| 1 | //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This is the LLVM vectorization plan. It represents a candidate for |
| 11 | /// vectorization, allowing to plan and optimize how to vectorize a given loop |
| 12 | /// before generating LLVM-IR. |
| 13 | /// The vectorizer uses vectorization plans to estimate the costs of potential |
| 14 | /// candidates and if profitable to execute the desired plan, generating vector |
| 15 | /// LLVM-IR code. |
| 16 | /// |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "VPlan.h" |
| 20 | #include "LoopVectorizationPlanner.h" |
| 21 | #include "VPlanCFG.h" |
| 22 | #include "VPlanDominatorTree.h" |
| 23 | #include "VPlanHelpers.h" |
| 24 | #include "VPlanPatternMatch.h" |
| 25 | #include "VPlanTransforms.h" |
| 26 | #include "VPlanUtils.h" |
| 27 | #include "llvm/ADT/PostOrderIterator.h" |
| 28 | #include "llvm/ADT/STLExtras.h" |
| 29 | #include "llvm/ADT/SmallVector.h" |
| 30 | #include "llvm/ADT/StringExtras.h" |
| 31 | #include "llvm/ADT/Twine.h" |
| 32 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 33 | #include "llvm/Analysis/LoopInfo.h" |
| 34 | #include "llvm/IR/BasicBlock.h" |
| 35 | #include "llvm/IR/CFG.h" |
| 36 | #include "llvm/IR/IRBuilder.h" |
| 37 | #include "llvm/IR/Instruction.h" |
| 38 | #include "llvm/IR/Instructions.h" |
| 39 | #include "llvm/IR/Type.h" |
| 40 | #include "llvm/IR/Value.h" |
| 41 | #include "llvm/Support/Casting.h" |
| 42 | #include "llvm/Support/CommandLine.h" |
| 43 | #include "llvm/Support/Debug.h" |
| 44 | #include "llvm/Support/GraphWriter.h" |
| 45 | #include "llvm/Support/raw_ostream.h" |
| 46 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 47 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
| 48 | #include <cassert> |
| 49 | #include <string> |
| 50 | |
| 51 | using namespace llvm; |
| 52 | using namespace llvm::VPlanPatternMatch; |
| 53 | |
| 54 | namespace llvm { |
| 55 | extern cl::opt<bool> EnableVPlanNativePath; |
| 56 | } |
| 57 | |
| 58 | extern cl::opt<unsigned> ForceTargetInstructionCost; |
| 59 | |
| 60 | static cl::opt<bool> PrintVPlansInDotFormat( |
| 61 | "vplan-print-in-dot-format" , cl::Hidden, |
| 62 | cl::desc("Use dot format instead of plain text when dumping VPlans" )); |
| 63 | |
| 64 | #define DEBUG_TYPE "loop-vectorize" |
| 65 | |
| 66 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 67 | raw_ostream &llvm::operator<<(raw_ostream &OS, const VPRecipeBase &R) { |
| 68 | const VPBasicBlock *Parent = R.getParent(); |
| 69 | VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr); |
| 70 | R.print(OS, "" , SlotTracker); |
| 71 | return OS; |
| 72 | } |
| 73 | #endif |
| 74 | |
| 75 | Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, |
| 76 | const ElementCount &VF) const { |
| 77 | switch (LaneKind) { |
| 78 | case VPLane::Kind::ScalableLast: |
| 79 | // Lane = RuntimeVF - VF.getKnownMinValue() + Lane |
| 80 | return Builder.CreateSub(LHS: getRuntimeVF(B&: Builder, Ty: Builder.getInt32Ty(), VF), |
| 81 | RHS: Builder.getInt32(C: VF.getKnownMinValue() - Lane)); |
| 82 | case VPLane::Kind::First: |
| 83 | return Builder.getInt32(C: Lane); |
| 84 | } |
| 85 | llvm_unreachable("Unknown lane kind" ); |
| 86 | } |
| 87 | |
| 88 | VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) |
| 89 | : SubclassID(SC), UnderlyingVal(UV), Def(Def) { |
| 90 | if (Def) |
| 91 | Def->addDefinedValue(V: this); |
| 92 | } |
| 93 | |
| 94 | VPValue::~VPValue() { |
| 95 | assert(Users.empty() && "trying to delete a VPValue with remaining users" ); |
| 96 | if (Def) |
| 97 | Def->removeDefinedValue(V: this); |
| 98 | } |
| 99 | |
| 100 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 101 | void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { |
| 102 | if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) |
| 103 | R->print(OS, "" , SlotTracker); |
| 104 | else |
| 105 | printAsOperand(OS, SlotTracker); |
| 106 | } |
| 107 | |
| 108 | void VPValue::dump() const { |
| 109 | const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); |
| 110 | VPSlotTracker SlotTracker( |
| 111 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
| 112 | print(dbgs(), SlotTracker); |
| 113 | dbgs() << "\n" ; |
| 114 | } |
| 115 | |
| 116 | void VPDef::dump() const { |
| 117 | const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); |
| 118 | VPSlotTracker SlotTracker( |
| 119 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
| 120 | print(dbgs(), "" , SlotTracker); |
| 121 | dbgs() << "\n" ; |
| 122 | } |
| 123 | #endif |
| 124 | |
| 125 | VPRecipeBase *VPValue::getDefiningRecipe() { |
| 126 | return cast_or_null<VPRecipeBase>(Val: Def); |
| 127 | } |
| 128 | |
| 129 | const VPRecipeBase *VPValue::getDefiningRecipe() const { |
| 130 | return cast_or_null<VPRecipeBase>(Val: Def); |
| 131 | } |
| 132 | |
| 133 | // Get the top-most entry block of \p Start. This is the entry block of the |
| 134 | // containing VPlan. This function is templated to support both const and non-const blocks |
| 135 | template <typename T> static T *getPlanEntry(T *Start) { |
| 136 | T *Next = Start; |
| 137 | T *Current = Start; |
| 138 | while ((Next = Next->getParent())) |
| 139 | Current = Next; |
| 140 | |
| 141 | SmallSetVector<T *, 8> WorkList; |
| 142 | WorkList.insert(Current); |
| 143 | |
| 144 | for (unsigned i = 0; i < WorkList.size(); i++) { |
| 145 | T *Current = WorkList[i]; |
| 146 | if (Current->getNumPredecessors() == 0) |
| 147 | return Current; |
| 148 | auto &Predecessors = Current->getPredecessors(); |
| 149 | WorkList.insert_range(Predecessors); |
| 150 | } |
| 151 | |
| 152 | llvm_unreachable("VPlan without any entry node without predecessors" ); |
| 153 | } |
| 154 | |
| 155 | VPlan *VPBlockBase::getPlan() { return getPlanEntry(Start: this)->Plan; } |
| 156 | |
| 157 | const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(Start: this)->Plan; } |
| 158 | |
| 159 | /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. |
| 160 | const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { |
| 161 | const VPBlockBase *Block = this; |
| 162 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 163 | Block = Region->getEntry(); |
| 164 | return cast<VPBasicBlock>(Val: Block); |
| 165 | } |
| 166 | |
| 167 | VPBasicBlock *VPBlockBase::getEntryBasicBlock() { |
| 168 | VPBlockBase *Block = this; |
| 169 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 170 | Block = Region->getEntry(); |
| 171 | return cast<VPBasicBlock>(Val: Block); |
| 172 | } |
| 173 | |
| 174 | void VPBlockBase::setPlan(VPlan *ParentPlan) { |
| 175 | assert(ParentPlan->getEntry() == this && "Can only set plan on its entry." ); |
| 176 | Plan = ParentPlan; |
| 177 | } |
| 178 | |
| 179 | /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. |
| 180 | const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { |
| 181 | const VPBlockBase *Block = this; |
| 182 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 183 | Block = Region->getExiting(); |
| 184 | return cast<VPBasicBlock>(Val: Block); |
| 185 | } |
| 186 | |
| 187 | VPBasicBlock *VPBlockBase::getExitingBasicBlock() { |
| 188 | VPBlockBase *Block = this; |
| 189 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 190 | Block = Region->getExiting(); |
| 191 | return cast<VPBasicBlock>(Val: Block); |
| 192 | } |
| 193 | |
| 194 | VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { |
| 195 | if (!Successors.empty() || !Parent) |
| 196 | return this; |
| 197 | assert(Parent->getExiting() == this && |
| 198 | "Block w/o successors not the exiting block of its parent." ); |
| 199 | return Parent->getEnclosingBlockWithSuccessors(); |
| 200 | } |
| 201 | |
| 202 | VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { |
| 203 | if (!Predecessors.empty() || !Parent) |
| 204 | return this; |
| 205 | assert(Parent->getEntry() == this && |
| 206 | "Block w/o predecessors not the entry of its parent." ); |
| 207 | return Parent->getEnclosingBlockWithPredecessors(); |
| 208 | } |
| 209 | |
| 210 | bool VPBlockUtils::(const VPBlockBase *VPB, |
| 211 | const VPDominatorTree &VPDT) { |
| 212 | auto *VPBB = dyn_cast<VPBasicBlock>(Val: VPB); |
| 213 | if (!VPBB) |
| 214 | return false; |
| 215 | |
| 216 | // If VPBB is in a region R, VPBB is a loop header if R is a loop region with |
| 217 | // VPBB as its entry, i.e., free of predecessors. |
| 218 | if (auto *R = VPBB->getParent()) |
| 219 | return !R->isReplicator() && VPBB->getNumPredecessors() == 0; |
| 220 | |
| 221 | // A header dominates its second predecessor (the latch), with the other |
| 222 | // predecessor being the preheader |
| 223 | return VPB->getPredecessors().size() == 2 && |
| 224 | VPDT.dominates(A: VPB, B: VPB->getPredecessors()[1]); |
| 225 | } |
| 226 | |
| 227 | bool VPBlockUtils::isLatch(const VPBlockBase *VPB, |
| 228 | const VPDominatorTree &VPDT) { |
| 229 | // A latch has a header as its second successor, with its other successor |
