1 | //===------- VectorCombine.cpp - Optimize partial vector operations -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass optimizes scalar/vector interactions using target cost models. The |
10 | // transforms implemented here may not fit in traditional loop-based or SLP |
11 | // vectorization passes. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/Vectorize/VectorCombine.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/ScopeExit.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/Analysis/AssumptionCache.h" |
21 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
22 | #include "llvm/Analysis/GlobalsModRef.h" |
23 | #include "llvm/Analysis/InstSimplifyFolder.h" |
24 | #include "llvm/Analysis/Loads.h" |
25 | #include "llvm/Analysis/TargetFolder.h" |
26 | #include "llvm/Analysis/TargetTransformInfo.h" |
27 | #include "llvm/Analysis/ValueTracking.h" |
28 | #include "llvm/Analysis/VectorUtils.h" |
29 | #include "llvm/IR/Dominators.h" |
30 | #include "llvm/IR/Function.h" |
31 | #include "llvm/IR/IRBuilder.h" |
32 | #include "llvm/IR/PatternMatch.h" |
33 | #include "llvm/Support/CommandLine.h" |
34 | #include "llvm/Transforms/Utils/Local.h" |
35 | #include "llvm/Transforms/Utils/LoopUtils.h" |
36 | #include <numeric> |
37 | #include <queue> |
38 | #include <set> |
39 | |
40 | #define DEBUG_TYPE "vector-combine" |
41 | #include "llvm/Transforms/Utils/InstructionWorklist.h" |
42 | |
43 | using namespace llvm; |
44 | using namespace llvm::PatternMatch; |
45 | |
46 | STATISTIC(NumVecLoad, "Number of vector loads formed" ); |
47 | STATISTIC(NumVecCmp, "Number of vector compares formed" ); |
48 | STATISTIC(NumVecBO, "Number of vector binops formed" ); |
49 | STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed" ); |
50 | STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast" ); |
51 | STATISTIC(NumScalarOps, "Number of scalar unary + binary ops formed" ); |
52 | STATISTIC(NumScalarCmp, "Number of scalar compares formed" ); |
53 | STATISTIC(NumScalarIntrinsic, "Number of scalar intrinsic calls formed" ); |
54 | |
55 | static cl::opt<bool> DisableVectorCombine( |
56 | "disable-vector-combine" , cl::init(Val: false), cl::Hidden, |
57 | cl::desc("Disable all vector combine transforms" )); |
58 | |
59 | static cl::opt<bool> ( |
60 | "disable-binop-extract-shuffle" , cl::init(Val: false), cl::Hidden, |
61 | cl::desc("Disable binop extract to shuffle transforms" )); |
62 | |
63 | static cl::opt<unsigned> MaxInstrsToScan( |
64 | "vector-combine-max-scan-instrs" , cl::init(Val: 30), cl::Hidden, |
65 | cl::desc("Max number of instructions to scan for vector combining." )); |
66 | |
67 | static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); |
68 | |
69 | namespace { |
70 | class VectorCombine { |
71 | public: |
72 | VectorCombine(Function &F, const TargetTransformInfo &TTI, |
73 | const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, |
74 | const DataLayout *DL, TTI::TargetCostKind CostKind, |
75 | bool TryEarlyFoldsOnly) |
76 | : F(F), Builder(F.getContext(), InstSimplifyFolder(*DL)), TTI(TTI), |
77 | DT(DT), AA(AA), AC(AC), DL(DL), CostKind(CostKind), |
78 | TryEarlyFoldsOnly(TryEarlyFoldsOnly) {} |
79 | |
80 | bool run(); |
81 | |
82 | private: |
83 | Function &F; |
84 | IRBuilder<InstSimplifyFolder> Builder; |
85 | const TargetTransformInfo &TTI; |
86 | const DominatorTree &DT; |
87 | AAResults &AA; |
88 | AssumptionCache &AC; |
89 | const DataLayout *DL; |
90 | TTI::TargetCostKind CostKind; |
91 | |
92 | /// If true, only perform beneficial early IR transforms. Do not introduce new |
93 | /// vector operations. |
94 | bool TryEarlyFoldsOnly; |
95 | |
96 | InstructionWorklist Worklist; |
97 | |
98 | // TODO: Direct calls from the top-level "run" loop use a plain "Instruction" |
99 | // parameter. That should be updated to specific sub-classes because the |
100 | // run loop was changed to dispatch on opcode. |
101 | bool vectorizeLoadInsert(Instruction &I); |
102 | bool widenSubvectorLoad(Instruction &I); |
103 | ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, |
104 | ExtractElementInst *Ext1, |
105 | unsigned ) const; |
106 | bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
107 | const Instruction &I, |
108 | ExtractElementInst *&ConvertToShuffle, |
109 | unsigned ); |
110 | void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
111 | Instruction &I); |
112 | void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
113 | Instruction &I); |
114 | bool foldExtractExtract(Instruction &I); |
115 | bool foldInsExtFNeg(Instruction &I); |
116 | bool foldInsExtBinop(Instruction &I); |
117 | bool foldInsExtVectorToShuffle(Instruction &I); |
118 | bool foldBitOpOfBitcasts(Instruction &I); |
119 | bool foldBitcastShuffle(Instruction &I); |
120 | bool scalarizeOpOrCmp(Instruction &I); |
121 | bool scalarizeVPIntrinsic(Instruction &I); |
122 | bool foldExtractedCmps(Instruction &I); |
123 | bool foldBinopOfReductions(Instruction &I); |
124 | bool foldSingleElementStore(Instruction &I); |
125 | bool scalarizeLoadExtract(Instruction &I); |
126 | bool scalarizeExtExtract(Instruction &I); |
127 | bool foldConcatOfBoolMasks(Instruction &I); |
128 | bool foldPermuteOfBinops(Instruction &I); |
129 | bool foldShuffleOfBinops(Instruction &I); |
130 | bool foldShuffleOfSelects(Instruction &I); |
131 | bool foldShuffleOfCastops(Instruction &I); |
132 | bool foldShuffleOfShuffles(Instruction &I); |
133 | bool foldShuffleOfIntrinsics(Instruction &I); |
134 | bool foldShuffleToIdentity(Instruction &I); |
135 | bool foldShuffleFromReductions(Instruction &I); |
136 | bool foldCastFromReductions(Instruction &I); |
137 | bool foldSelectShuffle(Instruction &I, bool FromReduction = false); |
138 | bool foldInterleaveIntrinsics(Instruction &I); |
139 | bool shrinkType(Instruction &I); |
140 | |
141 | void replaceValue(Value &Old, Value &New) { |
142 | LLVM_DEBUG(dbgs() << "VC: Replacing: " << Old << '\n'); |
143 | LLVM_DEBUG(dbgs() << " With: " << New << '\n'); |
144 | Old.replaceAllUsesWith(V: &New); |
145 | if (auto *NewI = dyn_cast<Instruction>(Val: &New)) { |
146 | New.takeName(V: &Old); |
147 | Worklist.pushUsersToWorkList(I&: *NewI); |
148 | Worklist.pushValue(V: NewI); |
149 | } |
150 | Worklist.pushValue(V: &Old); |
151 | } |
152 | |
153 | void eraseInstruction(Instruction &I) { |
154 | LLVM_DEBUG(dbgs() << "VC: Erasing: " << I << '\n'); |
155 | SmallVector<Value *> Ops(I.operands()); |
156 | Worklist.remove(I: &I); |
157 | I.eraseFromParent(); |
158 | |
159 | // Push remaining users of the operands and then the operand itself - allows |
160 | // further folds that were hindered by OneUse limits. |
161 | for (Value *Op : Ops) |
162 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) { |
163 | Worklist.pushUsersToWorkList(I&: *OpI); |
164 | Worklist.pushValue(V: OpI); |
165 | } |
166 | } |
167 | }; |
168 | } // namespace |
169 | |
170 | /// Return the source operand of a potentially bitcasted value. If there is no |
171 | /// bitcast, return the input value itself. |
172 | static Value *peekThroughBitcasts(Value *V) { |
173 | while (auto *BitCast = dyn_cast<BitCastInst>(Val: V)) |
174 | V = BitCast->getOperand(i_nocapture: 0); |
175 | return V; |
176 | } |
177 | |
178 | static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) { |
179 | // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan. |
180 | // The widened load may load data from dirty regions or create data races |
181 | // non-existent in the source. |
182 | if (!Load || !Load->isSimple() || !Load->hasOneUse() || |
183 | Load->getFunction()->hasFnAttribute(Kind: Attribute::SanitizeMemTag) || |
184 | mustSuppressSpeculation(LI: *Load)) |
185 | return false; |
186 | |
187 | // We are potentially transforming byte-sized (8-bit) memory accesses, so make |
188 | // sure we have all of our type-based constraints in place for this target. |
189 | Type *ScalarTy = Load->getType()->getScalarType(); |
190 | uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
191 | unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
192 | if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || |
193 | ScalarSize % 8 != 0) |
194 | return false; |
195 | |
196 | return true; |
197 | } |
198 | |
199 | bool VectorCombine::vectorizeLoadInsert(Instruction &I) { |
200 | // Match insert into fixed vector of scalar value. |
201 | // TODO: Handle non-zero insert index. |
202 | Value *Scalar; |
203 | if (!match(V: &I, |
204 | P: m_InsertElt(Val: m_Poison(), Elt: m_OneUse(SubPattern: m_Value(V&: Scalar)), Idx: m_ZeroInt()))) |
205 | return false; |
206 | |
207 | // Optionally match an extract from another vector. |
208 | Value *X; |
209 | bool = match(V: Scalar, P: m_ExtractElt(Val: m_Value(V&: X), Idx: m_ZeroInt())); |
210 | if (!HasExtract) |
211 | X = Scalar; |
212 | |
213 | auto *Load = dyn_cast<LoadInst>(Val: X); |
214 | if (!canWidenLoad(Load, TTI)) |
215 | return false; |
216 | |
217 | Type *ScalarTy = Scalar->getType(); |
218 | uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
219 | unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
220 | |
221 | // Check safety of replacing the scalar load with a larger vector load. |
222 | // We use minimal alignment (maximum flexibility) because we only care about |
223 | // the dereferenceable region. When calculating cost and creating a new op, |
224 | // we may use a larger value based on alignment attributes. |
225 | Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
226 | assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type" ); |
227 | |
228 | unsigned MinVecNumElts = MinVectorSize / ScalarSize; |
229 | auto *MinVecTy = VectorType::get(ElementType: ScalarTy, NumElements: MinVecNumElts, Scalable: false); |
230 | unsigned OffsetEltIndex = 0; |
231 | Align Alignment = Load->getAlign(); |
232 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty: MinVecTy, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, |
233 | DT: &DT)) { |
234 | // It is not safe to load directly from the pointer, but we can still peek |
235 | // through gep offsets and check if it safe to load from a base address with |
236 | // updated alignment. If it is, we can shuffle the element(s) into place |
237 | // after loading. |
238 | unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(Ty: SrcPtr->getType()); |
239 | APInt Offset(OffsetBitWidth, 0); |
240 | SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL: *DL, Offset); |
241 | |
242 | // We want to shuffle the result down from a high element of a vector, so |
243 | // the offset must be positive. |
244 | if (Offset.isNegative()) |
245 | return false; |
246 | |
247 | // The offset must be a multiple of the scalar element to shuffle cleanly |
248 | // in the element's size. |
249 | uint64_t ScalarSizeInBytes = ScalarSize / 8; |
250 | if (Offset.urem(RHS: ScalarSizeInBytes) != 0) |
251 | return false; |
252 | |
253 | // If we load MinVecNumElts, will our target element still be loaded? |
254 | OffsetEltIndex = Offset.udiv(RHS: ScalarSizeInBytes).getZExtValue(); |
255 | if (OffsetEltIndex >= MinVecNumElts) |
256 | return false; |
257 | |
258 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty: MinVecTy, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, |
259 | DT: &DT)) |
260 | return false; |
261 | |
262 | // Update alignment with offset value. Note that the offset could be negated |
263 | // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but |
264 | // negation does not change the result of the alignment calculation. |
265 | Alignment = commonAlignment(A: Alignment, Offset: Offset.getZExtValue()); |
266 | } |
267 | |
268 | // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 |
269 | // Use the greater of the alignment on the load or its source pointer. |
270 | Alignment = std::max(a: SrcPtr->getPointerAlignment(DL: *DL), b: Alignment); |
271 | Type *LoadTy = Load->getType(); |
272 | unsigned AS = Load->getPointerAddressSpace(); |
273 | InstructionCost OldCost = |
274 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: LoadTy, Alignment, AddressSpace: AS, CostKind); |
275 | APInt DemandedElts = APInt::getOneBitSet(numBits: MinVecNumElts, BitNo: 0); |
276 | OldCost += |
277 | TTI.getScalarizationOverhead(Ty: MinVecTy, DemandedElts, |
278 | /* Insert */ true, Extract: HasExtract, CostKind); |
279 | |
280 | // New pattern: load VecPtr |
281 | InstructionCost NewCost = |
282 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: MinVecTy, Alignment, AddressSpace: AS, CostKind); |
283 | // Optionally, we are shuffling the loaded vector element(s) into place. |
284 | // For the mask set everything but element 0 to undef to prevent poison from |
285 | // propagating from the extra loaded memory. This will also optionally |
286 | // shrink/grow the vector from the loaded size to the output size. |
287 | // We assume this operation has no cost in codegen if there was no offset. |
288 | // Note that we could use freeze to avoid poison problems, but then we might |
289 | // still need a shuffle to change the vector size. |
290 | auto *Ty = cast<FixedVectorType>(Val: I.getType()); |
291 | unsigned OutputNumElts = Ty->getNumElements(); |
292 | SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem); |
293 | assert(OffsetEltIndex < MinVecNumElts && "Address offset too big" ); |
294 | Mask[0] = OffsetEltIndex; |
295 | if (OffsetEltIndex) |
296 | NewCost += TTI.getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, DstTy: Ty, SrcTy: MinVecTy, Mask, |
297 | CostKind); |
298 | |
299 | // We can aggressively convert to the vector form because the backend can |
300 | // invert this transform if it does not result in a performance win. |
301 | if (OldCost < NewCost || !NewCost.isValid()) |
302 | return false; |
303 | |
304 | // It is safe and potentially profitable to load a vector directly: |
305 | // inselt undef, load Scalar, 0 --> load VecPtr |
306 | IRBuilder<> Builder(Load); |
307 | Value *CastedPtr = |
308 | Builder.CreatePointerBitCastOrAddrSpaceCast(V: SrcPtr, DestTy: Builder.getPtrTy(AddrSpace: AS)); |
309 | Value *VecLd = Builder.CreateAlignedLoad(Ty: MinVecTy, Ptr: CastedPtr, Align: Alignment); |
310 | VecLd = Builder.CreateShuffleVector(V: VecLd, Mask); |
311 | |
312 | replaceValue(Old&: I, New&: *VecLd); |
313 | ++NumVecLoad; |
314 | return true; |
315 | } |
316 | |
317 | /// If we are loading a vector and then inserting it into a larger vector with |
318 | /// undefined elements, try to load the larger vector and eliminate the insert. |
319 | /// This removes a shuffle in IR and may allow combining of other loaded values. |
320 | bool VectorCombine::widenSubvectorLoad(Instruction &I) { |
321 | // Match subvector insert of fixed vector. |
322 | auto *Shuf = cast<ShuffleVectorInst>(Val: &I); |
323 | if (!Shuf->isIdentityWithPadding()) |
324 | return false; |
325 | |
326 | // Allow a non-canonical shuffle mask that is choosing elements from op1. |
327 | unsigned NumOpElts = |
328 | cast<FixedVectorType>(Val: Shuf->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
329 | unsigned OpIndex = any_of(Range: Shuf->getShuffleMask(), P: [&NumOpElts](int M) { |
330 | return M >= (int)(NumOpElts); |
331 | }); |
332 | |
333 | auto *Load = dyn_cast<LoadInst>(Val: Shuf->getOperand(i_nocapture: OpIndex)); |
334 | if (!canWidenLoad(Load, TTI)) |
335 | return false; |
336 | |
337 | // We use minimal alignment (maximum flexibility) because we only care about |
338 | // the dereferenceable region. When calculating cost and creating a new op, |
339 | // we may use a larger value based on alignment attributes. |
340 | auto *Ty = cast<FixedVectorType>(Val: I.getType()); |
341 | Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
342 | assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type" ); |
343 | Align Alignment = Load->getAlign(); |
344 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, DT: &DT)) |
345 | return false; |
346 | |
347 | Alignment = std::max(a: SrcPtr->getPointerAlignment(DL: *DL), b: Alignment); |
348 | Type *LoadTy = Load->getType(); |
349 | unsigned AS = Load->getPointerAddressSpace(); |
350 | |
351 | // Original pattern: insert_subvector (load PtrOp) |
352 | // This conservatively assumes that the cost of a subvector insert into an |
353 | // undef value is 0. We could add that cost if the cost model accurately |
354 | // reflects the real cost of that operation. |
355 | InstructionCost OldCost = |
356 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: LoadTy, Alignment, AddressSpace: AS, CostKind); |
357 | |
358 | // New pattern: load PtrOp |
359 | InstructionCost NewCost = |
360 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: Ty, Alignment, AddressSpace: AS, CostKind); |
361 | |
362 | // We can aggressively convert to the vector form because the backend can |
363 | // invert this transform if it does not result in a performance win. |
364 | if (OldCost < NewCost || !NewCost.isValid()) |
365 | return false; |
366 | |
367 | IRBuilder<> Builder(Load); |
368 | Value *CastedPtr = |
369 | Builder.CreatePointerBitCastOrAddrSpaceCast(V: SrcPtr, DestTy: Builder.getPtrTy(AddrSpace: AS)); |
370 | Value *VecLd = Builder.CreateAlignedLoad(Ty, Ptr: CastedPtr, Align: Alignment); |
371 | replaceValue(Old&: I, New&: *VecLd); |
372 | ++NumVecLoad; |
373 | return true; |
374 | } |
375 | |
376 | /// Determine which, if any, of the inputs should be replaced by a shuffle |
377 | /// followed by extract from a different index. |
378 | ExtractElementInst *VectorCombine::( |
379 | ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
380 | unsigned = InvalidIndex) const { |
381 | auto *Index0C = dyn_cast<ConstantInt>(Val: Ext0->getIndexOperand()); |
382 | auto *Index1C = dyn_cast<ConstantInt>(Val: Ext1->getIndexOperand()); |
383 | assert(Index0C && Index1C && "Expected constant extract indexes" ); |
384 | |
385 | unsigned Index0 = Index0C->getZExtValue(); |
386 | unsigned Index1 = Index1C->getZExtValue(); |
387 | |
388 | // If the extract indexes are identical, no shuffle is needed. |
389 | if (Index0 == Index1) |
390 | return nullptr; |
391 | |
392 | Type *VecTy = Ext0->getVectorOperand()->getType(); |
393 | assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types" ); |
394 | InstructionCost Cost0 = |
395 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Index0); |
396 | InstructionCost Cost1 = |
397 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Index1); |
398 | |
399 | // If both costs are invalid no shuffle is needed |
400 | if (!Cost0.isValid() && !Cost1.isValid()) |
401 | return nullptr; |
402 | |
403 | // We are extracting from 2 different indexes, so one operand must be shuffled |
404 | // before performing a vector operation and/or extract. The more expensive |
405 | // extract will be replaced by a shuffle. |
406 | if (Cost0 > Cost1) |
407 | return Ext0; |
408 | if (Cost1 > Cost0) |
409 | return Ext1; |
410 | |
411 | // If the costs are equal and there is a preferred extract index, shuffle the |
412 | // opposite operand. |
413 | if (PreferredExtractIndex == Index0) |
414 | return Ext1; |
415 | if (PreferredExtractIndex == Index1) |
416 | return Ext0; |
417 | |
418 | // Otherwise, replace the extract with the higher index. |
419 | return Index0 > Index1 ? Ext0 : Ext1; |
420 | } |
421 | |
422 | /// Compare the relative costs of 2 extracts followed by scalar operation vs. |
423 | /// vector operation(s) followed by extract. Return true if the existing |
424 | /// instructions are cheaper than a vector alternative. Otherwise, return false |
425 | /// and if one of the extracts should be transformed to a shufflevector, set |
426 | /// \p ConvertToShuffle to that extract instruction. |
427 | bool VectorCombine::(ExtractElementInst *Ext0, |
428 | ExtractElementInst *Ext1, |
429 | const Instruction &I, |
430 | ExtractElementInst *&ConvertToShuffle, |
431 | unsigned ) { |
432 | auto *Ext0IndexC = dyn_cast<ConstantInt>(Val: Ext0->getIndexOperand()); |
433 | auto *Ext1IndexC = dyn_cast<ConstantInt>(Val: Ext1->getIndexOperand()); |
434 | assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes" ); |
435 | |
436 | unsigned Opcode = I.getOpcode(); |
437 | Value *Ext0Src = Ext0->getVectorOperand(); |
438 | Value *Ext1Src = Ext1->getVectorOperand(); |
439 | Type *ScalarTy = Ext0->getType(); |
440 | auto *VecTy = cast<VectorType>(Val: Ext0Src->getType()); |
441 | InstructionCost ScalarOpCost, VectorOpCost; |
442 | |
443 | // Get cost estimates for scalar and vector versions of the operation. |
444 | bool IsBinOp = Instruction::isBinaryOp(Opcode); |
445 | if (IsBinOp) { |
446 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: ScalarTy, CostKind); |
447 | VectorOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
448 | } else { |
449 | assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && |
450 | "Expected a compare" ); |
451 | CmpInst::Predicate Pred = cast<CmpInst>(Val: I).getPredicate(); |
452 | ScalarOpCost = TTI.getCmpSelInstrCost( |
453 | Opcode, ValTy: ScalarTy, CondTy: CmpInst::makeCmpResultType(opnd_type: ScalarTy), VecPred: Pred, CostKind); |
454 | VectorOpCost = TTI.getCmpSelInstrCost( |
455 | Opcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred, CostKind); |
456 | } |
457 | |
458 | // Get cost estimates for the extract elements. These costs will factor into |
459 | // both sequences. |
460 | unsigned Ext0Index = Ext0IndexC->getZExtValue(); |
461 | unsigned Ext1Index = Ext1IndexC->getZExtValue(); |
462 | |
463 | InstructionCost = |
464 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Ext0Index); |
465 | InstructionCost = |
466 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Ext1Index); |
467 | |
468 | // A more expensive extract will always be replaced by a splat shuffle. |
469 | // For example, if Ext0 is more expensive: |
470 | // opcode (extelt V0, Ext0), (ext V1, Ext1) --> |
471 | // extelt (opcode (splat V0, Ext0), V1), Ext1 |
472 | // TODO: Evaluate whether that always results in lowest cost. Alternatively, |
473 | // check the cost of creating a broadcast shuffle and shuffling both |
474 | // operands to element 0. |
