1 | //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // \file |
10 | // This file implements the Sparse Conditional Constant Propagation (SCCP) |
11 | // utility. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/Utils/SCCPSolver.h" |
16 | #include "llvm/ADT/SetVector.h" |
17 | #include "llvm/Analysis/ConstantFolding.h" |
18 | #include "llvm/Analysis/InstructionSimplify.h" |
19 | #include "llvm/Analysis/ValueLattice.h" |
20 | #include "llvm/Analysis/ValueLatticeUtils.h" |
21 | #include "llvm/Analysis/ValueTracking.h" |
22 | #include "llvm/IR/InstVisitor.h" |
23 | #include "llvm/IR/PatternMatch.h" |
24 | #include "llvm/Support/Casting.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/ErrorHandling.h" |
27 | #include "llvm/Support/raw_ostream.h" |
28 | #include "llvm/Transforms/Utils/Local.h" |
29 | #include <cassert> |
30 | #include <utility> |
31 | #include <vector> |
32 | |
33 | using namespace llvm; |
34 | using namespace PatternMatch; |
35 | |
36 | #define DEBUG_TYPE "sccp" |
37 | |
38 | // The maximum number of range extensions allowed for operations requiring |
39 | // widening. |
40 | static const unsigned MaxNumRangeExtensions = 10; |
41 | |
42 | /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. |
43 | static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { |
44 | return ValueLatticeElement::MergeOptions().setMaxWidenSteps( |
45 | MaxNumRangeExtensions); |
46 | } |
47 | |
48 | namespace llvm { |
49 | |
50 | bool SCCPSolver::isConstant(const ValueLatticeElement &LV) { |
51 | return LV.isConstant() || |
52 | (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); |
53 | } |
54 | |
55 | bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) { |
56 | return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV); |
57 | } |
58 | |
59 | bool SCCPSolver::tryToReplaceWithConstant(Value *V) { |
60 | Constant *Const = getConstantOrNull(V); |
61 | if (!Const) |
62 | return false; |
63 | // Replacing `musttail` instructions with constant breaks `musttail` invariant |
64 | // unless the call itself can be removed. |
65 | // Calls with "clang.arc.attachedcall" implicitly use the return value and |
66 | // those uses cannot be updated with a constant. |
67 | CallBase *CB = dyn_cast<CallBase>(Val: V); |
68 | if (CB && ((CB->isMustTailCall() && !wouldInstructionBeTriviallyDead(I: CB)) || |
69 | CB->getOperandBundle(ID: LLVMContext::OB_clang_arc_attachedcall))) { |
70 | Function *F = CB->getCalledFunction(); |
71 | |
72 | // Don't zap returns of the callee |
73 | if (F) |
74 | addToMustPreserveReturnsInFunctions(F); |
75 | |
76 | LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB |
77 | << " as a constant\n" ); |
78 | return false; |
79 | } |
80 | |
81 | LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); |
82 | |
83 | // Replaces all of the uses of a variable with uses of the constant. |
84 | V->replaceAllUsesWith(V: Const); |
85 | return true; |
86 | } |
87 | |
88 | /// Helper for getting ranges from \p Solver. Instructions inserted during |
89 | /// simplification are unavailable in the solver, so we return a full range for |
90 | /// them. |
91 | static ConstantRange getRange(Value *Op, SCCPSolver &Solver, |
92 | const SmallPtrSetImpl<Value *> &InsertedValues) { |
93 | if (auto *Const = dyn_cast<Constant>(Val: Op)) |
94 | return Const->toConstantRange(); |
95 | if (InsertedValues.contains(Ptr: Op)) { |
96 | unsigned Bitwidth = Op->getType()->getScalarSizeInBits(); |
97 | return ConstantRange::getFull(BitWidth: Bitwidth); |
98 | } |
99 | return Solver.getLatticeValueFor(V: Op).asConstantRange(Ty: Op->getType(), |
100 | /*UndefAllowed=*/false); |
101 | } |
102 | |
103 | /// Try to use \p Inst's value range from \p Solver to infer the NUW flag. |
104 | static bool refineInstruction(SCCPSolver &Solver, |
105 | const SmallPtrSetImpl<Value *> &InsertedValues, |
106 | Instruction &Inst) { |
107 | bool Changed = false; |
108 | auto GetRange = [&Solver, &InsertedValues](Value *Op) { |
109 | return getRange(Op, Solver, InsertedValues); |
110 | }; |
111 | |
112 | if (isa<OverflowingBinaryOperator>(Val: Inst)) { |
113 | if (Inst.hasNoSignedWrap() && Inst.hasNoUnsignedWrap()) |
114 | return false; |
115 | |
116 | auto RangeA = GetRange(Inst.getOperand(i: 0)); |
117 | auto RangeB = GetRange(Inst.getOperand(i: 1)); |
118 | if (!Inst.hasNoUnsignedWrap()) { |
119 | auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( |
120 | BinOp: Instruction::BinaryOps(Inst.getOpcode()), Other: RangeB, |
121 | NoWrapKind: OverflowingBinaryOperator::NoUnsignedWrap); |
122 | if (NUWRange.contains(CR: RangeA)) { |
123 | Inst.setHasNoUnsignedWrap(); |
124 | Changed = true; |
125 | } |
126 | } |
127 | if (!Inst.hasNoSignedWrap()) { |
128 | auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( |
129 | BinOp: Instruction::BinaryOps(Inst.getOpcode()), Other: RangeB, |
130 | NoWrapKind: OverflowingBinaryOperator::NoSignedWrap); |
131 | if (NSWRange.contains(CR: RangeA)) { |
132 | Inst.setHasNoSignedWrap(); |
133 | Changed = true; |
134 | } |
135 | } |
136 | } else if (isa<PossiblyNonNegInst>(Val: Inst) && !Inst.hasNonNeg()) { |
137 | auto Range = GetRange(Inst.getOperand(i: 0)); |
138 | if (Range.isAllNonNegative()) { |
139 | Inst.setNonNeg(); |
140 | Changed = true; |
141 | } |
142 | } else if (TruncInst *TI = dyn_cast<TruncInst>(Val: &Inst)) { |
143 | if (TI->hasNoSignedWrap() && TI->hasNoUnsignedWrap()) |
144 | return false; |
145 | |
146 | auto Range = GetRange(Inst.getOperand(i: 0)); |
147 | uint64_t DestWidth = TI->getDestTy()->getScalarSizeInBits(); |
148 | if (!TI->hasNoUnsignedWrap()) { |
149 | if (Range.getActiveBits() <= DestWidth) { |
150 | TI->setHasNoUnsignedWrap(true); |
151 | Changed = true; |
152 | } |
153 | } |
154 | if (!TI->hasNoSignedWrap()) { |
155 | if (Range.getMinSignedBits() <= DestWidth) { |
156 | TI->setHasNoSignedWrap(true); |
157 | Changed = true; |
158 | } |
159 | } |
160 | } else if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &Inst)) { |
161 | if (GEP->hasNoUnsignedWrap() || !GEP->hasNoUnsignedSignedWrap()) |
162 | return false; |
163 | |
164 | if (all_of(Range: GEP->indices(), |
165 | P: [&](Value *V) { return GetRange(V).isAllNonNegative(); })) { |
166 | GEP->setNoWrapFlags(GEP->getNoWrapFlags() | |
167 | GEPNoWrapFlags::noUnsignedWrap()); |
168 | Changed = true; |
169 | } |
170 | } |
171 | |
172 | return Changed; |
173 | } |
174 | |
175 | /// Try to replace signed instructions with their unsigned equivalent. |
176 | static bool replaceSignedInst(SCCPSolver &Solver, |
177 | SmallPtrSetImpl<Value *> &InsertedValues, |
178 | Instruction &Inst) { |
179 | // Determine if a signed value is known to be >= 0. |
180 | auto isNonNegative = [&Solver, &InsertedValues](Value *V) { |
181 | return getRange(Op: V, Solver, InsertedValues).isAllNonNegative(); |
182 | }; |
183 | |
184 | Instruction *NewInst = nullptr; |
185 | switch (Inst.getOpcode()) { |
186 | case Instruction::SIToFP: |
187 | case Instruction::SExt: { |
188 | // If the source value is not negative, this is a zext/uitofp. |
189 | Value *Op0 = Inst.getOperand(i: 0); |
190 | if (!isNonNegative(Op0)) |
191 | return false; |
192 | NewInst = CastInst::Create(Inst.getOpcode() == Instruction::SExt |
193 | ? Instruction::ZExt |
194 | : Instruction::UIToFP, |
195 | S: Op0, Ty: Inst.getType(), Name: "" , InsertBefore: Inst.getIterator()); |
196 | NewInst->setNonNeg(); |
197 | break; |
198 | } |
199 | case Instruction::AShr: { |
200 | // If the shifted value is not negative, this is a logical shift right. |
201 | Value *Op0 = Inst.getOperand(i: 0); |
202 | if (!isNonNegative(Op0)) |
203 | return false; |
204 | NewInst = BinaryOperator::CreateLShr(V1: Op0, V2: Inst.getOperand(i: 1), Name: "" , InsertBefore: Inst.getIterator()); |
205 | NewInst->setIsExact(Inst.isExact()); |
206 | break; |
207 | } |
208 | case Instruction::SDiv: |
209 | case Instruction::SRem: { |
210 | // If both operands are not negative, this is the same as udiv/urem. |
211 | Value *Op0 = Inst.getOperand(i: 0), *Op1 = Inst.getOperand(i: 1); |
212 | if (!isNonNegative(Op0) || !isNonNegative(Op1)) |
213 | return false; |
214 | auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv |
215 | : Instruction::URem; |
216 | NewInst = BinaryOperator::Create(Op: NewOpcode, S1: Op0, S2: Op1, Name: "" , InsertBefore: Inst.getIterator()); |
217 | if (Inst.getOpcode() == Instruction::SDiv) |
218 | NewInst->setIsExact(Inst.isExact()); |
219 | break; |
220 | } |
221 | default: |
222 | return false; |
223 | } |
224 | |
225 | // Wire up the new instruction and update state. |
226 | assert(NewInst && "Expected replacement instruction" ); |
227 | NewInst->takeName(V: &Inst); |
228 | InsertedValues.insert(Ptr: NewInst); |
229 | Inst.replaceAllUsesWith(V: NewInst); |
230 | NewInst->setDebugLoc(Inst.getDebugLoc()); |
231 | Solver.removeLatticeValueFor(V: &Inst); |
232 | Inst.eraseFromParent(); |
233 | return true; |
234 | } |
235 | |
236 | /// Try to use \p Inst's value range from \p Solver to simplify it. |
237 | static Value *simplifyInstruction(SCCPSolver &Solver, |
238 | SmallPtrSetImpl<Value *> &InsertedValues, |
239 | Instruction &Inst) { |
240 | auto GetRange = [&Solver, &InsertedValues](Value *Op) { |
241 | return getRange(Op, Solver, InsertedValues); |
242 | }; |
243 | |
244 | Value *X; |
245 | const APInt *RHSC; |
246 | // Remove masking operations. |
247 | if (match(V: &Inst, P: m_And(L: m_Value(V&: X), R: m_LowBitMask(V&: RHSC)))) { |
248 | ConstantRange LRange = GetRange(Inst.getOperand(i: 0)); |
249 | if (LRange.getUnsignedMax().ule(RHS: *RHSC)) |
250 | return X; |
251 | } |
252 | |
253 | return nullptr; |
254 | } |
255 | |
256 | bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB, |
257 | SmallPtrSetImpl<Value *> &InsertedValues, |
258 | Statistic &InstRemovedStat, |
259 | Statistic &InstReplacedStat) { |
260 | bool MadeChanges = false; |
261 | for (Instruction &Inst : make_early_inc_range(Range&: BB)) { |
262 | if (Inst.getType()->isVoidTy()) |
263 | continue; |
264 | if (tryToReplaceWithConstant(V: &Inst)) { |
265 | if (wouldInstructionBeTriviallyDead(I: &Inst)) |
266 | Inst.eraseFromParent(); |
267 | |
268 | MadeChanges = true; |
269 | ++InstRemovedStat; |
270 | } else if (replaceSignedInst(Solver&: *this, InsertedValues, Inst)) { |
271 | MadeChanges = true; |
272 | ++InstReplacedStat; |
273 | } else if (refineInstruction(Solver&: *this, InsertedValues, Inst)) { |
274 | MadeChanges = true; |
275 | } else if (auto *V = simplifyInstruction(Solver&: *this, InsertedValues, Inst)) { |
276 | Inst.replaceAllUsesWith(V); |
277 | Inst.eraseFromParent(); |
278 | ++InstRemovedStat; |
279 | MadeChanges = true; |
280 | } |
281 | } |
282 | return MadeChanges; |
283 | } |
284 | |
285 | bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, |
286 | BasicBlock *&NewUnreachableBB) const { |
287 | SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors; |
288 | bool HasNonFeasibleEdges = false; |
289 | for (BasicBlock *Succ : successors(BB)) { |
290 | if (isEdgeFeasible(From: BB, To: Succ)) |
291 | FeasibleSuccessors.insert(Ptr: Succ); |
292 | else |
293 | HasNonFeasibleEdges = true; |
294 | } |
295 | |
296 | // All edges feasible, nothing to do. |
297 | if (!HasNonFeasibleEdges) |
298 | return false; |
299 | |
300 | // SCCP can only determine non-feasible edges for br, switch and indirectbr. |
301 | Instruction *TI = BB->getTerminator(); |
302 | assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) || |
303 | isa<IndirectBrInst>(TI)) && |
304 | "Terminator must be a br, switch or indirectbr" ); |
305 | |
306 | if (FeasibleSuccessors.size() == 0) { |
307 | // Branch on undef/poison, replace with unreachable. |
308 | SmallPtrSet<BasicBlock *, 8> SeenSuccs; |
309 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
310 | for (BasicBlock *Succ : successors(BB)) { |
