| 1 | //===- LoopVectorizationLegality.cpp --------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides loop vectorization legality analysis. Original code |
| 10 | // resided in LoopVectorize.cpp for a long time. |
| 11 | // |
| 12 | // At this point, it is implemented as a utility class, not as an analysis |
| 13 | // pass. It should be easy to create an analysis pass around it if there |
| 14 | // is a need (but D45420 needs to happen first). |
| 15 | // |
| 16 | |
| 17 | #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" |
| 18 | #include "llvm/Analysis/Loads.h" |
| 19 | #include "llvm/Analysis/LoopInfo.h" |
| 20 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 21 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 22 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 23 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 24 | #include "llvm/Analysis/ValueTracking.h" |
| 25 | #include "llvm/Analysis/VectorUtils.h" |
| 26 | #include "llvm/IR/IntrinsicInst.h" |
| 27 | #include "llvm/IR/PatternMatch.h" |
| 28 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 29 | #include "llvm/Transforms/Vectorize/LoopVectorize.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | using namespace PatternMatch; |
| 33 | |
| 34 | #define LV_NAME "loop-vectorize" |
| 35 | #define DEBUG_TYPE LV_NAME |
| 36 | |
| 37 | static cl::opt<bool> |
| 38 | EnableIfConversion("enable-if-conversion" , cl::init(Val: true), cl::Hidden, |
| 39 | cl::desc("Enable if-conversion during vectorization." )); |
| 40 | |
| 41 | static cl::opt<bool> |
| 42 | AllowStridedPointerIVs("lv-strided-pointer-ivs" , cl::init(Val: false), cl::Hidden, |
| 43 | cl::desc("Enable recognition of non-constant strided " |
| 44 | "pointer induction variables." )); |
| 45 | |
| 46 | static cl::opt<bool> |
| 47 | HintsAllowReordering("hints-allow-reordering" , cl::init(Val: true), cl::Hidden, |
| 48 | cl::desc("Allow enabling loop hints to reorder " |
| 49 | "FP operations during vectorization." )); |
| 50 | |
| 51 | // TODO: Move size-based thresholds out of legality checking, make cost based |
| 52 | // decisions instead of hard thresholds. |
| 53 | static cl::opt<unsigned> VectorizeSCEVCheckThreshold( |
| 54 | "vectorize-scev-check-threshold" , cl::init(Val: 16), cl::Hidden, |
| 55 | cl::desc("The maximum number of SCEV checks allowed." )); |
| 56 | |
| 57 | static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( |
| 58 | "pragma-vectorize-scev-check-threshold" , cl::init(Val: 128), cl::Hidden, |
| 59 | cl::desc("The maximum number of SCEV checks allowed with a " |
| 60 | "vectorize(enable) pragma" )); |
| 61 | |
| 62 | static cl::opt<LoopVectorizeHints::ScalableForceKind> |
| 63 | ForceScalableVectorization( |
| 64 | "scalable-vectorization" , cl::init(Val: LoopVectorizeHints::SK_Unspecified), |
| 65 | cl::Hidden, |
| 66 | cl::desc("Control whether the compiler can use scalable vectors to " |
| 67 | "vectorize a loop" ), |
| 68 | cl::values( |
| 69 | clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off" , |
| 70 | "Scalable vectorization is disabled." ), |
| 71 | clEnumValN( |
| 72 | LoopVectorizeHints::SK_PreferScalable, "preferred" , |
| 73 | "Scalable vectorization is available and favored when the " |
| 74 | "cost is inconclusive." ), |
| 75 | clEnumValN( |
| 76 | LoopVectorizeHints::SK_PreferScalable, "on" , |
| 77 | "Scalable vectorization is available and favored when the " |
| 78 | "cost is inconclusive." ))); |
| 79 | |
| 80 | static cl::opt<bool> EnableHistogramVectorization( |
| 81 | "enable-histogram-loop-vectorization" , cl::init(Val: false), cl::Hidden, |
| 82 | cl::desc("Enables autovectorization of some loops containing histograms" )); |
| 83 | |
| 84 | /// Maximum vectorization interleave count. |
| 85 | static const unsigned MaxInterleaveFactor = 16; |
| 86 | |
| 87 | namespace llvm { |
| 88 | |
| 89 | bool LoopVectorizeHints::Hint::validate(unsigned Val) { |
| 90 | switch (Kind) { |
| 91 | case HK_WIDTH: |
| 92 | return isPowerOf2_32(Value: Val) && Val <= VectorizerParams::MaxVectorWidth; |
| 93 | case HK_INTERLEAVE: |
| 94 | return isPowerOf2_32(Value: Val) && Val <= MaxInterleaveFactor; |
| 95 | case HK_FORCE: |
| 96 | return (Val <= 1); |
| 97 | case HK_ISVECTORIZED: |
| 98 | case HK_PREDICATE: |
| 99 | case HK_SCALABLE: |
| 100 | return (Val == 0 || Val == 1); |
| 101 | } |
| 102 | return false; |
| 103 | } |
| 104 | |
| 105 | LoopVectorizeHints::(const Loop *L, |
| 106 | bool InterleaveOnlyWhenForced, |
| 107 | OptimizationRemarkEmitter &ORE, |
| 108 | const TargetTransformInfo *TTI) |
| 109 | : Width("vectorize.width" , VectorizerParams::VectorizationFactor, HK_WIDTH), |
| 110 | Interleave("interleave.count" , InterleaveOnlyWhenForced, HK_INTERLEAVE), |
| 111 | Force("vectorize.enable" , FK_Undefined, HK_FORCE), |
| 112 | IsVectorized("isvectorized" , 0, HK_ISVECTORIZED), |
| 113 | Predicate("vectorize.predicate.enable" , FK_Undefined, HK_PREDICATE), |
| 114 | Scalable("vectorize.scalable.enable" , SK_Unspecified, HK_SCALABLE), |
| 115 | TheLoop(L), ORE(ORE) { |
| 116 | // Populate values with existing loop metadata. |
| 117 | getHintsFromMetadata(); |
| 118 | |
| 119 | // force-vector-interleave overrides DisableInterleaving. |
| 120 | if (VectorizerParams::isInterleaveForced()) |
| 121 | Interleave.Value = VectorizerParams::VectorizationInterleave; |
| 122 | |
| 123 | // If the metadata doesn't explicitly specify whether to enable scalable |
| 124 | // vectorization, then decide based on the following criteria (increasing |
| 125 | // level of priority): |
| 126 | // - Target default |
| 127 | // - Metadata width |
| 128 | // - Force option (always overrides) |
| 129 | if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { |
| 130 | if (TTI) |
| 131 | Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable |
| 132 | : SK_FixedWidthOnly; |
| 133 | |
| 134 | if (Width.Value) |
| 135 | // If the width is set, but the metadata says nothing about the scalable |
| 136 | // property, then assume it concerns only a fixed-width UserVF. |
| 137 | // If width is not set, the flag takes precedence. |
| 138 | Scalable.Value = SK_FixedWidthOnly; |
| 139 | } |
| 140 | |
| 141 | // If the flag is set to force any use of scalable vectors, override the loop |
| 142 | // hints. |
| 143 | if (ForceScalableVectorization.getValue() != |
| 144 | LoopVectorizeHints::SK_Unspecified) |
| 145 | Scalable.Value = ForceScalableVectorization.getValue(); |
| 146 | |
| 147 | // Scalable vectorization is disabled if no preference is specified. |
| 148 | if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) |
| 149 | Scalable.Value = SK_FixedWidthOnly; |
| 150 | |
| 151 | if (IsVectorized.Value != 1) |
| 152 | // If the vectorization width and interleaving count are both 1 then |
| 153 | // consider the loop to have been already vectorized because there's |
| 154 | // nothing more that we can do. |
| 155 | IsVectorized.Value = |
| 156 | getWidth() == ElementCount::getFixed(MinVal: 1) && getInterleave() == 1; |
| 157 | LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() |
| 158 | << "LV: Interleaving disabled by the pass manager\n" ); |
| 159 | } |
| 160 | |
| 161 | void LoopVectorizeHints::setAlreadyVectorized() { |
| 162 | LLVMContext &Context = TheLoop->getHeader()->getContext(); |
| 163 | |
| 164 | MDNode *IsVectorizedMD = MDNode::get( |
| 165 | Context, |
| 166 | MDs: {MDString::get(Context, Str: "llvm.loop.isvectorized" ), |
| 167 | ConstantAsMetadata::get(C: ConstantInt::get(Context, V: APInt(32, 1)))}); |
| 168 | MDNode *LoopID = TheLoop->getLoopID(); |
| 169 | MDNode *NewLoopID = |
| 170 | makePostTransformationMetadata(Context, OrigLoopID: LoopID, |
| 171 | RemovePrefixes: {Twine(Prefix(), "vectorize." ).str(), |
| 172 | Twine(Prefix(), "interleave." ).str()}, |
| 173 | AddAttrs: {IsVectorizedMD}); |
| 174 | TheLoop->setLoopID(NewLoopID); |
| 175 | |
| 176 | // Update internal cache. |
| 177 | IsVectorized.Value = 1; |
| 178 | } |
| 179 | |
| 180 | bool LoopVectorizeHints::allowVectorization( |
| 181 | Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { |
| 182 | if (getForce() == LoopVectorizeHints::FK_Disabled) { |
| 183 | LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n" ); |
| 184 | emitRemarkWithHints(); |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { |
| 189 | LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n" ); |
| 190 | emitRemarkWithHints(); |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | if (getIsVectorized() == 1) { |
| 195 | LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n" ); |
| 196 | // FIXME: Add interleave.disable metadata. This will allow |
| 197 | // vectorize.disable to be used without disabling the pass and errors |
| 198 | // to differentiate between disabled vectorization and a width of 1. |
| 199 | ORE.emit(RemarkBuilder: [&]() { |
| 200 | return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), |
| 201 | "AllDisabled" , L->getStartLoc(), |
| 202 | L->getHeader()) |
| 203 | << "loop not vectorized: vectorization and interleaving are " |
| 204 | "explicitly disabled, or the loop has already been " |
| 205 | "vectorized" ; |
| 206 | }); |
| 207 | return false; |
| 208 | } |
| 209 | |
| 210 | return true; |
| 211 | } |
| 212 | |
| 213 | void LoopVectorizeHints::() const { |
| 214 | using namespace ore; |
| 215 | |
| 216 | ORE.emit(RemarkBuilder: [&]() { |
| 217 | if (Force.Value == LoopVectorizeHints::FK_Disabled) |
| 218 | return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled" , |
| 219 | TheLoop->getStartLoc(), |
| 220 | TheLoop->getHeader()) |
| 221 | << "loop not vectorized: vectorization is explicitly disabled" ; |
| 222 | |
| 223 | OptimizationRemarkMissed R(LV_NAME, "MissedDetails" , TheLoop->getStartLoc(), |
| 224 | TheLoop->getHeader()); |
| 225 | R << "loop not vectorized" ; |
| 226 | if (Force.Value == LoopVectorizeHints::FK_Enabled) { |
| 227 | R << " (Force=" << NV("Force" , true); |
| 228 | if (Width.Value != 0) |
| 229 | R << ", Vector Width=" << NV("VectorWidth" , getWidth()); |
| 230 | if (getInterleave() != 0) |
| 231 | R << ", Interleave Count=" << NV("InterleaveCount" , getInterleave()); |
| 232 | R << ")" ; |
| 233 | } |
| 234 | return R; |
| 235 | }); |
| 236 | } |
| 237 | |
| 238 | const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { |
| 239 | if (getWidth() == ElementCount::getFixed(MinVal: 1)) |
| 240 | return LV_NAME; |
| 241 | if (getForce() == LoopVectorizeHints::FK_Disabled) |
| 242 | return LV_NAME; |
| 243 | if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) |
| 244 | return LV_NAME; |
| 245 | return OptimizationRemarkAnalysis::AlwaysPrint; |
| 246 | } |
| 247 | |
| 248 | bool LoopVectorizeHints::allowReordering() const { |
| 249 | // Allow the vectorizer to change the order of operations if enabling |
| 250 | // loop hints are provided |
| 251 | ElementCount EC = getWidth(); |
| 252 | return HintsAllowReordering && |
| 253 | (getForce() == LoopVectorizeHints::FK_Enabled || |
| 254 | EC.getKnownMinValue() > 1); |
| 255 | } |
| 256 | |
| 257 | void LoopVectorizeHints::getHintsFromMetadata() { |
| 258 | MDNode *LoopID = TheLoop->getLoopID(); |
| 259 | if (!LoopID) |
| 260 | return; |
| 261 | |
| 262 | // First operand should refer to the loop id itself. |
