSDiscriminator) |
691 | for (BasicBlock *BB : L->getBlocks()) |
692 | for (Instruction &I : *BB) |
693 | if (!I.isDebugOrPseudoInst()) |
694 | if (const DILocation *DIL = I.getDebugLoc()) { |
695 | auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(DF: ULO.Count); |
696 | if (NewDIL) |
697 | I.setDebugLoc(*NewDIL); |
698 | else |
699 | LLVM_DEBUG(dbgs() |
700 | << "Failed to create new discriminator: " |
701 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
702 | } |
703 | |
704 | // Identify what noalias metadata is inside the loop: if it is inside the |
705 | // loop, the associated metadata must be cloned for each iteration. |
706 | SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; |
707 | identifyNoAliasScopesToClone(BBs: L->getBlocks(), NoAliasDeclScopes&: LoopLocalNoAliasDeclScopes); |
708 | |
709 | // We place the unrolled iterations immediately after the original loop |
710 | // latch. This is a reasonable default placement if we don't have block |
711 | // frequencies, and if we do, well the layout will be adjusted later. |
712 | auto BlockInsertPt = std::next(x: LatchBlock->getIterator()); |
713 | for (unsigned It = 1; It != ULO.Count; ++It) { |
714 | SmallVector<BasicBlock *, 8> NewBlocks; |
715 | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; |
716 | NewLoops[L] = L; |
717 | |
718 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
719 | ValueToValueMapTy VMap; |
720 | BasicBlock *New = CloneBasicBlock(BB: *BB, VMap, NameSuffix: "." + Twine(It)); |
721 | Header->getParent()->insert(Position: BlockInsertPt, BB: New); |
722 | |
723 | assert((*BB != Header || LI->getLoopFor(*BB) == L) && |
724 | "Header should not be in a sub-loop" ); |
725 | // Tell LI about New. |
726 | const Loop *OldLoop = addClonedBlockToLoopInfo(OriginalBB: *BB, ClonedBB: New, LI, NewLoops); |
727 | if (OldLoop) |
728 | LoopsToSimplify.insert(X: NewLoops[OldLoop]); |
729 | |
730 | if (*BB == Header) { |
731 | // Loop over all of the PHI nodes in the block, changing them to use |
732 | // the incoming values from the previous block. |
733 | for (PHINode *OrigPHI : OrigPHINode) { |
734 | PHINode *NewPHI = cast<PHINode>(Val&: VMap[OrigPHI]); |
735 | Value *InVal = NewPHI->getIncomingValueForBlock(BB: LatchBlock); |
736 | if (Instruction *InValI = dyn_cast<Instruction>(Val: InVal)) |
737 | if (It > 1 && L->contains(Inst: InValI)) |
738 | InVal = LastValueMap[InValI]; |
739 | VMap[OrigPHI] = InVal; |
740 | NewPHI->eraseFromParent(); |
741 | } |
742 | |
743 | // Eliminate copies of the loop heart intrinsic, if any. |
744 | if (ULO.Heart) { |
745 | auto it = VMap.find(Val: ULO.Heart); |
746 | assert(it != VMap.end()); |
747 | Instruction *heartCopy = cast<Instruction>(Val&: it->second); |
748 | heartCopy->eraseFromParent(); |
749 | VMap.erase(I: it); |
750 | } |
751 | } |
752 | |
753 | // Remap source location atom instance. Do this now, rather than |
754 | // when we remap instructions, because remap is called once we've |
755 | // cloned all blocks (all the clones would get the same atom |
756 | // number). |
757 | if (!VMap.AtomMap.empty()) |
758 | for (Instruction &I : *New) |
759 | RemapSourceAtom(I: &I, VM&: VMap); |
760 | |
761 | // Update our running map of newest clones |
762 | LastValueMap[*BB] = New; |
763 | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
764 | VI != VE; ++VI) |
765 | LastValueMap[VI->first] = VI->second; |
766 | |
767 | // Add phi entries for newly created values to all exit blocks. |
768 | for (BasicBlock *Succ : successors(BB: *BB)) { |
769 | if (L->contains(BB: Succ)) |
770 | continue; |
771 | for (PHINode &PHI : Succ->phis()) { |
772 | Value *Incoming = PHI.getIncomingValueForBlock(BB: *BB); |
773 | ValueToValueMapTy::iterator It = LastValueMap.find(Val: Incoming); |
774 | if (It != LastValueMap.end()) |
