| 1 | //===-- Target.cpp ----------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "../Target.h" |
| 10 | #include "../ParallelSnippetGenerator.h" |
| 11 | #include "../SerialSnippetGenerator.h" |
| 12 | #include "../SnippetGenerator.h" |
| 13 | |
| 14 | #include "MCTargetDesc/RISCVBaseInfo.h" |
| 15 | #include "MCTargetDesc/RISCVMCTargetDesc.h" |
| 16 | #include "MCTargetDesc/RISCVMatInt.h" |
| 17 | #include "RISCV.h" |
| 18 | #include "RISCVExegesisPasses.h" |
| 19 | #include "RISCVInstrInfo.h" |
| 20 | #include "RISCVRegisterInfo.h" |
| 21 | #include "llvm/Support/Regex.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | |
| 24 | // include computeAvailableFeatures and computeRequiredFeatures. |
| 25 | #define GET_AVAILABLE_OPCODE_CHECKER |
| 26 | #include "RISCVGenInstrInfo.inc" |
| 27 | |
| 28 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 29 | |
| 30 | #include <vector> |
| 31 | |
| 32 | namespace llvm { |
| 33 | namespace exegesis { |
| 34 | |
| 35 | static cl::opt<bool> |
| 36 | OnlyUsesVLMAXForVL("riscv-vlmax-for-vl" , |
| 37 | cl::desc("Only enumerate VLMAX for VL operand" ), |
| 38 | cl::init(Val: false), cl::Hidden); |
| 39 | |
| 40 | static cl::opt<bool> |
| 41 | EnumerateRoundingModes("riscv-enumerate-rounding-modes" , |
| 42 | cl::desc("Enumerate different FRM and VXRM" ), |
| 43 | cl::init(Val: true), cl::Hidden); |
| 44 | |
| 45 | static cl::opt<std::string> |
| 46 | FilterConfig("riscv-filter-config" , |
| 47 | cl::desc("Show only the configs matching this regex" ), |
| 48 | cl::init(Val: "" ), cl::Hidden); |
| 49 | |
| 50 | #include "RISCVGenExegesis.inc" |
| 51 | |
| 52 | namespace { |
| 53 | |
| 54 | template <class BaseT> class RISCVSnippetGenerator : public BaseT { |
| 55 | static void printRoundingMode(raw_ostream &OS, unsigned Val, bool UsesVXRM) { |
| 56 | if (UsesVXRM) { |
| 57 | assert(RISCVVXRndMode::isValidRoundingMode(Val)); |
| 58 | OS << RISCVVXRndMode::roundingModeToString( |
| 59 | RndMode: static_cast<RISCVVXRndMode::RoundingMode>(Val)); |
| 60 | } else { |
| 61 | assert(RISCVFPRndMode::isValidRoundingMode(Val)); |
| 62 | OS << RISCVFPRndMode::roundingModeToString( |
| 63 | RndMode: static_cast<RISCVFPRndMode::RoundingMode>(Val)); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | static constexpr unsigned MinSEW = 8; |
| 68 | // ELEN is basically SEW_max. |
| 69 | unsigned ELEN = 64; |
| 70 | |
| 71 | // We can't know the real min/max VLEN w/o a Function, so we're |
| 72 | // using the VLen from Zvl. |
| 73 | unsigned ZvlVLen = 32; |
| 74 | |
| 75 | /// Mask for registers that are NOT standalone registers like X0 and V0 |
| 76 | BitVector AggregateRegisters; |
| 77 | |
| 78 | // Returns true when opcode is available in any of the FBs. |
| 79 | static bool |
| 80 | isOpcodeAvailableIn(unsigned Opcode, |
| 81 | ArrayRef<RISCV_MC::SubtargetFeatureBits> FBs) { |
| 82 | FeatureBitset RequiredFeatures = RISCV_MC::computeRequiredFeatures(Opcode); |
| 83 | for (uint8_t FB : FBs) { |
| 84 | if (RequiredFeatures[FB]) |
| 85 | return true; |
| 86 | } |
| 87 | return false; |
| 88 | } |
| 89 | |
| 90 | static bool isRVVFloatingPointOp(unsigned Opcode) { |
| 91 | return isOpcodeAvailableIn(Opcode, |
| 92 | FBs: {RISCV_MC::Feature_HasVInstructionsAnyFBit}); |
| 93 | } |
| 94 | |
| 95 | // Get the element group width of each vector cryptor extension. |
| 96 | static unsigned getZvkEGWSize(unsigned Opcode, unsigned SEW) { |
| 97 | using namespace RISCV_MC; |
| 98 | if (isOpcodeAvailableIn(Opcode, FBs: {Feature_HasStdExtZvkgBit, |
| 99 | Feature_HasStdExtZvknedBit, |
| 100 | Feature_HasStdExtZvksedBit})) |
| 101 | return 128U; |
| 102 | if (isOpcodeAvailableIn(Opcode, FBs: {Feature_HasStdExtZvkshBit})) |
| 103 | return 256U; |
| 104 | if (isOpcodeAvailableIn(Opcode, FBs: {Feature_HasStdExtZvknhaOrZvknhbBit})) |
| 105 | // In Zvknh[ab], when SEW=64 is used (i.e. Zvknhb), EGW is 256. |
| 106 | // Otherwise it's 128. |
| 107 | return SEW == 64 ? 256U : 128U; |
| 108 | |
| 109 | llvm_unreachable("Unsupported opcode" ); |
| 110 | } |
| 111 | |
| 112 | // A handy utility to multiply or divide an integer by LMUL. |
| 113 | template <typename T> static T multiplyLMul(T Val, RISCVVType::VLMUL VLMul) { |
| 114 | auto [LMul, IsFractional] = RISCVVType::decodeVLMUL(VLMul); |
| 115 | return IsFractional ? Val / LMul : Val * LMul; |
| 116 | } |
| 117 | |
| 118 | /// Return the denominator of the fractional (i.e. the `x` in .vfx suffix) or |
| 119 | /// nullopt if BaseOpcode is not a vector sext/zext. |
| 120 | static std::optional<unsigned> isRVVSignZeroExtend(unsigned BaseOpcode) { |
| 121 | switch (BaseOpcode) { |
| 122 | case RISCV::VSEXT_VF2: |