| 263 | assert(LoopID->getNumOperands() > 0 && "requires at least one operand" ); |
| 264 | assert(LoopID->getOperand(0) == LoopID && "invalid loop id" ); |
| 265 | |
| 266 | for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) { |
| 267 | const MDString *S = nullptr; |
| 268 | SmallVector<Metadata *, 4> Args; |
| 269 | |
| 270 | // The expected hint is either a MDString or a MDNode with the first |
| 271 | // operand a MDString. |
| 272 | if (const MDNode *MD = dyn_cast<MDNode>(Val: MDO)) { |
| 273 | if (!MD || MD->getNumOperands() == 0) |
| 274 | continue; |
| 275 | S = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
| 276 | for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx) |
| 277 | Args.push_back(Elt: MD->getOperand(I: Idx)); |
| 278 | } else { |
| 279 | S = dyn_cast<MDString>(Val: MDO); |
| 280 | assert(Args.size() == 0 && "too many arguments for MDString" ); |
| 281 | } |
| 282 | |
| 283 | if (!S) |
| 284 | continue; |
| 285 | |
| 286 | // Check if the hint starts with the loop metadata prefix. |
| 287 | StringRef Name = S->getString(); |
| 288 | if (Args.size() == 1) |
| 289 | setHint(Name, Arg: Args[0]); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { |
| 294 | if (!Name.starts_with(Prefix: Prefix())) |
| 295 | return; |
| 296 | Name = Name.substr(Start: Prefix().size(), N: StringRef::npos); |
| 297 | |
| 298 | const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(MD&: Arg); |
| 299 | if (!C) |
| 300 | return; |
| 301 | unsigned Val = C->getZExtValue(); |
| 302 | |
| 303 | Hint *Hints[] = {&Width, &Interleave, &Force, |
| 304 | &IsVectorized, &Predicate, &Scalable}; |
| 305 | for (auto *H : Hints) { |
| 306 | if (Name == H->Name) { |
| 307 | if (H->validate(Val)) |
| 308 | H->Value = Val; |
| 309 | else |
| 310 | LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n" ); |
| 311 | break; |
| 312 | } |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | // Return true if the inner loop \p Lp is uniform with regard to the outer loop |
| 317 | // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes |
| 318 | // executing the inner loop will execute the same iterations). This check is |
| 319 | // very constrained for now but it will be relaxed in the future. \p Lp is |
| 320 | // considered uniform if it meets all the following conditions: |
| 321 | // 1) it has a canonical IV (starting from 0 and with stride 1), |
| 322 | // 2) its latch terminator is a conditional branch and, |
| 323 | // 3) its latch condition is a compare instruction whose operands are the |
| 324 | // canonical IV and an OuterLp invariant. |
| 325 | // This check doesn't take into account the uniformity of other conditions not |
| 326 | // related to the loop latch because they don't affect the loop uniformity. |
| 327 | // |
| 328 | // NOTE: We decided to keep all these checks and its associated documentation |
| 329 | // together so that we can easily have a picture of the current supported loop |
| 330 | // nests. However, some of the current checks don't depend on \p OuterLp and |
| 331 | // would be redundantly executed for each \p Lp if we invoked this function for |
| 332 | // different candidate outer loops. This is not the case for now because we |
| 333 | // don't currently have the infrastructure to evaluate multiple candidate outer |
| 334 | // loops and \p OuterLp will be a fixed parameter while we only support explicit |
| 335 | // outer loop vectorization. It's also very likely that these checks go away |
| 336 | // before introducing the aforementioned infrastructure. However, if this is not |
| 337 | // the case, we should move the \p OuterLp independent checks to a separate |
| 338 | // function that is only executed once for each \p Lp. |
| 339 | static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { |
| 340 | assert(Lp->getLoopLatch() && "Expected loop with a single latch." ); |
| 341 | |
| 342 | // If Lp is the outer loop, it's uniform by definition. |
| 343 | if (Lp == OuterLp) |
| 344 | return true; |
| 345 | assert(OuterLp->contains(Lp) && "OuterLp must contain Lp." ); |
| 346 | |
| 347 | // 1. |
| 348 | PHINode *IV = Lp->getCanonicalInductionVariable(); |
| 349 | if (!IV) { |
| 350 | LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n" ); |
| 351 | return false; |
| 352 | } |
| 353 | |
| 354 | // 2. |
| 355 | BasicBlock *Latch = Lp->getLoopLatch(); |
| 356 | auto *LatchBr = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
| 357 | if (!LatchBr || LatchBr->isUnconditional()) { |
| 358 | LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n" ); |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | // 3. |
| 363 | auto *LatchCmp = dyn_cast<CmpInst>(Val: LatchBr->getCondition()); |
| 364 | if (!LatchCmp) { |
| 365 | LLVM_DEBUG( |
| 366 | dbgs() << "LV: Loop latch condition is not a compare instruction.\n" ); |
| 367 | return false; |
| 368 | } |
| 369 | |
| 370 | Value *CondOp0 = LatchCmp->getOperand(i_nocapture: 0); |
| 371 | Value *CondOp1 = LatchCmp->getOperand(i_nocapture: 1); |
| 372 | Value *IVUpdate = IV->getIncomingValueForBlock(BB: Latch); |
| 373 | if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(V: CondOp1)) && |
| 374 | !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(V: CondOp0))) { |
| 375 | LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n" ); |
| 376 | return false; |
| 377 | } |
| 378 | |
| 379 | return true; |
| 380 | } |
| 381 | |
| 382 | // Return true if \p Lp and all its nested loops are uniform with regard to \p |
| 383 | // OuterLp. |
| 384 | static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { |
| 385 | if (!isUniformLoop(Lp, OuterLp)) |
| 386 | return false; |
| 387 | |
| 388 | // Check if nested loops are uniform. |
| 389 | for (Loop *SubLp : *Lp) |
| 390 | if (!isUniformLoopNest(Lp: SubLp, OuterLp)) |
| 391 | return false; |
| 392 | |
| 393 | return true; |
| 394 | } |
| 395 | |
| 396 | static IntegerType *getInductionIntegerTy(const DataLayout &DL, Type *Ty) { |
| 397 | assert(Ty->isIntOrPtrTy() && "Expected integer or pointer type" ); |
| 398 | |
| 399 | if (Ty->isPointerTy()) |
| 400 | return DL.getIntPtrType(C&: Ty->getContext(), AddressSpace: Ty->getPointerAddressSpace()); |
| 401 | |
| 402 | // It is possible that char's or short's overflow when we ask for the loop's |
| 403 | // trip count, work around this by changing the type size. |
| 404 | if (Ty->getScalarSizeInBits() < 32) |
| 405 | return Type::getInt32Ty(C&: Ty->getContext()); |
| 406 | |
| 407 | return cast<IntegerType>(Val: Ty); |
| 408 | } |
| 409 | |
| 410 | static IntegerType *getWiderInductionTy(const DataLayout &DL, Type *Ty0, |
| 411 | Type *Ty1) { |
| 412 | IntegerType *TyA = getInductionIntegerTy(DL, Ty: Ty0); |
| 413 | IntegerType *TyB = getInductionIntegerTy(DL, Ty: Ty1); |
| 414 | return TyA->getScalarSizeInBits() > TyB->getScalarSizeInBits() ? TyA : TyB; |
| 415 | } |
| 416 | |
| 417 | /// Check that the instruction has outside loop users and is not an |
| 418 | /// identified reduction variable. |
| 419 | static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, |
| 420 | SmallPtrSetImpl<Value *> &AllowedExit) { |
| 421 | // Reductions, Inductions and non-header phis are allowed to have exit users. All |
| 422 | // other instructions must not have external users. |
| 423 | if (!AllowedExit.count(Ptr: Inst)) |
| 424 | // Check that all of the users of the loop are inside the BB. |
| 425 | for (User *U : Inst->users()) { |
| 426 | Instruction *UI = cast<Instruction>(Val: U); |
| 427 | // This user may be a reduction exit value. |
| 428 | if (!TheLoop->contains(Inst: UI)) { |
| 429 | LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); |
| 430 | return true; |
| 431 | } |
| 432 | } |
| 433 | return false; |
| 434 | } |
| 435 | |
| 436 | /// Returns true if A and B have same pointer operands or same SCEVs addresses |
| 437 | static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, |
| 438 | StoreInst *B) { |
| 439 | // Compare store |
| 440 | if (A == B) |
| 441 | return true; |
| 442 | |
| 443 | // Otherwise Compare pointers |
| 444 | Value *APtr = A->getPointerOperand(); |
| 445 | Value *BPtr = B->getPointerOperand(); |
| 446 | if (APtr == BPtr) |
| 447 | return true; |
| 448 | |
| 449 | // Otherwise compare address SCEVs |
| 450 | return SE->getSCEV(V: APtr) == SE->getSCEV(V: BPtr); |
| 451 | } |
| 452 | |
| 453 | int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, |
| 454 | Value *Ptr) const { |
| 455 | // FIXME: Currently, the set of symbolic strides is sometimes queried before |
| 456 | // it's collected. This happens from canVectorizeWithIfConvert, when the |
| 457 | // pointer is checked to reference consecutive elements suitable for a |
| 458 | // masked access. |
| 459 | const auto &Strides = |
| 460 | LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>(); |
| 461 | |
| 462 | bool CanAddPredicate = !llvm::shouldOptimizeForSize( |
| 463 | BB: TheLoop->getHeader(), PSI, BFI, QueryType: PGSOQueryType::IRPass); |
| 464 | int Stride = getPtrStride(PSE, AccessTy, Ptr, Lp: TheLoop, StridesMap: Strides, |
| 465 | Assume: CanAddPredicate, ShouldCheckWrap: false).value_or(u: 0); |
| 466 | if (Stride == 1 || Stride == -1) |
| 467 | return Stride; |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | bool LoopVectorizationLegality::isInvariant(Value *V) const { |
| 472 | return LAI->isInvariant(V); |
| 473 | } |
| 474 | |
| 475 | namespace { |
| 476 | /// A rewriter to build the SCEVs for each of the VF lanes in the expected |
| 477 | /// vectorized loop, which can then be compared to detect their uniformity. This |
| 478 | /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop) |
| 479 | /// with new AddRecs where the step is multiplied by StepMultiplier and Offset * |
| 480 | /// Step is added. Also checks if all sub-expressions are analyzable w.r.t. |
| 481 | /// uniformity. |
| 482 | class SCEVAddRecForUniformityRewriter |
| 483 | : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> { |
| 484 | /// Multiplier to be applied to the step of AddRecs in TheLoop. |
| 485 | unsigned StepMultiplier; |
| 486 | |
| 487 | /// Offset to be added to the AddRecs in TheLoop. |
| 488 | unsigned Offset; |
| 489 | |
| 490 | /// Loop for which to rewrite AddRecsFor. |
| 491 | Loop *TheLoop; |
| 492 | |
| 493 | /// Is any sub-expressions not analyzable w.r.t. uniformity? |
| 494 | bool CannotAnalyze = false; |
| 495 | |
| 496 | bool canAnalyze() const { return !CannotAnalyze; } |
| 497 | |
| 498 | public: |
| 499 | SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier, |
| 500 | unsigned Offset, Loop *TheLoop) |
| 501 | : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset), |
| 502 | TheLoop(TheLoop) {} |
| 503 | |
| 504 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 505 | assert(Expr->getLoop() == TheLoop && |
| 506 | "addrec outside of TheLoop must be invariant and should have been " |
| 507 | "handled earlier" ); |
| 508 | // Build a new AddRec by multiplying the step by StepMultiplier and |
| 509 | // incrementing the start by Offset * step. |
| 510 | Type *Ty = Expr->getType(); |
| 511 | const SCEV *Step = Expr->getStepRecurrence(SE); |
| 512 | if (!SE.isLoopInvariant(S: Step, L: TheLoop)) { |
| 513 | CannotAnalyze = true; |
| 514 | return Expr; |
| 515 | } |
| 516 | const SCEV *NewStep = |
