1 | //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines structures to encapsulate the machine model as described in |
10 | // the target description. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "CodeGenSchedule.h" |
15 | #include "CodeGenInstruction.h" |
16 | #include "CodeGenTarget.h" |
17 | #include "Utils.h" |
18 | #include "llvm/ADT/MapVector.h" |
19 | #include "llvm/ADT/STLExtras.h" |
20 | #include "llvm/ADT/SmallPtrSet.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/Support/Casting.h" |
23 | #include "llvm/Support/Debug.h" |
24 | #include "llvm/Support/Regex.h" |
25 | #include "llvm/Support/raw_ostream.h" |
26 | #include "llvm/TableGen/Error.h" |
27 | #include <algorithm> |
28 | #include <iterator> |
29 | #include <utility> |
30 | |
31 | using namespace llvm; |
32 | |
33 | #define DEBUG_TYPE "subtarget-emitter" |
34 | |
35 | #ifndef NDEBUG |
36 | static void dumpIdxVec(ArrayRef<unsigned> V) { |
37 | for (unsigned Idx : V) |
38 | dbgs() << Idx << ", " ; |
39 | } |
40 | #endif |
41 | |
42 | namespace { |
43 | |
44 | // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. |
45 | struct InstrsOp : public SetTheory::Operator { |
46 | void apply(SetTheory &ST, const DagInit *Expr, SetTheory::RecSet &Elts, |
47 | ArrayRef<SMLoc> Loc) override { |
48 | ST.evaluate(begin: Expr->arg_begin(), end: Expr->arg_end(), Elts, Loc); |
49 | } |
50 | }; |
51 | |
52 | // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. |
53 | struct InstRegexOp : public SetTheory::Operator { |
54 | const CodeGenTarget &Target; |
55 | InstRegexOp(const CodeGenTarget &t) : Target(t) {} |
56 | |
57 | /// Remove any text inside of parentheses from S. |
58 | static std::string removeParens(llvm::StringRef S) { |
59 | std::string Result; |
60 | unsigned Paren = 0; |
61 | // NB: We don't care about escaped parens here. |
62 | for (char C : S) { |
63 | switch (C) { |
64 | case '(': |
65 | ++Paren; |
66 | break; |
67 | case ')': |
68 | --Paren; |
69 | break; |
70 | default: |
71 | if (Paren == 0) |
72 | Result += C; |
73 | } |
74 | } |
75 | return Result; |
76 | } |
77 | |
78 | void apply(SetTheory &ST, const DagInit *Expr, SetTheory::RecSet &Elts, |
79 | ArrayRef<SMLoc> Loc) override { |
80 | ArrayRef<const CodeGenInstruction *> Generics = |
81 | Target.getGenericInstructionsByEnumValue(); |
82 | ArrayRef<const CodeGenInstruction *> Pseudos = |
83 | Target.getTargetPseudoInstructionsByEnumValue(); |
84 | ArrayRef<const CodeGenInstruction *> NonPseudos = |
85 | Target.getTargetNonPseudoInstructionsByEnumValue(); |
86 | |
87 | for (const Init *Arg : Expr->getArgs()) { |
88 | const StringInit *SI = dyn_cast<StringInit>(Val: Arg); |
89 | if (!SI) |
90 | PrintFatalError(ErrorLoc: Loc, Msg: "instregex requires pattern string: " + |
91 | Expr->getAsString()); |
92 | StringRef Original = SI->getValue(); |
93 | // Drop an explicit ^ anchor to not interfere with prefix search. |
94 | bool HadAnchor = Original.consume_front(Prefix: "^" ); |
95 | |
96 | // Extract a prefix that we can binary search on. |
97 | static const char RegexMetachars[] = "()^$|*+?.[]\\{}" ; |
98 | auto FirstMeta = Original.find_first_of(Chars: RegexMetachars); |
99 | if (FirstMeta != StringRef::npos && FirstMeta > 0) { |
100 | // If we have a regex like ABC* we can only use AB as the prefix, as |
101 | // the * acts on C. |
102 | switch (Original[FirstMeta]) { |
103 | case '+': |
104 | case '*': |
105 | case '?': |
106 | --FirstMeta; |
107 | break; |
108 | default: |
109 | break; |
110 | } |
111 | } |
112 | |
113 | // Look for top-level | or ?. We cannot optimize them to binary search. |
114 | if (removeParens(S: Original).find_first_of(s: "|?" ) != std::string::npos) |
115 | FirstMeta = 0; |
116 | |
117 | std::optional<Regex> Regexpr; |
118 | StringRef Prefix = Original.substr(Start: 0, N: FirstMeta); |
119 | StringRef PatStr = Original.substr(Start: FirstMeta); |
120 | if (!PatStr.empty()) { |
121 | // For the rest use a python-style prefix match. |
122 | std::string pat = PatStr.str(); |
123 | // Add ^ anchor. If we had one originally, don't need the group. |
124 | if (HadAnchor) { |
125 | pat.insert(pos: 0, s: "^" ); |
126 | } else { |
127 | pat.insert(pos: 0, s: "^(" ); |
128 | pat.insert(p: pat.end(), c: ')'); |
129 | } |
130 | Regexpr = Regex(pat); |
131 | } |
132 | |
133 | int NumMatches = 0; |
134 | |
135 | // The generic opcodes are unsorted, handle them manually. |
136 | for (auto *Inst : Generics) { |
137 | StringRef InstName = Inst->TheDef->getName(); |
138 | if (InstName.starts_with(Prefix) && |
139 | (!Regexpr || Regexpr->match(String: InstName.substr(Start: Prefix.size())))) { |
140 | Elts.insert(X: Inst->TheDef); |