| 230 | // leaving the loop. A preheader OTOH has a header as its first (and only) |
| 231 | // successor. |
| 232 | return VPB->getNumSuccessors() == 2 && |
| 233 | VPBlockUtils::isHeader(VPB: VPB->getSuccessors()[1], VPDT); |
| 234 | } |
| 235 | |
| 236 | VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { |
| 237 | iterator It = begin(); |
| 238 | while (It != end() && It->isPhi()) |
| 239 | It++; |
| 240 | return It; |
| 241 | } |
| 242 | |
| 243 | VPTransformState::VPTransformState(const TargetTransformInfo *TTI, |
| 244 | ElementCount VF, LoopInfo *LI, |
| 245 | DominatorTree *DT, AssumptionCache *AC, |
| 246 | IRBuilderBase &Builder, VPlan *Plan, |
| 247 | Loop *CurrentParentLoop, Type *CanonicalIVTy) |
| 248 | : TTI(TTI), VF(VF), CFG(DT), LI(LI), AC(AC), Builder(Builder), Plan(Plan), |
| 249 | CurrentParentLoop(CurrentParentLoop), TypeAnalysis(CanonicalIVTy), |
| 250 | VPDT(*Plan) {} |
| 251 | |
| 252 | Value *VPTransformState::get(const VPValue *Def, const VPLane &Lane) { |
| 253 | if (Def->isLiveIn()) |
| 254 | return Def->getLiveInIRValue(); |
| 255 | |
| 256 | if (hasScalarValue(Def, Lane)) |
| 257 | return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; |
| 258 | |
| 259 | if (!Lane.isFirstLane() && vputils::isSingleScalar(VPV: Def) && |
| 260 | hasScalarValue(Def, Lane: VPLane::getFirstLane())) { |
| 261 | return Data.VPV2Scalars[Def][0]; |
| 262 | } |
| 263 | |
| 264 | // Look through BuildVector to avoid redundant extracts. |
| 265 | // TODO: Remove once replicate regions are unrolled explicitly. |
| 266 | if (Lane.getKind() == VPLane::Kind::First && match(V: Def, P: m_BuildVector())) { |
| 267 | auto *BuildVector = cast<VPInstruction>(Val: Def); |
| 268 | return get(Def: BuildVector->getOperand(N: Lane.getKnownLane()), IsScalar: true); |
| 269 | } |
| 270 | |
| 271 | assert(hasVectorValue(Def)); |
| 272 | auto *VecPart = Data.VPV2Vector[Def]; |
| 273 | if (!VecPart->getType()->isVectorTy()) { |
| 274 | assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar" ); |
| 275 | return VecPart; |
| 276 | } |
| 277 | // TODO: Cache created scalar values. |
| 278 | Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); |
| 279 | auto * = Builder.CreateExtractElement(Vec: VecPart, Idx: LaneV); |
| 280 | // set(Def, Extract, Instance); |
| 281 | return Extract; |
| 282 | } |
| 283 | |
| 284 | Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) { |
| 285 | if (NeedsScalar) { |
| 286 | assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || |
| 287 | !vputils::onlyFirstLaneUsed(Def) || |
| 288 | (hasScalarValue(Def, VPLane(0)) && |
| 289 | Data.VPV2Scalars[Def].size() == 1)) && |
| 290 | "Trying to access a single scalar per part but has multiple scalars " |
| 291 | "per part." ); |
| 292 | return get(Def, Lane: VPLane(0)); |
| 293 | } |
| 294 | |
| 295 | // If Values have been set for this Def return the one relevant for \p Part. |
| 296 | if (hasVectorValue(Def)) |
| 297 | return Data.VPV2Vector[Def]; |
| 298 | |
| 299 | auto GetBroadcastInstrs = [this, Def](Value *V) { |
| 300 | bool SafeToHoist = |
| 301 | !Def->hasDefiningRecipe() || |
| 302 | VPDT.properlyDominates(A: Def->getDefiningRecipe()->getParent(), |
| 303 | B: Plan->getVectorPreheader()); |
| 304 | |
| 305 | if (VF.isScalar()) |
| 306 | return V; |
| 307 | // Place the code for broadcasting invariant variables in the new preheader. |
| 308 | IRBuilder<>::InsertPointGuard Guard(Builder); |
| 309 | if (SafeToHoist) { |
| 310 | BasicBlock * = |
| 311 | CFG.VPBB2IRBB[Plan->getVectorPreheader()]; |
| 312 | if (LoopVectorPreHeader) |
| 313 | Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); |
| 314 | } |
| 315 | |
| 316 | // Place the code for broadcasting invariant variables in the new preheader. |
| 317 | // Broadcast the scalar into all locations in the vector. |
| 318 | Value *Shuf = Builder.CreateVectorSplat(EC: VF, V, Name: "broadcast" ); |
| 319 | |
| 320 | return Shuf; |
| 321 | }; |
| 322 | |
| 323 | if (!hasScalarValue(Def, Lane: {0})) { |
| 324 | assert(Def->isLiveIn() && "expected a live-in" ); |
| 325 | Value *IRV = Def->getLiveInIRValue(); |
| 326 | Value *B = GetBroadcastInstrs(IRV); |
| 327 | set(Def, V: B); |
| 328 | return B; |
| 329 | } |
| 330 | |
| 331 | Value *ScalarValue = get(Def, Lane: VPLane(0)); |
| 332 | // If we aren't vectorizing, we can just copy the scalar map values over |
| 333 | // to the vector map. |
| 334 | if (VF.isScalar()) { |
| 335 | set(Def, V: ScalarValue); |
| 336 | return ScalarValue; |
| 337 | } |
| 338 | |
| 339 | bool IsSingleScalar = vputils::isSingleScalar(VPV: Def); |
| 340 | |
| 341 | VPLane LastLane(IsSingleScalar ? 0 : VF.getFixedValue() - 1); |
| 342 | // Check if there is a scalar value for the selected lane. |
| 343 | if (!hasScalarValue(Def, Lane: LastLane)) { |
| 344 | // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and |
| 345 | // VPExpandSCEVRecipes can also be a single scalar. |
| 346 | assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe, |
| 347 | VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && |
| 348 | "unexpected recipe found to be invariant" ); |
| 349 | IsSingleScalar = true; |
| 350 | LastLane = 0; |
| 351 | } |
| 352 | |
| 353 | auto *LastInst = cast<Instruction>(Val: get(Def, Lane: LastLane)); |
| 354 | // Set the insert point after the last scalarized instruction or after the |
| 355 | // last PHI, if LastInst is a PHI. This ensures the insertelement sequence |
| 356 | // will directly follow the scalar definitions. |
| 357 | auto OldIP = Builder.saveIP(); |
| 358 | auto NewIP = isa<PHINode>(Val: LastInst) |
| 359 | ? LastInst->getParent()->getFirstNonPHIIt() |
| 360 | : std::next(x: BasicBlock::iterator(LastInst)); |
| 361 | Builder.SetInsertPoint(&*NewIP); |
| 362 | |
| 363 | // However, if we are vectorizing, we need to construct the vector values. |
| 364 | // If the value is known to be uniform after vectorization, we can just |
| 365 | // broadcast the scalar value corresponding to lane zero. Otherwise, we |
| 366 | // construct the vector values using insertelement instructions. Since the |
| 367 | // resulting vectors are stored in State, we will only generate the |
| 368 | // insertelements once. |
| 369 | Value *VectorValue = nullptr; |
| 370 | if (IsSingleScalar) { |
| 371 | VectorValue = GetBroadcastInstrs(ScalarValue); |
| 372 | set(Def, V: VectorValue); |
| 373 | } else { |
| 374 | assert(!VF.isScalable() && "VF is assumed to be non scalable." ); |
| 375 | // Initialize packing with insertelements to start from poison. |
| 376 | VectorValue = PoisonValue::get(T: toVectorizedTy(Ty: LastInst->getType(), EC: VF)); |
| 377 | for (unsigned Lane = 0; Lane < VF.getFixedValue(); ++Lane) |
| 378 | VectorValue = packScalarIntoVectorizedValue(Def, WideValue: VectorValue, Lane); |
| 379 | set(Def, V: VectorValue); |
| 380 | } |
| 381 | Builder.restoreIP(IP: OldIP); |
| 382 | return VectorValue; |
| 383 | } |
| 384 | |
| 385 | void VPTransformState::setDebugLocFrom(DebugLoc DL) { |
| 386 | const DILocation *DIL = DL; |
| 387 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
| 388 | // factors to the discriminators. |
| 389 | if (DIL && |
| 390 | Builder.GetInsertBlock() |
| 391 | ->getParent() |
| 392 | ->shouldEmitDebugInfoForProfiling() && |
| 393 | !EnableFSDiscriminator) { |
| 394 | // FIXME: For scalable vectors, assume vscale=1. |
| 395 | unsigned UF = Plan->getUF(); |
| 396 | auto NewDIL = |
| 397 | DIL->cloneByMultiplyingDuplicationFactor(DF: UF * VF.getKnownMinValue()); |
| 398 | if (NewDIL) |
| 399 | Builder.SetCurrentDebugLocation(*NewDIL); |
| 400 | else |
| 401 | LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " |
| 402 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
| 403 | } else |
| 404 | Builder.SetCurrentDebugLocation(DL); |
| 405 | } |
| 406 | |
| 407 | Value *VPTransformState::packScalarIntoVectorizedValue(const VPValue *Def, |
| 408 | Value *WideValue, |
| 409 | const VPLane &Lane) { |
| 410 | Value *ScalarInst = get(Def, Lane); |
| 411 | Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF); |
| 412 | if (auto *StructTy = dyn_cast<StructType>(Val: WideValue->getType())) { |
| 413 | // We must handle each element of a vectorized struct type. |
| 414 | for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) { |
| 415 | Value *ScalarValue = Builder.CreateExtractValue(Agg: ScalarInst, Idxs: I); |
| 416 | Value *VectorValue = Builder.CreateExtractValue(Agg: WideValue, Idxs: I); |
| 417 | VectorValue = |
| 418 | Builder.CreateInsertElement(Vec: VectorValue, NewElt: ScalarValue, Idx: LaneExpr); |
| 419 | WideValue = Builder.CreateInsertValue(Agg: WideValue, Val: VectorValue, Idxs: I); |
| 420 | } |
| 421 | } else { |
| 422 | WideValue = Builder.CreateInsertElement(Vec: WideValue, NewElt: ScalarInst, Idx: LaneExpr); |
| 423 | } |
| 424 | return WideValue; |
| 425 | } |
| 426 | |
| 427 | BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) { |
| 428 | auto &CFG = State.CFG; |