| 517 | SE.getMulExpr(LHS: Step, RHS: SE.getConstant(Ty, V: StepMultiplier)); |
| 518 | const SCEV *ScaledOffset = SE.getMulExpr(LHS: Step, RHS: SE.getConstant(Ty, V: Offset)); |
| 519 | const SCEV *NewStart = SE.getAddExpr(LHS: Expr->getStart(), RHS: ScaledOffset); |
| 520 | return SE.getAddRecExpr(Start: NewStart, Step: NewStep, L: TheLoop, Flags: SCEV::FlagAnyWrap); |
| 521 | } |
| 522 | |
| 523 | const SCEV *visit(const SCEV *S) { |
| 524 | if (CannotAnalyze || SE.isLoopInvariant(S, L: TheLoop)) |
| 525 | return S; |
| 526 | return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S); |
| 527 | } |
| 528 | |
| 529 | const SCEV *visitUnknown(const SCEVUnknown *S) { |
| 530 | if (SE.isLoopInvariant(S, L: TheLoop)) |
| 531 | return S; |
| 532 | // The value could vary across iterations. |
| 533 | CannotAnalyze = true; |
| 534 | return S; |
| 535 | } |
| 536 | |
| 537 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) { |
| 538 | // Could not analyze the expression. |
| 539 | CannotAnalyze = true; |
| 540 | return S; |
| 541 | } |
| 542 | |
| 543 | static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE, |
| 544 | unsigned StepMultiplier, unsigned Offset, |
| 545 | Loop *TheLoop) { |
| 546 | /// Bail out if the expression does not contain an UDiv expression. |
| 547 | /// Uniform values which are not loop invariant require operations to strip |
| 548 | /// out the lowest bits. For now just look for UDivs and use it to avoid |
| 549 | /// re-writing UDIV-free expressions for other lanes to limit compile time. |
| 550 | if (!SCEVExprContains(Root: S, |
| 551 | Pred: [](const SCEV *S) { return isa<SCEVUDivExpr>(Val: S); })) |
| 552 | return SE.getCouldNotCompute(); |
| 553 | |
| 554 | SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset, |
| 555 | TheLoop); |
| 556 | const SCEV *Result = Rewriter.visit(S); |
| 557 | |
| 558 | if (Rewriter.canAnalyze()) |
| 559 | return Result; |
| 560 | return SE.getCouldNotCompute(); |
| 561 | } |
| 562 | }; |
| 563 | |
| 564 | } // namespace |
| 565 | |
| 566 | bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const { |
| 567 | if (isInvariant(V)) |
| 568 | return true; |
| 569 | if (VF.isScalable()) |
| 570 | return false; |
| 571 | if (VF.isScalar()) |
| 572 | return true; |
| 573 | |
| 574 | // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is |
| 575 | // never considered uniform. |
| 576 | auto *SE = PSE.getSE(); |
| 577 | if (!SE->isSCEVable(Ty: V->getType())) |
| 578 | return false; |
| 579 | const SCEV *S = SE->getSCEV(V); |
| 580 | |
| 581 | // Rewrite AddRecs in TheLoop to step by VF and check if the expression for |
| 582 | // lane 0 matches the expressions for all other lanes. |
| 583 | unsigned FixedVF = VF.getKnownMinValue(); |
| 584 | const SCEV *FirstLaneExpr = |
| 585 | SCEVAddRecForUniformityRewriter::rewrite(S, SE&: *SE, StepMultiplier: FixedVF, Offset: 0, TheLoop); |
| 586 | if (isa<SCEVCouldNotCompute>(Val: FirstLaneExpr)) |
| 587 | return false; |
| 588 | |
| 589 | // Make sure the expressions for lanes FixedVF-1..1 match the expression for |
| 590 | // lane 0. We check lanes in reverse order for compile-time, as frequently |
| 591 | // checking the last lane is sufficient to rule out uniformity. |
| 592 | return all_of(Range: reverse(C: seq<unsigned>(Begin: 1, End: FixedVF)), P: [&](unsigned I) { |
| 593 | const SCEV *IthLaneExpr = |
| 594 | SCEVAddRecForUniformityRewriter::rewrite(S, SE&: *SE, StepMultiplier: FixedVF, Offset: I, TheLoop); |
| 595 | return FirstLaneExpr == IthLaneExpr; |
| 596 | }); |
| 597 | } |
| 598 | |
| 599 | bool LoopVectorizationLegality::isUniformMemOp(Instruction &I, |
| 600 | ElementCount VF) const { |
| 601 | Value *Ptr = getLoadStorePointerOperand(V: &I); |
| 602 | if (!Ptr) |
| 603 | return false; |
| 604 | // Note: There's nothing inherent which prevents predicated loads and |
| 605 | // stores from being uniform. The current lowering simply doesn't handle |
| 606 | // it; in particular, the cost model distinguishes scatter/gather from |
| 607 | // scalar w/predication, and we currently rely on the scalar path. |
| 608 | return isUniform(V: Ptr, VF) && !blockNeedsPredication(BB: I.getParent()); |
| 609 | } |
| 610 | |
| 611 | bool LoopVectorizationLegality::canVectorizeOuterLoop() { |
| 612 | assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop." ); |
| 613 | // Store the result and return it at the end instead of exiting early, in case |
| 614 | // allowExtraAnalysis is used to report multiple reasons for not vectorizing. |
| 615 | bool Result = true; |
| 616 | bool = ORE->allowExtraAnalysis(DEBUG_TYPE); |
| 617 | |
| 618 | for (BasicBlock *BB : TheLoop->blocks()) { |
| 619 | // Check whether the BB terminator is a BranchInst. Any other terminator is |
| 620 | // not supported yet. |
| 621 | auto *Br = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
| 622 | if (!Br) { |
| 623 | reportVectorizationFailure(DebugMsg: "Unsupported basic block terminator" , |
| 624 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 625 | ORETag: "CFGNotUnderstood" , ORE, TheLoop); |
| 626 | if (DoExtraAnalysis) |
| 627 | Result = false; |
| 628 | else |
| 629 | return false; |
| 630 | } |
| 631 | |
| 632 | // Check whether the BranchInst is a supported one. Only unconditional |
| 633 | // branches, conditional branches with an outer loop invariant condition or |
| 634 | // backedges are supported. |
| 635 | // FIXME: We skip these checks when VPlan predication is enabled as we |
| 636 | // want to allow divergent branches. This whole check will be removed |
| 637 | // once VPlan predication is on by default. |
| 638 | if (Br && Br->isConditional() && |
| 639 | !TheLoop->isLoopInvariant(V: Br->getCondition()) && |
| 640 | !LI->isLoopHeader(BB: Br->getSuccessor(i: 0)) && |
| 641 | !LI->isLoopHeader(BB: Br->getSuccessor(i: 1))) { |
| 642 | reportVectorizationFailure(DebugMsg: "Unsupported conditional branch" , |
| 643 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 644 | ORETag: "CFGNotUnderstood" , ORE, TheLoop); |
| 645 | if (DoExtraAnalysis) |
| 646 | Result = false; |
| 647 | else |
| 648 | return false; |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | // Check whether inner loops are uniform. At this point, we only support |
| 653 | // simple outer loops scenarios with uniform nested loops. |
| 654 | if (!isUniformLoopNest(Lp: TheLoop /*loop nest*/, |
| 655 | OuterLp: TheLoop /*context outer loop*/)) { |
| 656 | reportVectorizationFailure(DebugMsg: "Outer loop contains divergent loops" , |
| 657 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 658 | ORETag: "CFGNotUnderstood" , ORE, TheLoop); |
| 659 | if (DoExtraAnalysis) |
| 660 | Result = false; |
| 661 | else |
| 662 | return false; |
| 663 | } |
| 664 | |
| 665 | // Check whether we are able to set up outer loop induction. |
| 666 | if (!setupOuterLoopInductions()) { |
| 667 | reportVectorizationFailure(DebugMsg: "Unsupported outer loop Phi(s)" , |
| 668 | ORETag: "UnsupportedPhi" , ORE, TheLoop); |
| 669 | if (DoExtraAnalysis) |
| 670 | Result = false; |
| 671 | else |
| 672 | return false; |
| 673 | } |
| 674 | |
| 675 | return Result; |
| 676 | } |
| 677 | |
| 678 | void LoopVectorizationLegality::addInductionPhi( |
| 679 | PHINode *Phi, const InductionDescriptor &ID, |
| 680 | SmallPtrSetImpl<Value *> &AllowedExit) { |
| 681 | Inductions[Phi] = ID; |
| 682 | |
| 683 | // In case this induction also comes with casts that we know we can ignore |
| 684 | // in the vectorized loop body, record them here. All casts could be recorded |
| 685 | // here for ignoring, but suffices to record only the first (as it is the |
| 686 | // only one that may bw used outside the cast sequence). |
| 687 | const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); |
| 688 | if (!Casts.empty()) |
| 689 | InductionCastsToIgnore.insert(Ptr: *Casts.begin()); |
| 690 | |
| 691 | Type *PhiTy = Phi->getType(); |
| 692 | const DataLayout &DL = Phi->getDataLayout(); |
| 693 | |
| 694 | assert((PhiTy->isIntOrPtrTy() || PhiTy->isFloatingPointTy()) && |
| 695 | "Expected int, ptr, or FP induction phi type" ); |
| 696 | |
| 697 | // Get the widest type. |
| 698 | if (PhiTy->isIntOrPtrTy()) { |
| 699 | if (!WidestIndTy) |
| 700 | WidestIndTy = getInductionIntegerTy(DL, Ty: PhiTy); |
| 701 | else |
| 702 | WidestIndTy = getWiderInductionTy(DL, Ty0: PhiTy, Ty1: WidestIndTy); |
| 703 | } |
| 704 | |
| 705 | // Int inductions are special because we only allow one IV. |
| 706 | if (ID.getKind() == InductionDescriptor::IK_IntInduction && |
| 707 | ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && |
| 708 | isa<Constant>(Val: ID.getStartValue()) && |
| 709 | cast<Constant>(Val: ID.getStartValue())->isNullValue()) { |
| 710 | |
| 711 | // Use the phi node with the widest type as induction. Use the last |
| 712 | // one if there are multiple (no good reason for doing this other |
| 713 | // than it is expedient). We've checked that it begins at zero and |
| 714 | // steps by one, so this is a canonical induction variable. |
| 715 | if (!PrimaryInduction || PhiTy == WidestIndTy) |
| 716 | PrimaryInduction = Phi; |
| 717 | } |
| 718 | |
| 719 | // Both the PHI node itself, and the "post-increment" value feeding |
| 720 | // back into the PHI node may have external users. |
| 721 | // We can allow those uses, except if the SCEVs we have for them rely |
| 722 | // on predicates that only hold within the loop, since allowing the exit |
| 723 | // currently means re-using this SCEV outside the loop (see PR33706 for more |
| 724 | // details). |
| 725 | if (PSE.getPredicate().isAlwaysTrue()) { |
| 726 | AllowedExit.insert(Ptr: Phi); |
| 727 | AllowedExit.insert(Ptr: Phi->getIncomingValueForBlock(BB: TheLoop->getLoopLatch())); |
| 728 | } |
| 729 | |
| 730 | LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n" ); |
| 731 | } |
| 732 | |
| 733 | bool LoopVectorizationLegality::setupOuterLoopInductions() { |
| 734 | BasicBlock * = TheLoop->getHeader(); |
| 735 | |
| 736 | // Returns true if a given Phi is a supported induction. |
| 737 | auto IsSupportedPhi = [&](PHINode &Phi) -> bool { |
| 738 | InductionDescriptor ID; |
| 739 | if (InductionDescriptor::isInductionPHI(Phi: &Phi, L: TheLoop, PSE, D&: ID) && |
| 740 | ID.getKind() == InductionDescriptor::IK_IntInduction) { |
| 741 | addInductionPhi(Phi: &Phi, ID, AllowedExit); |
| 742 | return true; |
| 743 | } |
| 744 | // Bail out for any Phi in the outer loop header that is not a supported |
| 745 | // induction. |
| 746 | LLVM_DEBUG( |
| 747 | dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n" ); |
| 748 | return false; |
| 749 | }; |
| 750 | |
| 751 | return llvm::all_of(Range: Header->phis(), P: IsSupportedPhi); |
| 752 | } |
| 753 | |
| 754 | /// Checks if a function is scalarizable according to the TLI, in |
| 755 | /// the sense that it should be vectorized and then expanded in |
| 756 | /// multiple scalar calls. This is represented in the |
| 757 | /// TLI via mappings that do not specify a vector name, as in the |
| 758 | /// following example: |
| 759 | /// |
| 760 | /// const VecDesc VecIntrinsics[] = { |
| 761 | /// {"llvm.phx.abs.i32", "", 4} |
| 762 | /// }; |
| 763 | static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { |
| 764 | const StringRef ScalarName = CI.getCalledFunction()->getName(); |
| 765 | bool Scalarize = TLI.isFunctionVectorizable(F: ScalarName); |
| 766 | // Check that all known VFs are not associated to a vector |
| 767 | // function, i.e. the vector name is emty. |
| 768 | if (Scalarize) { |
| 769 | ElementCount WidestFixedVF, WidestScalableVF; |
| 770 | TLI.getWidestVF(ScalarF: ScalarName, FixedVF&: WidestFixedVF, ScalableVF&: WidestScalableVF); |
| 771 | for (ElementCount VF = ElementCount::getFixed(MinVal: 2); |
| 772 | ElementCount::isKnownLE(LHS: VF, RHS: WidestFixedVF); VF *= 2) |
| 773 | Scalarize &= !TLI.isFunctionVectorizable(F: ScalarName, VF); |
| 774 | for (ElementCount VF = ElementCount::getScalable(MinVal: 1); |
| 775 | ElementCount::isKnownLE(LHS: VF, RHS: WidestScalableVF); VF *= 2) |
| 776 | Scalarize &= !TLI.isFunctionVectorizable(F: ScalarName, VF); |
| 777 | assert((WidestScalableVF.isZero() || !Scalarize) && |
| 778 | "Caller may decide to scalarize a variant using a scalable VF" ); |
| 779 | } |
| 780 | return Scalarize; |
| 781 | } |
| 782 | |
| 783 | /// Returns true if the call return type `Ty` can be widened by the loop |
| 784 | /// vectorizer. |
| 785 | static bool canWidenCallReturnType(Type *Ty) { |
| 786 | auto *StructTy = dyn_cast<StructType>(Val: Ty); |
| 787 | // TODO: Remove the homogeneous types restriction. This is just an initial |
| 788 | // simplification. When we want to support things like the overflow intrinsics |
| 789 | // we will have to lift this restriction. |
| 790 | if (StructTy && !StructTy->containsHomogeneousTypes()) |
| 791 | return false; |
| 792 | return canVectorizeTy(Ty: StructTy); |
| 793 | } |
| 794 | |
| 795 | bool LoopVectorizationLegality::canVectorizeInstrs() { |
| 796 | BasicBlock * = TheLoop->getHeader(); |
| 797 | |
| 798 | // For each block in the loop. |
| 799 | for (BasicBlock *BB : TheLoop->blocks()) { |
| 800 | // Scan the instructions in the block and look for hazards. |
| 801 | for (Instruction &I : *BB) { |
| 802 | if (auto *Phi = dyn_cast<PHINode>(Val: &I)) { |
| 803 | Type *PhiTy = Phi->getType(); |
| 804 | // Check that this PHI type is allowed. |
| 805 | if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && |
| 806 | !PhiTy->isPointerTy()) { |
| 807 | reportVectorizationFailure(DebugMsg: "Found a non-int non-pointer PHI" , |
| 808 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 809 | ORETag: "CFGNotUnderstood" , ORE, TheLoop); |
| 810 | return false; |
| 811 | } |
| 812 | |
| 813 | // If this PHINode is not in the header block, then we know that we |
| 814 | // can convert it to select during if-conversion. No need to check if |
| 815 | // the PHIs in this block are induction or reduction variables. |
| 816 | if (BB != Header) { |
| 817 | // Non-header phi nodes that have outside uses can be vectorized. Add |
| 818 | // them to the list of allowed exits. |
| 819 | // Unsafe cyclic dependencies with header phis are identified during |
| 820 | // legalization for reduction, induction and fixed order |
| 821 | // recurrences. |
| 822 | AllowedExit.insert(Ptr: &I); |
| 823 | continue; |
| 824 | } |
| 825 | |
| 826 | // We only allow if-converted PHIs with exactly two incoming values. |
| 827 | if (Phi->getNumIncomingValues() != 2) { |
| 828 | reportVectorizationFailure(DebugMsg: "Found an invalid PHI" , |
| 829 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 830 | ORETag: "CFGNotUnderstood" , ORE, TheLoop, I: Phi); |
| 831 | return false; |
| 832 | } |
| 833 | |
| 834 | RecurrenceDescriptor RedDes; |
| 835 | if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, |
| 836 | DT, SE: PSE.getSE())) { |
| 837 | Requirements->addExactFPMathInst(I: RedDes.getExactFPMathInst()); |
| 838 | AllowedExit.insert(Ptr: RedDes.getLoopExitInstr()); |
| 839 | Reductions[Phi] = RedDes; |
| 840 | continue; |
| 841 | } |
| 842 | |
| 843 | // We prevent matching non-constant strided pointer IVS to preserve |
| 844 | // historical vectorizer behavior after a generalization of the |
| 845 | // IVDescriptor code. The intent is to remove this check, but we |
| 846 | // have to fix issues around code quality for such loops first. |
| 847 | auto IsDisallowedStridedPointerInduction = |
| 848 | [](const InductionDescriptor &ID) { |
| 849 | if (AllowStridedPointerIVs) |
| 850 | return false; |
| 851 | return ID.getKind() == InductionDescriptor::IK_PtrInduction && |
| 852 | ID.getConstIntStepValue() == nullptr; |
| 853 | }; |
| 854 | |
| 855 | // TODO: Instead of recording the AllowedExit, it would be good to |
| 856 | // record the complementary set: NotAllowedExit. These include (but may |
| 857 | // not be limited to): |
| 858 | // 1. Reduction phis as they represent the one-before-last value, which |
| 859 | // is not available when vectorized |
| 860 | // 2. Induction phis and increment when SCEV predicates cannot be used |
| 861 | // outside the loop - see addInductionPhi |
| 862 | // 3. Non-Phis with outside uses when SCEV predicates cannot be used |
| 863 | // outside the loop - see call to hasOutsideLoopUser in the non-phi |
| 864 | // handling below |
| 865 | // 4. FixedOrderRecurrence phis that can possibly be handled by |
| 866 | // extraction. |
| 867 | // By recording these, we can then reason about ways to vectorize each |
| 868 | // of these NotAllowedExit. |
| 869 | InductionDescriptor ID; |
| 870 | if (InductionDescriptor::isInductionPHI(Phi, L: TheLoop, PSE, D&: ID) && |
| 871 | !IsDisallowedStridedPointerInduction(ID)) { |
| 872 | addInductionPhi(Phi, ID, AllowedExit); |
| 873 | Requirements->addExactFPMathInst(I: ID.getExactFPMathInst()); |
| 874 | continue; |
| 875 | } |
| 876 | |
| 877 | if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) { |
| 878 | AllowedExit.insert(Ptr: Phi); |
| 879 | FixedOrderRecurrences.insert(Ptr: Phi); |
| 880 | continue; |
| 881 | } |
| 882 | |
| 883 | // As a last resort, coerce the PHI to a AddRec expression |
| 884 | // and re-try classifying it a an induction PHI. |
| 885 | if (InductionDescriptor::isInductionPHI(Phi, L: TheLoop, PSE, D&: ID, Assume: true) && |
| 886 | !IsDisallowedStridedPointerInduction(ID)) { |
| 887 | addInductionPhi(Phi, ID, AllowedExit); |
| 888 | continue; |
| 889 | } |
| 890 | |
| 891 | reportVectorizationFailure(DebugMsg: "Found an unidentified PHI" , |
| 892 | OREMsg: "value that could not be identified as " |
| 893 | "reduction is used outside the loop" , |
| 894 | ORETag: "NonReductionValueUsedOutsideLoop" , ORE, TheLoop, I: Phi); |
| 895 | return false; |
| 896 | } // end of PHI handling |
| 897 | |
| 898 | // We handle calls that: |
| 899 | // * Have a mapping to an IR intrinsic. |
| 900 | // * Have a vector version available. |
| 901 | auto *CI = dyn_cast<CallInst>(Val: &I); |
| 902 | |
| 903 | if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && |
| 904 | !(CI->getCalledFunction() && TLI && |
| 905 | (!VFDatabase::getMappings(CI: *CI).empty() || |
| 906 | isTLIScalarize(TLI: *TLI, CI: *CI)))) { |
| 907 | // If the call is a recognized math libary call, it is likely that |
| 908 | // we can vectorize it given loosened floating-point constraints. |
| 909 | LibFunc Func; |
| 910 | bool IsMathLibCall = |
| 911 | TLI && CI->getCalledFunction() && |
| 912 | CI->getType()->isFloatingPointTy() && |
| 913 | TLI->getLibFunc(funcName: CI->getCalledFunction()->getName(), F&: Func) && |
| 914 | TLI->hasOptimizedCodeGen(F: Func); |
| 915 | |
| 916 | if (IsMathLibCall) { |
| 917 | // TODO: Ideally, we should not use clang-specific language here, |
| 918 | // but it's hard to provide meaningful yet generic advice. |
| 919 | // Also, should this be guarded by allowExtraAnalysis() and/or be part |
| 920 | // of the returned info from isFunctionVectorizable()? |
| 921 | reportVectorizationFailure( |
| 922 | DebugMsg: "Found a non-intrinsic callsite" , |
| 923 | OREMsg: "library call cannot be vectorized. " |
| 924 | "Try compiling with -fno-math-errno, -ffast-math, " |
| 925 | "or similar flags" , |
| 926 | ORETag: "CantVectorizeLibcall" , ORE, TheLoop, I: CI); |
| 927 | } else { |
| 928 | reportVectorizationFailure(DebugMsg: "Found a non-intrinsic callsite" , |
| 929 | OREMsg: "call instruction cannot be vectorized" , |
| 930 | ORETag: "CantVectorizeLibcall" , ORE, TheLoop, I: CI); |
| 931 | } |
| 932 | return false; |
| 933 | } |
| 934 | |
| 935 | // Some intrinsics have scalar arguments and should be same in order for |
| 936 | // them to be vectorized (i.e. loop invariant). |
| 937 | if (CI) { |
| 938 | auto *SE = PSE.getSE(); |
| 939 | Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); |
| 940 | for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx) |
| 941 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IntrinID, ScalarOpdIdx: Idx, TTI)) { |
| 942 | if (!SE->isLoopInvariant(S: PSE.getSCEV(V: CI->getOperand(i_nocapture: Idx)), |
| 943 | L: TheLoop)) { |
| 944 | reportVectorizationFailure(DebugMsg: "Found unvectorizable intrinsic" , |
| 945 | OREMsg: "intrinsic instruction cannot be vectorized" , |
| 946 | ORETag: "CantVectorizeIntrinsic" , ORE, TheLoop, I: CI); |
| 947 | return false; |
| 948 | } |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | // If we found a vectorized variant of a function, note that so LV can |
| 953 | // make better decisions about maximum VF. |
| 954 | if (CI && !VFDatabase::getMappings(CI: *CI).empty()) |
| 955 | VecCallVariantsFound = true; |
| 956 | |
| 957 | auto CanWidenInstructionTy = [](Instruction const &Inst) { |
| 958 | Type *InstTy = Inst.getType(); |
| 959 | if (!isa<StructType>(Val: InstTy)) |
| 960 | return canVectorizeTy(Ty: InstTy); |
| 961 | |
| 962 | // For now, we only recognize struct values returned from calls where |
| 963 | // all users are extractvalue as vectorizable. All element types of the |
| 964 | // struct must be types that can be widened. |
| 965 | return isa<CallInst>(Val: Inst) && canWidenCallReturnType(Ty: InstTy) && |
| 966 | all_of(Range: Inst.users(), P: IsaPred<ExtractValueInst>); |
| 967 | }; |
| 968 | |
| 969 | // Check that the instruction return type is vectorizable. |
| 970 | // We can't vectorize casts from vector type to scalar type. |
| 971 | // Also, we can't vectorize extractelement instructions. |
| 972 | if (!CanWidenInstructionTy(I) || |
| 973 | (isa<CastInst>(Val: I) && |
| 974 | !VectorType::isValidElementType(ElemTy: I.getOperand(i: 0)->getType())) || |
| 975 | isa<ExtractElementInst>(Val: I)) { |
| 976 | reportVectorizationFailure(DebugMsg: "Found unvectorizable type" , |
| 977 | OREMsg: "instruction return type cannot be vectorized" , |
| 978 | ORETag: "CantVectorizeInstructionReturnType" , ORE, TheLoop, I: &I); |
| 979 | return false; |
| 980 | } |
| 981 | |
| 982 | // Check that the stored type is vectorizable. |
| 983 | if (auto *ST = dyn_cast<StoreInst>(Val: &I)) { |
| 984 | Type *T = ST->getValueOperand()->getType(); |
| 985 | if (!VectorType::isValidElementType(ElemTy: T)) { |
| 986 | reportVectorizationFailure(DebugMsg: "Store instruction cannot be vectorized" , |
| 987 | ORETag: "CantVectorizeStore" , ORE, TheLoop, I: ST); |
| 988 | return false; |
| 989 | } |
| 990 | |
| 991 | // For nontemporal stores, check that a nontemporal vector version is |
| 992 | // supported on the target. |
| 993 | if (ST->getMetadata(KindID: LLVMContext::MD_nontemporal)) { |