475 | unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index; |
476 | unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index; |
477 | InstructionCost = std::min(a: Extract0Cost, b: Extract1Cost); |
478 | |
479 | // Extra uses of the extracts mean that we include those costs in the |
480 | // vector total because those instructions will not be eliminated. |
481 | InstructionCost OldCost, NewCost; |
482 | if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) { |
483 | // Handle a special case. If the 2 extracts are identical, adjust the |
484 | // formulas to account for that. The extra use charge allows for either the |
485 | // CSE'd pattern or an unoptimized form with identical values: |
486 | // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C |
487 | bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(N: 2) |
488 | : !Ext0->hasOneUse() || !Ext1->hasOneUse(); |
489 | OldCost = CheapExtractCost + ScalarOpCost; |
490 | NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; |
491 | } else { |
492 | // Handle the general case. Each extract is actually a different value: |
493 | // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C |
494 | OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; |
495 | NewCost = VectorOpCost + CheapExtractCost + |
496 | !Ext0->hasOneUse() * Extract0Cost + |
497 | !Ext1->hasOneUse() * Extract1Cost; |
498 | } |
499 | |
500 | ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); |
501 | if (ConvertToShuffle) { |
502 | if (IsBinOp && DisableBinopExtractShuffle) |
503 | return true; |
504 | |
505 | // If we are extracting from 2 different indexes, then one operand must be |
506 | // shuffled before performing the vector operation. The shuffle mask is |
507 | // poison except for 1 lane that is being translated to the remaining |
508 | // extraction lane. Therefore, it is a splat shuffle. Ex: |
509 | // ShufMask = { poison, poison, 0, poison } |
510 | // TODO: The cost model has an option for a "broadcast" shuffle |
511 | // (splat-from-element-0), but no option for a more general splat. |
512 | if (auto *FixedVecTy = dyn_cast<FixedVectorType>(Val: VecTy)) { |
513 | SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(), |
514 | PoisonMaskElem); |
515 | ShuffleMask[BestInsIndex] = BestExtIndex; |
516 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
517 | DstTy: VecTy, SrcTy: VecTy, Mask: ShuffleMask, CostKind, Index: 0, |
518 | SubTp: nullptr, Args: {ConvertToShuffle}); |
519 | } else { |
520 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
521 | DstTy: VecTy, SrcTy: VecTy, Mask: {}, CostKind, Index: 0, SubTp: nullptr, |
522 | Args: {ConvertToShuffle}); |
523 | } |
524 | } |
525 | |
526 | // Aggressively form a vector op if the cost is equal because the transform |
527 | // may enable further optimization. |
528 | // Codegen can reverse this transform (scalarize) if it was not profitable. |
529 | return OldCost < NewCost; |
530 | } |
531 | |
532 | /// Create a shuffle that translates (shifts) 1 element from the input vector |
533 | /// to a new element location. |
534 | static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, |
535 | unsigned NewIndex, IRBuilderBase &Builder) { |
536 | // The shuffle mask is poison except for 1 lane that is being translated |
537 | // to the new element index. Example for OldIndex == 2 and NewIndex == 0: |
538 | // ShufMask = { 2, poison, poison, poison } |
539 | auto *VecTy = cast<FixedVectorType>(Val: Vec->getType()); |
540 | SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem); |
541 | ShufMask[NewIndex] = OldIndex; |
542 | return Builder.CreateShuffleVector(V: Vec, Mask: ShufMask, Name: "shift" ); |
543 | } |
544 | |
545 | /// Given an extract element instruction with constant index operand, shuffle |
546 | /// the source vector (shift the scalar element) to a NewIndex for extraction. |
547 | /// Return null if the input can be constant folded, so that we are not creating |
548 | /// unnecessary instructions. |
549 | static ExtractElementInst *(ExtractElementInst *ExtElt, |
550 | unsigned NewIndex, |
551 | IRBuilderBase &Builder) { |
552 | // Shufflevectors can only be created for fixed-width vectors. |
553 | Value *X = ExtElt->getVectorOperand(); |
554 | if (!isa<FixedVectorType>(Val: X->getType())) |
555 | return nullptr; |
556 | |
557 | // If the extract can be constant-folded, this code is unsimplified. Defer |
558 | // to other passes to handle that. |
559 | Value *C = ExtElt->getIndexOperand(); |
560 | assert(isa<ConstantInt>(C) && "Expected a constant index operand" ); |
561 | if (isa<Constant>(Val: X)) |
562 | return nullptr; |
563 | |
564 | Value *Shuf = createShiftShuffle(Vec: X, OldIndex: cast<ConstantInt>(Val: C)->getZExtValue(), |
565 | NewIndex, Builder); |
566 | return cast<ExtractElementInst>(Val: Builder.CreateExtractElement(Vec: Shuf, Idx: NewIndex)); |
567 | } |
568 | |
569 | /// Try to reduce extract element costs by converting scalar compares to vector |
570 | /// compares followed by extract. |
571 | /// cmp (ext0 V0, C), (ext1 V1, C) |
572 | void VectorCombine::(ExtractElementInst *Ext0, |
573 | ExtractElementInst *Ext1, Instruction &I) { |
574 | assert(isa<CmpInst>(&I) && "Expected a compare" ); |
575 | assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == |
576 | cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && |
577 | "Expected matching constant extract indexes" ); |
578 | |
579 | // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C |
580 | ++NumVecCmp; |
581 | CmpInst::Predicate Pred = cast<CmpInst>(Val: &I)->getPredicate(); |
582 | Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); |
583 | Value *VecCmp = Builder.CreateCmp(Pred, LHS: V0, RHS: V1); |
584 | Value *NewExt = Builder.CreateExtractElement(Vec: VecCmp, Idx: Ext0->getIndexOperand()); |
585 | replaceValue(Old&: I, New&: *NewExt); |
586 | } |
587 | |
588 | /// Try to reduce extract element costs by converting scalar binops to vector |
589 | /// binops followed by extract. |
590 | /// bo (ext0 V0, C), (ext1 V1, C) |
591 | void VectorCombine::(ExtractElementInst *Ext0, |
592 | ExtractElementInst *Ext1, Instruction &I) { |
593 | assert(isa<BinaryOperator>(&I) && "Expected a binary operator" ); |
594 | assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == |
595 | cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && |
596 | "Expected matching constant extract indexes" ); |
597 | |
598 | // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C |
599 | ++NumVecBO; |
600 | Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); |
601 | Value *VecBO = |
602 | Builder.CreateBinOp(Opc: cast<BinaryOperator>(Val: &I)->getOpcode(), LHS: V0, RHS: V1); |
603 | |
604 | // All IR flags are safe to back-propagate because any potential poison |
605 | // created in unused vector elements is discarded by the extract. |
606 | if (auto *VecBOInst = dyn_cast<Instruction>(Val: VecBO)) |
607 | VecBOInst->copyIRFlags(V: &I); |
608 | |
609 | Value *NewExt = Builder.CreateExtractElement(Vec: VecBO, Idx: Ext0->getIndexOperand()); |
610 | replaceValue(Old&: I, New&: *NewExt); |
611 | } |
612 | |
613 | /// Match an instruction with extracted vector operands. |
614 | bool VectorCombine::(Instruction &I) { |
615 | // It is not safe to transform things like div, urem, etc. because we may |
616 | // create undefined behavior when executing those on unknown vector elements. |
617 | if (!isSafeToSpeculativelyExecute(I: &I)) |
618 | return false; |
619 | |
620 | Instruction *I0, *I1; |
621 | CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
622 | if (!match(V: &I, P: m_Cmp(Pred, L: m_Instruction(I&: I0), R: m_Instruction(I&: I1))) && |
623 | !match(V: &I, P: m_BinOp(L: m_Instruction(I&: I0), R: m_Instruction(I&: I1)))) |
624 | return false; |
625 | |
626 | Value *V0, *V1; |
627 | uint64_t C0, C1; |
628 | if (!match(V: I0, P: m_ExtractElt(Val: m_Value(V&: V0), Idx: m_ConstantInt(V&: C0))) || |
629 | !match(V: I1, P: m_ExtractElt(Val: m_Value(V&: V1), Idx: m_ConstantInt(V&: C1))) || |
630 | V0->getType() != V1->getType()) |
631 | return false; |
632 | |
633 | // If the scalar value 'I' is going to be re-inserted into a vector, then try |
634 | // to create an extract to that same element. The extract/insert can be |
635 | // reduced to a "select shuffle". |
636 | // TODO: If we add a larger pattern match that starts from an insert, this |
637 | // probably becomes unnecessary. |
638 | auto *Ext0 = cast<ExtractElementInst>(Val: I0); |
639 | auto *Ext1 = cast<ExtractElementInst>(Val: I1); |
640 | uint64_t InsertIndex = InvalidIndex; |
641 | if (I.hasOneUse()) |
642 | match(V: I.user_back(), |
643 | P: m_InsertElt(Val: m_Value(), Elt: m_Value(), Idx: m_ConstantInt(V&: InsertIndex))); |
644 | |
645 | ExtractElementInst *; |
646 | if (isExtractExtractCheap(Ext0, Ext1, I, ConvertToShuffle&: ExtractToChange, PreferredExtractIndex: InsertIndex)) |
647 | return false; |
648 | |
649 | if (ExtractToChange) { |
650 | unsigned = ExtractToChange == Ext0 ? C1 : C0; |
651 | ExtractElementInst * = |
652 | translateExtract(ExtElt: ExtractToChange, NewIndex: CheapExtractIdx, Builder); |
653 | if (!NewExtract) |
654 | return false; |
655 | if (ExtractToChange == Ext0) |
656 | Ext0 = NewExtract; |
657 | else |
658 | Ext1 = NewExtract; |
659 | } |
660 | |
661 | if (Pred != CmpInst::BAD_ICMP_PREDICATE) |
662 | foldExtExtCmp(Ext0, Ext1, I); |
663 | else |
664 | foldExtExtBinop(Ext0, Ext1, I); |
665 | |
666 | Worklist.push(I: Ext0); |
667 | Worklist.push(I: Ext1); |
668 | return true; |
669 | } |
670 | |
671 | /// Try to replace an extract + scalar fneg + insert with a vector fneg + |
672 | /// shuffle. |
673 | bool VectorCombine::foldInsExtFNeg(Instruction &I) { |
674 | // Match an insert (op (extract)) pattern. |
675 | Value *DestVec; |
676 | uint64_t Index; |
677 | Instruction *FNeg; |
678 | if (!match(V: &I, P: m_InsertElt(Val: m_Value(V&: DestVec), Elt: m_OneUse(SubPattern: m_Instruction(I&: FNeg)), |
679 | Idx: m_ConstantInt(V&: Index)))) |
680 | return false; |
681 | |
682 | // Note: This handles the canonical fneg instruction and "fsub -0.0, X". |
683 | Value *SrcVec; |
684 | Instruction *; |
685 | if (!match(V: FNeg, P: m_FNeg(X: m_CombineAnd( |
686 | L: m_Instruction(I&: Extract), |
687 | R: m_ExtractElt(Val: m_Value(V&: SrcVec), Idx: m_SpecificInt(V: Index)))))) |
688 | return false; |
689 | |
690 | auto *VecTy = cast<FixedVectorType>(Val: I.getType()); |
691 | auto *ScalarTy = VecTy->getScalarType(); |
692 | auto *SrcVecTy = dyn_cast<FixedVectorType>(Val: SrcVec->getType()); |
693 | if (!SrcVecTy || ScalarTy != SrcVecTy->getScalarType()) |
694 | return false; |
695 | |
696 | // Ignore bogus insert/extract index. |
697 | unsigned NumElts = VecTy->getNumElements(); |
698 | if (Index >= NumElts) |
699 | return false; |
700 | |
701 | // We are inserting the negated element into the same lane that we extracted |
702 | // from. This is equivalent to a select-shuffle that chooses all but the |
703 | // negated element from the destination vector. |
704 | SmallVector<int> Mask(NumElts); |
705 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
706 | Mask[Index] = Index + NumElts; |
707 | InstructionCost OldCost = |
708 | TTI.getArithmeticInstrCost(Opcode: Instruction::FNeg, Ty: ScalarTy, CostKind) + |
709 | TTI.getVectorInstrCost(I, Val: VecTy, CostKind, Index); |
710 | |
711 | // If the extract has one use, it will be eliminated, so count it in the |
712 | // original cost. If it has more than one use, ignore the cost because it will |
713 | // be the same before/after. |
714 | if (Extract->hasOneUse()) |
715 | OldCost += TTI.getVectorInstrCost(I: *Extract, Val: VecTy, CostKind, Index); |
716 | |
717 | InstructionCost NewCost = |
718 | TTI.getArithmeticInstrCost(Opcode: Instruction::FNeg, Ty: VecTy, CostKind) + |
719 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: VecTy, SrcTy: VecTy, |
720 | Mask, CostKind); |
721 | |
722 | bool NeedLenChg = SrcVecTy->getNumElements() != NumElts; |
723 | // If the lengths of the two vectors are not equal, |
724 | // we need to add a length-change vector. Add this cost. |
725 | SmallVector<int> SrcMask; |
726 | if (NeedLenChg) { |
727 | SrcMask.assign(NumElts, Elt: PoisonMaskElem); |
728 | SrcMask[Index] = Index; |
729 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
730 | DstTy: VecTy, SrcTy: SrcVecTy, Mask: SrcMask, CostKind); |
731 | } |
732 | |
733 | if (NewCost > OldCost) |
734 | return false; |
735 | |
736 | Value *NewShuf; |
737 | // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index |
738 | Value *VecFNeg = Builder.CreateFNegFMF(V: SrcVec, FMFSource: FNeg); |
739 | if (NeedLenChg) { |
740 | // shuffle DestVec, (shuffle (fneg SrcVec), poison, SrcMask), Mask |
741 | Value *LenChgShuf = Builder.CreateShuffleVector(V: VecFNeg, Mask: SrcMask); |
742 | NewShuf = Builder.CreateShuffleVector(V1: DestVec, V2: LenChgShuf, Mask); |
743 | } else { |
744 | // shuffle DestVec, (fneg SrcVec), Mask |
745 | NewShuf = Builder.CreateShuffleVector(V1: DestVec, V2: VecFNeg, Mask); |
746 | } |
747 | |
748 | replaceValue(Old&: I, New&: *NewShuf); |
749 | return true; |
750 | } |
751 | |
752 | /// Try to fold insert(binop(x,y),binop(a,b),idx) |
753 | /// --> binop(insert(x,a,idx),insert(y,b,idx)) |
754 | bool VectorCombine::foldInsExtBinop(Instruction &I) { |
755 | BinaryOperator *VecBinOp, *SclBinOp; |
756 | uint64_t Index; |
757 | if (!match(V: &I, |
758 | P: m_InsertElt(Val: m_OneUse(SubPattern: m_BinOp(I&: VecBinOp)), |
759 | Elt: m_OneUse(SubPattern: m_BinOp(I&: SclBinOp)), Idx: m_ConstantInt(V&: Index)))) |
760 | return false; |
761 | |
762 | // TODO: Add support for addlike etc. |
763 | Instruction::BinaryOps BinOpcode = VecBinOp->getOpcode(); |
764 | if (BinOpcode != SclBinOp->getOpcode()) |
765 | return false; |
766 | |
767 | auto *ResultTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
768 | if (!ResultTy) |
769 | return false; |
770 | |
771 | // TODO: Attempt to detect m_ExtractElt for scalar operands and convert to |
772 | // shuffle? |
773 | |
774 | InstructionCost OldCost = TTI.getInstructionCost(U: &I, CostKind) + |
775 | TTI.getInstructionCost(U: VecBinOp, CostKind) + |
776 | TTI.getInstructionCost(U: SclBinOp, CostKind); |
777 | InstructionCost NewCost = |
778 | TTI.getArithmeticInstrCost(Opcode: BinOpcode, Ty: ResultTy, CostKind) + |
779 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: ResultTy, CostKind, |
780 | Index, Op0: VecBinOp->getOperand(i_nocapture: 0), |
781 | Op1: SclBinOp->getOperand(i_nocapture: 0)) + |
782 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: ResultTy, CostKind, |
783 | Index, Op0: VecBinOp->getOperand(i_nocapture: 1), |
784 | Op1: SclBinOp->getOperand(i_nocapture: 1)); |
785 | |
786 | LLVM_DEBUG(dbgs() << "Found an insertion of two binops: " << I |
787 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
788 | << "\n" ); |
789 | if (NewCost > OldCost) |
790 | return false; |
791 | |
792 | Value *NewIns0 = Builder.CreateInsertElement(Vec: VecBinOp->getOperand(i_nocapture: 0), |
793 | NewElt: SclBinOp->getOperand(i_nocapture: 0), Idx: Index); |
794 | Value *NewIns1 = Builder.CreateInsertElement(Vec: VecBinOp->getOperand(i_nocapture: 1), |
795 | NewElt: SclBinOp->getOperand(i_nocapture: 1), Idx: Index); |
796 | Value *NewBO = Builder.CreateBinOp(Opc: BinOpcode, LHS: NewIns0, RHS: NewIns1); |
797 | |
798 | // Intersect flags from the old binops. |
799 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) { |
800 | NewInst->copyIRFlags(V: VecBinOp); |
801 | NewInst->andIRFlags(V: SclBinOp); |
802 | } |
803 | |
804 | Worklist.pushValue(V: NewIns0); |
805 | Worklist.pushValue(V: NewIns1); |
806 | replaceValue(Old&: I, New&: *NewBO); |
807 | return true; |
808 | } |
809 | |
810 | bool VectorCombine::foldBitOpOfBitcasts(Instruction &I) { |
811 | // Match: bitop(bitcast(x), bitcast(y)) -> bitcast(bitop(x, y)) |
812 | Value *LHSSrc, *RHSSrc; |
813 | if (!match(V: &I, P: m_BitwiseLogic(L: m_BitCast(Op: m_Value(V&: LHSSrc)), |
814 | R: m_BitCast(Op: m_Value(V&: RHSSrc))))) |
815 | return false; |
816 | |
817 | // Source types must match |
818 | if (LHSSrc->getType() != RHSSrc->getType()) |
819 | return false; |
820 | if (!LHSSrc->getType()->getScalarType()->isIntegerTy()) |
821 | return false; |
822 | |
823 | // Only handle vector types |
824 | auto *SrcVecTy = dyn_cast<FixedVectorType>(Val: LHSSrc->getType()); |
825 | auto *DstVecTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
826 | if (!SrcVecTy || !DstVecTy) |
827 | return false; |
828 | |
829 | // Same total bit width |
830 | assert(SrcVecTy->getPrimitiveSizeInBits() == |
831 | DstVecTy->getPrimitiveSizeInBits() && |
832 | "Bitcast should preserve total bit width" ); |
833 | |
834 | // Cost Check : |
835 | // OldCost = bitlogic + 2*bitcasts |
836 | // NewCost = bitlogic + bitcast |
837 | auto *BinOp = cast<BinaryOperator>(Val: &I); |
838 | InstructionCost OldCost = |
839 | TTI.getArithmeticInstrCost(Opcode: BinOp->getOpcode(), Ty: DstVecTy) + |
840 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: DstVecTy, Src: LHSSrc->getType(), |
841 | CCH: TTI::CastContextHint::None) + |
842 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: DstVecTy, Src: RHSSrc->getType(), |
843 | CCH: TTI::CastContextHint::None); |
844 | InstructionCost NewCost = |
845 | TTI.getArithmeticInstrCost(Opcode: BinOp->getOpcode(), Ty: SrcVecTy) + |
846 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: DstVecTy, Src: SrcVecTy, |
847 | CCH: TTI::CastContextHint::None); |
848 | |
849 | LLVM_DEBUG(dbgs() << "Found a bitwise logic op of bitcasted values: " << I |
850 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
851 | << "\n" ); |
852 | |
853 | if (NewCost > OldCost) |
854 | return false; |
855 | |
856 | // Create the operation on the source type |
857 | Value *NewOp = Builder.CreateBinOp(Opc: BinOp->getOpcode(), LHS: LHSSrc, RHS: RHSSrc, |
858 | Name: BinOp->getName() + ".inner" ); |
859 | if (auto *NewBinOp = dyn_cast<BinaryOperator>(Val: NewOp)) |
860 | NewBinOp->copyIRFlags(V: BinOp); |
861 | |
862 | Worklist.pushValue(V: NewOp); |
863 | |
864 | // Bitcast the result back |
865 | Value *Result = Builder.CreateBitCast(V: NewOp, DestTy: I.getType()); |
866 | replaceValue(Old&: I, New&: *Result); |
867 | return true; |
868 | } |
869 | |
870 | /// If this is a bitcast of a shuffle, try to bitcast the source vector to the |
871 | /// destination type followed by shuffle. This can enable further transforms by |
872 | /// moving bitcasts or shuffles together. |
873 | bool VectorCombine::foldBitcastShuffle(Instruction &I) { |
874 | Value *V0, *V1; |
875 | ArrayRef<int> Mask; |
876 | if (!match(V: &I, P: m_BitCast(Op: m_OneUse( |
877 | SubPattern: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(Mask)))))) |
878 | return false; |
879 | |
880 | // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for |
881 | // scalable type is unknown; Second, we cannot reason if the narrowed shuffle |
882 | // mask for scalable type is a splat or not. |
883 | // 2) Disallow non-vector casts. |
884 | // TODO: We could allow any shuffle. |
885 | auto *DestTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
886 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: V0->getType()); |
887 | if (!DestTy || !SrcTy) |
888 | return false; |
889 | |
890 | unsigned DestEltSize = DestTy->getScalarSizeInBits(); |
891 | unsigned SrcEltSize = SrcTy->getScalarSizeInBits(); |
892 | if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0) |
893 | return false; |
894 | |
895 | bool IsUnary = isa<UndefValue>(Val: V1); |
896 | |
897 | // For binary shuffles, only fold bitcast(shuffle(X,Y)) |
898 | // if it won't increase the number of bitcasts. |
899 | if (!IsUnary) { |
900 | auto *BCTy0 = dyn_cast<FixedVectorType>(Val: peekThroughBitcasts(V: V0)->getType()); |
901 | auto *BCTy1 = dyn_cast<FixedVectorType>(Val: peekThroughBitcasts(V: V1)->getType()); |
902 | if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) && |
903 | !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType())) |
904 | return false; |
905 | } |
906 | |
907 | SmallVector<int, 16> NewMask; |
908 | if (DestEltSize <= SrcEltSize) { |
909 | // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
910 | // always be expanded to the equivalent form choosing narrower elements. |
911 | assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask" ); |
912 | unsigned ScaleFactor = SrcEltSize / DestEltSize; |
913 | narrowShuffleMaskElts(Scale: ScaleFactor, Mask, ScaledMask&: NewMask); |
914 | } else { |
915 | // The bitcast is from narrow elements to wide elements. The shuffle mask |
916 | // must choose consecutive elements to allow casting first. |
917 | assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask" ); |
918 | unsigned ScaleFactor = DestEltSize / SrcEltSize; |
919 | if (!widenShuffleMaskElts(Scale: ScaleFactor, Mask, ScaledMask&: NewMask)) |
920 | return false; |
921 | } |
922 | |
923 | // Bitcast the shuffle src - keep its original width but using the destination |
924 | // scalar type. |
925 | unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize; |
926 | auto *NewShuffleTy = |
927 | FixedVectorType::get(ElementType: DestTy->getScalarType(), NumElts: NumSrcElts); |
928 | auto *OldShuffleTy = |
929 | FixedVectorType::get(ElementType: SrcTy->getScalarType(), NumElts: Mask.size()); |
930 | unsigned NumOps = IsUnary ? 1 : 2; |
931 | |
932 | // The new shuffle must not cost more than the old shuffle. |
933 | TargetTransformInfo::ShuffleKind SK = |
934 | IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc |
935 | : TargetTransformInfo::SK_PermuteTwoSrc; |
936 | |
937 | InstructionCost NewCost = |
938 | TTI.getShuffleCost(Kind: SK, DstTy: DestTy, SrcTy: NewShuffleTy, Mask: NewMask, CostKind) + |
939 | (NumOps * TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: NewShuffleTy, Src: SrcTy, |
940 | CCH: TargetTransformInfo::CastContextHint::None, |
941 | CostKind)); |
942 | InstructionCost OldCost = |
943 | TTI.getShuffleCost(Kind: SK, DstTy: OldShuffleTy, SrcTy, Mask, CostKind) + |
