1 | //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This is the LLVM vectorization plan. It represents a candidate for |
11 | /// vectorization, allowing to plan and optimize how to vectorize a given loop |
12 | /// before generating LLVM-IR. |
13 | /// The vectorizer uses vectorization plans to estimate the costs of potential |
14 | /// candidates and if profitable to execute the desired plan, generating vector |
15 | /// LLVM-IR code. |
16 | /// |
17 | //===----------------------------------------------------------------------===// |
18 | |
19 | #include "VPlan.h" |
20 | #include "LoopVectorizationPlanner.h" |
21 | #include "VPlanCFG.h" |
22 | #include "VPlanDominatorTree.h" |
23 | #include "VPlanHelpers.h" |
24 | #include "VPlanPatternMatch.h" |
25 | #include "VPlanTransforms.h" |
26 | #include "VPlanUtils.h" |
27 | #include "llvm/ADT/PostOrderIterator.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/SmallVector.h" |
30 | #include "llvm/ADT/StringExtras.h" |
31 | #include "llvm/ADT/Twine.h" |
32 | #include "llvm/Analysis/DomTreeUpdater.h" |
33 | #include "llvm/Analysis/LoopInfo.h" |
34 | #include "llvm/IR/BasicBlock.h" |
35 | #include "llvm/IR/CFG.h" |
36 | #include "llvm/IR/IRBuilder.h" |
37 | #include "llvm/IR/Instruction.h" |
38 | #include "llvm/IR/Instructions.h" |
39 | #include "llvm/IR/Type.h" |
40 | #include "llvm/IR/Value.h" |
41 | #include "llvm/Support/Casting.h" |
42 | #include "llvm/Support/CommandLine.h" |
43 | #include "llvm/Support/Debug.h" |
44 | #include "llvm/Support/GraphWriter.h" |
45 | #include "llvm/Support/raw_ostream.h" |
46 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
47 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
48 | #include <cassert> |
49 | #include <string> |
50 | |
51 | using namespace llvm; |
52 | using namespace llvm::VPlanPatternMatch; |
53 | |
54 | namespace llvm { |
55 | extern cl::opt<bool> EnableVPlanNativePath; |
56 | } |
57 | |
58 | extern cl::opt<unsigned> ForceTargetInstructionCost; |
59 | |
60 | static cl::opt<bool> PrintVPlansInDotFormat( |
61 | "vplan-print-in-dot-format" , cl::Hidden, |
62 | cl::desc("Use dot format instead of plain text when dumping VPlans" )); |
63 | |
64 | #define DEBUG_TYPE "loop-vectorize" |
65 | |
66 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
67 | raw_ostream &llvm::operator<<(raw_ostream &OS, const VPRecipeBase &R) { |
68 | const VPBasicBlock *Parent = R.getParent(); |
69 | VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr); |
70 | R.print(OS, "" , SlotTracker); |
71 | return OS; |
72 | } |
73 | #endif |
74 | |
75 | Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, |
76 | const ElementCount &VF) const { |
77 | switch (LaneKind) { |
78 | case VPLane::Kind::ScalableLast: |
79 | // Lane = RuntimeVF - VF.getKnownMinValue() + Lane |
80 | return Builder.CreateSub(LHS: getRuntimeVF(B&: Builder, Ty: Builder.getInt32Ty(), VF), |
81 | RHS: Builder.getInt32(C: VF.getKnownMinValue() - Lane)); |
82 | case VPLane::Kind::First: |
83 | return Builder.getInt32(C: Lane); |
84 | } |
85 | llvm_unreachable("Unknown lane kind" ); |
86 | } |
87 | |
88 | VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) |
89 | : SubclassID(SC), UnderlyingVal(UV), Def(Def) { |
90 | if (Def) |
91 | Def->addDefinedValue(V: this); |
92 | } |
93 | |
94 | VPValue::~VPValue() { |
95 | assert(Users.empty() && "trying to delete a VPValue with remaining users" ); |
96 | if (Def) |
97 | Def->removeDefinedValue(V: this); |
98 | } |
99 | |
100 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
101 | void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { |
102 | if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) |
103 | R->print(OS, "" , SlotTracker); |
104 | else |
105 | printAsOperand(OS, SlotTracker); |
106 | } |
107 | |
108 | void VPValue::dump() const { |
109 | const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); |
110 | VPSlotTracker SlotTracker( |
111 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
112 | print(dbgs(), SlotTracker); |
113 | dbgs() << "\n" ; |
114 | } |
115 | |
116 | void VPDef::dump() const { |
117 | const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); |
118 | VPSlotTracker SlotTracker( |
119 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
120 | print(dbgs(), "" , SlotTracker); |
121 | dbgs() << "\n" ; |
122 | } |
123 | #endif |
124 | |
125 | VPRecipeBase *VPValue::getDefiningRecipe() { |
126 | return cast_or_null<VPRecipeBase>(Val: Def); |
127 | } |
128 | |
129 | const VPRecipeBase *VPValue::getDefiningRecipe() const { |
130 | return cast_or_null<VPRecipeBase>(Val: Def); |
131 | } |
132 | |
133 | // Get the top-most entry block of \p Start. This is the entry block of the |
134 | // containing VPlan. This function is templated to support both const and non-const blocks |
135 | template <typename T> static T *getPlanEntry(T *Start) { |
136 | T *Next = Start; |
137 | T *Current = Start; |
138 | while ((Next = Next->getParent())) |
139 | Current = Next; |
140 | |
141 | SmallSetVector<T *, 8> WorkList; |
142 | WorkList.insert(Current); |
143 | |
144 | for (unsigned i = 0; i < WorkList.size(); i++) { |
145 | T *Current = WorkList[i]; |
146 | if (Current->getNumPredecessors() == 0) |
147 | return Current; |
148 | auto &Predecessors = Current->getPredecessors(); |
149 | WorkList.insert_range(Predecessors); |
150 | } |
151 | |
152 | llvm_unreachable("VPlan without any entry node without predecessors" ); |
153 | } |
154 | |
155 | VPlan *VPBlockBase::getPlan() { return getPlanEntry(Start: this)->Plan; } |
156 | |
157 | const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(Start: this)->Plan; } |
158 | |
159 | /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. |
160 | const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { |
161 | const VPBlockBase *Block = this; |
162 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
163 | Block = Region->getEntry(); |
164 | return cast<VPBasicBlock>(Val: Block); |
165 | } |
166 | |
167 | VPBasicBlock *VPBlockBase::getEntryBasicBlock() { |
168 | VPBlockBase *Block = this; |
169 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
170 | Block = Region->getEntry(); |
171 | return cast<VPBasicBlock>(Val: Block); |
172 | } |
173 | |
174 | void VPBlockBase::setPlan(VPlan *ParentPlan) { |
175 | assert(ParentPlan->getEntry() == this && "Can only set plan on its entry." ); |
176 | Plan = ParentPlan; |
177 | } |
178 | |
179 | /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. |
180 | const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { |
181 | const VPBlockBase *Block = this; |
182 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
183 | Block = Region->getExiting(); |
184 | return cast<VPBasicBlock>(Val: Block); |
185 | } |
186 | |
187 | VPBasicBlock *VPBlockBase::getExitingBasicBlock() { |
188 | VPBlockBase *Block = this; |
189 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
190 | Block = Region->getExiting(); |
191 | return cast<VPBasicBlock>(Val: Block); |
192 | } |
193 | |
194 | VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { |
195 | if (!Successors.empty() || !Parent) |
196 | return this; |
197 | assert(Parent->getExiting() == this && |
198 | "Block w/o successors not the exiting block of its parent." ); |
199 | return Parent->getEnclosingBlockWithSuccessors(); |
200 | } |
201 | |
202 | VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { |
203 | if (!Predecessors.empty() || !Parent) |
204 | return this; |
205 | assert(Parent->getEntry() == this && |
206 | "Block w/o predecessors not the entry of its parent." ); |
207 | return Parent->getEnclosingBlockWithPredecessors(); |
208 | } |
209 | |
210 | bool VPBlockUtils::(const VPBlockBase *VPB, |
211 | const VPDominatorTree &VPDT) { |
212 | auto *VPBB = dyn_cast<VPBasicBlock>(Val: VPB); |
213 | if (!VPBB) |
214 | return false; |
215 | |
216 | // If VPBB is in a region R, VPBB is a loop header if R is a loop region with |
217 | // VPBB as its entry, i.e., free of predecessors. |
218 | if (auto *R = VPBB->getParent()) |
219 | return !R->isReplicator() && VPBB->getNumPredecessors() == 0; |
220 | |
221 | // A header dominates its second predecessor (the latch), with the other |
222 | // predecessor being the preheader |
223 | return VPB->getPredecessors().size() == 2 && |
224 | VPDT.dominates(A: VPB, B: VPB->getPredecessors()[1]); |
225 | } |
226 | |
227 | bool VPBlockUtils::isLatch(const VPBlockBase *VPB, |
228 | const VPDominatorTree &VPDT) { |
229 | // A latch has a header as its second successor, with its other successor |