| 123 | case RISCV::VZEXT_VF2: |
| 124 | return 2; |
| 125 | case RISCV::VSEXT_VF4: |
| 126 | case RISCV::VZEXT_VF4: |
| 127 | return 4; |
| 128 | case RISCV::VSEXT_VF8: |
| 129 | case RISCV::VZEXT_VF8: |
| 130 | return 8; |
| 131 | default: |
| 132 | return std::nullopt; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | void annotateWithVType(const CodeTemplate &CT, const Instruction &Instr, |
| 137 | unsigned BaseOpcode, |
| 138 | const BitVector &ForbiddenRegisters, |
| 139 | std::vector<CodeTemplate> &Result) const; |
| 140 | |
| 141 | public: |
| 142 | RISCVSnippetGenerator(const LLVMState &State, |
| 143 | const SnippetGenerator::Options &Opts) |
| 144 | : BaseT(State, Opts), |
| 145 | AggregateRegisters(State.getRegInfo().getNumRegs(), /*initVal=*/true) { |
| 146 | // Initialize standalone registers mask. |
| 147 | const MCRegisterInfo &RegInfo = State.getRegInfo(); |
| 148 | const unsigned StandaloneRegClasses[] = { |
| 149 | RISCV::GPRRegClassID, RISCV::FPR16RegClassID, RISCV::VRRegClassID}; |
| 150 | |
| 151 | for (unsigned RegClassID : StandaloneRegClasses) |
| 152 | for (unsigned Reg : RegInfo.getRegClass(i: RegClassID)) |
| 153 | AggregateRegisters.reset(Idx: Reg); |
| 154 | |
| 155 | // Initialize ELEN and VLEN. |
| 156 | // FIXME: We could have obtained these two constants from RISCVSubtarget |
| 157 | // but in order to get that from TargetMachine, we need a Function. |
| 158 | const MCSubtargetInfo &STI = State.getSubtargetInfo(); |
| 159 | ELEN = STI.hasFeature(Feature: RISCV::FeatureStdExtZve64x) ? 64 : 32; |
| 160 | |
| 161 | const unsigned ZvlFeatures[] = { |
| 162 | RISCV::FeatureStdExtZvl32b, RISCV::FeatureStdExtZvl64b, |
| 163 | RISCV::FeatureStdExtZvl128b, RISCV::FeatureStdExtZvl256b, |
| 164 | RISCV::FeatureStdExtZvl512b, RISCV::FeatureStdExtZvl1024b, |
| 165 | RISCV::FeatureStdExtZvl2048b, RISCV::FeatureStdExtZvl4096b, |
| 166 | RISCV::FeatureStdExtZvl8192b, RISCV::FeatureStdExtZvl16384b, |
| 167 | RISCV::FeatureStdExtZvl32768b, RISCV::FeatureStdExtZvl65536b}; |
| 168 | for (auto [Idx, Feature] : enumerate(First: ZvlFeatures)) { |
| 169 | if (STI.hasFeature(Feature)) |
| 170 | ZvlVLen = std::max(a: ZvlVLen, b: 1u << (Idx + 5)); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | Expected<std::vector<CodeTemplate>> |
| 175 | generateCodeTemplates(InstructionTemplate Variant, |
| 176 | const BitVector &ForbiddenRegisters) const override; |
| 177 | }; |
| 178 | |
| 179 | static bool isMaskedSibling(unsigned MaskedOp, unsigned UnmaskedOp) { |
| 180 | const auto *RVVMasked = RISCV::getMaskedPseudoInfo(MaskedPseudo: MaskedOp); |
| 181 | return RVVMasked && RVVMasked->UnmaskedPseudo == UnmaskedOp; |
| 182 | } |
| 183 | |
| 184 | // There are primarily two kinds of opcodes that are not eligible |
| 185 | // in a serial snippet: |
| 186 | // (1) Has a use operand that can not overlap with the def operand |
| 187 | // (i.e. early clobber). |
| 188 | // (2) The register file of the only use operand is different from |
| 189 | // that of the def operand. For instance, use operand is vector and |
| 190 | // the result is a scalar. |
| 191 | static bool isIneligibleOfSerialSnippets(unsigned BaseOpcode, |
| 192 | const Instruction &I) { |
| 193 | if (llvm::any_of(Range: I.Operands, |
| 194 | P: [](const Operand &Op) { return Op.isEarlyClobber(); })) |
| 195 | return true; |
| 196 | |
| 197 | switch (BaseOpcode) { |
| 198 | case RISCV::VCOMPRESS_VM: |
| 199 | case RISCV::VCPOP_M: |
| 200 | case RISCV::VCPOP_V: |
| 201 | // The permutation instructions listed below cannot have destination |
| 202 | // overlapping with the source. |
| 203 | case RISCV::VRGATHEREI16_VV: |
| 204 | case RISCV::VRGATHER_VI: |
| 205 | case RISCV::VRGATHER_VV: |
| 206 | case RISCV::VRGATHER_VX: |
| 207 | case RISCV::VSLIDE1UP_VX: |
| 208 | case RISCV::VSLIDEUP_VI: |
| 209 | case RISCV::VSLIDEUP_VX: |
| 210 | return true; |
| 211 | default: |
| 212 | return false; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | static bool isZvfhminZvfbfminOpcodes(unsigned BaseOpcode) { |
| 217 | switch (BaseOpcode) { |
| 218 | case RISCV::VFNCVT_F_F_W: |
| 219 | case RISCV::VFWCVT_F_F_V: |
| 220 | case RISCV::VFNCVTBF16_F_F_W: |
| 221 | case RISCV::VFWCVTBF16_F_F_V: |
| 222 | return true; |
| 223 | default: |
| 224 | return false; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | static bool isVectorReduction(unsigned BaseOpcode) { |
| 229 | switch (BaseOpcode) { |
| 230 | case RISCV::VREDAND_VS: |
| 231 | case RISCV::VREDMAXU_VS: |
| 232 | case RISCV::VREDMAX_VS: |
| 233 | case RISCV::VREDMINU_VS: |
| 234 | case RISCV::VREDMIN_VS: |
| 235 | case RISCV::VREDOR_VS: |
