1 | //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements induction variable simplification. It does |
10 | // not define any actual pass or policy, but provides a single function to |
11 | // simplify a loop's induction variables based on ScalarEvolution. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/ADT/Statistic.h" |
18 | #include "llvm/Analysis/LoopInfo.h" |
19 | #include "llvm/Analysis/ValueTracking.h" |
20 | #include "llvm/IR/Dominators.h" |
21 | #include "llvm/IR/IRBuilder.h" |
22 | #include "llvm/IR/Instructions.h" |
23 | #include "llvm/IR/IntrinsicInst.h" |
24 | #include "llvm/IR/PatternMatch.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/raw_ostream.h" |
27 | #include "llvm/Transforms/Utils/Local.h" |
28 | #include "llvm/Transforms/Utils/LoopUtils.h" |
29 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
30 | |
31 | using namespace llvm; |
32 | using namespace llvm::PatternMatch; |
33 | |
34 | #define DEBUG_TYPE "indvars" |
35 | |
36 | STATISTIC(NumElimIdentity, "Number of IV identities eliminated" ); |
37 | STATISTIC(NumElimOperand, "Number of IV operands folded into a use" ); |
38 | STATISTIC(NumFoldedUser, "Number of IV users folded into a constant" ); |
39 | STATISTIC(NumElimRem , "Number of IV remainder operations eliminated" ); |
40 | STATISTIC( |
41 | NumSimplifiedSDiv, |
42 | "Number of IV signed division operations converted to unsigned division" ); |
43 | STATISTIC( |
44 | NumSimplifiedSRem, |
45 | "Number of IV signed remainder operations converted to unsigned remainder" ); |
46 | STATISTIC(NumElimCmp , "Number of IV comparisons eliminated" ); |
47 | |
48 | namespace { |
49 | /// This is a utility for simplifying induction variables |
50 | /// based on ScalarEvolution. It is the primary instrument of the |
51 | /// IndvarSimplify pass, but it may also be directly invoked to cleanup after |
52 | /// other loop passes that preserve SCEV. |
53 | class SimplifyIndvar { |
54 | Loop *L; |
55 | LoopInfo *LI; |
56 | ScalarEvolution *SE; |
57 | DominatorTree *DT; |
58 | const TargetTransformInfo *TTI; |
59 | SCEVExpander &Rewriter; |
60 | SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
61 | |
62 | bool Changed = false; |
63 | bool RunUnswitching = false; |
64 | |
65 | public: |
66 | SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, |
67 | LoopInfo *LI, const TargetTransformInfo *TTI, |
68 | SCEVExpander &Rewriter, |
69 | SmallVectorImpl<WeakTrackingVH> &Dead) |
70 | : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), |
71 | DeadInsts(Dead) { |
72 | assert(LI && "IV simplification requires LoopInfo" ); |
73 | } |
74 | |
75 | bool hasChanged() const { return Changed; } |
76 | bool runUnswitching() const { return RunUnswitching; } |
77 | |
78 | /// Iteratively perform simplification on a worklist of users of the |
79 | /// specified induction variable. This is the top-level driver that applies |
80 | /// all simplifications to users of an IV. |
81 | void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); |
82 | |
83 | void pushIVUsers(Instruction *Def, |
84 | SmallPtrSet<Instruction *, 16> &Simplified, |
85 | SmallVectorImpl<std::pair<Instruction *, Instruction *>> |
86 | &SimpleIVUsers); |
87 | |
88 | Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); |
89 | |
90 | bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); |
91 | bool replaceIVUserWithLoopInvariant(Instruction *UseInst); |
92 | bool replaceFloatIVWithIntegerIV(Instruction *UseInst); |
93 | |
94 | bool eliminateOverflowIntrinsic(WithOverflowInst *WO); |
95 | bool eliminateSaturatingIntrinsic(SaturatingInst *SI); |
96 | bool eliminateTrunc(TruncInst *TI); |
97 | bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); |
98 | bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); |
99 | void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); |
100 | void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, |
101 | bool IsSigned); |
102 | void replaceRemWithNumerator(BinaryOperator *Rem); |
103 | void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); |
104 | void replaceSRemWithURem(BinaryOperator *Rem); |
105 | bool eliminateSDiv(BinaryOperator *SDiv); |
106 | bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand); |
107 | bool strengthenOverflowingOperation(BinaryOperator *OBO, |
108 | Instruction *IVOperand); |
109 | bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); |
110 | }; |
111 | } |
112 | |
113 | /// Find a point in code which dominates all given instructions. We can safely |
114 | /// assume that, whatever fact we can prove at the found point, this fact is |
115 | /// also true for each of the given instructions. |
116 | static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, |
117 | DominatorTree &DT) { |
118 | Instruction *CommonDom = nullptr; |
119 | for (auto *Insn : Instructions) |
120 | CommonDom = |
121 | CommonDom ? DT.findNearestCommonDominator(I1: CommonDom, I2: Insn) : Insn; |
122 | assert(CommonDom && "Common dominator not found?" ); |
123 | return CommonDom; |
124 | } |
125 | |
126 | /// Fold an IV operand into its use. This removes increments of an |
127 | /// aligned IV when used by a instruction that ignores the low bits. |
128 | /// |
129 | /// IVOperand is guaranteed SCEVable, but UseInst may not be. |
130 | /// |
131 | /// Return the operand of IVOperand for this induction variable if IVOperand can |
132 | /// be folded (in case more folding opportunities have been exposed). |
133 | /// Otherwise return null. |
134 | Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { |
135 | Value *IVSrc = nullptr; |
136 | const unsigned OperIdx = 0; |
137 | const SCEV *FoldedExpr = nullptr; |
138 | bool MustDropExactFlag = false; |
139 | switch (UseInst->getOpcode()) { |
140 | default: |
141 | return nullptr; |
142 | case Instruction::UDiv: |
143 | case Instruction::LShr: |
144 | // We're only interested in the case where we know something about |
145 | // the numerator and have a constant denominator. |
146 | if (IVOperand != UseInst->getOperand(i: OperIdx) || |
147 | !isa<ConstantInt>(Val: UseInst->getOperand(i: 1))) |
148 | return nullptr; |
149 | |
150 | // Attempt to fold a binary operator with constant operand. |
151 | // e.g. ((I + 1) >> 2) => I >> 2 |
152 | if (!isa<BinaryOperator>(Val: IVOperand) |
153 | || !isa<ConstantInt>(Val: IVOperand->getOperand(i: 1))) |
154 | return nullptr; |
155 | |
156 | IVSrc = IVOperand->getOperand(i: 0); |
157 | // IVSrc must be the (SCEVable) IV, since the other operand is const. |
158 | assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand" ); |
159 | |
160 | ConstantInt *D = cast<ConstantInt>(Val: UseInst->getOperand(i: 1)); |
161 | if (UseInst->getOpcode() == Instruction::LShr) { |
162 | // Get a constant for the divisor. See createSCEV. |
163 | uint32_t BitWidth = cast<IntegerType>(Val: UseInst->getType())->getBitWidth(); |
164 | if (D->getValue().uge(RHS: BitWidth)) |
165 | return nullptr; |
166 | |
167 | D = ConstantInt::get(Context&: UseInst->getContext(), |
168 | V: APInt::getOneBitSet(numBits: BitWidth, BitNo: D->getZExtValue())); |
169 | } |
170 | const SCEV *LHS = SE->getSCEV(V: IVSrc); |
171 | const SCEV *RHS = SE->getSCEV(V: D); |
172 | FoldedExpr = SE->getUDivExpr(LHS, RHS); |
173 | // We might have 'exact' flag set at this point which will no longer be |
174 | // correct after we make the replacement. |
175 | if (UseInst->isExact() && LHS != SE->getMulExpr(LHS: FoldedExpr, RHS)) |
176 | MustDropExactFlag = true; |
177 | } |
178 | // We have something that might fold it's operand. Compare SCEVs. |
179 | if (!SE->isSCEVable(Ty: UseInst->getType())) |
180 | return nullptr; |
181 | |
182 | // Bypass the operand if SCEV can prove it has no effect. |
183 | if (SE->getSCEV(V: UseInst) != FoldedExpr) |
184 | return nullptr; |
185 | |
186 | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand |
187 | << " -> " << *UseInst << '\n'); |
188 | |
189 | UseInst->setOperand(i: OperIdx, Val: IVSrc); |
190 | assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper" ); |
191 | |
192 | if (MustDropExactFlag) |
193 | UseInst->dropPoisonGeneratingFlags(); |
194 | |
195 | ++NumElimOperand; |
196 | Changed = true; |
197 | if (IVOperand->use_empty()) |
198 | DeadInsts.emplace_back(Args&: IVOperand); |
199 | return IVSrc; |
200 | } |
201 | |
202 | bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, |
203 | Instruction *IVOperand) { |
204 | auto * = L->getLoopPreheader(); |
205 | if (!Preheader) |
206 | return false; |
207 | unsigned IVOperIdx = 0; |
208 | CmpPredicate Pred = ICmp->getCmpPredicate(); |
209 | if (IVOperand != ICmp->getOperand(i_nocapture: 0)) { |
210 | // Swapped |
211 | assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand" ); |
212 | IVOperIdx = 1; |
213 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
214 | } |
215 | |
216 | // Get the SCEVs for the ICmp operands (in the specific context of the |
217 | // current loop) |
218 | const Loop *ICmpLoop = LI->getLoopFor(BB: ICmp->getParent()); |
219 | const SCEV *S = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: IVOperIdx), L: ICmpLoop); |
220 | const SCEV *X = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: 1 - IVOperIdx), L: ICmpLoop); |
221 | auto LIP = SE->getLoopInvariantPredicate(Pred, LHS: S, RHS: X, L, CtxI: ICmp); |
222 | if (!LIP) |
223 | return false; |
224 | ICmpInst::Predicate InvariantPredicate = LIP->Pred; |
225 | const SCEV *InvariantLHS = LIP->LHS; |
226 | const SCEV *InvariantRHS = LIP->RHS; |
227 | |
228 | // Do not generate something ridiculous. |
229 | auto *PHTerm = Preheader->getTerminator(); |
230 | if (Rewriter.isHighCostExpansion(Exprs: {InvariantLHS, InvariantRHS}, L, |
231 | Budget: 2 * SCEVCheapExpansionBudget, TTI, At: PHTerm) || |
232 | !Rewriter.isSafeToExpandAt(S: InvariantLHS, InsertionPoint: PHTerm) || |
233 | !Rewriter.isSafeToExpandAt(S: InvariantRHS, InsertionPoint: PHTerm)) |
234 | return false; |
235 | auto *NewLHS = |
236 | Rewriter.expandCodeFor(SH: InvariantLHS, Ty: IVOperand->getType(), I: PHTerm); |
237 | auto *NewRHS = |
238 | Rewriter.expandCodeFor(SH: InvariantRHS, Ty: IVOperand->getType(), I: PHTerm); |
239 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); |
240 | ICmp->setPredicate(InvariantPredicate); |
241 | ICmp->setOperand(i_nocapture: 0, Val_nocapture: NewLHS); |
242 | ICmp->setOperand(i_nocapture: 1, Val_nocapture: NewRHS); |
243 | RunUnswitching = true; |
244 | return true; |
245 | } |
246 | |
247 | /// SimplifyIVUsers helper for eliminating useless |
248 | /// comparisons against an induction variable. |
249 | void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, |
250 | Instruction *IVOperand) { |
251 | unsigned IVOperIdx = 0; |
252 | CmpPredicate Pred = ICmp->getCmpPredicate(); |
253 | ICmpInst::Predicate OriginalPred = Pred; |
254 | if (IVOperand != ICmp->getOperand(i_nocapture: 0)) { |
255 | // Swapped |
256 | assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand" ); |
257 | IVOperIdx = 1; |
258 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
259 | } |
260 | |
261 | // Get the SCEVs for the ICmp operands (in the specific context of the |
262 | // current loop) |
263 | const Loop *ICmpLoop = LI->getLoopFor(BB: ICmp->getParent()); |
264 | const SCEV *S = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: IVOperIdx), L: ICmpLoop); |
265 | const SCEV *X = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: 1 - IVOperIdx), L: ICmpLoop); |
266 | |
267 | // If the condition is always true or always false in the given context, |
268 | // replace it with a constant value. |
269 | SmallVector<Instruction *, 4> Users; |
270 | for (auto *U : ICmp->users()) |
271 | Users.push_back(Elt: cast<Instruction>(Val: U)); |
272 | const Instruction *CtxI = findCommonDominator(Instructions: Users, DT&: *DT); |
273 | if (auto Ev = SE->evaluatePredicateAt(Pred, LHS: S, RHS: X, CtxI)) { |
274 | SE->forgetValue(V: ICmp); |
275 | ICmp->replaceAllUsesWith(V: ConstantInt::getBool(Context&: ICmp->getContext(), V: *Ev)); |
276 | DeadInsts.emplace_back(Args&: ICmp); |
277 | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
278 | } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { |
279 | // fallthrough to end of function |
280 | } else if (ICmpInst::isSigned(predicate: OriginalPred) && |
281 | SE->isKnownNonNegative(S) && SE->isKnownNonNegative(S: X)) { |
282 | // If we were unable to make anything above, all we can is to canonicalize |