141 | NumMatches++; |
142 | } |
143 | } |
144 | |
145 | // Target instructions are split into two ranges: pseudo instructions |
146 | // first, then non-pseudos. Each range is in lexicographical order |
147 | // sorted by name. Find the sub-ranges that start with our prefix. |
148 | struct Comp { |
149 | bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { |
150 | return LHS->TheDef->getName() < RHS; |
151 | } |
152 | bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { |
153 | return LHS < RHS->TheDef->getName() && |
154 | !RHS->TheDef->getName().starts_with(Prefix: LHS); |
155 | } |
156 | }; |
157 | auto Range1 = |
158 | std::equal_range(first: Pseudos.begin(), last: Pseudos.end(), val: Prefix, comp: Comp()); |
159 | auto Range2 = std::equal_range(first: NonPseudos.begin(), last: NonPseudos.end(), |
160 | val: Prefix, comp: Comp()); |
161 | |
162 | // For these ranges we know that instruction names start with the prefix. |
163 | // Check if there's a regex that needs to be checked. |
164 | const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { |
165 | StringRef InstName = Inst->TheDef->getName(); |
166 | if (!Regexpr || Regexpr->match(String: InstName.substr(Start: Prefix.size()))) { |
167 | Elts.insert(X: Inst->TheDef); |
168 | NumMatches++; |
169 | } |
170 | }; |
171 | std::for_each(first: Range1.first, last: Range1.second, f: HandleNonGeneric); |
172 | std::for_each(first: Range2.first, last: Range2.second, f: HandleNonGeneric); |
173 | |
174 | if (0 == NumMatches) |
175 | PrintFatalError(ErrorLoc: Loc, Msg: "instregex has no matches: " + Original); |
176 | } |
177 | } |
178 | }; |
179 | |
180 | } // end anonymous namespace |
181 | |
182 | /// CodeGenModels ctor interprets machine model records and populates maps. |
183 | CodeGenSchedModels::CodeGenSchedModels(const RecordKeeper &RK, |
184 | const CodeGenTarget &TGT) |
185 | : Records(RK), Target(TGT) { |
186 | |
187 | Sets.addFieldExpander(ClassName: "InstRW" , FieldName: "Instrs" ); |
188 | |
189 | // Allow Set evaluation to recognize the dags used in InstRW records: |
190 | // (instrs Op1, Op1...) |
191 | Sets.addOperator(Name: "instrs" , std::make_unique<InstrsOp>()); |
192 | Sets.addOperator(Name: "instregex" , std::make_unique<InstRegexOp>(args: Target)); |
193 | |
194 | // Instantiate a CodeGenProcModel for each SchedMachineModel with the values |
195 | // that are explicitly referenced in tablegen records. Resources associated |
196 | // with each processor will be derived later. Populate ProcModelMap with the |
197 | // CodeGenProcModel instances. |
198 | collectProcModels(); |
199 | |
200 | // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly |
201 | // defined, and populate SchedReads and SchedWrites vectors. Implicit |
202 | // SchedReadWrites that represent sequences derived from expanded variant will |
203 | // be inferred later. |
204 | collectSchedRW(); |
205 | |
206 | // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly |
207 | // required by an instruction definition, and populate SchedClassIdxMap. Set |
208 | // NumItineraryClasses to the number of explicit itinerary classes referenced |
209 | // by instructions. Set NumInstrSchedClasses to the number of itinerary |
210 | // classes plus any classes implied by instructions that derive from class |
211 | // Sched and provide SchedRW list. This does not infer any new classes from |
212 | // SchedVariant. |
213 | collectSchedClasses(); |
214 | |
215 | // Find instruction itineraries for each processor. Sort and populate |
216 | // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires |
217 | // all itinerary classes to be discovered. |
218 | collectProcItins(); |
219 | |
220 | // Find ItinRW records for each processor and itinerary class. |
221 | // (For per-operand resources mapped to itinerary classes). |
222 | collectProcItinRW(); |
223 | |
224 | // Find UnsupportedFeatures records for each processor. |
225 | // (For per-operand resources mapped to itinerary classes). |
226 | collectProcUnsupportedFeatures(); |
227 | |
228 | // Infer new SchedClasses from SchedVariant. |
229 | inferSchedClasses(); |
230 | |
231 | // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and |
232 | // ProcResourceDefs. |
233 | LLVM_DEBUG( |
234 | dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n" ); |
235 | collectProcResources(); |
236 | |
237 | // Collect optional processor description. |
238 | collectOptionalProcessorInfo(); |
239 | |
240 | // Check MCInstPredicate definitions. |
241 | checkMCInstPredicates(); |
242 | |
243 | // Check STIPredicate definitions. |
244 | checkSTIPredicates(); |
245 | |