775 | Incoming = It->second; |
776 | PHI.addIncoming(V: Incoming, BB: New); |
777 | SE->forgetLcssaPhiWithNewPredecessor(L, V: &PHI); |
778 | } |
779 | } |
780 | // Keep track of new headers and latches as we create them, so that |
781 | // we can insert the proper branches later. |
782 | if (*BB == Header) |
783 | Headers.push_back(x: New); |
784 | if (*BB == LatchBlock) |
785 | Latches.push_back(x: New); |
786 | |
787 | // Keep track of the exiting block and its successor block contained in |
788 | // the loop for the current iteration. |
789 | auto ExitInfoIt = ExitInfos.find(Val: *BB); |
790 | if (ExitInfoIt != ExitInfos.end()) |
791 | ExitInfoIt->second.ExitingBlocks.push_back(Elt: New); |
792 | |
793 | NewBlocks.push_back(Elt: New); |
794 | UnrolledLoopBlocks.push_back(x: New); |
795 | |
796 | // Update DomTree: since we just copy the loop body, and each copy has a |
797 | // dedicated entry block (copy of the header block), this header's copy |
798 | // dominates all copied blocks. That means, dominance relations in the |
799 | // copied body are the same as in the original body. |
800 | if (*BB == Header) |
801 | DT->addNewBlock(BB: New, DomBB: Latches[It - 1]); |
802 | else { |
803 | auto BBDomNode = DT->getNode(BB: *BB); |
804 | auto BBIDom = BBDomNode->getIDom(); |
805 | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); |
806 | DT->addNewBlock( |
807 | BB: New, DomBB: cast<BasicBlock>(Val&: LastValueMap[cast<Value>(Val: OriginalBBIDom)])); |
808 | } |
809 | } |
810 | |
811 | // Remap all instructions in the most recent iteration. |
812 | // Key Instructions: Nothing to do - we've already remapped the atoms. |
813 | remapInstructionsInBlocks(Blocks: NewBlocks, VMap&: LastValueMap); |
814 | for (BasicBlock *NewBlock : NewBlocks) |
815 | for (Instruction &I : *NewBlock) |
816 | if (auto *II = dyn_cast<AssumeInst>(Val: &I)) |
817 | AC->registerAssumption(CI: II); |
818 | |
819 | { |
820 | // Identify what other metadata depends on the cloned version. After |
821 | // cloning, replace the metadata with the corrected version for both |
822 | // memory instructions and noalias intrinsics. |
823 | std::string ext = (Twine("It" ) + Twine(It)).str(); |
824 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes: LoopLocalNoAliasDeclScopes, NewBlocks, |
825 | Context&: Header->getContext(), Ext: ext); |
826 | } |
827 | } |
828 | |
829 | // Loop over the PHI nodes in the original block, setting incoming values. |
830 | for (PHINode *PN : OrigPHINode) { |
831 | if (CompletelyUnroll) { |
832 | PN->replaceAllUsesWith(V: PN->getIncomingValueForBlock(BB: Preheader)); |
833 | PN->eraseFromParent(); |
834 | } else if (ULO.Count > 1) { |
835 | Value *InVal = PN->removeIncomingValue(BB: LatchBlock, DeletePHIIfEmpty: false); |
836 | // If this value was defined in the loop, take the value defined by the |
837 | // last iteration of the loop. |
838 | if (Instruction *InValI = dyn_cast<Instruction>(Val: InVal)) { |
839 | if (L->contains(Inst: InValI)) |
840 | InVal = LastValueMap[InVal]; |
841 | } |
842 | assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch" ); |
843 | PN->addIncoming(V: InVal, BB: Latches.back()); |
844 | } |
845 | } |
846 | |
847 | // Connect latches of the unrolled iterations to the headers of the next |
848 | // iteration. Currently they point to the header of the same iteration. |
849 | for (unsigned i = 0, e = Latches.size(); i != e; ++i) { |
850 | unsigned j = (i + 1) % e; |
851 | Latches[i]->getTerminator()->replaceSuccessorWith(OldBB: Headers[i], NewBB: Headers[j]); |
852 | } |
853 | |
854 | // Update dominators of blocks we might reach through exits. |
855 | // Immediate dominator of such block might change, because we add more |
856 | // routes which can lead to the exit: we can now reach it from the copied |