283 | // the comparison hoping that it will open the doors for other |
284 | // optimizations. If we find out that we compare two non-negative values, |
285 | // we turn the instruction's predicate to its unsigned version. Note that |
286 | // we cannot rely on Pred here unless we check if we have swapped it. |
287 | assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?" ); |
288 | LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp |
289 | << '\n'); |
290 | ICmp->setPredicate(ICmpInst::getUnsignedPredicate(Pred: OriginalPred)); |
291 | ICmp->setSameSign(); |
292 | } else |
293 | return; |
294 | |
295 | ++NumElimCmp; |
296 | Changed = true; |
297 | } |
298 | |
299 | bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { |
300 | // Get the SCEVs for the ICmp operands. |
301 | const SCEV *N = SE->getSCEV(V: SDiv->getOperand(i_nocapture: 0)); |
302 | const SCEV *D = SE->getSCEV(V: SDiv->getOperand(i_nocapture: 1)); |
303 | |
304 | // Simplify unnecessary loops away. |
305 | const Loop *L = LI->getLoopFor(BB: SDiv->getParent()); |
306 | N = SE->getSCEVAtScope(S: N, L); |
307 | D = SE->getSCEVAtScope(S: D, L); |
308 | |
309 | // Replace sdiv by udiv if both of the operands are non-negative |
310 | if (SE->isKnownNonNegative(S: N) && SE->isKnownNonNegative(S: D)) { |
311 | auto *UDiv = BinaryOperator::Create( |
312 | Op: BinaryOperator::UDiv, S1: SDiv->getOperand(i_nocapture: 0), S2: SDiv->getOperand(i_nocapture: 1), |
313 | Name: SDiv->getName() + ".udiv" , InsertBefore: SDiv->getIterator()); |
314 | UDiv->setIsExact(SDiv->isExact()); |
315 | SDiv->replaceAllUsesWith(V: UDiv); |
316 | UDiv->setDebugLoc(SDiv->getDebugLoc()); |
317 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); |
318 | ++NumSimplifiedSDiv; |
319 | Changed = true; |
320 | DeadInsts.push_back(Elt: SDiv); |
321 | return true; |
322 | } |
323 | |
324 | return false; |
325 | } |
326 | |
327 | // i %s n -> i %u n if i >= 0 and n >= 0 |
328 | void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { |
329 | auto *N = Rem->getOperand(i_nocapture: 0), *D = Rem->getOperand(i_nocapture: 1); |
330 | auto *URem = BinaryOperator::Create(Op: BinaryOperator::URem, S1: N, S2: D, |
331 | Name: Rem->getName() + ".urem" , InsertBefore: Rem->getIterator()); |
332 | Rem->replaceAllUsesWith(V: URem); |
333 | URem->setDebugLoc(Rem->getDebugLoc()); |
334 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); |
335 | ++NumSimplifiedSRem; |
336 | Changed = true; |
337 | DeadInsts.emplace_back(Args&: Rem); |
338 | } |
339 | |
340 | // i % n --> i if i is in [0,n). |
341 | void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { |
342 | Rem->replaceAllUsesWith(V: Rem->getOperand(i_nocapture: 0)); |
343 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
344 | ++NumElimRem; |
345 | Changed = true; |
346 | DeadInsts.emplace_back(Args&: Rem); |
347 | } |
348 | |
349 | // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). |
350 | void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { |
351 | auto *T = Rem->getType(); |
352 | auto *N = Rem->getOperand(i_nocapture: 0), *D = Rem->getOperand(i_nocapture: 1); |
353 | ICmpInst *ICmp = new ICmpInst(Rem->getIterator(), ICmpInst::ICMP_EQ, N, D); |
354 | ICmp->setDebugLoc(Rem->getDebugLoc()); |
355 | SelectInst *Sel = |
356 | SelectInst::Create(C: ICmp, S1: ConstantInt::get(Ty: T, V: 0), S2: N, NameStr: "iv.rem" , InsertBefore: Rem->getIterator()); |
357 | Rem->replaceAllUsesWith(V: Sel); |
358 | Sel->setDebugLoc(Rem->getDebugLoc()); |
359 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
360 | ++NumElimRem; |
361 | Changed = true; |
362 | DeadInsts.emplace_back(Args&: Rem); |
363 | } |
364 | |
365 | /// SimplifyIVUsers helper for eliminating useless remainder operations |
366 | /// operating on an induction variable or replacing srem by urem. |
367 | void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, |
368 | Instruction *IVOperand, |
369 | bool IsSigned) { |
370 | auto *NValue = Rem->getOperand(i_nocapture: 0); |
371 | auto *DValue = Rem->getOperand(i_nocapture: 1); |
372 | // We're only interested in the case where we know something about |
373 | // the numerator, unless it is a srem, because we want to replace srem by urem |
374 | // in general. |
375 | bool UsedAsNumerator = IVOperand == NValue; |
376 | if (!UsedAsNumerator && !IsSigned) |
377 | return; |
378 | |
379 | const SCEV *N = SE->getSCEV(V: NValue); |
380 | |
381 | // Simplify unnecessary loops away. |
382 | const Loop *ICmpLoop = LI->getLoopFor(BB: Rem->getParent()); |
383 | N = SE->getSCEVAtScope(S: N, L: ICmpLoop); |
384 | |
385 | bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(S: N); |
386 | |
387 | // Do not proceed if the Numerator may be negative |
388 | if (!IsNumeratorNonNegative) |
389 | return; |
390 | |
391 | const SCEV *D = SE->getSCEV(V: DValue); |
392 | D = SE->getSCEVAtScope(S: D, L: ICmpLoop); |
393 | |
394 | if (UsedAsNumerator) { |
395 | auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
396 | if (SE->isKnownPredicate(Pred: LT, LHS: N, RHS: D)) { |
397 | replaceRemWithNumerator(Rem); |
398 | return; |
399 | } |
400 | |
401 | auto *T = Rem->getType(); |
402 | const SCEV *NLessOne = SE->getMinusSCEV(LHS: N, RHS: SE->getOne(Ty: T)); |
403 | if (SE->isKnownPredicate(Pred: LT, LHS: NLessOne, RHS: D)) { |
404 | replaceRemWithNumeratorOrZero(Rem); |
405 | return; |
406 | } |
407 | } |
408 | |
409 | // Try to replace SRem with URem, if both N and D are known non-negative. |
410 | // Since we had already check N, we only need to check D now |
411 | if (!IsSigned || !SE->isKnownNonNegative(S: D)) |
412 | return; |
413 | |
414 | replaceSRemWithURem(Rem); |
415 | } |
416 | |
417 | bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { |
418 | const SCEV *LHS = SE->getSCEV(V: WO->getLHS()); |
419 | const SCEV *RHS = SE->getSCEV(V: WO->getRHS()); |
420 | if (!SE->willNotOverflow(BinOp: WO->getBinaryOp(), Signed: WO->isSigned(), LHS, RHS)) |
421 | return false; |
422 | |
423 | // Proved no overflow, nuke the overflow check and, if possible, the overflow |
424 | // intrinsic as well. |
425 | |
426 | BinaryOperator *NewResult = BinaryOperator::Create( |
427 | Op: WO->getBinaryOp(), S1: WO->getLHS(), S2: WO->getRHS(), Name: "" , InsertBefore: WO->getIterator()); |
428 | |
429 | if (WO->isSigned()) |
430 | NewResult->setHasNoSignedWrap(true); |
431 | else |
432 | NewResult->setHasNoUnsignedWrap(true); |
433 | |
434 | SmallVector<ExtractValueInst *, 4> ToDelete; |
435 | |
436 | for (auto *U : WO->users()) { |
437 | if (auto *EVI = dyn_cast<ExtractValueInst>(Val: U)) { |
438 | if (EVI->getIndices()[0] == 1) |
439 | EVI->replaceAllUsesWith(V: ConstantInt::getFalse(Context&: WO->getContext())); |
440 | else { |
441 | assert(EVI->getIndices()[0] == 0 && "Only two possibilities!" ); |
442 | EVI->replaceAllUsesWith(V: NewResult); |
443 | NewResult->setDebugLoc(EVI->getDebugLoc()); |
444 | } |
445 | ToDelete.push_back(Elt: EVI); |
446 | } |
447 | } |
448 | |
449 | for (auto *EVI : ToDelete) |
450 | EVI->eraseFromParent(); |
451 | |
452 | if (WO->use_empty()) |
453 | WO->eraseFromParent(); |
454 | |
455 | Changed = true; |
456 | return true; |
457 | } |
458 | |
459 | bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { |
460 | const SCEV *LHS = SE->getSCEV(V: SI->getLHS()); |
461 | const SCEV *RHS = SE->getSCEV(V: SI->getRHS()); |
462 | if (!SE->willNotOverflow(BinOp: SI->getBinaryOp(), Signed: SI->isSigned(), LHS, RHS)) |
463 | return false; |
464 | |
465 | BinaryOperator *BO = BinaryOperator::Create( |
466 | Op: SI->getBinaryOp(), S1: SI->getLHS(), S2: SI->getRHS(), Name: SI->getName(), InsertBefore: SI->getIterator()); |
467 | if (SI->isSigned()) |
468 | BO->setHasNoSignedWrap(); |
469 | else |
470 | BO->setHasNoUnsignedWrap(); |
471 | |
472 | SI->replaceAllUsesWith(V: BO); |
473 | BO->setDebugLoc(SI->getDebugLoc()); |
474 | DeadInsts.emplace_back(Args&: SI); |
475 | Changed = true; |
476 | return true; |
477 | } |
478 | |
479 | bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { |
480 | // It is always legal to replace |
481 | // icmp <pred> i32 trunc(iv), n |
482 | // with |
483 | // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. |
484 | // Or with |
485 | // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. |
486 | // Or with either of these if pred is an equality predicate. |
487 | // |
488 | // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for |
489 | // every comparison which uses trunc, it means that we can replace each of |
490 | // them with comparison of iv against sext/zext(n). We no longer need trunc |
491 | // after that. |
492 | // |
493 | // TODO: Should we do this if we can widen *some* comparisons, but not all |
494 | // of them? Sometimes it is enough to enable other optimizations, but the |
495 | // trunc instruction will stay in the loop. |
496 | Value *IV = TI->getOperand(i_nocapture: 0); |
497 | Type *IVTy = IV->getType(); |
498 | const SCEV *IVSCEV = SE->getSCEV(V: IV); |
499 | const SCEV *TISCEV = SE->getSCEV(V: TI); |
500 | |
501 | // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can |
502 | // get rid of trunc |
503 | bool DoesSExtCollapse = false; |
504 | bool DoesZExtCollapse = false; |
505 | if (IVSCEV == SE->getSignExtendExpr(Op: TISCEV, Ty: IVTy)) |
506 | DoesSExtCollapse = true; |
507 | if (IVSCEV == SE->getZeroExtendExpr(Op: TISCEV, Ty: IVTy)) |
508 | DoesZExtCollapse = true; |
509 | |
510 | // If neither sext nor zext does collapse, it is not profitable to do any |
511 | // transform. Bail. |
512 | if (!DoesSExtCollapse && !DoesZExtCollapse) |
513 | return false; |
514 | |
515 | // Collect users of the trunc that look like comparisons against invariants. |
516 | // Bail if we find something different. |
517 | SmallVector<ICmpInst *, 4> ICmpUsers; |
518 | for (auto *U : TI->users()) { |
519 | // We don't care about users in unreachable blocks. |
520 | if (isa<Instruction>(Val: U) && |
521 | !DT->isReachableFromEntry(A: cast<Instruction>(Val: U)->getParent())) |
522 | continue; |
523 | ICmpInst *ICI = dyn_cast<ICmpInst>(Val: U); |
524 | if (!ICI) return false; |
525 | assert(L->contains(ICI->getParent()) && "LCSSA form broken?" ); |
526 | if (!(ICI->getOperand(i_nocapture: 0) == TI && L->isLoopInvariant(V: ICI->getOperand(i_nocapture: 1))) && |
527 | !(ICI->getOperand(i_nocapture: 1) == TI && L->isLoopInvariant(V: ICI->getOperand(i_nocapture: 0)))) |
528 | return false; |
529 | // If we cannot get rid of trunc, bail. |
530 | if (ICI->isSigned() && !DoesSExtCollapse) |
531 | return false; |
532 | if (ICI->isUnsigned() && !DoesZExtCollapse) |
533 | return false; |
534 | // For equality, either signed or unsigned works. |
535 | ICmpUsers.push_back(Elt: ICI); |
536 | } |
537 | |
538 | auto CanUseZExt = [&](ICmpInst *ICI) { |
539 | // Unsigned comparison can be widened as unsigned. |
540 | if (ICI->isUnsigned()) |
541 | return true; |
542 | // Is it profitable to do zext? |
543 | if (!DoesZExtCollapse) |
544 | return false; |
545 | // For equality, we can safely zext both parts. |
546 | if (ICI->isEquality()) |
547 | return true; |
548 | // Otherwise we can only use zext when comparing two non-negative or two |
549 | // negative values. But in practice, we will never pass DoesZExtCollapse |
550 | // check for a negative value, because zext(trunc(x)) is non-negative. So |
551 | // it only make sense to check for non-negativity here. |
552 | const SCEV *SCEVOP1 = SE->getSCEV(V: ICI->getOperand(i_nocapture: 0)); |
553 | const SCEV *SCEVOP2 = SE->getSCEV(V: ICI->getOperand(i_nocapture: 1)); |
554 | return SE->isKnownNonNegative(S: SCEVOP1) && SE->isKnownNonNegative(S: SCEVOP2); |
555 | }; |
556 | // Replace all comparisons against trunc with comparisons against IV. |
557 | for (auto *ICI : ICmpUsers) { |
558 | bool IsSwapped = L->isLoopInvariant(V: ICI->getOperand(i_nocapture: 0)); |
559 | auto *Op1 = IsSwapped ? ICI->getOperand(i_nocapture: 0) : ICI->getOperand(i_nocapture: 1); |
560 | IRBuilder<> Builder(ICI); |
561 | Value *Ext = nullptr; |
562 | // For signed/unsigned predicate, replace the old comparison with comparison |
563 | // of immediate IV against sext/zext of the invariant argument. If we can |
564 | // use either sext or zext (i.e. we are dealing with equality predicate), |
565 | // then prefer zext as a more canonical form. |
566 | // TODO: If we see a signed comparison which can be turned into unsigned, |
567 | // we can do it here for canonicalization purposes. |
568 | ICmpInst::Predicate Pred = ICI->getPredicate(); |