246 | // Find STIPredicate definitions for each processor model, and construct |
247 | // STIPredicateFunction objects. |
248 | collectSTIPredicates(); |
249 | |
250 | checkCompleteness(); |
251 | } |
252 | |
253 | void CodeGenSchedModels::checkSTIPredicates() const { |
254 | DenseMap<StringRef, const Record *> Declarations; |
255 | |
256 | // There cannot be multiple declarations with the same name. |
257 | for (const Record *R : Records.getAllDerivedDefinitions(ClassName: "STIPredicateDecl" )) { |
258 | StringRef Name = R->getValueAsString(FieldName: "Name" ); |
259 | const auto [It, Inserted] = Declarations.try_emplace(Key: Name, Args&: R); |
260 | if (Inserted) |
261 | continue; |
262 | |
263 | PrintError(ErrorLoc: R->getLoc(), Msg: "STIPredicate " + Name + " multiply declared." ); |
264 | PrintFatalNote(ErrorLoc: It->second->getLoc(), Msg: "Previous declaration was here." ); |
265 | } |
266 | |
267 | // Disallow InstructionEquivalenceClasses with an empty instruction list. |
268 | for (const Record *R : |
269 | Records.getAllDerivedDefinitions(ClassName: "InstructionEquivalenceClass" )) { |
270 | if (R->getValueAsListOfDefs(FieldName: "Opcodes" ).empty()) { |
271 | PrintFatalError(ErrorLoc: R->getLoc(), Msg: "Invalid InstructionEquivalenceClass " |
272 | "defined with an empty opcode list." ); |
273 | } |
274 | } |
275 | } |
276 | |
277 | // Used by function `processSTIPredicate` to construct a mask of machine |
278 | // instruction operands. |
279 | static APInt constructOperandMask(ArrayRef<int64_t> Indices) { |
280 | APInt OperandMask; |
281 | if (Indices.empty()) |
282 | return OperandMask; |
283 | |
284 | int64_t MaxIndex = *llvm::max_element(Range&: Indices); |
285 | assert(MaxIndex >= 0 && "Invalid negative indices in input!" ); |
286 | OperandMask = OperandMask.zext(width: MaxIndex + 1); |
287 | for (const int64_t Index : Indices) { |
288 | assert(Index >= 0 && "Invalid negative indices!" ); |
289 | OperandMask.setBit(Index); |
290 | } |
291 | |
292 | return OperandMask; |
293 | } |
294 | |
295 | static void processSTIPredicate(STIPredicateFunction &Fn, |
296 | const ProcModelMapTy &ProcModelMap) { |
297 | DenseMap<const Record *, unsigned> Opcode2Index; |
298 | using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>; |
299 | std::vector<OpcodeMapPair> OpcodeMappings; |
300 | std::vector<std::pair<APInt, APInt>> OpcodeMasks; |
301 | |
302 | DenseMap<const Record *, unsigned> Predicate2Index; |
303 | unsigned NumUniquePredicates = 0; |
304 | |
305 | // Number unique predicates and opcodes used by InstructionEquivalenceClass |
306 | // definitions. Each unique opcode will be associated with an OpcodeInfo |
307 | // object. |
308 | for (const Record *Def : Fn.getDefinitions()) { |
309 | ConstRecVec Classes = Def->getValueAsListOfDefs(FieldName: "Classes" ); |
310 | for (const Record *EC : Classes) { |
311 | const Record *Pred = EC->getValueAsDef(FieldName: "Predicate" ); |
312 | if (Predicate2Index.try_emplace(Key: Pred, Args&: NumUniquePredicates).second) |
313 | ++NumUniquePredicates; |
314 | |
315 | ConstRecVec Opcodes = EC->getValueAsListOfDefs(FieldName: "Opcodes" ); |
316 | for (const Record *Opcode : Opcodes) { |
317 | if (Opcode2Index.try_emplace(Key: Opcode, Args: OpcodeMappings.size()).second) |
318 | OpcodeMappings.emplace_back(args&: Opcode, args: OpcodeInfo()); |
319 | } |
320 | } |
321 | } |
322 | |
323 | // Initialize vector `OpcodeMasks` with default values. We want to keep track |
324 | // of which processors "use" which opcodes. We also want to be able to |
325 | // identify predicates that are used by different processors for a same |
326 | // opcode. |
327 | // This information is used later on by this algorithm to sort OpcodeMapping |
328 | // elements based on their processor and predicate sets. |
329 | OpcodeMasks.resize(new_size: OpcodeMappings.size()); |
330 | APInt DefaultProcMask(ProcModelMap.size(), 0); |
331 | APInt DefaultPredMask(NumUniquePredicates, 0); |
332 | for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks) |
333 | MaskPair = {DefaultProcMask, DefaultPredMask}; |
334 | |
335 | // Construct a OpcodeInfo object for every unique opcode declared by an |
336 | // InstructionEquivalenceClass definition. |
337 | for (const Record *Def : Fn.getDefinitions()) { |
338 | ConstRecVec Classes = Def->getValueAsListOfDefs(FieldName: "Classes" ); |
339 | const Record *SchedModel = Def->getValueAsDef(FieldName: "SchedModel" ); |
340 | unsigned ProcIndex = ProcModelMap.find(Val: SchedModel)->second; |
341 | APInt ProcMask(ProcModelMap.size(), 0); |
342 | ProcMask.setBit(ProcIndex); |
343 | |
344 | for (const Record *EC : Classes) { |