311 | Succ->removePredecessor(Pred: BB); |
312 | if (SeenSuccs.insert(Ptr: Succ).second) |
313 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
314 | } |
315 | TI->eraseFromParent(); |
316 | new UnreachableInst(BB->getContext(), BB); |
317 | DTU.applyUpdatesPermissive(Updates); |
318 | } else if (FeasibleSuccessors.size() == 1) { |
319 | // Replace with an unconditional branch to the only feasible successor. |
320 | BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin(); |
321 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
322 | bool HaveSeenOnlyFeasibleSuccessor = false; |
323 | for (BasicBlock *Succ : successors(BB)) { |
324 | if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) { |
325 | // Don't remove the edge to the only feasible successor the first time |
326 | // we see it. We still do need to remove any multi-edges to it though. |
327 | HaveSeenOnlyFeasibleSuccessor = true; |
328 | continue; |
329 | } |
330 | |
331 | Succ->removePredecessor(Pred: BB); |
332 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
333 | } |
334 | |
335 | Instruction *BI = BranchInst::Create(IfTrue: OnlyFeasibleSuccessor, InsertBefore: BB); |
336 | BI->setDebugLoc(TI->getDebugLoc()); |
337 | TI->eraseFromParent(); |
338 | DTU.applyUpdatesPermissive(Updates); |
339 | } else if (FeasibleSuccessors.size() > 1) { |
340 | SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(Val: TI)); |
341 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
342 | |
343 | // If the default destination is unfeasible it will never be taken. Replace |
344 | // it with a new block with a single Unreachable instruction. |
345 | BasicBlock *DefaultDest = SI->getDefaultDest(); |
346 | if (!FeasibleSuccessors.contains(Ptr: DefaultDest)) { |
347 | if (!NewUnreachableBB) { |
348 | NewUnreachableBB = |
349 | BasicBlock::Create(Context&: DefaultDest->getContext(), Name: "default.unreachable" , |
350 | Parent: DefaultDest->getParent(), InsertBefore: DefaultDest); |
351 | auto *UI = |
352 | new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB); |
353 | UI->setDebugLoc(DebugLoc::getTemporary()); |
354 | } |
355 | |
356 | DefaultDest->removePredecessor(Pred: BB); |
357 | SI->setDefaultDest(NewUnreachableBB); |
358 | Updates.push_back(Elt: {DominatorTree::Delete, BB, DefaultDest}); |
359 | Updates.push_back(Elt: {DominatorTree::Insert, BB, NewUnreachableBB}); |
360 | } |
361 | |
362 | for (auto CI = SI->case_begin(); CI != SI->case_end();) { |
363 | if (FeasibleSuccessors.contains(Ptr: CI->getCaseSuccessor())) { |
364 | ++CI; |
365 | continue; |
366 | } |
367 | |
368 | BasicBlock *Succ = CI->getCaseSuccessor(); |
369 | Succ->removePredecessor(Pred: BB); |
370 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
371 | SI.removeCase(I: CI); |
372 | // Don't increment CI, as we removed a case. |
373 | } |
374 | |
375 | DTU.applyUpdatesPermissive(Updates); |
376 | } else { |
377 | llvm_unreachable("Must have at least one feasible successor" ); |
378 | } |
379 | return true; |
380 | } |
381 | |
382 | static void inferAttribute(Function *F, unsigned AttrIndex, |
383 | const ValueLatticeElement &Val) { |
384 | // If there is a known constant range for the value, add range attribute. |
385 | if (Val.isConstantRange() && !Val.getConstantRange().isSingleElement()) { |
386 | // Do not add range attribute if the value may include undef. |
387 | if (Val.isConstantRangeIncludingUndef()) |
388 | return; |
389 | |
390 | // Take the intersection of the existing attribute and the inferred range. |
391 | Attribute OldAttr = F->getAttributeAtIndex(i: AttrIndex, Kind: Attribute::Range); |
392 | ConstantRange CR = Val.getConstantRange(); |
393 | if (OldAttr.isValid()) |
394 | CR = CR.intersectWith(CR: OldAttr.getRange()); |
395 | F->addAttributeAtIndex( |
396 | i: AttrIndex, Attr: Attribute::get(Context&: F->getContext(), Kind: Attribute::Range, CR)); |
397 | return; |
398 | } |
399 | // Infer nonnull attribute. |
400 | if (Val.isNotConstant() && Val.getNotConstant()->getType()->isPointerTy() && |
401 | Val.getNotConstant()->isNullValue() && |
402 | !F->hasAttributeAtIndex(Idx: AttrIndex, Kind: Attribute::NonNull)) { |
403 | F->addAttributeAtIndex(i: AttrIndex, |
404 | Attr: Attribute::get(Context&: F->getContext(), Kind: Attribute::NonNull)); |
405 | } |
406 | } |
407 | |
408 | void SCCPSolver::inferReturnAttributes() const { |
409 | for (const auto &[F, ReturnValue] : getTrackedRetVals()) |
410 | inferAttribute(F, AttrIndex: AttributeList::ReturnIndex, Val: ReturnValue); |
411 | } |
412 | |
413 | void SCCPSolver::inferArgAttributes() const { |
414 | for (Function *F : getArgumentTrackedFunctions()) { |
415 | if (!isBlockExecutable(BB: &F->front())) |
416 | continue; |
417 | for (Argument &A : F->args()) |
418 | if (!A.getType()->isStructTy()) |
419 | inferAttribute(F, AttrIndex: AttributeList::FirstArgIndex + A.getArgNo(), |
420 | Val: getLatticeValueFor(V: &A)); |
421 | } |
422 | } |
423 | |
424 | /// Helper class for SCCPSolver. This implements the instruction visitor and |
425 | /// holds all the state. |
426 | class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { |
427 | const DataLayout &DL; |
428 | std::function<const TargetLibraryInfo &(Function &)> GetTLI; |
429 | /// Basic blocks that are executable (but may not have been visited yet). |
430 | SmallPtrSet<BasicBlock *, 8> BBExecutable; |
431 | /// Basic blocks that are executable and have been visited at least once. |
432 | SmallPtrSet<BasicBlock *, 8> BBVisited; |
433 | DenseMap<Value *, ValueLatticeElement> |
434 | ValueState; // The state each value is in. |
435 | |
436 | /// StructValueState - This maintains ValueState for values that have |
437 | /// StructType, for example for formal arguments, calls, insertelement, etc. |
438 | DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; |
439 | |
440 | /// GlobalValue - If we are tracking any values for the contents of a global |
441 | /// variable, we keep a mapping from the constant accessor to the element of |
442 | /// the global, to the currently known value. If the value becomes |
443 | /// overdefined, it's entry is simply removed from this map. |
444 | DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; |
445 | |
446 | /// TrackedRetVals - If we are tracking arguments into and the return |
447 | /// value out of a function, it will have an entry in this map, indicating |
448 | /// what the known return value for the function is. |
449 | MapVector<Function *, ValueLatticeElement> TrackedRetVals; |
450 | |
451 | /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions |
452 | /// that return multiple values. |
453 | MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> |
454 | TrackedMultipleRetVals; |
455 | |
456 | /// The set of values whose lattice has been invalidated. |
457 | /// Populated by resetLatticeValueFor(), cleared after resolving undefs. |
458 | DenseSet<Value *> Invalidated; |
459 | |
460 | /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is |
461 | /// represented here for efficient lookup. |
462 | SmallPtrSet<Function *, 16> MRVFunctionsTracked; |
463 | |
464 | /// A list of functions whose return cannot be modified. |
465 | SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; |
466 | |
467 | /// TrackingIncomingArguments - This is the set of functions for whose |
468 | /// arguments we make optimistic assumptions about and try to prove as |
469 | /// constants. |
470 | SmallPtrSet<Function *, 16> TrackingIncomingArguments; |
471 | |
472 | /// Worklist of instructions to re-visit. This only includes instructions |
473 | /// in blocks that have already been visited at least once. |
474 | SmallSetVector<Instruction *, 16> InstWorkList; |
475 | |
476 | /// Current instruction while visiting a block for the first time, used to |
477 | /// avoid unnecessary instruction worklist insertions. Null if an instruction |
478 | /// is visited outside a whole-block visitation. |
479 | Instruction *CurI = nullptr; |
480 | |
481 | // The BasicBlock work list |
482 | SmallVector<BasicBlock *, 64> BBWorkList; |
483 | |
484 | /// KnownFeasibleEdges - Entries in this set are edges which have already had |
485 | /// PHI nodes retriggered. |
486 | using Edge = std::pair<BasicBlock *, BasicBlock *>; |
487 | DenseSet<Edge> KnownFeasibleEdges; |
488 | |
489 | DenseMap<Function *, std::unique_ptr<PredicateInfo>> FnPredicateInfo; |
490 | |
491 | DenseMap<Value *, SmallSetVector<User *, 2>> AdditionalUsers; |
492 | |
493 | LLVMContext &Ctx; |
494 | |
495 | BumpPtrAllocator PredicateInfoAllocator; |
496 | |
497 | private: |
498 | ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const { |
499 | return dyn_cast_or_null<ConstantInt>(Val: getConstant(LV: IV, Ty)); |
500 | } |
501 | |
502 | /// Push instruction \p I to the worklist. |
503 | void pushToWorkList(Instruction *I); |
504 | |
505 | /// Push users of value \p V to the worklist. |
506 | void pushUsersToWorkList(Value *V); |
507 | |
508 | /// Like pushUsersToWorkList(), but also prints a debug message with the |
509 | /// updated value. |
510 | void pushUsersToWorkListMsg(ValueLatticeElement &IV, Value *V); |
511 | |
512 | // markConstant - Make a value be marked as "constant". If the value |
513 | // is not already a constant, add it to the instruction work list so that |
514 | // the users of the instruction are updated later. |
515 | bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, |
516 | bool MayIncludeUndef = false); |
517 | |
518 | bool markConstant(Value *V, Constant *C) { |
519 | assert(!V->getType()->isStructTy() && "structs should use mergeInValue" ); |
520 | return markConstant(IV&: ValueState[V], V, C); |
521 | } |
522 | |
523 | bool markNotConstant(ValueLatticeElement &IV, Value *V, Constant *C); |
524 | |
525 | bool markNotNull(ValueLatticeElement &IV, Value *V) { |
526 | return markNotConstant(IV, V, C: Constant::getNullValue(Ty: V->getType())); |
527 | } |
528 | |
529 | /// markConstantRange - Mark the object as constant range with \p CR. If the |
530 | /// object is not a constant range with the range \p CR, add it to the |
531 | /// instruction work list so that the users of the instruction are updated |
532 | /// later. |
533 | bool markConstantRange(ValueLatticeElement &IV, Value *V, |
534 | const ConstantRange &CR); |
535 | |
536 | // markOverdefined - Make a value be marked as "overdefined". If the |
537 | // value is not already overdefined, add it to the overdefined instruction |
538 | // work list so that the users of the instruction are updated later. |
539 | bool markOverdefined(ValueLatticeElement &IV, Value *V); |
540 | |
541 | /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV |
542 | /// changes. |
543 | bool mergeInValue(ValueLatticeElement &IV, Value *V, |
544 | ValueLatticeElement MergeWithV, |
545 | ValueLatticeElement::MergeOptions Opts = { |
546 | /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); |
547 | |
548 | bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, |
549 | ValueLatticeElement::MergeOptions Opts = { |
550 | /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { |
551 | assert(!V->getType()->isStructTy() && |
552 | "non-structs should use markConstant" ); |
553 | return mergeInValue(IV&: ValueState[V], V, MergeWithV, Opts); |
554 | } |
555 | |
556 | /// getValueState - Return the ValueLatticeElement object that corresponds to |
557 | /// the value. This function handles the case when the value hasn't been seen |
558 | /// yet by properly seeding constants etc. |
559 | ValueLatticeElement &getValueState(Value *V) { |
560 | assert(!V->getType()->isStructTy() && "Should use getStructValueState" ); |
561 | |
562 | auto I = ValueState.try_emplace(Key: V); |
563 | ValueLatticeElement &LV = I.first->second; |
564 | |
565 | if (!I.second) |
566 | return LV; // Common case, already in the map. |
