| 1 | //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements induction variable simplification. It does |
| 10 | // not define any actual pass or policy, but provides a single function to |
| 11 | // simplify a loop's induction variables based on ScalarEvolution. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/Analysis/LoopInfo.h" |
| 19 | #include "llvm/Analysis/ValueTracking.h" |
| 20 | #include "llvm/IR/Dominators.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/Instructions.h" |
| 23 | #include "llvm/IR/IntrinsicInst.h" |
| 24 | #include "llvm/IR/PatternMatch.h" |
| 25 | #include "llvm/Support/Debug.h" |
| 26 | #include "llvm/Support/raw_ostream.h" |
| 27 | #include "llvm/Transforms/Utils/Local.h" |
| 28 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 29 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | using namespace llvm::PatternMatch; |
| 33 | |
| 34 | #define DEBUG_TYPE "indvars" |
| 35 | |
| 36 | STATISTIC(NumElimIdentity, "Number of IV identities eliminated" ); |
| 37 | STATISTIC(NumElimOperand, "Number of IV operands folded into a use" ); |
| 38 | STATISTIC(NumFoldedUser, "Number of IV users folded into a constant" ); |
| 39 | STATISTIC(NumElimRem , "Number of IV remainder operations eliminated" ); |
| 40 | STATISTIC( |
| 41 | NumSimplifiedSDiv, |
| 42 | "Number of IV signed division operations converted to unsigned division" ); |
| 43 | STATISTIC( |
| 44 | NumSimplifiedSRem, |
| 45 | "Number of IV signed remainder operations converted to unsigned remainder" ); |
| 46 | STATISTIC(NumElimCmp , "Number of IV comparisons eliminated" ); |
| 47 | |
| 48 | namespace { |
| 49 | /// This is a utility for simplifying induction variables |
| 50 | /// based on ScalarEvolution. It is the primary instrument of the |
| 51 | /// IndvarSimplify pass, but it may also be directly invoked to cleanup after |
| 52 | /// other loop passes that preserve SCEV. |
| 53 | class SimplifyIndvar { |
| 54 | Loop *L; |
| 55 | LoopInfo *LI; |
| 56 | ScalarEvolution *SE; |
| 57 | DominatorTree *DT; |
| 58 | const TargetTransformInfo *TTI; |
| 59 | SCEVExpander &Rewriter; |
| 60 | SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
| 61 | |
| 62 | bool Changed = false; |
| 63 | bool RunUnswitching = false; |
| 64 | |
| 65 | public: |
| 66 | SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, |
| 67 | LoopInfo *LI, const TargetTransformInfo *TTI, |
| 68 | SCEVExpander &Rewriter, |
| 69 | SmallVectorImpl<WeakTrackingVH> &Dead) |
| 70 | : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), |
| 71 | DeadInsts(Dead) { |
| 72 | assert(LI && "IV simplification requires LoopInfo" ); |
| 73 | } |
| 74 | |
| 75 | bool hasChanged() const { return Changed; } |
| 76 | bool runUnswitching() const { return RunUnswitching; } |
| 77 | |
| 78 | /// Iteratively perform simplification on a worklist of users of the |
| 79 | /// specified induction variable. This is the top-level driver that applies |
| 80 | /// all simplifications to users of an IV. |
| 81 | void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); |
| 82 | |
| 83 | void pushIVUsers(Instruction *Def, |
| 84 | SmallPtrSet<Instruction *, 16> &Simplified, |
| 85 | SmallVectorImpl<std::pair<Instruction *, Instruction *>> |
| 86 | &SimpleIVUsers); |
| 87 | |
| 88 | Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); |
| 89 | |
| 90 | bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); |
| 91 | bool replaceIVUserWithLoopInvariant(Instruction *UseInst); |
| 92 | bool replaceFloatIVWithIntegerIV(Instruction *UseInst); |
| 93 | |
| 94 | bool eliminateOverflowIntrinsic(WithOverflowInst *WO); |
| 95 | bool eliminateSaturatingIntrinsic(SaturatingInst *SI); |
| 96 | bool eliminateTrunc(TruncInst *TI); |
| 97 | bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); |
| 98 | bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); |
| 99 | void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); |
| 100 | void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, |
| 101 | bool IsSigned); |
| 102 | void replaceRemWithNumerator(BinaryOperator *Rem); |
| 103 | void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); |
| 104 | void replaceSRemWithURem(BinaryOperator *Rem); |
| 105 | bool eliminateSDiv(BinaryOperator *SDiv); |
| 106 | bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand); |
| 107 | bool strengthenOverflowingOperation(BinaryOperator *OBO, |
| 108 | Instruction *IVOperand); |
| 109 | bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); |
| 110 | }; |
| 111 | } |
| 112 | |
| 113 | /// Find a point in code which dominates all given instructions. We can safely |
| 114 | /// assume that, whatever fact we can prove at the found point, this fact is |
| 115 | /// also true for each of the given instructions. |
| 116 | static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, |
| 117 | DominatorTree &DT) { |
| 118 | Instruction *CommonDom = nullptr; |
| 119 | for (auto *Insn : Instructions) |
| 120 | CommonDom = |
| 121 | CommonDom ? DT.findNearestCommonDominator(I1: CommonDom, I2: Insn) : Insn; |
| 122 | assert(CommonDom && "Common dominator not found?" ); |
| 123 | return CommonDom; |
| 124 | } |
| 125 | |
| 126 | /// Fold an IV operand into its use. This removes increments of an |
| 127 | /// aligned IV when used by a instruction that ignores the low bits. |
| 128 | /// |
| 129 | /// IVOperand is guaranteed SCEVable, but UseInst may not be. |
| 130 | /// |
| 131 | /// Return the operand of IVOperand for this induction variable if IVOperand can |
| 132 | /// be folded (in case more folding opportunities have been exposed). |
| 133 | /// Otherwise return null. |
| 134 | Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { |
| 135 | Value *IVSrc = nullptr; |
| 136 | const unsigned OperIdx = 0; |
| 137 | const SCEV *FoldedExpr = nullptr; |
| 138 | bool MustDropExactFlag = false; |
| 139 | switch (UseInst->getOpcode()) { |
| 140 | default: |
| 141 | return nullptr; |
| 142 | case Instruction::UDiv: |
| 143 | case Instruction::LShr: |
| 144 | // We're only interested in the case where we know something about |
| 145 | // the numerator and have a constant denominator. |
| 146 | if (IVOperand != UseInst->getOperand(i: OperIdx) || |
| 147 | !isa<ConstantInt>(Val: UseInst->getOperand(i: 1))) |
| 148 | return nullptr; |
| 149 | |
| 150 | // Attempt to fold a binary operator with constant operand. |
| 151 | // e.g. ((I + 1) >> 2) => I >> 2 |
| 152 | if (!isa<BinaryOperator>(Val: IVOperand) |
| 153 | || !isa<ConstantInt>(Val: IVOperand->getOperand(i: 1))) |
| 154 | return nullptr; |
| 155 | |
| 156 | IVSrc = IVOperand->getOperand(i: 0); |
| 157 | // IVSrc must be the (SCEVable) IV, since the other operand is const. |
| 158 | assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand" ); |
| 159 | |
| 160 | ConstantInt *D = cast<ConstantInt>(Val: UseInst->getOperand(i: 1)); |
| 161 | if (UseInst->getOpcode() == Instruction::LShr) { |
| 162 | // Get a constant for the divisor. See createSCEV. |
| 163 | uint32_t BitWidth = cast<IntegerType>(Val: UseInst->getType())->getBitWidth(); |
| 164 | if (D->getValue().uge(RHS: BitWidth)) |
| 165 | return nullptr; |
| 166 | |
| 167 | D = ConstantInt::get(Context&: UseInst->getContext(), |
| 168 | V: APInt::getOneBitSet(numBits: BitWidth, BitNo: D->getZExtValue())); |
| 169 | } |
| 170 | const SCEV *LHS = SE->getSCEV(V: IVSrc); |
| 171 | const SCEV *RHS = SE->getSCEV(V: D); |
| 172 | FoldedExpr = SE->getUDivExpr(LHS, RHS); |
| 173 | // We might have 'exact' flag set at this point which will no longer be |
| 174 | // correct after we make the replacement. |
| 175 | if (UseInst->isExact() && LHS != SE->getMulExpr(LHS: FoldedExpr, RHS)) |
| 176 | MustDropExactFlag = true; |
| 177 | } |
| 178 | // We have something that might fold it's operand. Compare SCEVs. |
| 179 | if (!SE->isSCEVable(Ty: UseInst->getType())) |
| 180 | return nullptr; |
| 181 | |
| 182 | // Bypass the operand if SCEV can prove it has no effect. |
| 183 | if (SE->getSCEV(V: UseInst) != FoldedExpr) |
| 184 | return nullptr; |
| 185 | |
| 186 | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand |
| 187 | << " -> " << *UseInst << '\n'); |
| 188 | |
| 189 | UseInst->setOperand(i: OperIdx, Val: IVSrc); |
| 190 | assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper" ); |
| 191 | |
| 192 | if (MustDropExactFlag) |
| 193 | UseInst->dropPoisonGeneratingFlags(); |
| 194 | |
| 195 | ++NumElimOperand; |
| 196 | Changed = true; |
| 197 | if (IVOperand->use_empty()) |
| 198 | DeadInsts.emplace_back(Args&: IVOperand); |
| 199 | return IVSrc; |
| 200 | } |
| 201 | |
| 202 | bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, |
| 203 | Instruction *IVOperand) { |
| 204 | auto * = L->getLoopPreheader(); |
| 205 | if (!Preheader) |
| 206 | return false; |
| 207 | unsigned IVOperIdx = 0; |
| 208 | CmpPredicate Pred = ICmp->getCmpPredicate(); |
| 209 | if (IVOperand != ICmp->getOperand(i_nocapture: 0)) { |
| 210 | // Swapped |
| 211 | assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand" ); |
| 212 | IVOperIdx = 1; |
| 213 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 214 | } |
| 215 | |
| 216 | // Get the SCEVs for the ICmp operands (in the specific context of the |
| 217 | // current loop) |
| 218 | const Loop *ICmpLoop = LI->getLoopFor(BB: ICmp->getParent()); |
| 219 | const SCEV *S = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: IVOperIdx), L: ICmpLoop); |
| 220 | const SCEV *X = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: 1 - IVOperIdx), L: ICmpLoop); |
| 221 | auto LIP = SE->getLoopInvariantPredicate(Pred, LHS: S, RHS: X, L, CtxI: ICmp); |
| 222 | if (!LIP) |
| 223 | return false; |
| 224 | ICmpInst::Predicate InvariantPredicate = LIP->Pred; |
| 225 | const SCEV *InvariantLHS = LIP->LHS; |
| 226 | const SCEV *InvariantRHS = LIP->RHS; |
| 227 | |
| 228 | // Do not generate something ridiculous. |
| 229 | auto *PHTerm = Preheader->getTerminator(); |
| 230 | if (Rewriter.isHighCostExpansion(Exprs: {InvariantLHS, InvariantRHS}, L, |
| 231 | Budget: 2 * SCEVCheapExpansionBudget, TTI, At: PHTerm) || |
| 232 | !Rewriter.isSafeToExpandAt(S: InvariantLHS, InsertionPoint: PHTerm) || |
| 233 | !Rewriter.isSafeToExpandAt(S: InvariantRHS, InsertionPoint: PHTerm)) |
| 234 | return false; |
| 235 | auto *NewLHS = |
| 236 | Rewriter.expandCodeFor(SH: InvariantLHS, Ty: IVOperand->getType(), I: PHTerm); |
| 237 | auto *NewRHS = |
| 238 | Rewriter.expandCodeFor(SH: InvariantRHS, Ty: IVOperand->getType(), I: PHTerm); |
| 239 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); |
| 240 | ICmp->setPredicate(InvariantPredicate); |
| 241 | ICmp->setOperand(i_nocapture: 0, Val_nocapture: NewLHS); |
| 242 | ICmp->setOperand(i_nocapture: 1, Val_nocapture: NewRHS); |
| 243 | RunUnswitching = true; |
| 244 | return true; |
| 245 | } |
| 246 | |
| 247 | /// SimplifyIVUsers helper for eliminating useless |
| 248 | /// comparisons against an induction variable. |
| 249 | void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, |
| 250 | Instruction *IVOperand) { |
| 251 | unsigned IVOperIdx = 0; |
| 252 | CmpPredicate Pred = ICmp->getCmpPredicate(); |
| 253 | ICmpInst::Predicate OriginalPred = Pred; |
| 254 | if (IVOperand != ICmp->getOperand(i_nocapture: 0)) { |
| 255 | // Swapped |
| 256 | assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand" ); |
| 257 | IVOperIdx = 1; |
| 258 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 259 | } |
| 260 | |
| 261 | // Get the SCEVs for the ICmp operands (in the specific context of the |
| 262 | // current loop) |
| 263 | const Loop *ICmpLoop = LI->getLoopFor(BB: ICmp->getParent()); |
| 264 | const SCEV *S = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: IVOperIdx), L: ICmpLoop); |
| 265 | const SCEV *X = SE->getSCEVAtScope(V: ICmp->getOperand(i_nocapture: 1 - IVOperIdx), L: ICmpLoop); |
| 266 | |
| 267 | // If the condition is always true or always false in the given context, |
| 268 | // replace it with a constant value. |
| 269 | SmallVector<Instruction *, 4> Users; |
| 270 | for (auto *U : ICmp->users()) |
| 271 | Users.push_back(Elt: cast<Instruction>(Val: U)); |
| 272 | const Instruction *CtxI = findCommonDominator(Instructions: Users, DT&: *DT); |
| 273 | if (auto Ev = SE->evaluatePredicateAt(Pred, LHS: S, RHS: X, CtxI)) { |
| 274 | SE->forgetValue(V: ICmp); |
| 275 | ICmp->replaceAllUsesWith(V: ConstantInt::getBool(Context&: ICmp->getContext(), V: *Ev)); |
| 276 | DeadInsts.emplace_back(Args&: ICmp); |
| 277 | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
| 278 | } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { |
| 279 | // fallthrough to end of function |
| 280 | } else if (ICmpInst::isSigned(predicate: OriginalPred) && |
| 281 | SE->isKnownNonNegative(S) && SE->isKnownNonNegative(S: X)) { |
| 282 | // If we were unable to make anything above, all we can is to canonicalize |
| 283 | // the comparison hoping that it will open the doors for other |
| 284 | // optimizations. If we find out that we compare two non-negative values, |