| 994 | // Arbitrarily try a vector of 2 elements. |
| 995 | auto *VecTy = FixedVectorType::get(ElementType: T, /*NumElts=*/2); |
| 996 | assert(VecTy && "did not find vectorized version of stored type" ); |
| 997 | if (!TTI->isLegalNTStore(DataType: VecTy, Alignment: ST->getAlign())) { |
| 998 | reportVectorizationFailure( |
| 999 | DebugMsg: "nontemporal store instruction cannot be vectorized" , |
| 1000 | ORETag: "CantVectorizeNontemporalStore" , ORE, TheLoop, I: ST); |
| 1001 | return false; |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | } else if (auto *LD = dyn_cast<LoadInst>(Val: &I)) { |
| 1006 | if (LD->getMetadata(KindID: LLVMContext::MD_nontemporal)) { |
| 1007 | // For nontemporal loads, check that a nontemporal vector version is |
| 1008 | // supported on the target (arbitrarily try a vector of 2 elements). |
| 1009 | auto *VecTy = FixedVectorType::get(ElementType: I.getType(), /*NumElts=*/2); |
| 1010 | assert(VecTy && "did not find vectorized version of load type" ); |
| 1011 | if (!TTI->isLegalNTLoad(DataType: VecTy, Alignment: LD->getAlign())) { |
| 1012 | reportVectorizationFailure( |
| 1013 | DebugMsg: "nontemporal load instruction cannot be vectorized" , |
| 1014 | ORETag: "CantVectorizeNontemporalLoad" , ORE, TheLoop, I: LD); |
| 1015 | return false; |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | // FP instructions can allow unsafe algebra, thus vectorizable by |
| 1020 | // non-IEEE-754 compliant SIMD units. |
| 1021 | // This applies to floating-point math operations and calls, not memory |
| 1022 | // operations, shuffles, or casts, as they don't change precision or |
| 1023 | // semantics. |
| 1024 | } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && |
| 1025 | !I.isFast()) { |
| 1026 | LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n" ); |
| 1027 | Hints->setPotentiallyUnsafe(); |
| 1028 | } |
| 1029 | |
| 1030 | // Reduction instructions are allowed to have exit users. |
| 1031 | // All other instructions must not have external users. |
| 1032 | if (hasOutsideLoopUser(TheLoop, Inst: &I, AllowedExit)) { |
| 1033 | // We can safely vectorize loops where instructions within the loop are |
| 1034 | // used outside the loop only if the SCEV predicates within the loop is |
| 1035 | // same as outside the loop. Allowing the exit means reusing the SCEV |
| 1036 | // outside the loop. |
| 1037 | if (PSE.getPredicate().isAlwaysTrue()) { |
| 1038 | AllowedExit.insert(Ptr: &I); |
| 1039 | continue; |
| 1040 | } |
| 1041 | reportVectorizationFailure(DebugMsg: "Value cannot be used outside the loop" , |
| 1042 | ORETag: "ValueUsedOutsideLoop" , ORE, TheLoop, I: &I); |
| 1043 | return false; |
| 1044 | } |
| 1045 | } // next instr. |
| 1046 | } |
| 1047 | |
| 1048 | if (!PrimaryInduction) { |
| 1049 | if (Inductions.empty()) { |
| 1050 | reportVectorizationFailure(DebugMsg: "Did not find one integer induction var" , |
| 1051 | OREMsg: "loop induction variable could not be identified" , |
| 1052 | ORETag: "NoInductionVariable" , ORE, TheLoop); |
| 1053 | return false; |
| 1054 | } |
| 1055 | if (!WidestIndTy) { |
| 1056 | reportVectorizationFailure(DebugMsg: "Did not find one integer induction var" , |
| 1057 | OREMsg: "integer loop induction variable could not be identified" , |
| 1058 | ORETag: "NoIntegerInductionVariable" , ORE, TheLoop); |
| 1059 | return false; |
| 1060 | } |
| 1061 | LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n" ); |
| 1062 | } |
| 1063 | |
| 1064 | // Now we know the widest induction type, check if our found induction |
| 1065 | // is the same size. If it's not, unset it here and InnerLoopVectorizer |
| 1066 | // will create another. |
| 1067 | if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) |
| 1068 | PrimaryInduction = nullptr; |
| 1069 | |
| 1070 | return true; |
| 1071 | } |
| 1072 | |
| 1073 | /// Find histogram operations that match high-level code in loops: |
| 1074 | /// \code |
| 1075 | /// buckets[indices[i]]+=step; |
| 1076 | /// \endcode |
| 1077 | /// |
| 1078 | /// It matches a pattern starting from \p HSt, which Stores to the 'buckets' |
| 1079 | /// array the computed histogram. It uses a BinOp to sum all counts, storing |
| 1080 | /// them using a loop-variant index Load from the 'indices' input array. |
| 1081 | /// |
| 1082 | /// On successful matches it updates the STATISTIC 'HistogramsDetected', |
| 1083 | /// regardless of hardware support. When there is support, it additionally |
| 1084 | /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers |
| 1085 | /// used to update histogram in \p HistogramPtrs. |
| 1086 | static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop, |
| 1087 | const PredicatedScalarEvolution &PSE, |
| 1088 | SmallVectorImpl<HistogramInfo> &Histograms) { |
| 1089 | |
| 1090 | // Store value must come from a Binary Operation. |
| 1091 | Instruction *HPtrInstr = nullptr; |
| 1092 | BinaryOperator *HBinOp = nullptr; |
| 1093 | if (!match(V: HSt, P: m_Store(ValueOp: m_BinOp(I&: HBinOp), PointerOp: m_Instruction(I&: HPtrInstr)))) |
| 1094 | return false; |
| 1095 | |
| 1096 | // BinOp must be an Add or a Sub modifying the bucket value by a |
| 1097 | // loop invariant amount. |
| 1098 | // FIXME: We assume the loop invariant term is on the RHS. |
| 1099 | // Fine for an immediate/constant, but maybe not a generic value? |
| 1100 | Value *HIncVal = nullptr; |
| 1101 | if (!match(V: HBinOp, P: m_Add(L: m_Load(Op: m_Specific(V: HPtrInstr)), R: m_Value(V&: HIncVal))) && |
| 1102 | !match(V: HBinOp, P: m_Sub(L: m_Load(Op: m_Specific(V: HPtrInstr)), R: m_Value(V&: HIncVal)))) |
| 1103 | return false; |
| 1104 | |
| 1105 | // Make sure the increment value is loop invariant. |
| 1106 | if (!TheLoop->isLoopInvariant(V: HIncVal)) |
| 1107 | return false; |
| 1108 | |
| 1109 | // The address to store is calculated through a GEP Instruction. |
| 1110 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: HPtrInstr); |
| 1111 | if (!GEP) |
| 1112 | return false; |
| 1113 | |
| 1114 | // Restrict address calculation to constant indices except for the last term. |
| 1115 | Value *HIdx = nullptr; |
| 1116 | for (Value *Index : GEP->indices()) { |
| 1117 | if (HIdx) |
| 1118 | return false; |
| 1119 | if (!isa<ConstantInt>(Val: Index)) |
| 1120 | HIdx = Index; |
| 1121 | } |
| 1122 | |
| 1123 | if (!HIdx) |
| 1124 | return false; |
| 1125 | |
| 1126 | // Check that the index is calculated by loading from another array. Ignore |
| 1127 | // any extensions. |
| 1128 | // FIXME: Support indices from other sources than a linear load from memory? |
| 1129 | // We're currently trying to match an operation looping over an array |
| 1130 | // of indices, but there could be additional levels of indirection |
| 1131 | // in place, or possibly some additional calculation to form the index |
| 1132 | // from the loaded data. |
| 1133 | Value *VPtrVal; |
| 1134 | if (!match(V: HIdx, P: m_ZExtOrSExtOrSelf(Op: m_Load(Op: m_Value(V&: VPtrVal))))) |
| 1135 | return false; |
| 1136 | |
| 1137 | // Make sure the index address varies in this loop, not an outer loop. |
| 1138 | const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PSE.getSE()->getSCEV(V: VPtrVal)); |
| 1139 | if (!AR || AR->getLoop() != TheLoop) |
| 1140 | return false; |
| 1141 | |
| 1142 | // Ensure we'll have the same mask by checking that all parts of the histogram |
| 1143 | // (gather load, update, scatter store) are in the same block. |
| 1144 | LoadInst *IndexedLoad = cast<LoadInst>(Val: HBinOp->getOperand(i_nocapture: 0)); |
| 1145 | BasicBlock *LdBB = IndexedLoad->getParent(); |
| 1146 | if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent()) |
| 1147 | return false; |
| 1148 | |
| 1149 | LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n" ); |
| 1150 | |
| 1151 | // Store the operations that make up the histogram. |
| 1152 | Histograms.emplace_back(Args&: IndexedLoad, Args&: HBinOp, Args&: HSt); |
| 1153 | return true; |
| 1154 | } |
| 1155 | |
| 1156 | bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() { |
| 1157 | // For now, we only support an IndirectUnsafe dependency that calculates |
| 1158 | // a histogram |
| 1159 | if (!EnableHistogramVectorization) |
| 1160 | return false; |
| 1161 | |
| 1162 | // Find a single IndirectUnsafe dependency. |
| 1163 | const MemoryDepChecker::Dependence *IUDep = nullptr; |
| 1164 | const MemoryDepChecker &DepChecker = LAI->getDepChecker(); |
| 1165 | const auto *Deps = DepChecker.getDependences(); |
| 1166 | // If there were too many dependences, LAA abandons recording them. We can't |
| 1167 | // proceed safely if we don't know what the dependences are. |
| 1168 | if (!Deps) |
| 1169 | return false; |
| 1170 | |
| 1171 | for (const MemoryDepChecker::Dependence &Dep : *Deps) { |
| 1172 | // Ignore dependencies that are either known to be safe or can be |
| 1173 | // checked at runtime. |
| 1174 | if (MemoryDepChecker::Dependence::isSafeForVectorization(Type: Dep.Type) != |
| 1175 | MemoryDepChecker::VectorizationSafetyStatus::Unsafe) |
| 1176 | continue; |
| 1177 | |
| 1178 | // We're only interested in IndirectUnsafe dependencies here, where the |
| 1179 | // address might come from a load from memory. We also only want to handle |
| 1180 | // one such dependency, at least for now. |
| 1181 | if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep) |
| 1182 | return false; |
| 1183 | |
| 1184 | IUDep = &Dep; |
| 1185 | } |
| 1186 | if (!IUDep) |
| 1187 | return false; |
| 1188 | |
| 1189 | // For now only normal loads and stores are supported. |
| 1190 | LoadInst *LI = dyn_cast<LoadInst>(Val: IUDep->getSource(DepChecker)); |
| 1191 | StoreInst *SI = dyn_cast<StoreInst>(Val: IUDep->getDestination(DepChecker)); |
| 1192 | |
| 1193 | if (!LI || !SI) |
| 1194 | return false; |
| 1195 | |
| 1196 | LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n" ); |
| 1197 | return findHistogram(LI, HSt: SI, TheLoop, PSE: LAI->getPSE(), Histograms); |
| 1198 | } |
| 1199 | |
| 1200 | bool LoopVectorizationLegality::canVectorizeMemory() { |
| 1201 | LAI = &LAIs.getInfo(L&: *TheLoop); |
| 1202 | const OptimizationRemarkAnalysis *LAR = LAI->getReport(); |
| 1203 | if (LAR) { |
| 1204 | ORE->emit(RemarkBuilder: [&]() { |
| 1205 | return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), |
| 1206 | "loop not vectorized: " , *LAR); |
| 1207 | }); |
| 1208 | } |
| 1209 | |
| 1210 | if (!LAI->canVectorizeMemory()) |
| 1211 | return canVectorizeIndirectUnsafeDependences(); |
| 1212 | |
| 1213 | if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) { |
| 1214 | reportVectorizationFailure(DebugMsg: "We don't allow storing to uniform addresses" , |
| 1215 | OREMsg: "write to a loop invariant address could not " |
| 1216 | "be vectorized" , |
| 1217 | ORETag: "CantVectorizeStoreToLoopInvariantAddress" , ORE, |
| 1218 | TheLoop); |
| 1219 | return false; |
| 1220 | } |
| 1221 | |
| 1222 | // We can vectorize stores to invariant address when final reduction value is |
| 1223 | // guaranteed to be stored at the end of the loop. Also, if decision to |
| 1224 | // vectorize loop is made, runtime checks are added so as to make sure that |
| 1225 | // invariant address won't alias with any other objects. |
| 1226 | if (!LAI->getStoresToInvariantAddresses().empty()) { |