345 | ConstRecVec Opcodes = EC->getValueAsListOfDefs(FieldName: "Opcodes" ); |
346 | |
347 | std::vector<int64_t> OpIndices = |
348 | EC->getValueAsListOfInts(FieldName: "OperandIndices" ); |
349 | APInt OperandMask = constructOperandMask(Indices: OpIndices); |
350 | |
351 | const Record *Pred = EC->getValueAsDef(FieldName: "Predicate" ); |
352 | APInt PredMask(NumUniquePredicates, 0); |
353 | PredMask.setBit(Predicate2Index[Pred]); |
354 | |
355 | for (const Record *Opcode : Opcodes) { |
356 | unsigned OpcodeIdx = Opcode2Index[Opcode]; |
357 | if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) { |
358 | std::string Message = |
359 | "Opcode " + Opcode->getName().str() + |
360 | " used by multiple InstructionEquivalenceClass definitions." ; |
361 | PrintFatalError(ErrorLoc: EC->getLoc(), Msg: Message); |
362 | } |
363 | OpcodeMasks[OpcodeIdx].first |= ProcMask; |
364 | OpcodeMasks[OpcodeIdx].second |= PredMask; |
365 | OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second; |
366 | |
367 | OI.addPredicateForProcModel(CpuMask: ProcMask, OperandMask, Predicate: Pred); |
368 | } |
369 | } |
370 | } |
371 | |
372 | // Sort OpcodeMappings elements based on their CPU and predicate masks. |
373 | // As a last resort, order elements by opcode identifier. |
374 | llvm::sort( |
375 | C&: OpcodeMappings, Comp: [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) { |
376 | unsigned LhsIdx = Opcode2Index[Lhs.first]; |
377 | unsigned RhsIdx = Opcode2Index[Rhs.first]; |
378 | const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx]; |
379 | const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx]; |
380 | |
381 | auto PopulationCountAndLeftBit = |
382 | [](const APInt &Other) -> std::pair<int, int> { |
383 | return {Other.popcount(), -Other.countl_zero()}; |
384 | }; |
385 | auto lhsmask_first = PopulationCountAndLeftBit(LhsMasks.first); |
386 | auto rhsmask_first = PopulationCountAndLeftBit(RhsMasks.first); |
387 | if (lhsmask_first != rhsmask_first) |
388 | return lhsmask_first < rhsmask_first; |
389 | |
390 | auto lhsmask_second = PopulationCountAndLeftBit(LhsMasks.second); |
391 | auto rhsmask_second = PopulationCountAndLeftBit(RhsMasks.second); |
392 | if (lhsmask_second != rhsmask_second) |
393 | return lhsmask_second < rhsmask_second; |
394 | |
395 | return LhsIdx < RhsIdx; |
396 | }); |
397 | |
398 | // Now construct opcode groups. Groups are used by the SubtargetEmitter when |
399 | // expanding the body of a STIPredicate function. In particular, each opcode |
400 | // group is expanded into a sequence of labels in a switch statement. |
401 | // It identifies opcodes for which different processors define same predicates |
402 | // and same opcode masks. |
403 | for (OpcodeMapPair &Info : OpcodeMappings) |
404 | Fn.addOpcode(OpcodeRec: Info.first, Info: std::move(Info.second)); |
405 | } |
406 | |
407 | void CodeGenSchedModels::collectSTIPredicates() { |
408 | // Map STIPredicateDecl records to elements of vector |
409 | // CodeGenSchedModels::STIPredicates. |
410 | DenseMap<const Record *, unsigned> Decl2Index; |
411 | for (const Record *R : Records.getAllDerivedDefinitions(ClassName: "STIPredicate" )) { |
412 | const Record *Decl = R->getValueAsDef(FieldName: "Declaration" ); |
413 | |
414 | const auto [It, Inserted] = |
415 | Decl2Index.try_emplace(Key: Decl, Args: STIPredicates.size()); |
416 | if (Inserted) { |
417 | STIPredicateFunction Predicate(Decl); |
418 | Predicate.addDefinition(Def: R); |
419 | STIPredicates.emplace_back(args: std::move(Predicate)); |
420 | continue; |
421 | } |
422 | |
423 | STIPredicateFunction &PreviousDef = STIPredicates[It->second]; |
424 | PreviousDef.addDefinition(Def: R); |
425 | } |
426 | |
427 | for (STIPredicateFunction &Fn : STIPredicates) |
428 | processSTIPredicate(Fn, ProcModelMap); |
429 | } |
430 | |
431 | void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask, |
432 | const llvm::APInt &OperandMask, |
433 | const Record *Predicate) { |
434 | auto It = llvm::find_if( |
435 | Range&: Predicates, P: [&OperandMask, &Predicate](const PredicateInfo &P) { |
436 | return P.Predicate == Predicate && P.OperandMask == OperandMask; |
437 | }); |
438 | if (It == Predicates.end()) { |
439 | Predicates.emplace_back(args: CpuMask, args: OperandMask, args&: Predicate); |
440 | return; |
441 | } |
442 | It->ProcModelMask |= CpuMask; |
443 | } |
444 | |
445 | void CodeGenSchedModels::checkMCInstPredicates() const { |
446 | // A target cannot have multiple TIIPredicate definitions with a same name. |
447 | llvm::StringMap<const Record *> TIIPredicates; |
448 | for (const Record *TIIPred : |
