| 1 | //===-- VPlanVerifier.cpp -------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file defines the class VPlanVerifier, which contains utility functions |
| 11 | /// to check the consistency and invariants of a VPlan. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "VPlanVerifier.h" |
| 16 | #include "VPlan.h" |
| 17 | #include "VPlanCFG.h" |
| 18 | #include "VPlanDominatorTree.h" |
| 19 | #include "VPlanHelpers.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/TypeSwitch.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "loop-vectorize" |
| 24 | |
| 25 | using namespace llvm; |
| 26 | |
| 27 | namespace { |
| 28 | class VPlanVerifier { |
| 29 | const VPDominatorTree &VPDT; |
| 30 | VPTypeAnalysis &TypeInfo; |
| 31 | bool VerifyLate; |
| 32 | |
| 33 | SmallPtrSet<BasicBlock *, 8> WrappedIRBBs; |
| 34 | |
| 35 | // Verify that phi-like recipes are at the beginning of \p VPBB, with no |
| 36 | // other recipes in between. Also check that only header blocks contain |
| 37 | // VPHeaderPHIRecipes. |
| 38 | bool verifyPhiRecipes(const VPBasicBlock *VPBB); |
| 39 | |
| 40 | /// Verify that \p EVL is used correctly. The user must be either in |
| 41 | /// EVL-based recipes as a last operand or VPInstruction::Add which is |
| 42 | /// incoming value into EVL's recipe. |
| 43 | bool verifyEVLRecipe(const VPInstruction &EVL) const; |
| 44 | |
| 45 | bool verifyVPBasicBlock(const VPBasicBlock *VPBB); |
| 46 | |
| 47 | bool verifyBlock(const VPBlockBase *VPB); |
| 48 | |
| 49 | /// Helper function that verifies the CFG invariants of the VPBlockBases |
| 50 | /// within |
| 51 | /// \p Region. Checks in this function are generic for VPBlockBases. They are |
| 52 | /// not specific for VPBasicBlocks or VPRegionBlocks. |
| 53 | bool verifyBlocksInRegion(const VPRegionBlock *Region); |
| 54 | |
| 55 | /// Verify the CFG invariants of VPRegionBlock \p Region and its nested |
| 56 | /// VPBlockBases. Do not recurse inside nested VPRegionBlocks. |
| 57 | bool verifyRegion(const VPRegionBlock *Region); |
| 58 | |
| 59 | /// Verify the CFG invariants of VPRegionBlock \p Region and its nested |
| 60 | /// VPBlockBases. Recurse inside nested VPRegionBlocks. |
| 61 | bool verifyRegionRec(const VPRegionBlock *Region); |
| 62 | |
| 63 | public: |
| 64 | VPlanVerifier(VPDominatorTree &VPDT, VPTypeAnalysis &TypeInfo, |
| 65 | bool VerifyLate) |
| 66 | : VPDT(VPDT), TypeInfo(TypeInfo), VerifyLate(VerifyLate) {} |
| 67 | |
| 68 | bool verify(const VPlan &Plan); |
| 69 | }; |
| 70 | } // namespace |
| 71 | |
| 72 | bool VPlanVerifier::verifyPhiRecipes(const VPBasicBlock *VPBB) { |
| 73 | auto RecipeI = VPBB->begin(); |
| 74 | auto End = VPBB->end(); |
| 75 | unsigned NumActiveLaneMaskPhiRecipes = 0; |
| 76 | bool = VPBlockUtils::isHeader(VPB: VPBB, VPDT); |
| 77 | while (RecipeI != End && RecipeI->isPhi()) { |
| 78 | if (isa<VPActiveLaneMaskPHIRecipe>(Val: RecipeI)) |
| 79 | NumActiveLaneMaskPhiRecipes++; |
| 80 | |
| 81 | if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(Val: *RecipeI) && |
| 82 | !isa<VPInstruction>(Val: *RecipeI) && |
| 83 | cast<VPInstruction>(Val&: RecipeI)->getOpcode() == Instruction::PHI) { |