569 | if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
570 | if (CanUseZExt(ICI)) { |
571 | assert(DoesZExtCollapse && "Unprofitable zext?" ); |
572 | Ext = Builder.CreateZExt(V: Op1, DestTy: IVTy, Name: "zext" ); |
573 | Pred = ICmpInst::getUnsignedPredicate(Pred); |
574 | } else { |
575 | assert(DoesSExtCollapse && "Unprofitable sext?" ); |
576 | Ext = Builder.CreateSExt(V: Op1, DestTy: IVTy, Name: "sext" ); |
577 | assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!" ); |
578 | } |
579 | bool Changed; |
580 | L->makeLoopInvariant(V: Ext, Changed); |
581 | (void)Changed; |
582 | auto *NewCmp = Builder.CreateICmp(P: Pred, LHS: IV, RHS: Ext); |
583 | ICI->replaceAllUsesWith(V: NewCmp); |
584 | DeadInsts.emplace_back(Args&: ICI); |
585 | } |
586 | |
587 | // Trunc no longer needed. |
588 | TI->replaceAllUsesWith(V: PoisonValue::get(T: TI->getType())); |
589 | DeadInsts.emplace_back(Args&: TI); |
590 | return true; |
591 | } |
592 | |
593 | /// Eliminate an operation that consumes a simple IV and has no observable |
594 | /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, |
595 | /// but UseInst may not be. |
596 | bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, |
597 | Instruction *IVOperand) { |
598 | if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Val: UseInst)) { |
599 | eliminateIVComparison(ICmp, IVOperand); |
600 | return true; |
601 | } |
602 | if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(Val: UseInst)) { |
603 | bool IsSRem = Bin->getOpcode() == Instruction::SRem; |
604 | if (IsSRem || Bin->getOpcode() == Instruction::URem) { |
605 | simplifyIVRemainder(Rem: Bin, IVOperand, IsSigned: IsSRem); |
606 | return true; |
607 | } |
608 | |
609 | if (Bin->getOpcode() == Instruction::SDiv) |
610 | return eliminateSDiv(SDiv: Bin); |
611 | } |
612 | |
613 | if (auto *WO = dyn_cast<WithOverflowInst>(Val: UseInst)) |
614 | if (eliminateOverflowIntrinsic(WO)) |
615 | return true; |
616 | |
617 | if (auto *SI = dyn_cast<SaturatingInst>(Val: UseInst)) |
618 | if (eliminateSaturatingIntrinsic(SI)) |
619 | return true; |
620 | |
621 | if (auto *TI = dyn_cast<TruncInst>(Val: UseInst)) |
622 | if (eliminateTrunc(TI)) |
623 | return true; |
624 | |
625 | if (eliminateIdentitySCEV(UseInst, IVOperand)) |
626 | return true; |
627 | |
628 | return false; |
629 | } |
630 | |
631 | static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { |
632 | if (auto *BB = L->getLoopPreheader()) |
633 | return BB->getTerminator(); |
634 | |
635 | return Hint; |
636 | } |
637 | |
638 | /// Replace the UseInst with a loop invariant expression if it is safe. |
639 | bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { |
640 | if (!SE->isSCEVable(Ty: I->getType())) |
641 | return false; |
642 | |
643 | // Get the symbolic expression for this instruction. |
644 | const SCEV *S = SE->getSCEV(V: I); |
645 | |
646 | if (!SE->isLoopInvariant(S, L)) |
647 | return false; |
648 | |
649 | // Do not generate something ridiculous even if S is loop invariant. |
650 | if (Rewriter.isHighCostExpansion(Exprs: S, L, Budget: SCEVCheapExpansionBudget, TTI, At: I)) |
651 | return false; |
652 | |
653 | auto *IP = GetLoopInvariantInsertPosition(L, Hint: I); |
654 | |
655 | if (!Rewriter.isSafeToExpandAt(S, InsertionPoint: IP)) { |
656 | LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I |
657 | << " with non-speculable loop invariant: " << *S << '\n'); |
658 | return false; |
659 | } |
660 | |
661 | auto *Invariant = Rewriter.expandCodeFor(SH: S, Ty: I->getType(), I: IP); |
662 | bool NeedToEmitLCSSAPhis = false; |
663 | if (!LI->replacementPreservesLCSSAForm(From: I, To: Invariant)) |
664 | NeedToEmitLCSSAPhis = true; |
665 | |
666 | I->replaceAllUsesWith(V: Invariant); |
667 | LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I |
668 | << " with loop invariant: " << *S << '\n'); |
669 | |
670 | if (NeedToEmitLCSSAPhis) { |
671 | SmallVector<Instruction *, 1> NeedsLCSSAPhis; |
672 | NeedsLCSSAPhis.push_back(Elt: cast<Instruction>(Val: Invariant)); |
673 | formLCSSAForInstructions(Worklist&: NeedsLCSSAPhis, DT: *DT, LI: *LI, SE); |
674 | LLVM_DEBUG(dbgs() << " INDVARS: Replacement breaks LCSSA form" |
675 | << " inserting LCSSA Phis" << '\n'); |
676 | } |
677 | ++NumFoldedUser; |
678 | Changed = true; |
679 | DeadInsts.emplace_back(Args&: I); |
680 | return true; |
681 | } |
682 | |
683 | /// Eliminate redundant type cast between integer and float. |
684 | bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { |
685 | if (UseInst->getOpcode() != CastInst::SIToFP && |
686 | UseInst->getOpcode() != CastInst::UIToFP) |
687 | return false; |
688 | |
689 | Instruction *IVOperand = cast<Instruction>(Val: UseInst->getOperand(i: 0)); |
690 | // Get the symbolic expression for this instruction. |
691 | const SCEV *IV = SE->getSCEV(V: IVOperand); |
692 | int MaskBits; |
693 | if (UseInst->getOpcode() == CastInst::SIToFP) |
694 | MaskBits = (int)SE->getSignedRange(S: IV).getMinSignedBits(); |
695 | else |
696 | MaskBits = (int)SE->getUnsignedRange(S: IV).getActiveBits(); |
697 | int DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); |
698 | if (MaskBits <= DestNumSigBits) { |
699 | for (User *U : UseInst->users()) { |
700 | // Match for fptosi/fptoui of sitofp and with same type. |
701 | auto *CI = dyn_cast<CastInst>(Val: U); |
702 | if (!CI) |
703 | continue; |
704 | |
705 | CastInst::CastOps Opcode = CI->getOpcode(); |
706 | if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) |
707 | continue; |
708 | |
709 | Value *Conv = nullptr; |
710 | if (IVOperand->getType() != CI->getType()) { |
711 | IRBuilder<> Builder(CI); |
712 | StringRef Name = IVOperand->getName(); |
713 | // To match InstCombine logic, we only need sext if both fptosi and |
714 | // sitofp are used. If one of them is unsigned, then we can use zext. |
715 | if (SE->getTypeSizeInBits(Ty: IVOperand->getType()) > |
716 | SE->getTypeSizeInBits(Ty: CI->getType())) { |
717 | Conv = Builder.CreateTrunc(V: IVOperand, DestTy: CI->getType(), Name: Name + ".trunc" ); |
718 | } else if (Opcode == CastInst::FPToUI || |
719 | UseInst->getOpcode() == CastInst::UIToFP) { |
720 | Conv = Builder.CreateZExt(V: IVOperand, DestTy: CI->getType(), Name: Name + ".zext" ); |
721 | } else { |
722 | Conv = Builder.CreateSExt(V: IVOperand, DestTy: CI->getType(), Name: Name + ".sext" ); |
723 | } |
724 | } else |
725 | Conv = IVOperand; |
726 | |
727 | CI->replaceAllUsesWith(V: Conv); |
728 | DeadInsts.push_back(Elt: CI); |
729 | LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI |
730 | << " with: " << *Conv << '\n'); |
731 | |
732 | ++NumFoldedUser; |
733 | Changed = true; |
734 | } |
735 | } |
736 | |
737 | return Changed; |
738 | } |
739 | |
740 | /// Eliminate any operation that SCEV can prove is an identity function. |
741 | bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, |
742 | Instruction *IVOperand) { |
743 | if (!SE->isSCEVable(Ty: UseInst->getType()) || |
744 | UseInst->getType() != IVOperand->getType()) |
745 | return false; |
746 | |
747 | const SCEV *UseSCEV = SE->getSCEV(V: UseInst); |
748 | if (UseSCEV != SE->getSCEV(V: IVOperand)) |
749 | return false; |
750 | |
751 | // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the |
752 | // dominator tree, even if X is an operand to Y. For instance, in |
753 | // |
754 | // %iv = phi i32 {0,+,1} |
755 | // br %cond, label %left, label %merge |
756 | // |
757 | // left: |
758 | // %X = add i32 %iv, 0 |
759 | // br label %merge |
760 | // |
761 | // merge: |
762 | // %M = phi (%X, %iv) |
763 | // |
764 | // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and |
765 | // %M.replaceAllUsesWith(%X) would be incorrect. |
766 | |
767 | if (isa<PHINode>(Val: UseInst)) |
768 | // If UseInst is not a PHI node then we know that IVOperand dominates |
769 | // UseInst directly from the legality of SSA. |
770 | if (!DT || !DT->dominates(Def: IVOperand, User: UseInst)) |
771 | return false; |
772 | |
773 | if (!LI->replacementPreservesLCSSAForm(From: UseInst, To: IVOperand)) |
774 | return false; |
775 | |
776 | // Make sure the operand is not more poisonous than the instruction. |
777 | if (!impliesPoison(ValAssumedPoison: IVOperand, V: UseInst)) { |
778 | SmallVector<Instruction *> DropPoisonGeneratingInsts; |
779 | if (!SE->canReuseInstruction(S: UseSCEV, I: IVOperand, DropPoisonGeneratingInsts)) |
780 | return false; |
781 | |
782 | for (Instruction *I : DropPoisonGeneratingInsts) |
783 | I->dropPoisonGeneratingAnnotations(); |
784 | } |
785 | |
786 | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); |
787 | |
788 | SE->forgetValue(V: UseInst); |
789 | UseInst->replaceAllUsesWith(V: IVOperand); |
790 | ++NumElimIdentity; |
791 | Changed = true; |
792 | DeadInsts.emplace_back(Args&: UseInst); |
793 | return true; |
794 | } |
795 | |
796 | bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO, |
797 | Instruction *IVOperand) { |
798 | return (isa<OverflowingBinaryOperator>(Val: BO) && |
799 | strengthenOverflowingOperation(OBO: BO, IVOperand)) || |
800 | (isa<ShlOperator>(Val: BO) && strengthenRightShift(BO, IVOperand)); |
801 | } |
802 | |
803 | /// Annotate BO with nsw / nuw if it provably does not signed-overflow / |
804 | /// unsigned-overflow. Returns true if anything changed, false otherwise. |
805 | bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, |
806 | Instruction *IVOperand) { |
807 | auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( |
808 | OBO: cast<OverflowingBinaryOperator>(Val: BO)); |
809 | |
810 | if (!Flags) |
811 | return false; |
812 | |
813 | BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags: *Flags, Mask: SCEV::FlagNUW) == |
814 | SCEV::FlagNUW); |
815 | BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags: *Flags, Mask: SCEV::FlagNSW) == |
816 | SCEV::FlagNSW); |
817 | |
818 | // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap |
819 | // flags on addrecs while performing zero/sign extensions. We could call |
820 | // forgetValue() here to make sure those flags also propagate to any other |
821 | // SCEV expressions based on the addrec. However, this can have pathological |
822 | // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. |
823 | return true; |
824 | } |
825 | |
826 | /// Annotate the Shr in (X << IVOperand) >> C as exact using the |
827 | /// information from the IV's range. Returns true if anything changed, false |
828 | /// otherwise. |
829 | bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, |
830 | Instruction *IVOperand) { |
831 | if (BO->getOpcode() == Instruction::Shl) { |
832 | bool Changed = false; |
833 | ConstantRange IVRange = SE->getUnsignedRange(S: SE->getSCEV(V: IVOperand)); |
834 | for (auto *U : BO->users()) { |
835 | const APInt *C; |
836 | if (match(V: U, |
837 | P: m_AShr(L: m_Shl(L: m_Value(), R: m_Specific(V: IVOperand)), R: m_APInt(Res&: C))) || |
838 | match(V: U, |
839 | P: m_LShr(L: m_Shl(L: m_Value(), R: m_Specific(V: IVOperand)), R: m_APInt(Res&: C)))) { |
840 | BinaryOperator *Shr = cast<BinaryOperator>(Val: U); |
841 | if (!Shr->isExact() && IVRange.getUnsignedMin().uge(RHS: *C)) { |
842 | Shr->setIsExact(true); |
843 | Changed = true; |
844 | } |
845 | } |
846 | } |
847 | return Changed; |
848 | } |
849 | |
850 | return false; |
851 | } |
852 | |
853 | /// Add all uses of Def to the current IV's worklist. |
854 | void SimplifyIndvar::pushIVUsers( |
855 | Instruction *Def, SmallPtrSet<Instruction *, 16> &Simplified, |
856 | SmallVectorImpl<std::pair<Instruction *, Instruction *>> &SimpleIVUsers) { |
857 | for (User *U : Def->users()) { |
858 | Instruction *UI = cast<Instruction>(Val: U); |
859 | |
860 | // Avoid infinite or exponential worklist processing. |
861 | // Also ensure unique worklist users. |
862 | // If Def is a LoopPhi, it may not be in the Simplified set, so check for |
863 | // self edges first. |
864 | if (UI == Def) |
865 | continue; |
866 | |
867 | // Only change the current Loop, do not change the other parts (e.g. other |
868 | // Loops). |
869 | if (!L->contains(Inst: UI)) |
870 | continue; |
871 | |
872 | // Do not push the same instruction more than once. |
873 | if (!Simplified.insert(Ptr: UI).second) |
874 | continue; |
875 | |
876 | SimpleIVUsers.push_back(Elt: std::make_pair(x&: UI, y&: Def)); |
877 | } |
878 | } |
879 | |
880 | /// Return true if this instruction generates a simple SCEV |
881 | /// expression in terms of that IV. |
882 | /// |