| 285 | // we turn the instruction's predicate to its unsigned version. Note that |
| 286 | // we cannot rely on Pred here unless we check if we have swapped it. |
| 287 | assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?" ); |
| 288 | LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp |
| 289 | << '\n'); |
| 290 | ICmp->setPredicate(ICmpInst::getUnsignedPredicate(Pred: OriginalPred)); |
| 291 | ICmp->setSameSign(); |
| 292 | } else |
| 293 | return; |
| 294 | |
| 295 | ++NumElimCmp; |
| 296 | Changed = true; |
| 297 | } |
| 298 | |
| 299 | bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { |
| 300 | // Get the SCEVs for the ICmp operands. |
| 301 | const SCEV *N = SE->getSCEV(V: SDiv->getOperand(i_nocapture: 0)); |
| 302 | const SCEV *D = SE->getSCEV(V: SDiv->getOperand(i_nocapture: 1)); |
| 303 | |
| 304 | // Simplify unnecessary loops away. |
| 305 | const Loop *L = LI->getLoopFor(BB: SDiv->getParent()); |
| 306 | N = SE->getSCEVAtScope(S: N, L); |
| 307 | D = SE->getSCEVAtScope(S: D, L); |
| 308 | |
| 309 | // Replace sdiv by udiv if both of the operands are non-negative |
| 310 | if (SE->isKnownNonNegative(S: N) && SE->isKnownNonNegative(S: D)) { |
| 311 | auto *UDiv = BinaryOperator::Create( |
| 312 | Op: BinaryOperator::UDiv, S1: SDiv->getOperand(i_nocapture: 0), S2: SDiv->getOperand(i_nocapture: 1), |
| 313 | Name: SDiv->getName() + ".udiv" , InsertBefore: SDiv->getIterator()); |
| 314 | UDiv->setIsExact(SDiv->isExact()); |
| 315 | SDiv->replaceAllUsesWith(V: UDiv); |
| 316 | UDiv->setDebugLoc(SDiv->getDebugLoc()); |
| 317 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); |
| 318 | ++NumSimplifiedSDiv; |
| 319 | Changed = true; |
| 320 | DeadInsts.push_back(Elt: SDiv); |
| 321 | return true; |
| 322 | } |
| 323 | |
| 324 | return false; |
| 325 | } |
| 326 | |
| 327 | // i %s n -> i %u n if i >= 0 and n >= 0 |
| 328 | void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { |
| 329 | auto *N = Rem->getOperand(i_nocapture: 0), *D = Rem->getOperand(i_nocapture: 1); |
| 330 | auto *URem = BinaryOperator::Create(Op: BinaryOperator::URem, S1: N, S2: D, |
| 331 | Name: Rem->getName() + ".urem" , InsertBefore: Rem->getIterator()); |
| 332 | Rem->replaceAllUsesWith(V: URem); |
| 333 | URem->setDebugLoc(Rem->getDebugLoc()); |
| 334 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); |
| 335 | ++NumSimplifiedSRem; |
| 336 | Changed = true; |
| 337 | DeadInsts.emplace_back(Args&: Rem); |
| 338 | } |
| 339 | |
| 340 | // i % n --> i if i is in [0,n). |
| 341 | void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { |
| 342 | Rem->replaceAllUsesWith(V: Rem->getOperand(i_nocapture: 0)); |
| 343 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
| 344 | ++NumElimRem; |
| 345 | Changed = true; |
| 346 | DeadInsts.emplace_back(Args&: Rem); |
| 347 | } |
| 348 | |
| 349 | // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). |
| 350 | void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { |
| 351 | auto *T = Rem->getType(); |
| 352 | auto *N = Rem->getOperand(i_nocapture: 0), *D = Rem->getOperand(i_nocapture: 1); |
| 353 | ICmpInst *ICmp = new ICmpInst(Rem->getIterator(), ICmpInst::ICMP_EQ, N, D); |
| 354 | ICmp->setDebugLoc(Rem->getDebugLoc()); |
| 355 | SelectInst *Sel = |
| 356 | SelectInst::Create(C: ICmp, S1: ConstantInt::get(Ty: T, V: 0), S2: N, NameStr: "iv.rem" , InsertBefore: Rem->getIterator()); |
| 357 | Rem->replaceAllUsesWith(V: Sel); |
| 358 | Sel->setDebugLoc(Rem->getDebugLoc()); |
| 359 | LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
| 360 | ++NumElimRem; |
| 361 | Changed = true; |
| 362 | DeadInsts.emplace_back(Args&: Rem); |
| 363 | } |
| 364 | |
| 365 | /// SimplifyIVUsers helper for eliminating useless remainder operations |
| 366 | /// operating on an induction variable or replacing srem by urem. |
| 367 | void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, |
| 368 | Instruction *IVOperand, |
| 369 | bool IsSigned) { |
| 370 | auto *NValue = Rem->getOperand(i_nocapture: 0); |
| 371 | auto *DValue = Rem->getOperand(i_nocapture: 1); |
| 372 | // We're only interested in the case where we know something about |
| 373 | // the numerator, unless it is a srem, because we want to replace srem by urem |
| 374 | // in general. |
| 375 | bool UsedAsNumerator = IVOperand == NValue; |
| 376 | if (!UsedAsNumerator && !IsSigned) |
| 377 | return; |
| 378 | |
| 379 | const SCEV *N = SE->getSCEV(V: NValue); |
| 380 | |
| 381 | // Simplify unnecessary loops away. |
| 382 | const Loop *ICmpLoop = LI->getLoopFor(BB: Rem->getParent()); |
| 383 | N = SE->getSCEVAtScope(S: N, L: ICmpLoop); |
| 384 | |
| 385 | bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(S: N); |
| 386 | |
| 387 | // Do not proceed if the Numerator may be negative |
| 388 | if (!IsNumeratorNonNegative) |
| 389 | return; |
| 390 | |
| 391 | const SCEV *D = SE->getSCEV(V: DValue); |
| 392 | D = SE->getSCEVAtScope(S: D, L: ICmpLoop); |
| 393 | |
| 394 | if (UsedAsNumerator) { |
| 395 | auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| 396 | if (SE->isKnownPredicate(Pred: LT, LHS: N, RHS: D)) { |
| 397 | replaceRemWithNumerator(Rem); |
| 398 | return; |
| 399 | } |
| 400 | |
| 401 | auto *T = Rem->getType(); |
| 402 | const SCEV *NLessOne = SE->getMinusSCEV(LHS: N, RHS: SE->getOne(Ty: T)); |
| 403 | if (SE->isKnownPredicate(Pred: LT, LHS: NLessOne, RHS: D)) { |
| 404 | replaceRemWithNumeratorOrZero(Rem); |
| 405 | return; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | // Try to replace SRem with URem, if both N and D are known non-negative. |
| 410 | // Since we had already check N, we only need to check D now |
| 411 | if (!IsSigned || !SE->isKnownNonNegative(S: D)) |
| 412 | return; |
| 413 | |
| 414 | replaceSRemWithURem(Rem); |
| 415 | } |
| 416 | |
| 417 | bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { |
| 418 | const SCEV *LHS = SE->getSCEV(V: WO->getLHS()); |
| 419 | const SCEV *RHS = SE->getSCEV(V: WO->getRHS()); |
| 420 | if (!SE->willNotOverflow(BinOp: WO->getBinaryOp(), Signed: WO->isSigned(), LHS, RHS)) |
| 421 | return false; |
| 422 | |
| 423 | // Proved no overflow, nuke the overflow check and, if possible, the overflow |
| 424 | // intrinsic as well. |
| 425 | |
| 426 | BinaryOperator *NewResult = BinaryOperator::Create( |
| 427 | Op: WO->getBinaryOp(), S1: WO->getLHS(), S2: WO->getRHS(), Name: "" , InsertBefore: WO->getIterator()); |
| 428 | |
| 429 | if (WO->isSigned()) |
| 430 | NewResult->setHasNoSignedWrap(true); |
| 431 | else |
| 432 | NewResult->setHasNoUnsignedWrap(true); |
| 433 | |
| 434 | SmallVector<ExtractValueInst *, 4> ToDelete; |
| 435 | |
| 436 | for (auto *U : WO->users()) { |
| 437 | if (auto *EVI = dyn_cast<ExtractValueInst>(Val: U)) { |
| 438 | if (EVI->getIndices()[0] == 1) |
| 439 | EVI->replaceAllUsesWith(V: ConstantInt::getFalse(Context&: WO->getContext())); |
| 440 | else { |
| 441 | assert(EVI->getIndices()[0] == 0 && "Only two possibilities!" ); |
| 442 | EVI->replaceAllUsesWith(V: NewResult); |
| 443 | NewResult->setDebugLoc(EVI->getDebugLoc()); |
| 444 | } |
| 445 | ToDelete.push_back(Elt: EVI); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | for (auto *EVI : ToDelete) |
| 450 | EVI->eraseFromParent(); |
| 451 | |
| 452 | if (WO->use_empty()) |
| 453 | WO->eraseFromParent(); |
| 454 | |
| 455 | Changed = true; |
| 456 | return true; |
| 457 | } |
| 458 | |
| 459 | bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { |
| 460 | const SCEV *LHS = SE->getSCEV(V: SI->getLHS()); |
| 461 | const SCEV *RHS = SE->getSCEV(V: SI->getRHS()); |
| 462 | if (!SE->willNotOverflow(BinOp: SI->getBinaryOp(), Signed: SI->isSigned(), LHS, RHS)) |
| 463 | return false; |
| 464 | |
| 465 | BinaryOperator *BO = BinaryOperator::Create( |
| 466 | Op: SI->getBinaryOp(), S1: SI->getLHS(), S2: SI->getRHS(), Name: SI->getName(), InsertBefore: SI->getIterator()); |
| 467 | if (SI->isSigned()) |
| 468 | BO->setHasNoSignedWrap(); |
| 469 | else |
| 470 | BO->setHasNoUnsignedWrap(); |
| 471 | |
| 472 | SI->replaceAllUsesWith(V: BO); |
| 473 | BO->setDebugLoc(SI->getDebugLoc()); |
| 474 | DeadInsts.emplace_back(Args&: SI); |
| 475 | Changed = true; |
| 476 | return true; |
| 477 | } |
| 478 | |
| 479 | bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { |
| 480 | // It is always legal to replace |
| 481 | // icmp <pred> i32 trunc(iv), n |
| 482 | // with |
| 483 | // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. |
| 484 | // Or with |
| 485 | // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. |
| 486 | // Or with either of these if pred is an equality predicate. |
| 487 | // |
| 488 | // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for |
| 489 | // every comparison which uses trunc, it means that we can replace each of |
| 490 | // them with comparison of iv against sext/zext(n). We no longer need trunc |
| 491 | // after that. |
| 492 | // |
| 493 | // TODO: Should we do this if we can widen *some* comparisons, but not all |
| 494 | // of them? Sometimes it is enough to enable other optimizations, but the |
| 495 | // trunc instruction will stay in the loop. |
| 496 | Value *IV = TI->getOperand(i_nocapture: 0); |
| 497 | Type *IVTy = IV->getType(); |
| 498 | const SCEV *IVSCEV = SE->getSCEV(V: IV); |
| 499 | const SCEV *TISCEV = SE->getSCEV(V: TI); |
| 500 | |
| 501 | // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can |
| 502 | // get rid of trunc |
| 503 | bool DoesSExtCollapse = false; |
| 504 | bool DoesZExtCollapse = false; |
| 505 | if (IVSCEV == SE->getSignExtendExpr(Op: TISCEV, Ty: IVTy)) |
| 506 | DoesSExtCollapse = true; |
| 507 | if (IVSCEV == SE->getZeroExtendExpr(Op: TISCEV, Ty: IVTy)) |
| 508 | DoesZExtCollapse = true; |
| 509 | |
| 510 | // If neither sext nor zext does collapse, it is not profitable to do any |
| 511 | // transform. Bail. |
| 512 | if (!DoesSExtCollapse && !DoesZExtCollapse) |
| 513 | return false; |
| 514 | |
| 515 | // Collect users of the trunc that look like comparisons against invariants. |
| 516 | // Bail if we find something different. |
| 517 | SmallVector<ICmpInst *, 4> ICmpUsers; |
| 518 | for (auto *U : TI->users()) { |
| 519 | // We don't care about users in unreachable blocks. |
| 520 | if (isa<Instruction>(Val: U) && |
| 521 | !DT->isReachableFromEntry(A: cast<Instruction>(Val: U)->getParent())) |
| 522 | continue; |
| 523 | ICmpInst *ICI = dyn_cast<ICmpInst>(Val: U); |
| 524 | if (!ICI) return false; |
| 525 | assert(L->contains(ICI->getParent()) && "LCSSA form broken?" ); |
| 526 | if (!(ICI->getOperand(i_nocapture: 0) == TI && L->isLoopInvariant(V: ICI->getOperand(i_nocapture: 1))) && |
| 527 | !(ICI->getOperand(i_nocapture: 1) == TI && L->isLoopInvariant(V: ICI->getOperand(i_nocapture: 0)))) |
| 528 | return false; |
| 529 | // If we cannot get rid of trunc, bail. |
| 530 | if (ICI->isSigned() && !DoesSExtCollapse) |
| 531 | return false; |
| 532 | if (ICI->isUnsigned() && !DoesZExtCollapse) |
| 533 | return false; |
| 534 | // For equality, either signed or unsigned works. |
| 535 | ICmpUsers.push_back(Elt: ICI); |
| 536 | } |
| 537 | |
| 538 | auto CanUseZExt = [&](ICmpInst *ICI) { |
| 539 | // Unsigned comparison can be widened as unsigned. |
| 540 | if (ICI->isUnsigned()) |
| 541 | return true; |
| 542 | // Is it profitable to do zext? |
| 543 | if (!DoesZExtCollapse) |
| 544 | return false; |
| 545 | // For equality, we can safely zext both parts. |
| 546 | if (ICI->isEquality()) |
| 547 | return true; |
| 548 | // Otherwise we can only use zext when comparing two non-negative or two |
| 549 | // negative values. But in practice, we will never pass DoesZExtCollapse |
| 550 | // check for a negative value, because zext(trunc(x)) is non-negative. So |
| 551 | // it only make sense to check for non-negativity here. |
| 552 | const SCEV *SCEVOP1 = SE->getSCEV(V: ICI->getOperand(i_nocapture: 0)); |
| 553 | const SCEV *SCEVOP2 = SE->getSCEV(V: ICI->getOperand(i_nocapture: 1)); |
| 554 | return SE->isKnownNonNegative(S: SCEVOP1) && SE->isKnownNonNegative(S: SCEVOP2); |
| 555 | }; |
| 556 | // Replace all comparisons against trunc with comparisons against IV. |
| 557 | for (auto *ICI : ICmpUsers) { |
| 558 | bool IsSwapped = L->isLoopInvariant(V: ICI->getOperand(i_nocapture: 0)); |
| 559 | auto *Op1 = IsSwapped ? ICI->getOperand(i_nocapture: 0) : ICI->getOperand(i_nocapture: 1); |
| 560 | IRBuilder<> Builder(ICI); |
| 561 | Value *Ext = nullptr; |
| 562 | // For signed/unsigned predicate, replace the old comparison with comparison |
| 563 | // of immediate IV against sext/zext of the invariant argument. If we can |
| 564 | // use either sext or zext (i.e. we are dealing with equality predicate), |
| 565 | // then prefer zext as a more canonical form. |
| 566 | // TODO: If we see a signed comparison which can be turned into unsigned, |
| 567 | // we can do it here for canonicalization purposes. |
| 568 | ICmpInst::Predicate Pred = ICI->getPredicate(); |
| 569 | if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 570 | if (CanUseZExt(ICI)) { |