| 84 | errs() << "Found non-header PHI recipe in header VPBB" ; |
| 85 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 86 | errs() << ": " ; |
| 87 | RecipeI->dump(); |
| 88 | #endif |
| 89 | return false; |
| 90 | } |
| 91 | |
| 92 | if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(Val: *RecipeI)) { |
| 93 | errs() << "Found header PHI recipe in non-header VPBB" ; |
| 94 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 95 | errs() << ": " ; |
| 96 | RecipeI->dump(); |
| 97 | #endif |
| 98 | return false; |
| 99 | } |
| 100 | |
| 101 | // Check if the recipe operands match the number of predecessors. |
| 102 | // TODO Extend to other phi-like recipes. |
| 103 | if (auto *PhiIRI = dyn_cast<VPIRPhi>(Val: &*RecipeI)) { |
| 104 | if (PhiIRI->getNumOperands() != VPBB->getNumPredecessors()) { |
| 105 | errs() << "Phi-like recipe with different number of operands and " |
| 106 | "predecessors.\n" ; |
| 107 | // TODO: Print broken recipe. At the moment printing an ill-formed |
| 108 | // phi-like recipe may crash. |
| 109 | return false; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | RecipeI++; |
| 114 | } |
| 115 | |
| 116 | if (!VerifyLate && NumActiveLaneMaskPhiRecipes > 1) { |
| 117 | errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe" ; |
| 118 | return false; |
| 119 | } |
| 120 | |
| 121 | while (RecipeI != End) { |
| 122 | if (RecipeI->isPhi() && !isa<VPBlendRecipe>(Val: &*RecipeI)) { |
| 123 | errs() << "Found phi-like recipe after non-phi recipe" ; |
| 124 | |
| 125 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 126 | errs() << ": " ; |
| 127 | RecipeI->dump(); |
| 128 | errs() << "after\n" ; |
| 129 | std::prev(RecipeI)->dump(); |
| 130 | #endif |
| 131 | return false; |
| 132 | } |
| 133 | RecipeI++; |
| 134 | } |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | bool VPlanVerifier::verifyEVLRecipe(const VPInstruction &EVL) const { |
| 139 | if (EVL.getOpcode() != VPInstruction::ExplicitVectorLength) { |
| 140 | errs() << "verifyEVLRecipe should only be called on " |
| 141 | "VPInstruction::ExplicitVectorLength\n" ; |
| 142 | return false; |
| 143 | } |
| 144 | auto VerifyEVLUse = [&](const VPRecipeBase &R, |
| 145 | const unsigned ExpectedIdx) -> bool { |
| 146 | SmallVector<const VPValue *> Ops(R.operands()); |
| 147 | unsigned UseCount = count(Range&: Ops, Element: &EVL); |
| 148 | if (UseCount != 1 || Ops[ExpectedIdx] != &EVL) { |
| 149 | errs() << "EVL is used as non-last operand in EVL-based recipe\n" ; |
| 150 | return false; |
| 151 | } |
| 152 | return true; |
| 153 | }; |
| 154 | return all_of(Range: EVL.users(), P: [this, &VerifyEVLUse](VPUser *U) { |
| 155 | return TypeSwitch<const VPUser *, bool>(U) |
| 156 | .Case<VPWidenIntrinsicRecipe>(caseFn: [&](const VPWidenIntrinsicRecipe *S) { |
| 157 | return VerifyEVLUse(*S, S->getNumOperands() - 1); |
| 158 | }) |
| 159 | .Case<VPWidenStoreEVLRecipe, VPReductionEVLRecipe, |
| 160 | VPWidenIntOrFpInductionRecipe>( |
| 161 | caseFn: [&](const VPRecipeBase *S) { return VerifyEVLUse(*S, 2); }) |
| 162 | .Case<VPScalarIVStepsRecipe>(caseFn: [&](auto *R) { |
| 163 | if (R->getNumOperands() != 3) { |