944 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: DestTy, Src: OldShuffleTy, |
945 | CCH: TargetTransformInfo::CastContextHint::None, |
946 | CostKind); |
947 | |
948 | LLVM_DEBUG(dbgs() << "Found a bitcasted shuffle: " << I << "\n OldCost: " |
949 | << OldCost << " vs NewCost: " << NewCost << "\n" ); |
950 | |
951 | if (NewCost > OldCost || !NewCost.isValid()) |
952 | return false; |
953 | |
954 | // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC' |
955 | ++NumShufOfBitcast; |
956 | Value *CastV0 = Builder.CreateBitCast(V: peekThroughBitcasts(V: V0), DestTy: NewShuffleTy); |
957 | Value *CastV1 = Builder.CreateBitCast(V: peekThroughBitcasts(V: V1), DestTy: NewShuffleTy); |
958 | Value *Shuf = Builder.CreateShuffleVector(V1: CastV0, V2: CastV1, Mask: NewMask); |
959 | replaceValue(Old&: I, New&: *Shuf); |
960 | return true; |
961 | } |
962 | |
963 | /// VP Intrinsics whose vector operands are both splat values may be simplified |
964 | /// into the scalar version of the operation and the result splatted. This |
965 | /// can lead to scalarization down the line. |
966 | bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) { |
967 | if (!isa<VPIntrinsic>(Val: I)) |
968 | return false; |
969 | VPIntrinsic &VPI = cast<VPIntrinsic>(Val&: I); |
970 | Value *Op0 = VPI.getArgOperand(i: 0); |
971 | Value *Op1 = VPI.getArgOperand(i: 1); |
972 | |
973 | if (!isSplatValue(V: Op0) || !isSplatValue(V: Op1)) |
974 | return false; |
975 | |
976 | // Check getSplatValue early in this function, to avoid doing unnecessary |
977 | // work. |
978 | Value *ScalarOp0 = getSplatValue(V: Op0); |
979 | Value *ScalarOp1 = getSplatValue(V: Op1); |
980 | if (!ScalarOp0 || !ScalarOp1) |
981 | return false; |
982 | |
983 | // For the binary VP intrinsics supported here, the result on disabled lanes |
984 | // is a poison value. For now, only do this simplification if all lanes |
985 | // are active. |
986 | // TODO: Relax the condition that all lanes are active by using insertelement |
987 | // on inactive lanes. |
988 | auto IsAllTrueMask = [](Value *MaskVal) { |
989 | if (Value *SplattedVal = getSplatValue(V: MaskVal)) |
990 | if (auto *ConstValue = dyn_cast<Constant>(Val: SplattedVal)) |
991 | return ConstValue->isAllOnesValue(); |
992 | return false; |
993 | }; |
994 | if (!IsAllTrueMask(VPI.getArgOperand(i: 2))) |
995 | return false; |
996 | |
997 | // Check to make sure we support scalarization of the intrinsic |
998 | Intrinsic::ID IntrID = VPI.getIntrinsicID(); |
999 | if (!VPBinOpIntrinsic::isVPBinOp(ID: IntrID)) |
1000 | return false; |
1001 | |
1002 | // Calculate cost of splatting both operands into vectors and the vector |
1003 | // intrinsic |
1004 | VectorType *VecTy = cast<VectorType>(Val: VPI.getType()); |
1005 | SmallVector<int> Mask; |
1006 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: VecTy)) |
1007 | Mask.resize(N: FVTy->getNumElements(), NV: 0); |
1008 | InstructionCost SplatCost = |
1009 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: VecTy, CostKind, Index: 0) + |
1010 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_Broadcast, DstTy: VecTy, SrcTy: VecTy, Mask, |
1011 | CostKind); |
1012 | |
1013 | // Calculate the cost of the VP Intrinsic |
1014 | SmallVector<Type *, 4> Args; |
1015 | for (Value *V : VPI.args()) |
1016 | Args.push_back(Elt: V->getType()); |
1017 | IntrinsicCostAttributes Attrs(IntrID, VecTy, Args); |
1018 | InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(ICA: Attrs, CostKind); |
1019 | InstructionCost OldCost = 2 * SplatCost + VectorOpCost; |
1020 | |
1021 | // Determine scalar opcode |
1022 | std::optional<unsigned> FunctionalOpcode = |
1023 | VPI.getFunctionalOpcode(); |
1024 | std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt; |
1025 | if (!FunctionalOpcode) { |
1026 | ScalarIntrID = VPI.getFunctionalIntrinsicID(); |
1027 | if (!ScalarIntrID) |
1028 | return false; |
1029 | } |
1030 | |
1031 | // Calculate cost of scalarizing |
1032 | InstructionCost ScalarOpCost = 0; |
1033 | if (ScalarIntrID) { |
1034 | IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args); |
1035 | ScalarOpCost = TTI.getIntrinsicInstrCost(ICA: Attrs, CostKind); |
1036 | } else { |
1037 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode: *FunctionalOpcode, |
1038 | Ty: VecTy->getScalarType(), CostKind); |
1039 | } |
1040 | |
1041 | // The existing splats may be kept around if other instructions use them. |
1042 | InstructionCost CostToKeepSplats = |
1043 | (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse()); |
1044 | InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats; |
1045 | |
1046 | LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI |
1047 | << "\n" ); |
1048 | LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost |
1049 | << ", Cost of scalarizing:" << NewCost << "\n" ); |
1050 | |
1051 | // We want to scalarize unless the vector variant actually has lower cost. |
1052 | if (OldCost < NewCost || !NewCost.isValid()) |
1053 | return false; |
1054 | |
1055 | // Scalarize the intrinsic |
1056 | ElementCount EC = cast<VectorType>(Val: Op0->getType())->getElementCount(); |
1057 | Value *EVL = VPI.getArgOperand(i: 3); |
1058 | |
1059 | // If the VP op might introduce UB or poison, we can scalarize it provided |
1060 | // that we know the EVL > 0: If the EVL is zero, then the original VP op |
1061 | // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by |
1062 | // scalarizing it. |
1063 | bool SafeToSpeculate; |
1064 | if (ScalarIntrID) |
1065 | SafeToSpeculate = Intrinsic::getFnAttributes(C&: I.getContext(), id: *ScalarIntrID) |
1066 | .hasAttribute(Kind: Attribute::AttrKind::Speculatable); |
1067 | else |
1068 | SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode( |
1069 | Opcode: *FunctionalOpcode, Inst: &VPI, CtxI: nullptr, AC: &AC, DT: &DT); |
1070 | if (!SafeToSpeculate && |
1071 | !isKnownNonZero(V: EVL, Q: SimplifyQuery(*DL, &DT, &AC, &VPI))) |
1072 | return false; |
1073 | |
1074 | Value *ScalarVal = |
1075 | ScalarIntrID |
1076 | ? Builder.CreateIntrinsic(RetTy: VecTy->getScalarType(), ID: *ScalarIntrID, |
1077 | Args: {ScalarOp0, ScalarOp1}) |
1078 | : Builder.CreateBinOp(Opc: (Instruction::BinaryOps)(*FunctionalOpcode), |
1079 | LHS: ScalarOp0, RHS: ScalarOp1); |
1080 | |
1081 | replaceValue(Old&: VPI, New&: *Builder.CreateVectorSplat(EC, V: ScalarVal)); |
1082 | return true; |
1083 | } |
1084 | |
1085 | /// Match a vector op/compare/intrinsic with at least one |
1086 | /// inserted scalar operand and convert to scalar op/cmp/intrinsic followed |
1087 | /// by insertelement. |
1088 | bool VectorCombine::scalarizeOpOrCmp(Instruction &I) { |
1089 | auto *UO = dyn_cast<UnaryOperator>(Val: &I); |
1090 | auto *BO = dyn_cast<BinaryOperator>(Val: &I); |
1091 | auto *CI = dyn_cast<CmpInst>(Val: &I); |
1092 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
1093 | if (!UO && !BO && !CI && !II) |
1094 | return false; |
1095 | |
1096 | // TODO: Allow intrinsics with different argument types |
1097 | if (II) { |
1098 | if (!isTriviallyVectorizable(ID: II->getIntrinsicID())) |
1099 | return false; |
1100 | for (auto [Idx, Arg] : enumerate(First: II->args())) |
1101 | if (Arg->getType() != II->getType() && |
1102 | !isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Idx, TTI: &TTI)) |
1103 | return false; |
1104 | } |
1105 | |
1106 | // Do not convert the vector condition of a vector select into a scalar |
1107 | // condition. That may cause problems for codegen because of differences in |
1108 | // boolean formats and register-file transfers. |
1109 | // TODO: Can we account for that in the cost model? |
1110 | if (CI) |
1111 | for (User *U : I.users()) |
1112 | if (match(V: U, P: m_Select(C: m_Specific(V: &I), L: m_Value(), R: m_Value()))) |
1113 | return false; |
1114 | |
1115 | // Match constant vectors or scalars being inserted into constant vectors: |
1116 | // vec_op [VecC0 | (inselt VecC0, V0, Index)], ... |
1117 | SmallVector<Value *> VecCs, ScalarOps; |
1118 | std::optional<uint64_t> Index; |
1119 | |
1120 | auto Ops = II ? II->args() : I.operands(); |
1121 | for (auto [OpNum, Op] : enumerate(First&: Ops)) { |
1122 | Constant *VecC; |
1123 | Value *V; |
1124 | uint64_t InsIdx = 0; |
1125 | if (match(V: Op.get(), P: m_InsertElt(Val: m_Constant(C&: VecC), Elt: m_Value(V), |
1126 | Idx: m_ConstantInt(V&: InsIdx)))) { |
1127 | // Bail if any inserts are out of bounds. |
1128 | VectorType *OpTy = cast<VectorType>(Val: Op->getType()); |
1129 | if (OpTy->getElementCount().getKnownMinValue() <= InsIdx) |
1130 | return false; |
1131 | // All inserts must have the same index. |
1132 | // TODO: Deal with mismatched index constants and variable indexes? |
1133 | if (!Index) |
1134 | Index = InsIdx; |
1135 | else if (InsIdx != *Index) |
1136 | return false; |
1137 | VecCs.push_back(Elt: VecC); |
1138 | ScalarOps.push_back(Elt: V); |
1139 | } else if (II && isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), |
1140 | ScalarOpdIdx: OpNum, TTI: &TTI)) { |
1141 | VecCs.push_back(Elt: Op.get()); |
1142 | ScalarOps.push_back(Elt: Op.get()); |
1143 | } else if (match(V: Op.get(), P: m_Constant(C&: VecC))) { |
1144 | VecCs.push_back(Elt: VecC); |
1145 | ScalarOps.push_back(Elt: nullptr); |
1146 | } else { |
1147 | return false; |
1148 | } |
1149 | } |
1150 | |
1151 | // Bail if all operands are constant. |
1152 | if (!Index.has_value()) |
1153 | return false; |
1154 | |
1155 | VectorType *VecTy = cast<VectorType>(Val: I.getType()); |
1156 | Type *ScalarTy = VecTy->getScalarType(); |
1157 | assert(VecTy->isVectorTy() && |
1158 | (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || |
1159 | ScalarTy->isPointerTy()) && |
1160 | "Unexpected types for insert element into binop or cmp" ); |
1161 | |
1162 | unsigned Opcode = I.getOpcode(); |
1163 | InstructionCost ScalarOpCost, VectorOpCost; |
1164 | if (CI) { |
1165 | CmpInst::Predicate Pred = CI->getPredicate(); |
1166 | ScalarOpCost = TTI.getCmpSelInstrCost( |
1167 | Opcode, ValTy: ScalarTy, CondTy: CmpInst::makeCmpResultType(opnd_type: ScalarTy), VecPred: Pred, CostKind); |
1168 | VectorOpCost = TTI.getCmpSelInstrCost( |
1169 | Opcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred, CostKind); |
1170 | } else if (UO || BO) { |
1171 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: ScalarTy, CostKind); |
1172 | VectorOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
1173 | } else { |
1174 | IntrinsicCostAttributes ScalarICA( |
1175 | II->getIntrinsicID(), ScalarTy, |
1176 | SmallVector<Type *>(II->arg_size(), ScalarTy)); |
1177 | ScalarOpCost = TTI.getIntrinsicInstrCost(ICA: ScalarICA, CostKind); |
1178 | IntrinsicCostAttributes VectorICA( |
1179 | II->getIntrinsicID(), VecTy, |
1180 | SmallVector<Type *>(II->arg_size(), VecTy)); |
1181 | VectorOpCost = TTI.getIntrinsicInstrCost(ICA: VectorICA, CostKind); |
1182 | } |
1183 | |
1184 | // Fold the vector constants in the original vectors into a new base vector to |
1185 | // get more accurate cost modelling. |
1186 | Value *NewVecC = nullptr; |
1187 | TargetFolder Folder(*DL); |
1188 | if (CI) |
1189 | NewVecC = Folder.FoldCmp(P: CI->getPredicate(), LHS: VecCs[0], RHS: VecCs[1]); |
1190 | else if (UO) |
1191 | NewVecC = |
1192 | Folder.FoldUnOpFMF(Opc: UO->getOpcode(), V: VecCs[0], FMF: UO->getFastMathFlags()); |
1193 | else if (BO) |
1194 | NewVecC = Folder.FoldBinOp(Opc: BO->getOpcode(), LHS: VecCs[0], RHS: VecCs[1]); |
1195 | else if (II->arg_size() == 2) |
1196 | NewVecC = Folder.FoldBinaryIntrinsic(ID: II->getIntrinsicID(), LHS: VecCs[0], |
1197 | RHS: VecCs[1], Ty: II->getType(), FMFSource: &I); |
1198 | |
1199 | // Get cost estimate for the insert element. This cost will factor into |
1200 | // both sequences. |
1201 | InstructionCost OldCost = VectorOpCost; |
1202 | InstructionCost NewCost = |
1203 | ScalarOpCost + TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: VecTy, |
1204 | CostKind, Index: *Index, Op0: NewVecC); |
1205 | for (auto [Idx, Op, VecC, Scalar] : enumerate(First&: Ops, Rest&: VecCs, Rest&: ScalarOps)) { |
1206 | if (!Scalar || (II && isVectorIntrinsicWithScalarOpAtArg( |
1207 | ID: II->getIntrinsicID(), ScalarOpdIdx: Idx, TTI: &TTI))) |
1208 | continue; |
1209 | InstructionCost InsertCost = TTI.getVectorInstrCost( |
1210 | Opcode: Instruction::InsertElement, Val: VecTy, CostKind, Index: *Index, Op0: VecC, Op1: Scalar); |
1211 | OldCost += InsertCost; |
1212 | NewCost += !Op->hasOneUse() * InsertCost; |
1213 | } |
1214 | |
1215 | // We want to scalarize unless the vector variant actually has lower cost. |
1216 | if (OldCost < NewCost || !NewCost.isValid()) |
1217 | return false; |
1218 | |
1219 | // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> |
1220 | // inselt NewVecC, (scalar_op V0, V1), Index |
1221 | if (CI) |
1222 | ++NumScalarCmp; |
1223 | else if (UO || BO) |
1224 | ++NumScalarOps; |
1225 | else |
1226 | ++NumScalarIntrinsic; |
1227 | |
1228 | // For constant cases, extract the scalar element, this should constant fold. |
1229 | for (auto [OpIdx, Scalar, VecC] : enumerate(First&: ScalarOps, Rest&: VecCs)) |
1230 | if (!Scalar) |
1231 | ScalarOps[OpIdx] = ConstantExpr::getExtractElement( |
1232 | Vec: cast<Constant>(Val: VecC), Idx: Builder.getInt64(C: *Index)); |
1233 | |
1234 | Value *Scalar; |
1235 | if (CI) |
1236 | Scalar = Builder.CreateCmp(Pred: CI->getPredicate(), LHS: ScalarOps[0], RHS: ScalarOps[1]); |
1237 | else if (UO || BO) |
1238 | Scalar = Builder.CreateNAryOp(Opc: Opcode, Ops: ScalarOps); |
1239 | else |
1240 | Scalar = Builder.CreateIntrinsic(RetTy: ScalarTy, ID: II->getIntrinsicID(), Args: ScalarOps); |
1241 | |
1242 | Scalar->setName(I.getName() + ".scalar" ); |
1243 | |
1244 | // All IR flags are safe to back-propagate. There is no potential for extra |
1245 | // poison to be created by the scalar instruction. |
1246 | if (auto *ScalarInst = dyn_cast<Instruction>(Val: Scalar)) |
1247 | ScalarInst->copyIRFlags(V: &I); |
1248 | |
1249 | // Create a new base vector if the constant folding failed. |
1250 | if (!NewVecC) { |
1251 | if (CI) |
1252 | NewVecC = Builder.CreateCmp(Pred: CI->getPredicate(), LHS: VecCs[0], RHS: VecCs[1]); |
1253 | else if (UO || BO) |
1254 | NewVecC = Builder.CreateNAryOp(Opc: Opcode, Ops: VecCs); |
1255 | else |
1256 | NewVecC = Builder.CreateIntrinsic(RetTy: VecTy, ID: II->getIntrinsicID(), Args: VecCs); |
1257 | } |
1258 | Value *Insert = Builder.CreateInsertElement(Vec: NewVecC, NewElt: Scalar, Idx: *Index); |
1259 | replaceValue(Old&: I, New&: *Insert); |
1260 | return true; |
1261 | } |
1262 | |
1263 | /// Try to combine a scalar binop + 2 scalar compares of extracted elements of |
1264 | /// a vector into vector operations followed by extract. Note: The SLP pass |
1265 | /// may miss this pattern because of implementation problems. |
1266 | bool VectorCombine::(Instruction &I) { |
1267 | auto *BI = dyn_cast<BinaryOperator>(Val: &I); |
1268 | |
1269 | // We are looking for a scalar binop of booleans. |
1270 | // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) |
1271 | if (!BI || !I.getType()->isIntegerTy(Bitwidth: 1)) |
1272 | return false; |
1273 | |
1274 | // The compare predicates should match, and each compare should have a |
1275 | // constant operand. |
1276 | Value *B0 = I.getOperand(i: 0), *B1 = I.getOperand(i: 1); |
1277 | Instruction *I0, *I1; |
1278 | Constant *C0, *C1; |
1279 | CmpPredicate P0, P1; |
1280 | if (!match(V: B0, P: m_Cmp(Pred&: P0, L: m_Instruction(I&: I0), R: m_Constant(C&: C0))) || |
1281 | !match(V: B1, P: m_Cmp(Pred&: P1, L: m_Instruction(I&: I1), R: m_Constant(C&: C1)))) |
1282 | return false; |
1283 | |
1284 | auto MatchingPred = CmpPredicate::getMatching(A: P0, B: P1); |
1285 | if (!MatchingPred) |
1286 | return false; |
1287 | |
1288 | // The compare operands must be extracts of the same vector with constant |
1289 | // extract indexes. |
1290 | Value *X; |
1291 | uint64_t Index0, Index1; |
1292 | if (!match(V: I0, P: m_ExtractElt(Val: m_Value(V&: X), Idx: m_ConstantInt(V&: Index0))) || |
1293 | !match(V: I1, P: m_ExtractElt(Val: m_Specific(V: X), Idx: m_ConstantInt(V&: Index1)))) |
1294 | return false; |
1295 | |
1296 | auto *Ext0 = cast<ExtractElementInst>(Val: I0); |
1297 | auto *Ext1 = cast<ExtractElementInst>(Val: I1); |
1298 | ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex: CostKind); |
1299 | if (!ConvertToShuf) |
1300 | return false; |
1301 | assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) && |
1302 | "Unknown ExtractElementInst" ); |
1303 | |
1304 | // The original scalar pattern is: |
1305 | // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) |
1306 | CmpInst::Predicate Pred = *MatchingPred; |
1307 | unsigned CmpOpcode = |
1308 | CmpInst::isFPPredicate(P: Pred) ? Instruction::FCmp : Instruction::ICmp; |
1309 | auto *VecTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
1310 | if (!VecTy) |
1311 | return false; |
1312 | |
1313 | InstructionCost Ext0Cost = |
1314 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Index0); |
1315 | InstructionCost Ext1Cost = |
1316 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Index1); |
1317 | InstructionCost CmpCost = TTI.getCmpSelInstrCost( |
1318 | Opcode: CmpOpcode, ValTy: I0->getType(), CondTy: CmpInst::makeCmpResultType(opnd_type: I0->getType()), VecPred: Pred, |
1319 | CostKind); |
1320 | |
1321 | InstructionCost OldCost = |
1322 | Ext0Cost + Ext1Cost + CmpCost * 2 + |
1323 | TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: I.getType(), CostKind); |
1324 | |
1325 | // The proposed vector pattern is: |
1326 | // vcmp = cmp Pred X, VecC |
1327 | // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 |
1328 | int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; |
1329 | int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; |
1330 | auto *CmpTy = cast<FixedVectorType>(Val: CmpInst::makeCmpResultType(opnd_type: VecTy)); |
1331 | InstructionCost NewCost = TTI.getCmpSelInstrCost( |
1332 | Opcode: CmpOpcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred, CostKind); |
1333 | SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem); |
1334 | ShufMask[CheapIndex] = ExpensiveIndex; |
1335 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, DstTy: CmpTy, |
1336 | SrcTy: CmpTy, Mask: ShufMask, CostKind); |
1337 | NewCost += TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: CmpTy, CostKind); |
1338 | NewCost += TTI.getVectorInstrCost(I: *Ext0, Val: CmpTy, CostKind, Index: CheapIndex); |
1339 | NewCost += Ext0->hasOneUse() ? 0 : Ext0Cost; |
1340 | NewCost += Ext1->hasOneUse() ? 0 : Ext1Cost; |
1341 | |
1342 | // Aggressively form vector ops if the cost is equal because the transform |
1343 | // may enable further optimization. |
1344 | // Codegen can reverse this transform (scalarize) if it was not profitable. |
1345 | if (OldCost < NewCost || !NewCost.isValid()) |
1346 | return false; |
1347 | |
1348 | // Create a vector constant from the 2 scalar constants. |
1349 | SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), |
1350 | PoisonValue::get(T: VecTy->getElementType())); |
1351 | CmpC[Index0] = C0; |
1352 | CmpC[Index1] = C1; |
1353 | Value *VCmp = Builder.CreateCmp(Pred, LHS: X, RHS: ConstantVector::get(V: CmpC)); |
1354 | Value *Shuf = createShiftShuffle(Vec: VCmp, OldIndex: ExpensiveIndex, NewIndex: CheapIndex, Builder); |
1355 | Value *LHS = ConvertToShuf == Ext0 ? Shuf : VCmp; |
1356 | Value *RHS = ConvertToShuf == Ext0 ? VCmp : Shuf; |
1357 | Value *VecLogic = Builder.CreateBinOp(Opc: BI->getOpcode(), LHS, RHS); |
1358 | Value *NewExt = Builder.CreateExtractElement(Vec: VecLogic, Idx: CheapIndex); |
1359 | replaceValue(Old&: I, New&: *NewExt); |
1360 | ++NumVecCmpBO; |
1361 | return true; |
1362 | } |
1363 | |
1364 | static void analyzeCostOfVecReduction(const IntrinsicInst &II, |
1365 | TTI::TargetCostKind CostKind, |
1366 | const TargetTransformInfo &TTI, |
1367 | InstructionCost &CostBeforeReduction, |
1368 | InstructionCost &CostAfterReduction) { |
1369 | Instruction *Op0, *Op1; |
1370 | auto *RedOp = dyn_cast<Instruction>(Val: II.getOperand(i_nocapture: 0)); |
1371 | auto *VecRedTy = cast<VectorType>(Val: II.getOperand(i_nocapture: 0)->getType()); |
1372 | unsigned ReductionOpc = |
1373 | getArithmeticReductionInstruction(RdxID: II.getIntrinsicID()); |
1374 | if (RedOp && match(V: RedOp, P: m_ZExtOrSExt(Op: m_Value()))) { |
1375 | bool IsUnsigned = isa<ZExtInst>(Val: RedOp); |
1376 | auto *ExtType = cast<VectorType>(Val: RedOp->getOperand(i: 0)->getType()); |
1377 | |
1378 | CostBeforeReduction = |
1379 | TTI.getCastInstrCost(Opcode: RedOp->getOpcode(), Dst: VecRedTy, Src: ExtType, |
1380 | CCH: TTI::CastContextHint::None, CostKind, I: RedOp); |
1381 | CostAfterReduction = |
1382 | TTI.getExtendedReductionCost(Opcode: ReductionOpc, IsUnsigned, ResTy: II.getType(), |
1383 | Ty: ExtType, FMF: FastMathFlags(), CostKind); |
1384 | return; |
1385 | } |
1386 | if (RedOp && II.getIntrinsicID() == Intrinsic::vector_reduce_add && |
1387 | match(V: RedOp, |
1388 | P: m_ZExtOrSExt(Op: m_Mul(L: m_Instruction(I&: Op0), R: m_Instruction(I&: Op1)))) && |
1389 | match(V: Op0, P: m_ZExtOrSExt(Op: m_Value())) && |
1390 | Op0->getOpcode() == Op1->getOpcode() && |
1391 | Op0->getOperand(i: 0)->getType() == Op1->getOperand(i: 0)->getType() && |
1392 | (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { |
1393 | // Matched reduce.add(ext(mul(ext(A), ext(B))) |
1394 | bool IsUnsigned = isa<ZExtInst>(Val: Op0); |
1395 | auto *ExtType = cast<VectorType>(Val: Op0->getOperand(i: 0)->getType()); |
1396 | VectorType *MulType = VectorType::get(ElementType: Op0->getType(), Other: VecRedTy); |
1397 | |
1398 | InstructionCost ExtCost = |
1399 | TTI.getCastInstrCost(Opcode: Op0->getOpcode(), Dst: MulType, Src: ExtType, |
1400 | CCH: TTI::CastContextHint::None, CostKind, I: Op0); |
1401 | InstructionCost MulCost = |
1402 | TTI.getArithmeticInstrCost(Opcode: Instruction::Mul, Ty: MulType, CostKind); |
1403 | InstructionCost Ext2Cost = |
1404 | TTI.getCastInstrCost(Opcode: RedOp->getOpcode(), Dst: VecRedTy, Src: MulType, |