| 236 | case RISCV::VREDSUM_VS: |
| 237 | case RISCV::VREDXOR_VS: |
| 238 | case RISCV::VWREDSUMU_VS: |
| 239 | case RISCV::VWREDSUM_VS: |
| 240 | case RISCV::VFREDMAX_VS: |
| 241 | case RISCV::VFREDMIN_VS: |
| 242 | case RISCV::VFREDOSUM_VS: |
| 243 | case RISCV::VFREDUSUM_VS: |
| 244 | return true; |
| 245 | default: |
| 246 | return false; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | template <class BaseT> |
| 251 | void RISCVSnippetGenerator<BaseT>::annotateWithVType( |
| 252 | const CodeTemplate &OrigCT, const Instruction &Instr, unsigned BaseOpcode, |
| 253 | const BitVector &ForbiddenRegisters, |
| 254 | std::vector<CodeTemplate> &Result) const { |
| 255 | const MCSubtargetInfo &STI = SnippetGenerator::State.getSubtargetInfo(); |
| 256 | unsigned VPseudoOpcode = Instr.getOpcode(); |
| 257 | |
| 258 | bool IsSerial = std::is_same_v<BaseT, SerialSnippetGenerator>; |
| 259 | |
| 260 | const MCInstrDesc &MIDesc = Instr.Description; |
| 261 | const uint64_t TSFlags = MIDesc.TSFlags; |
| 262 | |
| 263 | RISCVVType::VLMUL VLMul = RISCVII::getLMul(TSFlags); |
| 264 | |
| 265 | const size_t StartingResultSize = Result.size(); |
| 266 | |
| 267 | SmallPtrSet<const Operand *, 4> VTypeOperands; |
| 268 | std::optional<AliasingConfigurations> SelfAliasing; |
| 269 | // Exegesis see instructions with tied operands being inherently serial. |
| 270 | // But for RVV instructions, those tied operands are passthru rather |
| 271 | // than real read operands. So we manually put dependency between |
| 272 | // destination (i.e. def) and any of the non-tied/SEW/policy/AVL/RM |
| 273 | // operands. |
| 274 | auto assignSerialRVVOperands = [&, this](InstructionTemplate &IT) { |
| 275 | // Initialize SelfAliasing on first use. |
| 276 | if (!SelfAliasing.has_value()) { |
| 277 | BitVector ExcludeRegs = ForbiddenRegisters; |
| 278 | ExcludeRegs |= AggregateRegisters; |
| 279 | SelfAliasing = AliasingConfigurations(Instr, Instr, ExcludeRegs); |
| 280 | bool EmptyUses = false; |
| 281 | for (auto &ARO : SelfAliasing->Configurations) { |
| 282 | auto &Uses = ARO.Uses; |
| 283 | for (auto ROA = Uses.begin(); ROA != Uses.end();) { |
| 284 | const Operand *Op = ROA->Op; |
| 285 | // Exclude tied operand(s). |
| 286 | if (Op->isTied()) { |
| 287 | ROA = Uses.erase(CI: ROA); |
| 288 | continue; |
| 289 | } |
| 290 | |
| 291 | // Special handling for reduction operations: for a given reduction |
| 292 | // `vredop vd, vs2, vs1`, we don't want vd to be aliased with vs1 |
| 293 | // since we're only reading `vs1[0]` and many implementations |
| 294 | // optimize for this case (e.g. chaining). Instead, we're forcing |
| 295 | // it to create alias between vd and vs2. |
| 296 | if (isVectorReduction(BaseOpcode) && |
| 297 | // vs1's operand index is always 3. |
| 298 | Op->getIndex() == 3) { |
| 299 | ROA = Uses.erase(CI: ROA); |
| 300 | continue; |
| 301 | } |
| 302 | |
| 303 | // Exclude any special operands like SEW and VL -- we've already |
| 304 | // assigned values to them. |
| 305 | if (VTypeOperands.count(Ptr: Op)) { |
| 306 | ROA = Uses.erase(CI: ROA); |
| 307 | continue; |
| 308 | } |
| 309 | ++ROA; |
| 310 | } |
| 311 | |
| 312 | // If any of the use operand candidate lists is empty, there is |
| 313 | // no point to assign self aliasing registers. |
| 314 | if (Uses.empty()) { |
| 315 | EmptyUses = true; |
| 316 | break; |
| 317 | } |
| 318 | } |
| 319 | if (EmptyUses) |
| 320 | SelfAliasing->Configurations.clear(); |
| 321 | } |
| 322 | |
| 323 | // This is a self aliasing instruction so defs and uses are from the same |
| 324 | // instance, hence twice IT in the following call. |
| 325 | if (!SelfAliasing->empty() && !SelfAliasing->hasImplicitAliasing()) |
| 326 | setRandomAliasing(AliasingConfigurations: *SelfAliasing, DefIB&: IT, UseIB&: IT); |
| 327 | }; |
| 328 | |
| 329 | // We are going to create a CodeTemplate (configuration) for each supported |
| 330 | // SEW, policy, and VL. |
| 331 | // FIXME: Account for EEW and EMUL. |
| 332 | SmallVector<std::optional<unsigned>, 4> Log2SEWs; |
| 333 | SmallVector<std::optional<unsigned>, 4> Policies; |
| 334 | SmallVector<std::optional<int>, 3> AVLs; |
| 335 | SmallVector<std::optional<unsigned>, 8> RoundingModes; |
| 336 | |
| 337 | bool HasSEWOp = RISCVII::hasSEWOp(TSFlags); |
| 338 | bool HasPolicyOp = RISCVII::hasVecPolicyOp(TSFlags); |
| 339 | bool HasVLOp = RISCVII::hasVLOp(TSFlags); |
| 340 | bool HasRMOp = RISCVII::hasRoundModeOp(TSFlags); |
| 341 | bool UsesVXRM = RISCVII::usesVXRM(TSFlags); |
| 342 | |
| 343 | if (HasSEWOp) { |
| 344 | const Operand &SEWOp = Instr.Operands[RISCVII::getSEWOpNum(Desc: MIDesc)]; |