| 429 | // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. |
| 430 | // Pred stands for Predessor. Prev stands for Previous - last visited/created. |
| 431 | BasicBlock *PrevBB = CFG.PrevBB; |
| 432 | BasicBlock *NewBB = BasicBlock::Create(Context&: PrevBB->getContext(), Name: getName(), |
| 433 | Parent: PrevBB->getParent(), InsertBefore: CFG.ExitBB); |
| 434 | LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); |
| 435 | |
| 436 | return NewBB; |
| 437 | } |
| 438 | |
| 439 | void VPBasicBlock::connectToPredecessors(VPTransformState &State) { |
| 440 | auto &CFG = State.CFG; |
| 441 | BasicBlock *NewBB = CFG.VPBB2IRBB[this]; |
| 442 | |
| 443 | // Register NewBB in its loop. In innermost loops its the same for all |
| 444 | // BB's. |
| 445 | Loop *ParentLoop = State.CurrentParentLoop; |
| 446 | // If this block has a sole successor that is an exit block or is an exit |
| 447 | // block itself then it needs adding to the same parent loop as the exit |
| 448 | // block. |
| 449 | VPBlockBase *SuccOrExitVPB = getSingleSuccessor(); |
| 450 | SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this; |
| 451 | if (State.Plan->isExitBlock(VPBB: SuccOrExitVPB)) { |
| 452 | ParentLoop = State.LI->getLoopFor( |
| 453 | BB: cast<VPIRBasicBlock>(Val: SuccOrExitVPB)->getIRBasicBlock()); |
| 454 | } |
| 455 | |
| 456 | if (ParentLoop && !State.LI->getLoopFor(BB: NewBB)) |
| 457 | ParentLoop->addBasicBlockToLoop(NewBB, LI&: *State.LI); |
| 458 | |
| 459 | SmallVector<VPBlockBase *> Preds; |
| 460 | if (VPBlockUtils::isHeader(VPB: this, VPDT: State.VPDT)) { |
| 461 | // There's no block for the latch yet, connect to the preheader only. |
| 462 | Preds = {getPredecessors()[0]}; |
| 463 | } else { |
| 464 | Preds = to_vector(Range&: getPredecessors()); |
| 465 | } |
| 466 | |
| 467 | // Hook up the new basic block to its predecessors. |
| 468 | for (VPBlockBase *PredVPBlock : Preds) { |
| 469 | VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); |
| 470 | auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); |
| 471 | assert(CFG.VPBB2IRBB.contains(PredVPBB) && |
| 472 | "Predecessor basic-block not found building successor." ); |
| 473 | BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; |
| 474 | auto *PredBBTerminator = PredBB->getTerminator(); |
| 475 | LLVM_DEBUG(dbgs() << "LV: draw edge from " << PredBB->getName() << '\n'); |
| 476 | |
| 477 | auto *TermBr = dyn_cast<BranchInst>(Val: PredBBTerminator); |
| 478 | if (isa<UnreachableInst>(Val: PredBBTerminator)) { |
| 479 | assert(PredVPSuccessors.size() == 1 && |
| 480 | "Predecessor ending w/o branch must have single successor." ); |
| 481 | DebugLoc DL = PredBBTerminator->getDebugLoc(); |
| 482 | PredBBTerminator->eraseFromParent(); |
| 483 | auto *Br = BranchInst::Create(IfTrue: NewBB, InsertBefore: PredBB); |
| 484 | Br->setDebugLoc(DL); |
| 485 | } else if (TermBr && !TermBr->isConditional()) { |
| 486 | TermBr->setSuccessor(idx: 0, NewSucc: NewBB); |
| 487 | } else { |
| 488 | // Set each forward successor here when it is created, excluding |
| 489 | // backedges. A backward successor is set when the branch is created. |
| 490 | unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; |
| 491 | assert((TermBr && (!TermBr->getSuccessor(idx) || |
| 492 | (isa<VPIRBasicBlock>(this) && |
| 493 | TermBr->getSuccessor(idx) == NewBB))) && |
| 494 | "Trying to reset an existing successor block." ); |
| 495 | TermBr->setSuccessor(idx, NewSucc: NewBB); |
| 496 | } |
| 497 | CFG.DTU.applyUpdates(Updates: {{DominatorTree::Insert, PredBB, NewBB}}); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | void VPIRBasicBlock::execute(VPTransformState *State) { |
| 502 | assert(getHierarchicalSuccessors().size() <= 2 && |
| 503 | "VPIRBasicBlock can have at most two successors at the moment!" ); |
| 504 | State->Builder.SetInsertPoint(IRBB->getTerminator()); |
| 505 | State->CFG.PrevBB = IRBB; |
| 506 | State->CFG.VPBB2IRBB[this] = IRBB; |
| 507 | executeRecipes(State, BB: IRBB); |
| 508 | // Create a branch instruction to terminate IRBB if one was not created yet |
| 509 | // and is needed. |
| 510 | if (getSingleSuccessor() && isa<UnreachableInst>(Val: IRBB->getTerminator())) { |
| 511 | auto *Br = State->Builder.CreateBr(Dest: IRBB); |
| 512 | Br->setOperand(i_nocapture: 0, Val_nocapture: nullptr); |
| 513 | IRBB->getTerminator()->eraseFromParent(); |
| 514 | } else { |
| 515 | assert( |
| 516 | (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && |
| 517 | "other blocks must be terminated by a branch" ); |
| 518 | } |
| 519 | |
| 520 | connectToPredecessors(State&: *State); |
| 521 | } |
| 522 | |
| 523 | VPIRBasicBlock *VPIRBasicBlock::clone() { |
| 524 | auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB); |
| 525 | for (VPRecipeBase &R : Recipes) |
| 526 | NewBlock->appendRecipe(Recipe: R.clone()); |
| 527 | return NewBlock; |
| 528 | } |
| 529 | |
| 530 | void VPBasicBlock::execute(VPTransformState *State) { |
| 531 | bool Replica = bool(State->Lane); |
| 532 | BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. |
| 533 | |
| 534 | if (VPBlockUtils::isHeader(VPB: this, VPDT: State->VPDT)) { |
| 535 | // Create and register the new vector loop. |
| 536 | Loop *PrevParentLoop = State->CurrentParentLoop; |
| 537 | State->CurrentParentLoop = State->LI->AllocateLoop(); |
| 538 | |
| 539 | // Insert the new loop into the loop nest and register the new basic blocks |
| 540 | // before calling any utilities such as SCEV that require valid LoopInfo. |
| 541 | if (PrevParentLoop) |
| 542 | PrevParentLoop->addChildLoop(NewChild: State->CurrentParentLoop); |
| 543 | else |
| 544 | State->LI->addTopLevelLoop(New: State->CurrentParentLoop); |
| 545 | } |
| 546 | |
| 547 | auto IsReplicateRegion = [](VPBlockBase *BB) { |
| 548 | auto *R = dyn_cast_or_null<VPRegionBlock>(Val: BB); |
| 549 | assert((!R || R->isReplicator()) && |
| 550 | "only replicate region blocks should remain" ); |
| 551 | return R; |
| 552 | }; |
| 553 | // 1. Create an IR basic block. |
| 554 | if ((Replica && this == getParent()->getEntry()) || |
| 555 | IsReplicateRegion(getSingleHierarchicalPredecessor())) { |
| 556 | // Reuse the previous basic block if the current VPBB is either |
| 557 | // * the entry to a replicate region, or |
| 558 | // * the exit of a replicate region. |
| 559 | State->CFG.VPBB2IRBB[this] = NewBB; |
| 560 | } else { |
| 561 | NewBB = createEmptyBasicBlock(State&: *State); |
| 562 | |
| 563 | State->Builder.SetInsertPoint(NewBB); |
| 564 | // Temporarily terminate with unreachable until CFG is rewired. |
| 565 | UnreachableInst *Terminator = State->Builder.CreateUnreachable(); |
| 566 | State->Builder.SetInsertPoint(Terminator); |
| 567 | |
| 568 | State->CFG.PrevBB = NewBB; |
| 569 | State->CFG.VPBB2IRBB[this] = NewBB; |
| 570 | connectToPredecessors(State&: *State); |
| 571 | } |
| 572 | |
| 573 | // 2. Fill the IR basic block with IR instructions. |
| 574 | executeRecipes(State, BB: NewBB); |
| 575 | |
| 576 | // If this block is a latch, update CurrentParentLoop. |
| 577 | if (VPBlockUtils::isLatch(VPB: this, VPDT: State->VPDT)) |
| 578 | State->CurrentParentLoop = State->CurrentParentLoop->getParentLoop(); |
| 579 | } |
| 580 | |
| 581 | VPBasicBlock *VPBasicBlock::clone() { |
| 582 | auto *NewBlock = getPlan()->createVPBasicBlock(Name: getName()); |
| 583 | for (VPRecipeBase &R : *this) |
| 584 | NewBlock->appendRecipe(Recipe: R.clone()); |
| 585 | return NewBlock; |
| 586 | } |
| 587 | |
| 588 | void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { |
| 589 | LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB: " << getName() |
| 590 | << " in BB: " << BB->getName() << '\n'); |
| 591 | |
| 592 | State->CFG.PrevVPBB = this; |
| 593 | |
| 594 | for (VPRecipeBase &Recipe : Recipes) { |
| 595 | State->setDebugLocFrom(Recipe.getDebugLoc()); |
| 596 | Recipe.execute(State&: *State); |
| 597 | } |
| 598 | |
| 599 | LLVM_DEBUG(dbgs() << "LV: filled BB: " << *BB); |
| 600 | } |
| 601 | |
| 602 | VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { |
| 603 | assert((SplitAt == end() || SplitAt->getParent() == this) && |
| 604 | "can only split at a position in the same block" ); |
| 605 | |
| 606 | // Create new empty block after the block to split. |
| 607 | auto *SplitBlock = getPlan()->createVPBasicBlock(Name: getName() + ".split" ); |
| 608 | VPBlockUtils::insertBlockAfter(NewBlock: SplitBlock, BlockPtr: this); |
| 609 | |
| 610 | // Finally, move the recipes starting at SplitAt to new block. |
| 611 | for (VPRecipeBase &ToMove : |
| 612 | make_early_inc_range(Range: make_range(x: SplitAt, y: this->end()))) |
| 613 | ToMove.moveBefore(BB&: *SplitBlock, I: SplitBlock->end()); |
| 614 | |
| 615 | return SplitBlock; |
| 616 | } |
| 617 | |
| 618 | /// Return the enclosing loop region for region \p P. The templated version is |
| 619 | /// used to support both const and non-const block arguments. |
| 620 | template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { |
| 621 | if (P && P->isReplicator()) { |
| 622 | P = P->getParent(); |
| 623 | // Multiple loop regions can be nested, but replicate regions can only be |
| 624 | // nested inside a loop region or must be outside any other region. |
| 625 | assert((!P || !P->isReplicator()) && "unexpected nested replicate regions" ); |
| 626 | } |
| 627 | return P; |
| 628 | } |
| 629 | |
| 630 | VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { |
| 631 | return getEnclosingLoopRegionForRegion(P: getParent()); |
| 632 | } |
| 633 | |
| 634 | const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { |
| 635 | return getEnclosingLoopRegionForRegion(P: getParent()); |
| 636 | } |
| 637 | |
| 638 | static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { |
| 639 | if (VPBB->empty()) { |
| 640 | assert( |
| 641 | VPBB->getNumSuccessors() < 2 && |
| 642 | "block with multiple successors doesn't have a recipe as terminator" ); |
| 643 | return false; |
| 644 | } |
| 645 | |
| 646 | const VPRecipeBase *R = &VPBB->back(); |
| 647 | bool IsSwitch = isa<VPInstruction>(Val: R) && |
| 648 | cast<VPInstruction>(Val: R)->getOpcode() == Instruction::Switch; |
| 649 | bool IsCondBranch = isa<VPBranchOnMaskRecipe>(Val: R) || |
| 650 | match(V: R, P: m_BranchOnCond(Op0: m_VPValue())) || |
| 651 | match(V: R, P: m_BranchOnCount(Op0: m_VPValue(), Op1: m_VPValue())); |
| 652 | (void)IsCondBranch; |
| 653 | (void)IsSwitch; |
| 654 | if (VPBB->getNumSuccessors() == 2 || |
| 655 | (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { |
| 656 | assert((IsCondBranch || IsSwitch) && |
| 657 | "block with multiple successors not terminated by " |
| 658 | "conditional branch nor switch recipe" ); |
| 659 | |
| 660 | return true; |
| 661 | } |
| 662 | |
| 663 | if (VPBB->getNumSuccessors() > 2) { |
| 664 | assert(IsSwitch && "block with more than 2 successors not terminated by " |
| 665 | "a switch recipe" ); |
| 666 | return true; |
| 667 | } |
| 668 | |
| 669 | assert( |
| 670 | !IsCondBranch && |
| 671 | "block with 0 or 1 successors terminated by conditional branch recipe" ); |
| 672 | return false; |
| 673 | } |
| 674 | |
| 675 | VPRecipeBase *VPBasicBlock::getTerminator() { |
| 676 | if (hasConditionalTerminator(VPBB: this)) |
| 677 | return &back(); |
| 678 | return nullptr; |
| 679 | } |
| 680 | |
| 681 | const VPRecipeBase *VPBasicBlock::getTerminator() const { |
| 682 | if (hasConditionalTerminator(VPBB: this)) |
| 683 | return &back(); |
| 684 | return nullptr; |
| 685 | } |
| 686 | |
| 687 | bool VPBasicBlock::isExiting() const { |
| 688 | return getParent() && getParent()->getExitingBasicBlock() == this; |
| 689 | } |
| 690 | |
| 691 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 692 | void VPBlockBase::print(raw_ostream &O) const { |
| 693 | VPSlotTracker SlotTracker(getPlan()); |
| 694 | print(O, "" , SlotTracker); |
| 695 | } |
| 696 | |
| 697 | void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { |
| 698 | if (getSuccessors().empty()) { |
| 699 | O << Indent << "No successors\n" ; |
| 700 | } else { |
| 701 | O << Indent << "Successor(s): " ; |
| 702 | ListSeparator LS; |
| 703 | for (auto *Succ : getSuccessors()) |
| 704 | O << LS << Succ->getName(); |
| 705 | O << '\n'; |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, |
| 710 | VPSlotTracker &SlotTracker) const { |
| 711 | O << Indent << getName() << ":\n" ; |
| 712 | |
| 713 | auto RecipeIndent = Indent + " " ; |
| 714 | for (const VPRecipeBase &Recipe : *this) { |
| 715 | Recipe.print(O, RecipeIndent, SlotTracker); |
| 716 | O << '\n'; |
| 717 | } |
| 718 | |
| 719 | printSuccessors(O, Indent); |
| 720 | } |
| 721 | #endif |
| 722 | |
| 723 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); |
| 724 | |
| 725 | // Clone the CFG for all nodes reachable from \p Entry, this includes cloning |
| 726 | // the blocks and their recipes. Operands of cloned recipes will NOT be updated. |
| 727 | // Remapping of operands must be done separately. Returns a pair with the new |
| 728 | // entry and exiting blocks of the cloned region. If \p Entry isn't part of a |
| 729 | // region, return nullptr for the exiting block. |
| 730 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { |
| 731 | DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; |
| 732 | VPBlockBase *Exiting = nullptr; |
| 733 | bool InRegion = Entry->getParent(); |
| 734 | // First, clone blocks reachable from Entry. |
| 735 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
| 736 | VPBlockBase *NewBB = BB->clone(); |
| 737 | Old2NewVPBlocks[BB] = NewBB; |
| 738 | if (InRegion && BB->getNumSuccessors() == 0) { |
| 739 | assert(!Exiting && "Multiple exiting blocks?" ); |
| 740 | Exiting = BB; |
| 741 | } |
| 742 | } |
| 743 | assert((!InRegion || Exiting) && "regions must have a single exiting block" ); |
| 744 | |
| 745 | // Second, update the predecessors & successors of the cloned blocks. |
| 746 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
| 747 | VPBlockBase *NewBB = Old2NewVPBlocks[BB]; |
| 748 | SmallVector<VPBlockBase *> NewPreds; |
| 749 | for (VPBlockBase *Pred : BB->getPredecessors()) { |
| 750 | NewPreds.push_back(Elt: Old2NewVPBlocks[Pred]); |
| 751 | } |
| 752 | NewBB->setPredecessors(NewPreds); |
| 753 | SmallVector<VPBlockBase *> NewSuccs; |
| 754 | for (VPBlockBase *Succ : BB->successors()) { |
| 755 | NewSuccs.push_back(Elt: Old2NewVPBlocks[Succ]); |
| 756 | } |
| 757 | NewBB->setSuccessors(NewSuccs); |
| 758 | } |
| 759 | |
| 760 | #if !defined(NDEBUG) |
| 761 | // Verify that the order of predecessors and successors matches in the cloned |
| 762 | // version. |
| 763 | for (const auto &[OldBB, NewBB] : |
| 764 | zip(vp_depth_first_shallow(Entry), |
| 765 | vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { |
| 766 | for (const auto &[OldPred, NewPred] : |
| 767 | zip(OldBB->getPredecessors(), NewBB->getPredecessors())) |
| 768 | assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors" ); |
| 769 | |
| 770 | for (const auto &[OldSucc, NewSucc] : |
| 771 | zip(OldBB->successors(), NewBB->successors())) |
| 772 | assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors" ); |
| 773 | } |
| 774 | #endif |
| 775 | |
| 776 | return std::make_pair(x&: Old2NewVPBlocks[Entry], |
| 777 | y: Exiting ? Old2NewVPBlocks[Exiting] : nullptr); |
| 778 | } |
| 779 | |
| 780 | VPRegionBlock *VPRegionBlock::clone() { |
| 781 | const auto &[NewEntry, NewExiting] = cloneFrom(Entry: getEntry()); |
| 782 | auto *NewRegion = getPlan()->createVPRegionBlock(Entry: NewEntry, Exiting: NewExiting, |
| 783 | Name: getName(), IsReplicator: isReplicator()); |
| 784 | for (VPBlockBase *Block : vp_depth_first_shallow(G: NewEntry)) |
| 785 | Block->setParent(NewRegion); |
| 786 | return NewRegion; |
| 787 | } |
| 788 | |
| 789 | void VPRegionBlock::execute(VPTransformState *State) { |
| 790 | assert(isReplicator() && |
| 791 | "Loop regions should have been lowered to plain CFG" ); |
| 792 | assert(!State->Lane && "Replicating a Region with non-null instance." ); |
| 793 | assert(!State->VF.isScalable() && "VF is assumed to be non scalable." ); |
| 794 | |
| 795 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
| 796 | Entry); |
| 797 | State->Lane = VPLane(0); |
| 798 | for (unsigned Lane = 0, VF = State->VF.getFixedValue(); Lane < VF; ++Lane) { |
| 799 | State->Lane = VPLane(Lane, VPLane::Kind::First); |
| 800 | // Visit the VPBlocks connected to \p this, starting from it. |
| 801 | for (VPBlockBase *Block : RPOT) { |
| 802 | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
| 803 | Block->execute(State); |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | // Exit replicating mode. |
| 808 | State->Lane.reset(); |
| 809 | } |
| 810 | |
| 811 | InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
| 812 | InstructionCost Cost = 0; |
| 813 | for (VPRecipeBase &R : Recipes) |
| 814 | Cost += R.cost(VF, Ctx); |
| 815 | return Cost; |
| 816 | } |
| 817 | |
| 818 | const VPBasicBlock *VPBasicBlock::getCFGPredecessor(unsigned Idx) const { |
| 819 | const VPBlockBase *Pred = nullptr; |
| 820 | if (getNumPredecessors() > 0) { |
| 821 | Pred = getPredecessors()[Idx]; |
| 822 | } else { |
| 823 | auto *Region = getParent(); |
| 824 | assert(Region && !Region->isReplicator() && Region->getEntry() == this && |
| 825 | "must be in the entry block of a non-replicate region" ); |
| 826 | assert(Idx < 2 && Region->getNumPredecessors() == 1 && |
| 827 | "loop region has a single predecessor (preheader), its entry block " |
| 828 | "has 2 incoming blocks" ); |
| 829 | |
| 830 | // Idx == 0 selects the predecessor of the region, Idx == 1 selects the |
| 831 | // region itself whose exiting block feeds the phi across the backedge. |
| 832 | Pred = Idx == 0 ? Region->getSinglePredecessor() : Region; |
| 833 | } |
| 834 | return Pred->getExitingBasicBlock(); |
| 835 | } |
| 836 | |
| 837 | InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