567 | |
568 | if (auto *C = dyn_cast<Constant>(Val: V)) |
569 | LV.markConstant(V: C); // Constants are constant |
570 | |
571 | // All others are unknown by default. |
572 | return LV; |
573 | } |
574 | |
575 | /// getStructValueState - Return the ValueLatticeElement object that |
576 | /// corresponds to the value/field pair. This function handles the case when |
577 | /// the value hasn't been seen yet by properly seeding constants etc. |
578 | ValueLatticeElement &getStructValueState(Value *V, unsigned i) { |
579 | assert(V->getType()->isStructTy() && "Should use getValueState" ); |
580 | assert(i < cast<StructType>(V->getType())->getNumElements() && |
581 | "Invalid element #" ); |
582 | |
583 | auto I = StructValueState.insert( |
584 | KV: std::make_pair(x: std::make_pair(x&: V, y&: i), y: ValueLatticeElement())); |
585 | ValueLatticeElement &LV = I.first->second; |
586 | |
587 | if (!I.second) |
588 | return LV; // Common case, already in the map. |
589 | |
590 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
591 | Constant *Elt = C->getAggregateElement(Elt: i); |
592 | |
593 | if (!Elt) |
594 | LV.markOverdefined(); // Unknown sort of constant. |
595 | else |
596 | LV.markConstant(V: Elt); // Constants are constant. |
597 | } |
598 | |
599 | // All others are underdefined by default. |
600 | return LV; |
601 | } |
602 | |
603 | /// Traverse the use-def chain of \p Call, marking itself and its users as |
604 | /// "unknown" on the way. |
605 | void invalidate(CallBase *Call) { |
606 | SmallVector<Instruction *, 64> ToInvalidate; |
607 | ToInvalidate.push_back(Elt: Call); |
608 | |
609 | while (!ToInvalidate.empty()) { |
610 | Instruction *Inst = ToInvalidate.pop_back_val(); |
611 | |
612 | if (!Invalidated.insert(V: Inst).second) |
613 | continue; |
614 | |
615 | if (!BBExecutable.count(Ptr: Inst->getParent())) |
616 | continue; |
617 | |
618 | Value *V = nullptr; |
619 | // For return instructions we need to invalidate the tracked returns map. |
620 | // Anything else has its lattice in the value map. |
621 | if (auto *RetInst = dyn_cast<ReturnInst>(Val: Inst)) { |
622 | Function *F = RetInst->getParent()->getParent(); |
623 | if (auto It = TrackedRetVals.find(Key: F); It != TrackedRetVals.end()) { |
624 | It->second = ValueLatticeElement(); |
625 | V = F; |
626 | } else if (MRVFunctionsTracked.count(Ptr: F)) { |
627 | auto *STy = cast<StructType>(Val: F->getReturnType()); |
628 | for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) |
629 | TrackedMultipleRetVals[{F, I}] = ValueLatticeElement(); |
630 | V = F; |
631 | } |
632 | } else if (auto *STy = dyn_cast<StructType>(Val: Inst->getType())) { |
633 | for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { |
634 | if (auto It = StructValueState.find(Val: {Inst, I}); |
635 | It != StructValueState.end()) { |
636 | It->second = ValueLatticeElement(); |
637 | V = Inst; |
638 | } |
639 | } |
640 | } else if (auto It = ValueState.find(Val: Inst); It != ValueState.end()) { |
641 | It->second = ValueLatticeElement(); |
642 | V = Inst; |
643 | } |
644 | |
645 | if (V) { |
646 | LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n" ); |
647 | |
648 | for (User *U : V->users()) |
649 | if (auto *UI = dyn_cast<Instruction>(Val: U)) |
650 | ToInvalidate.push_back(Elt: UI); |
651 | |
652 | auto It = AdditionalUsers.find(Val: V); |
653 | if (It != AdditionalUsers.end()) |
654 | for (User *U : It->second) |
655 | if (auto *UI = dyn_cast<Instruction>(Val: U)) |
656 | ToInvalidate.push_back(Elt: UI); |
657 | } |
658 | } |
659 | } |
660 | |
661 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
662 | /// work list if it is not already executable. |
663 | bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); |
664 | |
665 | // getFeasibleSuccessors - Return a vector of booleans to indicate which |
666 | // successors are reachable from a given terminator instruction. |
667 | void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); |
668 | |
669 | // Add U as additional user of V. |
670 | void addAdditionalUser(Value *V, User *U) { AdditionalUsers[V].insert(X: U); } |
671 | |
672 | void handleCallOverdefined(CallBase &CB); |
673 | void handleCallResult(CallBase &CB); |
674 | void handleCallArguments(CallBase &CB); |
675 | void handleExtractOfWithOverflow(ExtractValueInst &EVI, |
676 | const WithOverflowInst *WO, unsigned Idx); |
677 | |
678 | private: |
679 | friend class InstVisitor<SCCPInstVisitor>; |
680 | |
681 | // visit implementations - Something changed in this instruction. Either an |
682 | // operand made a transition, or the instruction is newly executable. Change |
683 | // the value type of I to reflect these changes if appropriate. |
684 | void visitPHINode(PHINode &I); |
685 | |
686 | // Terminators |
687 | |
688 | void visitReturnInst(ReturnInst &I); |
689 | void visitTerminator(Instruction &TI); |
690 | |
691 | void visitCastInst(CastInst &I); |
692 | void visitSelectInst(SelectInst &I); |
693 | void visitUnaryOperator(Instruction &I); |
694 | void visitFreezeInst(FreezeInst &I); |
695 | void visitBinaryOperator(Instruction &I); |
696 | void visitCmpInst(CmpInst &I); |
697 | void visitExtractValueInst(ExtractValueInst &EVI); |
698 | void visitInsertValueInst(InsertValueInst &IVI); |
699 | |
700 | void visitCatchSwitchInst(CatchSwitchInst &CPI) { |
701 | markOverdefined(V: &CPI); |
702 | visitTerminator(TI&: CPI); |
703 | } |
704 | |
705 | // Instructions that cannot be folded away. |
706 | |
707 | void visitStoreInst(StoreInst &I); |
708 | void visitLoadInst(LoadInst &I); |
709 | void visitGetElementPtrInst(GetElementPtrInst &I); |
710 | void visitAllocaInst(AllocaInst &AI); |
711 | |
712 | void visitInvokeInst(InvokeInst &II) { |
713 | visitCallBase(CB&: II); |
714 | visitTerminator(TI&: II); |
715 | } |
716 | |
717 | void visitCallBrInst(CallBrInst &CBI) { |
718 | visitCallBase(CB&: CBI); |
719 | visitTerminator(TI&: CBI); |
720 | } |
721 | |
722 | void visitCallBase(CallBase &CB); |
723 | void visitResumeInst(ResumeInst &I) { /*returns void*/ |
724 | } |
725 | void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ |
726 | } |
727 | void visitFenceInst(FenceInst &I) { /*returns void*/ |
728 | } |
729 | |
730 | void visitInstruction(Instruction &I); |
731 | |
732 | public: |
733 | void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) { |
734 | FnPredicateInfo.insert(KV: {&F, std::make_unique<PredicateInfo>( |
735 | args&: F, args&: DT, args&: AC, args&: PredicateInfoAllocator)}); |
736 | } |
737 | |
738 | void removeSSACopies(Function &F) { |
739 | auto It = FnPredicateInfo.find(Val: &F); |
740 | if (It == FnPredicateInfo.end()) |
741 | return; |
742 | |
743 | for (BasicBlock &BB : F) { |
744 | for (Instruction &Inst : llvm::make_early_inc_range(Range&: BB)) { |
745 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &Inst)) { |
746 | if (II->getIntrinsicID() == Intrinsic::ssa_copy) { |
747 | if (It->second->getPredicateInfoFor(V: &Inst)) { |
748 | Value *Op = II->getOperand(i_nocapture: 0); |
749 | Inst.replaceAllUsesWith(V: Op); |
750 | Inst.eraseFromParent(); |
751 | } |
752 | } |
753 | } |
754 | } |
755 | } |
756 | } |
757 | |
758 | void visitCallInst(CallInst &I) { visitCallBase(CB&: I); } |
759 | |
760 | bool markBlockExecutable(BasicBlock *BB); |
761 | |
762 | const PredicateBase *getPredicateInfoFor(Instruction *I) { |
763 | auto It = FnPredicateInfo.find(Val: I->getParent()->getParent()); |
764 | if (It == FnPredicateInfo.end()) |
765 | return nullptr; |
766 | return It->second->getPredicateInfoFor(V: I); |
767 | } |
768 | |
769 | SCCPInstVisitor(const DataLayout &DL, |
770 | std::function<const TargetLibraryInfo &(Function &)> GetTLI, |
771 | LLVMContext &Ctx) |
772 | : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} |
773 | |
774 | void trackValueOfGlobalVariable(GlobalVariable *GV) { |
775 | // We only track the contents of scalar globals. |
776 | if (GV->getValueType()->isSingleValueType()) { |
777 | ValueLatticeElement &IV = TrackedGlobals[GV]; |
778 | IV.markConstant(V: GV->getInitializer()); |
779 | } |
780 | } |
781 | |
782 | void addTrackedFunction(Function *F) { |
783 | // Add an entry, F -> undef. |
784 | if (auto *STy = dyn_cast<StructType>(Val: F->getReturnType())) { |
785 | MRVFunctionsTracked.insert(Ptr: F); |
786 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
787 | TrackedMultipleRetVals.try_emplace(Key: std::make_pair(x&: F, y&: i)); |
788 | } else if (!F->getReturnType()->isVoidTy()) |
789 | TrackedRetVals.try_emplace(Key: F); |
790 | } |
791 | |
792 | void addToMustPreserveReturnsInFunctions(Function *F) { |
793 | MustPreserveReturnsInFunctions.insert(Ptr: F); |
794 | } |
795 | |
796 | bool mustPreserveReturn(Function *F) { |
797 | return MustPreserveReturnsInFunctions.count(Ptr: F); |
798 | } |
799 | |
800 | void addArgumentTrackedFunction(Function *F) { |
801 | TrackingIncomingArguments.insert(Ptr: F); |
802 | } |
803 | |
804 | bool isArgumentTrackedFunction(Function *F) { |
805 | return TrackingIncomingArguments.count(Ptr: F); |
806 | } |
807 | |
808 | const SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() const { |
809 | return TrackingIncomingArguments; |
810 | } |
811 | |
812 | void solve(); |
813 | |
814 | bool resolvedUndef(Instruction &I); |
815 | |
816 | bool resolvedUndefsIn(Function &F); |
817 | |
818 | bool isBlockExecutable(BasicBlock *BB) const { |
819 | return BBExecutable.count(Ptr: BB); |
820 | } |
821 | |
822 | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; |
823 | |
824 | std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { |
825 | std::vector<ValueLatticeElement> StructValues; |
826 | auto *STy = dyn_cast<StructType>(Val: V->getType()); |
827 | assert(STy && "getStructLatticeValueFor() can be called only on structs" ); |
828 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
829 | auto I = StructValueState.find(Val: std::make_pair(x&: V, y&: i)); |
830 | assert(I != StructValueState.end() && "Value not in valuemap!" ); |
831 | StructValues.push_back(x: I->second); |
832 | } |
833 | return StructValues; |
834 | } |
835 | |
836 | void removeLatticeValueFor(Value *V) { ValueState.erase(Val: V); } |
837 | |
838 | /// Invalidate the Lattice Value of \p Call and its users after specializing |
839 | /// the call. Then recompute it. |
840 | void resetLatticeValueFor(CallBase *Call) { |
841 | // Calls to void returning functions do not need invalidation. |
842 | Function *F = Call->getCalledFunction(); |
843 | (void)F; |
844 | assert(!F->getReturnType()->isVoidTy() && |
845 | (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) && |
846 | "All non void specializations should be tracked" ); |
847 | invalidate(Call); |
848 | handleCallResult(CB&: *Call); |
849 | } |
850 | |
851 | const ValueLatticeElement &getLatticeValueFor(Value *V) const { |
852 | assert(!V->getType()->isStructTy() && |
853 | "Should use getStructLatticeValueFor" ); |
854 | DenseMap<Value *, ValueLatticeElement>::const_iterator I = |
855 | ValueState.find(Val: V); |
856 | assert(I != ValueState.end() && |
857 | "V not found in ValueState nor Paramstate map!" ); |
858 | return I->second; |
859 | } |
860 | |
861 | const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() const { |
862 | return TrackedRetVals; |
863 | } |
864 | |
865 | const DenseMap<GlobalVariable *, ValueLatticeElement> & |
866 | getTrackedGlobals() const { |
867 | return TrackedGlobals; |
868 | } |
869 | |
870 | const SmallPtrSet<Function *, 16> &getMRVFunctionsTracked() const { |
871 | return MRVFunctionsTracked; |
872 | } |
873 | |
874 | void markOverdefined(Value *V) { |
875 | if (auto *STy = dyn_cast<StructType>(Val: V->getType())) |
876 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
877 | markOverdefined(IV&: getStructValueState(V, i), V); |
878 | else |