883 | /// This is similar to IVUsers' isInteresting() but processes each instruction |
884 | /// non-recursively when the operand is already known to be a simpleIVUser. |
885 | /// |
886 | static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { |
887 | if (!SE->isSCEVable(Ty: I->getType())) |
888 | return false; |
889 | |
890 | // Get the symbolic expression for this instruction. |
891 | const SCEV *S = SE->getSCEV(V: I); |
892 | |
893 | // Only consider affine recurrences. |
894 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S); |
895 | if (AR && AR->getLoop() == L) |
896 | return true; |
897 | |
898 | return false; |
899 | } |
900 | |
901 | /// Iteratively perform simplification on a worklist of users |
902 | /// of the specified induction variable. Each successive simplification may push |
903 | /// more users which may themselves be candidates for simplification. |
904 | /// |
905 | /// This algorithm does not require IVUsers analysis. Instead, it simplifies |
906 | /// instructions in-place during analysis. Rather than rewriting induction |
907 | /// variables bottom-up from their users, it transforms a chain of IVUsers |
908 | /// top-down, updating the IR only when it encounters a clear optimization |
909 | /// opportunity. |
910 | /// |
911 | /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. |
912 | /// |
913 | void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { |
914 | if (!SE->isSCEVable(Ty: CurrIV->getType())) |
915 | return; |
916 | |
917 | // Instructions processed by SimplifyIndvar for CurrIV. |
918 | SmallPtrSet<Instruction*,16> Simplified; |
919 | |
920 | // Use-def pairs if IV users waiting to be processed for CurrIV. |
921 | SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; |
922 | |
923 | // Push users of the current LoopPhi. In rare cases, pushIVUsers may be |
924 | // called multiple times for the same LoopPhi. This is the proper thing to |
925 | // do for loop header phis that use each other. |
926 | pushIVUsers(Def: CurrIV, Simplified, SimpleIVUsers); |
927 | |
928 | while (!SimpleIVUsers.empty()) { |
929 | std::pair<Instruction*, Instruction*> UseOper = |
930 | SimpleIVUsers.pop_back_val(); |
931 | Instruction *UseInst = UseOper.first; |
932 | |
933 | // If a user of the IndVar is trivially dead, we prefer just to mark it dead |
934 | // rather than try to do some complex analysis or transformation (such as |
935 | // widening) basing on it. |
936 | // TODO: Propagate TLI and pass it here to handle more cases. |
937 | if (isInstructionTriviallyDead(I: UseInst, /* TLI */ nullptr)) { |
938 | DeadInsts.emplace_back(Args&: UseInst); |
939 | continue; |
940 | } |
941 | |
942 | // Bypass back edges to avoid extra work. |
943 | if (UseInst == CurrIV) continue; |
944 | |
945 | // Try to replace UseInst with a loop invariant before any other |
946 | // simplifications. |
947 | if (replaceIVUserWithLoopInvariant(I: UseInst)) |
948 | continue; |
949 | |
950 | // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done |
951 | // by truncation |
952 | if ((isa<PtrToIntInst>(Val: UseInst)) || (isa<TruncInst>(Val: UseInst))) |
953 | for (Use &U : UseInst->uses()) { |
954 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
955 | if (replaceIVUserWithLoopInvariant(I: User)) |
956 | break; // done replacing |
957 | } |
958 | |
959 | Instruction *IVOperand = UseOper.second; |
960 | for (unsigned N = 0; IVOperand; ++N) { |
961 | assert(N <= Simplified.size() && "runaway iteration" ); |
962 | (void) N; |
963 | |
964 | Value *NewOper = foldIVUser(UseInst, IVOperand); |
965 | if (!NewOper) |
966 | break; // done folding |
967 | IVOperand = dyn_cast<Instruction>(Val: NewOper); |
968 | } |
969 | if (!IVOperand) |
970 | continue; |
971 | |
972 | if (eliminateIVUser(UseInst, IVOperand)) { |
973 | pushIVUsers(Def: IVOperand, Simplified, SimpleIVUsers); |
974 | continue; |
975 | } |
976 | |
977 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: UseInst)) { |
978 | if (strengthenBinaryOp(BO, IVOperand)) { |
979 | // re-queue uses of the now modified binary operator and fall |
980 | // through to the checks that remain. |
981 | pushIVUsers(Def: IVOperand, Simplified, SimpleIVUsers); |
982 | } |
983 | } |
984 | |
985 | // Try to use integer induction for FPToSI of float induction directly. |
986 | if (replaceFloatIVWithIntegerIV(UseInst)) { |
987 | // Re-queue the potentially new direct uses of IVOperand. |
988 | pushIVUsers(Def: IVOperand, Simplified, SimpleIVUsers); |
989 | continue; |
990 | } |
991 | |
992 | CastInst *Cast = dyn_cast<CastInst>(Val: UseInst); |
993 | if (V && Cast) { |
994 | V->visitCast(Cast); |
995 | continue; |
996 | } |
997 | if (isSimpleIVUser(I: UseInst, L, SE)) { |
998 | pushIVUsers(Def: UseInst, Simplified, SimpleIVUsers); |
999 | } |
1000 | } |
1001 | } |
1002 | |
1003 | namespace llvm { |
1004 | |
1005 | void IVVisitor::anchor() { } |
1006 | |
1007 | /// Simplify instructions that use this induction variable |
1008 | /// by using ScalarEvolution to analyze the IV's recurrence. |
1009 | /// Returns a pair where the first entry indicates that the function makes |
1010 | /// changes and the second entry indicates that it introduced new opportunities |
1011 | /// for loop unswitching. |
1012 | std::pair<bool, bool> simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, |
1013 | DominatorTree *DT, LoopInfo *LI, |
1014 | const TargetTransformInfo *TTI, |
1015 | SmallVectorImpl<WeakTrackingVH> &Dead, |
1016 | SCEVExpander &Rewriter, IVVisitor *V) { |
1017 | SimplifyIndvar SIV(LI->getLoopFor(BB: CurrIV->getParent()), SE, DT, LI, TTI, |
1018 | Rewriter, Dead); |
1019 | SIV.simplifyUsers(CurrIV, V); |
1020 | return {SIV.hasChanged(), SIV.runUnswitching()}; |
1021 | } |
1022 | |
1023 | /// Simplify users of induction variables within this |
1024 | /// loop. This does not actually change or add IVs. |
1025 | bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, |
1026 | LoopInfo *LI, const TargetTransformInfo *TTI, |
1027 | SmallVectorImpl<WeakTrackingVH> &Dead) { |
1028 | SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars" ); |
1029 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
1030 | Rewriter.setDebugType(DEBUG_TYPE); |
1031 | #endif |
1032 | bool Changed = false; |
1033 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(Val: I); ++I) { |
1034 | const auto &[C, _] = |
1035 | simplifyUsersOfIV(CurrIV: cast<PHINode>(Val&: I), SE, DT, LI, TTI, Dead, Rewriter); |
1036 | Changed |= C; |
1037 | } |
1038 | return Changed; |
1039 | } |
1040 | |
1041 | } // namespace llvm |
1042 | |
1043 | namespace { |
1044 | //===----------------------------------------------------------------------===// |
1045 | // Widen Induction Variables - Extend the width of an IV to cover its |
1046 | // widest uses. |
1047 | //===----------------------------------------------------------------------===// |
1048 | |
1049 | class WidenIV { |
1050 | // Parameters |
1051 | PHINode *OrigPhi; |
1052 | Type *WideType; |
1053 | |
1054 | // Context |
1055 | LoopInfo *LI; |
1056 | Loop *L; |
1057 | ScalarEvolution *SE; |
1058 | DominatorTree *DT; |
1059 | |
1060 | // Does the module have any calls to the llvm.experimental.guard intrinsic |
1061 | // at all? If not we can avoid scanning instructions looking for guards. |
1062 | bool HasGuards; |
1063 | |
1064 | bool UsePostIncrementRanges; |
1065 | |
1066 | // Statistics |
1067 | unsigned NumElimExt = 0; |
1068 | unsigned NumWidened = 0; |
1069 | |
1070 | // Result |
1071 | PHINode *WidePhi = nullptr; |
1072 | Instruction *WideInc = nullptr; |
1073 | const SCEV *WideIncExpr = nullptr; |
1074 | SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
1075 | |
1076 | SmallPtrSet<Instruction *,16> Widened; |
1077 | |
1078 | enum class ExtendKind { Zero, Sign, Unknown }; |
1079 | |
1080 | // A map tracking the kind of extension used to widen each narrow IV |
1081 | // and narrow IV user. |
1082 | // Key: pointer to a narrow IV or IV user. |
1083 | // Value: the kind of extension used to widen this Instruction. |
1084 | DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; |
1085 | |
1086 | using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; |
1087 | |
1088 | // A map with control-dependent ranges for post increment IV uses. The key is |
1089 | // a pair of IV def and a use of this def denoting the context. The value is |
1090 | // a ConstantRange representing possible values of the def at the given |
1091 | // context. |
1092 | DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; |
1093 | |
1094 | std::optional<ConstantRange> getPostIncRangeInfo(Value *Def, |
1095 | Instruction *UseI) { |
1096 | DefUserPair Key(Def, UseI); |
1097 | auto It = PostIncRangeInfos.find(Val: Key); |
1098 | return It == PostIncRangeInfos.end() |
1099 | ? std::optional<ConstantRange>(std::nullopt) |
1100 | : std::optional<ConstantRange>(It->second); |
1101 | } |
1102 | |
1103 | void calculatePostIncRanges(PHINode *OrigPhi); |
1104 | void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); |
1105 | |
1106 | void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { |
1107 | DefUserPair Key(Def, UseI); |
1108 | auto [It, Inserted] = PostIncRangeInfos.try_emplace(Key, Args&: R); |
1109 | if (!Inserted) |
1110 | It->second = R.intersectWith(CR: It->second); |
1111 | } |
1112 | |
1113 | public: |
1114 | /// Record a link in the Narrow IV def-use chain along with the WideIV that |
1115 | /// computes the same value as the Narrow IV def. This avoids caching Use* |
1116 | /// pointers. |
1117 | struct NarrowIVDefUse { |
1118 | Instruction *NarrowDef = nullptr; |
1119 | Instruction *NarrowUse = nullptr; |
1120 | Instruction *WideDef = nullptr; |
1121 | |
1122 | // True if the narrow def is never negative. Tracking this information lets |
1123 | // us use a sign extension instead of a zero extension or vice versa, when |
1124 | // profitable and legal. |
1125 | bool NeverNegative = false; |
1126 | |
1127 | NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, |
1128 | bool NeverNegative) |
1129 | : NarrowDef(ND), NarrowUse(NU), WideDef(WD), |
1130 | NeverNegative(NeverNegative) {} |
1131 | }; |
1132 | |
1133 | WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, |
1134 | DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, |
1135 | bool HasGuards, bool UsePostIncrementRanges = true); |
1136 | |
1137 | PHINode *createWideIV(SCEVExpander &Rewriter); |
1138 | |
1139 | unsigned getNumElimExt() { return NumElimExt; }; |
1140 | unsigned getNumWidened() { return NumWidened; }; |
1141 | |
1142 | protected: |
1143 | Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, |
1144 | Instruction *Use); |
1145 | |
1146 | Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); |
1147 | Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, |
1148 | const SCEVAddRecExpr *WideAR); |
1149 | Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); |
1150 | |
1151 | ExtendKind getExtendKind(Instruction *I); |
1152 | |
1153 | using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; |
1154 | |
1155 | WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); |
1156 | |
1157 | WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); |
1158 | |
1159 | const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, |
1160 | unsigned OpCode) const; |
1161 | |
1162 | Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter, |
1163 | PHINode *OrigPhi, PHINode *WidePhi); |
1164 | void truncateIVUse(NarrowIVDefUse DU); |
1165 | |
1166 | bool widenLoopCompare(NarrowIVDefUse DU); |
1167 | bool widenWithVariantUse(NarrowIVDefUse DU); |
1168 | |
1169 | void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); |
1170 | |
1171 | private: |
1172 | SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; |
1173 | }; |
1174 | } // namespace |
1175 | |
1176 | /// Determine the insertion point for this user. By default, insert immediately |
1177 | /// before the user. SCEVExpander or LICM will hoist loop invariants out of the |
1178 | /// loop. For PHI nodes, there may be multiple uses, so compute the nearest |
1179 | /// common dominator for the incoming blocks. A nullptr can be returned if no |
1180 | /// viable location is found: it may happen if User is a PHI and Def only comes |
1181 | /// to this PHI from unreachable blocks. |
1182 | static Instruction *getInsertPointForUses(Instruction *User, Value *Def, |
1183 | DominatorTree *DT, LoopInfo *LI) { |
1184 | PHINode *PHI = dyn_cast<PHINode>(Val: User); |
1185 | if (!PHI) |
1186 | return User; |