230 | // leaving the loop. A preheader OTOH has a header as its first (and only) |
231 | // successor. |
232 | return VPB->getNumSuccessors() == 2 && |
233 | VPBlockUtils::isHeader(VPB: VPB->getSuccessors()[1], VPDT); |
234 | } |
235 | |
236 | VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { |
237 | iterator It = begin(); |
238 | while (It != end() && It->isPhi()) |
239 | It++; |
240 | return It; |
241 | } |
242 | |
243 | VPTransformState::VPTransformState(const TargetTransformInfo *TTI, |
244 | ElementCount VF, LoopInfo *LI, |
245 | DominatorTree *DT, AssumptionCache *AC, |
246 | IRBuilderBase &Builder, VPlan *Plan, |
247 | Loop *CurrentParentLoop, Type *CanonicalIVTy) |
248 | : TTI(TTI), VF(VF), CFG(DT), LI(LI), AC(AC), Builder(Builder), Plan(Plan), |
249 | CurrentParentLoop(CurrentParentLoop), TypeAnalysis(CanonicalIVTy), |
250 | VPDT(*Plan) {} |
251 | |
252 | Value *VPTransformState::get(const VPValue *Def, const VPLane &Lane) { |
253 | if (Def->isLiveIn()) |
254 | return Def->getLiveInIRValue(); |
255 | |
256 | if (hasScalarValue(Def, Lane)) |
257 | return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; |
258 | |
259 | if (!Lane.isFirstLane() && vputils::isSingleScalar(VPV: Def) && |
260 | hasScalarValue(Def, Lane: VPLane::getFirstLane())) { |
261 | return Data.VPV2Scalars[Def][0]; |
262 | } |
263 | |
264 | // Look through BuildVector to avoid redundant extracts. |
265 | // TODO: Remove once replicate regions are unrolled explicitly. |
266 | if (Lane.getKind() == VPLane::Kind::First && match(V: Def, P: m_BuildVector())) { |
267 | auto *BuildVector = cast<VPInstruction>(Val: Def); |
268 | return get(Def: BuildVector->getOperand(N: Lane.getKnownLane()), IsScalar: true); |
269 | } |
270 | |
271 | assert(hasVectorValue(Def)); |
272 | auto *VecPart = Data.VPV2Vector[Def]; |
273 | if (!VecPart->getType()->isVectorTy()) { |
274 | assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar" ); |
275 | return VecPart; |
276 | } |
277 | // TODO: Cache created scalar values. |
278 | Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); |
279 | auto * = Builder.CreateExtractElement(Vec: VecPart, Idx: LaneV); |
280 | // set(Def, Extract, Instance); |
281 | return Extract; |
282 | } |
283 | |
284 | Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) { |
285 | if (NeedsScalar) { |
286 | assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || |
287 | !vputils::onlyFirstLaneUsed(Def) || |
288 | (hasScalarValue(Def, VPLane(0)) && |
289 | Data.VPV2Scalars[Def].size() == 1)) && |
290 | "Trying to access a single scalar per part but has multiple scalars " |
291 | "per part." ); |
292 | return get(Def, Lane: VPLane(0)); |
293 | } |
294 | |
295 | // If Values have been set for this Def return the one relevant for \p Part. |
296 | if (hasVectorValue(Def)) |
297 | return Data.VPV2Vector[Def]; |
298 | |
299 | auto GetBroadcastInstrs = [this, Def](Value *V) { |
300 | bool SafeToHoist = |
301 | !Def->hasDefiningRecipe() || |
302 | VPDT.properlyDominates(A: Def->getDefiningRecipe()->getParent(), |
303 | B: Plan->getVectorPreheader()); |
304 | |
305 | if (VF.isScalar()) |
306 | return V; |
307 | // Place the code for broadcasting invariant variables in the new preheader. |
308 | IRBuilder<>::InsertPointGuard Guard(Builder); |
309 | if (SafeToHoist) { |
310 | BasicBlock * = |
311 | CFG.VPBB2IRBB[Plan->getVectorPreheader()]; |
312 | if (LoopVectorPreHeader) |
313 | Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); |
314 | } |
315 | |
316 | // Place the code for broadcasting invariant variables in the new preheader. |
317 | // Broadcast the scalar into all locations in the vector. |
318 | Value *Shuf = Builder.CreateVectorSplat(EC: VF, V, Name: "broadcast" ); |
319 | |
320 | return Shuf; |
321 | }; |
322 | |
323 | if (!hasScalarValue(Def, Lane: {0})) { |
324 | assert(Def->isLiveIn() && "expected a live-in" ); |
325 | Value *IRV = Def->getLiveInIRValue(); |
326 | Value *B = GetBroadcastInstrs(IRV); |
327 | set(Def, V: B); |
328 | return B; |
329 | } |
330 | |
331 | Value *ScalarValue = get(Def, Lane: VPLane(0)); |
332 | // If we aren't vectorizing, we can just copy the scalar map values over |
333 | // to the vector map. |
334 | if (VF.isScalar()) { |
335 | set(Def, V: ScalarValue); |
336 | return ScalarValue; |
337 | } |
338 | |
339 | bool IsSingleScalar = vputils::isSingleScalar(VPV: Def); |
340 | |
341 | VPLane LastLane(IsSingleScalar ? 0 : VF.getFixedValue() - 1); |
342 | // Check if there is a scalar value for the selected lane. |
343 | if (!hasScalarValue(Def, Lane: LastLane)) { |
344 | // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and |
345 | // VPExpandSCEVRecipes can also be a single scalar. |
346 | assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe, |
347 | VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && |
348 | "unexpected recipe found to be invariant" ); |
349 | IsSingleScalar = true; |
350 | LastLane = 0; |
351 | } |
352 | |
353 | auto *LastInst = cast<Instruction>(Val: get(Def, Lane: LastLane)); |
354 | // Set the insert point after the last scalarized instruction or after the |
355 | // last PHI, if LastInst is a PHI. This ensures the insertelement sequence |
356 | // will directly follow the scalar definitions. |
357 | auto OldIP = Builder.saveIP(); |
358 | auto NewIP = isa<PHINode>(Val: LastInst) |
359 | ? LastInst->getParent()->getFirstNonPHIIt() |
360 | : std::next(x: BasicBlock::iterator(LastInst)); |
361 | Builder.SetInsertPoint(&*NewIP); |
362 | |
363 | // However, if we are vectorizing, we need to construct the vector values. |
364 | // If the value is known to be uniform after vectorization, we can just |
365 | // broadcast the scalar value corresponding to lane zero. Otherwise, we |
366 | // construct the vector values using insertelement instructions. Since the |
367 | // resulting vectors are stored in State, we will only generate the |
368 | // insertelements once. |
369 | Value *VectorValue = nullptr; |
370 | if (IsSingleScalar) { |
371 | VectorValue = GetBroadcastInstrs(ScalarValue); |
372 | set(Def, V: VectorValue); |
373 | } else { |
374 | assert(!VF.isScalable() && "VF is assumed to be non scalable." ); |
375 | // Initialize packing with insertelements to start from poison. |
376 | VectorValue = PoisonValue::get(T: toVectorizedTy(Ty: LastInst->getType(), EC: VF)); |
377 | for (unsigned Lane = 0; Lane < VF.getFixedValue(); ++Lane) |
378 | VectorValue = packScalarIntoVectorizedValue(Def, WideValue: VectorValue, Lane); |
379 | set(Def, V: VectorValue); |
380 | } |
381 | Builder.restoreIP(IP: OldIP); |
382 | return VectorValue; |
383 | } |
384 | |
385 | void VPTransformState::setDebugLocFrom(DebugLoc DL) { |
386 | const DILocation *DIL = DL; |
387 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
388 | // factors to the discriminators. |
389 | if (DIL && |
390 | Builder.GetInsertBlock() |
391 | ->getParent() |
392 | ->shouldEmitDebugInfoForProfiling() && |
393 | !EnableFSDiscriminator) { |
394 | // FIXME: For scalable vectors, assume vscale=1. |
395 | unsigned UF = Plan->getUF(); |
396 | auto NewDIL = |
397 | DIL->cloneByMultiplyingDuplicationFactor(DF: UF * VF.getKnownMinValue()); |
398 | if (NewDIL) |
399 | Builder.SetCurrentDebugLocation(*NewDIL); |
400 | else |
401 | LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " |
402 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
403 | } else |
404 | Builder.SetCurrentDebugLocation(DL); |
405 | } |
406 | |
407 | Value *VPTransformState::packScalarIntoVectorizedValue(const VPValue *Def, |
408 | Value *WideValue, |
409 | const VPLane &Lane) { |
410 | Value *ScalarInst = get(Def, Lane); |
411 | Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF); |
412 | if (auto *StructTy = dyn_cast<StructType>(Val: WideValue->getType())) { |
413 | // We must handle each element of a vectorized struct type. |
414 | for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) { |
415 | Value *ScalarValue = Builder.CreateExtractValue(Agg: ScalarInst, Idxs: I); |
416 | Value *VectorValue = Builder.CreateExtractValue(Agg: WideValue, Idxs: I); |
417 | VectorValue = |
418 | Builder.CreateInsertElement(Vec: VectorValue, NewElt: ScalarValue, Idx: LaneExpr); |
419 | WideValue = Builder.CreateInsertValue(Agg: WideValue, Val: VectorValue, Idxs: I); |
420 | } |
421 | } else { |
422 | WideValue = Builder.CreateInsertElement(Vec: WideValue, NewElt: ScalarInst, Idx: LaneExpr); |
423 | } |
424 | return WideValue; |
425 | } |
426 | |
427 | BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) { |
428 | auto &CFG = State.CFG; |
429 | // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. |