| 164 | errs() << "Unrolling with EVL tail folding not yet supported\n" ; |
| 165 | return false; |
| 166 | } |
| 167 | return VerifyEVLUse(*R, 2); |
| 168 | }) |
| 169 | .Case<VPWidenLoadEVLRecipe, VPVectorEndPointerRecipe>( |
| 170 | caseFn: [&](const VPRecipeBase *R) { return VerifyEVLUse(*R, 1); }) |
| 171 | .Case<VPInstructionWithType>( |
| 172 | caseFn: [&](const VPInstructionWithType *S) { return VerifyEVLUse(*S, 0); }) |
| 173 | .Case<VPInstruction>(caseFn: [&](const VPInstruction *I) { |
| 174 | if (I->getOpcode() == Instruction::PHI) |
| 175 | return VerifyEVLUse(*I, 1); |
| 176 | switch (I->getOpcode()) { |
| 177 | case Instruction::Add: |
| 178 | break; |
| 179 | case Instruction::UIToFP: |
| 180 | case Instruction::Trunc: |
| 181 | case Instruction::ZExt: |
| 182 | case Instruction::Mul: |
| 183 | case Instruction::FMul: |
| 184 | // Opcodes above can only use EVL after wide inductions have been |
| 185 | // expanded. |
| 186 | if (!VerifyLate) { |
| 187 | errs() << "EVL used by unexpected VPInstruction\n" ; |
| 188 | return false; |
| 189 | } |
| 190 | break; |
| 191 | default: |
| 192 | errs() << "EVL used by unexpected VPInstruction\n" ; |
| 193 | return false; |
| 194 | } |
| 195 | if (I->getNumUsers() != 1) { |
| 196 | errs() << "EVL is used in VPInstruction with multiple users\n" ; |
| 197 | return false; |
| 198 | } |
| 199 | if (!VerifyLate && !isa<VPEVLBasedIVPHIRecipe>(Val: *I->users().begin())) { |
| 200 | errs() << "Result of VPInstruction::Add with EVL operand is " |
| 201 | "not used by VPEVLBasedIVPHIRecipe\n" ; |
| 202 | return false; |
| 203 | } |
| 204 | return true; |
| 205 | }) |
| 206 | .Default(defaultFn: [&](const VPUser *U) { |
| 207 | errs() << "EVL has unexpected user\n" ; |
| 208 | return false; |
| 209 | }); |
| 210 | }); |
| 211 | } |
| 212 | |
| 213 | bool VPlanVerifier::verifyVPBasicBlock(const VPBasicBlock *VPBB) { |
| 214 | if (!verifyPhiRecipes(VPBB)) |
| 215 | return false; |
| 216 | |
| 217 | // Verify that defs in VPBB dominate all their uses. |
| 218 | DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering; |
| 219 | unsigned Cnt = 0; |
| 220 | for (const VPRecipeBase &R : *VPBB) |
| 221 | RecipeNumbering[&R] = Cnt++; |
| 222 | |
| 223 | for (const VPRecipeBase &R : *VPBB) { |
| 224 | if (isa<VPIRInstruction>(Val: &R) && !isa<VPIRBasicBlock>(Val: VPBB)) { |
| 225 | errs() << "VPIRInstructions " ; |
| 226 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 227 | R.dump(); |
| 228 | errs() << " " ; |
| 229 | #endif |
| 230 | errs() << "not in a VPIRBasicBlock!\n" ; |
| 231 | return false; |
| 232 | } |
| 233 | for (const VPValue *V : R.definedValues()) { |
| 234 | // Verify that we can infer a scalar type for each defined value. With |
| 235 | // assertions enabled, inferScalarType will perform some consistency |
| 236 | // checks during type inference. |
| 237 | if (!TypeInfo.inferScalarType(V)) { |
| 238 | errs() << "Failed to infer scalar type!\n" ; |
| 239 | return false; |
| 240 | } |
| 241 | |
| 242 | for (const VPUser *U : V->users()) { |
| 243 | auto *UI = cast<VPRecipeBase>(Val: U); |
| 244 | if (auto *Phi = dyn_cast<VPPhiAccessors>(Val: UI)) { |