1187 | |
1188 | Instruction *InsertPt = nullptr; |
1189 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { |
1190 | if (PHI->getIncomingValue(i) != Def) |
1191 | continue; |
1192 | |
1193 | BasicBlock *InsertBB = PHI->getIncomingBlock(i); |
1194 | |
1195 | if (!DT->isReachableFromEntry(A: InsertBB)) |
1196 | continue; |
1197 | |
1198 | if (!InsertPt) { |
1199 | InsertPt = InsertBB->getTerminator(); |
1200 | continue; |
1201 | } |
1202 | InsertBB = DT->findNearestCommonDominator(A: InsertPt->getParent(), B: InsertBB); |
1203 | InsertPt = InsertBB->getTerminator(); |
1204 | } |
1205 | |
1206 | // If we have skipped all inputs, it means that Def only comes to Phi from |
1207 | // unreachable blocks. |
1208 | if (!InsertPt) |
1209 | return nullptr; |
1210 | |
1211 | auto *DefI = dyn_cast<Instruction>(Val: Def); |
1212 | if (!DefI) |
1213 | return InsertPt; |
1214 | |
1215 | assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses" ); |
1216 | |
1217 | auto *L = LI->getLoopFor(BB: DefI->getParent()); |
1218 | assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); |
1219 | |
1220 | for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) |
1221 | if (LI->getLoopFor(BB: DTN->getBlock()) == L) |
1222 | return DTN->getBlock()->getTerminator(); |
1223 | |
1224 | llvm_unreachable("DefI dominates InsertPt!" ); |
1225 | } |
1226 | |
1227 | WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, |
1228 | DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, |
1229 | bool HasGuards, bool UsePostIncrementRanges) |
1230 | : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), |
1231 | L(LI->getLoopFor(BB: OrigPhi->getParent())), SE(SEv), DT(DTree), |
1232 | HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), |
1233 | DeadInsts(DI) { |
1234 | assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV" ); |
1235 | ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; |
1236 | } |
1237 | |
1238 | Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, |
1239 | bool IsSigned, Instruction *Use) { |
1240 | // Set the debug location and conservative insertion point. |
1241 | IRBuilder<> Builder(Use); |
1242 | // Hoist the insertion point into loop preheaders as far as possible. |
1243 | for (const Loop *L = LI->getLoopFor(BB: Use->getParent()); |
1244 | L && L->getLoopPreheader() && L->isLoopInvariant(V: NarrowOper); |
1245 | L = L->getParentLoop()) |
1246 | Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); |
1247 | |
1248 | return IsSigned ? Builder.CreateSExt(V: NarrowOper, DestTy: WideType) : |
1249 | Builder.CreateZExt(V: NarrowOper, DestTy: WideType); |
1250 | } |
1251 | |
1252 | /// Instantiate a wide operation to replace a narrow operation. This only needs |
1253 | /// to handle operations that can evaluation to SCEVAddRec. It can safely return |
1254 | /// 0 for any operation we decide not to clone. |
1255 | Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, |
1256 | const SCEVAddRecExpr *WideAR) { |
1257 | unsigned Opcode = DU.NarrowUse->getOpcode(); |
1258 | switch (Opcode) { |
1259 | default: |
1260 | return nullptr; |
1261 | case Instruction::Add: |
1262 | case Instruction::Mul: |
1263 | case Instruction::UDiv: |
1264 | case Instruction::Sub: |
1265 | return cloneArithmeticIVUser(DU, WideAR); |
1266 | |
1267 | case Instruction::And: |
1268 | case Instruction::Or: |
1269 | case Instruction::Xor: |
1270 | case Instruction::Shl: |
1271 | case Instruction::LShr: |
1272 | case Instruction::AShr: |
1273 | return cloneBitwiseIVUser(DU); |
1274 | } |
1275 | } |
1276 | |
1277 | Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { |
1278 | Instruction *NarrowUse = DU.NarrowUse; |
1279 | Instruction *NarrowDef = DU.NarrowDef; |
1280 | Instruction *WideDef = DU.WideDef; |
1281 | |
1282 | LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n" ); |
1283 | |
1284 | // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything |
1285 | // about the narrow operand yet so must insert a [sz]ext. It is probably loop |
1286 | // invariant and will be folded or hoisted. If it actually comes from a |
1287 | // widened IV, it should be removed during a future call to widenIVUse. |
1288 | bool IsSigned = getExtendKind(I: NarrowDef) == ExtendKind::Sign; |
1289 | Value *LHS = (NarrowUse->getOperand(i: 0) == NarrowDef) |
1290 | ? WideDef |
1291 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 0), WideType, |
1292 | IsSigned, Use: NarrowUse); |
1293 | Value *RHS = (NarrowUse->getOperand(i: 1) == NarrowDef) |
1294 | ? WideDef |
1295 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 1), WideType, |
1296 | IsSigned, Use: NarrowUse); |
1297 | |
1298 | auto *NarrowBO = cast<BinaryOperator>(Val: NarrowUse); |
1299 | auto *WideBO = BinaryOperator::Create(Op: NarrowBO->getOpcode(), S1: LHS, S2: RHS, |
1300 | Name: NarrowBO->getName()); |
1301 | IRBuilder<> Builder(NarrowUse); |
1302 | Builder.Insert(I: WideBO); |
1303 | WideBO->copyIRFlags(V: NarrowBO); |
1304 | return WideBO; |
1305 | } |
1306 | |
1307 | Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, |
1308 | const SCEVAddRecExpr *WideAR) { |
1309 | Instruction *NarrowUse = DU.NarrowUse; |
1310 | Instruction *NarrowDef = DU.NarrowDef; |
1311 | Instruction *WideDef = DU.WideDef; |
1312 | |
1313 | LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n" ); |
1314 | |
1315 | unsigned IVOpIdx = (NarrowUse->getOperand(i: 0) == NarrowDef) ? 0 : 1; |
1316 | |
1317 | // We're trying to find X such that |
1318 | // |
1319 | // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X |
1320 | // |
1321 | // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), |
1322 | // and check using SCEV if any of them are correct. |
1323 | |
1324 | // Returns true if extending NonIVNarrowDef according to `SignExt` is a |
1325 | // correct solution to X. |
1326 | auto GuessNonIVOperand = [&](bool SignExt) { |
1327 | const SCEV *WideLHS; |
1328 | const SCEV *WideRHS; |
1329 | |
1330 | auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { |
1331 | if (SignExt) |
1332 | return SE->getSignExtendExpr(Op: S, Ty); |
1333 | return SE->getZeroExtendExpr(Op: S, Ty); |
1334 | }; |
1335 | |
1336 | if (IVOpIdx == 0) { |
1337 | WideLHS = SE->getSCEV(V: WideDef); |
1338 | const SCEV *NarrowRHS = SE->getSCEV(V: NarrowUse->getOperand(i: 1)); |
1339 | WideRHS = GetExtend(NarrowRHS, WideType); |
1340 | } else { |
1341 | const SCEV *NarrowLHS = SE->getSCEV(V: NarrowUse->getOperand(i: 0)); |
1342 | WideLHS = GetExtend(NarrowLHS, WideType); |
1343 | WideRHS = SE->getSCEV(V: WideDef); |
1344 | } |
1345 | |
1346 | // WideUse is "WideDef `op.wide` X" as described in the comment. |
1347 | const SCEV *WideUse = |
1348 | getSCEVByOpCode(LHS: WideLHS, RHS: WideRHS, OpCode: NarrowUse->getOpcode()); |
1349 | |
1350 | return WideUse == WideAR; |
1351 | }; |
1352 | |
1353 | bool SignExtend = getExtendKind(I: NarrowDef) == ExtendKind::Sign; |
1354 | if (!GuessNonIVOperand(SignExtend)) { |
1355 | SignExtend = !SignExtend; |
1356 | if (!GuessNonIVOperand(SignExtend)) |
1357 | return nullptr; |
1358 | } |
1359 | |
1360 | Value *LHS = (NarrowUse->getOperand(i: 0) == NarrowDef) |
1361 | ? WideDef |
1362 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 0), WideType, |
1363 | IsSigned: SignExtend, Use: NarrowUse); |
1364 | Value *RHS = (NarrowUse->getOperand(i: 1) == NarrowDef) |
1365 | ? WideDef |
1366 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 1), WideType, |
1367 | IsSigned: SignExtend, Use: NarrowUse); |
1368 | |
1369 | auto *NarrowBO = cast<BinaryOperator>(Val: NarrowUse); |
1370 | auto *WideBO = BinaryOperator::Create(Op: NarrowBO->getOpcode(), S1: LHS, S2: RHS, |
1371 | Name: NarrowBO->getName()); |
1372 | |
1373 | IRBuilder<> Builder(NarrowUse); |
1374 | Builder.Insert(I: WideBO); |
1375 | WideBO->copyIRFlags(V: NarrowBO); |
1376 | return WideBO; |
1377 | } |
1378 | |
1379 | WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { |
1380 | auto It = ExtendKindMap.find(Val: I); |
1381 | assert(It != ExtendKindMap.end() && "Instruction not yet extended!" ); |
1382 | return It->second; |
1383 | } |
1384 | |
1385 | const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, |
1386 | unsigned OpCode) const { |
1387 | switch (OpCode) { |
1388 | case Instruction::Add: |
1389 | return SE->getAddExpr(LHS, RHS); |
1390 | case Instruction::Sub: |
1391 | return SE->getMinusSCEV(LHS, RHS); |
1392 | case Instruction::Mul: |
1393 | return SE->getMulExpr(LHS, RHS); |
1394 | case Instruction::UDiv: |
1395 | return SE->getUDivExpr(LHS, RHS); |
1396 | default: |
1397 | llvm_unreachable("Unsupported opcode." ); |
1398 | }; |
1399 | } |
1400 | |
1401 | namespace { |
1402 | |
1403 | // Represents a interesting integer binary operation for |
1404 | // getExtendedOperandRecurrence. This may be a shl that is being treated as a |
1405 | // multiply or a 'or disjoint' that is being treated as 'add nsw nuw'. |
1406 | struct BinaryOp { |
1407 | unsigned Opcode; |
1408 | std::array<Value *, 2> Operands; |
1409 | bool IsNSW = false; |
1410 | bool IsNUW = false; |
1411 | |
1412 | explicit BinaryOp(Instruction *Op) |
1413 | : Opcode(Op->getOpcode()), |
1414 | Operands({Op->getOperand(i: 0), Op->getOperand(i: 1)}) { |
1415 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: Op)) { |
1416 | IsNSW = OBO->hasNoSignedWrap(); |
1417 | IsNUW = OBO->hasNoUnsignedWrap(); |
1418 | } |
1419 | } |
1420 | |
1421 | explicit BinaryOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, |
1422 | bool IsNSW = false, bool IsNUW = false) |
1423 | : Opcode(Opcode), Operands({LHS, RHS}), IsNSW(IsNSW), IsNUW(IsNUW) {} |
1424 | }; |
1425 | |
1426 | } // end anonymous namespace |
1427 | |
1428 | static std::optional<BinaryOp> matchBinaryOp(Instruction *Op) { |
1429 | switch (Op->getOpcode()) { |
1430 | case Instruction::Add: |
1431 | case Instruction::Sub: |
1432 | case Instruction::Mul: |
1433 | return BinaryOp(Op); |
1434 | case Instruction::Or: { |
1435 | // Convert or disjoint into add nuw nsw. |
1436 | if (cast<PossiblyDisjointInst>(Val: Op)->isDisjoint()) |
1437 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1), |
1438 | /*IsNSW=*/true, /*IsNUW=*/true); |
1439 | break; |
1440 | } |
1441 | case Instruction::Shl: { |
1442 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) { |
1443 | unsigned BitWidth = cast<IntegerType>(Val: SA->getType())->getBitWidth(); |
1444 | |
1445 | // If the shift count is not less than the bitwidth, the result of |
1446 | // the shift is undefined. Don't try to analyze it, because the |
1447 | // resolution chosen here may differ from the resolution chosen in |
1448 | // other parts of the compiler. |
1449 | if (SA->getValue().ult(RHS: BitWidth)) { |
1450 | // We can safely preserve the nuw flag in all cases. It's also safe to |
1451 | // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation |
1452 | // requires special handling. It can be preserved as long as we're not |
1453 | // left shifting by bitwidth - 1. |
1454 | bool IsNUW = Op->hasNoUnsignedWrap(); |
1455 | bool IsNSW = Op->hasNoSignedWrap() && |
1456 | (IsNUW || SA->getValue().ult(RHS: BitWidth - 1)); |
1457 | |
1458 | ConstantInt *X = |
1459 | ConstantInt::get(Context&: Op->getContext(), |
1460 | V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue())); |
1461 | return BinaryOp(Instruction::Mul, Op->getOperand(i: 0), X, IsNSW, IsNUW); |
1462 | } |
1463 | } |
1464 | |
1465 | break; |
1466 | } |
1467 | } |
1468 | |
1469 | return std::nullopt; |
1470 | } |
1471 | |
1472 | /// No-wrap operations can transfer sign extension of their result to their |
1473 | /// operands. Generate the SCEV value for the widened operation without |
1474 | /// actually modifying the IR yet. If the expression after extending the |
1475 | /// operands is an AddRec for this loop, return the AddRec and the kind of |
1476 | /// extension used. |
1477 | WidenIV::WidenedRecTy |
1478 | WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { |
1479 | auto Op = matchBinaryOp(Op: DU.NarrowUse); |
1480 | if (!Op) |
1481 | return {nullptr, ExtendKind::Unknown}; |
1482 | |
1483 | assert((Op->Opcode == Instruction::Add || Op->Opcode == Instruction::Sub || |
1484 | Op->Opcode == Instruction::Mul) && |
1485 | "Unexpected opcode" ); |
1486 | |
1487 | // One operand (NarrowDef) has already been extended to WideDef. Now determine |
1488 | // if extending the other will lead to a recurrence. |
1489 | const unsigned ExtendOperIdx = Op->Operands[0] == DU.NarrowDef ? 1 : 0; |