857 | // iterations too. |
858 | if (ULO.Count > 1) { |
859 | for (auto *BB : OriginalLoopBlocks) { |
860 | auto *BBDomNode = DT->getNode(BB); |
861 | SmallVector<BasicBlock *, 16> ChildrenToUpdate; |
862 | for (auto *ChildDomNode : BBDomNode->children()) { |
863 | auto *ChildBB = ChildDomNode->getBlock(); |
864 | if (!L->contains(BB: ChildBB)) |
865 | ChildrenToUpdate.push_back(Elt: ChildBB); |
866 | } |
867 | // The new idom of the block will be the nearest common dominator |
868 | // of all copies of the previous idom. This is equivalent to the |
869 | // nearest common dominator of the previous idom and the first latch, |
870 | // which dominates all copies of the previous idom. |
871 | BasicBlock *NewIDom = DT->findNearestCommonDominator(A: BB, B: LatchBlock); |
872 | for (auto *ChildBB : ChildrenToUpdate) |
873 | DT->changeImmediateDominator(BB: ChildBB, NewBB: NewIDom); |
874 | } |
875 | } |
876 | |
877 | assert(!UnrollVerifyDomtree || |
878 | DT->verify(DominatorTree::VerificationLevel::Fast)); |
879 | |
880 | SmallVector<DominatorTree::UpdateType> DTUpdates; |
881 | auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { |
882 | auto *Term = cast<BranchInst>(Val: Src->getTerminator()); |
883 | const unsigned Idx = ExitOnTrue ^ WillExit; |
884 | BasicBlock *Dest = Term->getSuccessor(i: Idx); |
885 | BasicBlock *DeadSucc = Term->getSuccessor(i: 1-Idx); |
886 | |
887 | // Remove predecessors from all non-Dest successors. |
888 | DeadSucc->removePredecessor(Pred: Src, /* KeepOneInputPHIs */ true); |
889 | |
890 | // Replace the conditional branch with an unconditional one. |
891 | auto *BI = BranchInst::Create(IfTrue: Dest, InsertBefore: Term->getIterator()); |
892 | BI->setDebugLoc(Term->getDebugLoc()); |
893 | Term->eraseFromParent(); |
894 | |
895 | DTUpdates.emplace_back(Args: DominatorTree::Delete, Args&: Src, Args&: DeadSucc); |
896 | }; |
897 | |
898 | auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, |
899 | bool IsLatch) -> std::optional<bool> { |
900 | if (CompletelyUnroll) { |
901 | if (PreserveOnlyFirst) { |
902 | if (i == 0) |
903 | return std::nullopt; |
904 | return j == 0; |
905 | } |
906 | // Complete (but possibly inexact) unrolling |
907 | if (j == 0) |
908 | return true; |
909 | if (Info.TripCount && j != Info.TripCount) |
910 | return false; |
911 | return std::nullopt; |
912 | } |
913 | |
914 | if (ULO.Runtime) { |
915 | // If runtime unrolling inserts a prologue, information about non-latch |
916 | // exits may be stale. |
917 | if (IsLatch && j != 0) |
918 | return false; |
919 | return std::nullopt; |
920 | } |
921 | |
922 | if (j != Info.BreakoutTrip && |
923 | (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { |
924 | // If we know the trip count or a multiple of it, we can safely use an |
925 | // unconditional branch for some iterations. |
926 | return false; |
927 | } |
928 | return std::nullopt; |
929 | }; |
930 | |
931 | // Fold branches for iterations where we know that they will exit or not |
932 | // exit. |
933 | for (auto &Pair : ExitInfos) { |
934 | ExitInfo &Info = Pair.second; |
935 | for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { |
936 | // The branch destination. |
937 | unsigned j = (i + 1) % e; |
938 | bool IsLatch = Pair.first == LatchBlock; |
939 | std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); |
940 | if (!KnownWillExit) { |
941 | if (!Info.FirstExitingBlock) |
942 | Info.FirstExitingBlock = Info.ExitingBlocks[i]; |
943 | continue; |
944 | } |
945 | |
946 | // We don't fold known-exiting branches for non-latch exits here, |
947 | // because this ensures that both all loop blocks and all exit blocks |
948 | // remain reachable in the CFG. |
949 | // TODO: We could fold these branches, but it would require much more |
950 | // sophisticated updates to LoopInfo. |