| 245 | for (unsigned Idx = 0; Idx != Phi->getNumIncoming(); ++Idx) { |
| 246 | VPValue *IncomingVPV = Phi->getIncomingValue(Idx); |
| 247 | if (IncomingVPV != V) |
| 248 | continue; |
| 249 | |
| 250 | const VPBasicBlock *IncomingVPBB = Phi->getIncomingBlock(Idx); |
| 251 | if (VPDT.dominates(A: VPBB, B: IncomingVPBB)) |
| 252 | continue; |
| 253 | |
| 254 | errs() << "Incoming def at index " << Idx |
| 255 | << " does not dominate incoming block!\n" ; |
| 256 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 257 | VPSlotTracker Tracker(VPBB->getPlan()); |
| 258 | IncomingVPV->getDefiningRecipe()->print(errs(), " " , Tracker); |
| 259 | errs() << "\n does not dominate " << IncomingVPBB->getName() |
| 260 | << " for\n" ; |
| 261 | UI->print(errs(), " " , Tracker); |
| 262 | #endif |
| 263 | return false; |
| 264 | } |
| 265 | continue; |
| 266 | } |
| 267 | // TODO: Also verify VPPredInstPHIRecipe. |
| 268 | if (isa<VPPredInstPHIRecipe>(Val: UI)) |
| 269 | continue; |
| 270 | |
| 271 | // If the user is in the same block, check it comes after R in the |
| 272 | // block. |
| 273 | if (UI->getParent() == VPBB) { |
| 274 | if (RecipeNumbering[UI] >= RecipeNumbering[&R]) |
| 275 | continue; |
| 276 | } else { |
| 277 | if (VPDT.dominates(A: VPBB, B: UI->getParent())) |
| 278 | continue; |
| 279 | } |
| 280 | |
| 281 | errs() << "Use before def!\n" ; |
| 282 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 283 | VPSlotTracker Tracker(VPBB->getPlan()); |
| 284 | UI->print(errs(), " " , Tracker); |
| 285 | errs() << "\n before\n" ; |
| 286 | R.print(errs(), " " , Tracker); |
| 287 | errs() << "\n" ; |
| 288 | #endif |
| 289 | return false; |
| 290 | } |
| 291 | } |
| 292 | if (const auto *EVL = dyn_cast<VPInstruction>(Val: &R)) { |
| 293 | if (EVL->getOpcode() == VPInstruction::ExplicitVectorLength && |
| 294 | !verifyEVLRecipe(EVL: *EVL)) { |
| 295 | errs() << "EVL VPValue is not used correctly\n" ; |
| 296 | return false; |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | auto *IRBB = dyn_cast<VPIRBasicBlock>(Val: VPBB); |
| 302 | if (!IRBB) |
| 303 | return true; |
| 304 | |
| 305 | if (!WrappedIRBBs.insert(Ptr: IRBB->getIRBasicBlock()).second) { |
| 306 | errs() << "Same IR basic block used by multiple wrapper blocks!\n" ; |
| 307 | return false; |
| 308 | } |
| 309 | |
| 310 | return true; |
| 311 | } |
| 312 | |
| 313 | /// Utility function that checks whether \p VPBlockVec has duplicate |
| 314 | /// VPBlockBases. |
| 315 | static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) { |
| 316 | SmallDenseSet<const VPBlockBase *, 8> VPBlockSet; |
| 317 | for (const auto *Block : VPBlockVec) { |
| 318 | if (!VPBlockSet.insert(V: Block).second) |
| 319 | return true; |
| 320 | } |
| 321 | return false; |
| 322 | } |
| 323 | |
| 324 | bool VPlanVerifier::verifyBlock(const VPBlockBase *VPB) { |
| 325 | auto *VPBB = dyn_cast<VPBasicBlock>(Val: VPB); |
| 326 | // Check block's condition bit. |
| 327 | if (!isa<VPIRBasicBlock>(Val: VPB)) { |
| 328 | if (VPB->getNumSuccessors() > 1 || |
| 329 | (VPBB && VPBB->getParent() && VPBB->isExiting() && |