879 | markOverdefined(IV&: ValueState[V], V); |
880 | } |
881 | |
882 | ValueLatticeElement getArgAttributeVL(Argument *A) { |
883 | if (A->getType()->isIntOrIntVectorTy()) { |
884 | if (std::optional<ConstantRange> Range = A->getRange()) |
885 | return ValueLatticeElement::getRange(CR: *Range); |
886 | } |
887 | if (A->hasNonNullAttr()) |
888 | return ValueLatticeElement::getNot(C: Constant::getNullValue(Ty: A->getType())); |
889 | // Assume nothing about the incoming arguments without attributes. |
890 | return ValueLatticeElement::getOverdefined(); |
891 | } |
892 | |
893 | void trackValueOfArgument(Argument *A) { |
894 | if (A->getType()->isStructTy()) |
895 | return (void)markOverdefined(V: A); |
896 | mergeInValue(V: A, MergeWithV: getArgAttributeVL(A)); |
897 | } |
898 | |
899 | bool isStructLatticeConstant(Function *F, StructType *STy); |
900 | |
901 | Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const; |
902 | |
903 | Constant *getConstantOrNull(Value *V) const; |
904 | |
905 | void setLatticeValueForSpecializationArguments(Function *F, |
906 | const SmallVectorImpl<ArgInfo> &Args); |
907 | |
908 | void markFunctionUnreachable(Function *F) { |
909 | for (auto &BB : *F) |
910 | BBExecutable.erase(Ptr: &BB); |
911 | } |
912 | |
913 | void solveWhileResolvedUndefsIn(Module &M) { |
914 | bool ResolvedUndefs = true; |
915 | while (ResolvedUndefs) { |
916 | solve(); |
917 | ResolvedUndefs = false; |
918 | for (Function &F : M) |
919 | ResolvedUndefs |= resolvedUndefsIn(F); |
920 | } |
921 | } |
922 | |
923 | void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) { |
924 | bool ResolvedUndefs = true; |
925 | while (ResolvedUndefs) { |
926 | solve(); |
927 | ResolvedUndefs = false; |
928 | for (Function *F : WorkList) |
929 | ResolvedUndefs |= resolvedUndefsIn(F&: *F); |
930 | } |
931 | } |
932 | |
933 | void solveWhileResolvedUndefs() { |
934 | bool ResolvedUndefs = true; |
935 | while (ResolvedUndefs) { |
936 | solve(); |
937 | ResolvedUndefs = false; |
938 | for (Value *V : Invalidated) |
939 | if (auto *I = dyn_cast<Instruction>(Val: V)) |
940 | ResolvedUndefs |= resolvedUndef(I&: *I); |
941 | } |
942 | Invalidated.clear(); |
943 | } |
944 | }; |
945 | |
946 | } // namespace llvm |
947 | |
948 | bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { |
949 | if (!BBExecutable.insert(Ptr: BB).second) |
950 | return false; |
951 | LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); |
952 | BBWorkList.push_back(Elt: BB); // Add the block to the work list! |
953 | return true; |
954 | } |
955 | |
956 | void SCCPInstVisitor::pushToWorkList(Instruction *I) { |
957 | // If we're currently visiting a block, do not push any instructions in the |
958 | // same blocks that are after the current one, as they will be visited |
959 | // anyway. We do have to push updates to earlier instructions (e.g. phi |
960 | // nodes or loads of tracked globals). |
961 | if (CurI && I->getParent() == CurI->getParent() && !I->comesBefore(Other: CurI)) |
962 | return; |
963 | // Only push instructions in already visited blocks. Otherwise we'll handle |
964 | // it when we visit the block for the first time. |
965 | if (BBVisited.contains(Ptr: I->getParent())) |
966 | InstWorkList.insert(X: I); |
967 | } |
968 | |
969 | void SCCPInstVisitor::pushUsersToWorkList(Value *V) { |
970 | for (User *U : V->users()) |
971 | if (auto *UI = dyn_cast<Instruction>(Val: U)) |
972 | pushToWorkList(I: UI); |
973 | |
974 | auto Iter = AdditionalUsers.find(Val: V); |
975 | if (Iter != AdditionalUsers.end()) { |
976 | // Copy additional users before notifying them of changes, because new |
977 | // users may be added, potentially invalidating the iterator. |
978 | SmallVector<Instruction *, 2> ToNotify; |
979 | for (User *U : Iter->second) |
980 | if (auto *UI = dyn_cast<Instruction>(Val: U)) |
981 | ToNotify.push_back(Elt: UI); |
982 | for (Instruction *UI : ToNotify) |
983 | pushToWorkList(I: UI); |
984 | } |
985 | } |
986 | |
987 | void SCCPInstVisitor::pushUsersToWorkListMsg(ValueLatticeElement &IV, |
988 | Value *V) { |
989 | LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); |
990 | pushUsersToWorkList(V); |
991 | } |
992 | |
993 | bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, |
994 | Constant *C, bool MayIncludeUndef) { |
995 | if (!IV.markConstant(V: C, MayIncludeUndef)) |
996 | return false; |
997 | LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); |
998 | pushUsersToWorkList(V); |
999 | return true; |
1000 | } |
1001 | |
1002 | bool SCCPInstVisitor::markNotConstant(ValueLatticeElement &IV, Value *V, |
1003 | Constant *C) { |
1004 | if (!IV.markNotConstant(V: C)) |
1005 | return false; |
1006 | LLVM_DEBUG(dbgs() << "markNotConstant: " << *C << ": " << *V << '\n'); |
1007 | pushUsersToWorkList(V); |
1008 | return true; |
1009 | } |
1010 | |
1011 | bool SCCPInstVisitor::markConstantRange(ValueLatticeElement &IV, Value *V, |
1012 | const ConstantRange &CR) { |
1013 | if (!IV.markConstantRange(NewR: CR)) |
1014 | return false; |
1015 | LLVM_DEBUG(dbgs() << "markConstantRange: " << CR << ": " << *V << '\n'); |
1016 | pushUsersToWorkList(V); |
1017 | return true; |
1018 | } |
1019 | |
1020 | bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { |
1021 | if (!IV.markOverdefined()) |
1022 | return false; |
1023 | |
1024 | LLVM_DEBUG(dbgs() << "markOverdefined: " ; |
1025 | if (auto *F = dyn_cast<Function>(V)) dbgs() |
1026 | << "Function '" << F->getName() << "'\n" ; |
1027 | else dbgs() << *V << '\n'); |
1028 | // Only instructions go on the work list |
1029 | pushUsersToWorkList(V); |
1030 | return true; |
1031 | } |
1032 | |
1033 | bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { |
1034 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
1035 | const auto &It = TrackedMultipleRetVals.find(Key: std::make_pair(x&: F, y&: i)); |
1036 | assert(It != TrackedMultipleRetVals.end()); |
1037 | ValueLatticeElement LV = It->second; |
1038 | if (!SCCPSolver::isConstant(LV)) |
1039 | return false; |
1040 | } |
1041 | return true; |
1042 | } |
1043 | |
1044 | Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV, |
1045 | Type *Ty) const { |
1046 | if (LV.isConstant()) { |
1047 | Constant *C = LV.getConstant(); |
1048 | assert(C->getType() == Ty && "Type mismatch" ); |
1049 | return C; |
1050 | } |
1051 | |
1052 | if (LV.isConstantRange()) { |
1053 | const auto &CR = LV.getConstantRange(); |
1054 | if (CR.getSingleElement()) |
1055 | return ConstantInt::get(Ty, V: *CR.getSingleElement()); |
1056 | } |
1057 | return nullptr; |
1058 | } |
1059 | |
1060 | Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const { |
1061 | Constant *Const = nullptr; |
1062 | if (V->getType()->isStructTy()) { |
1063 | std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V); |
1064 | if (any_of(Range&: LVs, P: SCCPSolver::isOverdefined)) |
1065 | return nullptr; |
1066 | std::vector<Constant *> ConstVals; |
1067 | auto *ST = cast<StructType>(Val: V->getType()); |
1068 | for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) { |
1069 | ValueLatticeElement LV = LVs[I]; |
1070 | ConstVals.push_back(x: SCCPSolver::isConstant(LV) |
1071 | ? getConstant(LV, Ty: ST->getElementType(N: I)) |
1072 | : UndefValue::get(T: ST->getElementType(N: I))); |
1073 | } |
1074 | Const = ConstantStruct::get(T: ST, V: ConstVals); |
1075 | } else { |
1076 | const ValueLatticeElement &LV = getLatticeValueFor(V); |
1077 | if (SCCPSolver::isOverdefined(LV)) |
1078 | return nullptr; |
1079 | Const = SCCPSolver::isConstant(LV) ? getConstant(LV, Ty: V->getType()) |
1080 | : UndefValue::get(T: V->getType()); |
1081 | } |
1082 | assert(Const && "Constant is nullptr here!" ); |
1083 | return Const; |
1084 | } |
1085 | |
1086 | void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F, |
1087 | const SmallVectorImpl<ArgInfo> &Args) { |
1088 | assert(!Args.empty() && "Specialization without arguments" ); |
1089 | assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() && |
1090 | "Functions should have the same number of arguments" ); |
1091 | |
1092 | auto Iter = Args.begin(); |
1093 | Function::arg_iterator NewArg = F->arg_begin(); |
1094 | Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin(); |
1095 | for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) { |
1096 | |
1097 | LLVM_DEBUG(dbgs() << "SCCP: Marking argument " |
1098 | << NewArg->getNameOrAsOperand() << "\n" ); |
1099 | |
1100 | // Mark the argument constants in the new function |
1101 | // or copy the lattice state over from the old function. |
1102 | if (Iter != Args.end() && Iter->Formal == &*OldArg) { |
1103 | if (auto *STy = dyn_cast<StructType>(Val: NewArg->getType())) { |
1104 | for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { |
1105 | ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; |
1106 | NewValue.markConstant(V: Iter->Actual->getAggregateElement(Elt: I)); |
1107 | } |
1108 | } else { |
1109 | ValueState[&*NewArg].markConstant(V: Iter->Actual); |
1110 | } |
1111 | ++Iter; |
1112 | } else { |
1113 | if (auto *STy = dyn_cast<StructType>(Val: NewArg->getType())) { |
1114 | for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { |
1115 | ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; |
1116 | NewValue = StructValueState[{&*OldArg, I}]; |
1117 | } |
1118 | } else { |
1119 | ValueLatticeElement &NewValue = ValueState[&*NewArg]; |
1120 | NewValue = ValueState[&*OldArg]; |
1121 | } |
1122 | } |
1123 | } |
1124 | } |
1125 | |
1126 | void SCCPInstVisitor::visitInstruction(Instruction &I) { |
1127 | // All the instructions we don't do any special handling for just |
1128 | // go to overdefined. |
1129 | LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); |
1130 | markOverdefined(V: &I); |
1131 | } |
1132 | |
1133 | bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, |
1134 | ValueLatticeElement MergeWithV, |
1135 | ValueLatticeElement::MergeOptions Opts) { |
1136 | if (IV.mergeIn(RHS: MergeWithV, Opts)) { |
1137 | pushUsersToWorkList(V); |
1138 | LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " |
1139 | << IV << "\n" ); |
1140 | return true; |
1141 | } |
1142 | return false; |
1143 | } |
1144 | |
1145 | bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
1146 | if (!KnownFeasibleEdges.insert(V: Edge(Source, Dest)).second) |
1147 | return false; // This edge is already known to be executable! |
1148 | |
1149 | if (!markBlockExecutable(BB: Dest)) { |
1150 | // If the destination is already executable, we just made an *edge* |
1151 | // feasible that wasn't before. Revisit the PHI nodes in the block |
1152 | // because they have potentially new operands. |
1153 | LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() |
1154 | << " -> " << Dest->getName() << '\n'); |
1155 | |
1156 | for (PHINode &PN : Dest->phis()) |
1157 | pushToWorkList(I: &PN); |
1158 | } |
1159 | return true; |
1160 | } |
1161 | |
1162 | // getFeasibleSuccessors - Return a vector of booleans to indicate which |
1163 | // successors are reachable from a given terminator instruction. |
1164 | void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, |
1165 | SmallVectorImpl<bool> &Succs) { |
1166 | Succs.resize(N: TI.getNumSuccessors()); |
1167 | if (auto *BI = dyn_cast<BranchInst>(Val: &TI)) { |
1168 | if (BI->isUnconditional()) { |
1169 | Succs[0] = true; |
1170 | return; |
1171 | } |
1172 | |
1173 | ValueLatticeElement BCValue = getValueState(V: BI->getCondition()); |
1174 | ConstantInt *CI = getConstantInt(IV: BCValue, Ty: BI->getCondition()->getType()); |
1175 | if (!CI) { |
1176 | // Overdefined condition variables, and branches on unfoldable constant |
1177 | // conditions, mean the branch could go either way. |
1178 | if (!BCValue.isUnknownOrUndef()) |
1179 | Succs[0] = Succs[1] = true; |
1180 | return; |
1181 | } |
1182 | |