| 571 | assert(DoesZExtCollapse && "Unprofitable zext?" ); |
| 572 | Ext = Builder.CreateZExt(V: Op1, DestTy: IVTy, Name: "zext" ); |
| 573 | Pred = ICmpInst::getUnsignedPredicate(Pred); |
| 574 | } else { |
| 575 | assert(DoesSExtCollapse && "Unprofitable sext?" ); |
| 576 | Ext = Builder.CreateSExt(V: Op1, DestTy: IVTy, Name: "sext" ); |
| 577 | assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!" ); |
| 578 | } |
| 579 | bool Changed; |
| 580 | L->makeLoopInvariant(V: Ext, Changed); |
| 581 | (void)Changed; |
| 582 | auto *NewCmp = Builder.CreateICmp(P: Pred, LHS: IV, RHS: Ext); |
| 583 | ICI->replaceAllUsesWith(V: NewCmp); |
| 584 | DeadInsts.emplace_back(Args&: ICI); |
| 585 | } |
| 586 | |
| 587 | // Trunc no longer needed. |
| 588 | TI->replaceAllUsesWith(V: PoisonValue::get(T: TI->getType())); |
| 589 | DeadInsts.emplace_back(Args&: TI); |
| 590 | return true; |
| 591 | } |
| 592 | |
| 593 | /// Eliminate an operation that consumes a simple IV and has no observable |
| 594 | /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, |
| 595 | /// but UseInst may not be. |
| 596 | bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, |
| 597 | Instruction *IVOperand) { |
| 598 | if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Val: UseInst)) { |
| 599 | eliminateIVComparison(ICmp, IVOperand); |
| 600 | return true; |
| 601 | } |
| 602 | if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(Val: UseInst)) { |
| 603 | bool IsSRem = Bin->getOpcode() == Instruction::SRem; |
| 604 | if (IsSRem || Bin->getOpcode() == Instruction::URem) { |
| 605 | simplifyIVRemainder(Rem: Bin, IVOperand, IsSigned: IsSRem); |
| 606 | return true; |
| 607 | } |
| 608 | |
| 609 | if (Bin->getOpcode() == Instruction::SDiv) |
| 610 | return eliminateSDiv(SDiv: Bin); |
| 611 | } |
| 612 | |
| 613 | if (auto *WO = dyn_cast<WithOverflowInst>(Val: UseInst)) |
| 614 | if (eliminateOverflowIntrinsic(WO)) |
| 615 | return true; |
| 616 | |
| 617 | if (auto *SI = dyn_cast<SaturatingInst>(Val: UseInst)) |
| 618 | if (eliminateSaturatingIntrinsic(SI)) |
| 619 | return true; |
| 620 | |
| 621 | if (auto *TI = dyn_cast<TruncInst>(Val: UseInst)) |
| 622 | if (eliminateTrunc(TI)) |
| 623 | return true; |
| 624 | |
| 625 | if (eliminateIdentitySCEV(UseInst, IVOperand)) |
| 626 | return true; |
| 627 | |
| 628 | return false; |
| 629 | } |
| 630 | |
| 631 | static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { |
| 632 | if (auto *BB = L->getLoopPreheader()) |
| 633 | return BB->getTerminator(); |
| 634 | |
| 635 | return Hint; |
| 636 | } |
| 637 | |
| 638 | /// Replace the UseInst with a loop invariant expression if it is safe. |
| 639 | bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { |
| 640 | if (!SE->isSCEVable(Ty: I->getType())) |
| 641 | return false; |
| 642 | |
| 643 | // Get the symbolic expression for this instruction. |
| 644 | const SCEV *S = SE->getSCEV(V: I); |
| 645 | |
| 646 | if (!SE->isLoopInvariant(S, L)) |
| 647 | return false; |
| 648 | |
| 649 | // Do not generate something ridiculous even if S is loop invariant. |
| 650 | if (Rewriter.isHighCostExpansion(Exprs: S, L, Budget: SCEVCheapExpansionBudget, TTI, At: I)) |
| 651 | return false; |
| 652 | |
| 653 | auto *IP = GetLoopInvariantInsertPosition(L, Hint: I); |
| 654 | |
| 655 | if (!Rewriter.isSafeToExpandAt(S, InsertionPoint: IP)) { |
| 656 | LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I |
| 657 | << " with non-speculable loop invariant: " << *S << '\n'); |
| 658 | return false; |
| 659 | } |
| 660 | |
| 661 | auto *Invariant = Rewriter.expandCodeFor(SH: S, Ty: I->getType(), I: IP); |
| 662 | bool NeedToEmitLCSSAPhis = false; |
| 663 | if (!LI->replacementPreservesLCSSAForm(From: I, To: Invariant)) |
| 664 | NeedToEmitLCSSAPhis = true; |
| 665 | |
| 666 | I->replaceAllUsesWith(V: Invariant); |
| 667 | LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I |
| 668 | << " with loop invariant: " << *S << '\n'); |
| 669 | |
| 670 | if (NeedToEmitLCSSAPhis) { |
| 671 | SmallVector<Instruction *, 1> NeedsLCSSAPhis; |
| 672 | NeedsLCSSAPhis.push_back(Elt: cast<Instruction>(Val: Invariant)); |
| 673 | formLCSSAForInstructions(Worklist&: NeedsLCSSAPhis, DT: *DT, LI: *LI, SE); |
| 674 | LLVM_DEBUG(dbgs() << " INDVARS: Replacement breaks LCSSA form" |
| 675 | << " inserting LCSSA Phis" << '\n'); |
| 676 | } |
| 677 | ++NumFoldedUser; |
| 678 | Changed = true; |
| 679 | DeadInsts.emplace_back(Args&: I); |
| 680 | return true; |
| 681 | } |
| 682 | |
| 683 | /// Eliminate redundant type cast between integer and float. |
| 684 | bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { |
| 685 | if (UseInst->getOpcode() != CastInst::SIToFP && |
| 686 | UseInst->getOpcode() != CastInst::UIToFP) |
| 687 | return false; |
| 688 | |
| 689 | Instruction *IVOperand = cast<Instruction>(Val: UseInst->getOperand(i: 0)); |
| 690 | // Get the symbolic expression for this instruction. |
| 691 | const SCEV *IV = SE->getSCEV(V: IVOperand); |
| 692 | int MaskBits; |
| 693 | if (UseInst->getOpcode() == CastInst::SIToFP) |
| 694 | MaskBits = (int)SE->getSignedRange(S: IV).getMinSignedBits(); |
| 695 | else |
| 696 | MaskBits = (int)SE->getUnsignedRange(S: IV).getActiveBits(); |
| 697 | int DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); |
| 698 | if (MaskBits <= DestNumSigBits) { |
| 699 | for (User *U : UseInst->users()) { |
| 700 | // Match for fptosi/fptoui of sitofp and with same type. |
| 701 | auto *CI = dyn_cast<CastInst>(Val: U); |
| 702 | if (!CI) |
| 703 | continue; |
| 704 | |
| 705 | CastInst::CastOps Opcode = CI->getOpcode(); |
| 706 | if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) |
| 707 | continue; |
| 708 | |
| 709 | Value *Conv = nullptr; |
| 710 | if (IVOperand->getType() != CI->getType()) { |
| 711 | IRBuilder<> Builder(CI); |
| 712 | StringRef Name = IVOperand->getName(); |
| 713 | // To match InstCombine logic, we only need sext if both fptosi and |
| 714 | // sitofp are used. If one of them is unsigned, then we can use zext. |
| 715 | if (SE->getTypeSizeInBits(Ty: IVOperand->getType()) > |
| 716 | SE->getTypeSizeInBits(Ty: CI->getType())) { |
| 717 | Conv = Builder.CreateTrunc(V: IVOperand, DestTy: CI->getType(), Name: Name + ".trunc" ); |
| 718 | } else if (Opcode == CastInst::FPToUI || |
| 719 | UseInst->getOpcode() == CastInst::UIToFP) { |
| 720 | Conv = Builder.CreateZExt(V: IVOperand, DestTy: CI->getType(), Name: Name + ".zext" ); |
| 721 | } else { |
| 722 | Conv = Builder.CreateSExt(V: IVOperand, DestTy: CI->getType(), Name: Name + ".sext" ); |
| 723 | } |
| 724 | } else |
| 725 | Conv = IVOperand; |
| 726 | |
| 727 | CI->replaceAllUsesWith(V: Conv); |
| 728 | DeadInsts.push_back(Elt: CI); |
| 729 | LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI |
| 730 | << " with: " << *Conv << '\n'); |
| 731 | |
| 732 | ++NumFoldedUser; |
| 733 | Changed = true; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | return Changed; |
| 738 | } |
| 739 | |
| 740 | /// Eliminate any operation that SCEV can prove is an identity function. |
| 741 | bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, |
| 742 | Instruction *IVOperand) { |
| 743 | if (!SE->isSCEVable(Ty: UseInst->getType()) || |
| 744 | UseInst->getType() != IVOperand->getType()) |
| 745 | return false; |
| 746 | |
| 747 | const SCEV *UseSCEV = SE->getSCEV(V: UseInst); |
| 748 | if (UseSCEV != SE->getSCEV(V: IVOperand)) |
| 749 | return false; |
| 750 | |
| 751 | // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the |
| 752 | // dominator tree, even if X is an operand to Y. For instance, in |
| 753 | // |
| 754 | // %iv = phi i32 {0,+,1} |
| 755 | // br %cond, label %left, label %merge |
| 756 | // |
| 757 | // left: |
| 758 | // %X = add i32 %iv, 0 |
| 759 | // br label %merge |
| 760 | // |
| 761 | // merge: |
| 762 | // %M = phi (%X, %iv) |
| 763 | // |
| 764 | // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and |
| 765 | // %M.replaceAllUsesWith(%X) would be incorrect. |
| 766 | |
| 767 | if (isa<PHINode>(Val: UseInst)) |
| 768 | // If UseInst is not a PHI node then we know that IVOperand dominates |
| 769 | // UseInst directly from the legality of SSA. |
| 770 | if (!DT || !DT->dominates(Def: IVOperand, User: UseInst)) |
| 771 | return false; |
| 772 | |
| 773 | if (!LI->replacementPreservesLCSSAForm(From: UseInst, To: IVOperand)) |
| 774 | return false; |
| 775 | |
| 776 | // Make sure the operand is not more poisonous than the instruction. |
| 777 | if (!impliesPoison(ValAssumedPoison: IVOperand, V: UseInst)) { |
| 778 | SmallVector<Instruction *> DropPoisonGeneratingInsts; |
| 779 | if (!SE->canReuseInstruction(S: UseSCEV, I: IVOperand, DropPoisonGeneratingInsts)) |
| 780 | return false; |
| 781 | |
| 782 | for (Instruction *I : DropPoisonGeneratingInsts) |
| 783 | I->dropPoisonGeneratingAnnotations(); |
| 784 | } |
| 785 | |
| 786 | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); |
| 787 | |
| 788 | SE->forgetValue(V: UseInst); |
| 789 | UseInst->replaceAllUsesWith(V: IVOperand); |
| 790 | ++NumElimIdentity; |
| 791 | Changed = true; |
| 792 | DeadInsts.emplace_back(Args&: UseInst); |
| 793 | return true; |
| 794 | } |
| 795 | |
| 796 | bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO, |
| 797 | Instruction *IVOperand) { |
| 798 | return (isa<OverflowingBinaryOperator>(Val: BO) && |
| 799 | strengthenOverflowingOperation(OBO: BO, IVOperand)) || |
| 800 | (isa<ShlOperator>(Val: BO) && strengthenRightShift(BO, IVOperand)); |
| 801 | } |
| 802 | |
| 803 | /// Annotate BO with nsw / nuw if it provably does not signed-overflow / |
| 804 | /// unsigned-overflow. Returns true if anything changed, false otherwise. |
| 805 | bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, |
| 806 | Instruction *IVOperand) { |
| 807 | auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( |
| 808 | OBO: cast<OverflowingBinaryOperator>(Val: BO)); |
| 809 | |
| 810 | if (!Flags) |
| 811 | return false; |
| 812 | |
| 813 | BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags: *Flags, Mask: SCEV::FlagNUW) == |
| 814 | SCEV::FlagNUW); |
| 815 | BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags: *Flags, Mask: SCEV::FlagNSW) == |
| 816 | SCEV::FlagNSW); |
| 817 | |
| 818 | // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap |
| 819 | // flags on addrecs while performing zero/sign extensions. We could call |
| 820 | // forgetValue() here to make sure those flags also propagate to any other |
| 821 | // SCEV expressions based on the addrec. However, this can have pathological |
| 822 | // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. |
| 823 | return true; |
| 824 | } |
| 825 | |
| 826 | /// Annotate the Shr in (X << IVOperand) >> C as exact using the |
| 827 | /// information from the IV's range. Returns true if anything changed, false |
| 828 | /// otherwise. |
| 829 | bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, |
| 830 | Instruction *IVOperand) { |
| 831 | if (BO->getOpcode() == Instruction::Shl) { |
| 832 | bool Changed = false; |
| 833 | ConstantRange IVRange = SE->getUnsignedRange(S: SE->getSCEV(V: IVOperand)); |
| 834 | for (auto *U : BO->users()) { |
| 835 | const APInt *C; |
| 836 | if (match(V: U, |
| 837 | P: m_AShr(L: m_Shl(L: m_Value(), R: m_Specific(V: IVOperand)), R: m_APInt(Res&: C))) || |
| 838 | match(V: U, |
| 839 | P: m_LShr(L: m_Shl(L: m_Value(), R: m_Specific(V: IVOperand)), R: m_APInt(Res&: C)))) { |
| 840 | BinaryOperator *Shr = cast<BinaryOperator>(Val: U); |
| 841 | if (!Shr->isExact() && IVRange.getUnsignedMin().uge(RHS: *C)) { |
| 842 | Shr->setIsExact(true); |
| 843 | Changed = true; |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | return Changed; |
| 848 | } |
| 849 | |
| 850 | return false; |
| 851 | } |
| 852 | |
| 853 | /// Add all uses of Def to the current IV's worklist. |
| 854 | void SimplifyIndvar::pushIVUsers( |
| 855 | Instruction *Def, SmallPtrSet<Instruction *, 16> &Simplified, |
| 856 | SmallVectorImpl<std::pair<Instruction *, Instruction *>> &SimpleIVUsers) { |
| 857 | for (User *U : Def->users()) { |
| 858 | Instruction *UI = cast<Instruction>(Val: U); |
| 859 | |
| 860 | // Avoid infinite or exponential worklist processing. |
| 861 | // Also ensure unique worklist users. |
| 862 | // If Def is a LoopPhi, it may not be in the Simplified set, so check for |
| 863 | // self edges first. |
| 864 | if (UI == Def) |
| 865 | continue; |
| 866 | |
| 867 | // Only change the current Loop, do not change the other parts (e.g. other |
| 868 | // Loops). |
| 869 | if (!L->contains(Inst: UI)) |
| 870 | continue; |
| 871 | |
| 872 | // Do not push the same instruction more than once. |
| 873 | if (!Simplified.insert(Ptr: UI).second) |
| 874 | continue; |
| 875 | |
| 876 | SimpleIVUsers.push_back(Elt: std::make_pair(x&: UI, y&: Def)); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | /// Return true if this instruction generates a simple SCEV |
| 881 | /// expression in terms of that IV. |
| 882 | /// |