| 345 | VTypeOperands.insert(Ptr: &SEWOp); |
| 346 | |
| 347 | if (SEWOp.Info->OperandType == RISCVOp::OPERAND_SEW_MASK) { |
| 348 | // If it's a mask-producing instruction, the SEW operand is always zero. |
| 349 | Log2SEWs.push_back(Elt: 0); |
| 350 | } else { |
| 351 | SmallVector<unsigned, 4> SEWCandidates; |
| 352 | |
| 353 | // (RVV spec 3.4.2) For fractional LMUL, the supported SEW are between |
| 354 | // [SEW_min, LMUL * ELEN]. |
| 355 | unsigned SEWUpperBound = |
| 356 | VLMul >= RISCVVType::LMUL_F8 ? multiplyLMul(ELEN, VLMul) : ELEN; |
| 357 | for (unsigned SEW = MinSEW; SEW <= SEWUpperBound; SEW <<= 1) { |
| 358 | SEWCandidates.push_back(Elt: SEW); |
| 359 | |
| 360 | // Some scheduling classes already integrate SEW; only put |
| 361 | // their corresponding SEW values at the SEW operands. |
| 362 | // NOTE: It is imperative to put this condition in the front, otherwise |
| 363 | // it is tricky and difficult to know if there is an integrated |
| 364 | // SEW after other rules are applied to filter the candidates. |
| 365 | const auto *RVVBase = |
| 366 | RISCVVInversePseudosTable::getBaseInfo(BaseInstr: BaseOpcode, VLMul, SEW); |
| 367 | if (RVVBase && (RVVBase->Pseudo == VPseudoOpcode || |
| 368 | isMaskedSibling(MaskedOp: VPseudoOpcode, UnmaskedOp: RVVBase->Pseudo) || |
| 369 | isMaskedSibling(MaskedOp: RVVBase->Pseudo, UnmaskedOp: VPseudoOpcode))) { |
| 370 | // There is an integrated SEW, remove all but the SEW pushed last. |
| 371 | SEWCandidates.erase(CS: SEWCandidates.begin(), CE: SEWCandidates.end() - 1); |
| 372 | break; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | // Filter out some candidates. |
| 377 | for (auto SEW = SEWCandidates.begin(); SEW != SEWCandidates.end();) { |
| 378 | // For floating point operations, only select SEW of the supported FLEN. |
| 379 | if (isRVVFloatingPointOp(Opcode: VPseudoOpcode)) { |
| 380 | bool Supported = false; |
| 381 | Supported |= isZvfhminZvfbfminOpcodes(BaseOpcode) && *SEW == 16; |
| 382 | Supported |= STI.hasFeature(Feature: RISCV::FeatureStdExtZvfh) && *SEW == 16; |
| 383 | Supported |= STI.hasFeature(Feature: RISCV::FeatureStdExtF) && *SEW == 32; |
| 384 | Supported |= STI.hasFeature(Feature: RISCV::FeatureStdExtD) && *SEW == 64; |
| 385 | if (!Supported) { |
| 386 | SEW = SEWCandidates.erase(CI: SEW); |
| 387 | continue; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | // The EEW for source operand in VSEXT and VZEXT is a fraction |
| 392 | // of the SEW, hence only SEWs that will lead to valid EEW are allowed. |
| 393 | if (auto Frac = isRVVSignZeroExtend(BaseOpcode)) |
| 394 | if (*SEW / *Frac < MinSEW) { |
| 395 | SEW = SEWCandidates.erase(CI: SEW); |
| 396 | continue; |
| 397 | } |
| 398 | |
| 399 | // Most vector crypto 1.0 instructions only work on SEW=32. |
| 400 | using namespace RISCV_MC; |
| 401 | if (isOpcodeAvailableIn(Opcode: BaseOpcode, FBs: {Feature_HasStdExtZvkgBit, |
| 402 | Feature_HasStdExtZvknedBit, |
| 403 | Feature_HasStdExtZvknhaOrZvknhbBit, |
| 404 | Feature_HasStdExtZvksedBit, |
| 405 | Feature_HasStdExtZvkshBit})) { |
| 406 | if (*SEW != 32) |
| 407 | // Zvknhb supports SEW=64 as well. |
| 408 | if (*SEW != 64 || !STI.hasFeature(Feature: RISCV::FeatureStdExtZvknhb) || |
| 409 | !isOpcodeAvailableIn(Opcode: BaseOpcode, |
| 410 | FBs: {Feature_HasStdExtZvknhaOrZvknhbBit})) { |
| 411 | SEW = SEWCandidates.erase(CI: SEW); |
| 412 | continue; |
| 413 | } |
| 414 | |
| 415 | // We're also enforcing the requirement of `LMUL * VLEN >= EGW` here, |
| 416 | // because some of the extensions have SEW-dependant EGW. |
| 417 | unsigned EGW = getZvkEGWSize(Opcode: BaseOpcode, SEW: *SEW); |
| 418 | if (multiplyLMul(ZvlVLen, VLMul) < EGW) { |
| 419 | SEW = SEWCandidates.erase(CI: SEW); |
| 420 | continue; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | ++SEW; |
| 425 | } |
| 426 | |
| 427 | // We're not going to produce any result with zero SEW candidate. |
| 428 | if (SEWCandidates.empty()) |
| 429 | return; |
| 430 | |
| 431 | for (unsigned SEW : SEWCandidates) |
| 432 | Log2SEWs.push_back(Elt: Log2_32(Value: SEW)); |
| 433 | } |
| 434 | } else { |
| 435 | Log2SEWs.push_back(Elt: std::nullopt); |
| 436 | } |
| 437 | |
| 438 | if (HasPolicyOp) { |
| 439 | VTypeOperands.insert(Ptr: &Instr.Operands[RISCVII::getVecPolicyOpNum(Desc: MIDesc)]); |
| 440 | |
| 441 | Policies = {0, RISCVVType::TAIL_AGNOSTIC, RISCVVType::MASK_AGNOSTIC, |
| 442 | (RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC)}; |
| 443 | } else { |
| 444 | Policies.push_back(Elt: std::nullopt); |
| 445 | } |
| 446 | |
| 447 | if (HasVLOp) { |
| 448 | VTypeOperands.insert(Ptr: &Instr.Operands[RISCVII::getVLOpNum(Desc: MIDesc)]); |