1183 | // Constant condition variables mean the branch can only go a single way. |
1184 | Succs[CI->isZero()] = true; |
1185 | return; |
1186 | } |
1187 | |
1188 | // We cannot analyze special terminators, so consider all successors |
1189 | // executable. |
1190 | if (TI.isSpecialTerminator()) { |
1191 | Succs.assign(NumElts: TI.getNumSuccessors(), Elt: true); |
1192 | return; |
1193 | } |
1194 | |
1195 | if (auto *SI = dyn_cast<SwitchInst>(Val: &TI)) { |
1196 | if (!SI->getNumCases()) { |
1197 | Succs[0] = true; |
1198 | return; |
1199 | } |
1200 | const ValueLatticeElement &SCValue = getValueState(V: SI->getCondition()); |
1201 | if (ConstantInt *CI = |
1202 | getConstantInt(IV: SCValue, Ty: SI->getCondition()->getType())) { |
1203 | Succs[SI->findCaseValue(C: CI)->getSuccessorIndex()] = true; |
1204 | return; |
1205 | } |
1206 | |
1207 | // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM |
1208 | // is ready. |
1209 | if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { |
1210 | const ConstantRange &Range = SCValue.getConstantRange(); |
1211 | unsigned ReachableCaseCount = 0; |
1212 | for (const auto &Case : SI->cases()) { |
1213 | const APInt &CaseValue = Case.getCaseValue()->getValue(); |
1214 | if (Range.contains(Val: CaseValue)) { |
1215 | Succs[Case.getSuccessorIndex()] = true; |
1216 | ++ReachableCaseCount; |
1217 | } |
1218 | } |
1219 | |
1220 | Succs[SI->case_default()->getSuccessorIndex()] = |
1221 | Range.isSizeLargerThan(MaxSize: ReachableCaseCount); |
1222 | return; |
1223 | } |
1224 | |
1225 | // Overdefined or unknown condition? All destinations are executable! |
1226 | if (!SCValue.isUnknownOrUndef()) |
1227 | Succs.assign(NumElts: TI.getNumSuccessors(), Elt: true); |
1228 | return; |
1229 | } |
1230 | |
1231 | // In case of indirect branch and its address is a blockaddress, we mark |
1232 | // the target as executable. |
1233 | if (auto *IBR = dyn_cast<IndirectBrInst>(Val: &TI)) { |
1234 | // Casts are folded by visitCastInst. |
1235 | ValueLatticeElement IBRValue = getValueState(V: IBR->getAddress()); |
1236 | BlockAddress *Addr = dyn_cast_or_null<BlockAddress>( |
1237 | Val: getConstant(LV: IBRValue, Ty: IBR->getAddress()->getType())); |
1238 | if (!Addr) { // Overdefined or unknown condition? |
1239 | // All destinations are executable! |
1240 | if (!IBRValue.isUnknownOrUndef()) |
1241 | Succs.assign(NumElts: TI.getNumSuccessors(), Elt: true); |
1242 | return; |
1243 | } |
1244 | |
1245 | BasicBlock *T = Addr->getBasicBlock(); |
1246 | assert(Addr->getFunction() == T->getParent() && |
1247 | "Block address of a different function ?" ); |
1248 | for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { |
1249 | // This is the target. |
1250 | if (IBR->getDestination(i) == T) { |
1251 | Succs[i] = true; |
1252 | return; |
1253 | } |
1254 | } |
1255 | |
1256 | // If we didn't find our destination in the IBR successor list, then we |
1257 | // have undefined behavior. Its ok to assume no successor is executable. |
1258 | return; |
1259 | } |
1260 | |
1261 | LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); |
1262 | llvm_unreachable("SCCP: Don't know how to handle this terminator!" ); |
1263 | } |
1264 | |
1265 | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
1266 | // block to the 'To' basic block is currently feasible. |
1267 | bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { |
1268 | // Check if we've called markEdgeExecutable on the edge yet. (We could |
1269 | // be more aggressive and try to consider edges which haven't been marked |
1270 | // yet, but there isn't any need.) |
1271 | return KnownFeasibleEdges.count(V: Edge(From, To)); |
1272 | } |
1273 | |
1274 | // visit Implementations - Something changed in this instruction, either an |
1275 | // operand made a transition, or the instruction is newly executable. Change |
1276 | // the value type of I to reflect these changes if appropriate. This method |
1277 | // makes sure to do the following actions: |
1278 | // |
1279 | // 1. If a phi node merges two constants in, and has conflicting value coming |
1280 | // from different branches, or if the PHI node merges in an overdefined |
1281 | // value, then the PHI node becomes overdefined. |
1282 | // 2. If a phi node merges only constants in, and they all agree on value, the |
1283 | // PHI node becomes a constant value equal to that. |
1284 | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant |
1285 | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined |
1286 | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined |
1287 | // 6. If a conditional branch has a value that is constant, make the selected |
1288 | // destination executable |
1289 | // 7. If a conditional branch has a value that is overdefined, make all |
1290 | // successors executable. |
1291 | void SCCPInstVisitor::visitPHINode(PHINode &PN) { |
1292 | // If this PN returns a struct, just mark the result overdefined. |
1293 | // TODO: We could do a lot better than this if code actually uses this. |
1294 | if (PN.getType()->isStructTy()) |
1295 | return (void)markOverdefined(V: &PN); |
1296 | |
1297 | if (getValueState(V: &PN).isOverdefined()) |
1298 | return; // Quick exit |
1299 | |
1300 | // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, |
1301 | // and slow us down a lot. Just mark them overdefined. |
1302 | if (PN.getNumIncomingValues() > 64) |
1303 | return (void)markOverdefined(V: &PN); |
1304 | |
1305 | unsigned NumActiveIncoming = 0; |
1306 | |
1307 | // Look at all of the executable operands of the PHI node. If any of them |
1308 | // are overdefined, the PHI becomes overdefined as well. If they are all |
1309 | // constant, and they agree with each other, the PHI becomes the identical |
1310 | // constant. If they are constant and don't agree, the PHI is a constant |
1311 | // range. If there are no executable operands, the PHI remains unknown. |
1312 | ValueLatticeElement PhiState = getValueState(V: &PN); |
1313 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
1314 | if (!isEdgeFeasible(From: PN.getIncomingBlock(i), To: PN.getParent())) |
1315 | continue; |
1316 | |
1317 | ValueLatticeElement IV = getValueState(V: PN.getIncomingValue(i)); |
1318 | PhiState.mergeIn(RHS: IV); |
1319 | NumActiveIncoming++; |
1320 | if (PhiState.isOverdefined()) |
1321 | break; |
1322 | } |
1323 | |
1324 | // We allow up to 1 range extension per active incoming value and one |
1325 | // additional extension. Note that we manually adjust the number of range |
1326 | // extensions to match the number of active incoming values. This helps to |
1327 | // limit multiple extensions caused by the same incoming value, if other |
1328 | // incoming values are equal. |
1329 | mergeInValue(V: &PN, MergeWithV: PhiState, |
1330 | Opts: ValueLatticeElement::MergeOptions().setMaxWidenSteps( |
1331 | NumActiveIncoming + 1)); |
1332 | ValueLatticeElement &PhiStateRef = getValueState(V: &PN); |
1333 | PhiStateRef.setNumRangeExtensions( |
1334 | std::max(a: NumActiveIncoming, b: PhiStateRef.getNumRangeExtensions())); |
1335 | } |
1336 | |
1337 | void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { |
1338 | if (I.getNumOperands() == 0) |
1339 | return; // ret void |
1340 | |
1341 | Function *F = I.getParent()->getParent(); |
1342 | Value *ResultOp = I.getOperand(i_nocapture: 0); |
1343 | |
1344 | // If we are tracking the return value of this function, merge it in. |
1345 | if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { |
1346 | auto TFRVI = TrackedRetVals.find(Key: F); |
1347 | if (TFRVI != TrackedRetVals.end()) { |
1348 | mergeInValue(IV&: TFRVI->second, V: F, MergeWithV: getValueState(V: ResultOp)); |
1349 | return; |
1350 | } |
1351 | } |
1352 | |
1353 | // Handle functions that return multiple values. |
1354 | if (!TrackedMultipleRetVals.empty()) { |
1355 | if (auto *STy = dyn_cast<StructType>(Val: ResultOp->getType())) |
1356 | if (MRVFunctionsTracked.count(Ptr: F)) |
1357 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
1358 | mergeInValue(IV&: TrackedMultipleRetVals[std::make_pair(x&: F, y&: i)], V: F, |
1359 | MergeWithV: getStructValueState(V: ResultOp, i)); |
1360 | } |
1361 | } |
1362 | |
1363 | void SCCPInstVisitor::visitTerminator(Instruction &TI) { |
1364 | SmallVector<bool, 16> SuccFeasible; |
1365 | getFeasibleSuccessors(TI, Succs&: SuccFeasible); |
1366 | |
1367 | BasicBlock *BB = TI.getParent(); |
1368 | |
1369 | // Mark all feasible successors executable. |
1370 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
1371 | if (SuccFeasible[i]) |
1372 | markEdgeExecutable(Source: BB, Dest: TI.getSuccessor(Idx: i)); |
1373 | } |
1374 | |
1375 | void SCCPInstVisitor::visitCastInst(CastInst &I) { |
1376 | // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1377 | // discover a concrete value later. |
1378 | if (ValueState[&I].isOverdefined()) |
1379 | return; |
1380 | |
1381 | ValueLatticeElement OpSt = getValueState(V: I.getOperand(i_nocapture: 0)); |
1382 | if (OpSt.isUnknownOrUndef()) |
1383 | return; |
1384 | |
1385 | if (Constant *OpC = getConstant(LV: OpSt, Ty: I.getOperand(i_nocapture: 0)->getType())) { |
1386 | // Fold the constant as we build. |
1387 | if (Constant *C = |
1388 | ConstantFoldCastOperand(Opcode: I.getOpcode(), C: OpC, DestTy: I.getType(), DL)) |
1389 | return (void)markConstant(V: &I, C); |
1390 | } |
1391 | |
1392 | // Ignore bitcasts, as they may change the number of vector elements. |
1393 | if (I.getDestTy()->isIntOrIntVectorTy() && |
1394 | I.getSrcTy()->isIntOrIntVectorTy() && |
1395 | I.getOpcode() != Instruction::BitCast) { |
1396 | auto &LV = getValueState(V: &I); |
1397 | ConstantRange OpRange = |
1398 | OpSt.asConstantRange(Ty: I.getSrcTy(), /*UndefAllowed=*/false); |
1399 | |
1400 | Type *DestTy = I.getDestTy(); |
1401 | ConstantRange Res = |
1402 | OpRange.castOp(CastOp: I.getOpcode(), BitWidth: DestTy->getScalarSizeInBits()); |
1403 | mergeInValue(IV&: LV, V: &I, MergeWithV: ValueLatticeElement::getRange(CR: Res)); |
1404 | } else |
1405 | markOverdefined(V: &I); |
1406 | } |
1407 | |
1408 | void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI, |
1409 | const WithOverflowInst *WO, |
1410 | unsigned Idx) { |
1411 | Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); |
1412 | ValueLatticeElement L = getValueState(V: LHS); |
1413 | ValueLatticeElement R = getValueState(V: RHS); |
1414 | addAdditionalUser(V: LHS, U: &EVI); |
1415 | addAdditionalUser(V: RHS, U: &EVI); |
1416 | if (L.isUnknownOrUndef() || R.isUnknownOrUndef()) |
1417 | return; // Wait to resolve. |
1418 | |
1419 | Type *Ty = LHS->getType(); |
1420 | ConstantRange LR = L.asConstantRange(Ty, /*UndefAllowed=*/false); |
1421 | ConstantRange RR = R.asConstantRange(Ty, /*UndefAllowed=*/false); |
1422 | if (Idx == 0) { |
1423 | ConstantRange Res = LR.binaryOp(BinOp: WO->getBinaryOp(), Other: RR); |
1424 | mergeInValue(V: &EVI, MergeWithV: ValueLatticeElement::getRange(CR: Res)); |
1425 | } else { |
1426 | assert(Idx == 1 && "Index can only be 0 or 1" ); |
1427 | ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
1428 | BinOp: WO->getBinaryOp(), Other: RR, NoWrapKind: WO->getNoWrapKind()); |
1429 | if (NWRegion.contains(CR: LR)) |
1430 | return (void)markConstant(V: &EVI, C: ConstantInt::getFalse(Ty: EVI.getType())); |
1431 | markOverdefined(V: &EVI); |
1432 | } |
1433 | } |
1434 | |
1435 | void SCCPInstVisitor::(ExtractValueInst &EVI) { |
1436 | // If this returns a struct, mark all elements over defined, we don't track |
1437 | // structs in structs. |
1438 | if (EVI.getType()->isStructTy()) |
1439 | return (void)markOverdefined(V: &EVI); |
1440 | |
1441 | // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1442 | // discover a concrete value later. |
1443 | if (ValueState[&EVI].isOverdefined()) |
1444 | return (void)markOverdefined(V: &EVI); |
1445 | |