| 1227 | // For each invariant address, check if last stored value is unconditional |
| 1228 | // and the address is not calculated inside the loop. |
| 1229 | for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { |
| 1230 | if (!isInvariantStoreOfReduction(SI)) |
| 1231 | continue; |
| 1232 | |
| 1233 | if (blockNeedsPredication(BB: SI->getParent())) { |
| 1234 | reportVectorizationFailure( |
| 1235 | DebugMsg: "We don't allow storing to uniform addresses" , |
| 1236 | OREMsg: "write of conditional recurring variant value to a loop " |
| 1237 | "invariant address could not be vectorized" , |
| 1238 | ORETag: "CantVectorizeStoreToLoopInvariantAddress" , ORE, TheLoop); |
| 1239 | return false; |
| 1240 | } |
| 1241 | |
| 1242 | // Invariant address should be defined outside of loop. LICM pass usually |
| 1243 | // makes sure it happens, but in rare cases it does not, we do not want |
| 1244 | // to overcomplicate vectorization to support this case. |
| 1245 | if (Instruction *Ptr = dyn_cast<Instruction>(Val: SI->getPointerOperand())) { |
| 1246 | if (TheLoop->contains(Inst: Ptr)) { |
| 1247 | reportVectorizationFailure( |
| 1248 | DebugMsg: "Invariant address is calculated inside the loop" , |
| 1249 | OREMsg: "write to a loop invariant address could not " |
| 1250 | "be vectorized" , |
| 1251 | ORETag: "CantVectorizeStoreToLoopInvariantAddress" , ORE, TheLoop); |
| 1252 | return false; |
| 1253 | } |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) { |
| 1258 | // For each invariant address, check its last stored value is the result |
| 1259 | // of one of our reductions. |
| 1260 | // |
| 1261 | // We do not check if dependence with loads exists because that is already |
| 1262 | // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress. |
| 1263 | ScalarEvolution *SE = PSE.getSE(); |
| 1264 | SmallVector<StoreInst *, 4> UnhandledStores; |
| 1265 | for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { |
| 1266 | if (isInvariantStoreOfReduction(SI)) { |
| 1267 | // Earlier stores to this address are effectively deadcode. |
| 1268 | // With opaque pointers it is possible for one pointer to be used with |
| 1269 | // different sizes of stored values: |
| 1270 | // store i32 0, ptr %x |
| 1271 | // store i8 0, ptr %x |
| 1272 | // The latest store doesn't complitely overwrite the first one in the |
| 1273 | // example. That is why we have to make sure that types of stored |
| 1274 | // values are same. |
| 1275 | // TODO: Check that bitwidth of unhandled store is smaller then the |
| 1276 | // one that overwrites it and add a test. |
| 1277 | erase_if(C&: UnhandledStores, P: [SE, SI](StoreInst *I) { |
| 1278 | return storeToSameAddress(SE, A: SI, B: I) && |
| 1279 | I->getValueOperand()->getType() == |
| 1280 | SI->getValueOperand()->getType(); |
| 1281 | }); |
| 1282 | continue; |
| 1283 | } |
| 1284 | UnhandledStores.push_back(Elt: SI); |
| 1285 | } |
| 1286 | |
| 1287 | bool IsOK = UnhandledStores.empty(); |
| 1288 | // TODO: we should also validate against InvariantMemSets. |
| 1289 | if (!IsOK) { |
| 1290 | reportVectorizationFailure( |
| 1291 | DebugMsg: "We don't allow storing to uniform addresses" , |
| 1292 | OREMsg: "write to a loop invariant address could not " |
| 1293 | "be vectorized" , |
| 1294 | ORETag: "CantVectorizeStoreToLoopInvariantAddress" , ORE, TheLoop); |
| 1295 | return false; |
| 1296 | } |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | PSE.addPredicate(Pred: LAI->getPSE().getPredicate()); |
| 1301 | return true; |
| 1302 | } |
| 1303 | |
| 1304 | bool LoopVectorizationLegality::canVectorizeFPMath( |
| 1305 | bool EnableStrictReductions) { |
| 1306 | |
| 1307 | // First check if there is any ExactFP math or if we allow reassociations |
| 1308 | if (!Requirements->getExactFPInst() || Hints->allowReordering()) |
| 1309 | return true; |
| 1310 | |
| 1311 | // If the above is false, we have ExactFPMath & do not allow reordering. |
| 1312 | // If the EnableStrictReductions flag is set, first check if we have any |
| 1313 | // Exact FP induction vars, which we cannot vectorize. |
| 1314 | if (!EnableStrictReductions || |
| 1315 | any_of(Range: getInductionVars(), P: [&](auto &Induction) -> bool { |
| 1316 | InductionDescriptor IndDesc = Induction.second; |
| 1317 | return IndDesc.getExactFPMathInst(); |
| 1318 | })) |
| 1319 | return false; |
| 1320 | |
| 1321 | // We can now only vectorize if all reductions with Exact FP math also |
| 1322 | // have the isOrdered flag set, which indicates that we can move the |
| 1323 | // reduction operations in-loop. |
| 1324 | return (all_of(Range: getReductionVars(), P: [&](auto &Reduction) -> bool { |
| 1325 | const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| 1326 | return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); |
| 1327 | })); |
| 1328 | } |
| 1329 | |
| 1330 | bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { |
| 1331 | return any_of(Range: getReductionVars(), P: [&](auto &Reduction) -> bool { |
| 1332 | const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| 1333 | return RdxDesc.IntermediateStore == SI; |
| 1334 | }); |
| 1335 | } |
| 1336 | |
| 1337 | bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { |
| 1338 | return any_of(Range: getReductionVars(), P: [&](auto &Reduction) -> bool { |
| 1339 | const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| 1340 | if (!RdxDesc.IntermediateStore) |
| 1341 | return false; |
| 1342 | |
| 1343 | ScalarEvolution *SE = PSE.getSE(); |
| 1344 | Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); |
| 1345 | return V == InvariantAddress || |
| 1346 | SE->getSCEV(V) == SE->getSCEV(V: InvariantAddress); |
| 1347 | }); |
| 1348 | } |
| 1349 | |
| 1350 | bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { |
| 1351 | Value *In0 = const_cast<Value *>(V); |
| 1352 | PHINode *PN = dyn_cast_or_null<PHINode>(Val: In0); |
| 1353 | if (!PN) |
| 1354 | return false; |
| 1355 | |
| 1356 | return Inductions.count(Key: PN); |
| 1357 | } |
| 1358 | |
| 1359 | const InductionDescriptor * |
| 1360 | LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { |
| 1361 | if (!isInductionPhi(V: Phi)) |
| 1362 | return nullptr; |
| 1363 | auto &ID = getInductionVars().find(Key: Phi)->second; |
| 1364 | if (ID.getKind() == InductionDescriptor::IK_IntInduction || |
| 1365 | ID.getKind() == InductionDescriptor::IK_FpInduction) |
| 1366 | return &ID; |
| 1367 | return nullptr; |
| 1368 | } |
| 1369 | |
| 1370 | const InductionDescriptor * |
| 1371 | LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { |
| 1372 | if (!isInductionPhi(V: Phi)) |
| 1373 | return nullptr; |
| 1374 | auto &ID = getInductionVars().find(Key: Phi)->second; |
| 1375 | if (ID.getKind() == InductionDescriptor::IK_PtrInduction) |
| 1376 | return &ID; |
| 1377 | return nullptr; |
| 1378 | } |
| 1379 | |
| 1380 | bool LoopVectorizationLegality::isCastedInductionVariable( |
| 1381 | const Value *V) const { |
| 1382 | auto *Inst = dyn_cast<Instruction>(Val: V); |
| 1383 | return (Inst && InductionCastsToIgnore.count(Ptr: Inst)); |
| 1384 | } |
| 1385 | |
| 1386 | bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { |
| 1387 | return isInductionPhi(V) || isCastedInductionVariable(V); |
| 1388 | } |
| 1389 | |
| 1390 | bool LoopVectorizationLegality::isFixedOrderRecurrence( |
| 1391 | const PHINode *Phi) const { |
| 1392 | return FixedOrderRecurrences.count(Ptr: Phi); |
| 1393 | } |
| 1394 | |
| 1395 | bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { |
| 1396 | // When vectorizing early exits, create predicates for the latch block only. |
| 1397 | // The early exiting block must be a direct predecessor of the latch at the |
| 1398 | // moment. |
| 1399 | BasicBlock *Latch = TheLoop->getLoopLatch(); |
| 1400 | if (hasUncountableEarlyExit()) { |
| 1401 | assert( |
| 1402 | is_contained(predecessors(Latch), getUncountableEarlyExitingBlock()) && |
| 1403 | "Uncountable exiting block must be a direct predecessor of latch" ); |
| 1404 | return BB == Latch; |
| 1405 | } |
| 1406 | return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); |
| 1407 | } |
| 1408 | |
| 1409 | bool LoopVectorizationLegality::blockCanBePredicated( |
| 1410 | BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, |
| 1411 | SmallPtrSetImpl<const Instruction *> &MaskedOp) const { |
| 1412 | for (Instruction &I : *BB) { |
| 1413 | // We can predicate blocks with calls to assume, as long as we drop them in |
| 1414 | // case we flatten the CFG via predication. |
| 1415 | if (match(V: &I, P: m_Intrinsic<Intrinsic::assume>())) { |
| 1416 | MaskedOp.insert(Ptr: &I); |
| 1417 | continue; |
| 1418 | } |
| 1419 | |
| 1420 | // Do not let llvm.experimental.noalias.scope.decl block the vectorization. |
| 1421 | // TODO: there might be cases that it should block the vectorization. Let's |
| 1422 | // ignore those for now. |
| 1423 | if (isa<NoAliasScopeDeclInst>(Val: &I)) |
| 1424 | continue; |
| 1425 | |
| 1426 | // We can allow masked calls if there's at least one vector variant, even |
| 1427 | // if we end up scalarizing due to the cost model calculations. |
| 1428 | // TODO: Allow other calls if they have appropriate attributes... readonly |
| 1429 | // and argmemonly? |
| 1430 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) |
| 1431 | if (VFDatabase::hasMaskedVariant(CI: *CI)) { |
| 1432 | MaskedOp.insert(Ptr: CI); |
| 1433 | continue; |
| 1434 | } |
| 1435 | |
| 1436 | // Loads are handled via masking (or speculated if safe to do so.) |
| 1437 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
| 1438 | if (!SafePtrs.count(Ptr: LI->getPointerOperand())) |
| 1439 | MaskedOp.insert(Ptr: LI); |
| 1440 | continue; |
| 1441 | } |
| 1442 | |
| 1443 | // Predicated store requires some form of masking: |
| 1444 | // 1) masked store HW instruction, |
| 1445 | // 2) emulation via load-blend-store (only if safe and legal to do so, |
| 1446 | // be aware on the race conditions), or |
| 1447 | // 3) element-by-element predicate check and scalar store. |
| 1448 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
| 1449 | MaskedOp.insert(Ptr: SI); |
| 1450 | continue; |
| 1451 | } |
| 1452 | |
| 1453 | if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) |
| 1454 | return false; |
| 1455 | } |
| 1456 | |
| 1457 | return true; |
| 1458 | } |
| 1459 | |
| 1460 | bool LoopVectorizationLegality::canVectorizeWithIfConvert() { |
| 1461 | if (!EnableIfConversion) { |
| 1462 | reportVectorizationFailure(DebugMsg: "If-conversion is disabled" , |
| 1463 | ORETag: "IfConversionDisabled" , ORE, TheLoop); |
| 1464 | return false; |
| 1465 | } |
| 1466 | |
| 1467 | assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable" ); |
| 1468 | |
| 1469 | // A list of pointers which are known to be dereferenceable within scope of |
| 1470 | // the loop body for each iteration of the loop which executes. That is, |
| 1471 | // the memory pointed to can be dereferenced (with the access size implied by |
| 1472 | // the value's type) unconditionally within the loop header without |
| 1473 | // introducing a new fault. |
| 1474 | SmallPtrSet<Value *, 8> SafePointers; |
| 1475 | |
| 1476 | // Collect safe addresses. |
| 1477 | for (BasicBlock *BB : TheLoop->blocks()) { |
| 1478 | if (!blockNeedsPredication(BB)) { |