| 838 | if (!isReplicator()) { |
| 839 | InstructionCost Cost = 0; |
| 840 | for (VPBlockBase *Block : vp_depth_first_shallow(G: getEntry())) |
| 841 | Cost += Block->cost(VF, Ctx); |
| 842 | InstructionCost BackedgeCost = |
| 843 | ForceTargetInstructionCost.getNumOccurrences() |
| 844 | ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) |
| 845 | : Ctx.TTI.getCFInstrCost(Opcode: Instruction::Br, CostKind: Ctx.CostKind); |
| 846 | LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF |
| 847 | << ": vector loop backedge\n" ); |
| 848 | Cost += BackedgeCost; |
| 849 | return Cost; |
| 850 | } |
| 851 | |
| 852 | // Compute the cost of a replicate region. Replicating isn't supported for |
| 853 | // scalable vectors, return an invalid cost for them. |
| 854 | // TODO: Discard scalable VPlans with replicate recipes earlier after |
| 855 | // construction. |
| 856 | if (VF.isScalable()) |
| 857 | return InstructionCost::getInvalid(); |
| 858 | |
| 859 | // First compute the cost of the conditionally executed recipes, followed by |
| 860 | // account for the branching cost, except if the mask is a header mask or |
| 861 | // uniform condition. |
| 862 | using namespace llvm::VPlanPatternMatch; |
| 863 | VPBasicBlock *Then = cast<VPBasicBlock>(Val: getEntry()->getSuccessors()[0]); |
| 864 | InstructionCost ThenCost = Then->cost(VF, Ctx); |
| 865 | |
| 866 | // For the scalar case, we may not always execute the original predicated |
| 867 | // block, Thus, scale the block's cost by the probability of executing it. |
| 868 | if (VF.isScalar()) |
| 869 | return ThenCost / getPredBlockCostDivisor(CostKind: Ctx.CostKind); |
| 870 | |
| 871 | return ThenCost; |
| 872 | } |
| 873 | |
| 874 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 875 | void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, |
| 876 | VPSlotTracker &SlotTracker) const { |
| 877 | O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> " ) << getName() << ": {" ; |
| 878 | auto NewIndent = Indent + " " ; |
| 879 | for (auto *BlockBase : vp_depth_first_shallow(Entry)) { |
| 880 | O << '\n'; |
| 881 | BlockBase->print(O, NewIndent, SlotTracker); |
| 882 | } |
| 883 | O << Indent << "}\n" ; |
| 884 | |
| 885 | printSuccessors(O, Indent); |
| 886 | } |
| 887 | #endif |
| 888 | |
| 889 | void VPRegionBlock::dissolveToCFGLoop() { |
| 890 | auto * = cast<VPBasicBlock>(Val: getEntry()); |
| 891 | if (auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(Val: &Header->front())) { |
| 892 | assert(this == getPlan()->getVectorLoopRegion() && |
| 893 | "Canonical IV must be in the entry of the top-level loop region" ); |
| 894 | auto *ScalarR = VPBuilder(CanIV).createScalarPhi( |
| 895 | IncomingValues: {CanIV->getStartValue(), CanIV->getBackedgeValue()}, |
| 896 | DL: CanIV->getDebugLoc(), Name: "index" ); |
| 897 | CanIV->replaceAllUsesWith(New: ScalarR); |
| 898 | CanIV->eraseFromParent(); |
| 899 | } |
| 900 | |
| 901 | VPBlockBase * = getSinglePredecessor(); |
| 902 | auto *ExitingLatch = cast<VPBasicBlock>(Val: getExiting()); |
| 903 | VPBlockBase *Middle = getSingleSuccessor(); |
| 904 | VPBlockUtils::disconnectBlocks(From: Preheader, To: this); |
| 905 | VPBlockUtils::disconnectBlocks(From: this, To: Middle); |
| 906 | |
| 907 | for (VPBlockBase *VPB : vp_depth_first_shallow(G: Entry)) |
| 908 | VPB->setParent(getParent()); |
| 909 | |
| 910 | VPBlockUtils::connectBlocks(From: Preheader, To: Header); |
| 911 | VPBlockUtils::connectBlocks(From: ExitingLatch, To: Middle); |
| 912 | VPBlockUtils::connectBlocks(From: ExitingLatch, To: Header); |
| 913 | } |
| 914 | |
| 915 | VPlan::VPlan(Loop *L) { |
| 916 | setEntry(createVPIRBasicBlock(IRBB: L->getLoopPreheader())); |
| 917 | ScalarHeader = createVPIRBasicBlock(IRBB: L->getHeader()); |
| 918 | |
| 919 | SmallVector<BasicBlock *> IRExitBlocks; |
| 920 | L->getUniqueExitBlocks(ExitBlocks&: IRExitBlocks); |
| 921 | for (BasicBlock *EB : IRExitBlocks) |
| 922 | ExitBlocks.push_back(Elt: createVPIRBasicBlock(IRBB: EB)); |
| 923 | } |
| 924 | |
| 925 | VPlan::~VPlan() { |
| 926 | VPValue DummyValue; |
| 927 | |
| 928 | for (auto *VPB : CreatedBlocks) { |
| 929 | if (auto *VPBB = dyn_cast<VPBasicBlock>(Val: VPB)) { |
| 930 | // Replace all operands of recipes and all VPValues defined in VPBB with |
| 931 | // DummyValue so the block can be deleted. |
| 932 | for (VPRecipeBase &R : *VPBB) { |
| 933 | for (auto *Def : R.definedValues()) |
| 934 | Def->replaceAllUsesWith(New: &DummyValue); |
| 935 | |
| 936 | for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) |
| 937 | R.setOperand(I, New: &DummyValue); |
| 938 | } |
| 939 | } |
| 940 | delete VPB; |
| 941 | } |
| 942 | for (VPValue *VPV : getLiveIns()) |
| 943 | delete VPV; |
| 944 | if (BackedgeTakenCount) |
| 945 | delete BackedgeTakenCount; |
| 946 | } |
| 947 | |
| 948 | void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, |
| 949 | VPTransformState &State) { |
| 950 | Type *TCTy = TripCountV->getType(); |
| 951 | // Check if the backedge taken count is needed, and if so build it. |
| 952 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
| 953 | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
| 954 | auto *TCMO = Builder.CreateSub(LHS: TripCountV, RHS: ConstantInt::get(Ty: TCTy, V: 1), |
| 955 | Name: "trip.count.minus.1" ); |
| 956 | BackedgeTakenCount->setUnderlyingValue(TCMO); |
| 957 | } |
| 958 | |
| 959 | VectorTripCount.setUnderlyingValue(VectorTripCountV); |
| 960 | |
| 961 | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
| 962 | // FIXME: Model VF * UF computation completely in VPlan. |
| 963 | unsigned UF = getUF(); |
| 964 | if (VF.getNumUsers()) { |
| 965 | Value *RuntimeVF = getRuntimeVF(B&: Builder, Ty: TCTy, VF: State.VF); |
| 966 | VF.setUnderlyingValue(RuntimeVF); |
| 967 | VFxUF.setUnderlyingValue( |
| 968 | UF > 1 ? Builder.CreateMul(LHS: RuntimeVF, RHS: ConstantInt::get(Ty: TCTy, V: UF)) |
| 969 | : RuntimeVF); |
| 970 | } else { |
| 971 | VFxUF.setUnderlyingValue(createStepForVF(B&: Builder, Ty: TCTy, VF: State.VF, Step: UF)); |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | VPIRBasicBlock *VPlan::getExitBlock(BasicBlock *IRBB) const { |
| 976 | auto Iter = find_if(Range: getExitBlocks(), P: [IRBB](const VPIRBasicBlock *VPIRBB) { |
| 977 | return VPIRBB->getIRBasicBlock() == IRBB; |
| 978 | }); |
| 979 | assert(Iter != getExitBlocks().end() && "no exit block found" ); |
| 980 | return *Iter; |
| 981 | } |
| 982 | |
| 983 | bool VPlan::isExitBlock(VPBlockBase *VPBB) { |
| 984 | return is_contained(Range&: ExitBlocks, Element: VPBB); |
| 985 | } |
| 986 | |
| 987 | /// Generate the code inside the preheader and body of the vectorized loop. |
| 988 | /// Assumes a single pre-header basic-block was created for this. Introduce |
| 989 | /// additional basic-blocks as needed, and fill them all. |
| 990 | void VPlan::execute(VPTransformState *State) { |
| 991 | // Initialize CFG state. |
| 992 | State->CFG.PrevVPBB = nullptr; |
| 993 | State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); |
| 994 | |
| 995 | // Update VPDominatorTree since VPBasicBlock may be removed after State was |
| 996 | // constructed. |
| 997 | State->VPDT.recalculate(Func&: *this); |
| 998 | |
| 999 | // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. |
| 1000 | BasicBlock * = State->CFG.PrevBB; |
| 1001 | cast<BranchInst>(Val: VectorPreHeader->getTerminator())->setSuccessor(idx: 0, NewSucc: nullptr); |
| 1002 | State->CFG.DTU.applyUpdates( |
| 1003 | Updates: {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); |
| 1004 | |
| 1005 | LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF |
| 1006 | << ", UF=" << getUF() << '\n'); |
| 1007 | setName("Final VPlan" ); |
| 1008 | LLVM_DEBUG(dump()); |
| 1009 | |
| 1010 | // Disconnect scalar preheader and scalar header, as the dominator tree edge |
| 1011 | // will be updated as part of VPlan execution. This allows keeping the DTU |
| 1012 | // logic generic during VPlan execution. |
| 1013 | BasicBlock *ScalarPh = State->CFG.ExitBB; |
| 1014 | State->CFG.DTU.applyUpdates( |
| 1015 | Updates: {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); |
| 1016 | |
| 1017 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
| 1018 | Entry); |
| 1019 | // Generate code for the VPlan, in parts of the vector skeleton, loop body and |
| 1020 | // successor blocks including the middle, exit and scalar preheader blocks. |
| 1021 | for (VPBlockBase *Block : RPOT) |
| 1022 | Block->execute(State); |
| 1023 | |
| 1024 | State->CFG.DTU.flush(); |
| 1025 | |
| 1026 | VPBasicBlock * = vputils::getFirstLoopHeader(Plan&: *this, VPDT&: State->VPDT); |
| 1027 | if (!Header) |
| 1028 | return; |
| 1029 | |
| 1030 | auto *LatchVPBB = cast<VPBasicBlock>(Val: Header->getPredecessors()[1]); |
| 1031 | BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; |
| 1032 | |
| 1033 | // Fix the latch value of canonical, reduction and first-order recurrences |