1446 | // If this is extracting from more than one level of struct, we don't know. |
1447 | if (EVI.getNumIndices() != 1) |
1448 | return (void)markOverdefined(V: &EVI); |
1449 | |
1450 | Value *AggVal = EVI.getAggregateOperand(); |
1451 | if (AggVal->getType()->isStructTy()) { |
1452 | unsigned i = *EVI.idx_begin(); |
1453 | if (auto *WO = dyn_cast<WithOverflowInst>(Val: AggVal)) |
1454 | return handleExtractOfWithOverflow(EVI, WO, Idx: i); |
1455 | ValueLatticeElement EltVal = getStructValueState(V: AggVal, i); |
1456 | mergeInValue(IV&: getValueState(V: &EVI), V: &EVI, MergeWithV: EltVal); |
1457 | } else { |
1458 | // Otherwise, must be extracting from an array. |
1459 | return (void)markOverdefined(V: &EVI); |
1460 | } |
1461 | } |
1462 | |
1463 | void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { |
1464 | auto *STy = dyn_cast<StructType>(Val: IVI.getType()); |
1465 | if (!STy) |
1466 | return (void)markOverdefined(V: &IVI); |
1467 | |
1468 | // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1469 | // discover a concrete value later. |
1470 | if (ValueState[&IVI].isOverdefined()) |
1471 | return (void)markOverdefined(V: &IVI); |
1472 | |
1473 | // If this has more than one index, we can't handle it, drive all results to |
1474 | // undef. |
1475 | if (IVI.getNumIndices() != 1) |
1476 | return (void)markOverdefined(V: &IVI); |
1477 | |
1478 | Value *Aggr = IVI.getAggregateOperand(); |
1479 | unsigned Idx = *IVI.idx_begin(); |
1480 | |
1481 | // Compute the result based on what we're inserting. |
1482 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
1483 | // This passes through all values that aren't the inserted element. |
1484 | if (i != Idx) { |
1485 | ValueLatticeElement EltVal = getStructValueState(V: Aggr, i); |
1486 | mergeInValue(IV&: getStructValueState(V: &IVI, i), V: &IVI, MergeWithV: EltVal); |
1487 | continue; |
1488 | } |
1489 | |
1490 | Value *Val = IVI.getInsertedValueOperand(); |
1491 | if (Val->getType()->isStructTy()) |
1492 | // We don't track structs in structs. |
1493 | markOverdefined(IV&: getStructValueState(V: &IVI, i), V: &IVI); |
1494 | else { |
1495 | ValueLatticeElement InVal = getValueState(V: Val); |
1496 | mergeInValue(IV&: getStructValueState(V: &IVI, i), V: &IVI, MergeWithV: InVal); |
1497 | } |
1498 | } |
1499 | } |
1500 | |
1501 | void SCCPInstVisitor::visitSelectInst(SelectInst &I) { |
1502 | // If this select returns a struct, just mark the result overdefined. |
1503 | // TODO: We could do a lot better than this if code actually uses this. |
1504 | if (I.getType()->isStructTy()) |
1505 | return (void)markOverdefined(V: &I); |
1506 | |
1507 | // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1508 | // discover a concrete value later. |
1509 | if (ValueState[&I].isOverdefined()) |
1510 | return (void)markOverdefined(V: &I); |
1511 | |
1512 | ValueLatticeElement CondValue = getValueState(V: I.getCondition()); |
1513 | if (CondValue.isUnknownOrUndef()) |
1514 | return; |
1515 | |
1516 | if (ConstantInt *CondCB = |
1517 | getConstantInt(IV: CondValue, Ty: I.getCondition()->getType())) { |
1518 | Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); |
1519 | mergeInValue(V: &I, MergeWithV: getValueState(V: OpVal)); |
1520 | return; |
1521 | } |
1522 | |
1523 | // Otherwise, the condition is overdefined or a constant we can't evaluate. |
1524 | // See if we can produce something better than overdefined based on the T/F |
1525 | // value. |
1526 | ValueLatticeElement TVal = getValueState(V: I.getTrueValue()); |
1527 | ValueLatticeElement FVal = getValueState(V: I.getFalseValue()); |
1528 | |
1529 | ValueLatticeElement &State = ValueState[&I]; |
1530 | bool Changed = State.mergeIn(RHS: TVal); |
1531 | Changed |= State.mergeIn(RHS: FVal); |
1532 | if (Changed) |
1533 | pushUsersToWorkListMsg(IV&: State, V: &I); |
1534 | } |
1535 | |
1536 | // Handle Unary Operators. |
1537 | void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { |
1538 | ValueLatticeElement V0State = getValueState(V: I.getOperand(i: 0)); |
1539 | |
1540 | ValueLatticeElement &IV = ValueState[&I]; |
1541 | // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1542 | // discover a concrete value later. |
1543 | if (IV.isOverdefined()) |
1544 | return (void)markOverdefined(V: &I); |
1545 | |
1546 | // If something is unknown/undef, wait for it to resolve. |
1547 | if (V0State.isUnknownOrUndef()) |
1548 | return; |
1549 | |
1550 | if (SCCPSolver::isConstant(LV: V0State)) |
1551 | if (Constant *C = ConstantFoldUnaryOpOperand( |
1552 | Opcode: I.getOpcode(), Op: getConstant(LV: V0State, Ty: I.getType()), DL)) |
1553 | return (void)markConstant(IV, V: &I, C); |
1554 | |
1555 | markOverdefined(V: &I); |
1556 | } |
1557 | |
1558 | void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) { |
1559 | // If this freeze returns a struct, just mark the result overdefined. |
1560 | // TODO: We could do a lot better than this. |
1561 | if (I.getType()->isStructTy()) |
1562 | return (void)markOverdefined(V: &I); |
1563 | |
1564 | ValueLatticeElement V0State = getValueState(V: I.getOperand(i_nocapture: 0)); |
1565 | ValueLatticeElement &IV = ValueState[&I]; |
1566 | // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1567 | // discover a concrete value later. |
1568 | if (IV.isOverdefined()) |
1569 | return (void)markOverdefined(V: &I); |
1570 | |
1571 | // If something is unknown/undef, wait for it to resolve. |
1572 | if (V0State.isUnknownOrUndef()) |
1573 | return; |
1574 | |
1575 | if (SCCPSolver::isConstant(LV: V0State) && |
1576 | isGuaranteedNotToBeUndefOrPoison(V: getConstant(LV: V0State, Ty: I.getType()))) |
1577 | return (void)markConstant(IV, V: &I, C: getConstant(LV: V0State, Ty: I.getType())); |
1578 | |
1579 | markOverdefined(V: &I); |
1580 | } |
1581 | |
1582 | // Handle Binary Operators. |
1583 | void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { |
1584 | ValueLatticeElement V1State = getValueState(V: I.getOperand(i: 0)); |
1585 | ValueLatticeElement V2State = getValueState(V: I.getOperand(i: 1)); |
1586 | |
1587 | ValueLatticeElement &IV = ValueState[&I]; |
1588 | if (IV.isOverdefined()) |
1589 | return; |
1590 | |
1591 | // If something is undef, wait for it to resolve. |
1592 | if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) |
1593 | return; |
1594 | |
1595 | if (V1State.isOverdefined() && V2State.isOverdefined()) |
1596 | return (void)markOverdefined(V: &I); |
1597 | |
1598 | // If either of the operands is a constant, try to fold it to a constant. |
1599 | // TODO: Use information from notconstant better. |
1600 | if ((V1State.isConstant() || V2State.isConstant())) { |
1601 | Value *V1 = SCCPSolver::isConstant(LV: V1State) |
1602 | ? getConstant(LV: V1State, Ty: I.getOperand(i: 0)->getType()) |
1603 | : I.getOperand(i: 0); |
1604 | Value *V2 = SCCPSolver::isConstant(LV: V2State) |
1605 | ? getConstant(LV: V2State, Ty: I.getOperand(i: 1)->getType()) |
1606 | : I.getOperand(i: 1); |
1607 | Value *R = simplifyBinOp(Opcode: I.getOpcode(), LHS: V1, RHS: V2, Q: SimplifyQuery(DL, &I)); |
1608 | auto *C = dyn_cast_or_null<Constant>(Val: R); |
1609 | if (C) { |
1610 | // Conservatively assume that the result may be based on operands that may |
1611 | // be undef. Note that we use mergeInValue to combine the constant with |
1612 | // the existing lattice value for I, as different constants might be found |
1613 | // after one of the operands go to overdefined, e.g. due to one operand |
1614 | // being a special floating value. |
1615 | ValueLatticeElement NewV; |
1616 | NewV.markConstant(V: C, /*MayIncludeUndef=*/true); |
1617 | return (void)mergeInValue(V: &I, MergeWithV: NewV); |
1618 | } |
1619 | } |
1620 | |
1621 | // Only use ranges for binary operators on integers. |
1622 | if (!I.getType()->isIntOrIntVectorTy()) |
1623 | return markOverdefined(V: &I); |
1624 | |
1625 | // Try to simplify to a constant range. |
1626 | ConstantRange A = |
1627 | V1State.asConstantRange(Ty: I.getType(), /*UndefAllowed=*/false); |
1628 | ConstantRange B = |
1629 | V2State.asConstantRange(Ty: I.getType(), /*UndefAllowed=*/false); |
1630 | |
1631 | auto *BO = cast<BinaryOperator>(Val: &I); |
1632 | ConstantRange R = ConstantRange::getEmpty(BitWidth: I.getType()->getScalarSizeInBits()); |
1633 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: BO)) |
1634 | R = A.overflowingBinaryOp(BinOp: BO->getOpcode(), Other: B, NoWrapKind: OBO->getNoWrapKind()); |
1635 | else |
1636 | R = A.binaryOp(BinOp: BO->getOpcode(), Other: B); |
1637 | mergeInValue(V: &I, MergeWithV: ValueLatticeElement::getRange(CR: R)); |
1638 | |
1639 | // TODO: Currently we do not exploit special values that produce something |
1640 | // better than overdefined with an overdefined operand for vector or floating |
1641 | // point types, like and <4 x i32> overdefined, zeroinitializer. |
1642 | } |
1643 | |
1644 | // Handle ICmpInst instruction. |
1645 | void SCCPInstVisitor::visitCmpInst(CmpInst &I) { |
1646 | // Do not cache this lookup, getValueState calls later in the function might |
1647 | // invalidate the reference. |
1648 | if (ValueState[&I].isOverdefined()) |
1649 | return (void)markOverdefined(V: &I); |
1650 | |
1651 | Value *Op1 = I.getOperand(i_nocapture: 0); |
1652 | Value *Op2 = I.getOperand(i_nocapture: 1); |
1653 | |
1654 | // For parameters, use ParamState which includes constant range info if |
1655 | // available. |
1656 | auto V1State = getValueState(V: Op1); |
1657 | auto V2State = getValueState(V: Op2); |
1658 | |
1659 | Constant *C = V1State.getCompare(Pred: I.getPredicate(), Ty: I.getType(), Other: V2State, DL); |
1660 | if (C) { |
1661 | ValueLatticeElement CV; |
1662 | CV.markConstant(V: C); |
1663 | mergeInValue(V: &I, MergeWithV: CV); |
1664 | return; |
1665 | } |
1666 | |
1667 | // If operands are still unknown, wait for it to resolve. |
1668 | if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && |
1669 | !SCCPSolver::isConstant(LV: ValueState[&I])) |
1670 | return; |
1671 | |
1672 | markOverdefined(V: &I); |
1673 | } |
1674 | |
1675 | // Handle getelementptr instructions. If all operands are constants then we |
1676 | // can turn this into a getelementptr ConstantExpr. |
1677 | void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { |
1678 | if (ValueState[&I].isOverdefined()) |
1679 | return (void)markOverdefined(V: &I); |
1680 | |
1681 | const ValueLatticeElement &PtrState = getValueState(V: I.getPointerOperand()); |
1682 | if (PtrState.isUnknownOrUndef()) |
1683 | return; |
1684 | |
1685 | // gep inbounds/nuw of non-null is non-null. |
1686 | if (PtrState.isNotConstant() && PtrState.getNotConstant()->isNullValue()) { |
1687 | if (I.hasNoUnsignedWrap() || |
1688 | (I.isInBounds() && |
1689 | !NullPointerIsDefined(F: I.getFunction(), AS: I.getAddressSpace()))) |
1690 | return (void)markNotNull(IV&: ValueState[&I], V: &I); |
1691 | return (void)markOverdefined(V: &I); |
1692 | } |
1693 | |
1694 | SmallVector<Constant *, 8> Operands; |
1695 | Operands.reserve(N: I.getNumOperands()); |
1696 | |
1697 | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
1698 | ValueLatticeElement State = getValueState(V: I.getOperand(i_nocapture: i)); |
1699 | if (State.isUnknownOrUndef()) |
1700 | return; // Operands are not resolved yet. |
1701 | |
1702 | if (Constant *C = getConstant(LV: State, Ty: I.getOperand(i_nocapture: i)->getType())) { |
1703 | Operands.push_back(Elt: C); |
1704 | continue; |
1705 | } |
1706 | |
1707 | return (void)markOverdefined(V: &I); |
1708 | } |
1709 | |
1710 | if (Constant *C = ConstantFoldInstOperands(I: &I, Ops: Operands, DL)) |
1711 | markConstant(V: &I, C); |
1712 | else |
1713 | markOverdefined(V: &I); |
1714 | } |
1715 | |
1716 | void SCCPInstVisitor::visitAllocaInst(AllocaInst &I) { |
1717 | if (!NullPointerIsDefined(F: I.getFunction(), AS: I.getAddressSpace())) |