1490 | assert(Op->Operands[1 - ExtendOperIdx] == DU.NarrowDef && "bad DU" ); |
1491 | |
1492 | ExtendKind ExtKind = getExtendKind(I: DU.NarrowDef); |
1493 | if (!(ExtKind == ExtendKind::Sign && Op->IsNSW) && |
1494 | !(ExtKind == ExtendKind::Zero && Op->IsNUW)) { |
1495 | ExtKind = ExtendKind::Unknown; |
1496 | |
1497 | // For a non-negative NarrowDef, we can choose either type of |
1498 | // extension. We want to use the current extend kind if legal |
1499 | // (see above), and we only hit this code if we need to check |
1500 | // the opposite case. |
1501 | if (DU.NeverNegative) { |
1502 | if (Op->IsNSW) { |
1503 | ExtKind = ExtendKind::Sign; |
1504 | } else if (Op->IsNUW) { |
1505 | ExtKind = ExtendKind::Zero; |
1506 | } |
1507 | } |
1508 | } |
1509 | |
1510 | const SCEV *ExtendOperExpr = SE->getSCEV(V: Op->Operands[ExtendOperIdx]); |
1511 | if (ExtKind == ExtendKind::Sign) |
1512 | ExtendOperExpr = SE->getSignExtendExpr(Op: ExtendOperExpr, Ty: WideType); |
1513 | else if (ExtKind == ExtendKind::Zero) |
1514 | ExtendOperExpr = SE->getZeroExtendExpr(Op: ExtendOperExpr, Ty: WideType); |
1515 | else |
1516 | return {nullptr, ExtendKind::Unknown}; |
1517 | |
1518 | // When creating this SCEV expr, don't apply the current operations NSW or NUW |
1519 | // flags. This instruction may be guarded by control flow that the no-wrap |
1520 | // behavior depends on. Non-control-equivalent instructions can be mapped to |
1521 | // the same SCEV expression, and it would be incorrect to transfer NSW/NUW |
1522 | // semantics to those operations. |
1523 | const SCEV *lhs = SE->getSCEV(V: DU.WideDef); |
1524 | const SCEV *rhs = ExtendOperExpr; |
1525 | |
1526 | // Let's swap operands to the initial order for the case of non-commutative |
1527 | // operations, like SUB. See PR21014. |
1528 | if (ExtendOperIdx == 0) |
1529 | std::swap(a&: lhs, b&: rhs); |
1530 | const SCEVAddRecExpr *AddRec = |
1531 | dyn_cast<SCEVAddRecExpr>(Val: getSCEVByOpCode(LHS: lhs, RHS: rhs, OpCode: Op->Opcode)); |
1532 | |
1533 | if (!AddRec || AddRec->getLoop() != L) |
1534 | return {nullptr, ExtendKind::Unknown}; |
1535 | |
1536 | return {AddRec, ExtKind}; |
1537 | } |
1538 | |
1539 | /// Is this instruction potentially interesting for further simplification after |
1540 | /// widening it's type? In other words, can the extend be safely hoisted out of |
1541 | /// the loop with SCEV reducing the value to a recurrence on the same loop. If |
1542 | /// so, return the extended recurrence and the kind of extension used. Otherwise |
1543 | /// return {nullptr, ExtendKind::Unknown}. |
1544 | WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { |
1545 | if (!DU.NarrowUse->getType()->isIntegerTy()) |
1546 | return {nullptr, ExtendKind::Unknown}; |
1547 | |
1548 | const SCEV *NarrowExpr = SE->getSCEV(V: DU.NarrowUse); |
1549 | if (SE->getTypeSizeInBits(Ty: NarrowExpr->getType()) >= |
1550 | SE->getTypeSizeInBits(Ty: WideType)) { |
1551 | // NarrowUse implicitly widens its operand. e.g. a gep with a narrow |
1552 | // index. So don't follow this use. |
1553 | return {nullptr, ExtendKind::Unknown}; |
1554 | } |
1555 | |
1556 | const SCEV *WideExpr; |
1557 | ExtendKind ExtKind; |
1558 | if (DU.NeverNegative) { |
1559 | WideExpr = SE->getSignExtendExpr(Op: NarrowExpr, Ty: WideType); |
1560 | if (isa<SCEVAddRecExpr>(Val: WideExpr)) |
1561 | ExtKind = ExtendKind::Sign; |
1562 | else { |
1563 | WideExpr = SE->getZeroExtendExpr(Op: NarrowExpr, Ty: WideType); |
1564 | ExtKind = ExtendKind::Zero; |
1565 | } |
1566 | } else if (getExtendKind(I: DU.NarrowDef) == ExtendKind::Sign) { |
1567 | WideExpr = SE->getSignExtendExpr(Op: NarrowExpr, Ty: WideType); |
1568 | ExtKind = ExtendKind::Sign; |
1569 | } else { |
1570 | WideExpr = SE->getZeroExtendExpr(Op: NarrowExpr, Ty: WideType); |
1571 | ExtKind = ExtendKind::Zero; |
1572 | } |
1573 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: WideExpr); |
1574 | if (!AddRec || AddRec->getLoop() != L) |
1575 | return {nullptr, ExtendKind::Unknown}; |
1576 | return {AddRec, ExtKind}; |
1577 | } |
1578 | |
1579 | /// This IV user cannot be widened. Replace this use of the original narrow IV |
1580 | /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. |
1581 | void WidenIV::truncateIVUse(NarrowIVDefUse DU) { |
1582 | auto *InsertPt = getInsertPointForUses(User: DU.NarrowUse, Def: DU.NarrowDef, DT, LI); |
1583 | if (!InsertPt) |
1584 | return; |
1585 | LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " |
1586 | << *DU.NarrowUse << "\n" ); |
1587 | ExtendKind ExtKind = getExtendKind(I: DU.NarrowDef); |
1588 | IRBuilder<> Builder(InsertPt); |
1589 | Value *Trunc = |
1590 | Builder.CreateTrunc(V: DU.WideDef, DestTy: DU.NarrowDef->getType(), Name: "" , |
1591 | IsNUW: DU.NeverNegative || ExtKind == ExtendKind::Zero, |
1592 | IsNSW: DU.NeverNegative || ExtKind == ExtendKind::Sign); |
1593 | DU.NarrowUse->replaceUsesOfWith(From: DU.NarrowDef, To: Trunc); |
1594 | } |
1595 | |
1596 | /// If the narrow use is a compare instruction, then widen the compare |
1597 | // (and possibly the other operand). The extend operation is hoisted into the |
1598 | // loop preheader as far as possible. |
1599 | bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { |
1600 | ICmpInst *Cmp = dyn_cast<ICmpInst>(Val: DU.NarrowUse); |
1601 | if (!Cmp) |
1602 | return false; |
1603 | |
1604 | // We can legally widen the comparison in the following two cases: |
1605 | // |
1606 | // - The signedness of the IV extension and comparison match |
1607 | // |
1608 | // - The narrow IV is always non-negative (and thus its sign extension is |
1609 | // equal to its zero extension). For instance, let's say we're zero |
1610 | // extending %narrow for the following use |
1611 | // |
1612 | // icmp slt i32 %narrow, %val ... (A) |
1613 | // |
1614 | // and %narrow is always non-negative. Then |
1615 | // |
1616 | // (A) == icmp slt i32 sext(%narrow), sext(%val) |
1617 | // == icmp slt i32 zext(%narrow), sext(%val) |
1618 | bool IsSigned = getExtendKind(I: DU.NarrowDef) == ExtendKind::Sign; |
1619 | bool CmpPreferredSign = Cmp->hasSameSign() ? IsSigned : Cmp->isSigned(); |
1620 | if (!DU.NeverNegative && IsSigned != CmpPreferredSign) |
1621 | return false; |
1622 | |
1623 | Value *Op = Cmp->getOperand(i_nocapture: Cmp->getOperand(i_nocapture: 0) == DU.NarrowDef ? 1 : 0); |
1624 | unsigned CastWidth = SE->getTypeSizeInBits(Ty: Op->getType()); |
1625 | unsigned IVWidth = SE->getTypeSizeInBits(Ty: WideType); |
1626 | assert(CastWidth <= IVWidth && "Unexpected width while widening compare." ); |
1627 | |
1628 | // Widen the compare instruction. |
1629 | DU.NarrowUse->replaceUsesOfWith(From: DU.NarrowDef, To: DU.WideDef); |
1630 | |
1631 | // Widen the other operand of the compare, if necessary. |
1632 | if (CastWidth < IVWidth) { |
1633 | // If the narrow IV is always non-negative and the other operand is sext, |
1634 | // widen using sext so we can combine them. This works for all non-signed |
1635 | // comparison predicates. |
1636 | if (DU.NeverNegative && isa<SExtInst>(Val: Op) && !Cmp->isSigned()) |
1637 | CmpPreferredSign = true; |
1638 | |
1639 | Value *ExtOp = createExtendInst(NarrowOper: Op, WideType, IsSigned: CmpPreferredSign, Use: Cmp); |
1640 | DU.NarrowUse->replaceUsesOfWith(From: Op, To: ExtOp); |
1641 | } |
1642 | return true; |
1643 | } |
1644 | |
1645 | // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this |
1646 | // will not work when: |
1647 | // 1) SCEV traces back to an instruction inside the loop that SCEV can not |
1648 | // expand, eg. add %indvar, (load %addr) |
1649 | // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant |
1650 | // While SCEV fails to avoid trunc, we can still try to use instruction |
1651 | // combining approach to prove trunc is not required. This can be further |
1652 | // extended with other instruction combining checks, but for now we handle the |
1653 | // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") |
1654 | // |
1655 | // Src: |
1656 | // %c = sub nsw %b, %indvar |
1657 | // %d = sext %c to i64 |
1658 | // Dst: |
1659 | // %indvar.ext1 = sext %indvar to i64 |
1660 | // %m = sext %b to i64 |
1661 | // %d = sub nsw i64 %m, %indvar.ext1 |
1662 | // Therefore, as long as the result of add/sub/mul is extended to wide type, no |
1663 | // trunc is required regardless of how %b is generated. This pattern is common |
1664 | // when calculating address in 64 bit architecture |
1665 | bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { |
1666 | Instruction *NarrowUse = DU.NarrowUse; |
1667 | Instruction *NarrowDef = DU.NarrowDef; |
1668 | Instruction *WideDef = DU.WideDef; |
1669 | |
1670 | // Handle the common case of add<nsw/nuw> |
1671 | const unsigned OpCode = NarrowUse->getOpcode(); |
1672 | // Only Add/Sub/Mul instructions are supported. |
1673 | if (OpCode != Instruction::Add && OpCode != Instruction::Sub && |
1674 | OpCode != Instruction::Mul) |
1675 | return false; |
1676 | |
1677 | // The operand that is not defined by NarrowDef of DU. Let's call it the |
1678 | // other operand. |
1679 | assert((NarrowUse->getOperand(0) == NarrowDef || |
1680 | NarrowUse->getOperand(1) == NarrowDef) && |
1681 | "bad DU" ); |
1682 | |
1683 | const OverflowingBinaryOperator *OBO = |
1684 | cast<OverflowingBinaryOperator>(Val: NarrowUse); |
1685 | ExtendKind ExtKind = getExtendKind(I: NarrowDef); |
1686 | bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); |
1687 | bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); |
1688 | auto AnotherOpExtKind = ExtKind; |
1689 | |
1690 | // Check that all uses are either: |
1691 | // - narrow def (in case of we are widening the IV increment); |
1692 | // - single-input LCSSA Phis; |
1693 | // - comparison of the chosen type; |
1694 | // - extend of the chosen type (raison d'etre). |
1695 | SmallVector<Instruction *, 4> ExtUsers; |
1696 | SmallVector<PHINode *, 4> LCSSAPhiUsers; |
1697 | SmallVector<ICmpInst *, 4> ICmpUsers; |
1698 | for (Use &U : NarrowUse->uses()) { |
1699 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
1700 | if (User == NarrowDef) |
1701 | continue; |
1702 | if (!L->contains(Inst: User)) { |
1703 | auto *LCSSAPhi = cast<PHINode>(Val: User); |
1704 | // Make sure there is only 1 input, so that we don't have to split |
1705 | // critical edges. |
1706 | if (LCSSAPhi->getNumOperands() != 1) |
1707 | return false; |
1708 | LCSSAPhiUsers.push_back(Elt: LCSSAPhi); |
1709 | continue; |
1710 | } |
1711 | if (auto *ICmp = dyn_cast<ICmpInst>(Val: User)) { |
1712 | auto Pred = ICmp->getPredicate(); |
1713 | // We have 3 types of predicates: signed, unsigned and equality |
1714 | // predicates. For equality, it's legal to widen icmp for either sign and |
1715 | // zero extend. For sign extend, we can also do so for signed predicates, |
1716 | // likeweise for zero extend we can widen icmp for unsigned predicates. |
1717 | if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(predicate: Pred)) |
1718 | return false; |
1719 | if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(predicate: Pred)) |
1720 | return false; |
1721 | ICmpUsers.push_back(Elt: ICmp); |
1722 | continue; |
1723 | } |
1724 | if (ExtKind == ExtendKind::Sign) |
1725 | User = dyn_cast<SExtInst>(Val: User); |
1726 | else |
1727 | User = dyn_cast<ZExtInst>(Val: User); |
1728 | if (!User || User->getType() != WideType) |
1729 | return false; |
1730 | ExtUsers.push_back(Elt: User); |
1731 | } |
1732 | if (ExtUsers.empty()) { |
1733 | DeadInsts.emplace_back(Args&: NarrowUse); |
1734 | return true; |
1735 | } |
1736 | |
1737 | // We'll prove some facts that should be true in the context of ext users. If |
1738 | // there is no users, we are done now. If there are some, pick their common |
1739 | // dominator as context. |
1740 | const Instruction *CtxI = findCommonDominator(Instructions: ExtUsers, DT&: *DT); |
1741 | |
1742 | if (!CanSignExtend && !CanZeroExtend) { |
1743 | // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we |
1744 | // will most likely not see it. Let's try to prove it. |
1745 | if (OpCode != Instruction::Add) |
1746 | return false; |
1747 | if (ExtKind != ExtendKind::Zero) |
1748 | return false; |
1749 | const SCEV *LHS = SE->getSCEV(V: OBO->getOperand(i_nocapture: 0)); |
1750 | const SCEV *RHS = SE->getSCEV(V: OBO->getOperand(i_nocapture: 1)); |
1751 | // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). |
1752 | if (NarrowUse->getOperand(i: 0) != NarrowDef) |
1753 | return false; |