430 | // Pred stands for Predessor. Prev stands for Previous - last visited/created. |
431 | BasicBlock *PrevBB = CFG.PrevBB; |
432 | BasicBlock *NewBB = BasicBlock::Create(Context&: PrevBB->getContext(), Name: getName(), |
433 | Parent: PrevBB->getParent(), InsertBefore: CFG.ExitBB); |
434 | LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); |
435 | |
436 | return NewBB; |
437 | } |
438 | |
439 | void VPBasicBlock::connectToPredecessors(VPTransformState &State) { |
440 | auto &CFG = State.CFG; |
441 | BasicBlock *NewBB = CFG.VPBB2IRBB[this]; |
442 | |
443 | // Register NewBB in its loop. In innermost loops its the same for all |
444 | // BB's. |
445 | Loop *ParentLoop = State.CurrentParentLoop; |
446 | // If this block has a sole successor that is an exit block or is an exit |
447 | // block itself then it needs adding to the same parent loop as the exit |
448 | // block. |
449 | VPBlockBase *SuccOrExitVPB = getSingleSuccessor(); |
450 | SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this; |
451 | if (State.Plan->isExitBlock(VPBB: SuccOrExitVPB)) { |
452 | ParentLoop = State.LI->getLoopFor( |
453 | BB: cast<VPIRBasicBlock>(Val: SuccOrExitVPB)->getIRBasicBlock()); |
454 | } |
455 | |
456 | if (ParentLoop && !State.LI->getLoopFor(BB: NewBB)) |
457 | ParentLoop->addBasicBlockToLoop(NewBB, LI&: *State.LI); |
458 | |
459 | SmallVector<VPBlockBase *> Preds; |
460 | if (VPBlockUtils::isHeader(VPB: this, VPDT: State.VPDT)) { |
461 | // There's no block for the latch yet, connect to the preheader only. |
462 | Preds = {getPredecessors()[0]}; |
463 | } else { |
464 | Preds = to_vector(Range&: getPredecessors()); |
465 | } |
466 | |
467 | // Hook up the new basic block to its predecessors. |
468 | for (VPBlockBase *PredVPBlock : Preds) { |
469 | VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); |
470 | auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); |
471 | assert(CFG.VPBB2IRBB.contains(PredVPBB) && |
472 | "Predecessor basic-block not found building successor." ); |
473 | BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; |
474 | auto *PredBBTerminator = PredBB->getTerminator(); |
475 | LLVM_DEBUG(dbgs() << "LV: draw edge from " << PredBB->getName() << '\n'); |
476 | |
477 | auto *TermBr = dyn_cast<BranchInst>(Val: PredBBTerminator); |
478 | if (isa<UnreachableInst>(Val: PredBBTerminator)) { |
479 | assert(PredVPSuccessors.size() == 1 && |
480 | "Predecessor ending w/o branch must have single successor." ); |
481 | DebugLoc DL = PredBBTerminator->getDebugLoc(); |
482 | PredBBTerminator->eraseFromParent(); |
483 | auto *Br = BranchInst::Create(IfTrue: NewBB, InsertBefore: PredBB); |
484 | Br->setDebugLoc(DL); |
485 | } else if (TermBr && !TermBr->isConditional()) { |
486 | TermBr->setSuccessor(idx: 0, NewSucc: NewBB); |
487 | } else { |
488 | // Set each forward successor here when it is created, excluding |
489 | // backedges. A backward successor is set when the branch is created. |
490 | unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; |
491 | assert((TermBr && (!TermBr->getSuccessor(idx) || |
492 | (isa<VPIRBasicBlock>(this) && |
493 | TermBr->getSuccessor(idx) == NewBB))) && |
494 | "Trying to reset an existing successor block." ); |
495 | TermBr->setSuccessor(idx, NewSucc: NewBB); |
496 | } |
497 | CFG.DTU.applyUpdates(Updates: {{DominatorTree::Insert, PredBB, NewBB}}); |
498 | } |
499 | } |
500 | |
501 | void VPIRBasicBlock::execute(VPTransformState *State) { |
502 | assert(getHierarchicalSuccessors().size() <= 2 && |
503 | "VPIRBasicBlock can have at most two successors at the moment!" ); |
504 | State->Builder.SetInsertPoint(IRBB->getTerminator()); |
505 | State->CFG.PrevBB = IRBB; |
506 | State->CFG.VPBB2IRBB[this] = IRBB; |
507 | executeRecipes(State, BB: IRBB); |
508 | // Create a branch instruction to terminate IRBB if one was not created yet |
509 | // and is needed. |
510 | if (getSingleSuccessor() && isa<UnreachableInst>(Val: IRBB->getTerminator())) { |
511 | auto *Br = State->Builder.CreateBr(Dest: IRBB); |
512 | Br->setOperand(i_nocapture: 0, Val_nocapture: nullptr); |
513 | IRBB->getTerminator()->eraseFromParent(); |
514 | } else { |
515 | assert( |
516 | (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && |
517 | "other blocks must be terminated by a branch" ); |
518 | } |
519 | |
520 | connectToPredecessors(State&: *State); |
521 | } |
522 | |
523 | VPIRBasicBlock *VPIRBasicBlock::clone() { |
524 | auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB); |
525 | for (VPRecipeBase &R : Recipes) |
526 | NewBlock->appendRecipe(Recipe: R.clone()); |
527 | return NewBlock; |
528 | } |
529 | |
530 | void VPBasicBlock::execute(VPTransformState *State) { |
531 | bool Replica = bool(State->Lane); |
532 | BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. |
533 | |
534 | if (VPBlockUtils::isHeader(VPB: this, VPDT: State->VPDT)) { |
535 | // Create and register the new vector loop. |
536 | Loop *PrevParentLoop = State->CurrentParentLoop; |
537 | State->CurrentParentLoop = State->LI->AllocateLoop(); |
538 | |
539 | // Insert the new loop into the loop nest and register the new basic blocks |
540 | // before calling any utilities such as SCEV that require valid LoopInfo. |
541 | if (PrevParentLoop) |
542 | PrevParentLoop->addChildLoop(NewChild: State->CurrentParentLoop); |
543 | else |
544 | State->LI->addTopLevelLoop(New: State->CurrentParentLoop); |
545 | } |
546 | |
547 | auto IsReplicateRegion = [](VPBlockBase *BB) { |
548 | auto *R = dyn_cast_or_null<VPRegionBlock>(Val: BB); |
549 | assert((!R || R->isReplicator()) && |
550 | "only replicate region blocks should remain" ); |
551 | return R; |
552 | }; |
553 | // 1. Create an IR basic block. |
554 | if ((Replica && this == getParent()->getEntry()) || |
555 | IsReplicateRegion(getSingleHierarchicalPredecessor())) { |
556 | // Reuse the previous basic block if the current VPBB is either |
557 | // * the entry to a replicate region, or |
558 | // * the exit of a replicate region. |
559 | State->CFG.VPBB2IRBB[this] = NewBB; |
560 | } else { |
561 | NewBB = createEmptyBasicBlock(State&: *State); |
562 | |
563 | State->Builder.SetInsertPoint(NewBB); |
564 | // Temporarily terminate with unreachable until CFG is rewired. |
565 | UnreachableInst *Terminator = State->Builder.CreateUnreachable(); |
566 | State->Builder.SetInsertPoint(Terminator); |
567 | |
568 | State->CFG.PrevBB = NewBB; |
569 | State->CFG.VPBB2IRBB[this] = NewBB; |
570 | connectToPredecessors(State&: *State); |
571 | } |
572 | |
573 | // 2. Fill the IR basic block with IR instructions. |
574 | executeRecipes(State, BB: NewBB); |
575 | |
576 | // If this block is a latch, update CurrentParentLoop. |
577 | if (VPBlockUtils::isLatch(VPB: this, VPDT: State->VPDT)) |
578 | State->CurrentParentLoop = State->CurrentParentLoop->getParentLoop(); |
579 | } |
580 | |
581 | VPBasicBlock *VPBasicBlock::clone() { |
582 | auto *NewBlock = getPlan()->createVPBasicBlock(Name: getName()); |
583 | for (VPRecipeBase &R : *this) |
584 | NewBlock->appendRecipe(Recipe: R.clone()); |
585 | return NewBlock; |
586 | } |
587 | |
588 | void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { |
589 | LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB: " << getName() |
590 | << " in BB: " << BB->getName() << '\n'); |
591 | |
592 | State->CFG.PrevVPBB = this; |
593 | |
594 | for (VPRecipeBase &Recipe : Recipes) { |
595 | State->setDebugLocFrom(Recipe.getDebugLoc()); |
596 | Recipe.execute(State&: *State); |
597 | } |
598 | |
599 | LLVM_DEBUG(dbgs() << "LV: filled BB: " << *BB); |
600 | } |
601 | |
602 | VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { |
603 | assert((SplitAt == end() || SplitAt->getParent() == this) && |
604 | "can only split at a position in the same block" ); |
605 | |
606 | // Create new empty block after the block to split. |
607 | auto *SplitBlock = getPlan()->createVPBasicBlock(Name: getName() + ".split" ); |
608 | VPBlockUtils::insertBlockAfter(NewBlock: SplitBlock, BlockPtr: this); |
609 | |
610 | // Finally, move the recipes starting at SplitAt to new block. |
611 | for (VPRecipeBase &ToMove : |
612 | make_early_inc_range(Range: make_range(x: SplitAt, y: this->end()))) |
613 | ToMove.moveBefore(BB&: *SplitBlock, I: SplitBlock->end()); |
614 | |
615 | return SplitBlock; |
616 | } |
617 | |
618 | /// Return the enclosing loop region for region \p P. The templated version is |
619 | /// used to support both const and non-const block arguments. |
620 | template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { |
621 | if (P && P->isReplicator()) { |
622 | P = P->getParent(); |
623 | // Multiple loop regions can be nested, but replicate regions can only be |
624 | // nested inside a loop region or must be outside any other region. |
625 | assert((!P || !P->isReplicator()) && "unexpected nested replicate regions" ); |
626 | } |
627 | return P; |
628 | } |
629 | |
630 | VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { |
631 | return getEnclosingLoopRegionForRegion(P: getParent()); |
632 | } |
633 | |
634 | const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { |
635 | return getEnclosingLoopRegionForRegion(P: getParent()); |
636 | } |
637 | |
638 | static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { |
639 | if (VPBB->empty()) { |
640 | assert( |
641 | VPBB->getNumSuccessors() < 2 && |
642 | "block with multiple successors doesn't have a recipe as terminator" ); |
643 | return false; |
644 | } |
645 | |
646 | const VPRecipeBase *R = &VPBB->back(); |
647 | bool IsSwitch = isa<VPInstruction>(Val: R) && |
648 | cast<VPInstruction>(Val: R)->getOpcode() == Instruction::Switch; |
649 | bool IsCondBranch = isa<VPBranchOnMaskRecipe>(Val: R) || |
650 | match(V: R, P: m_BranchOnCond(Op0: m_VPValue())) || |
651 | match(V: R, P: m_BranchOnCount(Op0: m_VPValue(), Op1: m_VPValue())); |
652 | (void)IsCondBranch; |
653 | (void)IsSwitch; |
654 | if (VPBB->getNumSuccessors() == 2 || |
655 | (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { |
656 | assert((IsCondBranch || IsSwitch) && |
657 | "block with multiple successors not terminated by " |
658 | "conditional branch nor switch recipe" ); |
659 | |
660 | return true; |
661 | } |
662 | |
663 | if (VPBB->getNumSuccessors() > 2) { |
664 | assert(IsSwitch && "block with more than 2 successors not terminated by " |
665 | "a switch recipe" ); |
666 | return true; |
667 | } |
668 | |
669 | assert( |
670 | !IsCondBranch && |
671 | "block with 0 or 1 successors terminated by conditional branch recipe" ); |
672 | return false; |
673 | } |
674 | |
675 | VPRecipeBase *VPBasicBlock::getTerminator() { |
676 | if (hasConditionalTerminator(VPBB: this)) |
677 | return &back(); |
678 | return nullptr; |
679 | } |
680 | |
681 | const VPRecipeBase *VPBasicBlock::getTerminator() const { |
682 | if (hasConditionalTerminator(VPBB: this)) |
683 | return &back(); |
684 | return nullptr; |
685 | } |
686 | |
687 | bool VPBasicBlock::isExiting() const { |
688 | return getParent() && getParent()->getExitingBasicBlock() == this; |
689 | } |
690 | |
691 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
692 | void VPBlockBase::print(raw_ostream &O) const { |
693 | VPSlotTracker SlotTracker(getPlan()); |
694 | print(O, "" , SlotTracker); |
695 | } |
696 | |
697 | void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { |
698 | if (getSuccessors().empty()) { |
699 | O << Indent << "No successors\n" ; |
700 | } else { |
701 | O << Indent << "Successor(s): " ; |
702 | ListSeparator LS; |
703 | for (auto *Succ : getSuccessors()) |
704 | O << LS << Succ->getName(); |
705 | O << '\n'; |
706 | } |
707 | } |
708 | |
709 | void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, |
710 | VPSlotTracker &SlotTracker) const { |
711 | O << Indent << getName() << ":\n" ; |
712 | |
713 | auto RecipeIndent = Indent + " " ; |
714 | for (const VPRecipeBase &Recipe : *this) { |
715 | Recipe.print(O, RecipeIndent, SlotTracker); |
716 | O << '\n'; |
717 | } |
718 | |
719 | printSuccessors(O, Indent); |
720 | } |
721 | #endif |
722 | |
723 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); |
724 | |
725 | // Clone the CFG for all nodes reachable from \p Entry, this includes cloning |
726 | // the blocks and their recipes. Operands of cloned recipes will NOT be updated. |
727 | // Remapping of operands must be done separately. Returns a pair with the new |
728 | // entry and exiting blocks of the cloned region. If \p Entry isn't part of a |
729 | // region, return nullptr for the exiting block. |
730 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { |
731 | DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; |
732 | VPBlockBase *Exiting = nullptr; |
733 | bool InRegion = Entry->getParent(); |
734 | // First, clone blocks reachable from Entry. |
735 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
736 | VPBlockBase *NewBB = BB->clone(); |
737 | Old2NewVPBlocks[BB] = NewBB; |
738 | if (InRegion && BB->getNumSuccessors() == 0) { |
739 | assert(!Exiting && "Multiple exiting blocks?" ); |
740 | Exiting = BB; |
741 | } |
742 | } |
743 | assert((!InRegion || Exiting) && "regions must have a single exiting block" ); |
744 | |
745 | // Second, update the predecessors & successors of the cloned blocks. |
746 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
747 | VPBlockBase *NewBB = Old2NewVPBlocks[BB]; |
748 | SmallVector<VPBlockBase *> NewPreds; |
749 | for (VPBlockBase *Pred : BB->getPredecessors()) { |
750 | NewPreds.push_back(Elt: Old2NewVPBlocks[Pred]); |
751 | } |
752 | NewBB->setPredecessors(NewPreds); |
753 | SmallVector<VPBlockBase *> NewSuccs; |
754 | for (VPBlockBase *Succ : BB->successors()) { |
755 | NewSuccs.push_back(Elt: Old2NewVPBlocks[Succ]); |
756 | } |
757 | NewBB->setSuccessors(NewSuccs); |
758 | } |
759 | |
760 | #if !defined(NDEBUG) |
761 | // Verify that the order of predecessors and successors matches in the cloned |
762 | // version. |
763 | for (const auto &[OldBB, NewBB] : |
764 | zip(vp_depth_first_shallow(Entry), |
765 | vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { |
766 | for (const auto &[OldPred, NewPred] : |
767 | zip(OldBB->getPredecessors(), NewBB->getPredecessors())) |
768 | assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors" ); |
769 | |
770 | for (const auto &[OldSucc, NewSucc] : |
771 | zip(OldBB->successors(), NewBB->successors())) |
772 | assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors" ); |
773 | } |
774 | #endif |
775 | |
776 | return std::make_pair(x&: Old2NewVPBlocks[Entry], |
777 | y: Exiting ? Old2NewVPBlocks[Exiting] : nullptr); |
778 | } |
779 | |
780 | VPRegionBlock *VPRegionBlock::clone() { |
781 | const auto &[NewEntry, NewExiting] = cloneFrom(Entry: getEntry()); |
782 | auto *NewRegion = getPlan()->createVPRegionBlock(Entry: NewEntry, Exiting: NewExiting, |
783 | Name: getName(), IsReplicator: isReplicator()); |
784 | for (VPBlockBase *Block : vp_depth_first_shallow(G: NewEntry)) |
785 | Block->setParent(NewRegion); |
786 | return NewRegion; |
787 | } |
788 | |
789 | void VPRegionBlock::execute(VPTransformState *State) { |
790 | assert(isReplicator() && |
791 | "Loop regions should have been lowered to plain CFG" ); |
792 | assert(!State->Lane && "Replicating a Region with non-null instance." ); |
793 | assert(!State->VF.isScalable() && "VF is assumed to be non scalable." ); |
794 | |
795 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
796 | Entry); |
797 | State->Lane = VPLane(0); |
798 | for (unsigned Lane = 0, VF = State->VF.getFixedValue(); Lane < VF; ++Lane) { |
799 | State->Lane = VPLane(Lane, VPLane::Kind::First); |
800 | // Visit the VPBlocks connected to \p this, starting from it. |
801 | for (VPBlockBase *Block : RPOT) { |
802 | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
803 | Block->execute(State); |
804 | } |
805 | } |
806 | |
807 | // Exit replicating mode. |
808 | State->Lane.reset(); |
809 | } |
810 | |
811 | InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
812 | InstructionCost Cost = 0; |
813 | for (VPRecipeBase &R : Recipes) |
814 | Cost += R.cost(VF, Ctx); |
815 | return Cost; |
816 | } |
817 | |
818 | const VPBasicBlock *VPBasicBlock::getCFGPredecessor(unsigned Idx) const { |
819 | const VPBlockBase *Pred = nullptr; |
820 | if (getNumPredecessors() > 0) { |
821 | Pred = getPredecessors()[Idx]; |
822 | } else { |
823 | auto *Region = getParent(); |
824 | assert(Region && !Region->isReplicator() && Region->getEntry() == this && |
825 | "must be in the entry block of a non-replicate region" ); |
826 | assert(Idx < 2 && Region->getNumPredecessors() == 1 && |
827 | "loop region has a single predecessor (preheader), its entry block " |
828 | "has 2 incoming blocks" ); |
829 | |
830 | // Idx == 0 selects the predecessor of the region, Idx == 1 selects the |
831 | // region itself whose exiting block feeds the phi across the backedge. |
832 | Pred = Idx == 0 ? Region->getSinglePredecessor() : Region; |
833 | } |
834 | return Pred->getExitingBasicBlock(); |
835 | } |
836 | |
837 | InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
838 | if (!isReplicator()) { |