| 330 | !VPBB->getParent()->isReplicator())) { |
| 331 | if (!VPBB || !VPBB->getTerminator()) { |
| 332 | errs() << "Block has multiple successors but doesn't " |
| 333 | "have a proper branch recipe!\n" ; |
| 334 | return false; |
| 335 | } |
| 336 | } else { |
| 337 | if (VPBB && VPBB->getTerminator()) { |
| 338 | errs() << "Unexpected branch recipe!\n" ; |
| 339 | return false; |
| 340 | } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | // Check block's successors. |
| 345 | const auto &Successors = VPB->getSuccessors(); |
| 346 | // There must be only one instance of a successor in block's successor list. |
| 347 | // TODO: This won't work for switch statements. |
| 348 | if (hasDuplicates(VPBlockVec: Successors)) { |
| 349 | errs() << "Multiple instances of the same successor.\n" ; |
| 350 | return false; |
| 351 | } |
| 352 | |
| 353 | for (const VPBlockBase *Succ : Successors) { |
| 354 | // There must be a bi-directional link between block and successor. |
| 355 | const auto &SuccPreds = Succ->getPredecessors(); |
| 356 | if (!is_contained(Range: SuccPreds, Element: VPB)) { |
| 357 | errs() << "Missing predecessor link.\n" ; |
| 358 | return false; |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | // Check block's predecessors. |
| 363 | const auto &Predecessors = VPB->getPredecessors(); |
| 364 | // There must be only one instance of a predecessor in block's predecessor |
| 365 | // list. |
| 366 | // TODO: This won't work for switch statements. |
| 367 | if (hasDuplicates(VPBlockVec: Predecessors)) { |
| 368 | errs() << "Multiple instances of the same predecessor.\n" ; |
| 369 | return false; |
| 370 | } |
| 371 | |
| 372 | for (const VPBlockBase *Pred : Predecessors) { |
| 373 | // Block and predecessor must be inside the same region. |
| 374 | if (Pred->getParent() != VPB->getParent()) { |
| 375 | errs() << "Predecessor is not in the same region.\n" ; |
| 376 | return false; |
| 377 | } |
| 378 | |
| 379 | // There must be a bi-directional link between block and predecessor. |
| 380 | const auto &PredSuccs = Pred->getSuccessors(); |
| 381 | if (!is_contained(Range: PredSuccs, Element: VPB)) { |
| 382 | errs() << "Missing successor link.\n" ; |
| 383 | return false; |
| 384 | } |
| 385 | } |
| 386 | return !VPBB || verifyVPBasicBlock(VPBB); |
| 387 | } |
| 388 | |
| 389 | bool VPlanVerifier::verifyBlocksInRegion(const VPRegionBlock *Region) { |
| 390 | for (const VPBlockBase *VPB : vp_depth_first_shallow(G: Region->getEntry())) { |
| 391 | // Check block's parent. |
| 392 | if (VPB->getParent() != Region) { |
| 393 | errs() << "VPBlockBase has wrong parent\n" ; |
| 394 | return false; |
| 395 | } |
| 396 | |
| 397 | if (!verifyBlock(VPB)) |
| 398 | return false; |
| 399 | } |
| 400 | return true; |
| 401 | } |
| 402 | |
| 403 | bool VPlanVerifier::verifyRegion(const VPRegionBlock *Region) { |
| 404 | const VPBlockBase *Entry = Region->getEntry(); |
| 405 | const VPBlockBase *Exiting = Region->getExiting(); |
| 406 | |
| 407 | // Entry and Exiting shouldn't have any predecessor/successor, respectively. |
| 408 | if (Entry->getNumPredecessors() != 0) { |
| 409 | errs() << "region entry block has predecessors\n" ; |