1754 | // We cannot use a different extend kind for the same operand. |
1755 | if (NarrowUse->getOperand(i: 1) == NarrowDef) |
1756 | return false; |
1757 | if (!SE->isKnownNegative(S: RHS)) |
1758 | return false; |
1759 | bool ProvedSubNUW = SE->isKnownPredicateAt(Pred: ICmpInst::ICMP_UGE, LHS, |
1760 | RHS: SE->getNegativeSCEV(V: RHS), CtxI); |
1761 | if (!ProvedSubNUW) |
1762 | return false; |
1763 | // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as |
1764 | // neg(zext(neg(op))), which is basically sext(op). |
1765 | AnotherOpExtKind = ExtendKind::Sign; |
1766 | } |
1767 | |
1768 | // Verifying that Defining operand is an AddRec |
1769 | const SCEV *Op1 = SE->getSCEV(V: WideDef); |
1770 | const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Val: Op1); |
1771 | if (!AddRecOp1 || AddRecOp1->getLoop() != L) |
1772 | return false; |
1773 | |
1774 | LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n" ); |
1775 | |
1776 | // Generating a widening use instruction. |
1777 | Value *LHS = |
1778 | (NarrowUse->getOperand(i: 0) == NarrowDef) |
1779 | ? WideDef |
1780 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 0), WideType, |
1781 | IsSigned: AnotherOpExtKind == ExtendKind::Sign, Use: NarrowUse); |
1782 | Value *RHS = |
1783 | (NarrowUse->getOperand(i: 1) == NarrowDef) |
1784 | ? WideDef |
1785 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 1), WideType, |
1786 | IsSigned: AnotherOpExtKind == ExtendKind::Sign, Use: NarrowUse); |
1787 | |
1788 | auto *NarrowBO = cast<BinaryOperator>(Val: NarrowUse); |
1789 | auto *WideBO = BinaryOperator::Create(Op: NarrowBO->getOpcode(), S1: LHS, S2: RHS, |
1790 | Name: NarrowBO->getName()); |
1791 | IRBuilder<> Builder(NarrowUse); |
1792 | Builder.Insert(I: WideBO); |
1793 | WideBO->copyIRFlags(V: NarrowBO); |
1794 | ExtendKindMap[NarrowUse] = ExtKind; |
1795 | |
1796 | for (Instruction *User : ExtUsers) { |
1797 | assert(User->getType() == WideType && "Checked before!" ); |
1798 | LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " |
1799 | << *WideBO << "\n" ); |
1800 | ++NumElimExt; |
1801 | User->replaceAllUsesWith(V: WideBO); |
1802 | DeadInsts.emplace_back(Args&: User); |
1803 | } |
1804 | |
1805 | for (PHINode *User : LCSSAPhiUsers) { |
1806 | assert(User->getNumOperands() == 1 && "Checked before!" ); |
1807 | Builder.SetInsertPoint(User); |
1808 | auto *WidePN = |
1809 | Builder.CreatePHI(Ty: WideBO->getType(), NumReservedValues: 1, Name: User->getName() + ".wide" ); |
1810 | BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); |
1811 | assert(LoopExitingBlock && L->contains(LoopExitingBlock) && |
1812 | "Not a LCSSA Phi?" ); |
1813 | WidePN->addIncoming(V: WideBO, BB: LoopExitingBlock); |
1814 | Builder.SetInsertPoint(TheBB: User->getParent(), |
1815 | IP: User->getParent()->getFirstInsertionPt()); |
1816 | auto *TruncPN = Builder.CreateTrunc(V: WidePN, DestTy: User->getType()); |
1817 | User->replaceAllUsesWith(V: TruncPN); |
1818 | DeadInsts.emplace_back(Args&: User); |
1819 | } |
1820 | |
1821 | for (ICmpInst *User : ICmpUsers) { |
1822 | Builder.SetInsertPoint(User); |
1823 | auto ExtendedOp = [&](Value * V)->Value * { |
1824 | if (V == NarrowUse) |
1825 | return WideBO; |
1826 | if (ExtKind == ExtendKind::Zero) |
1827 | return Builder.CreateZExt(V, DestTy: WideBO->getType()); |
1828 | else |
1829 | return Builder.CreateSExt(V, DestTy: WideBO->getType()); |
1830 | }; |
1831 | auto Pred = User->getPredicate(); |
1832 | auto *LHS = ExtendedOp(User->getOperand(i_nocapture: 0)); |
1833 | auto *RHS = ExtendedOp(User->getOperand(i_nocapture: 1)); |
1834 | auto *WideCmp = |
1835 | Builder.CreateICmp(P: Pred, LHS, RHS, Name: User->getName() + ".wide" ); |
1836 | User->replaceAllUsesWith(V: WideCmp); |
1837 | DeadInsts.emplace_back(Args&: User); |
1838 | } |
1839 | |
1840 | return true; |
1841 | } |
1842 | |
1843 | /// Determine whether an individual user of the narrow IV can be widened. If so, |
1844 | /// return the wide clone of the user. |
1845 | Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, |
1846 | SCEVExpander &Rewriter, PHINode *OrigPhi, |
1847 | PHINode *WidePhi) { |
1848 | assert(ExtendKindMap.count(DU.NarrowDef) && |
1849 | "Should already know the kind of extension used to widen NarrowDef" ); |
1850 | |
1851 | // This narrow use can be widened by a sext if it's non-negative or its narrow |
1852 | // def was widened by a sext. Same for zext. |
1853 | bool CanWidenBySExt = |
1854 | DU.NeverNegative || getExtendKind(I: DU.NarrowDef) == ExtendKind::Sign; |
1855 | bool CanWidenByZExt = |
1856 | DU.NeverNegative || getExtendKind(I: DU.NarrowDef) == ExtendKind::Zero; |
1857 | |
1858 | // Stop traversing the def-use chain at inner-loop phis or post-loop phis. |
1859 | if (PHINode *UsePhi = dyn_cast<PHINode>(Val: DU.NarrowUse)) { |
1860 | if (LI->getLoopFor(BB: UsePhi->getParent()) != L) { |
1861 | // For LCSSA phis, sink the truncate outside the loop. |
1862 | // After SimplifyCFG most loop exit targets have a single predecessor. |
1863 | // Otherwise fall back to a truncate within the loop. |
1864 | if (UsePhi->getNumOperands() != 1) |
1865 | truncateIVUse(DU); |
1866 | else { |
1867 | // Widening the PHI requires us to insert a trunc. The logical place |
1868 | // for this trunc is in the same BB as the PHI. This is not possible if |
1869 | // the BB is terminated by a catchswitch. |
1870 | if (isa<CatchSwitchInst>(Val: UsePhi->getParent()->getTerminator())) |
1871 | return nullptr; |
1872 | |
1873 | PHINode *WidePhi = |
1874 | PHINode::Create(Ty: DU.WideDef->getType(), NumReservedValues: 1, NameStr: UsePhi->getName() + ".wide" , |
1875 | InsertBefore: UsePhi->getIterator()); |
1876 | WidePhi->addIncoming(V: DU.WideDef, BB: UsePhi->getIncomingBlock(i: 0)); |
1877 | BasicBlock *WidePhiBB = WidePhi->getParent(); |
1878 | IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt()); |
1879 | Value *Trunc = Builder.CreateTrunc(V: WidePhi, DestTy: DU.NarrowDef->getType(), Name: "" , |
1880 | IsNUW: CanWidenByZExt, IsNSW: CanWidenBySExt); |
1881 | UsePhi->replaceAllUsesWith(V: Trunc); |
1882 | DeadInsts.emplace_back(Args&: UsePhi); |
1883 | LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " |
1884 | << *WidePhi << "\n" ); |
1885 | } |
1886 | return nullptr; |
1887 | } |
1888 | } |
1889 | |
1890 | // Our raison d'etre! Eliminate sign and zero extension. |
1891 | if ((match(V: DU.NarrowUse, P: m_SExtLike(Op: m_Value())) && CanWidenBySExt) || |
1892 | (isa<ZExtInst>(Val: DU.NarrowUse) && CanWidenByZExt)) { |
1893 | Value *NewDef = DU.WideDef; |
1894 | if (DU.NarrowUse->getType() != WideType) { |
1895 | unsigned CastWidth = SE->getTypeSizeInBits(Ty: DU.NarrowUse->getType()); |
1896 | unsigned IVWidth = SE->getTypeSizeInBits(Ty: WideType); |
1897 | if (CastWidth < IVWidth) { |
1898 | // The cast isn't as wide as the IV, so insert a Trunc. |
1899 | IRBuilder<> Builder(DU.NarrowUse); |
1900 | NewDef = Builder.CreateTrunc(V: DU.WideDef, DestTy: DU.NarrowUse->getType(), Name: "" , |
1901 | IsNUW: CanWidenByZExt, IsNSW: CanWidenBySExt); |
1902 | } |
1903 | else { |
1904 | // A wider extend was hidden behind a narrower one. This may induce |
1905 | // another round of IV widening in which the intermediate IV becomes |
1906 | // dead. It should be very rare. |
1907 | LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi |
1908 | << " not wide enough to subsume " << *DU.NarrowUse |
1909 | << "\n" ); |
1910 | DU.NarrowUse->replaceUsesOfWith(From: DU.NarrowDef, To: DU.WideDef); |
1911 | NewDef = DU.NarrowUse; |
1912 | } |
1913 | } |
1914 | if (NewDef != DU.NarrowUse) { |
1915 | LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse |
1916 | << " replaced by " << *DU.WideDef << "\n" ); |
1917 | ++NumElimExt; |
1918 | DU.NarrowUse->replaceAllUsesWith(V: NewDef); |
1919 | DeadInsts.emplace_back(Args&: DU.NarrowUse); |
1920 | } |
1921 | // Now that the extend is gone, we want to expose it's uses for potential |
1922 | // further simplification. We don't need to directly inform SimplifyIVUsers |
1923 | // of the new users, because their parent IV will be processed later as a |
1924 | // new loop phi. If we preserved IVUsers analysis, we would also want to |
1925 | // push the uses of WideDef here. |
1926 | |
1927 | // No further widening is needed. The deceased [sz]ext had done it for us. |
1928 | return nullptr; |
1929 | } |
1930 | |
1931 | auto tryAddRecExpansion = [&]() -> Instruction* { |
1932 | // Does this user itself evaluate to a recurrence after widening? |
1933 | WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); |
1934 | if (!WideAddRec.first) |
1935 | WideAddRec = getWideRecurrence(DU); |
1936 | assert((WideAddRec.first == nullptr) == |
1937 | (WideAddRec.second == ExtendKind::Unknown)); |
1938 | if (!WideAddRec.first) |
1939 | return nullptr; |
1940 | |
1941 | auto CanUseWideInc = [&]() { |
1942 | if (!WideInc) |
1943 | return false; |
1944 | // Reuse the IV increment that SCEVExpander created. Recompute flags, |
1945 | // unless the flags for both increments agree and it is safe to use the |
1946 | // ones from the original inc. In that case, the new use of the wide |
1947 | // increment won't be more poisonous. |
1948 | bool NeedToRecomputeFlags = |
1949 | !SCEVExpander::canReuseFlagsFromOriginalIVInc( |
1950 | OrigPhi, WidePhi, OrigInc: DU.NarrowUse, WideInc) || |
1951 | DU.NarrowUse->hasNoUnsignedWrap() != WideInc->hasNoUnsignedWrap() || |
1952 | DU.NarrowUse->hasNoSignedWrap() != WideInc->hasNoSignedWrap(); |
1953 | return WideAddRec.first == WideIncExpr && |
1954 | Rewriter.hoistIVInc(IncV: WideInc, InsertPos: DU.NarrowUse, RecomputePoisonFlags: NeedToRecomputeFlags); |
1955 | }; |
1956 | |
1957 | Instruction *WideUse = nullptr; |
1958 | if (CanUseWideInc()) |
1959 | WideUse = WideInc; |
1960 | else { |
1961 | WideUse = cloneIVUser(DU, WideAR: WideAddRec.first); |
1962 | if (!WideUse) |
1963 | return nullptr; |
1964 | } |
1965 | // Evaluation of WideAddRec ensured that the narrow expression could be |
1966 | // extended outside the loop without overflow. This suggests that the wide use |
1967 | // evaluates to the same expression as the extended narrow use, but doesn't |
1968 | // absolutely guarantee it. Hence the following failsafe check. In rare cases |
1969 | // where it fails, we simply throw away the newly created wide use. |
1970 | if (WideAddRec.first != SE->getSCEV(V: WideUse)) { |
1971 | LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " |
1972 | << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first |
1973 | << "\n" ); |
1974 | DeadInsts.emplace_back(Args&: WideUse); |
1975 | return nullptr; |
1976 | }; |
1977 | |
1978 | // if we reached this point then we are going to replace |
1979 | // DU.NarrowUse with WideUse. Reattach DbgValue then. |
1980 | replaceAllDbgUsesWith(From&: *DU.NarrowUse, To&: *WideUse, DomPoint&: *WideUse, DT&: *DT); |
1981 | |
1982 | ExtendKindMap[DU.NarrowUse] = WideAddRec.second; |
1983 | // Returning WideUse pushes it on the worklist. |
1984 | return WideUse; |
1985 | }; |
1986 | |
1987 | if (auto *I = tryAddRecExpansion()) |
1988 | return I; |
1989 | |
1990 | // If use is a loop condition, try to promote the condition instead of |
1991 | // truncating the IV first. |
1992 | if (widenLoopCompare(DU)) |
1993 | return nullptr; |
1994 | |
1995 | // We are here about to generate a truncate instruction that may hurt |
1996 | // performance because the scalar evolution expression computed earlier |
1997 | // in WideAddRec.first does not indicate a polynomial induction expression. |
1998 | // In that case, look at the operands of the use instruction to determine |
1999 | // if we can still widen the use instead of truncating its operand. |
2000 | if (widenWithVariantUse(DU)) |
2001 | return nullptr; |
2002 | |
2003 | // This user does not evaluate to a recurrence after widening, so don't |
2004 | // follow it. Instead insert a Trunc to kill off the original use, |
2005 | // eventually isolating the original narrow IV so it can be removed. |
2006 | truncateIVUse(DU); |
2007 | return nullptr; |
2008 | } |
2009 | |
2010 | /// Add eligible users of NarrowDef to NarrowIVUsers. |
2011 | void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { |
2012 | const SCEV *NarrowSCEV = SE->getSCEV(V: NarrowDef); |
2013 | bool NonNegativeDef = |
2014 | SE->isKnownPredicate(Pred: ICmpInst::ICMP_SGE, LHS: NarrowSCEV, |
2015 | RHS: SE->getZero(Ty: NarrowSCEV->getType())); |
2016 | for (User *U : NarrowDef->users()) { |