449 | Records.getAllDerivedDefinitions(ClassName: "TIIPredicate" )) { |
450 | StringRef Name = TIIPred->getValueAsString(FieldName: "FunctionName" ); |
451 | auto [It, Inserted] = TIIPredicates.try_emplace(Key: Name, Args&: TIIPred); |
452 | if (Inserted) |
453 | continue; |
454 | |
455 | PrintError(ErrorLoc: TIIPred->getLoc(), |
456 | Msg: "TIIPredicate " + Name + " is multiply defined." ); |
457 | PrintFatalNote(ErrorLoc: It->second->getLoc(), |
458 | Msg: " Previous definition of " + Name + " was here." ); |
459 | } |
460 | } |
461 | |
462 | void CodeGenSchedModels::collectRetireControlUnits() { |
463 | for (const Record *RCU : |
464 | Records.getAllDerivedDefinitions(ClassName: "RetireControlUnit" )) { |
465 | CodeGenProcModel &PM = getProcModel(ModelDef: RCU->getValueAsDef(FieldName: "SchedModel" )); |
466 | if (PM.RetireControlUnit) { |
467 | PrintError(ErrorLoc: RCU->getLoc(), |
468 | Msg: "Expected a single RetireControlUnit definition" ); |
469 | PrintNote(NoteLoc: PM.RetireControlUnit->getLoc(), |
470 | Msg: "Previous definition of RetireControlUnit was here" ); |
471 | } |
472 | PM.RetireControlUnit = RCU; |
473 | } |
474 | } |
475 | |
476 | void CodeGenSchedModels::collectLoadStoreQueueInfo() { |
477 | for (const Record *Queue : Records.getAllDerivedDefinitions(ClassName: "MemoryQueue" )) { |
478 | CodeGenProcModel &PM = getProcModel(ModelDef: Queue->getValueAsDef(FieldName: "SchedModel" )); |
479 | if (Queue->isSubClassOf(Name: "LoadQueue" )) { |
480 | if (PM.LoadQueue) { |
481 | PrintError(ErrorLoc: Queue->getLoc(), Msg: "Expected a single LoadQueue definition" ); |
482 | PrintNote(NoteLoc: PM.LoadQueue->getLoc(), |
483 | Msg: "Previous definition of LoadQueue was here" ); |
484 | } |
485 | |
486 | PM.LoadQueue = Queue; |
487 | } |
488 | |
489 | if (Queue->isSubClassOf(Name: "StoreQueue" )) { |
490 | if (PM.StoreQueue) { |
491 | PrintError(ErrorLoc: Queue->getLoc(), Msg: "Expected a single StoreQueue definition" ); |
492 | PrintNote(NoteLoc: PM.StoreQueue->getLoc(), |
493 | Msg: "Previous definition of StoreQueue was here" ); |
494 | } |
495 | |
496 | PM.StoreQueue = Queue; |
497 | } |
498 | } |
499 | } |
500 | |
501 | /// Collect optional processor information. |
502 | void CodeGenSchedModels::collectOptionalProcessorInfo() { |
503 | // Find register file definitions for each processor. |
504 | collectRegisterFiles(); |
505 | |
506 | // Collect processor RetireControlUnit descriptors if available. |
507 | collectRetireControlUnits(); |
508 | |
509 | // Collect information about load/store queues. |
510 | collectLoadStoreQueueInfo(); |
511 | |
512 | checkCompleteness(); |
513 | } |
514 | |
515 | /// Gather all processor models. |
516 | void CodeGenSchedModels::collectProcModels() { |
517 | std::vector<const Record *> ProcRecords = |
518 | Records.getAllDerivedDefinitions(ClassName: "Processor" ); |
519 | |
520 | // Sort and check duplicate Processor name. |
521 | sortAndReportDuplicates(Records: ProcRecords, ObjectName: "Processor" ); |
522 | |
523 | // Reserve space because we can. Reallocation would be ok. |
524 | ProcModels.reserve(n: ProcRecords.size() + 1); |
525 | |
526 | // Use idx=0 for NoModel/NoItineraries. |
527 | const Record *NoModelDef = Records.getDef(Name: "NoSchedModel" ); |
528 | const Record *NoItinsDef = Records.getDef(Name: "NoItineraries" ); |
529 | ProcModels.emplace_back(args: 0, args: "NoSchedModel" , args&: NoModelDef, args&: NoItinsDef); |
530 | ProcModelMap[NoModelDef] = 0; |
531 | |
532 | // For each processor, find a unique machine model. |
533 | LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n" ); |
534 | for (const Record *ProcRecord : ProcRecords) |
535 | addProcModel(ProcDef: ProcRecord); |
536 | } |
537 | |
538 | /// Get a unique processor model based on the defined MachineModel and |
539 | /// ProcessorItineraries. |
540 | void CodeGenSchedModels::addProcModel(const Record *ProcDef) { |
541 | const Record *ModelKey = getModelOrItinDef(ProcDef); |
542 | if (!ProcModelMap.try_emplace(Key: ModelKey, Args: ProcModels.size()).second) |
543 | return; |
544 | |
545 | std::string Name = ModelKey->getName().str(); |
546 | if (ModelKey->isSubClassOf(Name: "SchedMachineModel" )) { |
547 | const Record *ItinsDef = ModelKey->getValueAsDef(FieldName: "Itineraries" ); |
548 | ProcModels.emplace_back(args: ProcModels.size(), args&: Name, args&: ModelKey, args&: ItinsDef); |
549 | } else { |
550 | // An itinerary is defined without a machine model. Infer a new model. |
551 | if (!ModelKey->getValueAsListOfDefs(FieldName: "IID" ).empty()) |
552 | Name = Name + "Model" ; |
553 | ProcModels.emplace_back(args: ProcModels.size(), args&: Name, |