| 883 | /// This is similar to IVUsers' isInteresting() but processes each instruction |
| 884 | /// non-recursively when the operand is already known to be a simpleIVUser. |
| 885 | /// |
| 886 | static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { |
| 887 | if (!SE->isSCEVable(Ty: I->getType())) |
| 888 | return false; |
| 889 | |
| 890 | // Get the symbolic expression for this instruction. |
| 891 | const SCEV *S = SE->getSCEV(V: I); |
| 892 | |
| 893 | // Only consider affine recurrences. |
| 894 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S); |
| 895 | if (AR && AR->getLoop() == L) |
| 896 | return true; |
| 897 | |
| 898 | return false; |
| 899 | } |
| 900 | |
| 901 | /// Iteratively perform simplification on a worklist of users |
| 902 | /// of the specified induction variable. Each successive simplification may push |
| 903 | /// more users which may themselves be candidates for simplification. |
| 904 | /// |
| 905 | /// This algorithm does not require IVUsers analysis. Instead, it simplifies |
| 906 | /// instructions in-place during analysis. Rather than rewriting induction |
| 907 | /// variables bottom-up from their users, it transforms a chain of IVUsers |
| 908 | /// top-down, updating the IR only when it encounters a clear optimization |
| 909 | /// opportunity. |
| 910 | /// |
| 911 | /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. |
| 912 | /// |
| 913 | void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { |
| 914 | if (!SE->isSCEVable(Ty: CurrIV->getType())) |
| 915 | return; |
| 916 | |
| 917 | // Instructions processed by SimplifyIndvar for CurrIV. |
| 918 | SmallPtrSet<Instruction*,16> Simplified; |
| 919 | |
| 920 | // Use-def pairs if IV users waiting to be processed for CurrIV. |
| 921 | SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; |
| 922 | |
| 923 | // Push users of the current LoopPhi. In rare cases, pushIVUsers may be |
| 924 | // called multiple times for the same LoopPhi. This is the proper thing to |
| 925 | // do for loop header phis that use each other. |
| 926 | pushIVUsers(Def: CurrIV, Simplified, SimpleIVUsers); |
| 927 | |
| 928 | while (!SimpleIVUsers.empty()) { |
| 929 | std::pair<Instruction*, Instruction*> UseOper = |
| 930 | SimpleIVUsers.pop_back_val(); |
| 931 | Instruction *UseInst = UseOper.first; |
| 932 | |
| 933 | // If a user of the IndVar is trivially dead, we prefer just to mark it dead |
| 934 | // rather than try to do some complex analysis or transformation (such as |
| 935 | // widening) basing on it. |
| 936 | // TODO: Propagate TLI and pass it here to handle more cases. |
| 937 | if (isInstructionTriviallyDead(I: UseInst, /* TLI */ nullptr)) { |
| 938 | DeadInsts.emplace_back(Args&: UseInst); |
| 939 | continue; |
| 940 | } |
| 941 | |
| 942 | // Bypass back edges to avoid extra work. |
| 943 | if (UseInst == CurrIV) continue; |
| 944 | |
| 945 | // Try to replace UseInst with a loop invariant before any other |
| 946 | // simplifications. |
| 947 | if (replaceIVUserWithLoopInvariant(I: UseInst)) |
| 948 | continue; |
| 949 | |
| 950 | // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done |
| 951 | // by truncation |
| 952 | if ((isa<PtrToIntInst>(Val: UseInst)) || (isa<TruncInst>(Val: UseInst))) |
| 953 | for (Use &U : UseInst->uses()) { |
| 954 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
| 955 | if (replaceIVUserWithLoopInvariant(I: User)) |
| 956 | break; // done replacing |
| 957 | } |
| 958 | |
| 959 | Instruction *IVOperand = UseOper.second; |
| 960 | for (unsigned N = 0; IVOperand; ++N) { |
| 961 | assert(N <= Simplified.size() && "runaway iteration" ); |
| 962 | (void) N; |
| 963 | |
| 964 | Value *NewOper = foldIVUser(UseInst, IVOperand); |
| 965 | if (!NewOper) |
| 966 | break; // done folding |
| 967 | IVOperand = dyn_cast<Instruction>(Val: NewOper); |
| 968 | } |
| 969 | if (!IVOperand) |
| 970 | continue; |
| 971 | |
| 972 | if (eliminateIVUser(UseInst, IVOperand)) { |
| 973 | pushIVUsers(Def: IVOperand, Simplified, SimpleIVUsers); |
| 974 | continue; |
| 975 | } |
| 976 | |
| 977 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: UseInst)) { |
| 978 | if (strengthenBinaryOp(BO, IVOperand)) { |
| 979 | // re-queue uses of the now modified binary operator and fall |
| 980 | // through to the checks that remain. |
| 981 | pushIVUsers(Def: IVOperand, Simplified, SimpleIVUsers); |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | // Try to use integer induction for FPToSI of float induction directly. |
| 986 | if (replaceFloatIVWithIntegerIV(UseInst)) { |
| 987 | // Re-queue the potentially new direct uses of IVOperand. |
| 988 | pushIVUsers(Def: IVOperand, Simplified, SimpleIVUsers); |
| 989 | continue; |
| 990 | } |
| 991 | |
| 992 | CastInst *Cast = dyn_cast<CastInst>(Val: UseInst); |
| 993 | if (V && Cast) { |
| 994 | V->visitCast(Cast); |
| 995 | continue; |
| 996 | } |
| 997 | if (isSimpleIVUser(I: UseInst, L, SE)) { |
| 998 | pushIVUsers(Def: UseInst, Simplified, SimpleIVUsers); |
| 999 | } |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | namespace llvm { |
| 1004 | |
| 1005 | void IVVisitor::anchor() { } |
| 1006 | |
| 1007 | /// Simplify instructions that use this induction variable |
| 1008 | /// by using ScalarEvolution to analyze the IV's recurrence. |
| 1009 | /// Returns a pair where the first entry indicates that the function makes |
| 1010 | /// changes and the second entry indicates that it introduced new opportunities |
| 1011 | /// for loop unswitching. |
| 1012 | std::pair<bool, bool> simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, |
| 1013 | DominatorTree *DT, LoopInfo *LI, |
| 1014 | const TargetTransformInfo *TTI, |
| 1015 | SmallVectorImpl<WeakTrackingVH> &Dead, |
| 1016 | SCEVExpander &Rewriter, IVVisitor *V) { |
| 1017 | SimplifyIndvar SIV(LI->getLoopFor(BB: CurrIV->getParent()), SE, DT, LI, TTI, |
| 1018 | Rewriter, Dead); |
| 1019 | SIV.simplifyUsers(CurrIV, V); |
| 1020 | return {SIV.hasChanged(), SIV.runUnswitching()}; |
| 1021 | } |
| 1022 | |
| 1023 | /// Simplify users of induction variables within this |
| 1024 | /// loop. This does not actually change or add IVs. |
| 1025 | bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, |
| 1026 | LoopInfo *LI, const TargetTransformInfo *TTI, |
| 1027 | SmallVectorImpl<WeakTrackingVH> &Dead) { |
| 1028 | SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars" ); |
| 1029 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1030 | Rewriter.setDebugType(DEBUG_TYPE); |
| 1031 | #endif |
| 1032 | bool Changed = false; |
| 1033 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(Val: I); ++I) { |
| 1034 | const auto &[C, _] = |
| 1035 | simplifyUsersOfIV(CurrIV: cast<PHINode>(Val&: I), SE, DT, LI, TTI, Dead, Rewriter); |
| 1036 | Changed |= C; |
| 1037 | } |
| 1038 | return Changed; |
| 1039 | } |
| 1040 | |
| 1041 | } // namespace llvm |
| 1042 | |
| 1043 | namespace { |
| 1044 | //===----------------------------------------------------------------------===// |
| 1045 | // Widen Induction Variables - Extend the width of an IV to cover its |
| 1046 | // widest uses. |
| 1047 | //===----------------------------------------------------------------------===// |
| 1048 | |
| 1049 | class WidenIV { |
| 1050 | // Parameters |
| 1051 | PHINode *OrigPhi; |
| 1052 | Type *WideType; |
| 1053 | |
| 1054 | // Context |
| 1055 | LoopInfo *LI; |
| 1056 | Loop *L; |
| 1057 | ScalarEvolution *SE; |
| 1058 | DominatorTree *DT; |
| 1059 | |
| 1060 | // Does the module have any calls to the llvm.experimental.guard intrinsic |
| 1061 | // at all? If not we can avoid scanning instructions looking for guards. |
| 1062 | bool HasGuards; |
| 1063 | |
| 1064 | bool UsePostIncrementRanges; |
| 1065 | |
| 1066 | // Statistics |
| 1067 | unsigned NumElimExt = 0; |
| 1068 | unsigned NumWidened = 0; |
| 1069 | |
| 1070 | // Result |
| 1071 | PHINode *WidePhi = nullptr; |
| 1072 | Instruction *WideInc = nullptr; |
| 1073 | const SCEV *WideIncExpr = nullptr; |
| 1074 | SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
| 1075 | |
| 1076 | SmallPtrSet<Instruction *,16> Widened; |
| 1077 | |
| 1078 | enum class ExtendKind { Zero, Sign, Unknown }; |
| 1079 | |
| 1080 | // A map tracking the kind of extension used to widen each narrow IV |
| 1081 | // and narrow IV user. |
| 1082 | // Key: pointer to a narrow IV or IV user. |
| 1083 | // Value: the kind of extension used to widen this Instruction. |
| 1084 | DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; |
| 1085 | |
| 1086 | using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; |
| 1087 | |
| 1088 | // A map with control-dependent ranges for post increment IV uses. The key is |
| 1089 | // a pair of IV def and a use of this def denoting the context. The value is |
| 1090 | // a ConstantRange representing possible values of the def at the given |
| 1091 | // context. |
| 1092 | DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; |
| 1093 | |
| 1094 | std::optional<ConstantRange> getPostIncRangeInfo(Value *Def, |
| 1095 | Instruction *UseI) { |
| 1096 | DefUserPair Key(Def, UseI); |
| 1097 | auto It = PostIncRangeInfos.find(Val: Key); |
| 1098 | return It == PostIncRangeInfos.end() |
| 1099 | ? std::optional<ConstantRange>(std::nullopt) |
| 1100 | : std::optional<ConstantRange>(It->second); |
| 1101 | } |
| 1102 | |
| 1103 | void calculatePostIncRanges(PHINode *OrigPhi); |
| 1104 | void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); |
| 1105 | |
| 1106 | void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { |
| 1107 | DefUserPair Key(Def, UseI); |
| 1108 | auto [It, Inserted] = PostIncRangeInfos.try_emplace(Key, Args&: R); |
| 1109 | if (!Inserted) |
| 1110 | It->second = R.intersectWith(CR: It->second); |
| 1111 | } |
| 1112 | |
| 1113 | public: |
| 1114 | /// Record a link in the Narrow IV def-use chain along with the WideIV that |
| 1115 | /// computes the same value as the Narrow IV def. This avoids caching Use* |
| 1116 | /// pointers. |
| 1117 | struct NarrowIVDefUse { |
| 1118 | Instruction *NarrowDef = nullptr; |
| 1119 | Instruction *NarrowUse = nullptr; |
| 1120 | Instruction *WideDef = nullptr; |
| 1121 | |
| 1122 | // True if the narrow def is never negative. Tracking this information lets |
| 1123 | // us use a sign extension instead of a zero extension or vice versa, when |
| 1124 | // profitable and legal. |
| 1125 | bool NeverNegative = false; |
| 1126 | |
| 1127 | NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, |
| 1128 | bool NeverNegative) |
| 1129 | : NarrowDef(ND), NarrowUse(NU), WideDef(WD), |
| 1130 | NeverNegative(NeverNegative) {} |
| 1131 | }; |
| 1132 | |
| 1133 | WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, |
| 1134 | DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, |
| 1135 | bool HasGuards, bool UsePostIncrementRanges = true); |
| 1136 | |
| 1137 | PHINode *createWideIV(SCEVExpander &Rewriter); |
| 1138 | |
| 1139 | unsigned getNumElimExt() { return NumElimExt; }; |
| 1140 | unsigned getNumWidened() { return NumWidened; }; |
| 1141 | |
| 1142 | protected: |
| 1143 | Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, |
| 1144 | Instruction *Use); |
| 1145 | |
| 1146 | Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); |
| 1147 | Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, |
| 1148 | const SCEVAddRecExpr *WideAR); |
| 1149 | Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); |
| 1150 | |
| 1151 | ExtendKind getExtendKind(Instruction *I); |
| 1152 | |
| 1153 | using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; |
| 1154 | |
| 1155 | WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); |
| 1156 | |
| 1157 | WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); |
| 1158 | |
| 1159 | const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, |
| 1160 | unsigned OpCode) const; |
| 1161 | |
| 1162 | Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter, |
| 1163 | PHINode *OrigPhi, PHINode *WidePhi); |
| 1164 | void truncateIVUse(NarrowIVDefUse DU); |
| 1165 | |
| 1166 | bool widenLoopCompare(NarrowIVDefUse DU); |
| 1167 | bool widenWithVariantUse(NarrowIVDefUse DU); |
| 1168 | |
| 1169 | void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); |
| 1170 | |
| 1171 | private: |
| 1172 | SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; |
| 1173 | }; |
| 1174 | } // namespace |
| 1175 | |
| 1176 | /// Determine the insertion point for this user. By default, insert immediately |
| 1177 | /// before the user. SCEVExpander or LICM will hoist loop invariants out of the |
| 1178 | /// loop. For PHI nodes, there may be multiple uses, so compute the nearest |
| 1179 | /// common dominator for the incoming blocks. A nullptr can be returned if no |
| 1180 | /// viable location is found: it may happen if User is a PHI and Def only comes |
| 1181 | /// to this PHI from unreachable blocks. |
| 1182 | static Instruction *getInsertPointForUses(Instruction *User, Value *Def, |
| 1183 | DominatorTree *DT, LoopInfo *LI) { |