| 449 | |
| 450 | if (OnlyUsesVLMAXForVL) |
| 451 | AVLs.push_back(Elt: -1); |
| 452 | else |
| 453 | AVLs = {// 5-bit immediate value |
| 454 | 1, |
| 455 | // VLMAX |
| 456 | -1, |
| 457 | // Non-X0 register |
| 458 | 0}; |
| 459 | } else { |
| 460 | AVLs.push_back(Elt: std::nullopt); |
| 461 | } |
| 462 | |
| 463 | if (HasRMOp) { |
| 464 | VTypeOperands.insert(Ptr: &Instr.Operands[RISCVII::getVLOpNum(Desc: MIDesc) - 1]); |
| 465 | |
| 466 | if (UsesVXRM) { |
| 467 | // Use RNU as the default VXRM. |
| 468 | RoundingModes = {RISCVVXRndMode::RNU}; |
| 469 | if (EnumerateRoundingModes) |
| 470 | RoundingModes.append( |
| 471 | IL: {RISCVVXRndMode::RNE, RISCVVXRndMode::RDN, RISCVVXRndMode::ROD}); |
| 472 | } else { |
| 473 | if (EnumerateRoundingModes) |
| 474 | RoundingModes = {RISCVFPRndMode::RNE, RISCVFPRndMode::RTZ, |
| 475 | RISCVFPRndMode::RDN, RISCVFPRndMode::RUP, |
| 476 | RISCVFPRndMode::RMM}; |
| 477 | else |
| 478 | // If we're not enumerating FRM, use DYN to instruct |
| 479 | // RISCVInsertReadWriteCSRPass to insert nothing. |
| 480 | RoundingModes = {RISCVFPRndMode::DYN}; |
| 481 | } |
| 482 | } else { |
| 483 | RoundingModes = {std::nullopt}; |
| 484 | } |
| 485 | |
| 486 | std::set<std::tuple<std::optional<unsigned>, std::optional<int>, |
| 487 | std::optional<unsigned>, std::optional<unsigned>>> |
| 488 | Combinations; |
| 489 | for (auto AVL : AVLs) { |
| 490 | for (auto Log2SEW : Log2SEWs) |
| 491 | for (auto Policy : Policies) { |
| 492 | for (auto RM : RoundingModes) |
| 493 | Combinations.insert(x: std::make_tuple(args&: RM, args&: AVL, args&: Log2SEW, args&: Policy)); |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | std::string ConfigStr; |
| 498 | SmallVector<std::pair<const Operand *, MCOperand>, 4> ValueAssignments; |
| 499 | for (const auto &[RM, AVL, Log2SEW, Policy] : Combinations) { |
| 500 | InstructionTemplate IT(&Instr); |
| 501 | |
| 502 | ListSeparator LS; |
| 503 | ConfigStr = "vtype = {" ; |
| 504 | raw_string_ostream SS(ConfigStr); |
| 505 | |
| 506 | ValueAssignments.clear(); |
| 507 | |
| 508 | if (RM) { |
| 509 | const Operand &Op = Instr.Operands[RISCVII::getVLOpNum(Desc: MIDesc) - 1]; |
| 510 | ValueAssignments.push_back(Elt: {&Op, MCOperand::createImm(Val: *RM)}); |
| 511 | printRoundingMode(OS&: SS << LS << (UsesVXRM ? "VXRM" : "FRM" ) << ": " , Val: *RM, |
| 512 | UsesVXRM); |
| 513 | } |
| 514 | |
| 515 | if (AVL) { |
| 516 | MCOperand OpVal; |
| 517 | if (*AVL < 0) { |
| 518 | // VLMAX |
| 519 | OpVal = MCOperand::createImm(Val: -1); |
| 520 | SS << LS << "AVL: VLMAX" ; |
| 521 | } else if (*AVL == 0) { |
| 522 | // A register holding AVL. |
| 523 | // TODO: Generate a random register. |
| 524 | OpVal = MCOperand::createReg(Reg: RISCV::X5); |
| 525 | OpVal.print(OS&: SS << LS << "AVL: " ); |
| 526 | } else { |
| 527 | // A 5-bit immediate. |
| 528 | // The actual value assignment is deferred to |
| 529 | // RISCVExegesisTarget::randomizeTargetMCOperand. |
| 530 | SS << LS << "AVL: simm5" ; |
| 531 | } |
| 532 | if (OpVal.isValid()) { |
| 533 | const Operand &Op = Instr.Operands[RISCVII::getVLOpNum(Desc: MIDesc)]; |
| 534 | ValueAssignments.push_back(Elt: {&Op, OpVal}); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | if (Log2SEW) { |
| 539 | const Operand &Op = Instr.Operands[RISCVII::getSEWOpNum(Desc: MIDesc)]; |
| 540 | ValueAssignments.push_back(Elt: {&Op, MCOperand::createImm(Val: *Log2SEW)}); |
| 541 | SS << LS << "SEW: e" << (*Log2SEW ? 1 << *Log2SEW : 8); |
| 542 | } |
| 543 | |
| 544 | if (Policy) { |
| 545 | const Operand &Op = Instr.Operands[RISCVII::getVecPolicyOpNum(Desc: MIDesc)]; |
| 546 | ValueAssignments.push_back(Elt: {&Op, MCOperand::createImm(Val: *Policy)}); |
| 547 | SS << LS |
| 548 | << "Policy: " << (*Policy & RISCVVType::TAIL_AGNOSTIC ? "ta" : "tu" ) |
| 549 | << "/" << (*Policy & RISCVVType::MASK_AGNOSTIC ? "ma" : "mu" ); |
| 550 | } |
| 551 | |
| 552 | SS << "}" ; |
| 553 | |
| 554 | // Filter out some configurations, if needed. |
| 555 | if (!FilterConfig.empty()) { |
| 556 | if (!Regex(FilterConfig).match(String: ConfigStr)) |
| 557 | continue; |
| 558 | } |
| 559 | |
| 560 | CodeTemplate CT = OrigCT.clone(); |
| 561 | CT.Config = std::move(ConfigStr); |
| 562 | for (InstructionTemplate &IT : CT.Instructions) { |
| 563 | if (IsSerial) { |
| 564 | // Reset this template's value assignments and do it |
| 565 | // ourselves. |
| 566 | IT = InstructionTemplate(&Instr); |
| 567 | assignSerialRVVOperands(IT); |
| 568 | } |
| 569 | |
| 570 | for (const auto &[Op, OpVal] : ValueAssignments) |
| 571 | IT.getValueFor(Op: *Op) = OpVal; |
| 572 | } |