554 | args: ProcDef->getValueAsDef(FieldName: "SchedModel" ), args&: ModelKey); |
555 | } |
556 | LLVM_DEBUG(ProcModels.back().dump()); |
557 | } |
558 | |
559 | // Recursively find all reachable SchedReadWrite records. |
560 | static void scanSchedRW(const Record *RWDef, ConstRecVec &RWDefs, |
561 | SmallPtrSet<const Record *, 16> &RWSet) { |
562 | if (!RWSet.insert(Ptr: RWDef).second) |
563 | return; |
564 | RWDefs.push_back(x: RWDef); |
565 | // Reads don't currently have sequence records, but it can be added later. |
566 | if (RWDef->isSubClassOf(Name: "WriteSequence" )) { |
567 | for (const Record *WSRec : RWDef->getValueAsListOfDefs(FieldName: "Writes" )) |
568 | scanSchedRW(RWDef: WSRec, RWDefs, RWSet); |
569 | } else if (RWDef->isSubClassOf(Name: "SchedVariant" )) { |
570 | // Visit each variant (guarded by a different predicate). |
571 | for (const Record *Variant : RWDef->getValueAsListOfDefs(FieldName: "Variants" )) { |
572 | // Visit each RW in the sequence selected by the current variant. |
573 | for (const Record *SelDef : Variant->getValueAsListOfDefs(FieldName: "Selected" )) |
574 | scanSchedRW(RWDef: SelDef, RWDefs, RWSet); |
575 | } |
576 | } |
577 | } |
578 | |
579 | // Collect and sort all SchedReadWrites reachable via tablegen records. |
580 | // More may be inferred later when inferring new SchedClasses from variants. |
581 | void CodeGenSchedModels::collectSchedRW() { |
582 | // Reserve idx=0 for invalid writes/reads. |
583 | SchedWrites.resize(new_size: 1); |
584 | SchedReads.resize(new_size: 1); |
585 | |
586 | SmallPtrSet<const Record *, 16> RWSet; |
587 | |
588 | // Find all SchedReadWrites referenced by instruction defs. |
589 | ConstRecVec SWDefs, SRDefs; |
590 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
591 | const Record *SchedDef = Inst->TheDef; |
592 | if (SchedDef->isValueUnset(FieldName: "SchedRW" )) |
593 | continue; |
594 | for (const Record *RW : SchedDef->getValueAsListOfDefs(FieldName: "SchedRW" )) { |
595 | if (RW->isSubClassOf(Name: "SchedWrite" )) |
596 | scanSchedRW(RWDef: RW, RWDefs&: SWDefs, RWSet); |
597 | else { |
598 | assert(RW->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
599 | scanSchedRW(RWDef: RW, RWDefs&: SRDefs, RWSet); |
600 | } |
601 | } |
602 | } |
603 | // Find all ReadWrites referenced by InstRW. |
604 | for (const Record *InstRWDef : Records.getAllDerivedDefinitions(ClassName: "InstRW" )) { |
605 | // For all OperandReadWrites. |
606 | for (const Record *RWDef : |
607 | InstRWDef->getValueAsListOfDefs(FieldName: "OperandReadWrites" )) { |
608 | if (RWDef->isSubClassOf(Name: "SchedWrite" )) |
609 | scanSchedRW(RWDef, RWDefs&: SWDefs, RWSet); |
610 | else { |
611 | assert(RWDef->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
612 | scanSchedRW(RWDef, RWDefs&: SRDefs, RWSet); |
613 | } |
614 | } |
615 | } |
616 | // Find all ReadWrites referenced by ItinRW. |
617 | for (const Record *ItinRWDef : Records.getAllDerivedDefinitions(ClassName: "ItinRW" )) { |
618 | // For all OperandReadWrites. |
619 | for (const Record *RWDef : |
620 | ItinRWDef->getValueAsListOfDefs(FieldName: "OperandReadWrites" )) { |
621 | if (RWDef->isSubClassOf(Name: "SchedWrite" )) |
622 | scanSchedRW(RWDef, RWDefs&: SWDefs, RWSet); |
623 | else { |
624 | assert(RWDef->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
625 | scanSchedRW(RWDef, RWDefs&: SRDefs, RWSet); |
626 | } |
627 | } |
628 | } |
629 | // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted |
630 | // for the loop below that initializes Alias vectors (which they already |
631 | // are by RecordKeeper::getAllDerivedDefinitions). |
632 | ArrayRef<const Record *> AliasDefs = |
633 | Records.getAllDerivedDefinitions(ClassName: "SchedAlias" ); |
634 | for (const Record *ADef : AliasDefs) { |
635 | const Record *MatchDef = ADef->getValueAsDef(FieldName: "MatchRW" ); |
636 | const Record *AliasDef = ADef->getValueAsDef(FieldName: "AliasRW" ); |
637 | if (MatchDef->isSubClassOf(Name: "SchedWrite" )) { |
638 | if (!AliasDef->isSubClassOf(Name: "SchedWrite" )) |
639 | PrintFatalError(ErrorLoc: ADef->getLoc(), Msg: "SchedWrite Alias must be SchedWrite" ); |
640 | scanSchedRW(RWDef: AliasDef, RWDefs&: SWDefs, RWSet); |
641 | } else { |
642 | assert(MatchDef->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
643 | if (!AliasDef->isSubClassOf(Name: "SchedRead" )) |
644 | PrintFatalError(ErrorLoc: ADef->getLoc(), Msg: "SchedRead Alias must be SchedRead" ); |
645 | scanSchedRW(RWDef: AliasDef, RWDefs&: SRDefs, RWSet); |
646 | } |
647 | } |
648 | // Sort and add the SchedReadWrites directly referenced by instructions or |
649 | // itinerary resources. Index reads and writes in separate domains. |