1405 | CCH: TTI::CastContextHint::None, CostKind, I: RedOp); |
1406 | |
1407 | CostBeforeReduction = ExtCost * 2 + MulCost + Ext2Cost; |
1408 | CostAfterReduction = |
1409 | TTI.getMulAccReductionCost(IsUnsigned, ResTy: II.getType(), Ty: ExtType, CostKind); |
1410 | return; |
1411 | } |
1412 | CostAfterReduction = TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: VecRedTy, |
1413 | FMF: std::nullopt, CostKind); |
1414 | } |
1415 | |
1416 | bool VectorCombine::foldBinopOfReductions(Instruction &I) { |
1417 | Instruction::BinaryOps BinOpOpc = cast<BinaryOperator>(Val: &I)->getOpcode(); |
1418 | Intrinsic::ID ReductionIID = getReductionForBinop(Opc: BinOpOpc); |
1419 | if (BinOpOpc == Instruction::Sub) |
1420 | ReductionIID = Intrinsic::vector_reduce_add; |
1421 | if (ReductionIID == Intrinsic::not_intrinsic) |
1422 | return false; |
1423 | |
1424 | auto checkIntrinsicAndGetItsArgument = [](Value *V, |
1425 | Intrinsic::ID IID) -> Value * { |
1426 | auto *II = dyn_cast<IntrinsicInst>(Val: V); |
1427 | if (!II) |
1428 | return nullptr; |
1429 | if (II->getIntrinsicID() == IID && II->hasOneUse()) |
1430 | return II->getArgOperand(i: 0); |
1431 | return nullptr; |
1432 | }; |
1433 | |
1434 | Value *V0 = checkIntrinsicAndGetItsArgument(I.getOperand(i: 0), ReductionIID); |
1435 | if (!V0) |
1436 | return false; |
1437 | Value *V1 = checkIntrinsicAndGetItsArgument(I.getOperand(i: 1), ReductionIID); |
1438 | if (!V1) |
1439 | return false; |
1440 | |
1441 | auto *VTy = cast<VectorType>(Val: V0->getType()); |
1442 | if (V1->getType() != VTy) |
1443 | return false; |
1444 | const auto &II0 = *cast<IntrinsicInst>(Val: I.getOperand(i: 0)); |
1445 | const auto &II1 = *cast<IntrinsicInst>(Val: I.getOperand(i: 1)); |
1446 | unsigned ReductionOpc = |
1447 | getArithmeticReductionInstruction(RdxID: II0.getIntrinsicID()); |
1448 | |
1449 | InstructionCost OldCost = 0; |
1450 | InstructionCost NewCost = 0; |
1451 | InstructionCost CostOfRedOperand0 = 0; |
1452 | InstructionCost CostOfRed0 = 0; |
1453 | InstructionCost CostOfRedOperand1 = 0; |
1454 | InstructionCost CostOfRed1 = 0; |
1455 | analyzeCostOfVecReduction(II: II0, CostKind, TTI, CostBeforeReduction&: CostOfRedOperand0, CostAfterReduction&: CostOfRed0); |
1456 | analyzeCostOfVecReduction(II: II1, CostKind, TTI, CostBeforeReduction&: CostOfRedOperand1, CostAfterReduction&: CostOfRed1); |
1457 | OldCost = CostOfRed0 + CostOfRed1 + TTI.getInstructionCost(U: &I, CostKind); |
1458 | NewCost = |
1459 | CostOfRedOperand0 + CostOfRedOperand1 + |
1460 | TTI.getArithmeticInstrCost(Opcode: BinOpOpc, Ty: VTy, CostKind) + |
1461 | TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: VTy, FMF: std::nullopt, CostKind); |
1462 | if (NewCost >= OldCost || !NewCost.isValid()) |
1463 | return false; |
1464 | |
1465 | LLVM_DEBUG(dbgs() << "Found two mergeable reductions: " << I |
1466 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
1467 | << "\n" ); |
1468 | Value *VectorBO; |
1469 | if (BinOpOpc == Instruction::Or) |
1470 | VectorBO = Builder.CreateOr(LHS: V0, RHS: V1, Name: "" , |
1471 | IsDisjoint: cast<PossiblyDisjointInst>(Val&: I).isDisjoint()); |
1472 | else |
1473 | VectorBO = Builder.CreateBinOp(Opc: BinOpOpc, LHS: V0, RHS: V1); |
1474 | |
1475 | Instruction *Rdx = Builder.CreateIntrinsic(ID: ReductionIID, Types: {VTy}, Args: {VectorBO}); |
1476 | replaceValue(Old&: I, New&: *Rdx); |
1477 | return true; |
1478 | } |
1479 | |
1480 | // Check if memory loc modified between two instrs in the same BB |
1481 | static bool isMemModifiedBetween(BasicBlock::iterator Begin, |
1482 | BasicBlock::iterator End, |
1483 | const MemoryLocation &Loc, AAResults &AA) { |
1484 | unsigned NumScanned = 0; |
1485 | return std::any_of(first: Begin, last: End, pred: [&](const Instruction &Instr) { |
1486 | return isModSet(MRI: AA.getModRefInfo(I: &Instr, OptLoc: Loc)) || |
1487 | ++NumScanned > MaxInstrsToScan; |
1488 | }); |
1489 | } |
1490 | |
1491 | namespace { |
1492 | /// Helper class to indicate whether a vector index can be safely scalarized and |
1493 | /// if a freeze needs to be inserted. |
1494 | class ScalarizationResult { |
1495 | enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; |
1496 | |
1497 | StatusTy Status; |
1498 | Value *ToFreeze; |
1499 | |
1500 | ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) |
1501 | : Status(Status), ToFreeze(ToFreeze) {} |
1502 | |
1503 | public: |
1504 | ScalarizationResult(const ScalarizationResult &Other) = default; |
1505 | ~ScalarizationResult() { |
1506 | assert(!ToFreeze && "freeze() not called with ToFreeze being set" ); |
1507 | } |
1508 | |
1509 | static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } |
1510 | static ScalarizationResult safe() { return {StatusTy::Safe}; } |
1511 | static ScalarizationResult safeWithFreeze(Value *ToFreeze) { |
1512 | return {StatusTy::SafeWithFreeze, ToFreeze}; |
1513 | } |
1514 | |
1515 | /// Returns true if the index can be scalarize without requiring a freeze. |
1516 | bool isSafe() const { return Status == StatusTy::Safe; } |
1517 | /// Returns true if the index cannot be scalarized. |
1518 | bool isUnsafe() const { return Status == StatusTy::Unsafe; } |
1519 | /// Returns true if the index can be scalarize, but requires inserting a |
1520 | /// freeze. |
1521 | bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } |
1522 | |
1523 | /// Reset the state of Unsafe and clear ToFreze if set. |
1524 | void discard() { |
1525 | ToFreeze = nullptr; |
1526 | Status = StatusTy::Unsafe; |
1527 | } |
1528 | |
1529 | /// Freeze the ToFreeze and update the use in \p User to use it. |
1530 | void freeze(IRBuilderBase &Builder, Instruction &UserI) { |
1531 | assert(isSafeWithFreeze() && |
1532 | "should only be used when freezing is required" ); |
1533 | assert(is_contained(ToFreeze->users(), &UserI) && |
1534 | "UserI must be a user of ToFreeze" ); |
1535 | IRBuilder<>::InsertPointGuard Guard(Builder); |
1536 | Builder.SetInsertPoint(cast<Instruction>(Val: &UserI)); |
1537 | Value *Frozen = |
1538 | Builder.CreateFreeze(V: ToFreeze, Name: ToFreeze->getName() + ".frozen" ); |
1539 | for (Use &U : make_early_inc_range(Range: (UserI.operands()))) |
1540 | if (U.get() == ToFreeze) |
1541 | U.set(Frozen); |
1542 | |
1543 | ToFreeze = nullptr; |
1544 | } |
1545 | }; |
1546 | } // namespace |
1547 | |
1548 | /// Check if it is legal to scalarize a memory access to \p VecTy at index \p |
1549 | /// Idx. \p Idx must access a valid vector element. |
1550 | static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, |
1551 | Instruction *CtxI, |
1552 | AssumptionCache &AC, |
1553 | const DominatorTree &DT) { |
1554 | // We do checks for both fixed vector types and scalable vector types. |
1555 | // This is the number of elements of fixed vector types, |
1556 | // or the minimum number of elements of scalable vector types. |
1557 | uint64_t NumElements = VecTy->getElementCount().getKnownMinValue(); |
1558 | unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); |
1559 | |
1560 | if (auto *C = dyn_cast<ConstantInt>(Val: Idx)) { |
1561 | if (C->getValue().ult(RHS: NumElements)) |
1562 | return ScalarizationResult::safe(); |
1563 | return ScalarizationResult::unsafe(); |
1564 | } |
1565 | |
1566 | // Always unsafe if the index type can't handle all inbound values. |
1567 | if (!llvm::isUIntN(N: IntWidth, x: NumElements)) |
1568 | return ScalarizationResult::unsafe(); |
1569 | |
1570 | APInt Zero(IntWidth, 0); |
1571 | APInt MaxElts(IntWidth, NumElements); |
1572 | ConstantRange ValidIndices(Zero, MaxElts); |
1573 | ConstantRange IdxRange(IntWidth, true); |
1574 | |
1575 | if (isGuaranteedNotToBePoison(V: Idx, AC: &AC)) { |
1576 | if (ValidIndices.contains(CR: computeConstantRange(V: Idx, /* ForSigned */ false, |
1577 | UseInstrInfo: true, AC: &AC, CtxI, DT: &DT))) |
1578 | return ScalarizationResult::safe(); |
1579 | return ScalarizationResult::unsafe(); |
1580 | } |
1581 | |
1582 | // If the index may be poison, check if we can insert a freeze before the |
1583 | // range of the index is restricted. |
1584 | Value *IdxBase; |
1585 | ConstantInt *CI; |
1586 | if (match(V: Idx, P: m_And(L: m_Value(V&: IdxBase), R: m_ConstantInt(CI)))) { |
1587 | IdxRange = IdxRange.binaryAnd(Other: CI->getValue()); |
1588 | } else if (match(V: Idx, P: m_URem(L: m_Value(V&: IdxBase), R: m_ConstantInt(CI)))) { |
1589 | IdxRange = IdxRange.urem(Other: CI->getValue()); |
1590 | } |
1591 | |
1592 | if (ValidIndices.contains(CR: IdxRange)) |
1593 | return ScalarizationResult::safeWithFreeze(ToFreeze: IdxBase); |
1594 | return ScalarizationResult::unsafe(); |
1595 | } |
1596 | |
1597 | /// The memory operation on a vector of \p ScalarType had alignment of |
1598 | /// \p VectorAlignment. Compute the maximal, but conservatively correct, |
1599 | /// alignment that will be valid for the memory operation on a single scalar |
1600 | /// element of the same type with index \p Idx. |
1601 | static Align computeAlignmentAfterScalarization(Align VectorAlignment, |
1602 | Type *ScalarType, Value *Idx, |
1603 | const DataLayout &DL) { |
1604 | if (auto *C = dyn_cast<ConstantInt>(Val: Idx)) |
1605 | return commonAlignment(A: VectorAlignment, |
1606 | Offset: C->getZExtValue() * DL.getTypeStoreSize(Ty: ScalarType)); |
1607 | return commonAlignment(A: VectorAlignment, Offset: DL.getTypeStoreSize(Ty: ScalarType)); |
1608 | } |
1609 | |
1610 | // Combine patterns like: |
1611 | // %0 = load <4 x i32>, <4 x i32>* %a |
1612 | // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 |
1613 | // store <4 x i32> %1, <4 x i32>* %a |
1614 | // to: |
1615 | // %0 = bitcast <4 x i32>* %a to i32* |
1616 | // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 |
1617 | // store i32 %b, i32* %1 |
1618 | bool VectorCombine::foldSingleElementStore(Instruction &I) { |
1619 | auto *SI = cast<StoreInst>(Val: &I); |
1620 | if (!SI->isSimple() || !isa<VectorType>(Val: SI->getValueOperand()->getType())) |
1621 | return false; |
1622 | |
1623 | // TODO: Combine more complicated patterns (multiple insert) by referencing |
1624 | // TargetTransformInfo. |
1625 | Instruction *Source; |
1626 | Value *NewElement; |
1627 | Value *Idx; |
1628 | if (!match(V: SI->getValueOperand(), |
1629 | P: m_InsertElt(Val: m_Instruction(I&: Source), Elt: m_Value(V&: NewElement), |
1630 | Idx: m_Value(V&: Idx)))) |
1631 | return false; |
1632 | |
1633 | if (auto *Load = dyn_cast<LoadInst>(Val: Source)) { |
1634 | auto VecTy = cast<VectorType>(Val: SI->getValueOperand()->getType()); |
1635 | Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); |
1636 | // Don't optimize for atomic/volatile load or store. Ensure memory is not |
1637 | // modified between, vector type matches store size, and index is inbounds. |
1638 | if (!Load->isSimple() || Load->getParent() != SI->getParent() || |
1639 | !DL->typeSizeEqualsStoreSize(Ty: Load->getType()->getScalarType()) || |
1640 | SrcAddr != SI->getPointerOperand()->stripPointerCasts()) |
1641 | return false; |
1642 | |
1643 | auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, CtxI: Load, AC, DT); |
1644 | if (ScalarizableIdx.isUnsafe() || |
1645 | isMemModifiedBetween(Begin: Load->getIterator(), End: SI->getIterator(), |
1646 | Loc: MemoryLocation::get(SI), AA)) |
1647 | return false; |
1648 | |
1649 | // Ensure we add the load back to the worklist BEFORE its users so they can |
1650 | // erased in the correct order. |
1651 | Worklist.push(I: Load); |
1652 | |
1653 | if (ScalarizableIdx.isSafeWithFreeze()) |
1654 | ScalarizableIdx.freeze(Builder, UserI&: *cast<Instruction>(Val: Idx)); |
1655 | Value *GEP = Builder.CreateInBoundsGEP( |
1656 | Ty: SI->getValueOperand()->getType(), Ptr: SI->getPointerOperand(), |
1657 | IdxList: {ConstantInt::get(Ty: Idx->getType(), V: 0), Idx}); |
1658 | StoreInst *NSI = Builder.CreateStore(Val: NewElement, Ptr: GEP); |
1659 | NSI->copyMetadata(SrcInst: *SI); |
1660 | Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
1661 | VectorAlignment: std::max(a: SI->getAlign(), b: Load->getAlign()), ScalarType: NewElement->getType(), Idx, |
1662 | DL: *DL); |
1663 | NSI->setAlignment(ScalarOpAlignment); |
1664 | replaceValue(Old&: I, New&: *NSI); |
1665 | eraseInstruction(I); |
1666 | return true; |
1667 | } |
1668 | |
1669 | return false; |
1670 | } |
1671 | |
1672 | /// Try to scalarize vector loads feeding extractelement instructions. |
1673 | bool VectorCombine::(Instruction &I) { |
1674 | Value *Ptr; |
1675 | if (!match(V: &I, P: m_Load(Op: m_Value(V&: Ptr)))) |
1676 | return false; |
1677 | |
1678 | auto *LI = cast<LoadInst>(Val: &I); |
1679 | auto *VecTy = cast<VectorType>(Val: LI->getType()); |
1680 | if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(Ty: VecTy->getScalarType())) |
1681 | return false; |
1682 | |
1683 | InstructionCost OriginalCost = |
1684 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy, Alignment: LI->getAlign(), |
1685 | AddressSpace: LI->getPointerAddressSpace(), CostKind); |
1686 | InstructionCost ScalarizedCost = 0; |
1687 | |
1688 | Instruction *LastCheckedInst = LI; |
1689 | unsigned NumInstChecked = 0; |
1690 | DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze; |
1691 | auto FailureGuard = make_scope_exit(F: [&]() { |
1692 | // If the transform is aborted, discard the ScalarizationResults. |
1693 | for (auto &Pair : NeedFreeze) |
1694 | Pair.second.discard(); |
1695 | }); |
1696 | |
1697 | // Check if all users of the load are extracts with no memory modifications |
1698 | // between the load and the extract. Compute the cost of both the original |
1699 | // code and the scalarized version. |
1700 | for (User *U : LI->users()) { |
1701 | auto *UI = dyn_cast<ExtractElementInst>(Val: U); |
1702 | if (!UI || UI->getParent() != LI->getParent()) |
1703 | return false; |
1704 | |
1705 | // If any extract is waiting to be erased, then bail out as this will |
1706 | // distort the cost calculation and possibly lead to infinite loops. |
1707 | if (UI->use_empty()) |
1708 | return false; |
1709 | |
1710 | // Check if any instruction between the load and the extract may modify |
1711 | // memory. |
1712 | if (LastCheckedInst->comesBefore(Other: UI)) { |
1713 | for (Instruction &I : |
1714 | make_range(x: std::next(x: LI->getIterator()), y: UI->getIterator())) { |
1715 | // Bail out if we reached the check limit or the instruction may write |
1716 | // to memory. |
1717 | if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) |
1718 | return false; |
1719 | NumInstChecked++; |
1720 | } |
1721 | LastCheckedInst = UI; |
1722 | } |
1723 | |
1724 | auto ScalarIdx = |
1725 | canScalarizeAccess(VecTy, Idx: UI->getIndexOperand(), CtxI: LI, AC, DT); |
1726 | if (ScalarIdx.isUnsafe()) |
1727 | return false; |
1728 | if (ScalarIdx.isSafeWithFreeze()) { |
1729 | NeedFreeze.try_emplace(Key: UI, Args&: ScalarIdx); |
1730 | ScalarIdx.discard(); |
1731 | } |
1732 | |
1733 | auto *Index = dyn_cast<ConstantInt>(Val: UI->getIndexOperand()); |
1734 | OriginalCost += |
1735 | TTI.getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: VecTy, CostKind, |
1736 | Index: Index ? Index->getZExtValue() : -1); |
1737 | ScalarizedCost += |
1738 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy->getElementType(), |
1739 | Alignment: Align(1), AddressSpace: LI->getPointerAddressSpace(), CostKind); |
1740 | ScalarizedCost += TTI.getAddressComputationCost(Ty: VecTy->getElementType()); |
1741 | } |
1742 | |
1743 | LLVM_DEBUG(dbgs() << "Found all extractions of a vector load: " << I |
1744 | << "\n LoadExtractCost: " << OriginalCost |
1745 | << " vs ScalarizedCost: " << ScalarizedCost << "\n" ); |
1746 | |
1747 | if (ScalarizedCost >= OriginalCost) |
1748 | return false; |
1749 | |
1750 | // Ensure we add the load back to the worklist BEFORE its users so they can |
1751 | // erased in the correct order. |
1752 | Worklist.push(I: LI); |
1753 | |
1754 | // Replace extracts with narrow scalar loads. |
1755 | for (User *U : LI->users()) { |
1756 | auto *EI = cast<ExtractElementInst>(Val: U); |
1757 | Value *Idx = EI->getIndexOperand(); |
1758 | |
1759 | // Insert 'freeze' for poison indexes. |
1760 | auto It = NeedFreeze.find(Val: EI); |
1761 | if (It != NeedFreeze.end()) |
1762 | It->second.freeze(Builder, UserI&: *cast<Instruction>(Val: Idx)); |
1763 | |
1764 | Builder.SetInsertPoint(EI); |
1765 | Value *GEP = |
1766 | Builder.CreateInBoundsGEP(Ty: VecTy, Ptr, IdxList: {Builder.getInt32(C: 0), Idx}); |
1767 | auto *NewLoad = cast<LoadInst>(Val: Builder.CreateLoad( |
1768 | Ty: VecTy->getElementType(), Ptr: GEP, Name: EI->getName() + ".scalar" )); |
1769 | |
1770 | Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
1771 | VectorAlignment: LI->getAlign(), ScalarType: VecTy->getElementType(), Idx, DL: *DL); |
1772 | NewLoad->setAlignment(ScalarOpAlignment); |
1773 | |
1774 | replaceValue(Old&: *EI, New&: *NewLoad); |
1775 | } |
1776 | |
1777 | FailureGuard.release(); |
1778 | return true; |
1779 | } |
1780 | |
1781 | bool VectorCombine::(Instruction &I) { |
1782 | auto *Ext = dyn_cast<ZExtInst>(Val: &I); |
1783 | if (!Ext) |
1784 | return false; |
1785 | |
1786 | // Try to convert a vector zext feeding only extracts to a set of scalar |
1787 | // (Src << ExtIdx *Size) & (Size -1) |
1788 | // if profitable . |
1789 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: Ext->getOperand(i_nocapture: 0)->getType()); |
1790 | if (!SrcTy) |
1791 | return false; |
1792 | auto *DstTy = cast<FixedVectorType>(Val: Ext->getType()); |
1793 | |
1794 | Type *ScalarDstTy = DstTy->getElementType(); |
1795 | if (DL->getTypeSizeInBits(Ty: SrcTy) != DL->getTypeSizeInBits(Ty: ScalarDstTy)) |
1796 | return false; |
1797 | |
1798 | InstructionCost VectorCost = |
1799 | TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: DstTy, Src: SrcTy, |
1800 | CCH: TTI::CastContextHint::None, CostKind, I: Ext); |
1801 | unsigned ExtCnt = 0; |
1802 | bool ExtLane0 = false; |
1803 | for (User *U : Ext->users()) { |
1804 | const APInt *Idx; |
1805 | if (!match(V: U, P: m_ExtractElt(Val: m_Value(), Idx: m_APInt(Res&: Idx)))) |
1806 | return false; |
1807 | if (cast<Instruction>(Val: U)->use_empty()) |
1808 | continue; |
1809 | ExtCnt += 1; |
1810 | ExtLane0 |= Idx->isZero(); |
1811 | VectorCost += TTI.getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: DstTy, |
1812 | CostKind, Index: Idx->getZExtValue(), Op0: U); |
1813 | } |
1814 | |
1815 | InstructionCost ScalarCost = |
1816 | ExtCnt * TTI.getArithmeticInstrCost( |
1817 | Opcode: Instruction::And, Ty: ScalarDstTy, CostKind, |
1818 | Opd1Info: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, |
1819 | Opd2Info: {.Kind: TTI::OK_NonUniformConstantValue, .Properties: TTI::OP_None}) + |
1820 | (ExtCnt - ExtLane0) * |
1821 | TTI.getArithmeticInstrCost( |
1822 | Opcode: Instruction::LShr, Ty: ScalarDstTy, CostKind, |
1823 | Opd1Info: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, |
1824 | Opd2Info: {.Kind: TTI::OK_NonUniformConstantValue, .Properties: TTI::OP_None}); |
1825 | if (ScalarCost > VectorCost) |
1826 | return false; |
1827 | |
1828 | Value *ScalarV = Ext->getOperand(i_nocapture: 0); |
1829 | if (!isGuaranteedNotToBePoison(V: ScalarV, AC: &AC, CtxI: dyn_cast<Instruction>(Val: ScalarV), |
1830 | DT: &DT)) |
1831 | ScalarV = Builder.CreateFreeze(V: ScalarV); |
1832 | ScalarV = Builder.CreateBitCast( |
1833 | V: ScalarV, |
1834 | DestTy: IntegerType::get(C&: SrcTy->getContext(), NumBits: DL->getTypeSizeInBits(Ty: SrcTy))); |
1835 | uint64_t SrcEltSizeInBits = DL->getTypeSizeInBits(Ty: SrcTy->getElementType()); |
1836 | uint64_t EltBitMask = (1ull << SrcEltSizeInBits) - 1; |
1837 | for (User *U : Ext->users()) { |
1838 | auto * = cast<ExtractElementInst>(Val: U); |
1839 | uint64_t Idx = |
1840 | cast<ConstantInt>(Val: Extract->getIndexOperand())->getZExtValue(); |
1841 | Value *LShr = Builder.CreateLShr(LHS: ScalarV, RHS: Idx * SrcEltSizeInBits); |
1842 | Value *And = Builder.CreateAnd(LHS: LShr, RHS: EltBitMask); |
1843 | U->replaceAllUsesWith(V: And); |
1844 | } |
1845 | return true; |
1846 | } |
1847 | |
1848 | /// Try to fold "(or (zext (bitcast X)), (shl (zext (bitcast Y)), C))" |
1849 | /// to "(bitcast (concat X, Y))" |
1850 | /// where X/Y are bitcasted from i1 mask vectors. |
1851 | bool VectorCombine::foldConcatOfBoolMasks(Instruction &I) { |
1852 | Type *Ty = I.getType(); |
1853 | if (!Ty->isIntegerTy()) |
1854 | return false; |
1855 | |
1856 | // TODO: Add big endian test coverage |
1857 | if (DL->isBigEndian()) |
1858 | return false; |
1859 | |
1860 | // Restrict to disjoint cases so the mask vectors aren't overlapping. |
1861 | Instruction *X, *Y; |
1862 | if (!match(V: &I, P: m_DisjointOr(L: m_Instruction(I&: X), R: m_Instruction(I&: Y)))) |
1863 | return false; |
1864 | |
1865 | // Allow both sources to contain shl, to handle more generic pattern: |
1866 | // "(or (shl (zext (bitcast X)), C1), (shl (zext (bitcast Y)), C2))" |
1867 | Value *SrcX; |
1868 | uint64_t ShAmtX = 0; |
1869 | if (!match(V: X, P: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcX)))))) && |
1870 | !match(V: X, P: m_OneUse( |
1871 | SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcX))))), |
1872 | R: m_ConstantInt(V&: ShAmtX))))) |
1873 | return false; |
1874 | |
1875 | Value *SrcY; |
1876 | uint64_t ShAmtY = 0; |
1877 | if (!match(V: Y, P: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcY)))))) && |
1878 | !match(V: Y, P: m_OneUse( |
1879 | SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_BitCast(Op: m_Value(V&: SrcY))))), |
1880 | R: m_ConstantInt(V&: ShAmtY))))) |
1881 | return false; |
1882 | |
1883 | // Canonicalize larger shift to the RHS. |
1884 | if (ShAmtX > ShAmtY) { |
1885 | std::swap(a&: X, b&: Y); |
1886 | std::swap(a&: SrcX, b&: SrcY); |
1887 | std::swap(a&: ShAmtX, b&: ShAmtY); |
1888 | } |
1889 | |
1890 | // Ensure both sources are matching vXi1 bool mask types, and that the shift |
1891 | // difference is the mask width so they can be easily concatenated together. |
1892 | uint64_t ShAmtDiff = ShAmtY - ShAmtX; |
1893 | unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0); |