951 | if (*KnownWillExit && !IsLatch) { |
952 | if (!Info.FirstExitingBlock) |
953 | Info.FirstExitingBlock = Info.ExitingBlocks[i]; |
954 | continue; |
955 | } |
956 | |
957 | SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); |
958 | } |
959 | } |
960 | |
961 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
962 | DomTreeUpdater *DTUToUse = &DTU; |
963 | if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) { |
964 | // Manually update the DT if there's a single exiting node. In that case |
965 | // there's a single exit node and it is sufficient to update the nodes |
966 | // immediately dominated by the original exiting block. They will become |
967 | // dominated by the first exiting block that leaves the loop after |
968 | // unrolling. Note that the CFG inside the loop does not change, so there's |
969 | // no need to update the DT inside the unrolled loop. |
970 | DTUToUse = nullptr; |
971 | auto &[OriginalExit, Info] = *ExitInfos.begin(); |
972 | if (!Info.FirstExitingBlock) |
973 | Info.FirstExitingBlock = Info.ExitingBlocks.back(); |
974 | for (auto *C : to_vector(Range: DT->getNode(BB: OriginalExit)->children())) { |
975 | if (L->contains(BB: C->getBlock())) |
976 | continue; |
977 | C->setIDom(DT->getNode(BB: Info.FirstExitingBlock)); |
978 | } |
979 | } else { |
980 | DTU.applyUpdates(Updates: DTUpdates); |
981 | } |
982 | |
983 | // When completely unrolling, the last latch becomes unreachable. |
984 | if (!LatchIsExiting && CompletelyUnroll) { |
985 | // There is no need to update the DT here, because there must be a unique |
986 | // latch. Hence if the latch is not exiting it must directly branch back to |
987 | // the original loop header and does not dominate any nodes. |
988 | assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?" ); |
989 | changeToUnreachable(I: Latches.back()->getTerminator(), PreserveLCSSA); |
990 | } |
991 | |
992 | // Merge adjacent basic blocks, if possible. |
993 | for (BasicBlock *Latch : Latches) { |
994 | BranchInst *Term = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
995 | assert((Term || |
996 | (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && |
997 | "Need a branch as terminator, except when fully unrolling with " |
998 | "unconditional latch" ); |
999 | if (Term && Term->isUnconditional()) { |
1000 | BasicBlock *Dest = Term->getSuccessor(i: 0); |
1001 | BasicBlock *Fold = Dest->getUniquePredecessor(); |
1002 | if (MergeBlockIntoPredecessor(BB: Dest, /*DTU=*/DTUToUse, LI, |
1003 | /*MSSAU=*/nullptr, /*MemDep=*/nullptr, |
1004 | /*PredecessorWithTwoSuccessors=*/false, |
1005 | DT: DTUToUse ? nullptr : DT)) { |
1006 | // Dest has been folded into Fold. Update our worklists accordingly. |
1007 | llvm::replace(Range&: Latches, OldValue: Dest, NewValue: Fold); |
1008 | llvm::erase(C&: UnrolledLoopBlocks, V: Dest); |
1009 | } |
1010 | } |
1011 | } |
1012 | |
1013 | if (DTUToUse) { |
1014 | // Apply updates to the DomTree. |
1015 | DT = &DTU.getDomTree(); |
1016 | } |
1017 | assert(!UnrollVerifyDomtree || |
1018 | DT->verify(DominatorTree::VerificationLevel::Fast)); |
1019 | |
1020 | // At this point, the code is well formed. We now simplify the unrolled loop, |
1021 | // doing constant propagation and dead code elimination as we go. |
1022 | simplifyLoopAfterUnroll(L, SimplifyIVs: !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, |
1023 | TTI, AA); |
1024 | |
1025 | NumCompletelyUnrolled += CompletelyUnroll; |
1026 | ++NumUnrolled; |
1027 | |
1028 | Loop *OuterL = L->getParentLoop(); |
1029 | // Update LoopInfo if the loop is completely removed. |
1030 | if (CompletelyUnroll) { |
1031 | LI->erase(L); |
1032 | // We shouldn't try to use `L` anymore. |
1033 | L = nullptr; |
1034 | } else if (OriginalTripCount) { |
1035 | // Update the trip count. Note that the remainder has already logic |