| 410 | return false; |
| 411 | } |
| 412 | if (Exiting->getNumSuccessors() != 0) { |
| 413 | errs() << "region exiting block has successors\n" ; |
| 414 | return false; |
| 415 | } |
| 416 | |
| 417 | return verifyBlocksInRegion(Region); |
| 418 | } |
| 419 | |
| 420 | bool VPlanVerifier::verifyRegionRec(const VPRegionBlock *Region) { |
| 421 | // Recurse inside nested regions and check all blocks inside the region. |
| 422 | return verifyRegion(Region) && |
| 423 | all_of(Range: vp_depth_first_shallow(G: Region->getEntry()), |
| 424 | P: [this](const VPBlockBase *VPB) { |
| 425 | const auto *SubRegion = dyn_cast<VPRegionBlock>(Val: VPB); |
| 426 | return !SubRegion || verifyRegionRec(Region: SubRegion); |
| 427 | }); |
| 428 | } |
| 429 | |
| 430 | bool VPlanVerifier::verify(const VPlan &Plan) { |
| 431 | if (any_of(Range: vp_depth_first_shallow(G: Plan.getEntry()), |
| 432 | P: [this](const VPBlockBase *VPB) { return !verifyBlock(VPB); })) |
| 433 | return false; |
| 434 | |
| 435 | const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); |
| 436 | // TODO: Verify all blocks using vp_depth_first_deep iterators. |
| 437 | if (!TopRegion) |
| 438 | return true; |
| 439 | |
| 440 | if (!verifyRegionRec(Region: TopRegion)) |
| 441 | return false; |
| 442 | |
| 443 | if (TopRegion->getParent()) { |
| 444 | errs() << "VPlan Top Region should have no parent.\n" ; |
| 445 | return false; |
| 446 | } |
| 447 | |
| 448 | const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(Val: TopRegion->getEntry()); |
| 449 | if (!Entry) { |
| 450 | errs() << "VPlan entry block is not a VPBasicBlock\n" ; |
| 451 | return false; |
| 452 | } |
| 453 | |
| 454 | if (!isa<VPCanonicalIVPHIRecipe>(Val: &*Entry->begin())) { |
| 455 | errs() << "VPlan vector loop header does not start with a " |
| 456 | "VPCanonicalIVPHIRecipe\n" ; |
| 457 | return false; |
| 458 | } |
| 459 | |
| 460 | const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(Val: TopRegion->getExiting()); |
| 461 | if (!Exiting) { |
| 462 | errs() << "VPlan exiting block is not a VPBasicBlock\n" ; |
| 463 | return false; |
| 464 | } |
| 465 | |
| 466 | if (Exiting->empty()) { |
| 467 | errs() << "VPlan vector loop exiting block must end with BranchOnCount or " |
| 468 | "BranchOnCond VPInstruction but is empty\n" ; |
| 469 | return false; |
| 470 | } |
| 471 | |
| 472 | auto *LastInst = dyn_cast<VPInstruction>(Val: std::prev(x: Exiting->end())); |
| 473 | if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount && |
| 474 | LastInst->getOpcode() != VPInstruction::BranchOnCond)) { |
| 475 | errs() << "VPlan vector loop exit must end with BranchOnCount or " |
| 476 | "BranchOnCond VPInstruction\n" ; |
| 477 | return false; |
| 478 | } |
| 479 | |
| 480 | return true; |
| 481 | } |
| 482 | |
| 483 | bool llvm::verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate) { |
| 484 | VPDominatorTree VPDT; |
| 485 | VPDT.recalculate(Func&: const_cast<VPlan &>(Plan)); |
| 486 | VPTypeAnalysis TypeInfo(Plan); |
| 487 | VPlanVerifier Verifier(VPDT, TypeInfo, VerifyLate); |
| 488 | return Verifier.verify(Plan); |
| 489 | } |
| 490 | |