| 1479 | for (Instruction &I : *BB) |
| 1480 | if (auto *Ptr = getLoadStorePointerOperand(V: &I)) |
| 1481 | SafePointers.insert(Ptr); |
| 1482 | continue; |
| 1483 | } |
| 1484 | |
| 1485 | // For a block which requires predication, a address may be safe to access |
| 1486 | // in the loop w/o predication if we can prove dereferenceability facts |
| 1487 | // sufficient to ensure it'll never fault within the loop. For the moment, |
| 1488 | // we restrict this to loads; stores are more complicated due to |
| 1489 | // concurrency restrictions. |
| 1490 | ScalarEvolution &SE = *PSE.getSE(); |
| 1491 | SmallVector<const SCEVPredicate *, 4> Predicates; |
| 1492 | for (Instruction &I : *BB) { |
| 1493 | LoadInst *LI = dyn_cast<LoadInst>(Val: &I); |
| 1494 | |
| 1495 | // Make sure we can execute all computations feeding into Ptr in the loop |
| 1496 | // w/o triggering UB and that none of the out-of-loop operands are poison. |
| 1497 | // We do not need to check if operations inside the loop can produce |
| 1498 | // poison due to flags (e.g. due to an inbounds GEP going out of bounds), |
| 1499 | // because flags will be dropped when executing them unconditionally. |
| 1500 | // TODO: Results could be improved by considering poison-propagation |
| 1501 | // properties of visited ops. |
| 1502 | auto CanSpeculatePointerOp = [this](Value *Ptr) { |
| 1503 | SmallVector<Value *> Worklist = {Ptr}; |
| 1504 | SmallPtrSet<Value *, 4> Visited; |
| 1505 | while (!Worklist.empty()) { |
| 1506 | Value *CurrV = Worklist.pop_back_val(); |
| 1507 | if (!Visited.insert(Ptr: CurrV).second) |
| 1508 | continue; |
| 1509 | |
| 1510 | auto *CurrI = dyn_cast<Instruction>(Val: CurrV); |
| 1511 | if (!CurrI || !TheLoop->contains(Inst: CurrI)) { |
| 1512 | // If operands from outside the loop may be poison then Ptr may also |
| 1513 | // be poison. |
| 1514 | if (!isGuaranteedNotToBePoison(V: CurrV, AC, |
| 1515 | CtxI: TheLoop->getLoopPredecessor() |
| 1516 | ->getTerminator() |
| 1517 | ->getIterator())) |
| 1518 | return false; |
| 1519 | continue; |
| 1520 | } |
| 1521 | |
| 1522 | // A loaded value may be poison, independent of any flags. |
| 1523 | if (isa<LoadInst>(Val: CurrI) && !isGuaranteedNotToBePoison(V: CurrV, AC)) |
| 1524 | return false; |
| 1525 | |
| 1526 | // For other ops, assume poison can only be introduced via flags, |
| 1527 | // which can be dropped. |
| 1528 | if (!isa<PHINode>(Val: CurrI) && !isSafeToSpeculativelyExecute(I: CurrI)) |
| 1529 | return false; |
| 1530 | append_range(C&: Worklist, R: CurrI->operands()); |
| 1531 | } |
| 1532 | return true; |
| 1533 | }; |
| 1534 | // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so |
| 1535 | // that it will consider loops that need guarding by SCEV checks. The |
| 1536 | // vectoriser will generate these checks if we decide to vectorise. |
| 1537 | if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(LI: *LI) && |
| 1538 | CanSpeculatePointerOp(LI->getPointerOperand()) && |
| 1539 | isDereferenceableAndAlignedInLoop(LI, L: TheLoop, SE, DT&: *DT, AC, |
| 1540 | Predicates: &Predicates)) |
| 1541 | SafePointers.insert(Ptr: LI->getPointerOperand()); |
| 1542 | Predicates.clear(); |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | // Collect the blocks that need predication. |
| 1547 | for (BasicBlock *BB : TheLoop->blocks()) { |
| 1548 | // We support only branches and switch statements as terminators inside the |
| 1549 | // loop. |
| 1550 | if (isa<SwitchInst>(Val: BB->getTerminator())) { |
| 1551 | if (TheLoop->isLoopExiting(BB)) { |
| 1552 | reportVectorizationFailure(DebugMsg: "Loop contains an unsupported switch" , |
| 1553 | ORETag: "LoopContainsUnsupportedSwitch" , ORE, |
| 1554 | TheLoop, I: BB->getTerminator()); |
| 1555 | return false; |
| 1556 | } |
| 1557 | } else if (!isa<BranchInst>(Val: BB->getTerminator())) { |
| 1558 | reportVectorizationFailure(DebugMsg: "Loop contains an unsupported terminator" , |
| 1559 | ORETag: "LoopContainsUnsupportedTerminator" , ORE, |
| 1560 | TheLoop, I: BB->getTerminator()); |
| 1561 | return false; |
| 1562 | } |
| 1563 | |
| 1564 | // We must be able to predicate all blocks that need to be predicated. |
| 1565 | if (blockNeedsPredication(BB) && |
| 1566 | !blockCanBePredicated(BB, SafePtrs&: SafePointers, MaskedOp)) { |
| 1567 | reportVectorizationFailure( |
| 1568 | DebugMsg: "Control flow cannot be substituted for a select" , ORETag: "NoCFGForSelect" , |
| 1569 | ORE, TheLoop, I: BB->getTerminator()); |
| 1570 | return false; |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | // We can if-convert this loop. |
| 1575 | return true; |
| 1576 | } |
| 1577 | |
| 1578 | // Helper function to canVectorizeLoopNestCFG. |
| 1579 | bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, |
| 1580 | bool UseVPlanNativePath) { |
| 1581 | assert((UseVPlanNativePath || Lp->isInnermost()) && |
| 1582 | "VPlan-native path is not enabled." ); |
| 1583 | |
| 1584 | // TODO: ORE should be improved to show more accurate information when an |
| 1585 | // outer loop can't be vectorized because a nested loop is not understood or |
| 1586 | // legal. Something like: "outer_loop_location: loop not vectorized: |
| 1587 | // (inner_loop_location) loop control flow is not understood by vectorizer". |
| 1588 | |
| 1589 | // Store the result and return it at the end instead of exiting early, in case |
| 1590 | // allowExtraAnalysis is used to report multiple reasons for not vectorizing. |
| 1591 | bool Result = true; |
| 1592 | bool = ORE->allowExtraAnalysis(DEBUG_TYPE); |
| 1593 | |
| 1594 | // We must have a loop in canonical form. Loops with indirectbr in them cannot |
| 1595 | // be canonicalized. |
| 1596 | if (!Lp->getLoopPreheader()) { |
| 1597 | reportVectorizationFailure(DebugMsg: "Loop doesn't have a legal pre-header" , |
| 1598 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 1599 | ORETag: "CFGNotUnderstood" , ORE, TheLoop); |
| 1600 | if (DoExtraAnalysis) |
| 1601 | Result = false; |
| 1602 | else |
| 1603 | return false; |
| 1604 | } |
| 1605 | |
| 1606 | // We must have a single backedge. |
| 1607 | if (Lp->getNumBackEdges() != 1) { |
| 1608 | reportVectorizationFailure(DebugMsg: "The loop must have a single backedge" , |
| 1609 | OREMsg: "loop control flow is not understood by vectorizer" , |
| 1610 | ORETag: "CFGNotUnderstood" , ORE, TheLoop); |
| 1611 | if (DoExtraAnalysis) |
| 1612 | Result = false; |
| 1613 | else |
| 1614 | return false; |
| 1615 | } |
| 1616 | |
| 1617 | return Result; |
| 1618 | } |
| 1619 | |
| 1620 | bool LoopVectorizationLegality::canVectorizeLoopNestCFG( |
| 1621 | Loop *Lp, bool UseVPlanNativePath) { |
| 1622 | // Store the result and return it at the end instead of exiting early, in case |
| 1623 | // allowExtraAnalysis is used to report multiple reasons for not vectorizing. |
| 1624 | bool Result = true; |
| 1625 | bool = ORE->allowExtraAnalysis(DEBUG_TYPE); |
| 1626 | if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { |
| 1627 | if (DoExtraAnalysis) |
| 1628 | Result = false; |
| 1629 | else |
| 1630 | return false; |
| 1631 | } |
| 1632 | |
| 1633 | // Recursively check whether the loop control flow of nested loops is |
| 1634 | // understood. |
| 1635 | for (Loop *SubLp : *Lp) |
| 1636 | if (!canVectorizeLoopNestCFG(Lp: SubLp, UseVPlanNativePath)) { |
| 1637 | if (DoExtraAnalysis) |
| 1638 | Result = false; |
| 1639 | else |
| 1640 | return false; |
| 1641 | } |
| 1642 | |
| 1643 | return Result; |
| 1644 | } |
| 1645 | |
| 1646 | bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() { |
| 1647 | BasicBlock *LatchBB = TheLoop->getLoopLatch(); |
| 1648 | if (!LatchBB) { |
| 1649 | reportVectorizationFailure(DebugMsg: "Loop does not have a latch" , |
| 1650 | OREMsg: "Cannot vectorize early exit loop" , |
| 1651 | ORETag: "NoLatchEarlyExit" , ORE, TheLoop); |
| 1652 | return false; |
| 1653 | } |
| 1654 | |
| 1655 | if (Reductions.size() || FixedOrderRecurrences.size()) { |
| 1656 | reportVectorizationFailure( |
| 1657 | DebugMsg: "Found reductions or recurrences in early-exit loop" , |
| 1658 | OREMsg: "Cannot vectorize early exit loop with reductions or recurrences" , |
| 1659 | ORETag: "RecurrencesInEarlyExitLoop" , ORE, TheLoop); |
| 1660 | return false; |
| 1661 | } |
| 1662 | |
| 1663 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
| 1664 | TheLoop->getExitingBlocks(ExitingBlocks); |
| 1665 | |
| 1666 | // Keep a record of all the exiting blocks. |
| 1667 | SmallVector<const SCEVPredicate *, 4> Predicates; |
| 1668 | std::optional<std::pair<BasicBlock *, BasicBlock *>> SingleUncountableEdge; |
| 1669 | for (BasicBlock *BB : ExitingBlocks) { |
| 1670 | const SCEV *EC = |
| 1671 | PSE.getSE()->getPredicatedExitCount(L: TheLoop, ExitingBlock: BB, Predicates: &Predicates); |
| 1672 | if (isa<SCEVCouldNotCompute>(Val: EC)) { |
| 1673 | SmallVector<BasicBlock *, 2> Succs(successors(BB)); |
| 1674 | if (Succs.size() != 2) { |
| 1675 | reportVectorizationFailure( |
| 1676 | DebugMsg: "Early exiting block does not have exactly two successors" , |
| 1677 | OREMsg: "Incorrect number of successors from early exiting block" , |
| 1678 | ORETag: "EarlyExitTooManySuccessors" , ORE, TheLoop); |
| 1679 | return false; |
| 1680 | } |
| 1681 | |
| 1682 | BasicBlock *ExitBlock; |
| 1683 | if (!TheLoop->contains(BB: Succs[0])) |
| 1684 | ExitBlock = Succs[0]; |
| 1685 | else { |
| 1686 | assert(!TheLoop->contains(Succs[1])); |
| 1687 | ExitBlock = Succs[1]; |
| 1688 | } |
| 1689 | |
| 1690 | if (SingleUncountableEdge) { |
| 1691 | reportVectorizationFailure( |
| 1692 | DebugMsg: "Loop has too many uncountable exits" , |
| 1693 | OREMsg: "Cannot vectorize early exit loop with more than one early exit" , |
| 1694 | ORETag: "TooManyUncountableEarlyExits" , ORE, TheLoop); |
| 1695 | return false; |
| 1696 | } |
| 1697 | |
| 1698 | SingleUncountableEdge = {BB, ExitBlock}; |
| 1699 | } else |
| 1700 | CountableExitingBlocks.push_back(Elt: BB); |
| 1701 | } |
| 1702 | // We can safely ignore the predicates here because when vectorizing the loop |
| 1703 | // the PredicatatedScalarEvolution class will keep track of all predicates |
| 1704 | // for each exiting block anyway. This happens when calling |
| 1705 | // PSE.getSymbolicMaxBackedgeTakenCount() below. |
| 1706 | Predicates.clear(); |
| 1707 | |
| 1708 | if (!SingleUncountableEdge) { |
| 1709 | LLVM_DEBUG(dbgs() << "LV: Cound not find any uncountable exits" ); |
| 1710 | return false; |
| 1711 | } |
| 1712 | |
| 1713 | // The only supported early exit loops so far are ones where the early |
| 1714 | // exiting block is a unique predecessor of the latch block. |
| 1715 | BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor(); |
| 1716 | if (LatchPredBB != SingleUncountableEdge->first) { |
| 1717 | reportVectorizationFailure(DebugMsg: "Early exit is not the latch predecessor" , |
| 1718 | OREMsg: "Cannot vectorize early exit loop" , |
| 1719 | ORETag: "EarlyExitNotLatchPredecessor" , ORE, TheLoop); |
| 1720 | return false; |
| 1721 | } |
| 1722 | |
| 1723 | // The latch block must have a countable exit. |
| 1724 | if (isa<SCEVCouldNotCompute>( |
| 1725 | Val: PSE.getSE()->getPredicatedExitCount(L: TheLoop, ExitingBlock: LatchBB, Predicates: &Predicates))) { |
| 1726 | reportVectorizationFailure( |