| 1034 | // phis in the vector loop. |
| 1035 | for (VPRecipeBase &R : Header->phis()) { |
| 1036 | // Skip phi-like recipes that generate their backedege values themselves. |
| 1037 | if (isa<VPWidenPHIRecipe>(Val: &R)) |
| 1038 | continue; |
| 1039 | |
| 1040 | if (auto *WidenPhi = dyn_cast<VPWidenPointerInductionRecipe>(Val: &R)) { |
| 1041 | assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && |
| 1042 | "recipe generating only scalars should have been replaced" ); |
| 1043 | auto *GEP = cast<GetElementPtrInst>(Val: State->get(Def: WidenPhi)); |
| 1044 | PHINode *Phi = cast<PHINode>(Val: GEP->getPointerOperand()); |
| 1045 | |
| 1046 | Phi->setIncomingBlock(i: 1, BB: VectorLatchBB); |
| 1047 | |
| 1048 | // Move the last step to the end of the latch block. This ensures |
| 1049 | // consistent placement of all induction updates. |
| 1050 | Instruction *Inc = cast<Instruction>(Val: Phi->getIncomingValue(i: 1)); |
| 1051 | Inc->moveBefore(InsertPos: std::prev(x: VectorLatchBB->getTerminator()->getIterator())); |
| 1052 | continue; |
| 1053 | } |
| 1054 | |
| 1055 | auto *PhiR = cast<VPSingleDefRecipe>(Val: &R); |
| 1056 | // VPInstructions currently model scalar Phis only. |
| 1057 | bool NeedsScalar = isa<VPInstruction>(Val: PhiR) || |
| 1058 | (isa<VPReductionPHIRecipe>(Val: PhiR) && |
| 1059 | cast<VPReductionPHIRecipe>(Val: PhiR)->isInLoop()); |
| 1060 | |
| 1061 | Value *Phi = State->get(Def: PhiR, NeedsScalar); |
| 1062 | // VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does |
| 1063 | // not. |
| 1064 | Value *Val = State->get(Def: PhiR->getOperand(N: 1), NeedsScalar); |
| 1065 | cast<PHINode>(Val: Phi)->addIncoming(V: Val, BB: VectorLatchBB); |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { |
| 1070 | // For now only return the cost of the vector loop region, ignoring any other |
| 1071 | // blocks, like the preheader or middle blocks. |
| 1072 | InstructionCost Cost = getVectorLoopRegion()->cost(VF, Ctx); |
| 1073 | |
| 1074 | // If any instructions in the middle block are invalid return invalid. |
| 1075 | // TODO: Remove once no VPlans with VF == vscale x 1 and first-order recurrences are created. |
| 1076 | if (!getMiddleBlock()->cost(VF, Ctx).isValid()) |
| 1077 | return InstructionCost::getInvalid(); |
| 1078 | |
| 1079 | return Cost; |
| 1080 | } |
| 1081 | |
| 1082 | VPRegionBlock *VPlan::getVectorLoopRegion() { |
| 1083 | // TODO: Cache if possible. |
| 1084 | for (VPBlockBase *B : vp_depth_first_shallow(G: getEntry())) |
| 1085 | if (auto *R = dyn_cast<VPRegionBlock>(Val: B)) |
| 1086 | return R->isReplicator() ? nullptr : R; |
| 1087 | return nullptr; |
| 1088 | } |
| 1089 | |
| 1090 | const VPRegionBlock *VPlan::getVectorLoopRegion() const { |
| 1091 | for (const VPBlockBase *B : vp_depth_first_shallow(G: getEntry())) |
| 1092 | if (auto *R = dyn_cast<VPRegionBlock>(Val: B)) |
| 1093 | return R->isReplicator() ? nullptr : R; |
| 1094 | return nullptr; |
| 1095 | } |
| 1096 | |
| 1097 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1098 | void VPlan::printLiveIns(raw_ostream &O) const { |
| 1099 | VPSlotTracker SlotTracker(this); |
| 1100 | |
| 1101 | if (VF.getNumUsers() > 0) { |
| 1102 | O << "\nLive-in " ; |
| 1103 | VF.printAsOperand(O, SlotTracker); |
| 1104 | O << " = VF" ; |
| 1105 | } |
| 1106 | |
| 1107 | if (VFxUF.getNumUsers() > 0) { |
| 1108 | O << "\nLive-in " ; |
| 1109 | VFxUF.printAsOperand(O, SlotTracker); |
| 1110 | O << " = VF * UF" ; |
| 1111 | } |
| 1112 | |
| 1113 | if (VectorTripCount.getNumUsers() > 0) { |
| 1114 | O << "\nLive-in " ; |
| 1115 | VectorTripCount.printAsOperand(O, SlotTracker); |
| 1116 | O << " = vector-trip-count" ; |
| 1117 | } |
| 1118 | |
| 1119 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
| 1120 | O << "\nLive-in " ; |
| 1121 | BackedgeTakenCount->printAsOperand(O, SlotTracker); |
| 1122 | O << " = backedge-taken count" ; |
| 1123 | } |
| 1124 | |
| 1125 | O << "\n" ; |
| 1126 | if (TripCount) { |
| 1127 | if (TripCount->isLiveIn()) |
| 1128 | O << "Live-in " ; |
| 1129 | TripCount->printAsOperand(O, SlotTracker); |
| 1130 | O << " = original trip-count" ; |
| 1131 | O << "\n" ; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | LLVM_DUMP_METHOD |
| 1136 | void VPlan::print(raw_ostream &O) const { |
| 1137 | VPSlotTracker SlotTracker(this); |
| 1138 | |
| 1139 | O << "VPlan '" << getName() << "' {" ; |
| 1140 | |
| 1141 | printLiveIns(O); |
| 1142 | |
| 1143 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> |
| 1144 | RPOT(getEntry()); |
| 1145 | for (const VPBlockBase *Block : RPOT) { |
| 1146 | O << '\n'; |
| 1147 | Block->print(O, "" , SlotTracker); |
| 1148 | } |
| 1149 | |
| 1150 | O << "}\n" ; |
| 1151 | } |
| 1152 | |
| 1153 | std::string VPlan::getName() const { |
| 1154 | std::string Out; |
| 1155 | raw_string_ostream RSO(Out); |
| 1156 | RSO << Name << " for " ; |
| 1157 | if (!VFs.empty()) { |
| 1158 | RSO << "VF={" << VFs[0]; |
| 1159 | for (ElementCount VF : drop_begin(VFs)) |
| 1160 | RSO << "," << VF; |
| 1161 | RSO << "}," ; |
| 1162 | } |
| 1163 | |
| 1164 | if (UFs.empty()) { |
| 1165 | RSO << "UF>=1" ; |
| 1166 | } else { |
| 1167 | RSO << "UF={" << UFs[0]; |
| 1168 | for (unsigned UF : drop_begin(UFs)) |
| 1169 | RSO << "," << UF; |
| 1170 | RSO << "}" ; |
| 1171 | } |
| 1172 | |
| 1173 | return Out; |
| 1174 | } |
| 1175 | |
| 1176 | LLVM_DUMP_METHOD |
| 1177 | void VPlan::printDOT(raw_ostream &O) const { |
| 1178 | VPlanPrinter Printer(O, *this); |
| 1179 | Printer.dump(); |
| 1180 | } |
| 1181 | |
| 1182 | LLVM_DUMP_METHOD |
| 1183 | void VPlan::dump() const { print(dbgs()); } |
| 1184 | #endif |
| 1185 | |
| 1186 | static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, |
| 1187 | DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { |
| 1188 | // Update the operands of all cloned recipes starting at NewEntry. This |
| 1189 | // traverses all reachable blocks. This is done in two steps, to handle cycles |
| 1190 | // in PHI recipes. |
| 1191 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
| 1192 | OldDeepRPOT(Entry); |
| 1193 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
| 1194 | NewDeepRPOT(NewEntry); |
| 1195 | // First, collect all mappings from old to new VPValues defined by cloned |
| 1196 | // recipes. |
| 1197 | for (const auto &[OldBB, NewBB] : |
| 1198 | zip(t: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: OldDeepRPOT), |
| 1199 | u: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT))) { |
| 1200 | assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && |
| 1201 | "blocks must have the same number of recipes" ); |
| 1202 | for (const auto &[OldR, NewR] : zip(t&: *OldBB, u&: *NewBB)) { |
| 1203 | assert(OldR.getNumOperands() == NewR.getNumOperands() && |
| 1204 | "recipes must have the same number of operands" ); |
| 1205 | assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && |
| 1206 | "recipes must define the same number of operands" ); |
| 1207 | for (const auto &[OldV, NewV] : |
| 1208 | zip(t: OldR.definedValues(), u: NewR.definedValues())) |
| 1209 | Old2NewVPValues[OldV] = NewV; |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | // Update all operands to use cloned VPValues. |
| 1214 | for (VPBasicBlock *NewBB : |
| 1215 | VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT)) { |
| 1216 | for (VPRecipeBase &NewR : *NewBB) |
| 1217 | for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { |
| 1218 | VPValue *NewOp = Old2NewVPValues.lookup(Val: NewR.getOperand(N: I)); |
| 1219 | NewR.setOperand(I, New: NewOp); |
| 1220 | } |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | VPlan *VPlan::duplicate() { |
| 1225 | unsigned NumBlocksBeforeCloning = CreatedBlocks.size(); |
| 1226 | // Clone blocks. |
| 1227 | const auto &[NewEntry, __] = cloneFrom(Entry); |
| 1228 | |
| 1229 | BasicBlock * = getScalarHeader()->getIRBasicBlock(); |
| 1230 | VPIRBasicBlock * = nullptr; |
| 1231 | if (getScalarHeader()->getNumPredecessors() == 0) { |
| 1232 | NewScalarHeader = createVPIRBasicBlock(IRBB: ScalarHeaderIRBB); |
| 1233 | } else { |
| 1234 | NewScalarHeader = cast<VPIRBasicBlock>(Val: *find_if( |
| 1235 | Range: vp_depth_first_shallow(G: NewEntry), P: [ScalarHeaderIRBB](VPBlockBase *VPB) { |
| 1236 | auto *VPIRBB = dyn_cast<VPIRBasicBlock>(Val: VPB); |
| 1237 | return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; |
| 1238 | })); |
| 1239 | } |
| 1240 | // Create VPlan, clone live-ins and remap operands in the cloned blocks. |
| 1241 | auto *NewPlan = new VPlan(cast<VPBasicBlock>(Val: NewEntry), NewScalarHeader); |
| 1242 | DenseMap<VPValue *, VPValue *> Old2NewVPValues; |
| 1243 | for (VPValue *OldLiveIn : getLiveIns()) { |
| 1244 | Old2NewVPValues[OldLiveIn] = |
| 1245 | NewPlan->getOrAddLiveIn(V: OldLiveIn->getLiveInIRValue()); |
| 1246 | } |
| 1247 | Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; |
| 1248 | Old2NewVPValues[&VF] = &NewPlan->VF; |
| 1249 | Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; |