839 | InstructionCost Cost = 0; |
840 | for (VPBlockBase *Block : vp_depth_first_shallow(G: getEntry())) |
841 | Cost += Block->cost(VF, Ctx); |
842 | InstructionCost BackedgeCost = |
843 | ForceTargetInstructionCost.getNumOccurrences() |
844 | ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) |
845 | : Ctx.TTI.getCFInstrCost(Opcode: Instruction::Br, CostKind: Ctx.CostKind); |
846 | LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF |
847 | << ": vector loop backedge\n" ); |
848 | Cost += BackedgeCost; |
849 | return Cost; |
850 | } |
851 | |
852 | // Compute the cost of a replicate region. Replicating isn't supported for |
853 | // scalable vectors, return an invalid cost for them. |
854 | // TODO: Discard scalable VPlans with replicate recipes earlier after |
855 | // construction. |
856 | if (VF.isScalable()) |
857 | return InstructionCost::getInvalid(); |
858 | |
859 | // First compute the cost of the conditionally executed recipes, followed by |
860 | // account for the branching cost, except if the mask is a header mask or |
861 | // uniform condition. |
862 | using namespace llvm::VPlanPatternMatch; |
863 | VPBasicBlock *Then = cast<VPBasicBlock>(Val: getEntry()->getSuccessors()[0]); |
864 | InstructionCost ThenCost = Then->cost(VF, Ctx); |
865 | |
866 | // For the scalar case, we may not always execute the original predicated |
867 | // block, Thus, scale the block's cost by the probability of executing it. |
868 | if (VF.isScalar()) |
869 | return ThenCost / getPredBlockCostDivisor(CostKind: Ctx.CostKind); |
870 | |
871 | return ThenCost; |
872 | } |
873 | |
874 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
875 | void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, |
876 | VPSlotTracker &SlotTracker) const { |
877 | O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> " ) << getName() << ": {" ; |
878 | auto NewIndent = Indent + " " ; |
879 | for (auto *BlockBase : vp_depth_first_shallow(Entry)) { |
880 | O << '\n'; |
881 | BlockBase->print(O, NewIndent, SlotTracker); |
882 | } |
883 | O << Indent << "}\n" ; |
884 | |
885 | printSuccessors(O, Indent); |
886 | } |
887 | #endif |
888 | |
889 | void VPRegionBlock::dissolveToCFGLoop() { |
890 | auto * = cast<VPBasicBlock>(Val: getEntry()); |
891 | if (auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(Val: &Header->front())) { |
892 | assert(this == getPlan()->getVectorLoopRegion() && |
893 | "Canonical IV must be in the entry of the top-level loop region" ); |
894 | auto *ScalarR = VPBuilder(CanIV).createScalarPhi( |
895 | IncomingValues: {CanIV->getStartValue(), CanIV->getBackedgeValue()}, |
896 | DL: CanIV->getDebugLoc(), Name: "index" ); |
897 | CanIV->replaceAllUsesWith(New: ScalarR); |
898 | CanIV->eraseFromParent(); |
899 | } |
900 | |
901 | VPBlockBase * = getSinglePredecessor(); |
902 | auto *ExitingLatch = cast<VPBasicBlock>(Val: getExiting()); |
903 | VPBlockBase *Middle = getSingleSuccessor(); |
904 | VPBlockUtils::disconnectBlocks(From: Preheader, To: this); |
905 | VPBlockUtils::disconnectBlocks(From: this, To: Middle); |
906 | |
907 | for (VPBlockBase *VPB : vp_depth_first_shallow(G: Entry)) |
908 | VPB->setParent(getParent()); |
909 | |
910 | VPBlockUtils::connectBlocks(From: Preheader, To: Header); |
911 | VPBlockUtils::connectBlocks(From: ExitingLatch, To: Middle); |
912 | VPBlockUtils::connectBlocks(From: ExitingLatch, To: Header); |
913 | } |
914 | |
915 | VPlan::VPlan(Loop *L) { |
916 | setEntry(createVPIRBasicBlock(IRBB: L->getLoopPreheader())); |
917 | ScalarHeader = createVPIRBasicBlock(IRBB: L->getHeader()); |
918 | |
919 | SmallVector<BasicBlock *> IRExitBlocks; |
920 | L->getUniqueExitBlocks(ExitBlocks&: IRExitBlocks); |
921 | for (BasicBlock *EB : IRExitBlocks) |
922 | ExitBlocks.push_back(Elt: createVPIRBasicBlock(IRBB: EB)); |
923 | } |
924 | |
925 | VPlan::~VPlan() { |
926 | VPValue DummyValue; |
927 | |
928 | for (auto *VPB : CreatedBlocks) { |
929 | if (auto *VPBB = dyn_cast<VPBasicBlock>(Val: VPB)) { |
930 | // Replace all operands of recipes and all VPValues defined in VPBB with |
931 | // DummyValue so the block can be deleted. |
932 | for (VPRecipeBase &R : *VPBB) { |
933 | for (auto *Def : R.definedValues()) |
934 | Def->replaceAllUsesWith(New: &DummyValue); |
935 | |
936 | for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) |
937 | R.setOperand(I, New: &DummyValue); |
938 | } |
939 | } |
940 | delete VPB; |
941 | } |
942 | for (VPValue *VPV : getLiveIns()) |
943 | delete VPV; |
944 | if (BackedgeTakenCount) |
945 | delete BackedgeTakenCount; |
946 | } |
947 | |
948 | void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, |
949 | VPTransformState &State) { |
950 | Type *TCTy = TripCountV->getType(); |
951 | // Check if the backedge taken count is needed, and if so build it. |
952 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
953 | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
954 | auto *TCMO = Builder.CreateSub(LHS: TripCountV, RHS: ConstantInt::get(Ty: TCTy, V: 1), |
955 | Name: "trip.count.minus.1" ); |
956 | BackedgeTakenCount->setUnderlyingValue(TCMO); |
957 | } |
958 | |
959 | VectorTripCount.setUnderlyingValue(VectorTripCountV); |
960 | |
961 | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
962 | // FIXME: Model VF * UF computation completely in VPlan. |
963 | unsigned UF = getUF(); |
964 | if (VF.getNumUsers()) { |
965 | Value *RuntimeVF = getRuntimeVF(B&: Builder, Ty: TCTy, VF: State.VF); |
966 | VF.setUnderlyingValue(RuntimeVF); |
967 | VFxUF.setUnderlyingValue( |
968 | UF > 1 ? Builder.CreateMul(LHS: RuntimeVF, RHS: ConstantInt::get(Ty: TCTy, V: UF)) |
969 | : RuntimeVF); |
970 | } else { |
971 | VFxUF.setUnderlyingValue(createStepForVF(B&: Builder, Ty: TCTy, VF: State.VF, Step: UF)); |
972 | } |
973 | } |
974 | |
975 | VPIRBasicBlock *VPlan::getExitBlock(BasicBlock *IRBB) const { |
976 | auto Iter = find_if(Range: getExitBlocks(), P: [IRBB](const VPIRBasicBlock *VPIRBB) { |
977 | return VPIRBB->getIRBasicBlock() == IRBB; |
978 | }); |
979 | assert(Iter != getExitBlocks().end() && "no exit block found" ); |
980 | return *Iter; |
981 | } |
982 | |
983 | bool VPlan::isExitBlock(VPBlockBase *VPBB) { |
984 | return is_contained(Range&: ExitBlocks, Element: VPBB); |
985 | } |
986 | |
987 | /// Generate the code inside the preheader and body of the vectorized loop. |
988 | /// Assumes a single pre-header basic-block was created for this. Introduce |
989 | /// additional basic-blocks as needed, and fill them all. |
990 | void VPlan::execute(VPTransformState *State) { |
991 | // Initialize CFG state. |
992 | State->CFG.PrevVPBB = nullptr; |
993 | State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); |
994 | |
995 | // Update VPDominatorTree since VPBasicBlock may be removed after State was |
996 | // constructed. |
997 | State->VPDT.recalculate(Func&: *this); |
998 | |
999 | // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. |
1000 | BasicBlock * = State->CFG.PrevBB; |
1001 | cast<BranchInst>(Val: VectorPreHeader->getTerminator())->setSuccessor(idx: 0, NewSucc: nullptr); |
1002 | State->CFG.DTU.applyUpdates( |
1003 | Updates: {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); |
1004 | |
1005 | LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF |
1006 | << ", UF=" << getUF() << '\n'); |
1007 | setName("Final VPlan" ); |
1008 | LLVM_DEBUG(dump()); |
1009 | |
1010 | // Disconnect scalar preheader and scalar header, as the dominator tree edge |
1011 | // will be updated as part of VPlan execution. This allows keeping the DTU |
1012 | // logic generic during VPlan execution. |
1013 | BasicBlock *ScalarPh = State->CFG.ExitBB; |
1014 | State->CFG.DTU.applyUpdates( |
1015 | Updates: {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); |
1016 | |
1017 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
1018 | Entry); |
1019 | // Generate code for the VPlan, in parts of the vector skeleton, loop body and |
1020 | // successor blocks including the middle, exit and scalar preheader blocks. |
1021 | for (VPBlockBase *Block : RPOT) |
1022 | Block->execute(State); |
1023 | |
1024 | State->CFG.DTU.flush(); |
1025 | |
1026 | VPBasicBlock * = vputils::getFirstLoopHeader(Plan&: *this, VPDT&: State->VPDT); |
1027 | if (!Header) |
1028 | return; |
1029 | |
1030 | auto *LatchVPBB = cast<VPBasicBlock>(Val: Header->getPredecessors()[1]); |
1031 | BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; |
1032 | |
1033 | // Fix the latch value of canonical, reduction and first-order recurrences |
1034 | // phis in the vector loop. |