2017 | Instruction *NarrowUser = cast<Instruction>(Val: U); |
2018 | |
2019 | // Handle data flow merges and bizarre phi cycles. |
2020 | if (!Widened.insert(Ptr: NarrowUser).second) |
2021 | continue; |
2022 | |
2023 | bool NonNegativeUse = false; |
2024 | if (!NonNegativeDef) { |
2025 | // We might have a control-dependent range information for this context. |
2026 | if (auto RangeInfo = getPostIncRangeInfo(Def: NarrowDef, UseI: NarrowUser)) |
2027 | NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); |
2028 | } |
2029 | |
2030 | NarrowIVUsers.emplace_back(Args&: NarrowDef, Args&: NarrowUser, Args&: WideDef, |
2031 | Args: NonNegativeDef || NonNegativeUse); |
2032 | } |
2033 | } |
2034 | |
2035 | /// Process a single induction variable. First use the SCEVExpander to create a |
2036 | /// wide induction variable that evaluates to the same recurrence as the |
2037 | /// original narrow IV. Then use a worklist to forward traverse the narrow IV's |
2038 | /// def-use chain. After widenIVUse has processed all interesting IV users, the |
2039 | /// narrow IV will be isolated for removal by DeleteDeadPHIs. |
2040 | /// |
2041 | /// It would be simpler to delete uses as they are processed, but we must avoid |
2042 | /// invalidating SCEV expressions. |
2043 | PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { |
2044 | // Is this phi an induction variable? |
2045 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: OrigPhi)); |
2046 | if (!AddRec) |
2047 | return nullptr; |
2048 | |
2049 | // Widen the induction variable expression. |
2050 | const SCEV *WideIVExpr = getExtendKind(I: OrigPhi) == ExtendKind::Sign |
2051 | ? SE->getSignExtendExpr(Op: AddRec, Ty: WideType) |
2052 | : SE->getZeroExtendExpr(Op: AddRec, Ty: WideType); |
2053 | |
2054 | assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && |
2055 | "Expect the new IV expression to preserve its type" ); |
2056 | |
2057 | // Can the IV be extended outside the loop without overflow? |
2058 | AddRec = dyn_cast<SCEVAddRecExpr>(Val: WideIVExpr); |
2059 | if (!AddRec || AddRec->getLoop() != L) |
2060 | return nullptr; |
2061 | |
2062 | // An AddRec must have loop-invariant operands. Since this AddRec is |
2063 | // materialized by a loop header phi, the expression cannot have any post-loop |
2064 | // operands, so they must dominate the loop header. |
2065 | assert( |
2066 | SE->properlyDominates(AddRec->getStart(), L->getHeader()) && |
2067 | SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && |
2068 | "Loop header phi recurrence inputs do not dominate the loop" ); |
2069 | |
2070 | // Iterate over IV uses (including transitive ones) looking for IV increments |
2071 | // of the form 'add nsw %iv, <const>'. For each increment and each use of |
2072 | // the increment calculate control-dependent range information basing on |
2073 | // dominating conditions inside of the loop (e.g. a range check inside of the |
2074 | // loop). Calculated ranges are stored in PostIncRangeInfos map. |
2075 | // |
2076 | // Control-dependent range information is later used to prove that a narrow |
2077 | // definition is not negative (see pushNarrowIVUsers). It's difficult to do |
2078 | // this on demand because when pushNarrowIVUsers needs this information some |
2079 | // of the dominating conditions might be already widened. |
2080 | if (UsePostIncrementRanges) |
2081 | calculatePostIncRanges(OrigPhi); |
2082 | |
2083 | // The rewriter provides a value for the desired IV expression. This may |
2084 | // either find an existing phi or materialize a new one. Either way, we |
2085 | // expect a well-formed cyclic phi-with-increments. i.e. any operand not part |
2086 | // of the phi-SCC dominates the loop entry. |
2087 | Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); |
2088 | Value *ExpandInst = Rewriter.expandCodeFor(SH: AddRec, Ty: WideType, I: InsertPt); |
2089 | // If the wide phi is not a phi node, for example a cast node, like bitcast, |
2090 | // inttoptr, ptrtoint, just skip for now. |
2091 | if (!(WidePhi = dyn_cast<PHINode>(Val: ExpandInst))) { |
2092 | // if the cast node is an inserted instruction without any user, we should |
2093 | // remove it to make sure the pass don't touch the function as we can not |
2094 | // wide the phi. |
2095 | if (ExpandInst->use_empty() && |
2096 | Rewriter.isInsertedInstruction(I: cast<Instruction>(Val: ExpandInst))) |
2097 | DeadInsts.emplace_back(Args&: ExpandInst); |
2098 | return nullptr; |
2099 | } |
2100 | |
2101 | // Remembering the WideIV increment generated by SCEVExpander allows |
2102 | // widenIVUse to reuse it when widening the narrow IV's increment. We don't |
2103 | // employ a general reuse mechanism because the call above is the only call to |
2104 | // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. |
2105 | if (BasicBlock *LatchBlock = L->getLoopLatch()) { |
2106 | WideInc = |
2107 | dyn_cast<Instruction>(Val: WidePhi->getIncomingValueForBlock(BB: LatchBlock)); |
2108 | if (WideInc) { |
2109 | WideIncExpr = SE->getSCEV(V: WideInc); |
2110 | // Propagate the debug location associated with the original loop |
2111 | // increment to the new (widened) increment. |
2112 | auto *OrigInc = |
2113 | cast<Instruction>(Val: OrigPhi->getIncomingValueForBlock(BB: LatchBlock)); |
2114 | |
2115 | WideInc->setDebugLoc(OrigInc->getDebugLoc()); |
2116 | // We are replacing a narrow IV increment with a wider IV increment. If |
2117 | // the original (narrow) increment did not wrap, the wider increment one |
2118 | // should not wrap either. Set the flags to be the union of both wide |
2119 | // increment and original increment; this ensures we preserve flags SCEV |
2120 | // could infer for the wider increment. Limit this only to cases where |
2121 | // both increments directly increment the corresponding PHI nodes and have |
2122 | // the same opcode. It is not safe to re-use the flags from the original |
2123 | // increment, if it is more complex and SCEV expansion may have yielded a |
2124 | // more simplified wider increment. |
2125 | if (SCEVExpander::canReuseFlagsFromOriginalIVInc(OrigPhi, WidePhi, |
2126 | OrigInc, WideInc) && |
2127 | isa<OverflowingBinaryOperator>(Val: OrigInc) && |
2128 | isa<OverflowingBinaryOperator>(Val: WideInc)) { |
2129 | WideInc->setHasNoUnsignedWrap(WideInc->hasNoUnsignedWrap() || |
2130 | OrigInc->hasNoUnsignedWrap()); |
2131 | WideInc->setHasNoSignedWrap(WideInc->hasNoSignedWrap() || |
2132 | OrigInc->hasNoSignedWrap()); |
2133 | } |
2134 | } |
2135 | } |
2136 | |
2137 | LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n" ); |
2138 | ++NumWidened; |
2139 | |
2140 | // Traverse the def-use chain using a worklist starting at the original IV. |
2141 | assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); |
2142 | |
2143 | Widened.insert(Ptr: OrigPhi); |
2144 | pushNarrowIVUsers(NarrowDef: OrigPhi, WideDef: WidePhi); |
2145 | |
2146 | while (!NarrowIVUsers.empty()) { |
2147 | WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); |
2148 | |
2149 | // Process a def-use edge. This may replace the use, so don't hold a |
2150 | // use_iterator across it. |
2151 | Instruction *WideUse = widenIVUse(DU, Rewriter, OrigPhi, WidePhi); |
2152 | |
2153 | // Follow all def-use edges from the previous narrow use. |
2154 | if (WideUse) |
2155 | pushNarrowIVUsers(NarrowDef: DU.NarrowUse, WideDef: WideUse); |
2156 | |
2157 | // widenIVUse may have removed the def-use edge. |
2158 | if (DU.NarrowDef->use_empty()) |
2159 | DeadInsts.emplace_back(Args&: DU.NarrowDef); |
2160 | } |
2161 | |
2162 | // Attach any debug information to the new PHI. |
2163 | replaceAllDbgUsesWith(From&: *OrigPhi, To&: *WidePhi, DomPoint&: *WidePhi, DT&: *DT); |
2164 | |
2165 | return WidePhi; |
2166 | } |
2167 | |
2168 | /// Calculates control-dependent range for the given def at the given context |
2169 | /// by looking at dominating conditions inside of the loop |
2170 | void WidenIV::calculatePostIncRange(Instruction *NarrowDef, |
2171 | Instruction *NarrowUser) { |
2172 | Value *NarrowDefLHS; |
2173 | const APInt *NarrowDefRHS; |
2174 | if (!match(V: NarrowDef, P: m_NSWAdd(L: m_Value(V&: NarrowDefLHS), |
2175 | R: m_APInt(Res&: NarrowDefRHS))) || |
2176 | !NarrowDefRHS->isNonNegative()) |
2177 | return; |
2178 | |
2179 | auto UpdateRangeFromCondition = [&](Value *Condition, bool TrueDest) { |
2180 | CmpPredicate Pred; |
2181 | Value *CmpRHS; |
2182 | if (!match(V: Condition, P: m_ICmp(Pred, L: m_Specific(V: NarrowDefLHS), |
2183 | R: m_Value(V&: CmpRHS)))) |
2184 | return; |
2185 | |
2186 | CmpPredicate P = TrueDest ? Pred : ICmpInst::getInverseCmpPredicate(Pred); |
2187 | |
2188 | auto CmpRHSRange = SE->getSignedRange(S: SE->getSCEV(V: CmpRHS)); |
2189 | auto CmpConstrainedLHSRange = |
2190 | ConstantRange::makeAllowedICmpRegion(Pred: P, Other: CmpRHSRange); |
2191 | auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( |
2192 | Other: *NarrowDefRHS, NoWrapKind: OverflowingBinaryOperator::NoSignedWrap); |
2193 | |
2194 | updatePostIncRangeInfo(Def: NarrowDef, UseI: NarrowUser, R: NarrowDefRange); |
2195 | }; |
2196 | |
2197 | auto UpdateRangeFromGuards = [&](Instruction *Ctx) { |
2198 | if (!HasGuards) |
2199 | return; |
2200 | |
2201 | for (Instruction &I : make_range(x: Ctx->getIterator().getReverse(), |
2202 | y: Ctx->getParent()->rend())) { |
2203 | Value *C = nullptr; |
2204 | if (match(V: &I, P: m_Intrinsic<Intrinsic::experimental_guard>(Op0: m_Value(V&: C)))) |
2205 | UpdateRangeFromCondition(C, /*TrueDest=*/true); |
2206 | } |
2207 | }; |
2208 | |
2209 | UpdateRangeFromGuards(NarrowUser); |
2210 | |
2211 | BasicBlock *NarrowUserBB = NarrowUser->getParent(); |
2212 | // If NarrowUserBB is statically unreachable asking dominator queries may |
2213 | // yield surprising results. (e.g. the block may not have a dom tree node) |
2214 | if (!DT->isReachableFromEntry(A: NarrowUserBB)) |
2215 | return; |
2216 | |
2217 | for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); |
2218 | L->contains(BB: DTB->getBlock()); |
2219 | DTB = DTB->getIDom()) { |
2220 | auto *BB = DTB->getBlock(); |
2221 | auto *TI = BB->getTerminator(); |
2222 | UpdateRangeFromGuards(TI); |
2223 | |
2224 | auto *BI = dyn_cast<BranchInst>(Val: TI); |
2225 | if (!BI || !BI->isConditional()) |
2226 | continue; |
2227 | |
2228 | auto *TrueSuccessor = BI->getSuccessor(i: 0); |
2229 | auto *FalseSuccessor = BI->getSuccessor(i: 1); |
2230 | |
2231 | auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { |
2232 | return BBE.isSingleEdge() && |
2233 | DT->dominates(BBE, BB: NarrowUser->getParent()); |
2234 | }; |
2235 | |
2236 | if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) |
2237 | UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); |
2238 | |
2239 | if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) |
2240 | UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); |
2241 | } |
2242 | } |
2243 | |
2244 | /// Calculates PostIncRangeInfos map for the given IV |
2245 | void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { |
2246 | SmallPtrSet<Instruction *, 16> Visited; |
2247 | SmallVector<Instruction *, 6> Worklist; |
2248 | Worklist.push_back(Elt: OrigPhi); |
2249 | Visited.insert(Ptr: OrigPhi); |
2250 | |
2251 | while (!Worklist.empty()) { |
2252 | Instruction *NarrowDef = Worklist.pop_back_val(); |
2253 | |
2254 | for (Use &U : NarrowDef->uses()) { |
2255 | auto *NarrowUser = cast<Instruction>(Val: U.getUser()); |
2256 | |
2257 | // Don't go looking outside the current loop. |
2258 | auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; |
2259 | if (!NarrowUserLoop || !L->contains(L: NarrowUserLoop)) |
2260 | continue; |
2261 | |
2262 | if (!Visited.insert(Ptr: NarrowUser).second) |
2263 | continue; |
2264 | |
2265 | Worklist.push_back(Elt: NarrowUser); |
2266 | |
2267 | calculatePostIncRange(NarrowDef, NarrowUser); |
2268 | } |
2269 | } |
2270 | } |
2271 | |
2272 | PHINode *llvm::createWideIV(const WideIVInfo &WI, |
2273 | LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, |
2274 | DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, |
2275 | unsigned &NumElimExt, unsigned &NumWidened, |
2276 | bool HasGuards, bool UsePostIncrementRanges) { |
2277 | WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); |
2278 | PHINode *WidePHI = Widener.createWideIV(Rewriter); |
2279 | NumElimExt = Widener.getNumElimExt(); |
2280 | NumWidened = Widener.getNumWidened(); |
2281 | return WidePHI; |
2282 | } |
2283 | |