| 1250 | if (BackedgeTakenCount) { |
| 1251 | NewPlan->BackedgeTakenCount = new VPValue(); |
| 1252 | Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; |
| 1253 | } |
| 1254 | if (TripCount && TripCount->isLiveIn()) |
| 1255 | Old2NewVPValues[TripCount] = |
| 1256 | NewPlan->getOrAddLiveIn(V: TripCount->getLiveInIRValue()); |
| 1257 | // else NewTripCount will be created and inserted into Old2NewVPValues when |
| 1258 | // TripCount is cloned. In any case NewPlan->TripCount is updated below. |
| 1259 | |
| 1260 | remapOperands(Entry, NewEntry, Old2NewVPValues); |
| 1261 | |
| 1262 | // Initialize remaining fields of cloned VPlan. |
| 1263 | NewPlan->VFs = VFs; |
| 1264 | NewPlan->UFs = UFs; |
| 1265 | // TODO: Adjust names. |
| 1266 | NewPlan->Name = Name; |
| 1267 | if (TripCount) { |
| 1268 | assert(Old2NewVPValues.contains(TripCount) && |
| 1269 | "TripCount must have been added to Old2NewVPValues" ); |
| 1270 | NewPlan->TripCount = Old2NewVPValues[TripCount]; |
| 1271 | } |
| 1272 | |
| 1273 | // Transfer all cloned blocks (the second half of all current blocks) from |
| 1274 | // current to new VPlan. |
| 1275 | unsigned NumBlocksAfterCloning = CreatedBlocks.size(); |
| 1276 | for (unsigned I : |
| 1277 | seq<unsigned>(Begin: NumBlocksBeforeCloning, End: NumBlocksAfterCloning)) |
| 1278 | NewPlan->CreatedBlocks.push_back(Elt: this->CreatedBlocks[I]); |
| 1279 | CreatedBlocks.truncate(N: NumBlocksBeforeCloning); |
| 1280 | |
| 1281 | // Update ExitBlocks of the new plan. |
| 1282 | for (VPBlockBase *VPB : NewPlan->CreatedBlocks) { |
| 1283 | if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(Val: VPB) && |
| 1284 | VPB != NewScalarHeader) |
| 1285 | NewPlan->ExitBlocks.push_back(Elt: cast<VPIRBasicBlock>(Val: VPB)); |
| 1286 | } |
| 1287 | |
| 1288 | return NewPlan; |
| 1289 | } |
| 1290 | |
| 1291 | VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) { |
| 1292 | auto *VPIRBB = new VPIRBasicBlock(IRBB); |
| 1293 | CreatedBlocks.push_back(Elt: VPIRBB); |
| 1294 | return VPIRBB; |
| 1295 | } |
| 1296 | |
| 1297 | VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) { |
| 1298 | auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB); |
| 1299 | for (Instruction &I : |
| 1300 | make_range(x: IRBB->begin(), y: IRBB->getTerminator()->getIterator())) |
| 1301 | VPIRBB->appendRecipe(Recipe: VPIRInstruction::create(I)); |
| 1302 | return VPIRBB; |
| 1303 | } |
| 1304 | |
| 1305 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1306 | |
| 1307 | Twine VPlanPrinter::getUID(const VPBlockBase *Block) { |
| 1308 | return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N" ) + |
| 1309 | Twine(getOrCreateBID(Block)); |
| 1310 | } |
| 1311 | |
| 1312 | Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { |
| 1313 | const std::string &Name = Block->getName(); |
| 1314 | if (!Name.empty()) |
| 1315 | return Name; |
| 1316 | return "VPB" + Twine(getOrCreateBID(Block)); |
| 1317 | } |
| 1318 | |
| 1319 | void VPlanPrinter::dump() { |
| 1320 | Depth = 1; |
| 1321 | bumpIndent(0); |
| 1322 | OS << "digraph VPlan {\n" ; |
| 1323 | OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan" ; |
| 1324 | if (!Plan.getName().empty()) |
| 1325 | OS << "\\n" << DOT::EscapeString(Plan.getName()); |
| 1326 | |
| 1327 | { |
| 1328 | // Print live-ins. |
| 1329 | std::string Str; |
| 1330 | raw_string_ostream SS(Str); |
| 1331 | Plan.printLiveIns(SS); |
| 1332 | SmallVector<StringRef, 0> Lines; |
| 1333 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
| 1334 | for (auto Line : Lines) |
| 1335 | OS << DOT::EscapeString(Line.str()) << "\\n" ; |
| 1336 | } |
| 1337 | |
| 1338 | OS << "\"]\n" ; |
| 1339 | OS << "node [shape=rect, fontname=Courier, fontsize=30]\n" ; |
| 1340 | OS << "edge [fontname=Courier, fontsize=30]\n" ; |
| 1341 | OS << "compound=true\n" ; |
| 1342 | |
| 1343 | for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) |
| 1344 | dumpBlock(Block); |
| 1345 | |
| 1346 | OS << "}\n" ; |
| 1347 | } |
| 1348 | |
| 1349 | void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { |
| 1350 | if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) |
| 1351 | dumpBasicBlock(BasicBlock); |
| 1352 | else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| 1353 | dumpRegion(Region); |
| 1354 | else |
| 1355 | llvm_unreachable("Unsupported kind of VPBlock." ); |
| 1356 | } |
| 1357 | |
| 1358 | void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, |
| 1359 | bool Hidden, const Twine &Label) { |
| 1360 | // Due to "dot" we print an edge between two regions as an edge between the |
| 1361 | // exiting basic block and the entry basic of the respective regions. |
| 1362 | const VPBlockBase *Tail = From->getExitingBasicBlock(); |
| 1363 | const VPBlockBase *Head = To->getEntryBasicBlock(); |
| 1364 | OS << Indent << getUID(Tail) << " -> " << getUID(Head); |
| 1365 | OS << " [ label=\"" << Label << '\"'; |
| 1366 | if (Tail != From) |
| 1367 | OS << " ltail=" << getUID(From); |
| 1368 | if (Head != To) |
| 1369 | OS << " lhead=" << getUID(To); |
| 1370 | if (Hidden) |
| 1371 | OS << "; splines=none" ; |
| 1372 | OS << "]\n" ; |
| 1373 | } |
| 1374 | |
| 1375 | void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { |
| 1376 | auto &Successors = Block->getSuccessors(); |
| 1377 | if (Successors.size() == 1) |
| 1378 | drawEdge(Block, Successors.front(), false, "" ); |
| 1379 | else if (Successors.size() == 2) { |
| 1380 | drawEdge(Block, Successors.front(), false, "T" ); |
| 1381 | drawEdge(Block, Successors.back(), false, "F" ); |
| 1382 | } else { |
| 1383 | unsigned SuccessorNumber = 0; |
| 1384 | for (auto *Successor : Successors) |
| 1385 | drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { |
| 1390 | // Implement dot-formatted dump by performing plain-text dump into the |
| 1391 | // temporary storage followed by some post-processing. |
| 1392 | OS << Indent << getUID(BasicBlock) << " [label =\n" ; |
| 1393 | bumpIndent(1); |
| 1394 | std::string Str; |
| 1395 | raw_string_ostream SS(Str); |
| 1396 | // Use no indentation as we need to wrap the lines into quotes ourselves. |
| 1397 | BasicBlock->print(SS, "" , SlotTracker); |
| 1398 | |
| 1399 | // We need to process each line of the output separately, so split |
| 1400 | // single-string plain-text dump. |
| 1401 | SmallVector<StringRef, 0> Lines; |
| 1402 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
| 1403 | |
| 1404 | auto EmitLine = [&](StringRef Line, StringRef Suffix) { |
| 1405 | OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; |
| 1406 | }; |
| 1407 | |
| 1408 | // Don't need the "+" after the last line. |
| 1409 | for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) |
| 1410 | EmitLine(Line, " +\n" ); |
| 1411 | EmitLine(Lines.back(), "\n" ); |
| 1412 | |
| 1413 | bumpIndent(-1); |
| 1414 | OS << Indent << "]\n" ; |
| 1415 | |
| 1416 | dumpEdges(BasicBlock); |
| 1417 | } |
| 1418 | |
| 1419 | void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { |
| 1420 | OS << Indent << "subgraph " << getUID(Region) << " {\n" ; |
| 1421 | bumpIndent(1); |
| 1422 | OS << Indent << "fontname=Courier\n" |
| 1423 | << Indent << "label=\"" |
| 1424 | << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> " ) |
| 1425 | << DOT::EscapeString(Region->getName()) << "\"\n" ; |
| 1426 | // Dump the blocks of the region. |
| 1427 | assert(Region->getEntry() && "Region contains no inner blocks." ); |
| 1428 | for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) |
| 1429 | dumpBlock(Block); |
| 1430 | bumpIndent(-1); |
| 1431 | OS << Indent << "}\n" ; |
| 1432 | dumpEdges(Region); |
| 1433 | } |
| 1434 | |
| 1435 | #endif |
| 1436 | |
| 1437 | /// Returns true if there is a vector loop region and \p VPV is defined in a |
| 1438 | /// loop region. |
| 1439 | static bool isDefinedInsideLoopRegions(const VPValue *VPV) { |
| 1440 | const VPRecipeBase *DefR = VPV->getDefiningRecipe(); |
| 1441 | return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() || |
| 1442 | DefR->getParent()->getEnclosingLoopRegion()); |
| 1443 | } |
| 1444 | |
| 1445 | bool VPValue::isDefinedOutsideLoopRegions() const { |
| 1446 | return !isDefinedInsideLoopRegions(VPV: this); |
| 1447 | } |
| 1448 | void VPValue::replaceAllUsesWith(VPValue *New) { |
| 1449 | replaceUsesWithIf(New, ShouldReplace: [](VPUser &, unsigned) { return true; }); |
| 1450 | } |
| 1451 | |
| 1452 | void VPValue::replaceUsesWithIf( |
| 1453 | VPValue *New, |
| 1454 | llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { |
| 1455 | // Note that this early exit is required for correctness; the implementation |
| 1456 | // below relies on the number of users for this VPValue to decrease, which |
| 1457 | // isn't the case if this == New. |
| 1458 | if (this == New) |
| 1459 | return; |
| 1460 | |
| 1461 | for (unsigned J = 0; J < getNumUsers();) { |
| 1462 | VPUser *User = Users[J]; |
| 1463 | bool RemovedUser = false; |