1894 | unsigned BitWidth = Ty->getPrimitiveSizeInBits(); |
1895 | auto *MaskTy = dyn_cast<FixedVectorType>(Val: SrcX->getType()); |
1896 | if (!MaskTy || SrcX->getType() != SrcY->getType() || |
1897 | !MaskTy->getElementType()->isIntegerTy(Bitwidth: 1) || |
1898 | MaskTy->getNumElements() != ShAmtDiff || |
1899 | MaskTy->getNumElements() > (BitWidth / 2)) |
1900 | return false; |
1901 | |
1902 | auto *ConcatTy = FixedVectorType::getDoubleElementsVectorType(VTy: MaskTy); |
1903 | auto *ConcatIntTy = |
1904 | Type::getIntNTy(C&: Ty->getContext(), N: ConcatTy->getNumElements()); |
1905 | auto *MaskIntTy = Type::getIntNTy(C&: Ty->getContext(), N: ShAmtDiff); |
1906 | |
1907 | SmallVector<int, 32> ConcatMask(ConcatTy->getNumElements()); |
1908 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
1909 | |
1910 | // TODO: Is it worth supporting multi use cases? |
1911 | InstructionCost OldCost = 0; |
1912 | OldCost += TTI.getArithmeticInstrCost(Opcode: Instruction::Or, Ty, CostKind); |
1913 | OldCost += |
1914 | NumSHL * TTI.getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind); |
1915 | OldCost += 2 * TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: Ty, Src: MaskIntTy, |
1916 | CCH: TTI::CastContextHint::None, CostKind); |
1917 | OldCost += 2 * TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: MaskIntTy, Src: MaskTy, |
1918 | CCH: TTI::CastContextHint::None, CostKind); |
1919 | |
1920 | InstructionCost NewCost = 0; |
1921 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ConcatTy, |
1922 | SrcTy: MaskTy, Mask: ConcatMask, CostKind); |
1923 | NewCost += TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: ConcatIntTy, Src: ConcatTy, |
1924 | CCH: TTI::CastContextHint::None, CostKind); |
1925 | if (Ty != ConcatIntTy) |
1926 | NewCost += TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: Ty, Src: ConcatIntTy, |
1927 | CCH: TTI::CastContextHint::None, CostKind); |
1928 | if (ShAmtX > 0) |
1929 | NewCost += TTI.getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind); |
1930 | |
1931 | LLVM_DEBUG(dbgs() << "Found a concatenation of bitcasted bool masks: " << I |
1932 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
1933 | << "\n" ); |
1934 | |
1935 | if (NewCost > OldCost) |
1936 | return false; |
1937 | |
1938 | // Build bool mask concatenation, bitcast back to scalar integer, and perform |
1939 | // any residual zero-extension or shifting. |
1940 | Value *Concat = Builder.CreateShuffleVector(V1: SrcX, V2: SrcY, Mask: ConcatMask); |
1941 | Worklist.pushValue(V: Concat); |
1942 | |
1943 | Value *Result = Builder.CreateBitCast(V: Concat, DestTy: ConcatIntTy); |
1944 | |
1945 | if (Ty != ConcatIntTy) { |
1946 | Worklist.pushValue(V: Result); |
1947 | Result = Builder.CreateZExt(V: Result, DestTy: Ty); |
1948 | } |
1949 | |
1950 | if (ShAmtX > 0) { |
1951 | Worklist.pushValue(V: Result); |
1952 | Result = Builder.CreateShl(LHS: Result, RHS: ShAmtX); |
1953 | } |
1954 | |
1955 | replaceValue(Old&: I, New&: *Result); |
1956 | return true; |
1957 | } |
1958 | |
1959 | /// Try to convert "shuffle (binop (shuffle, shuffle)), undef" |
1960 | /// --> "binop (shuffle), (shuffle)". |
1961 | bool VectorCombine::foldPermuteOfBinops(Instruction &I) { |
1962 | BinaryOperator *BinOp; |
1963 | ArrayRef<int> OuterMask; |
1964 | if (!match(V: &I, |
1965 | P: m_Shuffle(v1: m_OneUse(SubPattern: m_BinOp(I&: BinOp)), v2: m_Undef(), mask: m_Mask(OuterMask)))) |
1966 | return false; |
1967 | |
1968 | // Don't introduce poison into div/rem. |
1969 | if (BinOp->isIntDivRem() && llvm::is_contained(Range&: OuterMask, Element: PoisonMaskElem)) |
1970 | return false; |
1971 | |
1972 | Value *Op00, *Op01, *Op10, *Op11; |
1973 | ArrayRef<int> Mask0, Mask1; |
1974 | bool Match0 = |
1975 | match(V: BinOp->getOperand(i_nocapture: 0), |
1976 | P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: Op00), v2: m_Value(V&: Op01), mask: m_Mask(Mask0)))); |
1977 | bool Match1 = |
1978 | match(V: BinOp->getOperand(i_nocapture: 1), |
1979 | P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: Op10), v2: m_Value(V&: Op11), mask: m_Mask(Mask1)))); |
1980 | if (!Match0 && !Match1) |
1981 | return false; |
1982 | |
1983 | Op00 = Match0 ? Op00 : BinOp->getOperand(i_nocapture: 0); |
1984 | Op01 = Match0 ? Op01 : BinOp->getOperand(i_nocapture: 0); |
1985 | Op10 = Match1 ? Op10 : BinOp->getOperand(i_nocapture: 1); |
1986 | Op11 = Match1 ? Op11 : BinOp->getOperand(i_nocapture: 1); |
1987 | |
1988 | Instruction::BinaryOps Opcode = BinOp->getOpcode(); |
1989 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
1990 | auto *BinOpTy = dyn_cast<FixedVectorType>(Val: BinOp->getType()); |
1991 | auto *Op0Ty = dyn_cast<FixedVectorType>(Val: Op00->getType()); |
1992 | auto *Op1Ty = dyn_cast<FixedVectorType>(Val: Op10->getType()); |
1993 | if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty) |
1994 | return false; |
1995 | |
1996 | unsigned NumSrcElts = BinOpTy->getNumElements(); |
1997 | |
1998 | // Don't accept shuffles that reference the second operand in |
1999 | // div/rem or if its an undef arg. |
2000 | if ((BinOp->isIntDivRem() || !isa<PoisonValue>(Val: I.getOperand(i: 1))) && |
2001 | any_of(Range&: OuterMask, P: [NumSrcElts](int M) { return M >= (int)NumSrcElts; })) |
2002 | return false; |
2003 | |
2004 | // Merge outer / inner (or identity if no match) shuffles. |
2005 | SmallVector<int> NewMask0, NewMask1; |
2006 | for (int M : OuterMask) { |
2007 | if (M < 0 || M >= (int)NumSrcElts) { |
2008 | NewMask0.push_back(Elt: PoisonMaskElem); |
2009 | NewMask1.push_back(Elt: PoisonMaskElem); |
2010 | } else { |
2011 | NewMask0.push_back(Elt: Match0 ? Mask0[M] : M); |
2012 | NewMask1.push_back(Elt: Match1 ? Mask1[M] : M); |
2013 | } |
2014 | } |
2015 | |
2016 | unsigned NumOpElts = Op0Ty->getNumElements(); |
2017 | bool IsIdentity0 = ShuffleDstTy == Op0Ty && |
2018 | all_of(Range&: NewMask0, P: [NumOpElts](int M) { return M < (int)NumOpElts; }) && |
2019 | ShuffleVectorInst::isIdentityMask(Mask: NewMask0, NumSrcElts: NumOpElts); |
2020 | bool IsIdentity1 = ShuffleDstTy == Op1Ty && |
2021 | all_of(Range&: NewMask1, P: [NumOpElts](int M) { return M < (int)NumOpElts; }) && |
2022 | ShuffleVectorInst::isIdentityMask(Mask: NewMask1, NumSrcElts: NumOpElts); |
2023 | |
2024 | // Try to merge shuffles across the binop if the new shuffles are not costly. |
2025 | InstructionCost OldCost = |
2026 | TTI.getArithmeticInstrCost(Opcode, Ty: BinOpTy, CostKind) + |
2027 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, DstTy: ShuffleDstTy, |
2028 | SrcTy: BinOpTy, Mask: OuterMask, CostKind, Index: 0, SubTp: nullptr, Args: {BinOp}, CxtI: &I); |
2029 | if (Match0) |
2030 | OldCost += TTI.getShuffleCost( |
2031 | Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: BinOpTy, SrcTy: Op0Ty, Mask: Mask0, CostKind, |
2032 | Index: 0, SubTp: nullptr, Args: {Op00, Op01}, CxtI: cast<Instruction>(Val: BinOp->getOperand(i_nocapture: 0))); |
2033 | if (Match1) |
2034 | OldCost += TTI.getShuffleCost( |
2035 | Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: BinOpTy, SrcTy: Op1Ty, Mask: Mask1, CostKind, |
2036 | Index: 0, SubTp: nullptr, Args: {Op10, Op11}, CxtI: cast<Instruction>(Val: BinOp->getOperand(i_nocapture: 1))); |
2037 | |
2038 | InstructionCost NewCost = |
2039 | TTI.getArithmeticInstrCost(Opcode, Ty: ShuffleDstTy, CostKind); |
2040 | |
2041 | if (!IsIdentity0) |
2042 | NewCost += |
2043 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
2044 | SrcTy: Op0Ty, Mask: NewMask0, CostKind, Index: 0, SubTp: nullptr, Args: {Op00, Op01}); |
2045 | if (!IsIdentity1) |
2046 | NewCost += |
2047 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
2048 | SrcTy: Op1Ty, Mask: NewMask1, CostKind, Index: 0, SubTp: nullptr, Args: {Op10, Op11}); |
2049 | |
2050 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding a shuffled binop: " << I |
2051 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
2052 | << "\n" ); |
2053 | |
2054 | // If costs are equal, still fold as we reduce instruction count. |
2055 | if (NewCost > OldCost) |
2056 | return false; |
2057 | |
2058 | Value *LHS = |
2059 | IsIdentity0 ? Op00 : Builder.CreateShuffleVector(V1: Op00, V2: Op01, Mask: NewMask0); |
2060 | Value *RHS = |
2061 | IsIdentity1 ? Op10 : Builder.CreateShuffleVector(V1: Op10, V2: Op11, Mask: NewMask1); |
2062 | Value *NewBO = Builder.CreateBinOp(Opc: Opcode, LHS, RHS); |
2063 | |
2064 | // Intersect flags from the old binops. |
2065 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) |
2066 | NewInst->copyIRFlags(V: BinOp); |
2067 | |
2068 | Worklist.pushValue(V: LHS); |
2069 | Worklist.pushValue(V: RHS); |
2070 | replaceValue(Old&: I, New&: *NewBO); |
2071 | return true; |
2072 | } |
2073 | |
2074 | /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)". |
2075 | /// Try to convert "shuffle (cmpop), (cmpop)" into "cmpop (shuffle), (shuffle)". |
2076 | bool VectorCombine::foldShuffleOfBinops(Instruction &I) { |
2077 | ArrayRef<int> OldMask; |
2078 | Instruction *LHS, *RHS; |
2079 | if (!match(V: &I, P: m_Shuffle(v1: m_OneUse(SubPattern: m_Instruction(I&: LHS)), |
2080 | v2: m_OneUse(SubPattern: m_Instruction(I&: RHS)), mask: m_Mask(OldMask)))) |
2081 | return false; |
2082 | |
2083 | // TODO: Add support for addlike etc. |
2084 | if (LHS->getOpcode() != RHS->getOpcode()) |
2085 | return false; |
2086 | |
2087 | Value *X, *Y, *Z, *W; |
2088 | bool IsCommutative = false; |
2089 | CmpPredicate PredLHS = CmpInst::BAD_ICMP_PREDICATE; |
2090 | CmpPredicate PredRHS = CmpInst::BAD_ICMP_PREDICATE; |
2091 | if (match(V: LHS, P: m_BinOp(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
2092 | match(V: RHS, P: m_BinOp(L: m_Value(V&: Z), R: m_Value(V&: W)))) { |
2093 | auto *BO = cast<BinaryOperator>(Val: LHS); |
2094 | // Don't introduce poison into div/rem. |
2095 | if (llvm::is_contained(Range&: OldMask, Element: PoisonMaskElem) && BO->isIntDivRem()) |
2096 | return false; |
2097 | IsCommutative = BinaryOperator::isCommutative(Opcode: BO->getOpcode()); |
2098 | } else if (match(V: LHS, P: m_Cmp(Pred&: PredLHS, L: m_Value(V&: X), R: m_Value(V&: Y))) && |
2099 | match(V: RHS, P: m_Cmp(Pred&: PredRHS, L: m_Value(V&: Z), R: m_Value(V&: W))) && |
2100 | (CmpInst::Predicate)PredLHS == (CmpInst::Predicate)PredRHS) { |
2101 | IsCommutative = cast<CmpInst>(Val: LHS)->isCommutative(); |
2102 | } else |
2103 | return false; |
2104 | |
2105 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
2106 | auto *BinResTy = dyn_cast<FixedVectorType>(Val: LHS->getType()); |
2107 | auto *BinOpTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
2108 | if (!ShuffleDstTy || !BinResTy || !BinOpTy || X->getType() != Z->getType()) |
2109 | return false; |
2110 | |
2111 | unsigned NumSrcElts = BinOpTy->getNumElements(); |
2112 | |
2113 | // If we have something like "add X, Y" and "add Z, X", swap ops to match. |
2114 | if (IsCommutative && X != Z && Y != W && (X == W || Y == Z)) |
2115 | std::swap(a&: X, b&: Y); |
2116 | |
2117 | auto ConvertToUnary = [NumSrcElts](int &M) { |
2118 | if (M >= (int)NumSrcElts) |
2119 | M -= NumSrcElts; |
2120 | }; |
2121 | |
2122 | SmallVector<int> NewMask0(OldMask); |
2123 | TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc; |
2124 | if (X == Z) { |
2125 | llvm::for_each(Range&: NewMask0, F: ConvertToUnary); |
2126 | SK0 = TargetTransformInfo::SK_PermuteSingleSrc; |
2127 | Z = PoisonValue::get(T: BinOpTy); |
2128 | } |
2129 | |
2130 | SmallVector<int> NewMask1(OldMask); |
2131 | TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc; |
2132 | if (Y == W) { |
2133 | llvm::for_each(Range&: NewMask1, F: ConvertToUnary); |
2134 | SK1 = TargetTransformInfo::SK_PermuteSingleSrc; |
2135 | W = PoisonValue::get(T: BinOpTy); |
2136 | } |
2137 | |
2138 | // Try to replace a binop with a shuffle if the shuffle is not costly. |
2139 | InstructionCost OldCost = |
2140 | TTI.getInstructionCost(U: LHS, CostKind) + |
2141 | TTI.getInstructionCost(U: RHS, CostKind) + |
2142 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
2143 | SrcTy: BinResTy, Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: {LHS, RHS}, |
2144 | CxtI: &I); |
2145 | |
2146 | // Handle shuffle(binop(shuffle(x),y),binop(z,shuffle(w))) style patterns |
2147 | // where one use shuffles have gotten split across the binop/cmp. These |
2148 | // often allow a major reduction in total cost that wouldn't happen as |
2149 | // individual folds. |
2150 | auto MergeInner = [&](Value *&Op, int Offset, MutableArrayRef<int> Mask, |
2151 | TTI::TargetCostKind CostKind) -> bool { |
2152 | Value *InnerOp; |
2153 | ArrayRef<int> InnerMask; |
2154 | if (match(V: Op, P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: InnerOp), v2: m_Undef(), |
2155 | mask: m_Mask(InnerMask)))) && |
2156 | InnerOp->getType() == Op->getType() && |
2157 | all_of(Range&: InnerMask, |
2158 | P: [NumSrcElts](int M) { return M < (int)NumSrcElts; })) { |
2159 | for (int &M : Mask) |
2160 | if (Offset <= M && M < (int)(Offset + NumSrcElts)) { |
2161 | M = InnerMask[M - Offset]; |
2162 | M = 0 <= M ? M + Offset : M; |
2163 | } |
2164 | OldCost += TTI.getInstructionCost(U: cast<Instruction>(Val: Op), CostKind); |
2165 | Op = InnerOp; |
2166 | return true; |
2167 | } |
2168 | return false; |
2169 | }; |
2170 | bool ReducedInstCount = false; |
2171 | ReducedInstCount |= MergeInner(X, 0, NewMask0, CostKind); |
2172 | ReducedInstCount |= MergeInner(Y, 0, NewMask1, CostKind); |
2173 | ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0, CostKind); |
2174 | ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1, CostKind); |
2175 | |
2176 | auto *ShuffleCmpTy = |
2177 | FixedVectorType::get(ElementType: BinOpTy->getElementType(), FVTy: ShuffleDstTy); |
2178 | InstructionCost NewCost = |
2179 | TTI.getShuffleCost(Kind: SK0, DstTy: ShuffleCmpTy, SrcTy: BinOpTy, Mask: NewMask0, CostKind, Index: 0, |
2180 | SubTp: nullptr, Args: {X, Z}) + |
2181 | TTI.getShuffleCost(Kind: SK1, DstTy: ShuffleCmpTy, SrcTy: BinOpTy, Mask: NewMask1, CostKind, Index: 0, |
2182 | SubTp: nullptr, Args: {Y, W}); |
2183 | |
2184 | if (PredLHS == CmpInst::BAD_ICMP_PREDICATE) { |
2185 | NewCost += |
2186 | TTI.getArithmeticInstrCost(Opcode: LHS->getOpcode(), Ty: ShuffleDstTy, CostKind); |
2187 | } else { |
2188 | NewCost += TTI.getCmpSelInstrCost(Opcode: LHS->getOpcode(), ValTy: ShuffleCmpTy, |
2189 | CondTy: ShuffleDstTy, VecPred: PredLHS, CostKind); |
2190 | } |
2191 | |
2192 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I |
2193 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
2194 | << "\n" ); |
2195 | |
2196 | // If either shuffle will constant fold away, then fold for the same cost as |
2197 | // we will reduce the instruction count. |
2198 | ReducedInstCount |= (isa<Constant>(Val: X) && isa<Constant>(Val: Z)) || |
2199 | (isa<Constant>(Val: Y) && isa<Constant>(Val: W)); |
2200 | if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost)) |
2201 | return false; |
2202 | |
2203 | Value *Shuf0 = Builder.CreateShuffleVector(V1: X, V2: Z, Mask: NewMask0); |
2204 | Value *Shuf1 = Builder.CreateShuffleVector(V1: Y, V2: W, Mask: NewMask1); |
2205 | Value *NewBO = PredLHS == CmpInst::BAD_ICMP_PREDICATE |
2206 | ? Builder.CreateBinOp( |
2207 | Opc: cast<BinaryOperator>(Val: LHS)->getOpcode(), LHS: Shuf0, RHS: Shuf1) |
2208 | : Builder.CreateCmp(Pred: PredLHS, LHS: Shuf0, RHS: Shuf1); |
2209 | |
2210 | // Intersect flags from the old binops. |
2211 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) { |
2212 | NewInst->copyIRFlags(V: LHS); |
2213 | NewInst->andIRFlags(V: RHS); |
2214 | } |
2215 | |
2216 | Worklist.pushValue(V: Shuf0); |
2217 | Worklist.pushValue(V: Shuf1); |
2218 | replaceValue(Old&: I, New&: *NewBO); |
2219 | return true; |
2220 | } |
2221 | |
2222 | /// Try to convert, |
2223 | /// (shuffle(select(c1,t1,f1)), (select(c2,t2,f2)), m) into |
2224 | /// (select (shuffle c1,c2,m), (shuffle t1,t2,m), (shuffle f1,f2,m)) |
2225 | bool VectorCombine::foldShuffleOfSelects(Instruction &I) { |
2226 | ArrayRef<int> Mask; |
2227 | Value *C1, *T1, *F1, *C2, *T2, *F2; |
2228 | if (!match(V: &I, P: m_Shuffle( |
2229 | v1: m_OneUse(SubPattern: m_Select(C: m_Value(V&: C1), L: m_Value(V&: T1), R: m_Value(V&: F1))), |
2230 | v2: m_OneUse(SubPattern: m_Select(C: m_Value(V&: C2), L: m_Value(V&: T2), R: m_Value(V&: F2))), |
2231 | mask: m_Mask(Mask)))) |
2232 | return false; |
2233 | |
2234 | auto *C1VecTy = dyn_cast<FixedVectorType>(Val: C1->getType()); |
2235 | auto *C2VecTy = dyn_cast<FixedVectorType>(Val: C2->getType()); |
2236 | if (!C1VecTy || !C2VecTy || C1VecTy != C2VecTy) |
2237 | return false; |
2238 | |
2239 | auto *SI0FOp = dyn_cast<FPMathOperator>(Val: I.getOperand(i: 0)); |
2240 | auto *SI1FOp = dyn_cast<FPMathOperator>(Val: I.getOperand(i: 1)); |
2241 | // SelectInsts must have the same FMF. |
2242 | if (((SI0FOp == nullptr) != (SI1FOp == nullptr)) || |
2243 | ((SI0FOp != nullptr) && |
2244 | (SI0FOp->getFastMathFlags() != SI1FOp->getFastMathFlags()))) |
2245 | return false; |
2246 | |
2247 | auto *SrcVecTy = cast<FixedVectorType>(Val: T1->getType()); |
2248 | auto *DstVecTy = cast<FixedVectorType>(Val: I.getType()); |
2249 | auto SK = TargetTransformInfo::SK_PermuteTwoSrc; |
2250 | auto SelOp = Instruction::Select; |
2251 | InstructionCost OldCost = TTI.getCmpSelInstrCost( |
2252 | Opcode: SelOp, ValTy: SrcVecTy, CondTy: C1VecTy, VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
2253 | OldCost += TTI.getCmpSelInstrCost(Opcode: SelOp, ValTy: SrcVecTy, CondTy: C2VecTy, |
2254 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
2255 | OldCost += |
2256 | TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: SrcVecTy, Mask, CostKind, Index: 0, SubTp: nullptr, |
2257 | Args: {I.getOperand(i: 0), I.getOperand(i: 1)}, CxtI: &I); |
2258 | |
2259 | InstructionCost NewCost = TTI.getShuffleCost( |
2260 | Kind: SK, DstTy: FixedVectorType::get(ElementType: C1VecTy->getScalarType(), NumElts: Mask.size()), SrcTy: C1VecTy, |
2261 | Mask, CostKind, Index: 0, SubTp: nullptr, Args: {C1, C2}); |
2262 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: SrcVecTy, Mask, CostKind, Index: 0, |
2263 | SubTp: nullptr, Args: {T1, T2}); |
2264 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: SrcVecTy, Mask, CostKind, Index: 0, |
2265 | SubTp: nullptr, Args: {F1, F2}); |
2266 | auto *C1C2ShuffledVecTy = cast<FixedVectorType>( |
2267 | Val: toVectorTy(Scalar: Type::getInt1Ty(C&: I.getContext()), VF: DstVecTy->getNumElements())); |
2268 | NewCost += TTI.getCmpSelInstrCost(Opcode: SelOp, ValTy: DstVecTy, CondTy: C1C2ShuffledVecTy, |
2269 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
2270 | |
2271 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two selects: " << I |
2272 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
2273 | << "\n" ); |
2274 | if (NewCost > OldCost) |
2275 | return false; |
2276 | |
2277 | Value *ShuffleCmp = Builder.CreateShuffleVector(V1: C1, V2: C2, Mask); |
2278 | Value *ShuffleTrue = Builder.CreateShuffleVector(V1: T1, V2: T2, Mask); |
2279 | Value *ShuffleFalse = Builder.CreateShuffleVector(V1: F1, V2: F2, Mask); |
2280 | Value *NewSel; |
2281 | // We presuppose that the SelectInsts have the same FMF. |
2282 | if (SI0FOp) |
2283 | NewSel = Builder.CreateSelectFMF(C: ShuffleCmp, True: ShuffleTrue, False: ShuffleFalse, |
2284 | FMFSource: SI0FOp->getFastMathFlags()); |
2285 | else |
2286 | NewSel = Builder.CreateSelect(C: ShuffleCmp, True: ShuffleTrue, False: ShuffleFalse); |
2287 | |
2288 | Worklist.pushValue(V: ShuffleCmp); |
2289 | Worklist.pushValue(V: ShuffleTrue); |
2290 | Worklist.pushValue(V: ShuffleFalse); |
2291 | replaceValue(Old&: I, New&: *NewSel); |
2292 | return true; |
2293 | } |
2294 | |
2295 | /// Try to convert "shuffle (castop), (castop)" with a shared castop operand |
2296 | /// into "castop (shuffle)". |
2297 | bool VectorCombine::foldShuffleOfCastops(Instruction &I) { |
2298 | Value *V0, *V1; |
2299 | ArrayRef<int> OldMask; |
2300 | if (!match(V: &I, P: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(OldMask)))) |
2301 | return false; |
2302 | |
2303 | auto *C0 = dyn_cast<CastInst>(Val: V0); |
2304 | auto *C1 = dyn_cast<CastInst>(Val: V1); |
2305 | if (!C0 || !C1) |
2306 | return false; |
2307 | |
2308 | Instruction::CastOps Opcode = C0->getOpcode(); |
2309 | if (C0->getSrcTy() != C1->getSrcTy()) |
2310 | return false; |
2311 | |
2312 | // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds. |
2313 | if (Opcode != C1->getOpcode()) { |
2314 | if (match(V: C0, P: m_SExtLike(Op: m_Value())) && match(V: C1, P: m_SExtLike(Op: m_Value()))) |
2315 | Opcode = Instruction::SExt; |
2316 | else |
2317 | return false; |
2318 | } |
2319 | |
2320 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
2321 | auto *CastDstTy = dyn_cast<FixedVectorType>(Val: C0->getDestTy()); |
2322 | auto *CastSrcTy = dyn_cast<FixedVectorType>(Val: C0->getSrcTy()); |
2323 | if (!ShuffleDstTy || !CastDstTy || !CastSrcTy) |
2324 | return false; |
2325 | |
2326 | unsigned NumSrcElts = CastSrcTy->getNumElements(); |
2327 | unsigned NumDstElts = CastDstTy->getNumElements(); |
2328 | assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) && |
2329 | "Only bitcasts expected to alter src/dst element counts" ); |
2330 | |
2331 | // Check for bitcasting of unscalable vector types. |
2332 | // e.g. <32 x i40> -> <40 x i32> |
2333 | if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 && |
2334 | (NumDstElts % NumSrcElts) != 0) |
2335 | return false; |
2336 | |
2337 | SmallVector<int, 16> NewMask; |
2338 | if (NumSrcElts >= NumDstElts) { |
2339 | // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
2340 | // always be expanded to the equivalent form choosing narrower elements. |
2341 | assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask" ); |
2342 | unsigned ScaleFactor = NumSrcElts / NumDstElts; |
2343 | narrowShuffleMaskElts(Scale: ScaleFactor, Mask: OldMask, ScaledMask&: NewMask); |
2344 | } else { |
2345 | // The bitcast is from narrow elements to wide elements. The shuffle mask |