1035 | for (VPRecipeBase &R : Header->phis()) { |
1036 | // Skip phi-like recipes that generate their backedege values themselves. |
1037 | if (isa<VPWidenPHIRecipe>(Val: &R)) |
1038 | continue; |
1039 | |
1040 | if (auto *WidenPhi = dyn_cast<VPWidenPointerInductionRecipe>(Val: &R)) { |
1041 | assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && |
1042 | "recipe generating only scalars should have been replaced" ); |
1043 | auto *GEP = cast<GetElementPtrInst>(Val: State->get(Def: WidenPhi)); |
1044 | PHINode *Phi = cast<PHINode>(Val: GEP->getPointerOperand()); |
1045 | |
1046 | Phi->setIncomingBlock(i: 1, BB: VectorLatchBB); |
1047 | |
1048 | // Move the last step to the end of the latch block. This ensures |
1049 | // consistent placement of all induction updates. |
1050 | Instruction *Inc = cast<Instruction>(Val: Phi->getIncomingValue(i: 1)); |
1051 | Inc->moveBefore(InsertPos: std::prev(x: VectorLatchBB->getTerminator()->getIterator())); |
1052 | continue; |
1053 | } |
1054 | |
1055 | auto *PhiR = cast<VPSingleDefRecipe>(Val: &R); |
1056 | // VPInstructions currently model scalar Phis only. |
1057 | bool NeedsScalar = isa<VPInstruction>(Val: PhiR) || |
1058 | (isa<VPReductionPHIRecipe>(Val: PhiR) && |
1059 | cast<VPReductionPHIRecipe>(Val: PhiR)->isInLoop()); |
1060 | |
1061 | Value *Phi = State->get(Def: PhiR, NeedsScalar); |
1062 | // VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does |
1063 | // not. |
1064 | Value *Val = State->get(Def: PhiR->getOperand(N: 1), NeedsScalar); |
1065 | cast<PHINode>(Val: Phi)->addIncoming(V: Val, BB: VectorLatchBB); |
1066 | } |
1067 | } |
1068 | |
1069 | InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { |
1070 | // For now only return the cost of the vector loop region, ignoring any other |
1071 | // blocks, like the preheader or middle blocks. |
1072 | InstructionCost Cost = getVectorLoopRegion()->cost(VF, Ctx); |
1073 | |
1074 | // If any instructions in the middle block are invalid return invalid. |
1075 | // TODO: Remove once no VPlans with VF == vscale x 1 and first-order recurrences are created. |
1076 | if (!getMiddleBlock()->cost(VF, Ctx).isValid()) |
1077 | return InstructionCost::getInvalid(); |
1078 | |
1079 | return Cost; |
1080 | } |
1081 | |
1082 | VPRegionBlock *VPlan::getVectorLoopRegion() { |
1083 | // TODO: Cache if possible. |
1084 | for (VPBlockBase *B : vp_depth_first_shallow(G: getEntry())) |
1085 | if (auto *R = dyn_cast<VPRegionBlock>(Val: B)) |
1086 | return R->isReplicator() ? nullptr : R; |
1087 | return nullptr; |
1088 | } |
1089 | |
1090 | const VPRegionBlock *VPlan::getVectorLoopRegion() const { |
1091 | for (const VPBlockBase *B : vp_depth_first_shallow(G: getEntry())) |
1092 | if (auto *R = dyn_cast<VPRegionBlock>(Val: B)) |
1093 | return R->isReplicator() ? nullptr : R; |
1094 | return nullptr; |
1095 | } |
1096 | |
1097 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1098 | void VPlan::printLiveIns(raw_ostream &O) const { |
1099 | VPSlotTracker SlotTracker(this); |
1100 | |
1101 | if (VF.getNumUsers() > 0) { |
1102 | O << "\nLive-in " ; |
1103 | VF.printAsOperand(O, SlotTracker); |
1104 | O << " = VF" ; |
1105 | } |
1106 | |
1107 | if (VFxUF.getNumUsers() > 0) { |
1108 | O << "\nLive-in " ; |
1109 | VFxUF.printAsOperand(O, SlotTracker); |
1110 | O << " = VF * UF" ; |
1111 | } |
1112 | |
1113 | if (VectorTripCount.getNumUsers() > 0) { |
1114 | O << "\nLive-in " ; |
1115 | VectorTripCount.printAsOperand(O, SlotTracker); |
1116 | O << " = vector-trip-count" ; |
1117 | } |
1118 | |
1119 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
1120 | O << "\nLive-in " ; |
1121 | BackedgeTakenCount->printAsOperand(O, SlotTracker); |
1122 | O << " = backedge-taken count" ; |
1123 | } |
1124 | |
1125 | O << "\n" ; |
1126 | if (TripCount) { |
1127 | if (TripCount->isLiveIn()) |
1128 | O << "Live-in " ; |
1129 | TripCount->printAsOperand(O, SlotTracker); |
1130 | O << " = original trip-count" ; |
1131 | O << "\n" ; |
1132 | } |
1133 | } |
1134 | |
1135 | LLVM_DUMP_METHOD |
1136 | void VPlan::print(raw_ostream &O) const { |
1137 | VPSlotTracker SlotTracker(this); |
1138 | |
1139 | O << "VPlan '" << getName() << "' {" ; |
1140 | |
1141 | printLiveIns(O); |
1142 | |
1143 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> |
1144 | RPOT(getEntry()); |
1145 | for (const VPBlockBase *Block : RPOT) { |
1146 | O << '\n'; |
1147 | Block->print(O, "" , SlotTracker); |
1148 | } |
1149 | |
1150 | O << "}\n" ; |
1151 | } |
1152 | |
1153 | std::string VPlan::getName() const { |
1154 | std::string Out; |
1155 | raw_string_ostream RSO(Out); |
1156 | RSO << Name << " for " ; |
1157 | if (!VFs.empty()) { |
1158 | RSO << "VF={" << VFs[0]; |
1159 | for (ElementCount VF : drop_begin(VFs)) |
1160 | RSO << "," << VF; |
1161 | RSO << "}," ; |
1162 | } |
1163 | |
1164 | if (UFs.empty()) { |
1165 | RSO << "UF>=1" ; |
1166 | } else { |
1167 | RSO << "UF={" << UFs[0]; |
1168 | for (unsigned UF : drop_begin(UFs)) |
1169 | RSO << "," << UF; |
1170 | RSO << "}" ; |
1171 | } |
1172 | |
1173 | return Out; |
1174 | } |
1175 | |
1176 | LLVM_DUMP_METHOD |
1177 | void VPlan::printDOT(raw_ostream &O) const { |
1178 | VPlanPrinter Printer(O, *this); |
1179 | Printer.dump(); |
1180 | } |
1181 | |
1182 | LLVM_DUMP_METHOD |
1183 | void VPlan::dump() const { print(dbgs()); } |
1184 | #endif |
1185 | |
1186 | static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, |
1187 | DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { |
1188 | // Update the operands of all cloned recipes starting at NewEntry. This |
1189 | // traverses all reachable blocks. This is done in two steps, to handle cycles |
1190 | // in PHI recipes. |
1191 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
1192 | OldDeepRPOT(Entry); |
1193 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
1194 | NewDeepRPOT(NewEntry); |
1195 | // First, collect all mappings from old to new VPValues defined by cloned |
1196 | // recipes. |
1197 | for (const auto &[OldBB, NewBB] : |
1198 | zip(t: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: OldDeepRPOT), |
1199 | u: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT))) { |
1200 | assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && |
1201 | "blocks must have the same number of recipes" ); |
1202 | for (const auto &[OldR, NewR] : zip(t&: *OldBB, u&: *NewBB)) { |
1203 | assert(OldR.getNumOperands() == NewR.getNumOperands() && |
1204 | "recipes must have the same number of operands" ); |
1205 | assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && |
1206 | "recipes must define the same number of operands" ); |
1207 | for (const auto &[OldV, NewV] : |
1208 | zip(t: OldR.definedValues(), u: NewR.definedValues())) |
1209 | Old2NewVPValues[OldV] = NewV; |
1210 | } |
1211 | } |
1212 | |
1213 | // Update all operands to use cloned VPValues. |
1214 | for (VPBasicBlock *NewBB : |
1215 | VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT)) { |
1216 | for (VPRecipeBase &NewR : *NewBB) |
1217 | for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { |
1218 | VPValue *NewOp = Old2NewVPValues.lookup(Val: NewR.getOperand(N: I)); |
1219 | NewR.setOperand(I, New: NewOp); |
1220 | } |
1221 | } |
1222 | } |
1223 | |
1224 | VPlan *VPlan::duplicate() { |
1225 | unsigned NumBlocksBeforeCloning = CreatedBlocks.size(); |
1226 | // Clone blocks. |
1227 | const auto &[NewEntry, __] = cloneFrom(Entry); |
1228 | |
1229 | BasicBlock * = getScalarHeader()->getIRBasicBlock(); |
1230 | VPIRBasicBlock * = nullptr; |
1231 | if (getScalarHeader()->getNumPredecessors() == 0) { |
1232 | NewScalarHeader = createVPIRBasicBlock(IRBB: ScalarHeaderIRBB); |
1233 | } else { |
1234 | NewScalarHeader = cast<VPIRBasicBlock>(Val: *find_if( |
1235 | Range: vp_depth_first_shallow(G: NewEntry), P: [ScalarHeaderIRBB](VPBlockBase *VPB) { |
1236 | auto *VPIRBB = dyn_cast<VPIRBasicBlock>(Val: VPB); |
1237 | return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; |
1238 | })); |
1239 | } |
1240 | // Create VPlan, clone live-ins and remap operands in the cloned blocks. |
1241 | auto *NewPlan = new VPlan(cast<VPBasicBlock>(Val: NewEntry), NewScalarHeader); |
1242 | DenseMap<VPValue *, VPValue *> Old2NewVPValues; |
1243 | for (VPValue *OldLiveIn : getLiveIns()) { |
1244 | Old2NewVPValues[OldLiveIn] = |
1245 | NewPlan->getOrAddLiveIn(V: OldLiveIn->getLiveInIRValue()); |
1246 | } |
1247 | Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; |
1248 | Old2NewVPValues[&VF] = &NewPlan->VF; |
1249 | Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; |
1250 | if (BackedgeTakenCount) { |