1718 | return (void)markNotNull(IV&: ValueState[&I], V: &I); |
1719 | |
1720 | markOverdefined(V: &I); |
1721 | } |
1722 | |
1723 | void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { |
1724 | // If this store is of a struct, ignore it. |
1725 | if (SI.getOperand(i_nocapture: 0)->getType()->isStructTy()) |
1726 | return; |
1727 | |
1728 | if (TrackedGlobals.empty() || !isa<GlobalVariable>(Val: SI.getOperand(i_nocapture: 1))) |
1729 | return; |
1730 | |
1731 | GlobalVariable *GV = cast<GlobalVariable>(Val: SI.getOperand(i_nocapture: 1)); |
1732 | auto I = TrackedGlobals.find(Val: GV); |
1733 | if (I == TrackedGlobals.end()) |
1734 | return; |
1735 | |
1736 | // Get the value we are storing into the global, then merge it. |
1737 | mergeInValue(IV&: I->second, V: GV, MergeWithV: getValueState(V: SI.getOperand(i_nocapture: 0)), |
1738 | Opts: ValueLatticeElement::MergeOptions().setCheckWiden(false)); |
1739 | if (I->second.isOverdefined()) |
1740 | TrackedGlobals.erase(I); // No need to keep tracking this! |
1741 | } |
1742 | |
1743 | static ValueLatticeElement getValueFromMetadata(const Instruction *I) { |
1744 | if (const auto *CB = dyn_cast<CallBase>(Val: I)) { |
1745 | if (CB->getType()->isIntOrIntVectorTy()) |
1746 | if (std::optional<ConstantRange> Range = CB->getRange()) |
1747 | return ValueLatticeElement::getRange(CR: *Range); |
1748 | if (CB->getType()->isPointerTy() && CB->isReturnNonNull()) |
1749 | return ValueLatticeElement::getNot( |
1750 | C: ConstantPointerNull::get(T: cast<PointerType>(Val: I->getType()))); |
1751 | } |
1752 | |
1753 | if (I->getType()->isIntOrIntVectorTy()) |
1754 | if (MDNode *Ranges = I->getMetadata(KindID: LLVMContext::MD_range)) |
1755 | return ValueLatticeElement::getRange( |
1756 | CR: getConstantRangeFromMetadata(RangeMD: *Ranges)); |
1757 | if (I->hasMetadata(KindID: LLVMContext::MD_nonnull)) |
1758 | return ValueLatticeElement::getNot( |
1759 | C: ConstantPointerNull::get(T: cast<PointerType>(Val: I->getType()))); |
1760 | |
1761 | return ValueLatticeElement::getOverdefined(); |
1762 | } |
1763 | |
1764 | // Handle load instructions. If the operand is a constant pointer to a constant |
1765 | // global, we can replace the load with the loaded constant value! |
1766 | void SCCPInstVisitor::visitLoadInst(LoadInst &I) { |
1767 | // If this load is of a struct or the load is volatile, just mark the result |
1768 | // as overdefined. |
1769 | if (I.getType()->isStructTy() || I.isVolatile()) |
1770 | return (void)markOverdefined(V: &I); |
1771 | |
1772 | // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would |
1773 | // discover a concrete value later. |
1774 | if (ValueState[&I].isOverdefined()) |
1775 | return (void)markOverdefined(V: &I); |
1776 | |
1777 | ValueLatticeElement PtrVal = getValueState(V: I.getOperand(i_nocapture: 0)); |
1778 | if (PtrVal.isUnknownOrUndef()) |
1779 | return; // The pointer is not resolved yet! |
1780 | |
1781 | ValueLatticeElement &IV = ValueState[&I]; |
1782 | |
1783 | if (SCCPSolver::isConstant(LV: PtrVal)) { |
1784 | Constant *Ptr = getConstant(LV: PtrVal, Ty: I.getOperand(i_nocapture: 0)->getType()); |
1785 | |
1786 | // load null is undefined. |
1787 | if (isa<ConstantPointerNull>(Val: Ptr)) { |
1788 | if (NullPointerIsDefined(F: I.getFunction(), AS: I.getPointerAddressSpace())) |
1789 | return (void)markOverdefined(IV, V: &I); |
1790 | else |
1791 | return; |
1792 | } |
1793 | |
1794 | // Transform load (constant global) into the value loaded. |
1795 | if (auto *GV = dyn_cast<GlobalVariable>(Val: Ptr)) { |
1796 | if (!TrackedGlobals.empty()) { |
1797 | // If we are tracking this global, merge in the known value for it. |
1798 | auto It = TrackedGlobals.find(Val: GV); |
1799 | if (It != TrackedGlobals.end()) { |
1800 | mergeInValue(IV, V: &I, MergeWithV: It->second, Opts: getMaxWidenStepsOpts()); |
1801 | return; |
1802 | } |
1803 | } |
1804 | } |
1805 | |
1806 | // Transform load from a constant into a constant if possible. |
1807 | if (Constant *C = ConstantFoldLoadFromConstPtr(C: Ptr, Ty: I.getType(), DL)) |
1808 | return (void)markConstant(IV, V: &I, C); |
1809 | } |
1810 | |
1811 | // Fall back to metadata. |
1812 | mergeInValue(V: &I, MergeWithV: getValueFromMetadata(I: &I)); |
1813 | } |
1814 | |
1815 | void SCCPInstVisitor::visitCallBase(CallBase &CB) { |
1816 | handleCallResult(CB); |
1817 | handleCallArguments(CB); |
1818 | } |
1819 | |
1820 | void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { |
1821 | Function *F = CB.getCalledFunction(); |
1822 | |
1823 | // Void return and not tracking callee, just bail. |
1824 | if (CB.getType()->isVoidTy()) |
1825 | return; |
1826 | |
1827 | // Always mark struct return as overdefined. |
1828 | if (CB.getType()->isStructTy()) |
1829 | return (void)markOverdefined(V: &CB); |
1830 | |
1831 | // Otherwise, if we have a single return value case, and if the function is |
1832 | // a declaration, maybe we can constant fold it. |
1833 | if (F && F->isDeclaration() && canConstantFoldCallTo(Call: &CB, F)) { |
1834 | SmallVector<Constant *, 8> Operands; |
1835 | for (const Use &A : CB.args()) { |
1836 | if (A.get()->getType()->isStructTy()) |
1837 | return markOverdefined(V: &CB); // Can't handle struct args. |
1838 | if (A.get()->getType()->isMetadataTy()) |
1839 | continue; // Carried in CB, not allowed in Operands. |
1840 | ValueLatticeElement State = getValueState(V: A); |
1841 | |
1842 | if (State.isUnknownOrUndef()) |
1843 | return; // Operands are not resolved yet. |
1844 | if (SCCPSolver::isOverdefined(LV: State)) |
1845 | return (void)markOverdefined(V: &CB); |
1846 | assert(SCCPSolver::isConstant(State) && "Unknown state!" ); |
1847 | Operands.push_back(Elt: getConstant(LV: State, Ty: A->getType())); |
1848 | } |
1849 | |
1850 | if (SCCPSolver::isOverdefined(LV: getValueState(V: &CB))) |
1851 | return (void)markOverdefined(V: &CB); |
1852 | |
1853 | // If we can constant fold this, mark the result of the call as a |
1854 | // constant. |
1855 | if (Constant *C = ConstantFoldCall(Call: &CB, F, Operands, TLI: &GetTLI(*F))) |
1856 | return (void)markConstant(V: &CB, C); |
1857 | } |
1858 | |
1859 | // Fall back to metadata. |
1860 | mergeInValue(V: &CB, MergeWithV: getValueFromMetadata(I: &CB)); |
1861 | } |
1862 | |
1863 | void SCCPInstVisitor::handleCallArguments(CallBase &CB) { |
1864 | Function *F = CB.getCalledFunction(); |
1865 | // If this is a local function that doesn't have its address taken, mark its |
1866 | // entry block executable and merge in the actual arguments to the call into |
1867 | // the formal arguments of the function. |
1868 | if (TrackingIncomingArguments.count(Ptr: F)) { |
1869 | markBlockExecutable(BB: &F->front()); |
1870 | |
1871 | // Propagate information from this call site into the callee. |
1872 | auto CAI = CB.arg_begin(); |
1873 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; |
1874 | ++AI, ++CAI) { |
1875 | // If this argument is byval, and if the function is not readonly, there |
1876 | // will be an implicit copy formed of the input aggregate. |
1877 | if (AI->hasByValAttr() && !F->onlyReadsMemory()) { |
1878 | markOverdefined(V: &*AI); |
1879 | continue; |
1880 | } |
1881 | |
1882 | if (auto *STy = dyn_cast<StructType>(Val: AI->getType())) { |
1883 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
1884 | ValueLatticeElement CallArg = getStructValueState(V: *CAI, i); |
1885 | mergeInValue(IV&: getStructValueState(V: &*AI, i), V: &*AI, MergeWithV: CallArg, |
1886 | Opts: getMaxWidenStepsOpts()); |
1887 | } |
1888 | } else |
1889 | mergeInValue(V: &*AI, |
1890 | MergeWithV: getValueState(V: *CAI).intersect(Other: getArgAttributeVL(A: &*AI)), |
1891 | Opts: getMaxWidenStepsOpts()); |
1892 | } |
1893 | } |
1894 | } |
1895 | |
1896 | void SCCPInstVisitor::handleCallResult(CallBase &CB) { |
1897 | Function *F = CB.getCalledFunction(); |
1898 | |
1899 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &CB)) { |
1900 | if (II->getIntrinsicID() == Intrinsic::ssa_copy) { |
1901 | if (ValueState[&CB].isOverdefined()) |
1902 | return; |
1903 | |
1904 | Value *CopyOf = CB.getOperand(i_nocapture: 0); |
1905 | ValueLatticeElement CopyOfVal = getValueState(V: CopyOf); |
1906 | const auto *PI = getPredicateInfoFor(I: &CB); |
1907 | assert(PI && "Missing predicate info for ssa.copy" ); |
1908 | |
1909 | const std::optional<PredicateConstraint> &Constraint = |
1910 | PI->getConstraint(); |
1911 | if (!Constraint) { |
1912 | mergeInValue(IV&: ValueState[&CB], V: &CB, MergeWithV: CopyOfVal); |
1913 | return; |
1914 | } |
1915 | |
1916 | CmpInst::Predicate Pred = Constraint->Predicate; |
1917 | Value *OtherOp = Constraint->OtherOp; |
1918 | |
1919 | // Wait until OtherOp is resolved. |
1920 | if (getValueState(V: OtherOp).isUnknown()) { |
1921 | addAdditionalUser(V: OtherOp, U: &CB); |
1922 | return; |
1923 | } |
1924 | |
1925 | ValueLatticeElement CondVal = getValueState(V: OtherOp); |
1926 | ValueLatticeElement &IV = ValueState[&CB]; |
1927 | if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { |
1928 | auto ImposedCR = |
1929 | ConstantRange::getFull(BitWidth: DL.getTypeSizeInBits(Ty: CopyOf->getType())); |
1930 | |
1931 | // Get the range imposed by the condition. |
1932 | if (CondVal.isConstantRange()) |
1933 | ImposedCR = ConstantRange::makeAllowedICmpRegion( |
1934 | Pred, Other: CondVal.getConstantRange()); |
1935 | |
1936 | // Combine range info for the original value with the new range from the |
1937 | // condition. |
1938 | auto CopyOfCR = CopyOfVal.asConstantRange(Ty: CopyOf->getType(), |
1939 | /*UndefAllowed=*/true); |
1940 | // Treat an unresolved input like a full range. |
1941 | if (CopyOfCR.isEmptySet()) |
1942 | CopyOfCR = ConstantRange::getFull(BitWidth: CopyOfCR.getBitWidth()); |
1943 | auto NewCR = ImposedCR.intersectWith(CR: CopyOfCR); |
1944 | // If the existing information is != x, do not use the information from |
1945 | // a chained predicate, as the != x information is more likely to be |
1946 | // helpful in practice. |
1947 | if (!CopyOfCR.contains(CR: NewCR) && CopyOfCR.getSingleMissingElement()) |
1948 | NewCR = CopyOfCR; |
1949 | |
1950 | // The new range is based on a branch condition. That guarantees that |
1951 | // neither of the compare operands can be undef in the branch targets, |
1952 | // unless we have conditions that are always true/false (e.g. icmp ule |
1953 | // i32, %a, i32_max). For the latter overdefined/empty range will be |
1954 | // inferred, but the branch will get folded accordingly anyways. |
1955 | addAdditionalUser(V: OtherOp, U: &CB); |
1956 | mergeInValue( |
1957 | IV, V: &CB, |
1958 | MergeWithV: ValueLatticeElement::getRange(CR: NewCR, /*MayIncludeUndef*/ false)); |
1959 | return; |
1960 | } else if (Pred == CmpInst::ICMP_EQ && |
1961 | (CondVal.isConstant() || CondVal.isNotConstant())) { |
1962 | // For non-integer values or integer constant expressions, only |
1963 | // propagate equal constants or not-constants. |
1964 | addAdditionalUser(V: OtherOp, U: &CB); |
1965 | mergeInValue(IV, V: &CB, MergeWithV: CondVal); |
1966 | return; |
1967 | } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) { |
1968 | // Propagate inequalities. |
1969 | addAdditionalUser(V: OtherOp, U: &CB); |
1970 | mergeInValue(IV, V: &CB, |
1971 | MergeWithV: ValueLatticeElement::getNot(C: CondVal.getConstant())); |
1972 | return; |
1973 | } |
1974 | |
1975 | return (void)mergeInValue(IV, V: &CB, MergeWithV: CopyOfVal); |
1976 | } |
1977 | |
1978 | if (II->getIntrinsicID() == Intrinsic::vscale) { |
1979 | unsigned BitWidth = CB.getType()->getScalarSizeInBits(); |
1980 | const ConstantRange Result = getVScaleRange(F: II->getFunction(), BitWidth); |
1981 | return (void)mergeInValue(V: II, MergeWithV: ValueLatticeElement::getRange(CR: Result)); |
1982 | } |
1983 | |