2346 | // must choose consecutive elements to allow casting first. |
2347 | assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask" ); |
2348 | unsigned ScaleFactor = NumDstElts / NumSrcElts; |
2349 | if (!widenShuffleMaskElts(Scale: ScaleFactor, Mask: OldMask, ScaledMask&: NewMask)) |
2350 | return false; |
2351 | } |
2352 | |
2353 | auto *NewShuffleDstTy = |
2354 | FixedVectorType::get(ElementType: CastSrcTy->getScalarType(), NumElts: NewMask.size()); |
2355 | |
2356 | // Try to replace a castop with a shuffle if the shuffle is not costly. |
2357 | InstructionCost CostC0 = |
2358 | TTI.getCastInstrCost(Opcode: C0->getOpcode(), Dst: CastDstTy, Src: CastSrcTy, |
2359 | CCH: TTI::CastContextHint::None, CostKind); |
2360 | InstructionCost CostC1 = |
2361 | TTI.getCastInstrCost(Opcode: C1->getOpcode(), Dst: CastDstTy, Src: CastSrcTy, |
2362 | CCH: TTI::CastContextHint::None, CostKind); |
2363 | InstructionCost OldCost = CostC0 + CostC1; |
2364 | OldCost += |
2365 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
2366 | SrcTy: CastDstTy, Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: {}, CxtI: &I); |
2367 | |
2368 | InstructionCost NewCost = |
2369 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: NewShuffleDstTy, |
2370 | SrcTy: CastSrcTy, Mask: NewMask, CostKind); |
2371 | NewCost += TTI.getCastInstrCost(Opcode, Dst: ShuffleDstTy, Src: NewShuffleDstTy, |
2372 | CCH: TTI::CastContextHint::None, CostKind); |
2373 | if (!C0->hasOneUse()) |
2374 | NewCost += CostC0; |
2375 | if (!C1->hasOneUse()) |
2376 | NewCost += CostC1; |
2377 | |
2378 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I |
2379 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
2380 | << "\n" ); |
2381 | if (NewCost > OldCost) |
2382 | return false; |
2383 | |
2384 | Value *Shuf = Builder.CreateShuffleVector(V1: C0->getOperand(i_nocapture: 0), |
2385 | V2: C1->getOperand(i_nocapture: 0), Mask: NewMask); |
2386 | Value *Cast = Builder.CreateCast(Op: Opcode, V: Shuf, DestTy: ShuffleDstTy); |
2387 | |
2388 | // Intersect flags from the old casts. |
2389 | if (auto *NewInst = dyn_cast<Instruction>(Val: Cast)) { |
2390 | NewInst->copyIRFlags(V: C0); |
2391 | NewInst->andIRFlags(V: C1); |
2392 | } |
2393 | |
2394 | Worklist.pushValue(V: Shuf); |
2395 | replaceValue(Old&: I, New&: *Cast); |
2396 | return true; |
2397 | } |
2398 | |
2399 | /// Try to convert any of: |
2400 | /// "shuffle (shuffle x, y), (shuffle y, x)" |
2401 | /// "shuffle (shuffle x, undef), (shuffle y, undef)" |
2402 | /// "shuffle (shuffle x, undef), y" |
2403 | /// "shuffle x, (shuffle y, undef)" |
2404 | /// into "shuffle x, y". |
2405 | bool VectorCombine::foldShuffleOfShuffles(Instruction &I) { |
2406 | ArrayRef<int> OuterMask; |
2407 | Value *OuterV0, *OuterV1; |
2408 | if (!match(V: &I, |
2409 | P: m_Shuffle(v1: m_Value(V&: OuterV0), v2: m_Value(V&: OuterV1), mask: m_Mask(OuterMask)))) |
2410 | return false; |
2411 | |
2412 | ArrayRef<int> InnerMask0, InnerMask1; |
2413 | Value *X0, *X1, *Y0, *Y1; |
2414 | bool Match0 = |
2415 | match(V: OuterV0, P: m_Shuffle(v1: m_Value(V&: X0), v2: m_Value(V&: Y0), mask: m_Mask(InnerMask0))); |
2416 | bool Match1 = |
2417 | match(V: OuterV1, P: m_Shuffle(v1: m_Value(V&: X1), v2: m_Value(V&: Y1), mask: m_Mask(InnerMask1))); |
2418 | if (!Match0 && !Match1) |
2419 | return false; |
2420 | |
2421 | // If the outer shuffle is a permute, then create a fake inner all-poison |
2422 | // shuffle. This is easier than accounting for length-changing shuffles below. |
2423 | SmallVector<int, 16> PoisonMask1; |
2424 | if (!Match1 && isa<PoisonValue>(Val: OuterV1)) { |
2425 | X1 = X0; |
2426 | Y1 = Y0; |
2427 | PoisonMask1.append(NumInputs: InnerMask0.size(), Elt: PoisonMaskElem); |
2428 | InnerMask1 = PoisonMask1; |
2429 | Match1 = true; // fake match |
2430 | } |
2431 | |
2432 | X0 = Match0 ? X0 : OuterV0; |
2433 | Y0 = Match0 ? Y0 : OuterV0; |
2434 | X1 = Match1 ? X1 : OuterV1; |
2435 | Y1 = Match1 ? Y1 : OuterV1; |
2436 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
2437 | auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(Val: X0->getType()); |
2438 | auto *ShuffleImmTy = dyn_cast<FixedVectorType>(Val: OuterV0->getType()); |
2439 | if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy || |
2440 | X0->getType() != X1->getType()) |
2441 | return false; |
2442 | |
2443 | unsigned NumSrcElts = ShuffleSrcTy->getNumElements(); |
2444 | unsigned NumImmElts = ShuffleImmTy->getNumElements(); |
2445 | |
2446 | // Attempt to merge shuffles, matching upto 2 source operands. |
2447 | // Replace index to a poison arg with PoisonMaskElem. |
2448 | // Bail if either inner masks reference an undef arg. |
2449 | SmallVector<int, 16> NewMask(OuterMask); |
2450 | Value *NewX = nullptr, *NewY = nullptr; |
2451 | for (int &M : NewMask) { |
2452 | Value *Src = nullptr; |
2453 | if (0 <= M && M < (int)NumImmElts) { |
2454 | Src = OuterV0; |
2455 | if (Match0) { |
2456 | M = InnerMask0[M]; |
2457 | Src = M >= (int)NumSrcElts ? Y0 : X0; |
2458 | M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M; |
2459 | } |
2460 | } else if (M >= (int)NumImmElts) { |
2461 | Src = OuterV1; |
2462 | M -= NumImmElts; |
2463 | if (Match1) { |
2464 | M = InnerMask1[M]; |
2465 | Src = M >= (int)NumSrcElts ? Y1 : X1; |
2466 | M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M; |
2467 | } |
2468 | } |
2469 | if (Src && M != PoisonMaskElem) { |
2470 | assert(0 <= M && M < (int)NumSrcElts && "Unexpected shuffle mask index" ); |
2471 | if (isa<UndefValue>(Val: Src)) { |
2472 | // We've referenced an undef element - if its poison, update the shuffle |
2473 | // mask, else bail. |
2474 | if (!isa<PoisonValue>(Val: Src)) |
2475 | return false; |
2476 | M = PoisonMaskElem; |
2477 | continue; |
2478 | } |
2479 | if (!NewX || NewX == Src) { |
2480 | NewX = Src; |
2481 | continue; |
2482 | } |
2483 | if (!NewY || NewY == Src) { |
2484 | M += NumSrcElts; |
2485 | NewY = Src; |
2486 | continue; |
2487 | } |
2488 | return false; |
2489 | } |
2490 | } |
2491 | |
2492 | if (!NewX) |
2493 | return PoisonValue::get(T: ShuffleDstTy); |
2494 | if (!NewY) |
2495 | NewY = PoisonValue::get(T: ShuffleSrcTy); |
2496 | |
2497 | // Have we folded to an Identity shuffle? |
2498 | if (ShuffleVectorInst::isIdentityMask(Mask: NewMask, NumSrcElts)) { |
2499 | replaceValue(Old&: I, New&: *NewX); |
2500 | return true; |
2501 | } |
2502 | |
2503 | // Try to merge the shuffles if the new shuffle is not costly. |
2504 | InstructionCost InnerCost0 = 0; |
2505 | if (Match0) |
2506 | InnerCost0 = TTI.getInstructionCost(U: cast<User>(Val: OuterV0), CostKind); |
2507 | |
2508 | InstructionCost InnerCost1 = 0; |
2509 | if (Match1) |
2510 | InnerCost1 = TTI.getInstructionCost(U: cast<User>(Val: OuterV1), CostKind); |
2511 | |
2512 | InstructionCost OuterCost = TTI.getInstructionCost(U: &I, CostKind); |
2513 | |
2514 | InstructionCost OldCost = InnerCost0 + InnerCost1 + OuterCost; |
2515 | |
2516 | bool IsUnary = all_of(Range&: NewMask, P: [&](int M) { return M < (int)NumSrcElts; }); |
2517 | TargetTransformInfo::ShuffleKind SK = |
2518 | IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc |
2519 | : TargetTransformInfo::SK_PermuteTwoSrc; |
2520 | InstructionCost NewCost = |
2521 | TTI.getShuffleCost(Kind: SK, DstTy: ShuffleDstTy, SrcTy: ShuffleSrcTy, Mask: NewMask, CostKind, Index: 0, |
2522 | SubTp: nullptr, Args: {NewX, NewY}); |
2523 | if (!OuterV0->hasOneUse()) |
2524 | NewCost += InnerCost0; |
2525 | if (!OuterV1->hasOneUse()) |
2526 | NewCost += InnerCost1; |
2527 | |
2528 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I |
2529 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
2530 | << "\n" ); |
2531 | if (NewCost > OldCost) |
2532 | return false; |
2533 | |
2534 | Value *Shuf = Builder.CreateShuffleVector(V1: NewX, V2: NewY, Mask: NewMask); |
2535 | replaceValue(Old&: I, New&: *Shuf); |
2536 | return true; |
2537 | } |
2538 | |
2539 | /// Try to convert |
2540 | /// "shuffle (intrinsic), (intrinsic)" into "intrinsic (shuffle), (shuffle)". |
2541 | bool VectorCombine::foldShuffleOfIntrinsics(Instruction &I) { |
2542 | Value *V0, *V1; |
2543 | ArrayRef<int> OldMask; |
2544 | if (!match(V: &I, P: m_Shuffle(v1: m_OneUse(SubPattern: m_Value(V&: V0)), v2: m_OneUse(SubPattern: m_Value(V&: V1)), |
2545 | mask: m_Mask(OldMask)))) |
2546 | return false; |
2547 | |
2548 | auto *II0 = dyn_cast<IntrinsicInst>(Val: V0); |
2549 | auto *II1 = dyn_cast<IntrinsicInst>(Val: V1); |
2550 | if (!II0 || !II1) |
2551 | return false; |
2552 | |
2553 | Intrinsic::ID IID = II0->getIntrinsicID(); |
2554 | if (IID != II1->getIntrinsicID()) |
2555 | return false; |
2556 | |
2557 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
2558 | auto *II0Ty = dyn_cast<FixedVectorType>(Val: II0->getType()); |
2559 | if (!ShuffleDstTy || !II0Ty) |
2560 | return false; |
2561 | |
2562 | if (!isTriviallyVectorizable(ID: IID)) |
2563 | return false; |
2564 | |
2565 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) |
2566 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI) && |
2567 | II0->getArgOperand(i: I) != II1->getArgOperand(i: I)) |
2568 | return false; |
2569 | |
2570 | InstructionCost OldCost = |
2571 | TTI.getIntrinsicInstrCost(ICA: IntrinsicCostAttributes(IID, *II0), CostKind) + |
2572 | TTI.getIntrinsicInstrCost(ICA: IntrinsicCostAttributes(IID, *II1), CostKind) + |
2573 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, DstTy: ShuffleDstTy, |
2574 | SrcTy: II0Ty, Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: {II0, II1}, CxtI: &I); |
2575 | |
2576 | SmallVector<Type *> NewArgsTy; |
2577 | InstructionCost NewCost = 0; |
2578 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) { |
2579 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI)) { |
2580 | NewArgsTy.push_back(Elt: II0->getArgOperand(i: I)->getType()); |
2581 | } else { |
2582 | auto *VecTy = cast<FixedVectorType>(Val: II0->getArgOperand(i: I)->getType()); |
2583 | auto *ArgTy = FixedVectorType::get(ElementType: VecTy->getElementType(), |
2584 | NumElts: ShuffleDstTy->getNumElements()); |
2585 | NewArgsTy.push_back(Elt: ArgTy); |
2586 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, |
2587 | DstTy: ArgTy, SrcTy: VecTy, Mask: OldMask, CostKind); |
2588 | } |
2589 | } |
2590 | IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy); |
2591 | NewCost += TTI.getIntrinsicInstrCost(ICA: NewAttr, CostKind); |
2592 | |
2593 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two intrinsics: " << I |
2594 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
2595 | << "\n" ); |
2596 | |
2597 | if (NewCost > OldCost) |
2598 | return false; |
2599 | |
2600 | SmallVector<Value *> NewArgs; |
2601 | for (unsigned I = 0, E = II0->arg_size(); I != E; ++I) |
2602 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IID, ScalarOpdIdx: I, TTI: &TTI)) { |
2603 | NewArgs.push_back(Elt: II0->getArgOperand(i: I)); |
2604 | } else { |
2605 | Value *Shuf = Builder.CreateShuffleVector(V1: II0->getArgOperand(i: I), |
2606 | V2: II1->getArgOperand(i: I), Mask: OldMask); |
2607 | NewArgs.push_back(Elt: Shuf); |
2608 | Worklist.pushValue(V: Shuf); |
2609 | } |
2610 | Value *NewIntrinsic = Builder.CreateIntrinsic(RetTy: ShuffleDstTy, ID: IID, Args: NewArgs); |
2611 | |
2612 | // Intersect flags from the old intrinsics. |
2613 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewIntrinsic)) { |
2614 | NewInst->copyIRFlags(V: II0); |
2615 | NewInst->andIRFlags(V: II1); |
2616 | } |
2617 | |
2618 | replaceValue(Old&: I, New&: *NewIntrinsic); |
2619 | return true; |
2620 | } |
2621 | |
2622 | using InstLane = std::pair<Use *, int>; |
2623 | |
2624 | static InstLane lookThroughShuffles(Use *U, int Lane) { |
2625 | while (auto *SV = dyn_cast<ShuffleVectorInst>(Val: U->get())) { |
2626 | unsigned NumElts = |
2627 | cast<FixedVectorType>(Val: SV->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
2628 | int M = SV->getMaskValue(Elt: Lane); |
2629 | if (M < 0) |
2630 | return {nullptr, PoisonMaskElem}; |
2631 | if (static_cast<unsigned>(M) < NumElts) { |
2632 | U = &SV->getOperandUse(i: 0); |
2633 | Lane = M; |
2634 | } else { |
2635 | U = &SV->getOperandUse(i: 1); |
2636 | Lane = M - NumElts; |
2637 | } |
2638 | } |
2639 | return InstLane{U, Lane}; |
2640 | } |
2641 | |
2642 | static SmallVector<InstLane> |
2643 | generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) { |
2644 | SmallVector<InstLane> NItem; |
2645 | for (InstLane IL : Item) { |
2646 | auto [U, Lane] = IL; |
2647 | InstLane OpLane = |
2648 | U ? lookThroughShuffles(U: &cast<Instruction>(Val: U->get())->getOperandUse(i: Op), |
2649 | Lane) |
2650 | : InstLane{nullptr, PoisonMaskElem}; |
2651 | NItem.emplace_back(Args&: OpLane); |
2652 | } |
2653 | return NItem; |
2654 | } |
2655 | |
2656 | /// Detect concat of multiple values into a vector |
2657 | static bool isFreeConcat(ArrayRef<InstLane> Item, TTI::TargetCostKind CostKind, |
2658 | const TargetTransformInfo &TTI) { |
2659 | auto *Ty = cast<FixedVectorType>(Val: Item.front().first->get()->getType()); |
2660 | unsigned NumElts = Ty->getNumElements(); |
2661 | if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0) |
2662 | return false; |
2663 | |
2664 | // Check that the concat is free, usually meaning that the type will be split |
2665 | // during legalization. |
2666 | SmallVector<int, 16> ConcatMask(NumElts * 2); |
2667 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
2668 | if (TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, |
2669 | DstTy: FixedVectorType::get(ElementType: Ty->getScalarType(), NumElts: NumElts * 2), |
2670 | SrcTy: Ty, Mask: ConcatMask, CostKind) != 0) |
2671 | return false; |
2672 | |
2673 | unsigned NumSlices = Item.size() / NumElts; |
2674 | // Currently we generate a tree of shuffles for the concats, which limits us |
2675 | // to a power2. |
2676 | if (!isPowerOf2_32(Value: NumSlices)) |
2677 | return false; |
2678 | for (unsigned Slice = 0; Slice < NumSlices; ++Slice) { |
2679 | Use *SliceV = Item[Slice * NumElts].first; |
2680 | if (!SliceV || SliceV->get()->getType() != Ty) |
2681 | return false; |
2682 | for (unsigned Elt = 0; Elt < NumElts; ++Elt) { |
2683 | auto [V, Lane] = Item[Slice * NumElts + Elt]; |
2684 | if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get()) |
2685 | return false; |
2686 | } |
2687 | } |
2688 | return true; |
2689 | } |
2690 | |
2691 | static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty, |
2692 | const SmallPtrSet<Use *, 4> &IdentityLeafs, |
2693 | const SmallPtrSet<Use *, 4> &SplatLeafs, |
2694 | const SmallPtrSet<Use *, 4> &ConcatLeafs, |
2695 | IRBuilderBase &Builder, |
2696 | const TargetTransformInfo *TTI) { |
2697 | auto [FrontU, FrontLane] = Item.front(); |
2698 | |
2699 | if (IdentityLeafs.contains(Ptr: FrontU)) { |
2700 | return FrontU->get(); |
2701 | } |
2702 | if (SplatLeafs.contains(Ptr: FrontU)) { |
2703 | SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane); |
2704 | return Builder.CreateShuffleVector(V: FrontU->get(), Mask); |
2705 | } |
2706 | if (ConcatLeafs.contains(Ptr: FrontU)) { |
2707 | unsigned NumElts = |
2708 | cast<FixedVectorType>(Val: FrontU->get()->getType())->getNumElements(); |
2709 | SmallVector<Value *> Values(Item.size() / NumElts, nullptr); |
2710 | for (unsigned S = 0; S < Values.size(); ++S) |
2711 | Values[S] = Item[S * NumElts].first->get(); |
2712 | |
2713 | while (Values.size() > 1) { |
2714 | NumElts *= 2; |
2715 | SmallVector<int, 16> Mask(NumElts, 0); |
2716 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
2717 | SmallVector<Value *> NewValues(Values.size() / 2, nullptr); |
2718 | for (unsigned S = 0; S < NewValues.size(); ++S) |
2719 | NewValues[S] = |
2720 | Builder.CreateShuffleVector(V1: Values[S * 2], V2: Values[S * 2 + 1], Mask); |
2721 | Values = NewValues; |
2722 | } |
2723 | return Values[0]; |
2724 | } |
2725 | |
2726 | auto *I = cast<Instruction>(Val: FrontU->get()); |
2727 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
2728 | unsigned NumOps = I->getNumOperands() - (II ? 1 : 0); |
2729 | SmallVector<Value *> Ops(NumOps); |
2730 | for (unsigned Idx = 0; Idx < NumOps; Idx++) { |
2731 | if (II && |
2732 | isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Idx, TTI)) { |
2733 | Ops[Idx] = II->getOperand(i_nocapture: Idx); |
2734 | continue; |
2735 | } |
2736 | Ops[Idx] = generateNewInstTree(Item: generateInstLaneVectorFromOperand(Item, Op: Idx), |
2737 | Ty, IdentityLeafs, SplatLeafs, ConcatLeafs, |
2738 | Builder, TTI); |
2739 | } |
2740 | |
2741 | SmallVector<Value *, 8> ValueList; |
2742 | for (const auto &Lane : Item) |
2743 | if (Lane.first) |
2744 | ValueList.push_back(Elt: Lane.first->get()); |
2745 | |
2746 | Type *DstTy = |
2747 | FixedVectorType::get(ElementType: I->getType()->getScalarType(), NumElts: Ty->getNumElements()); |
2748 | if (auto *BI = dyn_cast<BinaryOperator>(Val: I)) { |
2749 | auto *Value = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)BI->getOpcode(), |
2750 | LHS: Ops[0], RHS: Ops[1]); |
2751 | propagateIRFlags(I: Value, VL: ValueList); |
2752 | return Value; |
2753 | } |
2754 | if (auto *CI = dyn_cast<CmpInst>(Val: I)) { |
2755 | auto *Value = Builder.CreateCmp(Pred: CI->getPredicate(), LHS: Ops[0], RHS: Ops[1]); |
2756 | propagateIRFlags(I: Value, VL: ValueList); |
2757 | return Value; |
2758 | } |
2759 | if (auto *SI = dyn_cast<SelectInst>(Val: I)) { |
2760 | auto *Value = Builder.CreateSelect(C: Ops[0], True: Ops[1], False: Ops[2], Name: "" , MDFrom: SI); |
2761 | propagateIRFlags(I: Value, VL: ValueList); |
2762 | return Value; |
2763 | } |
2764 | if (auto *CI = dyn_cast<CastInst>(Val: I)) { |
2765 | auto *Value = Builder.CreateCast(Op: (Instruction::CastOps)CI->getOpcode(), |
2766 | V: Ops[0], DestTy: DstTy); |
2767 | propagateIRFlags(I: Value, VL: ValueList); |
2768 | return Value; |
2769 | } |
2770 | if (II) { |
2771 | auto *Value = Builder.CreateIntrinsic(RetTy: DstTy, ID: II->getIntrinsicID(), Args: Ops); |
2772 | propagateIRFlags(I: Value, VL: ValueList); |
2773 | return Value; |
2774 | } |
2775 | assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate" ); |
2776 | auto *Value = |
2777 | Builder.CreateUnOp(Opc: (Instruction::UnaryOps)I->getOpcode(), V: Ops[0]); |
2778 | propagateIRFlags(I: Value, VL: ValueList); |
2779 | return Value; |
2780 | } |
2781 | |
2782 | // Starting from a shuffle, look up through operands tracking the shuffled index |
2783 | // of each lane. If we can simplify away the shuffles to identities then |
2784 | // do so. |
2785 | bool VectorCombine::foldShuffleToIdentity(Instruction &I) { |
2786 | auto *Ty = dyn_cast<FixedVectorType>(Val: I.getType()); |
2787 | if (!Ty || I.use_empty()) |
2788 | return false; |
2789 | |
2790 | SmallVector<InstLane> Start(Ty->getNumElements()); |
2791 | for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M) |
2792 | Start[M] = lookThroughShuffles(U: &*I.use_begin(), Lane: M); |
2793 | |
2794 | SmallVector<SmallVector<InstLane>> Worklist; |
2795 | Worklist.push_back(Elt: Start); |
2796 | SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs; |
2797 | unsigned NumVisited = 0; |
2798 | |
2799 | while (!Worklist.empty()) { |
2800 | if (++NumVisited > MaxInstrsToScan) |
2801 | return false; |
2802 | |
2803 | SmallVector<InstLane> Item = Worklist.pop_back_val(); |
2804 | auto [FrontU, FrontLane] = Item.front(); |
2805 | |
2806 | // If we found an undef first lane then bail out to keep things simple. |
2807 | if (!FrontU) |
2808 | return false; |
2809 | |
2810 | // Helper to peek through bitcasts to the same value. |
2811 | auto IsEquiv = [&](Value *X, Value *Y) { |
2812 | return X->getType() == Y->getType() && |
2813 | peekThroughBitcasts(V: X) == peekThroughBitcasts(V: Y); |
2814 | }; |
2815 | |
2816 | // Look for an identity value. |
2817 | if (FrontLane == 0 && |
2818 | cast<FixedVectorType>(Val: FrontU->get()->getType())->getNumElements() == |
2819 | Ty->getNumElements() && |
2820 | all_of(Range: drop_begin(RangeOrContainer: enumerate(First&: Item)), P: [IsEquiv, Item](const auto &E) { |
2821 | Value *FrontV = Item.front().first->get(); |
2822 | return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) && |
2823 | E.value().second == (int)E.index()); |
2824 | })) { |
2825 | IdentityLeafs.insert(Ptr: FrontU); |
2826 | continue; |
2827 | } |
2828 | // Look for constants, for the moment only supporting constant splats. |
2829 | if (auto *C = dyn_cast<Constant>(Val: FrontU); |
2830 | C && C->getSplatValue() && |
2831 | all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane &IL) { |
2832 | Value *FrontV = Item.front().first->get(); |
2833 | Use *U = IL.first; |
2834 | return !U || (isa<Constant>(Val: U->get()) && |
2835 | cast<Constant>(Val: U->get())->getSplatValue() == |
2836 | cast<Constant>(Val: FrontV)->getSplatValue()); |
2837 | })) { |
2838 | SplatLeafs.insert(Ptr: FrontU); |
2839 | continue; |
2840 | } |
2841 | // Look for a splat value. |
2842 | if (all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane &IL) { |
2843 | auto [FrontU, FrontLane] = Item.front(); |
2844 | auto [U, Lane] = IL; |
2845 | return !U || (U->get() == FrontU->get() && Lane == FrontLane); |
2846 | })) { |
2847 | SplatLeafs.insert(Ptr: FrontU); |
2848 | continue; |
2849 | } |
2850 | |
2851 | // We need each element to be the same type of value, and check that each |
2852 | // element has a single use. |
2853 | auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) { |
2854 | Value *FrontV = Item.front().first->get(); |
2855 | if (!IL.first) |
2856 | return true; |
2857 | Value *V = IL.first->get(); |
2858 | if (auto *I = dyn_cast<Instruction>(Val: V); I && !I->hasOneUse()) |
2859 | return false; |
2860 | if (V->getValueID() != FrontV->getValueID()) |
2861 | return false; |
2862 | if (auto *CI = dyn_cast<CmpInst>(Val: V)) |
2863 | if (CI->getPredicate() != cast<CmpInst>(Val: FrontV)->getPredicate()) |
2864 | return false; |
2865 | if (auto *CI = dyn_cast<CastInst>(Val: V)) |
2866 | if (CI->getSrcTy()->getScalarType() != |
2867 | cast<CastInst>(Val: FrontV)->getSrcTy()->getScalarType()) |
2868 | return false; |