| 1464 | for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { |
| 1465 | if (User->getOperand(N: I) != this || !ShouldReplace(*User, I)) |
| 1466 | continue; |
| 1467 | |
| 1468 | RemovedUser = true; |
| 1469 | User->setOperand(I, New); |
| 1470 | } |
| 1471 | // If a user got removed after updating the current user, the next user to |
| 1472 | // update will be moved to the current position, so we only need to |
| 1473 | // increment the index if the number of users did not change. |
| 1474 | if (!RemovedUser) |
| 1475 | J++; |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | void VPUser::replaceUsesOfWith(VPValue *From, VPValue *To) { |
| 1480 | for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) { |
| 1481 | if (getOperand(N: Idx) == From) |
| 1482 | setOperand(I: Idx, New: To); |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1487 | void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { |
| 1488 | OS << Tracker.getOrCreateName(this); |
| 1489 | } |
| 1490 | |
| 1491 | void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { |
| 1492 | interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { |
| 1493 | Op->printAsOperand(O, SlotTracker); |
| 1494 | }); |
| 1495 | } |
| 1496 | #endif |
| 1497 | |
| 1498 | void VPSlotTracker::assignName(const VPValue *V) { |
| 1499 | assert(!VPValue2Name.contains(V) && "VPValue already has a name!" ); |
| 1500 | auto *UV = V->getUnderlyingValue(); |
| 1501 | auto *VPI = dyn_cast_or_null<VPInstruction>(Val: V->getDefiningRecipe()); |
| 1502 | if (!UV && !(VPI && !VPI->getName().empty())) { |
| 1503 | VPValue2Name[V] = (Twine("vp<%" ) + Twine(NextSlot) + ">" ).str(); |
| 1504 | NextSlot++; |
| 1505 | return; |
| 1506 | } |
| 1507 | |
| 1508 | // Use the name of the underlying Value, wrapped in "ir<>", and versioned by |
| 1509 | // appending ".Number" to the name if there are multiple uses. |
| 1510 | std::string Name; |
| 1511 | if (UV) |
| 1512 | Name = getName(V: UV); |
| 1513 | else |
| 1514 | Name = VPI->getName(); |
| 1515 | |
| 1516 | assert(!Name.empty() && "Name cannot be empty." ); |
| 1517 | StringRef Prefix = UV ? "ir<" : "vp<%" ; |
| 1518 | std::string BaseName = (Twine(Prefix) + Name + Twine(">" )).str(); |
| 1519 | |
| 1520 | // First assign the base name for V. |
| 1521 | const auto &[A, _] = VPValue2Name.insert(KV: {V, BaseName}); |
| 1522 | // Integer or FP constants with different types will result in he same string |
| 1523 | // due to stripping types. |
| 1524 | if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(Val: UV)) |
| 1525 | return; |
| 1526 | |
| 1527 | // If it is already used by C > 0 other VPValues, increase the version counter |
| 1528 | // C and use it for V. |
| 1529 | const auto &[C, UseInserted] = BaseName2Version.insert(KV: {BaseName, 0}); |
| 1530 | if (!UseInserted) { |
| 1531 | C->second++; |
| 1532 | A->second = (BaseName + Twine("." ) + Twine(C->second)).str(); |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | void VPSlotTracker::assignNames(const VPlan &Plan) { |
| 1537 | if (Plan.VF.getNumUsers() > 0) |
| 1538 | assignName(V: &Plan.VF); |
| 1539 | if (Plan.VFxUF.getNumUsers() > 0) |
| 1540 | assignName(V: &Plan.VFxUF); |
| 1541 | assignName(V: &Plan.VectorTripCount); |
| 1542 | if (Plan.BackedgeTakenCount) |
| 1543 | assignName(V: Plan.BackedgeTakenCount); |
| 1544 | for (VPValue *LI : Plan.getLiveIns()) |
| 1545 | assignName(V: LI); |
| 1546 | |
| 1547 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> |
| 1548 | RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); |
| 1549 | for (const VPBasicBlock *VPBB : |
| 1550 | VPBlockUtils::blocksOnly<const VPBasicBlock>(Range: RPOT)) |
| 1551 | assignNames(VPBB); |
| 1552 | } |
| 1553 | |
| 1554 | void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { |
| 1555 | for (const VPRecipeBase &Recipe : *VPBB) |
| 1556 | for (VPValue *Def : Recipe.definedValues()) |
| 1557 | assignName(V: Def); |
| 1558 | } |
| 1559 | |
| 1560 | std::string VPSlotTracker::getName(const Value *V) { |
| 1561 | std::string Name; |
| 1562 | raw_string_ostream S(Name); |
| 1563 | if (V->hasName() || !isa<Instruction>(Val: V)) { |
| 1564 | V->printAsOperand(O&: S, PrintType: false); |
| 1565 | return Name; |
| 1566 | } |
| 1567 | |
| 1568 | if (!MST) { |
| 1569 | // Lazily create the ModuleSlotTracker when we first hit an unnamed |
| 1570 | // instruction. |
| 1571 | auto *I = cast<Instruction>(Val: V); |
| 1572 | // This check is required to support unit tests with incomplete IR. |
| 1573 | if (I->getParent()) { |
| 1574 | MST = std::make_unique<ModuleSlotTracker>(args: I->getModule()); |
| 1575 | MST->incorporateFunction(F: *I->getFunction()); |
| 1576 | } else { |
| 1577 | MST = std::make_unique<ModuleSlotTracker>(args: nullptr); |
| 1578 | } |
| 1579 | } |
| 1580 | V->printAsOperand(O&: S, PrintType: false, MST&: *MST); |
| 1581 | return Name; |
| 1582 | } |
| 1583 | |
| 1584 | std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { |
| 1585 | std::string Name = VPValue2Name.lookup(Val: V); |
| 1586 | if (!Name.empty()) |
| 1587 | return Name; |
| 1588 | |
| 1589 | // If no name was assigned, no VPlan was provided when creating the slot |
| 1590 | // tracker or it is not reachable from the provided VPlan. This can happen, |
| 1591 | // e.g. when trying to print a recipe that has not been inserted into a VPlan |
| 1592 | // in a debugger. |
| 1593 | // TODO: Update VPSlotTracker constructor to assign names to recipes & |
| 1594 | // VPValues not associated with a VPlan, instead of constructing names ad-hoc |
| 1595 | // here. |
| 1596 | const VPRecipeBase *DefR = V->getDefiningRecipe(); |
| 1597 | (void)DefR; |
| 1598 | assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && |
| 1599 | "VPValue defined by a recipe in a VPlan?" ); |
| 1600 | |
| 1601 | // Use the underlying value's name, if there is one. |
| 1602 | if (auto *UV = V->getUnderlyingValue()) { |
| 1603 | std::string Name; |
| 1604 | raw_string_ostream S(Name); |
| 1605 | UV->printAsOperand(O&: S, PrintType: false); |
| 1606 | return (Twine("ir<" ) + Name + ">" ).str(); |
| 1607 | } |
| 1608 | |
| 1609 | return "<badref>" ; |
| 1610 | } |
| 1611 | |
| 1612 | bool LoopVectorizationPlanner::getDecisionAndClampRange( |
| 1613 | const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { |
| 1614 | assert(!Range.isEmpty() && "Trying to test an empty VF range." ); |
| 1615 | bool PredicateAtRangeStart = Predicate(Range.Start); |
| 1616 | |
| 1617 | for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) |
| 1618 | if (Predicate(TmpVF) != PredicateAtRangeStart) { |
| 1619 | Range.End = TmpVF; |
| 1620 | break; |
| 1621 | } |
| 1622 | |
| 1623 | return PredicateAtRangeStart; |
| 1624 | } |
| 1625 | |
| 1626 | /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, |
| 1627 | /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range |
| 1628 | /// of VF's starting at a given VF and extending it as much as possible. Each |
| 1629 | /// vectorization decision can potentially shorten this sub-range during |
| 1630 | /// buildVPlan(). |
| 1631 | void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, |
| 1632 | ElementCount MaxVF) { |
| 1633 | auto MaxVFTimes2 = MaxVF * 2; |
| 1634 | for (ElementCount VF = MinVF; ElementCount::isKnownLT(LHS: VF, RHS: MaxVFTimes2);) { |
| 1635 | VFRange SubRange = {VF, MaxVFTimes2}; |
| 1636 | if (auto Plan = tryToBuildVPlan(Range&: SubRange)) { |
| 1637 | VPlanTransforms::optimize(Plan&: *Plan); |
| 1638 | // Update the name of the latch of the top-level vector loop region region |
| 1639 | // after optimizations which includes block folding. |
| 1640 | Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch" ); |
| 1641 | VPlans.push_back(Elt: std::move(Plan)); |
| 1642 | } |
| 1643 | VF = SubRange.End; |
| 1644 | } |
| 1645 | } |
| 1646 | |
| 1647 | VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { |
| 1648 | assert(count_if(VPlans, |
| 1649 | [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == |
| 1650 | 1 && |
| 1651 | "Multiple VPlans for VF." ); |
| 1652 | |
| 1653 | for (const VPlanPtr &Plan : VPlans) { |
| 1654 | if (Plan->hasVF(VF)) |
| 1655 | return *Plan.get(); |
| 1656 | } |
| 1657 | llvm_unreachable("No plan found!" ); |
| 1658 | } |
| 1659 | |
| 1660 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1661 | void LoopVectorizationPlanner::printPlans(raw_ostream &O) { |
| 1662 | if (VPlans.empty()) { |
| 1663 | O << "LV: No VPlans built.\n" ; |
| 1664 | return; |
| 1665 | } |
| 1666 | for (const auto &Plan : VPlans) |
| 1667 | if (PrintVPlansInDotFormat) |
| 1668 | Plan->printDOT(O); |
| 1669 | else |
| 1670 | Plan->print(O); |
| 1671 | } |
| 1672 | #endif |
| 1673 | |
| 1674 | TargetTransformInfo::OperandValueInfo |
| 1675 | VPCostContext::getOperandInfo(VPValue *V) const { |
| 1676 | if (!V->isLiveIn()) |
| 1677 | return {}; |
| 1678 | |
| 1679 | return TTI::getOperandInfo(V: V->getLiveInIRValue()); |
| 1680 | } |
| 1681 | |