| 1184 | PHINode *PHI = dyn_cast<PHINode>(Val: User); |
| 1185 | if (!PHI) |
| 1186 | return User; |
| 1187 | |
| 1188 | Instruction *InsertPt = nullptr; |
| 1189 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { |
| 1190 | if (PHI->getIncomingValue(i) != Def) |
| 1191 | continue; |
| 1192 | |
| 1193 | BasicBlock *InsertBB = PHI->getIncomingBlock(i); |
| 1194 | |
| 1195 | if (!DT->isReachableFromEntry(A: InsertBB)) |
| 1196 | continue; |
| 1197 | |
| 1198 | if (!InsertPt) { |
| 1199 | InsertPt = InsertBB->getTerminator(); |
| 1200 | continue; |
| 1201 | } |
| 1202 | InsertBB = DT->findNearestCommonDominator(A: InsertPt->getParent(), B: InsertBB); |
| 1203 | InsertPt = InsertBB->getTerminator(); |
| 1204 | } |
| 1205 | |
| 1206 | // If we have skipped all inputs, it means that Def only comes to Phi from |
| 1207 | // unreachable blocks. |
| 1208 | if (!InsertPt) |
| 1209 | return nullptr; |
| 1210 | |
| 1211 | auto *DefI = dyn_cast<Instruction>(Val: Def); |
| 1212 | if (!DefI) |
| 1213 | return InsertPt; |
| 1214 | |
| 1215 | assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses" ); |
| 1216 | |
| 1217 | auto *L = LI->getLoopFor(BB: DefI->getParent()); |
| 1218 | assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); |
| 1219 | |
| 1220 | for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) |
| 1221 | if (LI->getLoopFor(BB: DTN->getBlock()) == L) |
| 1222 | return DTN->getBlock()->getTerminator(); |
| 1223 | |
| 1224 | llvm_unreachable("DefI dominates InsertPt!" ); |
| 1225 | } |
| 1226 | |
| 1227 | WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, |
| 1228 | DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, |
| 1229 | bool HasGuards, bool UsePostIncrementRanges) |
| 1230 | : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), |
| 1231 | L(LI->getLoopFor(BB: OrigPhi->getParent())), SE(SEv), DT(DTree), |
| 1232 | HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), |
| 1233 | DeadInsts(DI) { |
| 1234 | assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV" ); |
| 1235 | ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; |
| 1236 | } |
| 1237 | |
| 1238 | Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, |
| 1239 | bool IsSigned, Instruction *Use) { |
| 1240 | // Set the debug location and conservative insertion point. |
| 1241 | IRBuilder<> Builder(Use); |
| 1242 | // Hoist the insertion point into loop preheaders as far as possible. |
| 1243 | for (const Loop *L = LI->getLoopFor(BB: Use->getParent()); |
| 1244 | L && L->getLoopPreheader() && L->isLoopInvariant(V: NarrowOper); |
| 1245 | L = L->getParentLoop()) |
| 1246 | Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); |
| 1247 | |
| 1248 | return IsSigned ? Builder.CreateSExt(V: NarrowOper, DestTy: WideType) : |
| 1249 | Builder.CreateZExt(V: NarrowOper, DestTy: WideType); |
| 1250 | } |
| 1251 | |
| 1252 | /// Instantiate a wide operation to replace a narrow operation. This only needs |
| 1253 | /// to handle operations that can evaluation to SCEVAddRec. It can safely return |
| 1254 | /// 0 for any operation we decide not to clone. |
| 1255 | Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, |
| 1256 | const SCEVAddRecExpr *WideAR) { |
| 1257 | unsigned Opcode = DU.NarrowUse->getOpcode(); |
| 1258 | switch (Opcode) { |
| 1259 | default: |
| 1260 | return nullptr; |
| 1261 | case Instruction::Add: |
| 1262 | case Instruction::Mul: |
| 1263 | case Instruction::UDiv: |
| 1264 | case Instruction::Sub: |
| 1265 | return cloneArithmeticIVUser(DU, WideAR); |
| 1266 | |
| 1267 | case Instruction::And: |
| 1268 | case Instruction::Or: |
| 1269 | case Instruction::Xor: |
| 1270 | case Instruction::Shl: |
| 1271 | case Instruction::LShr: |
| 1272 | case Instruction::AShr: |
| 1273 | return cloneBitwiseIVUser(DU); |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { |
| 1278 | Instruction *NarrowUse = DU.NarrowUse; |
| 1279 | Instruction *NarrowDef = DU.NarrowDef; |
| 1280 | Instruction *WideDef = DU.WideDef; |
| 1281 | |
| 1282 | LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n" ); |
| 1283 | |
| 1284 | // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything |
| 1285 | // about the narrow operand yet so must insert a [sz]ext. It is probably loop |
| 1286 | // invariant and will be folded or hoisted. If it actually comes from a |
| 1287 | // widened IV, it should be removed during a future call to widenIVUse. |
| 1288 | bool IsSigned = getExtendKind(I: NarrowDef) == ExtendKind::Sign; |
| 1289 | Value *LHS = (NarrowUse->getOperand(i: 0) == NarrowDef) |
| 1290 | ? WideDef |
| 1291 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 0), WideType, |
| 1292 | IsSigned, Use: NarrowUse); |
| 1293 | Value *RHS = (NarrowUse->getOperand(i: 1) == NarrowDef) |
| 1294 | ? WideDef |
| 1295 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 1), WideType, |
| 1296 | IsSigned, Use: NarrowUse); |
| 1297 | |
| 1298 | auto *NarrowBO = cast<BinaryOperator>(Val: NarrowUse); |
| 1299 | auto *WideBO = BinaryOperator::Create(Op: NarrowBO->getOpcode(), S1: LHS, S2: RHS, |
| 1300 | Name: NarrowBO->getName()); |
| 1301 | IRBuilder<> Builder(NarrowUse); |
| 1302 | Builder.Insert(I: WideBO); |
| 1303 | WideBO->copyIRFlags(V: NarrowBO); |
| 1304 | return WideBO; |
| 1305 | } |
| 1306 | |
| 1307 | Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, |
| 1308 | const SCEVAddRecExpr *WideAR) { |
| 1309 | Instruction *NarrowUse = DU.NarrowUse; |
| 1310 | Instruction *NarrowDef = DU.NarrowDef; |
| 1311 | Instruction *WideDef = DU.WideDef; |
| 1312 | |
| 1313 | LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n" ); |
| 1314 | |
| 1315 | unsigned IVOpIdx = (NarrowUse->getOperand(i: 0) == NarrowDef) ? 0 : 1; |
| 1316 | |
| 1317 | // We're trying to find X such that |
| 1318 | // |
| 1319 | // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X |
| 1320 | // |
| 1321 | // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), |
| 1322 | // and check using SCEV if any of them are correct. |
| 1323 | |
| 1324 | // Returns true if extending NonIVNarrowDef according to `SignExt` is a |
| 1325 | // correct solution to X. |
| 1326 | auto GuessNonIVOperand = [&](bool SignExt) { |
| 1327 | const SCEV *WideLHS; |
| 1328 | const SCEV *WideRHS; |
| 1329 | |
| 1330 | auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { |
| 1331 | if (SignExt) |
| 1332 | return SE->getSignExtendExpr(Op: S, Ty); |
| 1333 | return SE->getZeroExtendExpr(Op: S, Ty); |
| 1334 | }; |
| 1335 | |
| 1336 | if (IVOpIdx == 0) { |
| 1337 | WideLHS = SE->getSCEV(V: WideDef); |
| 1338 | const SCEV *NarrowRHS = SE->getSCEV(V: NarrowUse->getOperand(i: 1)); |
| 1339 | WideRHS = GetExtend(NarrowRHS, WideType); |
| 1340 | } else { |
| 1341 | const SCEV *NarrowLHS = SE->getSCEV(V: NarrowUse->getOperand(i: 0)); |
| 1342 | WideLHS = GetExtend(NarrowLHS, WideType); |
| 1343 | WideRHS = SE->getSCEV(V: WideDef); |
| 1344 | } |
| 1345 | |
| 1346 | // WideUse is "WideDef `op.wide` X" as described in the comment. |
| 1347 | const SCEV *WideUse = |
| 1348 | getSCEVByOpCode(LHS: WideLHS, RHS: WideRHS, OpCode: NarrowUse->getOpcode()); |
| 1349 | |
| 1350 | return WideUse == WideAR; |
| 1351 | }; |
| 1352 | |
| 1353 | bool SignExtend = getExtendKind(I: NarrowDef) == ExtendKind::Sign; |
| 1354 | if (!GuessNonIVOperand(SignExtend)) { |
| 1355 | SignExtend = !SignExtend; |
| 1356 | if (!GuessNonIVOperand(SignExtend)) |
| 1357 | return nullptr; |
| 1358 | } |
| 1359 | |
| 1360 | Value *LHS = (NarrowUse->getOperand(i: 0) == NarrowDef) |
| 1361 | ? WideDef |
| 1362 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 0), WideType, |
| 1363 | IsSigned: SignExtend, Use: NarrowUse); |
| 1364 | Value *RHS = (NarrowUse->getOperand(i: 1) == NarrowDef) |
| 1365 | ? WideDef |
| 1366 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 1), WideType, |
| 1367 | IsSigned: SignExtend, Use: NarrowUse); |
| 1368 | |
| 1369 | auto *NarrowBO = cast<BinaryOperator>(Val: NarrowUse); |
| 1370 | auto *WideBO = BinaryOperator::Create(Op: NarrowBO->getOpcode(), S1: LHS, S2: RHS, |
| 1371 | Name: NarrowBO->getName()); |
| 1372 | |
| 1373 | IRBuilder<> Builder(NarrowUse); |
| 1374 | Builder.Insert(I: WideBO); |
| 1375 | WideBO->copyIRFlags(V: NarrowBO); |
| 1376 | return WideBO; |
| 1377 | } |
| 1378 | |
| 1379 | WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { |
| 1380 | auto It = ExtendKindMap.find(Val: I); |
| 1381 | assert(It != ExtendKindMap.end() && "Instruction not yet extended!" ); |
| 1382 | return It->second; |
| 1383 | } |
| 1384 | |
| 1385 | const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, |
| 1386 | unsigned OpCode) const { |
| 1387 | switch (OpCode) { |
| 1388 | case Instruction::Add: |
| 1389 | return SE->getAddExpr(LHS, RHS); |
| 1390 | case Instruction::Sub: |
| 1391 | return SE->getMinusSCEV(LHS, RHS); |
| 1392 | case Instruction::Mul: |
| 1393 | return SE->getMulExpr(LHS, RHS); |
| 1394 | case Instruction::UDiv: |
| 1395 | return SE->getUDivExpr(LHS, RHS); |
| 1396 | default: |
| 1397 | llvm_unreachable("Unsupported opcode." ); |
| 1398 | }; |
| 1399 | } |
| 1400 | |
| 1401 | namespace { |
| 1402 | |
| 1403 | // Represents a interesting integer binary operation for |
| 1404 | // getExtendedOperandRecurrence. This may be a shl that is being treated as a |
| 1405 | // multiply or a 'or disjoint' that is being treated as 'add nsw nuw'. |
| 1406 | struct BinaryOp { |
| 1407 | unsigned Opcode; |
| 1408 | std::array<Value *, 2> Operands; |
| 1409 | bool IsNSW = false; |
| 1410 | bool IsNUW = false; |
| 1411 | |
| 1412 | explicit BinaryOp(Instruction *Op) |
| 1413 | : Opcode(Op->getOpcode()), |
| 1414 | Operands({Op->getOperand(i: 0), Op->getOperand(i: 1)}) { |
| 1415 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: Op)) { |
| 1416 | IsNSW = OBO->hasNoSignedWrap(); |
| 1417 | IsNUW = OBO->hasNoUnsignedWrap(); |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | explicit BinaryOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, |
| 1422 | bool IsNSW = false, bool IsNUW = false) |
| 1423 | : Opcode(Opcode), Operands({LHS, RHS}), IsNSW(IsNSW), IsNUW(IsNUW) {} |
| 1424 | }; |
| 1425 | |
| 1426 | } // end anonymous namespace |
| 1427 | |
| 1428 | static std::optional<BinaryOp> matchBinaryOp(Instruction *Op) { |
| 1429 | switch (Op->getOpcode()) { |
| 1430 | case Instruction::Add: |
| 1431 | case Instruction::Sub: |
| 1432 | case Instruction::Mul: |
| 1433 | return BinaryOp(Op); |
| 1434 | case Instruction::Or: { |
| 1435 | // Convert or disjoint into add nuw nsw. |
| 1436 | if (cast<PossiblyDisjointInst>(Val: Op)->isDisjoint()) |
| 1437 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1), |
| 1438 | /*IsNSW=*/true, /*IsNUW=*/true); |
| 1439 | break; |
| 1440 | } |
| 1441 | case Instruction::Shl: { |
| 1442 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) { |
| 1443 | unsigned BitWidth = cast<IntegerType>(Val: SA->getType())->getBitWidth(); |
| 1444 | |
| 1445 | // If the shift count is not less than the bitwidth, the result of |
| 1446 | // the shift is undefined. Don't try to analyze it, because the |
| 1447 | // resolution chosen here may differ from the resolution chosen in |
| 1448 | // other parts of the compiler. |
| 1449 | if (SA->getValue().ult(RHS: BitWidth)) { |
| 1450 | // We can safely preserve the nuw flag in all cases. It's also safe to |
| 1451 | // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation |
| 1452 | // requires special handling. It can be preserved as long as we're not |
| 1453 | // left shifting by bitwidth - 1. |
| 1454 | bool IsNUW = Op->hasNoUnsignedWrap(); |
| 1455 | bool IsNSW = Op->hasNoSignedWrap() && |
| 1456 | (IsNUW || SA->getValue().ult(RHS: BitWidth - 1)); |
| 1457 | |
| 1458 | ConstantInt *X = |
| 1459 | ConstantInt::get(Context&: Op->getContext(), |
| 1460 | V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue())); |
| 1461 | return BinaryOp(Instruction::Mul, Op->getOperand(i: 0), X, IsNSW, IsNUW); |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | break; |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | return std::nullopt; |
| 1470 | } |
| 1471 | |
| 1472 | /// No-wrap operations can transfer sign extension of their result to their |
| 1473 | /// operands. Generate the SCEV value for the widened operation without |
| 1474 | /// actually modifying the IR yet. If the expression after extending the |
| 1475 | /// operands is an AddRec for this loop, return the AddRec and the kind of |
| 1476 | /// extension used. |
| 1477 | WidenIV::WidenedRecTy |
| 1478 | WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { |
| 1479 | auto Op = matchBinaryOp(Op: DU.NarrowUse); |
| 1480 | if (!Op) |
| 1481 | return {nullptr, ExtendKind::Unknown}; |
| 1482 | |
| 1483 | assert((Op->Opcode == Instruction::Add || Op->Opcode == Instruction::Sub || |
| 1484 | Op->Opcode == Instruction::Mul) && |
| 1485 | "Unexpected opcode" ); |
| 1486 | |
| 1487 | // One operand (NarrowDef) has already been extended to WideDef. Now determine |
| 1488 | // if extending the other will lead to a recurrence. |