| 573 | Result.push_back(x: std::move(CT)); |
| 574 | if (Result.size() - StartingResultSize >= |
| 575 | SnippetGenerator::Opts.MaxConfigsPerOpcode) |
| 576 | return; |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | template <class BaseT> |
| 581 | Expected<std::vector<CodeTemplate>> |
| 582 | RISCVSnippetGenerator<BaseT>::generateCodeTemplates( |
| 583 | InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const { |
| 584 | const Instruction &Instr = Variant.getInstr(); |
| 585 | |
| 586 | bool IsSerial = std::is_same_v<BaseT, SerialSnippetGenerator>; |
| 587 | |
| 588 | unsigned BaseOpcode = RISCV::getRVVMCOpcode(RVVPseudoOpcode: Instr.getOpcode()); |
| 589 | |
| 590 | // Bail out ineligible opcodes before generating base code templates since |
| 591 | // the latter is quite expensive. |
| 592 | if (IsSerial && BaseOpcode && isIneligibleOfSerialSnippets(BaseOpcode, I: Instr)) |
| 593 | return std::vector<CodeTemplate>{}; |
| 594 | |
| 595 | auto BaseCodeTemplates = |
| 596 | BaseT::generateCodeTemplates(Variant, ForbiddenRegisters); |
| 597 | if (!BaseCodeTemplates) |
| 598 | return BaseCodeTemplates.takeError(); |
| 599 | |
| 600 | if (!BaseOpcode) |
| 601 | return BaseCodeTemplates; |
| 602 | |
| 603 | // Specialize for RVV pseudo. |
| 604 | std::vector<CodeTemplate> ExpandedTemplates; |
| 605 | for (const auto &BaseCT : *BaseCodeTemplates) |
| 606 | annotateWithVType(OrigCT: BaseCT, Instr, BaseOpcode, ForbiddenRegisters, |
| 607 | Result&: ExpandedTemplates); |
| 608 | |
| 609 | return ExpandedTemplates; |
| 610 | } |
| 611 | |
| 612 | // Stores constant value to a general-purpose (integer) register. |
| 613 | static std::vector<MCInst> loadIntReg(const MCSubtargetInfo &STI, |
| 614 | MCRegister Reg, const APInt &Value) { |
| 615 | SmallVector<MCInst, 8> MCInstSeq; |
| 616 | MCRegister DestReg = Reg; |
| 617 | |
| 618 | RISCVMatInt::generateMCInstSeq(Val: Value.getSExtValue(), STI, DestReg, Insts&: MCInstSeq); |
| 619 | |
| 620 | std::vector<MCInst> MatIntInstrs(MCInstSeq.begin(), MCInstSeq.end()); |
| 621 | return MatIntInstrs; |
| 622 | } |
| 623 | |
| 624 | const MCPhysReg ScratchIntReg = RISCV::X30; // t5 |
| 625 | |
| 626 | // Stores constant bits to a floating-point register. |
| 627 | static std::vector<MCInst> loadFPRegBits(const MCSubtargetInfo &STI, |
| 628 | MCRegister Reg, const APInt &Bits, |
| 629 | unsigned FmvOpcode) { |
| 630 | std::vector<MCInst> Instrs = loadIntReg(STI, Reg: ScratchIntReg, Value: Bits); |
| 631 | Instrs.push_back(x: MCInstBuilder(FmvOpcode).addReg(Reg).addReg(Reg: ScratchIntReg)); |
| 632 | return Instrs; |
| 633 | } |
| 634 | |
| 635 | // main idea is: |
| 636 | // we support APInt only if (represented as double) it has zero fractional |
| 637 | // part: 1.0, 2.0, 3.0, etc... then we can do the trick: write int to tmp reg t5 |
| 638 | // and then do FCVT this is only reliable thing in 32-bit mode, otherwise we |
| 639 | // need to use __floatsidf |
| 640 | static std::vector<MCInst> loadFP64RegBits32(const MCSubtargetInfo &STI, |
| 641 | MCRegister Reg, |
| 642 | const APInt &Bits) { |
| 643 | double D = Bits.bitsToDouble(); |
| 644 | double IPart; |
| 645 | double FPart = std::modf(x: D, iptr: &IPart); |
| 646 | |
| 647 | if (std::abs(x: FPart) > std::numeric_limits<double>::epsilon()) { |
| 648 | errs() << "loadFP64RegBits32 is not implemented for doubles like " << D |
| 649 | << ", please remove fractional part\n" ; |
| 650 | return {}; |
| 651 | } |
| 652 | |
| 653 | std::vector<MCInst> Instrs = loadIntReg(STI, Reg: ScratchIntReg, Value: Bits); |
| 654 | Instrs.push_back( |
| 655 | x: MCInstBuilder(RISCV::FCVT_D_W).addReg(Reg).addReg(Reg: ScratchIntReg)); |
| 656 | return Instrs; |
| 657 | } |
| 658 | |
| 659 | class ExegesisRISCVTarget : public ExegesisTarget { |
| 660 | // NOTE: Alternatively, we can use BitVector here, but the number of RVV MC |
| 661 | // opcodes is just a small portion of the entire opcode space, so I thought it |
| 662 | // would be a waste of space to use BitVector. |
| 663 | mutable SmallSet<unsigned, 16> RVVMCOpcodesWithPseudos; |
| 664 | |
| 665 | public: |
| 666 | ExegesisRISCVTarget(); |
| 667 | |
| 668 | bool matchesArch(Triple::ArchType Arch) const override; |
| 669 | |
| 670 | std::vector<MCInst> setRegTo(const MCSubtargetInfo &STI, MCRegister Reg, |
| 671 | const APInt &Value) const override; |
| 672 | |
| 673 | const char *getIgnoredOpcodeReasonOrNull(const LLVMState &State, |
| 674 | unsigned Opcode) const override { |
| 675 | // We don't want to support RVV instructions that depend on VTYPE, because |
| 676 | // those instructions by themselves don't carry any additional information |