650 | llvm::sort(C&: SWDefs, Comp: LessRecord()); |
651 | for (const Record *SWDef : SWDefs) { |
652 | assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite" ); |
653 | SchedWrites.emplace_back(args: SchedWrites.size(), args&: SWDef); |
654 | } |
655 | llvm::sort(C&: SRDefs, Comp: LessRecord()); |
656 | for (const Record *SRDef : SRDefs) { |
657 | assert(!getSchedRWIdx(SRDef, /*IsRead-*/ true) && "duplicate SchedWrite" ); |
658 | SchedReads.emplace_back(args: SchedReads.size(), args&: SRDef); |
659 | } |
660 | // Initialize WriteSequence vectors. |
661 | for (CodeGenSchedRW &CGRW : SchedWrites) { |
662 | if (!CGRW.IsSequence) |
663 | continue; |
664 | findRWs(RWDefs: CGRW.TheDef->getValueAsListOfDefs(FieldName: "Writes" ), RWs&: CGRW.Sequence, |
665 | /*IsRead=*/false); |
666 | } |
667 | // Initialize Aliases vectors. |
668 | for (const Record *ADef : AliasDefs) { |
669 | const Record *AliasDef = ADef->getValueAsDef(FieldName: "AliasRW" ); |
670 | getSchedRW(Def: AliasDef).IsAlias = true; |
671 | const Record *MatchDef = ADef->getValueAsDef(FieldName: "MatchRW" ); |
672 | CodeGenSchedRW &RW = getSchedRW(Def: MatchDef); |
673 | if (RW.IsAlias) |
674 | PrintFatalError(ErrorLoc: ADef->getLoc(), Msg: "Cannot Alias an Alias" ); |
675 | RW.Aliases.push_back(x: ADef); |
676 | } |
677 | LLVM_DEBUG( |
678 | dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n" ; |
679 | for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { |
680 | dbgs() << WIdx << ": " ; |
681 | SchedWrites[WIdx].dump(); |
682 | dbgs() << '\n'; |
683 | } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; |
684 | ++RIdx) { |
685 | dbgs() << RIdx << ": " ; |
686 | SchedReads[RIdx].dump(); |
687 | dbgs() << '\n'; |
688 | } for (const Record *RWDef |
689 | : Records.getAllDerivedDefinitions("SchedReadWrite" )) { |
690 | if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead" ))) { |
691 | StringRef Name = RWDef->getName(); |
692 | if (Name != "NoWrite" && Name != "ReadDefault" ) |
693 | dbgs() << "Unused SchedReadWrite " << Name << '\n'; |
694 | } |
695 | }); |
696 | } |
697 | |
698 | /// Compute a SchedWrite name from a sequence of writes. |
699 | std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { |
700 | std::string Name("(" ); |
701 | ListSeparator LS("_" ); |
702 | for (unsigned I : Seq) { |
703 | Name += LS; |
704 | Name += getSchedRW(Idx: I, IsRead).Name; |
705 | } |
706 | Name += ')'; |
707 | return Name; |
708 | } |
709 | |
710 | unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, |
711 | bool IsRead) const { |
712 | const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; |
713 | const auto I = find_if( |
714 | Range: RWVec, P: [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); |
715 | return I == RWVec.end() ? 0 : std::distance(first: RWVec.begin(), last: I); |
716 | } |
717 | |
718 | static void splitSchedReadWrites(const ConstRecVec &RWDefs, |
719 | ConstRecVec &WriteDefs, |
720 | ConstRecVec &ReadDefs) { |
721 | for (const Record *RWDef : RWDefs) { |
722 | if (RWDef->isSubClassOf(Name: "SchedWrite" )) |
723 | WriteDefs.push_back(x: RWDef); |
724 | else { |
725 | assert(RWDef->isSubClassOf("SchedRead" ) && "unknown SchedReadWrite" ); |
726 | ReadDefs.push_back(x: RWDef); |
727 | } |
728 | } |
729 | } |
730 | |
731 | // Split the SchedReadWrites defs and call findRWs for each list. |
732 | void CodeGenSchedModels::findRWs(const ConstRecVec &RWDefs, IdxVec &Writes, |
733 | IdxVec &Reads) const { |
734 | ConstRecVec WriteDefs; |
735 | ConstRecVec ReadDefs; |
736 | splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); |
737 | findRWs(RWDefs: WriteDefs, RWs&: Writes, IsRead: false); |
738 | findRWs(RWDefs: ReadDefs, RWs&: Reads, IsRead: true); |
739 | } |
740 | |
741 | // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. |
742 | void CodeGenSchedModels::findRWs(const ConstRecVec &RWDefs, IdxVec &RWs, |
743 | bool IsRead) const { |
744 | for (const Record *RWDef : RWDefs) { |
745 | unsigned Idx = getSchedRWIdx(Def: RWDef, IsRead); |
746 | assert(Idx && "failed to collect SchedReadWrite" ); |
747 | RWs.push_back(x: Idx); |
748 | } |
749 | } |
750 | |
751 | void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, |
752 | bool IsRead) const { |
753 | const CodeGenSchedRW &SchedRW = getSchedRW(Idx: RWIdx, IsRead); |
754 | if (!SchedRW.IsSequence) { |
755 | RWSeq.push_back(x: RWIdx); |
756 | return; |
757 | } |
758 | int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt(FieldName: "Repeat" ) : 1; |
759 | for (int i = 0; i < Repeat; ++i) { |
760 | for (unsigned I : SchedRW.Sequence) { |
761 | expandRWSequence(RWIdx: I, RWSeq, IsRead); |