2869 | if (auto *SI = dyn_cast<SelectInst>(Val: V)) |
2870 | if (!isa<VectorType>(Val: SI->getOperand(i_nocapture: 0)->getType()) || |
2871 | SI->getOperand(i_nocapture: 0)->getType() != |
2872 | cast<SelectInst>(Val: FrontV)->getOperand(i_nocapture: 0)->getType()) |
2873 | return false; |
2874 | if (isa<CallInst>(Val: V) && !isa<IntrinsicInst>(Val: V)) |
2875 | return false; |
2876 | auto *II = dyn_cast<IntrinsicInst>(Val: V); |
2877 | return !II || (isa<IntrinsicInst>(Val: FrontV) && |
2878 | II->getIntrinsicID() == |
2879 | cast<IntrinsicInst>(Val: FrontV)->getIntrinsicID() && |
2880 | !II->hasOperandBundles()); |
2881 | }; |
2882 | if (all_of(Range: drop_begin(RangeOrContainer&: Item), P: CheckLaneIsEquivalentToFirst)) { |
2883 | // Check the operator is one that we support. |
2884 | if (isa<BinaryOperator, CmpInst>(Val: FrontU)) { |
2885 | // We exclude div/rem in case they hit UB from poison lanes. |
2886 | if (auto *BO = dyn_cast<BinaryOperator>(Val: FrontU); |
2887 | BO && BO->isIntDivRem()) |
2888 | return false; |
2889 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
2890 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 1)); |
2891 | continue; |
2892 | } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst, |
2893 | FPToUIInst, SIToFPInst, UIToFPInst>(Val: FrontU)) { |
2894 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
2895 | continue; |
2896 | } else if (auto *BitCast = dyn_cast<BitCastInst>(Val: FrontU)) { |
2897 | // TODO: Handle vector widening/narrowing bitcasts. |
2898 | auto *DstTy = dyn_cast<FixedVectorType>(Val: BitCast->getDestTy()); |
2899 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: BitCast->getSrcTy()); |
2900 | if (DstTy && SrcTy && |
2901 | SrcTy->getNumElements() == DstTy->getNumElements()) { |
2902 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
2903 | continue; |
2904 | } |
2905 | } else if (isa<SelectInst>(Val: FrontU)) { |
2906 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
2907 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 1)); |
2908 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 2)); |
2909 | continue; |
2910 | } else if (auto *II = dyn_cast<IntrinsicInst>(Val: FrontU); |
2911 | II && isTriviallyVectorizable(ID: II->getIntrinsicID()) && |
2912 | !II->hasOperandBundles()) { |
2913 | for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) { |
2914 | if (isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Op, |
2915 | TTI: &TTI)) { |
2916 | if (!all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item, Op](InstLane &IL) { |
2917 | Value *FrontV = Item.front().first->get(); |
2918 | Use *U = IL.first; |
2919 | return !U || (cast<Instruction>(Val: U->get())->getOperand(i: Op) == |
2920 | cast<Instruction>(Val: FrontV)->getOperand(i: Op)); |
2921 | })) |
2922 | return false; |
2923 | continue; |
2924 | } |
2925 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op)); |
2926 | } |
2927 | continue; |
2928 | } |
2929 | } |
2930 | |
2931 | if (isFreeConcat(Item, CostKind, TTI)) { |
2932 | ConcatLeafs.insert(Ptr: FrontU); |
2933 | continue; |
2934 | } |
2935 | |
2936 | return false; |
2937 | } |
2938 | |
2939 | if (NumVisited <= 1) |
2940 | return false; |
2941 | |
2942 | LLVM_DEBUG(dbgs() << "Found a superfluous identity shuffle: " << I << "\n" ); |
2943 | |
2944 | // If we got this far, we know the shuffles are superfluous and can be |
2945 | // removed. Scan through again and generate the new tree of instructions. |
2946 | Builder.SetInsertPoint(&I); |
2947 | Value *V = generateNewInstTree(Item: Start, Ty, IdentityLeafs, SplatLeafs, |
2948 | ConcatLeafs, Builder, TTI: &TTI); |
2949 | replaceValue(Old&: I, New&: *V); |
2950 | return true; |
2951 | } |
2952 | |
2953 | /// Given a commutative reduction, the order of the input lanes does not alter |
2954 | /// the results. We can use this to remove certain shuffles feeding the |
2955 | /// reduction, removing the need to shuffle at all. |
2956 | bool VectorCombine::foldShuffleFromReductions(Instruction &I) { |
2957 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
2958 | if (!II) |
2959 | return false; |
2960 | switch (II->getIntrinsicID()) { |
2961 | case Intrinsic::vector_reduce_add: |
2962 | case Intrinsic::vector_reduce_mul: |
2963 | case Intrinsic::vector_reduce_and: |
2964 | case Intrinsic::vector_reduce_or: |
2965 | case Intrinsic::vector_reduce_xor: |
2966 | case Intrinsic::vector_reduce_smin: |
2967 | case Intrinsic::vector_reduce_smax: |
2968 | case Intrinsic::vector_reduce_umin: |
2969 | case Intrinsic::vector_reduce_umax: |
2970 | break; |
2971 | default: |
2972 | return false; |
2973 | } |
2974 | |
2975 | // Find all the inputs when looking through operations that do not alter the |
2976 | // lane order (binops, for example). Currently we look for a single shuffle, |
2977 | // and can ignore splat values. |
2978 | std::queue<Value *> Worklist; |
2979 | SmallPtrSet<Value *, 4> Visited; |
2980 | ShuffleVectorInst *Shuffle = nullptr; |
2981 | if (auto *Op = dyn_cast<Instruction>(Val: I.getOperand(i: 0))) |
2982 | Worklist.push(x: Op); |
2983 | |
2984 | while (!Worklist.empty()) { |
2985 | Value *CV = Worklist.front(); |
2986 | Worklist.pop(); |
2987 | if (Visited.contains(Ptr: CV)) |
2988 | continue; |
2989 | |
2990 | // Splats don't change the order, so can be safely ignored. |
2991 | if (isSplatValue(V: CV)) |
2992 | continue; |
2993 | |
2994 | Visited.insert(Ptr: CV); |
2995 | |
2996 | if (auto *CI = dyn_cast<Instruction>(Val: CV)) { |
2997 | if (CI->isBinaryOp()) { |
2998 | for (auto *Op : CI->operand_values()) |
2999 | Worklist.push(x: Op); |
3000 | continue; |
3001 | } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Val: CI)) { |
3002 | if (Shuffle && Shuffle != SV) |
3003 | return false; |
3004 | Shuffle = SV; |
3005 | continue; |
3006 | } |
3007 | } |
3008 | |
3009 | // Anything else is currently an unknown node. |
3010 | return false; |
3011 | } |
3012 | |
3013 | if (!Shuffle) |
3014 | return false; |
3015 | |
3016 | // Check all uses of the binary ops and shuffles are also included in the |
3017 | // lane-invariant operations (Visited should be the list of lanewise |
3018 | // instructions, including the shuffle that we found). |
3019 | for (auto *V : Visited) |
3020 | for (auto *U : V->users()) |
3021 | if (!Visited.contains(Ptr: U) && U != &I) |
3022 | return false; |
3023 | |
3024 | FixedVectorType *VecType = |
3025 | dyn_cast<FixedVectorType>(Val: II->getOperand(i_nocapture: 0)->getType()); |
3026 | if (!VecType) |
3027 | return false; |
3028 | FixedVectorType *ShuffleInputType = |
3029 | dyn_cast<FixedVectorType>(Val: Shuffle->getOperand(i_nocapture: 0)->getType()); |
3030 | if (!ShuffleInputType) |
3031 | return false; |
3032 | unsigned NumInputElts = ShuffleInputType->getNumElements(); |
3033 | |
3034 | // Find the mask from sorting the lanes into order. This is most likely to |
3035 | // become a identity or concat mask. Undef elements are pushed to the end. |
3036 | SmallVector<int> ConcatMask; |
3037 | Shuffle->getShuffleMask(Result&: ConcatMask); |
3038 | sort(C&: ConcatMask, Comp: [](int X, int Y) { return (unsigned)X < (unsigned)Y; }); |
3039 | bool UsesSecondVec = |
3040 | any_of(Range&: ConcatMask, P: [&](int M) { return M >= (int)NumInputElts; }); |
3041 | |
3042 | InstructionCost OldCost = TTI.getShuffleCost( |
3043 | Kind: UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, DstTy: VecType, |
3044 | SrcTy: ShuffleInputType, Mask: Shuffle->getShuffleMask(), CostKind); |
3045 | InstructionCost NewCost = TTI.getShuffleCost( |
3046 | Kind: UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, DstTy: VecType, |
3047 | SrcTy: ShuffleInputType, Mask: ConcatMask, CostKind); |
3048 | |
3049 | LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle |
3050 | << "\n" ); |
3051 | LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost |
3052 | << "\n" ); |
3053 | bool MadeChanges = false; |
3054 | if (NewCost < OldCost) { |
3055 | Builder.SetInsertPoint(Shuffle); |
3056 | Value *NewShuffle = Builder.CreateShuffleVector( |
3057 | V1: Shuffle->getOperand(i_nocapture: 0), V2: Shuffle->getOperand(i_nocapture: 1), Mask: ConcatMask); |
3058 | LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n" ); |
3059 | replaceValue(Old&: *Shuffle, New&: *NewShuffle); |
3060 | MadeChanges = true; |
3061 | } |
3062 | |
3063 | // See if we can re-use foldSelectShuffle, getting it to reduce the size of |
3064 | // the shuffle into a nicer order, as it can ignore the order of the shuffles. |
3065 | MadeChanges |= foldSelectShuffle(I&: *Shuffle, FromReduction: true); |
3066 | return MadeChanges; |
3067 | } |
3068 | |
3069 | /// Determine if its more efficient to fold: |
3070 | /// reduce(trunc(x)) -> trunc(reduce(x)). |
3071 | /// reduce(sext(x)) -> sext(reduce(x)). |
3072 | /// reduce(zext(x)) -> zext(reduce(x)). |
3073 | bool VectorCombine::foldCastFromReductions(Instruction &I) { |
3074 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
3075 | if (!II) |
3076 | return false; |
3077 | |
3078 | bool TruncOnly = false; |
3079 | Intrinsic::ID IID = II->getIntrinsicID(); |
3080 | switch (IID) { |
3081 | case Intrinsic::vector_reduce_add: |
3082 | case Intrinsic::vector_reduce_mul: |
3083 | TruncOnly = true; |
3084 | break; |
3085 | case Intrinsic::vector_reduce_and: |
3086 | case Intrinsic::vector_reduce_or: |
3087 | case Intrinsic::vector_reduce_xor: |
3088 | break; |
3089 | default: |
3090 | return false; |
3091 | } |
3092 | |
3093 | unsigned ReductionOpc = getArithmeticReductionInstruction(RdxID: IID); |
3094 | Value *ReductionSrc = I.getOperand(i: 0); |
3095 | |
3096 | Value *Src; |
3097 | if (!match(V: ReductionSrc, P: m_OneUse(SubPattern: m_Trunc(Op: m_Value(V&: Src)))) && |
3098 | (TruncOnly || !match(V: ReductionSrc, P: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: Src)))))) |
3099 | return false; |
3100 | |
3101 | auto CastOpc = |
3102 | (Instruction::CastOps)cast<Instruction>(Val: ReductionSrc)->getOpcode(); |
3103 | |
3104 | auto *SrcTy = cast<VectorType>(Val: Src->getType()); |
3105 | auto *ReductionSrcTy = cast<VectorType>(Val: ReductionSrc->getType()); |
3106 | Type *ResultTy = I.getType(); |
3107 | |
3108 | InstructionCost OldCost = TTI.getArithmeticReductionCost( |
3109 | Opcode: ReductionOpc, Ty: ReductionSrcTy, FMF: std::nullopt, CostKind); |
3110 | OldCost += TTI.getCastInstrCost(Opcode: CastOpc, Dst: ReductionSrcTy, Src: SrcTy, |
3111 | CCH: TTI::CastContextHint::None, CostKind, |
3112 | I: cast<CastInst>(Val: ReductionSrc)); |
3113 | InstructionCost NewCost = |
3114 | TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: SrcTy, FMF: std::nullopt, |
3115 | CostKind) + |
3116 | TTI.getCastInstrCost(Opcode: CastOpc, Dst: ResultTy, Src: ReductionSrcTy->getScalarType(), |
3117 | CCH: TTI::CastContextHint::None, CostKind); |
3118 | |
3119 | if (OldCost <= NewCost || !NewCost.isValid()) |
3120 | return false; |
3121 | |
3122 | Value *NewReduction = Builder.CreateIntrinsic(RetTy: SrcTy->getScalarType(), |
3123 | ID: II->getIntrinsicID(), Args: {Src}); |
3124 | Value *NewCast = Builder.CreateCast(Op: CastOpc, V: NewReduction, DestTy: ResultTy); |
3125 | replaceValue(Old&: I, New&: *NewCast); |
3126 | return true; |
3127 | } |
3128 | |
3129 | /// This method looks for groups of shuffles acting on binops, of the form: |
3130 | /// %x = shuffle ... |
3131 | /// %y = shuffle ... |
3132 | /// %a = binop %x, %y |
3133 | /// %b = binop %x, %y |
3134 | /// shuffle %a, %b, selectmask |
3135 | /// We may, especially if the shuffle is wider than legal, be able to convert |
3136 | /// the shuffle to a form where only parts of a and b need to be computed. On |
3137 | /// architectures with no obvious "select" shuffle, this can reduce the total |
3138 | /// number of operations if the target reports them as cheaper. |
3139 | bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) { |
3140 | auto *SVI = cast<ShuffleVectorInst>(Val: &I); |
3141 | auto *VT = cast<FixedVectorType>(Val: I.getType()); |
3142 | auto *Op0 = dyn_cast<Instruction>(Val: SVI->getOperand(i_nocapture: 0)); |
3143 | auto *Op1 = dyn_cast<Instruction>(Val: SVI->getOperand(i_nocapture: 1)); |
3144 | if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() || |
3145 | VT != Op0->getType()) |
3146 | return false; |
3147 | |
3148 | auto *SVI0A = dyn_cast<Instruction>(Val: Op0->getOperand(i: 0)); |
3149 | auto *SVI0B = dyn_cast<Instruction>(Val: Op0->getOperand(i: 1)); |
3150 | auto *SVI1A = dyn_cast<Instruction>(Val: Op1->getOperand(i: 0)); |
3151 | auto *SVI1B = dyn_cast<Instruction>(Val: Op1->getOperand(i: 1)); |
3152 | SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B}); |
3153 | auto checkSVNonOpUses = [&](Instruction *I) { |
3154 | if (!I || I->getOperand(i: 0)->getType() != VT) |
3155 | return true; |
3156 | return any_of(Range: I->users(), P: [&](User *U) { |
3157 | return U != Op0 && U != Op1 && |
3158 | !(isa<ShuffleVectorInst>(Val: U) && |
3159 | (InputShuffles.contains(Ptr: cast<Instruction>(Val: U)) || |
3160 | isInstructionTriviallyDead(I: cast<Instruction>(Val: U)))); |
3161 | }); |
3162 | }; |
3163 | if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) || |
3164 | checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B)) |
3165 | return false; |
3166 | |
3167 | // Collect all the uses that are shuffles that we can transform together. We |
3168 | // may not have a single shuffle, but a group that can all be transformed |
3169 | // together profitably. |
3170 | SmallVector<ShuffleVectorInst *> Shuffles; |
3171 | auto collectShuffles = [&](Instruction *I) { |
3172 | for (auto *U : I->users()) { |
3173 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: U); |
3174 | if (!SV || SV->getType() != VT) |
3175 | return false; |
3176 | if ((SV->getOperand(i_nocapture: 0) != Op0 && SV->getOperand(i_nocapture: 0) != Op1) || |
3177 | (SV->getOperand(i_nocapture: 1) != Op0 && SV->getOperand(i_nocapture: 1) != Op1)) |
3178 | return false; |
3179 | if (!llvm::is_contained(Range&: Shuffles, Element: SV)) |
3180 | Shuffles.push_back(Elt: SV); |
3181 | } |
3182 | return true; |
3183 | }; |
3184 | if (!collectShuffles(Op0) || !collectShuffles(Op1)) |
3185 | return false; |
3186 | // From a reduction, we need to be processing a single shuffle, otherwise the |
3187 | // other uses will not be lane-invariant. |
3188 | if (FromReduction && Shuffles.size() > 1) |
3189 | return false; |
3190 | |
3191 | // Add any shuffle uses for the shuffles we have found, to include them in our |
3192 | // cost calculations. |
3193 | if (!FromReduction) { |
3194 | for (ShuffleVectorInst *SV : Shuffles) { |
3195 | for (auto *U : SV->users()) { |
3196 | ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(Val: U); |
3197 | if (SSV && isa<UndefValue>(Val: SSV->getOperand(i_nocapture: 1)) && SSV->getType() == VT) |
3198 | Shuffles.push_back(Elt: SSV); |
3199 | } |
3200 | } |
3201 | } |
3202 | |
3203 | // For each of the output shuffles, we try to sort all the first vector |
3204 | // elements to the beginning, followed by the second array elements at the |
3205 | // end. If the binops are legalized to smaller vectors, this may reduce total |
3206 | // number of binops. We compute the ReconstructMask mask needed to convert |
3207 | // back to the original lane order. |
3208 | SmallVector<std::pair<int, int>> V1, V2; |
3209 | SmallVector<SmallVector<int>> OrigReconstructMasks; |
3210 | int MaxV1Elt = 0, MaxV2Elt = 0; |
3211 | unsigned NumElts = VT->getNumElements(); |
3212 | for (ShuffleVectorInst *SVN : Shuffles) { |
3213 | SmallVector<int> Mask; |
3214 | SVN->getShuffleMask(Result&: Mask); |
3215 | |
3216 | // Check the operands are the same as the original, or reversed (in which |
3217 | // case we need to commute the mask). |
3218 | Value *SVOp0 = SVN->getOperand(i_nocapture: 0); |
3219 | Value *SVOp1 = SVN->getOperand(i_nocapture: 1); |
3220 | if (isa<UndefValue>(Val: SVOp1)) { |
3221 | auto *SSV = cast<ShuffleVectorInst>(Val: SVOp0); |
3222 | SVOp0 = SSV->getOperand(i_nocapture: 0); |
3223 | SVOp1 = SSV->getOperand(i_nocapture: 1); |
3224 | for (int &Elem : Mask) { |
3225 | if (Elem >= static_cast<int>(SSV->getShuffleMask().size())) |
3226 | return false; |
3227 | Elem = Elem < 0 ? Elem : SSV->getMaskValue(Elt: Elem); |
3228 | } |
3229 | } |
3230 | if (SVOp0 == Op1 && SVOp1 == Op0) { |
3231 | std::swap(a&: SVOp0, b&: SVOp1); |
3232 | ShuffleVectorInst::commuteShuffleMask(Mask, InVecNumElts: NumElts); |
3233 | } |
3234 | if (SVOp0 != Op0 || SVOp1 != Op1) |
3235 | return false; |
3236 | |
3237 | // Calculate the reconstruction mask for this shuffle, as the mask needed to |
3238 | // take the packed values from Op0/Op1 and reconstructing to the original |
3239 | // order. |
3240 | SmallVector<int> ReconstructMask; |
3241 | for (unsigned I = 0; I < Mask.size(); I++) { |
3242 | if (Mask[I] < 0) { |
3243 | ReconstructMask.push_back(Elt: -1); |
3244 | } else if (Mask[I] < static_cast<int>(NumElts)) { |
3245 | MaxV1Elt = std::max(a: MaxV1Elt, b: Mask[I]); |
3246 | auto It = find_if(Range&: V1, P: [&](const std::pair<int, int> &A) { |
3247 | return Mask[I] == A.first; |
3248 | }); |
3249 | if (It != V1.end()) |
3250 | ReconstructMask.push_back(Elt: It - V1.begin()); |
3251 | else { |
3252 | ReconstructMask.push_back(Elt: V1.size()); |
3253 | V1.emplace_back(Args&: Mask[I], Args: V1.size()); |
3254 | } |
3255 | } else { |
3256 | MaxV2Elt = std::max<int>(a: MaxV2Elt, b: Mask[I] - NumElts); |
3257 | auto It = find_if(Range&: V2, P: [&](const std::pair<int, int> &A) { |
3258 | return Mask[I] - static_cast<int>(NumElts) == A.first; |
3259 | }); |
3260 | if (It != V2.end()) |
3261 | ReconstructMask.push_back(Elt: NumElts + It - V2.begin()); |
3262 | else { |
3263 | ReconstructMask.push_back(Elt: NumElts + V2.size()); |
3264 | V2.emplace_back(Args: Mask[I] - NumElts, Args: NumElts + V2.size()); |
3265 | } |
3266 | } |
3267 | } |
3268 | |
3269 | // For reductions, we know that the lane ordering out doesn't alter the |
3270 | // result. In-order can help simplify the shuffle away. |
3271 | if (FromReduction) |
3272 | sort(C&: ReconstructMask); |
3273 | OrigReconstructMasks.push_back(Elt: std::move(ReconstructMask)); |
3274 | } |
3275 | |
3276 | // If the Maximum element used from V1 and V2 are not larger than the new |
3277 | // vectors, the vectors are already packes and performing the optimization |
3278 | // again will likely not help any further. This also prevents us from getting |
3279 | // stuck in a cycle in case the costs do not also rule it out. |
3280 | if (V1.empty() || V2.empty() || |
3281 | (MaxV1Elt == static_cast<int>(V1.size()) - 1 && |
3282 | MaxV2Elt == static_cast<int>(V2.size()) - 1)) |
3283 | return false; |
3284 | |
3285 | // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a |
3286 | // shuffle of another shuffle, or not a shuffle (that is treated like a |
3287 | // identity shuffle). |
3288 | auto GetBaseMaskValue = [&](Instruction *I, int M) { |
3289 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
3290 | if (!SV) |
3291 | return M; |
3292 | if (isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1))) |
3293 | if (auto *SSV = dyn_cast<ShuffleVectorInst>(Val: SV->getOperand(i_nocapture: 0))) |
3294 | if (InputShuffles.contains(Ptr: SSV)) |
3295 | return SSV->getMaskValue(Elt: SV->getMaskValue(Elt: M)); |
3296 | return SV->getMaskValue(Elt: M); |
3297 | }; |
3298 | |
3299 | // Attempt to sort the inputs my ascending mask values to make simpler input |
3300 | // shuffles and push complex shuffles down to the uses. We sort on the first |
3301 | // of the two input shuffle orders, to try and get at least one input into a |
3302 | // nice order. |
3303 | auto SortBase = [&](Instruction *A, std::pair<int, int> X, |
3304 | std::pair<int, int> Y) { |
3305 | int MXA = GetBaseMaskValue(A, X.first); |
3306 | int MYA = GetBaseMaskValue(A, Y.first); |
3307 | return MXA < MYA; |
3308 | }; |
3309 | stable_sort(Range&: V1, C: [&](std::pair<int, int> A, std::pair<int, int> B) { |
3310 | return SortBase(SVI0A, A, B); |
3311 | }); |
3312 | stable_sort(Range&: V2, C: [&](std::pair<int, int> A, std::pair<int, int> B) { |
3313 | return SortBase(SVI1A, A, B); |
3314 | }); |
3315 | // Calculate our ReconstructMasks from the OrigReconstructMasks and the |
3316 | // modified order of the input shuffles. |
3317 | SmallVector<SmallVector<int>> ReconstructMasks; |
3318 | for (const auto &Mask : OrigReconstructMasks) { |
3319 | SmallVector<int> ReconstructMask; |
3320 | for (int M : Mask) { |
3321 | auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) { |
3322 | auto It = find_if(Range: V, P: [M](auto A) { return A.second == M; }); |
3323 | assert(It != V.end() && "Expected all entries in Mask" ); |
3324 | return std::distance(first: V.begin(), last: It); |
3325 | }; |
3326 | if (M < 0) |
3327 | ReconstructMask.push_back(Elt: -1); |
3328 | else if (M < static_cast<int>(NumElts)) { |
3329 | ReconstructMask.push_back(Elt: FindIndex(V1, M)); |
3330 | } else { |
3331 | ReconstructMask.push_back(Elt: NumElts + FindIndex(V2, M)); |
3332 | } |
3333 | } |
3334 | ReconstructMasks.push_back(Elt: std::move(ReconstructMask)); |
3335 | } |
3336 | |
3337 | // Calculate the masks needed for the new input shuffles, which get padded |
3338 | // with undef |
3339 | SmallVector<int> V1A, V1B, V2A, V2B; |
3340 | for (unsigned I = 0; I < V1.size(); I++) { |
3341 | V1A.push_back(Elt: GetBaseMaskValue(SVI0A, V1[I].first)); |
3342 | V1B.push_back(Elt: GetBaseMaskValue(SVI0B, V1[I].first)); |
3343 | } |
3344 | for (unsigned I = 0; I < V2.size(); I++) { |
3345 | V2A.push_back(Elt: GetBaseMaskValue(SVI1A, V2[I].first)); |
3346 | V2B.push_back(Elt: GetBaseMaskValue(SVI1B, V2[I].first)); |
3347 | } |
3348 | while (V1A.size() < NumElts) { |
3349 | V1A.push_back(Elt: PoisonMaskElem); |
3350 | V1B.push_back(Elt: PoisonMaskElem); |
3351 | } |
3352 | while (V2A.size() < NumElts) { |
3353 | V2A.push_back(Elt: PoisonMaskElem); |
3354 | V2B.push_back(Elt: PoisonMaskElem); |
3355 | } |
3356 | |
3357 | auto AddShuffleCost = [&](InstructionCost C, Instruction *I) { |