| 677 | // for us to setup the proper VTYPE environment via VSETVL instructions. |
| 678 | // FIXME: Ideally, we should use RISCVVInversePseudosTable, but it requires |
| 679 | // LMUL and SEW and I don't think enumerating those combinations is any |
| 680 | // better than the ugly trick here that memorizes the corresponding MC |
| 681 | // opcodes of the RVV pseudo we have processed previously. This works most |
| 682 | // of the time because RVV pseudo opcodes are placed before any other RVV |
| 683 | // opcodes. Of course this doesn't work if we're asked to benchmark only a |
| 684 | // certain subset of opcodes. |
| 685 | if (RVVMCOpcodesWithPseudos.count(V: Opcode)) |
| 686 | return "The MC opcode of RVV instructions are ignored" ; |
| 687 | |
| 688 | // We want to support all RVV pseudos. |
| 689 | if (unsigned MCOpcode = RISCV::getRVVMCOpcode(RVVPseudoOpcode: Opcode)) { |
| 690 | RVVMCOpcodesWithPseudos.insert(V: MCOpcode); |
| 691 | return nullptr; |
| 692 | } |
| 693 | |
| 694 | return ExegesisTarget::getIgnoredOpcodeReasonOrNull(State, Opcode); |
| 695 | } |
| 696 | |
| 697 | MCRegister getDefaultLoopCounterRegister(const Triple &) const override; |
| 698 | |
| 699 | void decrementLoopCounterAndJump(MachineBasicBlock &MBB, |
| 700 | MachineBasicBlock &TargetMBB, |
| 701 | const MCInstrInfo &MII, |
| 702 | MCRegister LoopRegister) const override; |
| 703 | |
| 704 | MCRegister getScratchMemoryRegister(const Triple &TT) const override; |
| 705 | |
| 706 | void fillMemoryOperands(InstructionTemplate &IT, MCRegister Reg, |
| 707 | unsigned Offset) const override; |
| 708 | |
| 709 | ArrayRef<MCPhysReg> getUnavailableRegisters() const override; |
| 710 | |
| 711 | bool allowAsBackToBack(const Instruction &Instr) const override { |
| 712 | return !Instr.Description.isPseudo(); |
| 713 | } |
| 714 | |
| 715 | Error randomizeTargetMCOperand(const Instruction &Instr, const Variable &Var, |
| 716 | MCOperand &AssignedValue, |
| 717 | const BitVector &ForbiddenRegs) const override; |
| 718 | |
| 719 | std::unique_ptr<SnippetGenerator> createSerialSnippetGenerator( |
| 720 | const LLVMState &State, |
| 721 | const SnippetGenerator::Options &Opts) const override { |
| 722 | return std::make_unique<RISCVSnippetGenerator<SerialSnippetGenerator>>( |
| 723 | args: State, args: Opts); |
| 724 | } |
| 725 | |
| 726 | std::unique_ptr<SnippetGenerator> createParallelSnippetGenerator( |
| 727 | const LLVMState &State, |
| 728 | const SnippetGenerator::Options &Opts) const override { |
| 729 | return std::make_unique<RISCVSnippetGenerator<ParallelSnippetGenerator>>( |
| 730 | args: State, args: Opts); |
| 731 | } |
| 732 | |
| 733 | std::vector<InstructionTemplate> |
| 734 | generateInstructionVariants(const Instruction &Instr, |
| 735 | unsigned MaxConfigsPerOpcode) const override; |
| 736 | |
| 737 | void addTargetSpecificPasses(PassManagerBase &PM) const override { |
| 738 | // Turn AVL operand of physical registers into virtual registers. |
| 739 | PM.add(P: exegesis::createRISCVPreprocessingPass()); |
| 740 | PM.add(P: createRISCVInsertVSETVLIPass()); |
| 741 | // Setting up the correct FRM. |
| 742 | PM.add(P: createRISCVInsertReadWriteCSRPass()); |
| 743 | PM.add(P: createRISCVInsertWriteVXRMPass()); |
| 744 | // This will assign physical register to the result of VSETVLI instructions |
| 745 | // that produce VLMAX. |
| 746 | PM.add(P: exegesis::createRISCVPostprocessingPass()); |
| 747 | // PseudoRET will be expanded by RISCVAsmPrinter; we have to expand |
| 748 | // PseudoMovImm with RISCVPostRAExpandPseudoPass though. |
| 749 | PM.add(P: createRISCVPostRAExpandPseudoPass()); |
| 750 | } |
| 751 | }; |
| 752 | |
| 753 | ExegesisRISCVTarget::ExegesisRISCVTarget() |
| 754 | : ExegesisTarget(RISCVCpuPfmCounters, RISCV_MC::isOpcodeAvailable) {} |
| 755 | |
| 756 | bool ExegesisRISCVTarget::matchesArch(Triple::ArchType Arch) const { |
| 757 | return Arch == Triple::riscv32 || Arch == Triple::riscv64; |
| 758 | } |
| 759 | |
| 760 | std::vector<MCInst> ExegesisRISCVTarget::setRegTo(const MCSubtargetInfo &STI, |
| 761 | MCRegister Reg, |
| 762 | const APInt &Value) const { |
| 763 | if (RISCV::GPRRegClass.contains(Reg)) |
| 764 | return loadIntReg(STI, Reg, Value); |
| 765 | if (RISCV::FPR16RegClass.contains(Reg)) |
| 766 | return loadFPRegBits(STI, Reg, Bits: Value, FmvOpcode: RISCV::FMV_H_X); |
| 767 | if (RISCV::FPR32RegClass.contains(Reg)) |
| 768 | return loadFPRegBits(STI, Reg, Bits: Value, FmvOpcode: RISCV::FMV_W_X); |
| 769 | if (RISCV::FPR64RegClass.contains(Reg)) { |
| 770 | if (STI.hasFeature(Feature: RISCV::Feature64Bit)) |