1251 | NewPlan->BackedgeTakenCount = new VPValue(); |
1252 | Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; |
1253 | } |
1254 | if (TripCount && TripCount->isLiveIn()) |
1255 | Old2NewVPValues[TripCount] = |
1256 | NewPlan->getOrAddLiveIn(V: TripCount->getLiveInIRValue()); |
1257 | // else NewTripCount will be created and inserted into Old2NewVPValues when |
1258 | // TripCount is cloned. In any case NewPlan->TripCount is updated below. |
1259 | |
1260 | remapOperands(Entry, NewEntry, Old2NewVPValues); |
1261 | |
1262 | // Initialize remaining fields of cloned VPlan. |
1263 | NewPlan->VFs = VFs; |
1264 | NewPlan->UFs = UFs; |
1265 | // TODO: Adjust names. |
1266 | NewPlan->Name = Name; |
1267 | if (TripCount) { |
1268 | assert(Old2NewVPValues.contains(TripCount) && |
1269 | "TripCount must have been added to Old2NewVPValues" ); |
1270 | NewPlan->TripCount = Old2NewVPValues[TripCount]; |
1271 | } |
1272 | |
1273 | // Transfer all cloned blocks (the second half of all current blocks) from |
1274 | // current to new VPlan. |
1275 | unsigned NumBlocksAfterCloning = CreatedBlocks.size(); |
1276 | for (unsigned I : |
1277 | seq<unsigned>(Begin: NumBlocksBeforeCloning, End: NumBlocksAfterCloning)) |
1278 | NewPlan->CreatedBlocks.push_back(Elt: this->CreatedBlocks[I]); |
1279 | CreatedBlocks.truncate(N: NumBlocksBeforeCloning); |
1280 | |
1281 | // Update ExitBlocks of the new plan. |
1282 | for (VPBlockBase *VPB : NewPlan->CreatedBlocks) { |
1283 | if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(Val: VPB) && |
1284 | VPB != NewScalarHeader) |
1285 | NewPlan->ExitBlocks.push_back(Elt: cast<VPIRBasicBlock>(Val: VPB)); |
1286 | } |
1287 | |
1288 | return NewPlan; |
1289 | } |
1290 | |
1291 | VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) { |
1292 | auto *VPIRBB = new VPIRBasicBlock(IRBB); |
1293 | CreatedBlocks.push_back(Elt: VPIRBB); |
1294 | return VPIRBB; |
1295 | } |
1296 | |
1297 | VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) { |
1298 | auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB); |
1299 | for (Instruction &I : |
1300 | make_range(x: IRBB->begin(), y: IRBB->getTerminator()->getIterator())) |
1301 | VPIRBB->appendRecipe(Recipe: VPIRInstruction::create(I)); |
1302 | return VPIRBB; |
1303 | } |
1304 | |
1305 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1306 | |
1307 | Twine VPlanPrinter::getUID(const VPBlockBase *Block) { |
1308 | return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N" ) + |
1309 | Twine(getOrCreateBID(Block)); |
1310 | } |
1311 | |
1312 | Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { |
1313 | const std::string &Name = Block->getName(); |
1314 | if (!Name.empty()) |
1315 | return Name; |
1316 | return "VPB" + Twine(getOrCreateBID(Block)); |
1317 | } |
1318 | |
1319 | void VPlanPrinter::dump() { |
1320 | Depth = 1; |
1321 | bumpIndent(0); |
1322 | OS << "digraph VPlan {\n" ; |
1323 | OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan" ; |
1324 | if (!Plan.getName().empty()) |
1325 | OS << "\\n" << DOT::EscapeString(Plan.getName()); |
1326 | |
1327 | { |
1328 | // Print live-ins. |
1329 | std::string Str; |
1330 | raw_string_ostream SS(Str); |
1331 | Plan.printLiveIns(SS); |
1332 | SmallVector<StringRef, 0> Lines; |
1333 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
1334 | for (auto Line : Lines) |
1335 | OS << DOT::EscapeString(Line.str()) << "\\n" ; |
1336 | } |
1337 | |
1338 | OS << "\"]\n" ; |
1339 | OS << "node [shape=rect, fontname=Courier, fontsize=30]\n" ; |
1340 | OS << "edge [fontname=Courier, fontsize=30]\n" ; |
1341 | OS << "compound=true\n" ; |
1342 | |
1343 | for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) |
1344 | dumpBlock(Block); |
1345 | |
1346 | OS << "}\n" ; |
1347 | } |
1348 | |
1349 | void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { |
1350 | if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) |
1351 | dumpBasicBlock(BasicBlock); |
1352 | else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
1353 | dumpRegion(Region); |
1354 | else |
1355 | llvm_unreachable("Unsupported kind of VPBlock." ); |
1356 | } |
1357 | |
1358 | void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, |
1359 | bool Hidden, const Twine &Label) { |
1360 | // Due to "dot" we print an edge between two regions as an edge between the |
1361 | // exiting basic block and the entry basic of the respective regions. |
1362 | const VPBlockBase *Tail = From->getExitingBasicBlock(); |
1363 | const VPBlockBase *Head = To->getEntryBasicBlock(); |
1364 | OS << Indent << getUID(Tail) << " -> " << getUID(Head); |
1365 | OS << " [ label=\"" << Label << '\"'; |
1366 | if (Tail != From) |
1367 | OS << " ltail=" << getUID(From); |
1368 | if (Head != To) |
1369 | OS << " lhead=" << getUID(To); |
1370 | if (Hidden) |
1371 | OS << "; splines=none" ; |
1372 | OS << "]\n" ; |
1373 | } |
1374 | |
1375 | void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { |
1376 | auto &Successors = Block->getSuccessors(); |
1377 | if (Successors.size() == 1) |
1378 | drawEdge(Block, Successors.front(), false, "" ); |
1379 | else if (Successors.size() == 2) { |
1380 | drawEdge(Block, Successors.front(), false, "T" ); |
1381 | drawEdge(Block, Successors.back(), false, "F" ); |
1382 | } else { |
1383 | unsigned SuccessorNumber = 0; |
1384 | for (auto *Successor : Successors) |
1385 | drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); |
1386 | } |
1387 | } |
1388 | |
1389 | void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { |
1390 | // Implement dot-formatted dump by performing plain-text dump into the |
1391 | // temporary storage followed by some post-processing. |
1392 | OS << Indent << getUID(BasicBlock) << " [label =\n" ; |
1393 | bumpIndent(1); |
1394 | std::string Str; |
1395 | raw_string_ostream SS(Str); |
1396 | // Use no indentation as we need to wrap the lines into quotes ourselves. |
1397 | BasicBlock->print(SS, "" , SlotTracker); |
1398 | |
1399 | // We need to process each line of the output separately, so split |
1400 | // single-string plain-text dump. |
1401 | SmallVector<StringRef, 0> Lines; |
1402 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
1403 | |
1404 | auto EmitLine = [&](StringRef Line, StringRef Suffix) { |
1405 | OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; |
1406 | }; |
1407 | |
1408 | // Don't need the "+" after the last line. |
1409 | for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) |
1410 | EmitLine(Line, " +\n" ); |
1411 | EmitLine(Lines.back(), "\n" ); |
1412 | |
1413 | bumpIndent(-1); |
1414 | OS << Indent << "]\n" ; |
1415 | |
1416 | dumpEdges(BasicBlock); |
1417 | } |
1418 | |
1419 | void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { |
1420 | OS << Indent << "subgraph " << getUID(Region) << " {\n" ; |
1421 | bumpIndent(1); |
1422 | OS << Indent << "fontname=Courier\n" |
1423 | << Indent << "label=\"" |
1424 | << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> " ) |
1425 | << DOT::EscapeString(Region->getName()) << "\"\n" ; |
1426 | // Dump the blocks of the region. |
1427 | assert(Region->getEntry() && "Region contains no inner blocks." ); |
1428 | for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) |
1429 | dumpBlock(Block); |
1430 | bumpIndent(-1); |
1431 | OS << Indent << "}\n" ; |
1432 | dumpEdges(Region); |
1433 | } |
1434 | |
1435 | #endif |
1436 | |
1437 | /// Returns true if there is a vector loop region and \p VPV is defined in a |
1438 | /// loop region. |
1439 | static bool isDefinedInsideLoopRegions(const VPValue *VPV) { |
1440 | const VPRecipeBase *DefR = VPV->getDefiningRecipe(); |
1441 | return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() || |
1442 | DefR->getParent()->getEnclosingLoopRegion()); |
1443 | } |
1444 | |
1445 | bool VPValue::isDefinedOutsideLoopRegions() const { |
1446 | return !isDefinedInsideLoopRegions(VPV: this); |
1447 | } |
1448 | void VPValue::replaceAllUsesWith(VPValue *New) { |
1449 | replaceUsesWithIf(New, ShouldReplace: [](VPUser &, unsigned) { return true; }); |
1450 | } |
1451 | |
1452 | void VPValue::replaceUsesWithIf( |
1453 | VPValue *New, |
1454 | llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { |
1455 | // Note that this early exit is required for correctness; the implementation |
1456 | // below relies on the number of users for this VPValue to decrease, which |
1457 | // isn't the case if this == New. |
1458 | if (this == New) |
1459 | return; |
1460 | |
1461 | for (unsigned J = 0; J < getNumUsers();) { |
1462 | VPUser *User = Users[J]; |
1463 | bool RemovedUser = false; |