| 1489 | const unsigned ExtendOperIdx = Op->Operands[0] == DU.NarrowDef ? 1 : 0; |
| 1490 | assert(Op->Operands[1 - ExtendOperIdx] == DU.NarrowDef && "bad DU" ); |
| 1491 | |
| 1492 | ExtendKind ExtKind = getExtendKind(I: DU.NarrowDef); |
| 1493 | if (!(ExtKind == ExtendKind::Sign && Op->IsNSW) && |
| 1494 | !(ExtKind == ExtendKind::Zero && Op->IsNUW)) { |
| 1495 | ExtKind = ExtendKind::Unknown; |
| 1496 | |
| 1497 | // For a non-negative NarrowDef, we can choose either type of |
| 1498 | // extension. We want to use the current extend kind if legal |
| 1499 | // (see above), and we only hit this code if we need to check |
| 1500 | // the opposite case. |
| 1501 | if (DU.NeverNegative) { |
| 1502 | if (Op->IsNSW) { |
| 1503 | ExtKind = ExtendKind::Sign; |
| 1504 | } else if (Op->IsNUW) { |
| 1505 | ExtKind = ExtendKind::Zero; |
| 1506 | } |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | const SCEV *ExtendOperExpr = SE->getSCEV(V: Op->Operands[ExtendOperIdx]); |
| 1511 | if (ExtKind == ExtendKind::Sign) |
| 1512 | ExtendOperExpr = SE->getSignExtendExpr(Op: ExtendOperExpr, Ty: WideType); |
| 1513 | else if (ExtKind == ExtendKind::Zero) |
| 1514 | ExtendOperExpr = SE->getZeroExtendExpr(Op: ExtendOperExpr, Ty: WideType); |
| 1515 | else |
| 1516 | return {nullptr, ExtendKind::Unknown}; |
| 1517 | |
| 1518 | // When creating this SCEV expr, don't apply the current operations NSW or NUW |
| 1519 | // flags. This instruction may be guarded by control flow that the no-wrap |
| 1520 | // behavior depends on. Non-control-equivalent instructions can be mapped to |
| 1521 | // the same SCEV expression, and it would be incorrect to transfer NSW/NUW |
| 1522 | // semantics to those operations. |
| 1523 | const SCEV *lhs = SE->getSCEV(V: DU.WideDef); |
| 1524 | const SCEV *rhs = ExtendOperExpr; |
| 1525 | |
| 1526 | // Let's swap operands to the initial order for the case of non-commutative |
| 1527 | // operations, like SUB. See PR21014. |
| 1528 | if (ExtendOperIdx == 0) |
| 1529 | std::swap(a&: lhs, b&: rhs); |
| 1530 | const SCEVAddRecExpr *AddRec = |
| 1531 | dyn_cast<SCEVAddRecExpr>(Val: getSCEVByOpCode(LHS: lhs, RHS: rhs, OpCode: Op->Opcode)); |
| 1532 | |
| 1533 | if (!AddRec || AddRec->getLoop() != L) |
| 1534 | return {nullptr, ExtendKind::Unknown}; |
| 1535 | |
| 1536 | return {AddRec, ExtKind}; |
| 1537 | } |
| 1538 | |
| 1539 | /// Is this instruction potentially interesting for further simplification after |
| 1540 | /// widening it's type? In other words, can the extend be safely hoisted out of |
| 1541 | /// the loop with SCEV reducing the value to a recurrence on the same loop. If |
| 1542 | /// so, return the extended recurrence and the kind of extension used. Otherwise |
| 1543 | /// return {nullptr, ExtendKind::Unknown}. |
| 1544 | WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { |
| 1545 | if (!DU.NarrowUse->getType()->isIntegerTy()) |
| 1546 | return {nullptr, ExtendKind::Unknown}; |
| 1547 | |
| 1548 | const SCEV *NarrowExpr = SE->getSCEV(V: DU.NarrowUse); |
| 1549 | if (SE->getTypeSizeInBits(Ty: NarrowExpr->getType()) >= |
| 1550 | SE->getTypeSizeInBits(Ty: WideType)) { |
| 1551 | // NarrowUse implicitly widens its operand. e.g. a gep with a narrow |
| 1552 | // index. So don't follow this use. |
| 1553 | return {nullptr, ExtendKind::Unknown}; |
| 1554 | } |
| 1555 | |
| 1556 | const SCEV *WideExpr; |
| 1557 | ExtendKind ExtKind; |
| 1558 | if (DU.NeverNegative) { |
| 1559 | WideExpr = SE->getSignExtendExpr(Op: NarrowExpr, Ty: WideType); |
| 1560 | if (isa<SCEVAddRecExpr>(Val: WideExpr)) |
| 1561 | ExtKind = ExtendKind::Sign; |
| 1562 | else { |
| 1563 | WideExpr = SE->getZeroExtendExpr(Op: NarrowExpr, Ty: WideType); |
| 1564 | ExtKind = ExtendKind::Zero; |
| 1565 | } |
| 1566 | } else if (getExtendKind(I: DU.NarrowDef) == ExtendKind::Sign) { |
| 1567 | WideExpr = SE->getSignExtendExpr(Op: NarrowExpr, Ty: WideType); |
| 1568 | ExtKind = ExtendKind::Sign; |
| 1569 | } else { |
| 1570 | WideExpr = SE->getZeroExtendExpr(Op: NarrowExpr, Ty: WideType); |
| 1571 | ExtKind = ExtendKind::Zero; |
| 1572 | } |
| 1573 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: WideExpr); |
| 1574 | if (!AddRec || AddRec->getLoop() != L) |
| 1575 | return {nullptr, ExtendKind::Unknown}; |
| 1576 | return {AddRec, ExtKind}; |
| 1577 | } |
| 1578 | |
| 1579 | /// This IV user cannot be widened. Replace this use of the original narrow IV |
| 1580 | /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. |
| 1581 | void WidenIV::truncateIVUse(NarrowIVDefUse DU) { |
| 1582 | auto *InsertPt = getInsertPointForUses(User: DU.NarrowUse, Def: DU.NarrowDef, DT, LI); |
| 1583 | if (!InsertPt) |
| 1584 | return; |
| 1585 | LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " |
| 1586 | << *DU.NarrowUse << "\n" ); |
| 1587 | ExtendKind ExtKind = getExtendKind(I: DU.NarrowDef); |
| 1588 | IRBuilder<> Builder(InsertPt); |
| 1589 | Value *Trunc = |
| 1590 | Builder.CreateTrunc(V: DU.WideDef, DestTy: DU.NarrowDef->getType(), Name: "" , |
| 1591 | IsNUW: DU.NeverNegative || ExtKind == ExtendKind::Zero, |
| 1592 | IsNSW: DU.NeverNegative || ExtKind == ExtendKind::Sign); |
| 1593 | DU.NarrowUse->replaceUsesOfWith(From: DU.NarrowDef, To: Trunc); |
| 1594 | } |
| 1595 | |
| 1596 | /// If the narrow use is a compare instruction, then widen the compare |
| 1597 | // (and possibly the other operand). The extend operation is hoisted into the |
| 1598 | // loop preheader as far as possible. |
| 1599 | bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { |
| 1600 | ICmpInst *Cmp = dyn_cast<ICmpInst>(Val: DU.NarrowUse); |
| 1601 | if (!Cmp) |
| 1602 | return false; |
| 1603 | |
| 1604 | // We can legally widen the comparison in the following two cases: |
| 1605 | // |
| 1606 | // - The signedness of the IV extension and comparison match |
| 1607 | // |
| 1608 | // - The narrow IV is always non-negative (and thus its sign extension is |
| 1609 | // equal to its zero extension). For instance, let's say we're zero |
| 1610 | // extending %narrow for the following use |
| 1611 | // |
| 1612 | // icmp slt i32 %narrow, %val ... (A) |
| 1613 | // |
| 1614 | // and %narrow is always non-negative. Then |
| 1615 | // |
| 1616 | // (A) == icmp slt i32 sext(%narrow), sext(%val) |
| 1617 | // == icmp slt i32 zext(%narrow), sext(%val) |
| 1618 | bool IsSigned = getExtendKind(I: DU.NarrowDef) == ExtendKind::Sign; |
| 1619 | bool CmpPreferredSign = Cmp->hasSameSign() ? IsSigned : Cmp->isSigned(); |
| 1620 | if (!DU.NeverNegative && IsSigned != CmpPreferredSign) |
| 1621 | return false; |
| 1622 | |
| 1623 | Value *Op = Cmp->getOperand(i_nocapture: Cmp->getOperand(i_nocapture: 0) == DU.NarrowDef ? 1 : 0); |
| 1624 | unsigned CastWidth = SE->getTypeSizeInBits(Ty: Op->getType()); |
| 1625 | unsigned IVWidth = SE->getTypeSizeInBits(Ty: WideType); |
| 1626 | assert(CastWidth <= IVWidth && "Unexpected width while widening compare." ); |
| 1627 | |
| 1628 | // Widen the compare instruction. |
| 1629 | DU.NarrowUse->replaceUsesOfWith(From: DU.NarrowDef, To: DU.WideDef); |
| 1630 | |
| 1631 | // Widen the other operand of the compare, if necessary. |
| 1632 | if (CastWidth < IVWidth) { |
| 1633 | // If the narrow IV is always non-negative and the other operand is sext, |
| 1634 | // widen using sext so we can combine them. This works for all non-signed |
| 1635 | // comparison predicates. |
| 1636 | if (DU.NeverNegative && isa<SExtInst>(Val: Op) && !Cmp->isSigned()) |
| 1637 | CmpPreferredSign = true; |
| 1638 | |
| 1639 | Value *ExtOp = createExtendInst(NarrowOper: Op, WideType, IsSigned: CmpPreferredSign, Use: Cmp); |
| 1640 | DU.NarrowUse->replaceUsesOfWith(From: Op, To: ExtOp); |
| 1641 | } |
| 1642 | return true; |
| 1643 | } |
| 1644 | |
| 1645 | // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this |
| 1646 | // will not work when: |
| 1647 | // 1) SCEV traces back to an instruction inside the loop that SCEV can not |
| 1648 | // expand, eg. add %indvar, (load %addr) |
| 1649 | // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant |
| 1650 | // While SCEV fails to avoid trunc, we can still try to use instruction |
| 1651 | // combining approach to prove trunc is not required. This can be further |
| 1652 | // extended with other instruction combining checks, but for now we handle the |
| 1653 | // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") |
| 1654 | // |
| 1655 | // Src: |
| 1656 | // %c = sub nsw %b, %indvar |
| 1657 | // %d = sext %c to i64 |
| 1658 | // Dst: |
| 1659 | // %indvar.ext1 = sext %indvar to i64 |
| 1660 | // %m = sext %b to i64 |
| 1661 | // %d = sub nsw i64 %m, %indvar.ext1 |
| 1662 | // Therefore, as long as the result of add/sub/mul is extended to wide type, no |
| 1663 | // trunc is required regardless of how %b is generated. This pattern is common |
| 1664 | // when calculating address in 64 bit architecture |
| 1665 | bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { |
| 1666 | Instruction *NarrowUse = DU.NarrowUse; |
| 1667 | Instruction *NarrowDef = DU.NarrowDef; |
| 1668 | Instruction *WideDef = DU.WideDef; |
| 1669 | |
| 1670 | // Handle the common case of add<nsw/nuw> |
| 1671 | const unsigned OpCode = NarrowUse->getOpcode(); |
| 1672 | // Only Add/Sub/Mul instructions are supported. |
| 1673 | if (OpCode != Instruction::Add && OpCode != Instruction::Sub && |
| 1674 | OpCode != Instruction::Mul) |
| 1675 | return false; |
| 1676 | |
| 1677 | // The operand that is not defined by NarrowDef of DU. Let's call it the |
| 1678 | // other operand. |
| 1679 | assert((NarrowUse->getOperand(0) == NarrowDef || |
| 1680 | NarrowUse->getOperand(1) == NarrowDef) && |
| 1681 | "bad DU" ); |
| 1682 | |
| 1683 | const OverflowingBinaryOperator *OBO = |
| 1684 | cast<OverflowingBinaryOperator>(Val: NarrowUse); |
| 1685 | ExtendKind ExtKind = getExtendKind(I: NarrowDef); |
| 1686 | bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); |
| 1687 | bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); |
| 1688 | auto AnotherOpExtKind = ExtKind; |
| 1689 | |
| 1690 | // Check that all uses are either: |
| 1691 | // - narrow def (in case of we are widening the IV increment); |
| 1692 | // - single-input LCSSA Phis; |
| 1693 | // - comparison of the chosen type; |
| 1694 | // - extend of the chosen type (raison d'etre). |
| 1695 | SmallVector<Instruction *, 4> ExtUsers; |
| 1696 | SmallVector<PHINode *, 4> LCSSAPhiUsers; |
| 1697 | SmallVector<ICmpInst *, 4> ICmpUsers; |
| 1698 | for (Use &U : NarrowUse->uses()) { |
| 1699 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
| 1700 | if (User == NarrowDef) |
| 1701 | continue; |
| 1702 | if (!L->contains(Inst: User)) { |
| 1703 | auto *LCSSAPhi = cast<PHINode>(Val: User); |
| 1704 | // Make sure there is only 1 input, so that we don't have to split |
| 1705 | // critical edges. |
| 1706 | if (LCSSAPhi->getNumOperands() != 1) |
| 1707 | return false; |
| 1708 | LCSSAPhiUsers.push_back(Elt: LCSSAPhi); |
| 1709 | continue; |
| 1710 | } |
| 1711 | if (auto *ICmp = dyn_cast<ICmpInst>(Val: User)) { |
| 1712 | auto Pred = ICmp->getPredicate(); |
| 1713 | // We have 3 types of predicates: signed, unsigned and equality |
| 1714 | // predicates. For equality, it's legal to widen icmp for either sign and |
| 1715 | // zero extend. For sign extend, we can also do so for signed predicates, |
| 1716 | // likeweise for zero extend we can widen icmp for unsigned predicates. |
| 1717 | if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(predicate: Pred)) |
| 1718 | return false; |
| 1719 | if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(predicate: Pred)) |
| 1720 | return false; |
| 1721 | ICmpUsers.push_back(Elt: ICmp); |
| 1722 | continue; |
| 1723 | } |
| 1724 | if (ExtKind == ExtendKind::Sign) |
| 1725 | User = dyn_cast<SExtInst>(Val: User); |
| 1726 | else |
| 1727 | User = dyn_cast<ZExtInst>(Val: User); |
| 1728 | if (!User || User->getType() != WideType) |
| 1729 | return false; |
| 1730 | ExtUsers.push_back(Elt: User); |
| 1731 | } |
| 1732 | if (ExtUsers.empty()) { |
| 1733 | DeadInsts.emplace_back(Args&: NarrowUse); |
| 1734 | return true; |
| 1735 | } |
| 1736 | |
| 1737 | // We'll prove some facts that should be true in the context of ext users. If |
| 1738 | // there is no users, we are done now. If there are some, pick their common |
| 1739 | // dominator as context. |
| 1740 | const Instruction *CtxI = findCommonDominator(Instructions: ExtUsers, DT&: *DT); |
| 1741 | |
| 1742 | if (!CanSignExtend && !CanZeroExtend) { |
| 1743 | // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we |
| 1744 | // will most likely not see it. Let's try to prove it. |
| 1745 | if (OpCode != Instruction::Add) |
| 1746 | return false; |
| 1747 | if (ExtKind != ExtendKind::Zero) |
| 1748 | return false; |
| 1749 | const SCEV *LHS = SE->getSCEV(V: OBO->getOperand(i_nocapture: 0)); |
| 1750 | const SCEV *RHS = SE->getSCEV(V: OBO->getOperand(i_nocapture: 1)); |
| 1751 | // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). |