| 771 | return loadFPRegBits(STI, Reg, Bits: Value, FmvOpcode: RISCV::FMV_D_X); |
| 772 | return loadFP64RegBits32(STI, Reg, Bits: Value); |
| 773 | } |
| 774 | // TODO: Emit proper code to initialize other kinds of registers. |
| 775 | return {}; |
| 776 | } |
| 777 | |
| 778 | const MCPhysReg DefaultLoopCounterReg = RISCV::X31; // t6 |
| 779 | const MCPhysReg ScratchMemoryReg = RISCV::X10; // a0 |
| 780 | |
| 781 | MCRegister |
| 782 | ExegesisRISCVTarget::getDefaultLoopCounterRegister(const Triple &) const { |
| 783 | return DefaultLoopCounterReg; |
| 784 | } |
| 785 | |
| 786 | void ExegesisRISCVTarget::decrementLoopCounterAndJump( |
| 787 | MachineBasicBlock &MBB, MachineBasicBlock &TargetMBB, |
| 788 | const MCInstrInfo &MII, MCRegister LoopRegister) const { |
| 789 | BuildMI(BB: &MBB, MIMD: DebugLoc(), MCID: MII.get(Opcode: RISCV::ADDI)) |
| 790 | .addDef(RegNo: LoopRegister) |
| 791 | .addUse(RegNo: LoopRegister) |
| 792 | .addImm(Val: -1); |
| 793 | BuildMI(BB: &MBB, MIMD: DebugLoc(), MCID: MII.get(Opcode: RISCV::BNE)) |
| 794 | .addUse(RegNo: LoopRegister) |
| 795 | .addUse(RegNo: RISCV::X0) |
| 796 | .addMBB(MBB: &TargetMBB); |
| 797 | } |
| 798 | |
| 799 | MCRegister |
| 800 | ExegesisRISCVTarget::getScratchMemoryRegister(const Triple &TT) const { |
| 801 | return ScratchMemoryReg; // a0 |
| 802 | } |
| 803 | |
| 804 | void ExegesisRISCVTarget::fillMemoryOperands(InstructionTemplate &IT, |
| 805 | MCRegister Reg, |
| 806 | unsigned Offset) const { |
| 807 | // TODO: for now we ignore Offset because have no way |
| 808 | // to detect it in instruction. |
| 809 | auto &I = IT.getInstr(); |
| 810 | |
| 811 | auto MemOpIt = |
| 812 | find_if(Range: I.Operands, P: [](const Operand &Op) { return Op.isMemory(); }); |
| 813 | assert(MemOpIt != I.Operands.end() && |
| 814 | "Instruction must have memory operands" ); |
| 815 | |
| 816 | const Operand &MemOp = *MemOpIt; |
| 817 | |
| 818 | assert(MemOp.isReg() && "Memory operand expected to be register" ); |
| 819 | |
| 820 | IT.getValueFor(Op: MemOp) = MCOperand::createReg(Reg); |
| 821 | } |
| 822 | |
| 823 | const MCPhysReg UnavailableRegisters[4] = {RISCV::X0, DefaultLoopCounterReg, |
| 824 | ScratchIntReg, ScratchMemoryReg}; |
| 825 | |
| 826 | ArrayRef<MCPhysReg> ExegesisRISCVTarget::getUnavailableRegisters() const { |
| 827 | return UnavailableRegisters; |
| 828 | } |
| 829 | |
| 830 | Error ExegesisRISCVTarget::randomizeTargetMCOperand( |
| 831 | const Instruction &Instr, const Variable &Var, MCOperand &AssignedValue, |
| 832 | const BitVector &ForbiddenRegs) const { |
| 833 | uint8_t OperandType = |
| 834 | Instr.getPrimaryOperand(Var).getExplicitOperandInfo().OperandType; |
| 835 | |
| 836 | switch (OperandType) { |
| 837 | case RISCVOp::OPERAND_FRMARG: |
| 838 | AssignedValue = MCOperand::createImm(Val: RISCVFPRndMode::DYN); |
| 839 | break; |
| 840 | case RISCVOp::OPERAND_SIMM10_LSB0000_NONZERO: |
| 841 | AssignedValue = MCOperand::createImm(Val: 0b1 << 4); |
| 842 | break; |
| 843 | case RISCVOp::OPERAND_SIMM6_NONZERO: |
| 844 | case RISCVOp::OPERAND_UIMMLOG2XLEN_NONZERO: |
| 845 | AssignedValue = MCOperand::createImm(Val: 1); |
| 846 | break; |
| 847 | case RISCVOp::OPERAND_SIMM5: |
| 848 | // 5-bit signed immediate value. |
| 849 | AssignedValue = MCOperand::createImm(Val: randomIndex(Max: 31) - 16); |
| 850 | break; |
| 851 | case RISCVOp::OPERAND_AVL: |
| 852 | case RISCVOp::OPERAND_UIMM5: |
| 853 | // 5-bit unsigned immediate value. |
| 854 | AssignedValue = MCOperand::createImm(Val: randomIndex(Max: 31)); |
| 855 | break; |
| 856 | default: |
| 857 | if (OperandType >= RISCVOp::OPERAND_FIRST_RISCV_IMM && |
| 858 | OperandType <= RISCVOp::OPERAND_LAST_RISCV_IMM) |
| 859 | AssignedValue = MCOperand::createImm(Val: 0); |
| 860 | } |
| 861 | return Error::success(); |
| 862 | } |
| 863 | |
| 864 | std::vector<InstructionTemplate> |
| 865 | ExegesisRISCVTarget::generateInstructionVariants( |
| 866 | const Instruction &Instr, unsigned int MaxConfigsPerOpcode) const { |
| 867 | InstructionTemplate IT{&Instr}; |
| 868 | for (const Operand &Op : Instr.Operands) |
| 869 | if (Op.isMemory()) { |
| 870 | IT.getValueFor(Op) = MCOperand::createReg(Reg: ScratchMemoryReg); |
| 871 | } |
| 872 | return {IT}; |
| 873 | } |
| 874 | |
| 875 | } // anonymous namespace |
| 876 | |
| 877 | static ExegesisTarget *getTheRISCVExegesisTarget() { |
| 878 | static ExegesisRISCVTarget Target; |
| 879 | return &Target; |
| 880 | } |
| 881 | |
| 882 | void InitializeRISCVExegesisTarget() { |
| 883 | ExegesisTarget::registerTarget(T: getTheRISCVExegesisTarget()); |
| 884 | } |
| 885 | |
| 886 | } // namespace exegesis |
| 887 | } // namespace llvm |
| 888 | |