1464 | for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { |
1465 | if (User->getOperand(N: I) != this || !ShouldReplace(*User, I)) |
1466 | continue; |
1467 | |
1468 | RemovedUser = true; |
1469 | User->setOperand(I, New); |
1470 | } |
1471 | // If a user got removed after updating the current user, the next user to |
1472 | // update will be moved to the current position, so we only need to |
1473 | // increment the index if the number of users did not change. |
1474 | if (!RemovedUser) |
1475 | J++; |
1476 | } |
1477 | } |
1478 | |
1479 | void VPUser::replaceUsesOfWith(VPValue *From, VPValue *To) { |
1480 | for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) { |
1481 | if (getOperand(N: Idx) == From) |
1482 | setOperand(I: Idx, New: To); |
1483 | } |
1484 | } |
1485 | |
1486 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1487 | void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { |
1488 | OS << Tracker.getOrCreateName(this); |
1489 | } |
1490 | |
1491 | void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { |
1492 | interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { |
1493 | Op->printAsOperand(O, SlotTracker); |
1494 | }); |
1495 | } |
1496 | #endif |
1497 | |
1498 | void VPSlotTracker::assignName(const VPValue *V) { |
1499 | assert(!VPValue2Name.contains(V) && "VPValue already has a name!" ); |
1500 | auto *UV = V->getUnderlyingValue(); |
1501 | auto *VPI = dyn_cast_or_null<VPInstruction>(Val: V->getDefiningRecipe()); |
1502 | if (!UV && !(VPI && !VPI->getName().empty())) { |
1503 | VPValue2Name[V] = (Twine("vp<%" ) + Twine(NextSlot) + ">" ).str(); |
1504 | NextSlot++; |
1505 | return; |
1506 | } |
1507 | |
1508 | // Use the name of the underlying Value, wrapped in "ir<>", and versioned by |
1509 | // appending ".Number" to the name if there are multiple uses. |
1510 | std::string Name; |
1511 | if (UV) |
1512 | Name = getName(V: UV); |
1513 | else |
1514 | Name = VPI->getName(); |
1515 | |
1516 | assert(!Name.empty() && "Name cannot be empty." ); |
1517 | StringRef Prefix = UV ? "ir<" : "vp<%" ; |
1518 | std::string BaseName = (Twine(Prefix) + Name + Twine(">" )).str(); |
1519 | |
1520 | // First assign the base name for V. |
1521 | const auto &[A, _] = VPValue2Name.insert(KV: {V, BaseName}); |
1522 | // Integer or FP constants with different types will result in he same string |
1523 | // due to stripping types. |
1524 | if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(Val: UV)) |
1525 | return; |
1526 | |
1527 | // If it is already used by C > 0 other VPValues, increase the version counter |
1528 | // C and use it for V. |
1529 | const auto &[C, UseInserted] = BaseName2Version.insert(KV: {BaseName, 0}); |
1530 | if (!UseInserted) { |
1531 | C->second++; |
1532 | A->second = (BaseName + Twine("." ) + Twine(C->second)).str(); |
1533 | } |
1534 | } |
1535 | |
1536 | void VPSlotTracker::assignNames(const VPlan &Plan) { |
1537 | if (Plan.VF.getNumUsers() > 0) |
1538 | assignName(V: &Plan.VF); |
1539 | if (Plan.VFxUF.getNumUsers() > 0) |
1540 | assignName(V: &Plan.VFxUF); |
1541 | assignName(V: &Plan.VectorTripCount); |
1542 | if (Plan.BackedgeTakenCount) |
1543 | assignName(V: Plan.BackedgeTakenCount); |
1544 | for (VPValue *LI : Plan.getLiveIns()) |
1545 | assignName(V: LI); |
1546 | |
1547 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> |
1548 | RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); |
1549 | for (const VPBasicBlock *VPBB : |
1550 | VPBlockUtils::blocksOnly<const VPBasicBlock>(Range: RPOT)) |
1551 | assignNames(VPBB); |
1552 | } |
1553 | |
1554 | void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { |
1555 | for (const VPRecipeBase &Recipe : *VPBB) |
1556 | for (VPValue *Def : Recipe.definedValues()) |
1557 | assignName(V: Def); |
1558 | } |
1559 | |
1560 | std::string VPSlotTracker::getName(const Value *V) { |
1561 | std::string Name; |
1562 | raw_string_ostream S(Name); |
1563 | if (V->hasName() || !isa<Instruction>(Val: V)) { |
1564 | V->printAsOperand(O&: S, PrintType: false); |
1565 | return Name; |
1566 | } |
1567 | |
1568 | if (!MST) { |
1569 | // Lazily create the ModuleSlotTracker when we first hit an unnamed |
1570 | // instruction. |
1571 | auto *I = cast<Instruction>(Val: V); |
1572 | // This check is required to support unit tests with incomplete IR. |
1573 | if (I->getParent()) { |
1574 | MST = std::make_unique<ModuleSlotTracker>(args: I->getModule()); |
1575 | MST->incorporateFunction(F: *I->getFunction()); |
1576 | } else { |
1577 | MST = std::make_unique<ModuleSlotTracker>(args: nullptr); |
1578 | } |
1579 | } |
1580 | V->printAsOperand(O&: S, PrintType: false, MST&: *MST); |
1581 | return Name; |
1582 | } |
1583 | |
1584 | std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { |
1585 | std::string Name = VPValue2Name.lookup(Val: V); |
1586 | if (!Name.empty()) |
1587 | return Name; |
1588 | |
1589 | // If no name was assigned, no VPlan was provided when creating the slot |
1590 | // tracker or it is not reachable from the provided VPlan. This can happen, |
1591 | // e.g. when trying to print a recipe that has not been inserted into a VPlan |
1592 | // in a debugger. |
1593 | // TODO: Update VPSlotTracker constructor to assign names to recipes & |
1594 | // VPValues not associated with a VPlan, instead of constructing names ad-hoc |
1595 | // here. |
1596 | const VPRecipeBase *DefR = V->getDefiningRecipe(); |
1597 | (void)DefR; |
1598 | assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && |
1599 | "VPValue defined by a recipe in a VPlan?" ); |
1600 | |
1601 | // Use the underlying value's name, if there is one. |
1602 | if (auto *UV = V->getUnderlyingValue()) { |
1603 | std::string Name; |
1604 | raw_string_ostream S(Name); |
1605 | UV->printAsOperand(O&: S, PrintType: false); |
1606 | return (Twine("ir<" ) + Name + ">" ).str(); |
1607 | } |
1608 | |
1609 | return "<badref>" ; |
1610 | } |
1611 | |
1612 | bool LoopVectorizationPlanner::getDecisionAndClampRange( |
1613 | const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { |
1614 | assert(!Range.isEmpty() && "Trying to test an empty VF range." ); |
1615 | bool PredicateAtRangeStart = Predicate(Range.Start); |
1616 | |
1617 | for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) |
1618 | if (Predicate(TmpVF) != PredicateAtRangeStart) { |
1619 | Range.End = TmpVF; |
1620 | break; |
1621 | } |
1622 | |
1623 | return PredicateAtRangeStart; |
1624 | } |
1625 | |
1626 | /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, |
1627 | /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range |
1628 | /// of VF's starting at a given VF and extending it as much as possible. Each |
1629 | /// vectorization decision can potentially shorten this sub-range during |
1630 | /// buildVPlan(). |
1631 | void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, |
1632 | ElementCount MaxVF) { |
1633 | auto MaxVFTimes2 = MaxVF * 2; |
1634 | for (ElementCount VF = MinVF; ElementCount::isKnownLT(LHS: VF, RHS: MaxVFTimes2);) { |
1635 | VFRange SubRange = {VF, MaxVFTimes2}; |
1636 | if (auto Plan = tryToBuildVPlan(Range&: SubRange)) { |
1637 | VPlanTransforms::optimize(Plan&: *Plan); |
1638 | // Update the name of the latch of the top-level vector loop region region |
1639 | // after optimizations which includes block folding. |
1640 | Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch" ); |
1641 | VPlans.push_back(Elt: std::move(Plan)); |
1642 | } |
1643 | VF = SubRange.End; |
1644 | } |
1645 | } |
1646 | |
1647 | VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { |
1648 | assert(count_if(VPlans, |
1649 | [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == |
1650 | 1 && |
1651 | "Multiple VPlans for VF." ); |
1652 | |
1653 | for (const VPlanPtr &Plan : VPlans) { |
1654 | if (Plan->hasVF(VF)) |
1655 | return *Plan.get(); |
1656 | } |
1657 | llvm_unreachable("No plan found!" ); |
1658 | } |
1659 | |
1660 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1661 | void LoopVectorizationPlanner::printPlans(raw_ostream &O) { |
1662 | if (VPlans.empty()) { |
1663 | O << "LV: No VPlans built.\n" ; |
1664 | return; |
1665 | } |
1666 | for (const auto &Plan : VPlans) |
1667 | if (PrintVPlansInDotFormat) |
1668 | Plan->printDOT(O); |
1669 | else |
1670 | Plan->print(O); |
1671 | } |
1672 | #endif |
1673 | |
1674 | TargetTransformInfo::OperandValueInfo |
1675 | VPCostContext::getOperandInfo(VPValue *V) const { |
1676 | if (!V->isLiveIn()) |
1677 | return {}; |
1678 | |
1679 | return TTI::getOperandInfo(V: V->getLiveInIRValue()); |
1680 | } |
1681 | |