| 1752 | if (NarrowUse->getOperand(i: 0) != NarrowDef) |
| 1753 | return false; |
| 1754 | // We cannot use a different extend kind for the same operand. |
| 1755 | if (NarrowUse->getOperand(i: 1) == NarrowDef) |
| 1756 | return false; |
| 1757 | if (!SE->isKnownNegative(S: RHS)) |
| 1758 | return false; |
| 1759 | bool ProvedSubNUW = SE->isKnownPredicateAt(Pred: ICmpInst::ICMP_UGE, LHS, |
| 1760 | RHS: SE->getNegativeSCEV(V: RHS), CtxI); |
| 1761 | if (!ProvedSubNUW) |
| 1762 | return false; |
| 1763 | // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as |
| 1764 | // neg(zext(neg(op))), which is basically sext(op). |
| 1765 | AnotherOpExtKind = ExtendKind::Sign; |
| 1766 | } |
| 1767 | |
| 1768 | // Verifying that Defining operand is an AddRec |
| 1769 | const SCEV *Op1 = SE->getSCEV(V: WideDef); |
| 1770 | const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Val: Op1); |
| 1771 | if (!AddRecOp1 || AddRecOp1->getLoop() != L) |
| 1772 | return false; |
| 1773 | |
| 1774 | LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n" ); |
| 1775 | |
| 1776 | // Generating a widening use instruction. |
| 1777 | Value *LHS = |
| 1778 | (NarrowUse->getOperand(i: 0) == NarrowDef) |
| 1779 | ? WideDef |
| 1780 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 0), WideType, |
| 1781 | IsSigned: AnotherOpExtKind == ExtendKind::Sign, Use: NarrowUse); |
| 1782 | Value *RHS = |
| 1783 | (NarrowUse->getOperand(i: 1) == NarrowDef) |
| 1784 | ? WideDef |
| 1785 | : createExtendInst(NarrowOper: NarrowUse->getOperand(i: 1), WideType, |
| 1786 | IsSigned: AnotherOpExtKind == ExtendKind::Sign, Use: NarrowUse); |
| 1787 | |
| 1788 | auto *NarrowBO = cast<BinaryOperator>(Val: NarrowUse); |
| 1789 | auto *WideBO = BinaryOperator::Create(Op: NarrowBO->getOpcode(), S1: LHS, S2: RHS, |
| 1790 | Name: NarrowBO->getName()); |
| 1791 | IRBuilder<> Builder(NarrowUse); |
| 1792 | Builder.Insert(I: WideBO); |
| 1793 | WideBO->copyIRFlags(V: NarrowBO); |
| 1794 | ExtendKindMap[NarrowUse] = ExtKind; |
| 1795 | |
| 1796 | for (Instruction *User : ExtUsers) { |
| 1797 | assert(User->getType() == WideType && "Checked before!" ); |
| 1798 | LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " |
| 1799 | << *WideBO << "\n" ); |
| 1800 | ++NumElimExt; |
| 1801 | User->replaceAllUsesWith(V: WideBO); |
| 1802 | DeadInsts.emplace_back(Args&: User); |
| 1803 | } |
| 1804 | |
| 1805 | for (PHINode *User : LCSSAPhiUsers) { |
| 1806 | assert(User->getNumOperands() == 1 && "Checked before!" ); |
| 1807 | Builder.SetInsertPoint(User); |
| 1808 | auto *WidePN = |
| 1809 | Builder.CreatePHI(Ty: WideBO->getType(), NumReservedValues: 1, Name: User->getName() + ".wide" ); |
| 1810 | BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); |
| 1811 | assert(LoopExitingBlock && L->contains(LoopExitingBlock) && |
| 1812 | "Not a LCSSA Phi?" ); |
| 1813 | WidePN->addIncoming(V: WideBO, BB: LoopExitingBlock); |
| 1814 | Builder.SetInsertPoint(TheBB: User->getParent(), |
| 1815 | IP: User->getParent()->getFirstInsertionPt()); |
| 1816 | auto *TruncPN = Builder.CreateTrunc(V: WidePN, DestTy: User->getType()); |
| 1817 | User->replaceAllUsesWith(V: TruncPN); |
| 1818 | DeadInsts.emplace_back(Args&: User); |
| 1819 | } |
| 1820 | |
| 1821 | for (ICmpInst *User : ICmpUsers) { |
| 1822 | Builder.SetInsertPoint(User); |
| 1823 | auto ExtendedOp = [&](Value * V)->Value * { |
| 1824 | if (V == NarrowUse) |
| 1825 | return WideBO; |
| 1826 | if (ExtKind == ExtendKind::Zero) |
| 1827 | return Builder.CreateZExt(V, DestTy: WideBO->getType()); |
| 1828 | else |
| 1829 | return Builder.CreateSExt(V, DestTy: WideBO->getType()); |
| 1830 | }; |
| 1831 | auto Pred = User->getPredicate(); |
| 1832 | auto *LHS = ExtendedOp(User->getOperand(i_nocapture: 0)); |
| 1833 | auto *RHS = ExtendedOp(User->getOperand(i_nocapture: 1)); |
| 1834 | auto *WideCmp = |
| 1835 | Builder.CreateICmp(P: Pred, LHS, RHS, Name: User->getName() + ".wide" ); |
| 1836 | User->replaceAllUsesWith(V: WideCmp); |
| 1837 | DeadInsts.emplace_back(Args&: User); |
| 1838 | } |
| 1839 | |
| 1840 | return true; |
| 1841 | } |
| 1842 | |
| 1843 | /// Determine whether an individual user of the narrow IV can be widened. If so, |
| 1844 | /// return the wide clone of the user. |
| 1845 | Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, |
| 1846 | SCEVExpander &Rewriter, PHINode *OrigPhi, |
| 1847 | PHINode *WidePhi) { |
| 1848 | assert(ExtendKindMap.count(DU.NarrowDef) && |
| 1849 | "Should already know the kind of extension used to widen NarrowDef" ); |
| 1850 | |
| 1851 | // This narrow use can be widened by a sext if it's non-negative or its narrow |
| 1852 | // def was widened by a sext. Same for zext. |
| 1853 | bool CanWidenBySExt = |
| 1854 | DU.NeverNegative || getExtendKind(I: DU.NarrowDef) == ExtendKind::Sign; |
| 1855 | bool CanWidenByZExt = |
| 1856 | DU.NeverNegative || getExtendKind(I: DU.NarrowDef) == ExtendKind::Zero; |
| 1857 | |
| 1858 | // Stop traversing the def-use chain at inner-loop phis or post-loop phis. |
| 1859 | if (PHINode *UsePhi = dyn_cast<PHINode>(Val: DU.NarrowUse)) { |
| 1860 | if (LI->getLoopFor(BB: UsePhi->getParent()) != L) { |
| 1861 | // For LCSSA phis, sink the truncate outside the loop. |
| 1862 | // After SimplifyCFG most loop exit targets have a single predecessor. |
| 1863 | // Otherwise fall back to a truncate within the loop. |
| 1864 | if (UsePhi->getNumOperands() != 1) |
| 1865 | truncateIVUse(DU); |
| 1866 | else { |
| 1867 | // Widening the PHI requires us to insert a trunc. The logical place |
| 1868 | // for this trunc is in the same BB as the PHI. This is not possible if |
| 1869 | // the BB is terminated by a catchswitch. |
| 1870 | if (isa<CatchSwitchInst>(Val: UsePhi->getParent()->getTerminator())) |
| 1871 | return nullptr; |
| 1872 | |
| 1873 | PHINode *WidePhi = |
| 1874 | PHINode::Create(Ty: DU.WideDef->getType(), NumReservedValues: 1, NameStr: UsePhi->getName() + ".wide" , |
| 1875 | InsertBefore: UsePhi->getIterator()); |
| 1876 | WidePhi->addIncoming(V: DU.WideDef, BB: UsePhi->getIncomingBlock(i: 0)); |
| 1877 | BasicBlock *WidePhiBB = WidePhi->getParent(); |
| 1878 | IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt()); |
| 1879 | Value *Trunc = Builder.CreateTrunc(V: WidePhi, DestTy: DU.NarrowDef->getType(), Name: "" , |
| 1880 | IsNUW: CanWidenByZExt, IsNSW: CanWidenBySExt); |
| 1881 | UsePhi->replaceAllUsesWith(V: Trunc); |
| 1882 | DeadInsts.emplace_back(Args&: UsePhi); |
| 1883 | LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " |
| 1884 | << *WidePhi << "\n" ); |
| 1885 | } |
| 1886 | return nullptr; |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | // Our raison d'etre! Eliminate sign and zero extension. |
| 1891 | if ((match(V: DU.NarrowUse, P: m_SExtLike(Op: m_Value())) && CanWidenBySExt) || |
| 1892 | (isa<ZExtInst>(Val: DU.NarrowUse) && CanWidenByZExt)) { |
| 1893 | Value *NewDef = DU.WideDef; |
| 1894 | if (DU.NarrowUse->getType() != WideType) { |
| 1895 | unsigned CastWidth = SE->getTypeSizeInBits(Ty: DU.NarrowUse->getType()); |
| 1896 | unsigned IVWidth = SE->getTypeSizeInBits(Ty: WideType); |
| 1897 | if (CastWidth < IVWidth) { |
| 1898 | // The cast isn't as wide as the IV, so insert a Trunc. |
| 1899 | IRBuilder<> Builder(DU.NarrowUse); |
| 1900 | NewDef = Builder.CreateTrunc(V: DU.WideDef, DestTy: DU.NarrowUse->getType(), Name: "" , |
| 1901 | IsNUW: CanWidenByZExt, IsNSW: CanWidenBySExt); |
| 1902 | } |
| 1903 | else { |
| 1904 | // A wider extend was hidden behind a narrower one. This may induce |
| 1905 | // another round of IV widening in which the intermediate IV becomes |
| 1906 | // dead. It should be very rare. |
| 1907 | LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi |
| 1908 | << " not wide enough to subsume " << *DU.NarrowUse |
| 1909 | << "\n" ); |
| 1910 | DU.NarrowUse->replaceUsesOfWith(From: DU.NarrowDef, To: DU.WideDef); |
| 1911 | NewDef = DU.NarrowUse; |
| 1912 | } |
| 1913 | } |
| 1914 | if (NewDef != DU.NarrowUse) { |
| 1915 | LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse |
| 1916 | << " replaced by " << *DU.WideDef << "\n" ); |
| 1917 | ++NumElimExt; |
| 1918 | DU.NarrowUse->replaceAllUsesWith(V: NewDef); |
| 1919 | DeadInsts.emplace_back(Args&: DU.NarrowUse); |
| 1920 | } |
| 1921 | // Now that the extend is gone, we want to expose it's uses for potential |
| 1922 | // further simplification. We don't need to directly inform SimplifyIVUsers |
| 1923 | // of the new users, because their parent IV will be processed later as a |
| 1924 | // new loop phi. If we preserved IVUsers analysis, we would also want to |
| 1925 | // push the uses of WideDef here. |
| 1926 | |
| 1927 | // No further widening is needed. The deceased [sz]ext had done it for us. |
| 1928 | return nullptr; |
| 1929 | } |
| 1930 | |
| 1931 | auto tryAddRecExpansion = [&]() -> Instruction* { |
| 1932 | // Does this user itself evaluate to a recurrence after widening? |
| 1933 | WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); |
| 1934 | if (!WideAddRec.first) |
| 1935 | WideAddRec = getWideRecurrence(DU); |
| 1936 | assert((WideAddRec.first == nullptr) == |
| 1937 | (WideAddRec.second == ExtendKind::Unknown)); |
| 1938 | if (!WideAddRec.first) |
| 1939 | return nullptr; |
| 1940 | |
| 1941 | auto CanUseWideInc = [&]() { |
| 1942 | if (!WideInc) |
| 1943 | return false; |
| 1944 | // Reuse the IV increment that SCEVExpander created. Recompute flags, |
| 1945 | // unless the flags for both increments agree and it is safe to use the |
| 1946 | // ones from the original inc. In that case, the new use of the wide |
| 1947 | // increment won't be more poisonous. |
| 1948 | bool NeedToRecomputeFlags = |
| 1949 | !SCEVExpander::canReuseFlagsFromOriginalIVInc( |
| 1950 | OrigPhi, WidePhi, OrigInc: DU.NarrowUse, WideInc) || |
| 1951 | DU.NarrowUse->hasNoUnsignedWrap() != WideInc->hasNoUnsignedWrap() || |
| 1952 | DU.NarrowUse->hasNoSignedWrap() != WideInc->hasNoSignedWrap(); |
| 1953 | return WideAddRec.first == WideIncExpr && |
| 1954 | Rewriter.hoistIVInc(IncV: WideInc, InsertPos: DU.NarrowUse, RecomputePoisonFlags: NeedToRecomputeFlags); |
| 1955 | }; |
| 1956 | |
| 1957 | Instruction *WideUse = nullptr; |
| 1958 | if (CanUseWideInc()) |
| 1959 | WideUse = WideInc; |
| 1960 | else { |
| 1961 | WideUse = cloneIVUser(DU, WideAR: WideAddRec.first); |
| 1962 | if (!WideUse) |
| 1963 | return nullptr; |
| 1964 | } |
| 1965 | // Evaluation of WideAddRec ensured that the narrow expression could be |
| 1966 | // extended outside the loop without overflow. This suggests that the wide use |
| 1967 | // evaluates to the same expression as the extended narrow use, but doesn't |
| 1968 | // absolutely guarantee it. Hence the following failsafe check. In rare cases |
| 1969 | // where it fails, we simply throw away the newly created wide use. |
| 1970 | if (WideAddRec.first != SE->getSCEV(V: WideUse)) { |
| 1971 | LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " |
| 1972 | << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first |
| 1973 | << "\n" ); |
| 1974 | DeadInsts.emplace_back(Args&: WideUse); |
| 1975 | return nullptr; |
| 1976 | }; |
| 1977 | |
| 1978 | // if we reached this point then we are going to replace |
| 1979 | // DU.NarrowUse with WideUse. Reattach DbgValue then. |
| 1980 | replaceAllDbgUsesWith(From&: *DU.NarrowUse, To&: *WideUse, DomPoint&: *WideUse, DT&: *DT); |
| 1981 | |
| 1982 | ExtendKindMap[DU.NarrowUse] = WideAddRec.second; |
| 1983 | // Returning WideUse pushes it on the worklist. |
| 1984 | return WideUse; |
| 1985 | }; |
| 1986 | |
| 1987 | if (auto *I = tryAddRecExpansion()) |
| 1988 | return I; |
| 1989 | |
| 1990 | // If use is a loop condition, try to promote the condition instead of |
| 1991 | // truncating the IV first. |
| 1992 | if (widenLoopCompare(DU)) |
| 1993 | return nullptr; |
| 1994 | |
| 1995 | // We are here about to generate a truncate instruction that may hurt |
| 1996 | // performance because the scalar evolution expression computed earlier |
| 1997 | // in WideAddRec.first does not indicate a polynomial induction expression. |
| 1998 | // In that case, look at the operands of the use instruction to determine |
| 1999 | // if we can still widen the use instead of truncating its operand. |
| 2000 | if (widenWithVariantUse(DU)) |
| 2001 | return nullptr; |
| 2002 | |
| 2003 | // This user does not evaluate to a recurrence after widening, so don't |
| 2004 | // follow it. Instead insert a Trunc to kill off the original use, |
| 2005 | // eventually isolating the original narrow IV so it can be removed. |
| 2006 | truncateIVUse(DU); |
| 2007 | return nullptr; |
| 2008 | } |
| 2009 | |
| 2010 | /// Add eligible users of NarrowDef to NarrowIVUsers. |
| 2011 | void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { |
| 2012 | const SCEV *NarrowSCEV = SE->getSCEV(V: NarrowDef); |
| 2013 | bool NonNegativeDef = |
| 2014 | SE->isKnownPredicate(Pred: ICmpInst::ICMP_SGE, LHS: NarrowSCEV, |
| 2015 | RHS: SE->getZero(Ty: NarrowSCEV->getType())); |