1036 | // computing it in `UnrollRuntimeLoopRemainder`. |
1037 | setLoopEstimatedTripCount(L, EstimatedTripCount: *OriginalTripCount / ULO.Count, |
1038 | EstimatedLoopInvocationWeight); |
1039 | } |
1040 | |
1041 | // LoopInfo should not be valid, confirm that. |
1042 | if (UnrollVerifyLoopInfo) |
1043 | LI->verify(DomTree: *DT); |
1044 | |
1045 | // After complete unrolling most of the blocks should be contained in OuterL. |
1046 | // However, some of them might happen to be out of OuterL (e.g. if they |
1047 | // precede a loop exit). In this case we might need to insert PHI nodes in |
1048 | // order to preserve LCSSA form. |
1049 | // We don't need to check this if we already know that we need to fix LCSSA |
1050 | // form. |
1051 | // TODO: For now we just recompute LCSSA for the outer loop in this case, but |
1052 | // it should be possible to fix it in-place. |
1053 | if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) |
1054 | NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(L: OuterL, Blocks: UnrolledLoopBlocks, LI); |
1055 | |
1056 | // Make sure that loop-simplify form is preserved. We want to simplify |
1057 | // at least one layer outside of the loop that was unrolled so that any |
1058 | // changes to the parent loop exposed by the unrolling are considered. |
1059 | if (OuterL) { |
1060 | // OuterL includes all loops for which we can break loop-simplify, so |
1061 | // it's sufficient to simplify only it (it'll recursively simplify inner |
1062 | // loops too). |
1063 | if (NeedToFixLCSSA) { |
1064 | // LCSSA must be performed on the outermost affected loop. The unrolled |
1065 | // loop's last loop latch is guaranteed to be in the outermost loop |
1066 | // after LoopInfo's been updated by LoopInfo::erase. |
1067 | Loop *LatchLoop = LI->getLoopFor(BB: Latches.back()); |
1068 | Loop *FixLCSSALoop = OuterL; |
1069 | if (!FixLCSSALoop->contains(L: LatchLoop)) |
1070 | while (FixLCSSALoop->getParentLoop() != LatchLoop) |
1071 | FixLCSSALoop = FixLCSSALoop->getParentLoop(); |
1072 | |
1073 | formLCSSARecursively(L&: *FixLCSSALoop, DT: *DT, LI, SE); |
1074 | } else if (PreserveLCSSA) { |
1075 | assert(OuterL->isLCSSAForm(*DT) && |
1076 | "Loops should be in LCSSA form after loop-unroll." ); |
1077 | } |
1078 | |
1079 | // TODO: That potentially might be compile-time expensive. We should try |
1080 | // to fix the loop-simplified form incrementally. |
1081 | simplifyLoop(L: OuterL, DT, LI, SE, AC, MSSAU: nullptr, PreserveLCSSA); |
1082 | } else { |
1083 | // Simplify loops for which we might've broken loop-simplify form. |
1084 | for (Loop *SubLoop : LoopsToSimplify) |
1085 | simplifyLoop(L: SubLoop, DT, LI, SE, AC, MSSAU: nullptr, PreserveLCSSA); |
1086 | } |
1087 | |
1088 | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled |
1089 | : LoopUnrollResult::PartiallyUnrolled; |
1090 | } |
1091 | |
1092 | /// Given an llvm.loop loop id metadata node, returns the loop hint metadata |
1093 | /// node with the given name (for example, "llvm.loop.unroll.count"). If no |
1094 | /// such metadata node exists, then nullptr is returned. |
1095 | MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { |
1096 | // First operand should refer to the loop id itself. |
1097 | assert(LoopID->getNumOperands() > 0 && "requires at least one operand" ); |
1098 | assert(LoopID->getOperand(0) == LoopID && "invalid loop id" ); |
1099 | |
1100 | for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) { |
1101 | MDNode *MD = dyn_cast<MDNode>(Val: MDO); |
1102 | if (!MD) |
1103 | continue; |
1104 | |
1105 | MDString *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
1106 | if (!S) |
1107 | continue; |
1108 | |
1109 | if (Name == S->getString()) |
1110 | return MD; |
1111 | } |
1112 | return nullptr; |
1113 | } |
1114 | |