| 1727 | DebugMsg: "Cannot determine exact exit count for latch block" , |
| 1728 | OREMsg: "Cannot vectorize early exit loop" , |
| 1729 | ORETag: "UnknownLatchExitCountEarlyExitLoop" , ORE, TheLoop); |
| 1730 | return false; |
| 1731 | } |
| 1732 | assert(llvm::is_contained(CountableExitingBlocks, LatchBB) && |
| 1733 | "Latch block not found in list of countable exits!" ); |
| 1734 | |
| 1735 | // Check to see if there are instructions that could potentially generate |
| 1736 | // exceptions or have side-effects. |
| 1737 | auto IsSafeOperation = [](Instruction *I) -> bool { |
| 1738 | switch (I->getOpcode()) { |
| 1739 | case Instruction::Load: |
| 1740 | case Instruction::Store: |
| 1741 | case Instruction::PHI: |
| 1742 | case Instruction::Br: |
| 1743 | // These are checked separately. |
| 1744 | return true; |
| 1745 | default: |
| 1746 | return isSafeToSpeculativelyExecute(I); |
| 1747 | } |
| 1748 | }; |
| 1749 | |
| 1750 | for (auto *BB : TheLoop->blocks()) |
| 1751 | for (auto &I : *BB) { |
| 1752 | if (I.mayWriteToMemory()) { |
| 1753 | // We don't support writes to memory. |
| 1754 | reportVectorizationFailure( |
| 1755 | DebugMsg: "Writes to memory unsupported in early exit loops" , |
| 1756 | OREMsg: "Cannot vectorize early exit loop with writes to memory" , |
| 1757 | ORETag: "WritesInEarlyExitLoop" , ORE, TheLoop); |
| 1758 | return false; |
| 1759 | } else if (!IsSafeOperation(&I)) { |
| 1760 | reportVectorizationFailure(DebugMsg: "Early exit loop contains operations that " |
| 1761 | "cannot be speculatively executed" , |
| 1762 | ORETag: "UnsafeOperationsEarlyExitLoop" , ORE, |
| 1763 | TheLoop); |
| 1764 | return false; |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | // The vectoriser cannot handle loads that occur after the early exit block. |
| 1769 | assert(LatchBB->getUniquePredecessor() == SingleUncountableEdge->first && |
| 1770 | "Expected latch predecessor to be the early exiting block" ); |
| 1771 | |
| 1772 | // TODO: Handle loops that may fault. |
| 1773 | Predicates.clear(); |
| 1774 | if (!isDereferenceableReadOnlyLoop(L: TheLoop, SE: PSE.getSE(), DT, AC, |
| 1775 | Predicates: &Predicates)) { |
| 1776 | reportVectorizationFailure( |
| 1777 | DebugMsg: "Loop may fault" , |
| 1778 | OREMsg: "Cannot vectorize potentially faulting early exit loop" , |
| 1779 | ORETag: "PotentiallyFaultingEarlyExitLoop" , ORE, TheLoop); |
| 1780 | return false; |
| 1781 | } |
| 1782 | |
| 1783 | [[maybe_unused]] const SCEV *SymbolicMaxBTC = |
| 1784 | PSE.getSymbolicMaxBackedgeTakenCount(); |
| 1785 | // Since we have an exact exit count for the latch and the early exit |
| 1786 | // dominates the latch, then this should guarantee a computed SCEV value. |
| 1787 | assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) && |
| 1788 | "Failed to get symbolic expression for backedge taken count" ); |
| 1789 | LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max " |
| 1790 | "backedge taken count: " |
| 1791 | << *SymbolicMaxBTC << '\n'); |
| 1792 | UncountableEdge = SingleUncountableEdge; |
| 1793 | return true; |
| 1794 | } |
| 1795 | |
| 1796 | bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { |
| 1797 | // Store the result and return it at the end instead of exiting early, in case |
| 1798 | // allowExtraAnalysis is used to report multiple reasons for not vectorizing. |
| 1799 | bool Result = true; |
| 1800 | |
| 1801 | bool = ORE->allowExtraAnalysis(DEBUG_TYPE); |
| 1802 | // Check whether the loop-related control flow in the loop nest is expected by |
| 1803 | // vectorizer. |
| 1804 | if (!canVectorizeLoopNestCFG(Lp: TheLoop, UseVPlanNativePath)) { |
| 1805 | if (DoExtraAnalysis) { |
| 1806 | LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest" ); |
| 1807 | Result = false; |
| 1808 | } else { |
| 1809 | return false; |
| 1810 | } |
| 1811 | } |
| 1812 | |
| 1813 | // We need to have a loop header. |
| 1814 | LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() |
| 1815 | << '\n'); |
| 1816 | |
| 1817 | // Specific checks for outer loops. We skip the remaining legal checks at this |
| 1818 | // point because they don't support outer loops. |
| 1819 | if (!TheLoop->isInnermost()) { |
| 1820 | assert(UseVPlanNativePath && "VPlan-native path is not enabled." ); |
| 1821 | |
| 1822 | if (!canVectorizeOuterLoop()) { |
| 1823 | reportVectorizationFailure(DebugMsg: "Unsupported outer loop" , |
| 1824 | ORETag: "UnsupportedOuterLoop" , ORE, TheLoop); |
| 1825 | // TODO: Implement DoExtraAnalysis when subsequent legal checks support |
| 1826 | // outer loops. |
| 1827 | return false; |
| 1828 | } |
| 1829 | |
| 1830 | LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n" ); |
| 1831 | return Result; |
| 1832 | } |
| 1833 | |
| 1834 | assert(TheLoop->isInnermost() && "Inner loop expected." ); |
| 1835 | // Check if we can if-convert non-single-bb loops. |
| 1836 | unsigned NumBlocks = TheLoop->getNumBlocks(); |
| 1837 | if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { |
| 1838 | LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n" ); |
| 1839 | if (DoExtraAnalysis) |
| 1840 | Result = false; |
| 1841 | else |
| 1842 | return false; |
| 1843 | } |
| 1844 | |
| 1845 | // Check if we can vectorize the instructions and CFG in this loop. |
| 1846 | if (!canVectorizeInstrs()) { |
| 1847 | LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n" ); |
| 1848 | if (DoExtraAnalysis) |
| 1849 | Result = false; |
| 1850 | else |
| 1851 | return false; |
| 1852 | } |
| 1853 | |
| 1854 | if (isa<SCEVCouldNotCompute>(Val: PSE.getBackedgeTakenCount())) { |
| 1855 | if (TheLoop->getExitingBlock()) { |
| 1856 | reportVectorizationFailure(DebugMsg: "Cannot vectorize uncountable loop" , |
| 1857 | ORETag: "UnsupportedUncountableLoop" , ORE, TheLoop); |
| 1858 | if (DoExtraAnalysis) |
| 1859 | Result = false; |
| 1860 | else |
| 1861 | return false; |
| 1862 | } else { |
| 1863 | if (!isVectorizableEarlyExitLoop()) { |
| 1864 | UncountableEdge = std::nullopt; |
| 1865 | if (DoExtraAnalysis) |
| 1866 | Result = false; |
| 1867 | else |
| 1868 | return false; |
| 1869 | } |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | // Go over each instruction and look at memory deps. |
| 1874 | if (!canVectorizeMemory()) { |
| 1875 | LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n" ); |
| 1876 | if (DoExtraAnalysis) |
| 1877 | Result = false; |
| 1878 | else |
| 1879 | return false; |
| 1880 | } |
| 1881 | |
| 1882 | if (Result) { |
| 1883 | LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" |
| 1884 | << (LAI->getRuntimePointerChecking()->Need |
| 1885 | ? " (with a runtime bound check)" |
| 1886 | : "" ) |
| 1887 | << "!\n" ); |
| 1888 | } |
| 1889 | |
| 1890 | unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; |
| 1891 | if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) |
| 1892 | SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; |
| 1893 | |
| 1894 | if (PSE.getPredicate().getComplexity() > SCEVThreshold) { |
| 1895 | LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable " |
| 1896 | "due to SCEVThreshold" ); |
| 1897 | reportVectorizationFailure(DebugMsg: "Too many SCEV checks needed" , |
| 1898 | OREMsg: "Too many SCEV assumptions need to be made and checked at runtime" , |
| 1899 | ORETag: "TooManySCEVRunTimeChecks" , ORE, TheLoop); |
| 1900 | if (DoExtraAnalysis) |
| 1901 | Result = false; |
| 1902 | else |
| 1903 | return false; |
| 1904 | } |
| 1905 | |
| 1906 | // Okay! We've done all the tests. If any have failed, return false. Otherwise |
| 1907 | // we can vectorize, and at this point we don't have any other mem analysis |
| 1908 | // which may limit our maximum vectorization factor, so just return true with |
| 1909 | // no restrictions. |
| 1910 | return Result; |
| 1911 | } |
| 1912 | |
| 1913 | bool LoopVectorizationLegality::canFoldTailByMasking() const { |
| 1914 | // The only loops we can vectorize without a scalar epilogue, are loops with |
| 1915 | // a bottom-test and a single exiting block. We'd have to handle the fact |
| 1916 | // that not every instruction executes on the last iteration. This will |
| 1917 | // require a lane mask which varies through the vector loop body. (TODO) |
| 1918 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
| 1919 | LLVM_DEBUG( |
| 1920 | dbgs() |
| 1921 | << "LV: Cannot fold tail by masking. Requires a singe latch exit\n" ); |
| 1922 | return false; |
| 1923 | } |
| 1924 | |
| 1925 | LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n" ); |
| 1926 | |
| 1927 | SmallPtrSet<const Value *, 8> ReductionLiveOuts; |
| 1928 | |
| 1929 | for (const auto &Reduction : getReductionVars()) |
| 1930 | ReductionLiveOuts.insert(Ptr: Reduction.second.getLoopExitInstr()); |
| 1931 | |
| 1932 | // TODO: handle non-reduction outside users when tail is folded by masking. |
| 1933 | for (auto *AE : AllowedExit) { |
| 1934 | // Check that all users of allowed exit values are inside the loop or |
| 1935 | // are the live-out of a reduction. |
| 1936 | if (ReductionLiveOuts.count(Ptr: AE)) |
| 1937 | continue; |
| 1938 | for (User *U : AE->users()) { |
| 1939 | Instruction *UI = cast<Instruction>(Val: U); |
| 1940 | if (TheLoop->contains(Inst: UI)) |
| 1941 | continue; |
| 1942 | LLVM_DEBUG( |
| 1943 | dbgs() |
| 1944 | << "LV: Cannot fold tail by masking, loop has an outside user for " |
| 1945 | << *UI << "\n" ); |
| 1946 | return false; |
| 1947 | } |
| 1948 | } |
| 1949 | |
| 1950 | for (const auto &Entry : getInductionVars()) { |
| 1951 | PHINode *OrigPhi = Entry.first; |
| 1952 | for (User *U : OrigPhi->users()) { |
| 1953 | auto *UI = cast<Instruction>(Val: U); |
| 1954 | if (!TheLoop->contains(Inst: UI)) { |
| 1955 | LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an " |
| 1956 | "outside user for " |
| 1957 | << *UI << "\n" ); |
| 1958 | return false; |
| 1959 | } |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | // The list of pointers that we can safely read and write to remains empty. |
| 1964 | SmallPtrSet<Value *, 8> SafePointers; |
| 1965 | |
| 1966 | // Check all blocks for predication, including those that ordinarily do not |
| 1967 | // need predication such as the header block. |
| 1968 | SmallPtrSet<const Instruction *, 8> TmpMaskedOp; |
| 1969 | for (BasicBlock *BB : TheLoop->blocks()) { |
| 1970 | if (!blockCanBePredicated(BB, SafePtrs&: SafePointers, MaskedOp&: TmpMaskedOp)) { |
| 1971 | LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n" ); |
| 1972 | return false; |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n" ); |
| 1977 | |
| 1978 | return true; |
| 1979 | } |
| 1980 | |
| 1981 | void LoopVectorizationLegality::prepareToFoldTailByMasking() { |
| 1982 | // The list of pointers that we can safely read and write to remains empty. |
| 1983 | SmallPtrSet<Value *, 8> SafePointers; |
| 1984 | |
| 1985 | // Mark all blocks for predication, including those that ordinarily do not |
| 1986 | // need predication such as the header block. |
| 1987 | for (BasicBlock *BB : TheLoop->blocks()) { |
| 1988 | [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePtrs&: SafePointers, MaskedOp); |
| 1989 | assert(R && "Must be able to predicate block when tail-folding." ); |
| 1990 | } |
| 1991 | } |
| 1992 | |
| 1993 | } // namespace llvm |
| 1994 | |