| 2016 | for (User *U : NarrowDef->users()) { |
| 2017 | Instruction *NarrowUser = cast<Instruction>(Val: U); |
| 2018 | |
| 2019 | // Handle data flow merges and bizarre phi cycles. |
| 2020 | if (!Widened.insert(Ptr: NarrowUser).second) |
| 2021 | continue; |
| 2022 | |
| 2023 | bool NonNegativeUse = false; |
| 2024 | if (!NonNegativeDef) { |
| 2025 | // We might have a control-dependent range information for this context. |
| 2026 | if (auto RangeInfo = getPostIncRangeInfo(Def: NarrowDef, UseI: NarrowUser)) |
| 2027 | NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); |
| 2028 | } |
| 2029 | |
| 2030 | NarrowIVUsers.emplace_back(Args&: NarrowDef, Args&: NarrowUser, Args&: WideDef, |
| 2031 | Args: NonNegativeDef || NonNegativeUse); |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | /// Process a single induction variable. First use the SCEVExpander to create a |
| 2036 | /// wide induction variable that evaluates to the same recurrence as the |
| 2037 | /// original narrow IV. Then use a worklist to forward traverse the narrow IV's |
| 2038 | /// def-use chain. After widenIVUse has processed all interesting IV users, the |
| 2039 | /// narrow IV will be isolated for removal by DeleteDeadPHIs. |
| 2040 | /// |
| 2041 | /// It would be simpler to delete uses as they are processed, but we must avoid |
| 2042 | /// invalidating SCEV expressions. |
| 2043 | PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { |
| 2044 | // Is this phi an induction variable? |
| 2045 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: OrigPhi)); |
| 2046 | if (!AddRec) |
| 2047 | return nullptr; |
| 2048 | |
| 2049 | // Widen the induction variable expression. |
| 2050 | const SCEV *WideIVExpr = getExtendKind(I: OrigPhi) == ExtendKind::Sign |
| 2051 | ? SE->getSignExtendExpr(Op: AddRec, Ty: WideType) |
| 2052 | : SE->getZeroExtendExpr(Op: AddRec, Ty: WideType); |
| 2053 | |
| 2054 | assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && |
| 2055 | "Expect the new IV expression to preserve its type" ); |
| 2056 | |
| 2057 | // Can the IV be extended outside the loop without overflow? |
| 2058 | AddRec = dyn_cast<SCEVAddRecExpr>(Val: WideIVExpr); |
| 2059 | if (!AddRec || AddRec->getLoop() != L) |
| 2060 | return nullptr; |
| 2061 | |
| 2062 | // An AddRec must have loop-invariant operands. Since this AddRec is |
| 2063 | // materialized by a loop header phi, the expression cannot have any post-loop |
| 2064 | // operands, so they must dominate the loop header. |
| 2065 | assert( |
| 2066 | SE->properlyDominates(AddRec->getStart(), L->getHeader()) && |
| 2067 | SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && |
| 2068 | "Loop header phi recurrence inputs do not dominate the loop" ); |
| 2069 | |
| 2070 | // Iterate over IV uses (including transitive ones) looking for IV increments |
| 2071 | // of the form 'add nsw %iv, <const>'. For each increment and each use of |
| 2072 | // the increment calculate control-dependent range information basing on |
| 2073 | // dominating conditions inside of the loop (e.g. a range check inside of the |
| 2074 | // loop). Calculated ranges are stored in PostIncRangeInfos map. |
| 2075 | // |
| 2076 | // Control-dependent range information is later used to prove that a narrow |
| 2077 | // definition is not negative (see pushNarrowIVUsers). It's difficult to do |
| 2078 | // this on demand because when pushNarrowIVUsers needs this information some |
| 2079 | // of the dominating conditions might be already widened. |
| 2080 | if (UsePostIncrementRanges) |
| 2081 | calculatePostIncRanges(OrigPhi); |
| 2082 | |
| 2083 | // The rewriter provides a value for the desired IV expression. This may |
| 2084 | // either find an existing phi or materialize a new one. Either way, we |
| 2085 | // expect a well-formed cyclic phi-with-increments. i.e. any operand not part |
| 2086 | // of the phi-SCC dominates the loop entry. |
| 2087 | Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); |
| 2088 | Value *ExpandInst = Rewriter.expandCodeFor(SH: AddRec, Ty: WideType, I: InsertPt); |
| 2089 | // If the wide phi is not a phi node, for example a cast node, like bitcast, |
| 2090 | // inttoptr, ptrtoint, just skip for now. |
| 2091 | if (!(WidePhi = dyn_cast<PHINode>(Val: ExpandInst))) { |
| 2092 | // if the cast node is an inserted instruction without any user, we should |
| 2093 | // remove it to make sure the pass don't touch the function as we can not |
| 2094 | // wide the phi. |
| 2095 | if (ExpandInst->use_empty() && |
| 2096 | Rewriter.isInsertedInstruction(I: cast<Instruction>(Val: ExpandInst))) |
| 2097 | DeadInsts.emplace_back(Args&: ExpandInst); |
| 2098 | return nullptr; |
| 2099 | } |
| 2100 | |
| 2101 | // Remembering the WideIV increment generated by SCEVExpander allows |
| 2102 | // widenIVUse to reuse it when widening the narrow IV's increment. We don't |
| 2103 | // employ a general reuse mechanism because the call above is the only call to |
| 2104 | // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. |
| 2105 | if (BasicBlock *LatchBlock = L->getLoopLatch()) { |
| 2106 | WideInc = |
| 2107 | dyn_cast<Instruction>(Val: WidePhi->getIncomingValueForBlock(BB: LatchBlock)); |
| 2108 | if (WideInc) { |
| 2109 | WideIncExpr = SE->getSCEV(V: WideInc); |
| 2110 | // Propagate the debug location associated with the original loop |
| 2111 | // increment to the new (widened) increment. |
| 2112 | auto *OrigInc = |
| 2113 | cast<Instruction>(Val: OrigPhi->getIncomingValueForBlock(BB: LatchBlock)); |
| 2114 | |
| 2115 | WideInc->setDebugLoc(OrigInc->getDebugLoc()); |
| 2116 | // We are replacing a narrow IV increment with a wider IV increment. If |
| 2117 | // the original (narrow) increment did not wrap, the wider increment one |
| 2118 | // should not wrap either. Set the flags to be the union of both wide |
| 2119 | // increment and original increment; this ensures we preserve flags SCEV |
| 2120 | // could infer for the wider increment. Limit this only to cases where |
| 2121 | // both increments directly increment the corresponding PHI nodes and have |
| 2122 | // the same opcode. It is not safe to re-use the flags from the original |
| 2123 | // increment, if it is more complex and SCEV expansion may have yielded a |
| 2124 | // more simplified wider increment. |
| 2125 | if (SCEVExpander::canReuseFlagsFromOriginalIVInc(OrigPhi, WidePhi, |
| 2126 | OrigInc, WideInc) && |
| 2127 | isa<OverflowingBinaryOperator>(Val: OrigInc) && |
| 2128 | isa<OverflowingBinaryOperator>(Val: WideInc)) { |
| 2129 | WideInc->setHasNoUnsignedWrap(WideInc->hasNoUnsignedWrap() || |
| 2130 | OrigInc->hasNoUnsignedWrap()); |
| 2131 | WideInc->setHasNoSignedWrap(WideInc->hasNoSignedWrap() || |
| 2132 | OrigInc->hasNoSignedWrap()); |
| 2133 | } |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n" ); |
| 2138 | ++NumWidened; |
| 2139 | |
| 2140 | // Traverse the def-use chain using a worklist starting at the original IV. |
| 2141 | assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); |
| 2142 | |
| 2143 | Widened.insert(Ptr: OrigPhi); |
| 2144 | pushNarrowIVUsers(NarrowDef: OrigPhi, WideDef: WidePhi); |
| 2145 | |
| 2146 | while (!NarrowIVUsers.empty()) { |
| 2147 | WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); |
| 2148 | |
| 2149 | // Process a def-use edge. This may replace the use, so don't hold a |
| 2150 | // use_iterator across it. |
| 2151 | Instruction *WideUse = widenIVUse(DU, Rewriter, OrigPhi, WidePhi); |
| 2152 | |
| 2153 | // Follow all def-use edges from the previous narrow use. |
| 2154 | if (WideUse) |
| 2155 | pushNarrowIVUsers(NarrowDef: DU.NarrowUse, WideDef: WideUse); |
| 2156 | |
| 2157 | // widenIVUse may have removed the def-use edge. |
| 2158 | if (DU.NarrowDef->use_empty()) |
| 2159 | DeadInsts.emplace_back(Args&: DU.NarrowDef); |
| 2160 | } |
| 2161 | |
| 2162 | // Attach any debug information to the new PHI. |
| 2163 | replaceAllDbgUsesWith(From&: *OrigPhi, To&: *WidePhi, DomPoint&: *WidePhi, DT&: *DT); |
| 2164 | |
| 2165 | return WidePhi; |
| 2166 | } |
| 2167 | |
| 2168 | /// Calculates control-dependent range for the given def at the given context |
| 2169 | /// by looking at dominating conditions inside of the loop |
| 2170 | void WidenIV::calculatePostIncRange(Instruction *NarrowDef, |
| 2171 | Instruction *NarrowUser) { |
| 2172 | Value *NarrowDefLHS; |
| 2173 | const APInt *NarrowDefRHS; |
| 2174 | if (!match(V: NarrowDef, P: m_NSWAdd(L: m_Value(V&: NarrowDefLHS), |
| 2175 | R: m_APInt(Res&: NarrowDefRHS))) || |
| 2176 | !NarrowDefRHS->isNonNegative()) |
| 2177 | return; |
| 2178 | |
| 2179 | auto UpdateRangeFromCondition = [&](Value *Condition, bool TrueDest) { |
| 2180 | CmpPredicate Pred; |
| 2181 | Value *CmpRHS; |
| 2182 | if (!match(V: Condition, P: m_ICmp(Pred, L: m_Specific(V: NarrowDefLHS), |
| 2183 | R: m_Value(V&: CmpRHS)))) |
| 2184 | return; |
| 2185 | |
| 2186 | CmpPredicate P = TrueDest ? Pred : ICmpInst::getInverseCmpPredicate(Pred); |
| 2187 | |
| 2188 | auto CmpRHSRange = SE->getSignedRange(S: SE->getSCEV(V: CmpRHS)); |
| 2189 | auto CmpConstrainedLHSRange = |
| 2190 | ConstantRange::makeAllowedICmpRegion(Pred: P, Other: CmpRHSRange); |
| 2191 | auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( |
| 2192 | Other: *NarrowDefRHS, NoWrapKind: OverflowingBinaryOperator::NoSignedWrap); |
| 2193 | |
| 2194 | updatePostIncRangeInfo(Def: NarrowDef, UseI: NarrowUser, R: NarrowDefRange); |
| 2195 | }; |
| 2196 | |
| 2197 | auto UpdateRangeFromGuards = [&](Instruction *Ctx) { |
| 2198 | if (!HasGuards) |
| 2199 | return; |
| 2200 | |
| 2201 | for (Instruction &I : make_range(x: Ctx->getIterator().getReverse(), |
| 2202 | y: Ctx->getParent()->rend())) { |
| 2203 | Value *C = nullptr; |
| 2204 | if (match(V: &I, P: m_Intrinsic<Intrinsic::experimental_guard>(Op0: m_Value(V&: C)))) |
| 2205 | UpdateRangeFromCondition(C, /*TrueDest=*/true); |
| 2206 | } |
| 2207 | }; |
| 2208 | |
| 2209 | UpdateRangeFromGuards(NarrowUser); |
| 2210 | |
| 2211 | BasicBlock *NarrowUserBB = NarrowUser->getParent(); |
| 2212 | // If NarrowUserBB is statically unreachable asking dominator queries may |
| 2213 | // yield surprising results. (e.g. the block may not have a dom tree node) |
| 2214 | if (!DT->isReachableFromEntry(A: NarrowUserBB)) |
| 2215 | return; |
| 2216 | |
| 2217 | for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); |
| 2218 | L->contains(BB: DTB->getBlock()); |
| 2219 | DTB = DTB->getIDom()) { |
| 2220 | auto *BB = DTB->getBlock(); |
| 2221 | auto *TI = BB->getTerminator(); |
| 2222 | UpdateRangeFromGuards(TI); |
| 2223 | |
| 2224 | auto *BI = dyn_cast<BranchInst>(Val: TI); |
| 2225 | if (!BI || !BI->isConditional()) |
| 2226 | continue; |
| 2227 | |
| 2228 | auto *TrueSuccessor = BI->getSuccessor(i: 0); |
| 2229 | auto *FalseSuccessor = BI->getSuccessor(i: 1); |
| 2230 | |
| 2231 | auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { |
| 2232 | return BBE.isSingleEdge() && |
| 2233 | DT->dominates(BBE, BB: NarrowUser->getParent()); |
| 2234 | }; |
| 2235 | |
| 2236 | if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) |
| 2237 | UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); |
| 2238 | |
| 2239 | if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) |
| 2240 | UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); |
| 2241 | } |
| 2242 | } |
| 2243 | |
| 2244 | /// Calculates PostIncRangeInfos map for the given IV |
| 2245 | void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { |
| 2246 | SmallPtrSet<Instruction *, 16> Visited; |
| 2247 | SmallVector<Instruction *, 6> Worklist; |
| 2248 | Worklist.push_back(Elt: OrigPhi); |
| 2249 | Visited.insert(Ptr: OrigPhi); |
| 2250 | |
| 2251 | while (!Worklist.empty()) { |
| 2252 | Instruction *NarrowDef = Worklist.pop_back_val(); |
| 2253 | |
| 2254 | for (Use &U : NarrowDef->uses()) { |
| 2255 | auto *NarrowUser = cast<Instruction>(Val: U.getUser()); |
| 2256 | |
| 2257 | // Don't go looking outside the current loop. |
| 2258 | auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; |
| 2259 | if (!NarrowUserLoop || !L->contains(L: NarrowUserLoop)) |
| 2260 | continue; |
| 2261 | |
| 2262 | if (!Visited.insert(Ptr: NarrowUser).second) |
| 2263 | continue; |
| 2264 | |
| 2265 | Worklist.push_back(Elt: NarrowUser); |
| 2266 | |
| 2267 | calculatePostIncRange(NarrowDef, NarrowUser); |
| 2268 | } |
| 2269 | } |
| 2270 | } |
| 2271 | |
| 2272 | PHINode *llvm::createWideIV(const WideIVInfo &WI, |
| 2273 | LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, |
| 2274 | DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, |
| 2275 | unsigned &NumElimExt, unsigned &NumWidened, |
| 2276 | bool HasGuards, bool UsePostIncrementRanges) { |
| 2277 | WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); |
| 2278 | PHINode *WidePHI = Widener.createWideIV(Rewriter); |
| 2279 | NumElimExt = Widener.getNumElimExt(); |
| 2280 | NumWidened = Widener.getNumWidened(); |
| 2281 | return WidePHI; |
| 2282 | } |
| 2283 | |