3358 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
3359 | if (!SV) |
3360 | return C; |
3361 | return C + TTI.getShuffleCost(Kind: isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1)) |
3362 | ? TTI::SK_PermuteSingleSrc |
3363 | : TTI::SK_PermuteTwoSrc, |
3364 | DstTy: VT, SrcTy: VT, Mask: SV->getShuffleMask(), CostKind); |
3365 | }; |
3366 | auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) { |
3367 | return C + |
3368 | TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, DstTy: VT, SrcTy: VT, Mask, CostKind); |
3369 | }; |
3370 | |
3371 | // Get the costs of the shuffles + binops before and after with the new |
3372 | // shuffle masks. |
3373 | InstructionCost CostBefore = |
3374 | TTI.getArithmeticInstrCost(Opcode: Op0->getOpcode(), Ty: VT, CostKind) + |
3375 | TTI.getArithmeticInstrCost(Opcode: Op1->getOpcode(), Ty: VT, CostKind); |
3376 | CostBefore += std::accumulate(first: Shuffles.begin(), last: Shuffles.end(), |
3377 | init: InstructionCost(0), binary_op: AddShuffleCost); |
3378 | CostBefore += std::accumulate(first: InputShuffles.begin(), last: InputShuffles.end(), |
3379 | init: InstructionCost(0), binary_op: AddShuffleCost); |
3380 | |
3381 | // The new binops will be unused for lanes past the used shuffle lengths. |
3382 | // These types attempt to get the correct cost for that from the target. |
3383 | FixedVectorType *Op0SmallVT = |
3384 | FixedVectorType::get(ElementType: VT->getScalarType(), NumElts: V1.size()); |
3385 | FixedVectorType *Op1SmallVT = |
3386 | FixedVectorType::get(ElementType: VT->getScalarType(), NumElts: V2.size()); |
3387 | InstructionCost CostAfter = |
3388 | TTI.getArithmeticInstrCost(Opcode: Op0->getOpcode(), Ty: Op0SmallVT, CostKind) + |
3389 | TTI.getArithmeticInstrCost(Opcode: Op1->getOpcode(), Ty: Op1SmallVT, CostKind); |
3390 | CostAfter += std::accumulate(first: ReconstructMasks.begin(), last: ReconstructMasks.end(), |
3391 | init: InstructionCost(0), binary_op: AddShuffleMaskCost); |
3392 | std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B}); |
3393 | CostAfter += |
3394 | std::accumulate(first: OutputShuffleMasks.begin(), last: OutputShuffleMasks.end(), |
3395 | init: InstructionCost(0), binary_op: AddShuffleMaskCost); |
3396 | |
3397 | LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n" ); |
3398 | LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore |
3399 | << " vs CostAfter: " << CostAfter << "\n" ); |
3400 | if (CostBefore <= CostAfter) |
3401 | return false; |
3402 | |
3403 | // The cost model has passed, create the new instructions. |
3404 | auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * { |
3405 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
3406 | if (!SV) |
3407 | return I; |
3408 | if (isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1))) |
3409 | if (auto *SSV = dyn_cast<ShuffleVectorInst>(Val: SV->getOperand(i_nocapture: 0))) |
3410 | if (InputShuffles.contains(Ptr: SSV)) |
3411 | return SSV->getOperand(i_nocapture: Op); |
3412 | return SV->getOperand(i_nocapture: Op); |
3413 | }; |
3414 | Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef()); |
3415 | Value *NSV0A = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI0A, 0), |
3416 | V2: GetShuffleOperand(SVI0A, 1), Mask: V1A); |
3417 | Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef()); |
3418 | Value *NSV0B = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI0B, 0), |
3419 | V2: GetShuffleOperand(SVI0B, 1), Mask: V1B); |
3420 | Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef()); |
3421 | Value *NSV1A = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI1A, 0), |
3422 | V2: GetShuffleOperand(SVI1A, 1), Mask: V2A); |
3423 | Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef()); |
3424 | Value *NSV1B = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI1B, 0), |
3425 | V2: GetShuffleOperand(SVI1B, 1), Mask: V2B); |
3426 | Builder.SetInsertPoint(Op0); |
3427 | Value *NOp0 = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Op0->getOpcode(), |
3428 | LHS: NSV0A, RHS: NSV0B); |
3429 | if (auto *I = dyn_cast<Instruction>(Val: NOp0)) |
3430 | I->copyIRFlags(V: Op0, IncludeWrapFlags: true); |
3431 | Builder.SetInsertPoint(Op1); |
3432 | Value *NOp1 = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Op1->getOpcode(), |
3433 | LHS: NSV1A, RHS: NSV1B); |
3434 | if (auto *I = dyn_cast<Instruction>(Val: NOp1)) |
3435 | I->copyIRFlags(V: Op1, IncludeWrapFlags: true); |
3436 | |
3437 | for (int S = 0, E = ReconstructMasks.size(); S != E; S++) { |
3438 | Builder.SetInsertPoint(Shuffles[S]); |
3439 | Value *NSV = Builder.CreateShuffleVector(V1: NOp0, V2: NOp1, Mask: ReconstructMasks[S]); |
3440 | replaceValue(Old&: *Shuffles[S], New&: *NSV); |
3441 | } |
3442 | |
3443 | Worklist.pushValue(V: NSV0A); |
3444 | Worklist.pushValue(V: NSV0B); |
3445 | Worklist.pushValue(V: NSV1A); |
3446 | Worklist.pushValue(V: NSV1B); |
3447 | return true; |
3448 | } |
3449 | |
3450 | /// Check if instruction depends on ZExt and this ZExt can be moved after the |
3451 | /// instruction. Move ZExt if it is profitable. For example: |
3452 | /// logic(zext(x),y) -> zext(logic(x,trunc(y))) |
3453 | /// lshr((zext(x),y) -> zext(lshr(x,trunc(y))) |
3454 | /// Cost model calculations takes into account if zext(x) has other users and |
3455 | /// whether it can be propagated through them too. |
3456 | bool VectorCombine::shrinkType(Instruction &I) { |
3457 | Value *ZExted, *OtherOperand; |
3458 | if (!match(V: &I, P: m_c_BitwiseLogic(L: m_ZExt(Op: m_Value(V&: ZExted)), |
3459 | R: m_Value(V&: OtherOperand))) && |
3460 | !match(V: &I, P: m_LShr(L: m_ZExt(Op: m_Value(V&: ZExted)), R: m_Value(V&: OtherOperand)))) |
3461 | return false; |
3462 | |
3463 | Value *ZExtOperand = I.getOperand(i: I.getOperand(i: 0) == OtherOperand ? 1 : 0); |
3464 | |
3465 | auto *BigTy = cast<FixedVectorType>(Val: I.getType()); |
3466 | auto *SmallTy = cast<FixedVectorType>(Val: ZExted->getType()); |
3467 | unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits(); |
3468 | |
3469 | if (I.getOpcode() == Instruction::LShr) { |
3470 | // Check that the shift amount is less than the number of bits in the |
3471 | // smaller type. Otherwise, the smaller lshr will return a poison value. |
3472 | KnownBits ShAmtKB = computeKnownBits(V: I.getOperand(i: 1), DL: *DL); |
3473 | if (ShAmtKB.getMaxValue().uge(RHS: BW)) |
3474 | return false; |
3475 | } else { |
3476 | // Check that the expression overall uses at most the same number of bits as |
3477 | // ZExted |
3478 | KnownBits KB = computeKnownBits(V: &I, DL: *DL); |
3479 | if (KB.countMaxActiveBits() > BW) |
3480 | return false; |
3481 | } |
3482 | |
3483 | // Calculate costs of leaving current IR as it is and moving ZExt operation |
3484 | // later, along with adding truncates if needed |
3485 | InstructionCost ZExtCost = TTI.getCastInstrCost( |
3486 | Opcode: Instruction::ZExt, Dst: BigTy, Src: SmallTy, |
3487 | CCH: TargetTransformInfo::CastContextHint::None, CostKind); |
3488 | InstructionCost CurrentCost = ZExtCost; |
3489 | InstructionCost ShrinkCost = 0; |
3490 | |
3491 | // Calculate total cost and check that we can propagate through all ZExt users |
3492 | for (User *U : ZExtOperand->users()) { |
3493 | auto *UI = cast<Instruction>(Val: U); |
3494 | if (UI == &I) { |
3495 | CurrentCost += |
3496 | TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: BigTy, CostKind); |
3497 | ShrinkCost += |
3498 | TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: SmallTy, CostKind); |
3499 | ShrinkCost += ZExtCost; |
3500 | continue; |
3501 | } |
3502 | |
3503 | if (!Instruction::isBinaryOp(Opcode: UI->getOpcode())) |
3504 | return false; |
3505 | |
3506 | // Check if we can propagate ZExt through its other users |
3507 | KnownBits KB = computeKnownBits(V: UI, DL: *DL); |
3508 | if (KB.countMaxActiveBits() > BW) |
3509 | return false; |
3510 | |
3511 | CurrentCost += TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: BigTy, CostKind); |
3512 | ShrinkCost += |
3513 | TTI.getArithmeticInstrCost(Opcode: UI->getOpcode(), Ty: SmallTy, CostKind); |
3514 | ShrinkCost += ZExtCost; |
3515 | } |
3516 | |
3517 | // If the other instruction operand is not a constant, we'll need to |
3518 | // generate a truncate instruction. So we have to adjust cost |
3519 | if (!isa<Constant>(Val: OtherOperand)) |
3520 | ShrinkCost += TTI.getCastInstrCost( |
3521 | Opcode: Instruction::Trunc, Dst: SmallTy, Src: BigTy, |
3522 | CCH: TargetTransformInfo::CastContextHint::None, CostKind); |
3523 | |
3524 | // If the cost of shrinking types and leaving the IR is the same, we'll lean |
3525 | // towards modifying the IR because shrinking opens opportunities for other |
3526 | // shrinking optimisations. |
3527 | if (ShrinkCost > CurrentCost) |
3528 | return false; |
3529 | |
3530 | Builder.SetInsertPoint(&I); |
3531 | Value *Op0 = ZExted; |
3532 | Value *Op1 = Builder.CreateTrunc(V: OtherOperand, DestTy: SmallTy); |
3533 | // Keep the order of operands the same |
3534 | if (I.getOperand(i: 0) == OtherOperand) |
3535 | std::swap(a&: Op0, b&: Op1); |
3536 | Value *NewBinOp = |
3537 | Builder.CreateBinOp(Opc: (Instruction::BinaryOps)I.getOpcode(), LHS: Op0, RHS: Op1); |
3538 | cast<Instruction>(Val: NewBinOp)->copyIRFlags(V: &I); |
3539 | cast<Instruction>(Val: NewBinOp)->copyMetadata(SrcInst: I); |
3540 | Value *NewZExtr = Builder.CreateZExt(V: NewBinOp, DestTy: BigTy); |
3541 | replaceValue(Old&: I, New&: *NewZExtr); |
3542 | return true; |
3543 | } |
3544 | |
3545 | /// insert (DstVec, (extract SrcVec, ExtIdx), InsIdx) --> |
3546 | /// shuffle (DstVec, SrcVec, Mask) |
3547 | bool VectorCombine::foldInsExtVectorToShuffle(Instruction &I) { |
3548 | Value *DstVec, *SrcVec; |
3549 | uint64_t ExtIdx, InsIdx; |
3550 | if (!match(V: &I, |
3551 | P: m_InsertElt(Val: m_Value(V&: DstVec), |
3552 | Elt: m_ExtractElt(Val: m_Value(V&: SrcVec), Idx: m_ConstantInt(V&: ExtIdx)), |
3553 | Idx: m_ConstantInt(V&: InsIdx)))) |
3554 | return false; |
3555 | |
3556 | auto *DstVecTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
3557 | auto *SrcVecTy = dyn_cast<FixedVectorType>(Val: SrcVec->getType()); |
3558 | // We can try combining vectors with different element sizes. |
3559 | if (!DstVecTy || !SrcVecTy || |
3560 | SrcVecTy->getElementType() != DstVecTy->getElementType()) |
3561 | return false; |
3562 | |
3563 | unsigned NumDstElts = DstVecTy->getNumElements(); |
3564 | unsigned NumSrcElts = SrcVecTy->getNumElements(); |
3565 | if (InsIdx >= NumDstElts || ExtIdx >= NumSrcElts || NumDstElts == 1) |
3566 | return false; |
3567 | |
3568 | // Insertion into poison is a cheaper single operand shuffle. |
3569 | TargetTransformInfo::ShuffleKind SK; |
3570 | SmallVector<int> Mask(NumDstElts, PoisonMaskElem); |
3571 | |
3572 | bool NeedExpOrNarrow = NumSrcElts != NumDstElts; |
3573 | bool IsExtIdxInBounds = ExtIdx < NumDstElts; |
3574 | bool NeedDstSrcSwap = isa<PoisonValue>(Val: DstVec) && !isa<UndefValue>(Val: SrcVec); |
3575 | if (NeedDstSrcSwap) { |
3576 | SK = TargetTransformInfo::SK_PermuteSingleSrc; |
3577 | if (!IsExtIdxInBounds && NeedExpOrNarrow) |
3578 | Mask[InsIdx] = 0; |
3579 | else |
3580 | Mask[InsIdx] = ExtIdx; |
3581 | std::swap(a&: DstVec, b&: SrcVec); |
3582 | } else { |
3583 | SK = TargetTransformInfo::SK_PermuteTwoSrc; |
3584 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
3585 | if (!IsExtIdxInBounds && NeedExpOrNarrow) |
3586 | Mask[InsIdx] = NumDstElts; |
3587 | else |
3588 | Mask[InsIdx] = ExtIdx + NumDstElts; |
3589 | } |
3590 | |
3591 | // Cost |
3592 | auto *Ins = cast<InsertElementInst>(Val: &I); |
3593 | auto *Ext = cast<ExtractElementInst>(Val: I.getOperand(i: 1)); |
3594 | InstructionCost InsCost = |
3595 | TTI.getVectorInstrCost(I: *Ins, Val: DstVecTy, CostKind, Index: InsIdx); |
3596 | InstructionCost ExtCost = |
3597 | TTI.getVectorInstrCost(I: *Ext, Val: DstVecTy, CostKind, Index: ExtIdx); |
3598 | InstructionCost OldCost = ExtCost + InsCost; |
3599 | |
3600 | InstructionCost NewCost = 0; |
3601 | SmallVector<int> ExtToVecMask; |
3602 | if (!NeedExpOrNarrow) { |
3603 | // Ignore 'free' identity insertion shuffle. |
3604 | // TODO: getShuffleCost should return TCC_Free for Identity shuffles. |
3605 | if (!ShuffleVectorInst::isIdentityMask(Mask, NumSrcElts)) |
3606 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: DstVecTy, Mask, CostKind, Index: 0, |
3607 | SubTp: nullptr, Args: {DstVec, SrcVec}); |
3608 | } else { |
3609 | // When creating length-changing-vector, always create with a Mask whose |
3610 | // first element has an ExtIdx, so that the first element of the vector |
3611 | // being created is always the target to be extracted. |
3612 | ExtToVecMask.assign(NumElts: NumDstElts, Elt: PoisonMaskElem); |
3613 | if (IsExtIdxInBounds) |
3614 | ExtToVecMask[ExtIdx] = ExtIdx; |
3615 | else |
3616 | ExtToVecMask[0] = ExtIdx; |
3617 | // Add cost for expanding or narrowing |
3618 | NewCost = TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, |
3619 | DstTy: DstVecTy, SrcTy: SrcVecTy, Mask: ExtToVecMask, CostKind); |
3620 | NewCost += TTI.getShuffleCost(Kind: SK, DstTy: DstVecTy, SrcTy: DstVecTy, Mask, CostKind); |
3621 | } |
3622 | |
3623 | if (!Ext->hasOneUse()) |
3624 | NewCost += ExtCost; |
3625 | |
3626 | LLVM_DEBUG(dbgs() << "Found a insert/extract shuffle-like pair: " << I |
3627 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
3628 | << "\n" ); |
3629 | |
3630 | if (OldCost < NewCost) |
3631 | return false; |
3632 | |
3633 | if (NeedExpOrNarrow) { |
3634 | if (!NeedDstSrcSwap) |
3635 | SrcVec = Builder.CreateShuffleVector(V: SrcVec, Mask: ExtToVecMask); |
3636 | else |
3637 | DstVec = Builder.CreateShuffleVector(V: DstVec, Mask: ExtToVecMask); |
3638 | } |
3639 | |
3640 | // Canonicalize undef param to RHS to help further folds. |
3641 | if (isa<UndefValue>(Val: DstVec) && !isa<UndefValue>(Val: SrcVec)) { |
3642 | ShuffleVectorInst::commuteShuffleMask(Mask, InVecNumElts: NumDstElts); |
3643 | std::swap(a&: DstVec, b&: SrcVec); |
3644 | } |
3645 | |
3646 | Value *Shuf = Builder.CreateShuffleVector(V1: DstVec, V2: SrcVec, Mask); |
3647 | replaceValue(Old&: I, New&: *Shuf); |
3648 | |
3649 | return true; |
3650 | } |
3651 | |
3652 | /// If we're interleaving 2 constant splats, for instance `<vscale x 8 x i32> |
3653 | /// <splat of 666>` and `<vscale x 8 x i32> <splat of 777>`, we can create a |
3654 | /// larger splat `<vscale x 8 x i64> <splat of ((777 << 32) | 666)>` first |
3655 | /// before casting it back into `<vscale x 16 x i32>`. |
3656 | bool VectorCombine::foldInterleaveIntrinsics(Instruction &I) { |
3657 | const APInt *SplatVal0, *SplatVal1; |
3658 | if (!match(V: &I, P: m_Intrinsic<Intrinsic::vector_interleave2>( |
3659 | Op0: m_APInt(Res&: SplatVal0), Op1: m_APInt(Res&: SplatVal1)))) |
3660 | return false; |
3661 | |
3662 | LLVM_DEBUG(dbgs() << "VC: Folding interleave2 with two splats: " << I |
3663 | << "\n" ); |
3664 | |
3665 | auto *VTy = |
3666 | cast<VectorType>(Val: cast<IntrinsicInst>(Val&: I).getArgOperand(i: 0)->getType()); |
3667 | auto *ExtVTy = VectorType::getExtendedElementVectorType(VTy); |
3668 | unsigned Width = VTy->getElementType()->getIntegerBitWidth(); |
3669 | |
3670 | // Just in case the cost of interleave2 intrinsic and bitcast are both |
3671 | // invalid, in which case we want to bail out, we use <= rather |
3672 | // than < here. Even they both have valid and equal costs, it's probably |
3673 | // not a good idea to emit a high-cost constant splat. |
3674 | if (TTI.getInstructionCost(U: &I, CostKind) <= |
3675 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: I.getType(), Src: ExtVTy, |
3676 | CCH: TTI::CastContextHint::None, CostKind)) { |
3677 | LLVM_DEBUG(dbgs() << "VC: The cost to cast from " << *ExtVTy << " to " |
3678 | << *I.getType() << " is too high.\n" ); |
3679 | return false; |
3680 | } |
3681 | |
3682 | APInt NewSplatVal = SplatVal1->zext(width: Width * 2); |
3683 | NewSplatVal <<= Width; |
3684 | NewSplatVal |= SplatVal0->zext(width: Width * 2); |
3685 | auto *NewSplat = ConstantVector::getSplat( |
3686 | EC: ExtVTy->getElementCount(), Elt: ConstantInt::get(Context&: F.getContext(), V: NewSplatVal)); |
3687 | |
3688 | IRBuilder<> Builder(&I); |
3689 | replaceValue(Old&: I, New&: *Builder.CreateBitCast(V: NewSplat, DestTy: I.getType())); |
3690 | return true; |
3691 | } |
3692 | |
3693 | /// This is the entry point for all transforms. Pass manager differences are |
3694 | /// handled in the callers of this function. |
3695 | bool VectorCombine::run() { |
3696 | if (DisableVectorCombine) |
3697 | return false; |
3698 | |
3699 | // Don't attempt vectorization if the target does not support vectors. |
3700 | if (!TTI.getNumberOfRegisters(ClassID: TTI.getRegisterClassForType(/*Vector*/ true))) |
3701 | return false; |
3702 | |
3703 | LLVM_DEBUG(dbgs() << "\n\nVECTORCOMBINE on " << F.getName() << "\n" ); |
3704 | |
3705 | bool MadeChange = false; |
3706 | auto FoldInst = [this, &MadeChange](Instruction &I) { |
3707 | Builder.SetInsertPoint(&I); |
3708 | bool IsVectorType = isa<VectorType>(Val: I.getType()); |
3709 | bool IsFixedVectorType = isa<FixedVectorType>(Val: I.getType()); |
3710 | auto Opcode = I.getOpcode(); |
3711 | |
3712 | LLVM_DEBUG(dbgs() << "VC: Visiting: " << I << '\n'); |
3713 | |
3714 | // These folds should be beneficial regardless of when this pass is run |
3715 | // in the optimization pipeline. |
3716 | // The type checking is for run-time efficiency. We can avoid wasting time |
3717 | // dispatching to folding functions if there's no chance of matching. |
3718 | if (IsFixedVectorType) { |
3719 | switch (Opcode) { |
3720 | case Instruction::InsertElement: |
3721 | MadeChange |= vectorizeLoadInsert(I); |
3722 | break; |
3723 | case Instruction::ShuffleVector: |
3724 | MadeChange |= widenSubvectorLoad(I); |
3725 | break; |
3726 | default: |
3727 | break; |
3728 | } |
3729 | } |
3730 | |
3731 | // This transform works with scalable and fixed vectors |
3732 | // TODO: Identify and allow other scalable transforms |
3733 | if (IsVectorType) { |
3734 | MadeChange |= scalarizeOpOrCmp(I); |
3735 | MadeChange |= scalarizeLoadExtract(I); |
3736 | MadeChange |= scalarizeExtExtract(I); |
3737 | MadeChange |= scalarizeVPIntrinsic(I); |
3738 | MadeChange |= foldInterleaveIntrinsics(I); |
3739 | } |
3740 | |
3741 | if (Opcode == Instruction::Store) |
3742 | MadeChange |= foldSingleElementStore(I); |
3743 | |
3744 | // If this is an early pipeline invocation of this pass, we are done. |
3745 | if (TryEarlyFoldsOnly) |
3746 | return; |
3747 | |
3748 | // Otherwise, try folds that improve codegen but may interfere with |
3749 | // early IR canonicalizations. |
3750 | // The type checking is for run-time efficiency. We can avoid wasting time |
3751 | // dispatching to folding functions if there's no chance of matching. |
3752 | if (IsFixedVectorType) { |
3753 | switch (Opcode) { |
3754 | case Instruction::InsertElement: |
3755 | MadeChange |= foldInsExtFNeg(I); |
3756 | MadeChange |= foldInsExtBinop(I); |
3757 | MadeChange |= foldInsExtVectorToShuffle(I); |
3758 | break; |
3759 | case Instruction::ShuffleVector: |
3760 | MadeChange |= foldPermuteOfBinops(I); |
3761 | MadeChange |= foldShuffleOfBinops(I); |
3762 | MadeChange |= foldShuffleOfSelects(I); |
3763 | MadeChange |= foldShuffleOfCastops(I); |
3764 | MadeChange |= foldShuffleOfShuffles(I); |
3765 | MadeChange |= foldShuffleOfIntrinsics(I); |
3766 | MadeChange |= foldSelectShuffle(I); |
3767 | MadeChange |= foldShuffleToIdentity(I); |
3768 | break; |
3769 | case Instruction::BitCast: |
3770 | MadeChange |= foldBitcastShuffle(I); |
3771 | break; |
3772 | case Instruction::And: |
3773 | case Instruction::Or: |
3774 | case Instruction::Xor: |
3775 | MadeChange |= foldBitOpOfBitcasts(I); |
3776 | break; |
3777 | default: |
3778 | MadeChange |= shrinkType(I); |
3779 | break; |
3780 | } |
3781 | } else { |
3782 | switch (Opcode) { |
3783 | case Instruction::Call: |
3784 | MadeChange |= foldShuffleFromReductions(I); |
3785 | MadeChange |= foldCastFromReductions(I); |
3786 | break; |
3787 | case Instruction::ICmp: |
3788 | case Instruction::FCmp: |
3789 | MadeChange |= foldExtractExtract(I); |
3790 | break; |
3791 | case Instruction::Or: |
3792 | MadeChange |= foldConcatOfBoolMasks(I); |
3793 | [[fallthrough]]; |
3794 | default: |
3795 | if (Instruction::isBinaryOp(Opcode)) { |
3796 | MadeChange |= foldExtractExtract(I); |
3797 | MadeChange |= foldExtractedCmps(I); |
3798 | MadeChange |= foldBinopOfReductions(I); |
3799 | } |
3800 | break; |
3801 | } |
3802 | } |
3803 | }; |
3804 | |
3805 | for (BasicBlock &BB : F) { |
3806 | // Ignore unreachable basic blocks. |
3807 | if (!DT.isReachableFromEntry(A: &BB)) |
3808 | continue; |
3809 | // Use early increment range so that we can erase instructions in loop. |
3810 | for (Instruction &I : make_early_inc_range(Range&: BB)) { |
3811 | if (I.isDebugOrPseudoInst()) |
3812 | continue; |
3813 | FoldInst(I); |
3814 | } |
3815 | } |
3816 | |
3817 | while (!Worklist.isEmpty()) { |
3818 | Instruction *I = Worklist.removeOne(); |
3819 | if (!I) |
3820 | continue; |
3821 | |
3822 | if (isInstructionTriviallyDead(I)) { |
3823 | eraseInstruction(I&: *I); |
3824 | continue; |
3825 | } |
3826 | |
3827 | FoldInst(*I); |
3828 | } |
3829 | |
3830 | return MadeChange; |
3831 | } |
3832 | |
3833 | PreservedAnalyses VectorCombinePass::run(Function &F, |
3834 | FunctionAnalysisManager &FAM) { |
3835 | auto &AC = FAM.getResult<AssumptionAnalysis>(IR&: F); |
3836 | TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(IR&: F); |
3837 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
3838 | AAResults &AA = FAM.getResult<AAManager>(IR&: F); |
3839 | const DataLayout *DL = &F.getDataLayout(); |
3840 | VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TTI::TCK_RecipThroughput, |
3841 | TryEarlyFoldsOnly); |
3842 | if (!Combiner.run()) |
3843 | return PreservedAnalyses::all(); |
3844 | PreservedAnalyses PA; |
3845 | PA.preserveSet<CFGAnalyses>(); |
3846 | return PA; |
3847 | } |
3848 | |