1984 | if (ConstantRange::isIntrinsicSupported(IntrinsicID: II->getIntrinsicID())) { |
1985 | // Compute result range for intrinsics supported by ConstantRange. |
1986 | // Do this even if we don't know a range for all operands, as we may |
1987 | // still know something about the result range, e.g. of abs(x). |
1988 | SmallVector<ConstantRange, 2> OpRanges; |
1989 | for (Value *Op : II->args()) { |
1990 | const ValueLatticeElement &State = getValueState(V: Op); |
1991 | if (State.isUnknownOrUndef()) |
1992 | return; |
1993 | OpRanges.push_back( |
1994 | Elt: State.asConstantRange(Ty: Op->getType(), /*UndefAllowed=*/false)); |
1995 | } |
1996 | |
1997 | ConstantRange Result = |
1998 | ConstantRange::intrinsic(IntrinsicID: II->getIntrinsicID(), Ops: OpRanges); |
1999 | return (void)mergeInValue(V: II, MergeWithV: ValueLatticeElement::getRange(CR: Result)); |
2000 | } |
2001 | } |
2002 | |
2003 | // The common case is that we aren't tracking the callee, either because we |
2004 | // are not doing interprocedural analysis or the callee is indirect, or is |
2005 | // external. Handle these cases first. |
2006 | if (!F || F->isDeclaration()) |
2007 | return handleCallOverdefined(CB); |
2008 | |
2009 | // If this is a single/zero retval case, see if we're tracking the function. |
2010 | if (auto *STy = dyn_cast<StructType>(Val: F->getReturnType())) { |
2011 | if (!MRVFunctionsTracked.count(Ptr: F)) |
2012 | return handleCallOverdefined(CB); // Not tracking this callee. |
2013 | |
2014 | // If we are tracking this callee, propagate the result of the function |
2015 | // into this call site. |
2016 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
2017 | mergeInValue(IV&: getStructValueState(V: &CB, i), V: &CB, |
2018 | MergeWithV: TrackedMultipleRetVals[std::make_pair(x&: F, y&: i)], |
2019 | Opts: getMaxWidenStepsOpts()); |
2020 | } else { |
2021 | auto TFRVI = TrackedRetVals.find(Key: F); |
2022 | if (TFRVI == TrackedRetVals.end()) |
2023 | return handleCallOverdefined(CB); // Not tracking this callee. |
2024 | |
2025 | // If so, propagate the return value of the callee into this call result. |
2026 | mergeInValue(V: &CB, MergeWithV: TFRVI->second, Opts: getMaxWidenStepsOpts()); |
2027 | } |
2028 | } |
2029 | |
2030 | void SCCPInstVisitor::solve() { |
2031 | // Process the work lists until they are empty! |
2032 | while (!BBWorkList.empty() || !InstWorkList.empty()) { |
2033 | // Process the instruction work list. |
2034 | while (!InstWorkList.empty()) { |
2035 | Instruction *I = InstWorkList.pop_back_val(); |
2036 | Invalidated.erase(V: I); |
2037 | |
2038 | LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); |
2039 | |
2040 | visit(I); |
2041 | } |
2042 | |
2043 | // Process the basic block work list. |
2044 | while (!BBWorkList.empty()) { |
2045 | BasicBlock *BB = BBWorkList.pop_back_val(); |
2046 | BBVisited.insert(Ptr: BB); |
2047 | |
2048 | LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); |
2049 | for (Instruction &I : *BB) { |
2050 | CurI = &I; |
2051 | visit(I); |
2052 | } |
2053 | CurI = nullptr; |
2054 | } |
2055 | } |
2056 | } |
2057 | |
2058 | bool SCCPInstVisitor::resolvedUndef(Instruction &I) { |
2059 | // Look for instructions which produce undef values. |
2060 | if (I.getType()->isVoidTy()) |
2061 | return false; |
2062 | |
2063 | if (auto *STy = dyn_cast<StructType>(Val: I.getType())) { |
2064 | // Only a few things that can be structs matter for undef. |
2065 | |
2066 | // Tracked calls must never be marked overdefined in resolvedUndefsIn. |
2067 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
2068 | if (Function *F = CB->getCalledFunction()) |
2069 | if (MRVFunctionsTracked.count(Ptr: F)) |
2070 | return false; |
2071 | |
2072 | // extractvalue and insertvalue don't need to be marked; they are |
2073 | // tracked as precisely as their operands. |
2074 | if (isa<ExtractValueInst>(Val: I) || isa<InsertValueInst>(Val: I)) |
2075 | return false; |
2076 | // Send the results of everything else to overdefined. We could be |
2077 | // more precise than this but it isn't worth bothering. |
2078 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
2079 | ValueLatticeElement &LV = getStructValueState(V: &I, i); |
2080 | if (LV.isUnknown()) { |
2081 | markOverdefined(IV&: LV, V: &I); |
2082 | return true; |
2083 | } |
2084 | } |
2085 | return false; |
2086 | } |
2087 | |
2088 | ValueLatticeElement &LV = getValueState(V: &I); |
2089 | if (!LV.isUnknown()) |
2090 | return false; |
2091 | |
2092 | // There are two reasons a call can have an undef result |
2093 | // 1. It could be tracked. |
2094 | // 2. It could be constant-foldable. |
2095 | // Because of the way we solve return values, tracked calls must |
2096 | // never be marked overdefined in resolvedUndefsIn. |
2097 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
2098 | if (Function *F = CB->getCalledFunction()) |
2099 | if (TrackedRetVals.count(Key: F)) |
2100 | return false; |
2101 | |
2102 | if (isa<LoadInst>(Val: I)) { |
2103 | // A load here means one of two things: a load of undef from a global, |
2104 | // a load from an unknown pointer. Either way, having it return undef |
2105 | // is okay. |
2106 | return false; |
2107 | } |
2108 | |
2109 | markOverdefined(V: &I); |
2110 | return true; |
2111 | } |
2112 | |
2113 | /// While solving the dataflow for a function, we don't compute a result for |
2114 | /// operations with an undef operand, to allow undef to be lowered to a |
2115 | /// constant later. For example, constant folding of "zext i8 undef to i16" |
2116 | /// would result in "i16 0", and if undef is later lowered to "i8 1", then the |
2117 | /// zext result would become "i16 1" and would result into an overdefined |
2118 | /// lattice value once merged with the previous result. Not computing the |
2119 | /// result of the zext (treating undef the same as unknown) allows us to handle |
2120 | /// a later undef->constant lowering more optimally. |
2121 | /// |
2122 | /// However, if the operand remains undef when the solver returns, we do need |
2123 | /// to assign some result to the instruction (otherwise we would treat it as |
2124 | /// unreachable). For simplicity, we mark any instructions that are still |
2125 | /// unknown as overdefined. |
2126 | bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { |
2127 | bool MadeChange = false; |
2128 | for (BasicBlock &BB : F) { |
2129 | if (!BBExecutable.count(Ptr: &BB)) |
2130 | continue; |
2131 | |
2132 | for (Instruction &I : BB) |
2133 | MadeChange |= resolvedUndef(I); |
2134 | } |
2135 | |
2136 | LLVM_DEBUG(if (MadeChange) dbgs() |
2137 | << "\nResolved undefs in " << F.getName() << '\n'); |
2138 | |
2139 | return MadeChange; |
2140 | } |
2141 | |
2142 | //===----------------------------------------------------------------------===// |
2143 | // |
2144 | // SCCPSolver implementations |
2145 | // |
2146 | SCCPSolver::SCCPSolver( |
2147 | const DataLayout &DL, |
2148 | std::function<const TargetLibraryInfo &(Function &)> GetTLI, |
2149 | LLVMContext &Ctx) |
2150 | : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} |
2151 | |
2152 | SCCPSolver::~SCCPSolver() = default; |
2153 | |
2154 | void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT, |
2155 | AssumptionCache &AC) { |
2156 | Visitor->addPredicateInfo(F, DT, AC); |
2157 | } |
2158 | |
2159 | void SCCPSolver::removeSSACopies(Function &F) { |
2160 | Visitor->removeSSACopies(F); |
2161 | } |
2162 | |
2163 | bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { |
2164 | return Visitor->markBlockExecutable(BB); |
2165 | } |
2166 | |
2167 | const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { |
2168 | return Visitor->getPredicateInfoFor(I); |
2169 | } |
2170 | |
2171 | void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { |
2172 | Visitor->trackValueOfGlobalVariable(GV); |
2173 | } |
2174 | |
2175 | void SCCPSolver::addTrackedFunction(Function *F) { |
2176 | Visitor->addTrackedFunction(F); |
2177 | } |
2178 | |
2179 | void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { |
2180 | Visitor->addToMustPreserveReturnsInFunctions(F); |
2181 | } |
2182 | |
2183 | bool SCCPSolver::mustPreserveReturn(Function *F) { |
2184 | return Visitor->mustPreserveReturn(F); |
2185 | } |
2186 | |
2187 | void SCCPSolver::addArgumentTrackedFunction(Function *F) { |
2188 | Visitor->addArgumentTrackedFunction(F); |
2189 | } |
2190 | |
2191 | bool SCCPSolver::isArgumentTrackedFunction(Function *F) { |
2192 | return Visitor->isArgumentTrackedFunction(F); |
2193 | } |
2194 | |
2195 | const SmallPtrSetImpl<Function *> & |
2196 | SCCPSolver::getArgumentTrackedFunctions() const { |
2197 | return Visitor->getArgumentTrackedFunctions(); |
2198 | } |
2199 | |
2200 | void SCCPSolver::solve() { Visitor->solve(); } |
2201 | |
2202 | bool SCCPSolver::resolvedUndefsIn(Function &F) { |
2203 | return Visitor->resolvedUndefsIn(F); |
2204 | } |
2205 | |
2206 | void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) { |
2207 | Visitor->solveWhileResolvedUndefsIn(M); |
2208 | } |
2209 | |
2210 | void |
2211 | SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) { |
2212 | Visitor->solveWhileResolvedUndefsIn(WorkList); |
2213 | } |
2214 | |
2215 | void SCCPSolver::solveWhileResolvedUndefs() { |
2216 | Visitor->solveWhileResolvedUndefs(); |
2217 | } |
2218 | |
2219 | bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { |
2220 | return Visitor->isBlockExecutable(BB); |
2221 | } |
2222 | |
2223 | bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { |
2224 | return Visitor->isEdgeFeasible(From, To); |
2225 | } |
2226 | |
2227 | std::vector<ValueLatticeElement> |
2228 | SCCPSolver::getStructLatticeValueFor(Value *V) const { |
2229 | return Visitor->getStructLatticeValueFor(V); |
2230 | } |
2231 | |
2232 | void SCCPSolver::removeLatticeValueFor(Value *V) { |
2233 | return Visitor->removeLatticeValueFor(V); |
2234 | } |
2235 | |
2236 | void SCCPSolver::resetLatticeValueFor(CallBase *Call) { |
2237 | Visitor->resetLatticeValueFor(Call); |
2238 | } |
2239 | |
2240 | const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { |
2241 | return Visitor->getLatticeValueFor(V); |
2242 | } |
2243 | |
2244 | const MapVector<Function *, ValueLatticeElement> & |
2245 | SCCPSolver::getTrackedRetVals() const { |
2246 | return Visitor->getTrackedRetVals(); |
2247 | } |
2248 | |
2249 | const DenseMap<GlobalVariable *, ValueLatticeElement> & |
2250 | SCCPSolver::getTrackedGlobals() const { |
2251 | return Visitor->getTrackedGlobals(); |
2252 | } |
2253 | |
2254 | const SmallPtrSet<Function *, 16> &SCCPSolver::getMRVFunctionsTracked() const { |
2255 | return Visitor->getMRVFunctionsTracked(); |
2256 | } |
2257 | |
2258 | void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } |
2259 | |
2260 | void SCCPSolver::trackValueOfArgument(Argument *V) { |
2261 | Visitor->trackValueOfArgument(A: V); |
2262 | } |
2263 | |
2264 | bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { |
2265 | return Visitor->isStructLatticeConstant(F, STy); |
2266 | } |
2267 | |
2268 | Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV, |
2269 | Type *Ty) const { |
2270 | return Visitor->getConstant(LV, Ty); |
2271 | } |
2272 | |
2273 | Constant *SCCPSolver::getConstantOrNull(Value *V) const { |
2274 | return Visitor->getConstantOrNull(V); |
2275 | } |
2276 | |
2277 | void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F, |
2278 | const SmallVectorImpl<ArgInfo> &Args) { |
2279 | Visitor->setLatticeValueForSpecializationArguments(F, Args); |
2280 | } |
2281 | |
2282 | void SCCPSolver::markFunctionUnreachable(Function *F) { |
2283 | Visitor->markFunctionUnreachable(F); |
2284 | } |
2285 | |
2286 | void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } |
2287 | |
2288 | void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); } |
2289 | |