762 | } |
763 | } |
764 | } |
765 | |
766 | // Expand a SchedWrite as a sequence following any aliases that coincide with |
767 | // the given processor model. |
768 | void CodeGenSchedModels::expandRWSeqForProc( |
769 | unsigned RWIdx, IdxVec &RWSeq, bool IsRead, |
770 | const CodeGenProcModel &ProcModel) const { |
771 | const CodeGenSchedRW &SchedWrite = getSchedRW(Idx: RWIdx, IsRead); |
772 | const Record *AliasDef = nullptr; |
773 | for (const Record *Rec : SchedWrite.Aliases) { |
774 | const CodeGenSchedRW &AliasRW = getSchedRW(Def: Rec->getValueAsDef(FieldName: "AliasRW" )); |
775 | if (Rec->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
776 | const Record *ModelDef = Rec->getValueAsDef(FieldName: "SchedModel" ); |
777 | if (&getProcModel(ModelDef) != &ProcModel) |
778 | continue; |
779 | } |
780 | if (AliasDef) |
781 | PrintFatalError(ErrorLoc: AliasRW.TheDef->getLoc(), |
782 | Msg: "Multiple aliases " |
783 | "defined for processor " + |
784 | ProcModel.ModelName + |
785 | " Ensure only one SchedAlias exists per RW." ); |
786 | AliasDef = AliasRW.TheDef; |
787 | } |
788 | if (AliasDef) { |
789 | expandRWSeqForProc(RWIdx: getSchedRWIdx(Def: AliasDef, IsRead), RWSeq, IsRead, |
790 | ProcModel); |
791 | return; |
792 | } |
793 | if (!SchedWrite.IsSequence) { |
794 | RWSeq.push_back(x: RWIdx); |
795 | return; |
796 | } |
797 | int Repeat = |
798 | SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt(FieldName: "Repeat" ) : 1; |
799 | for (int I = 0, E = Repeat; I < E; ++I) { |
800 | for (unsigned Idx : SchedWrite.Sequence) { |
801 | expandRWSeqForProc(RWIdx: Idx, RWSeq, IsRead, ProcModel); |
802 | } |
803 | } |
804 | } |
805 | |
806 | /// Add this ReadWrite if it doesn't already exist. |
807 | unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, |
808 | bool IsRead) { |
809 | assert(!Seq.empty() && "cannot insert empty sequence" ); |
810 | if (Seq.size() == 1) |
811 | return Seq.back(); |
812 | |
813 | std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; |
814 | |
815 | auto I = find_if(Range&: RWVec, P: [Seq](CodeGenSchedRW &RW) { |
816 | return ArrayRef(RW.Sequence) == Seq; |
817 | }); |
818 | if (I != RWVec.end()) |
819 | return std::distance(first: RWVec.begin(), last: I); |
820 | |
821 | unsigned RWIdx = RWVec.size(); |
822 | CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); |
823 | RWVec.push_back(x: SchedRW); |
824 | return RWIdx; |
825 | } |
826 | |
827 | /// Visit all the instruction definitions for this target to gather and |
828 | /// enumerate the itinerary classes. These are the explicitly specified |
829 | /// SchedClasses. More SchedClasses may be inferred. |
830 | void CodeGenSchedModels::collectSchedClasses() { |
831 | |
832 | // NoItinerary is always the first class at Idx=0 |
833 | assert(SchedClasses.empty() && "Expected empty sched class" ); |
834 | SchedClasses.emplace_back(args: 0, args: "NoInstrModel" , args: Records.getDef(Name: "NoItinerary" )); |
835 | SchedClasses.back().ProcIndices.push_back(x: 0); |
836 | |
837 | // Create a SchedClass for each unique combination of itinerary class and |
838 | // SchedRW list. |
839 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
840 | const Record *ItinDef = Inst->TheDef->getValueAsDef(FieldName: "Itinerary" ); |
841 | IdxVec Writes, Reads; |
842 | if (!Inst->TheDef->isValueUnset(FieldName: "SchedRW" )) |
843 | findRWs(RWDefs: Inst->TheDef->getValueAsListOfDefs(FieldName: "SchedRW" ), Writes, Reads); |
844 | |
845 | // ProcIdx == 0 indicates the class applies to all processors. |
846 | unsigned SCIdx = addSchedClass(ItinDef, OperWrites: Writes, OperReads: Reads, /*ProcIndices*/ {0}); |
847 | InstrClassMap[Inst->TheDef] = SCIdx; |
848 | } |
849 | // Create classes for InstRW defs. |
850 | LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n" ); |
851 | for (const Record *RWDef : Records.getAllDerivedDefinitions(ClassName: "InstRW" )) |
852 | createInstRWClass(InstRWDef: RWDef); |
853 | |
854 | NumInstrSchedClasses = SchedClasses.size(); |
855 | |
856 | bool EnableDump = false; |
857 | LLVM_DEBUG(EnableDump = true); |
858 | if (!EnableDump) |
859 | return; |
860 | |
861 | LLVM_DEBUG( |
862 | dbgs() |
863 | << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n" ); |
864 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
865 | StringRef InstName = Inst->TheDef->getName(); |
866 | unsigned SCIdx = getSchedClassIdx(Inst: *Inst); |
867 | if (!SCIdx) { |
868 | LLVM_DEBUG({ |
869 | if (!Inst->hasNoSchedulingInfo) |
870 | dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; |
871 | }); |
872 | continue; |
873 | } |
874 | CodeGenSchedClass &SC = getSchedClass(Idx: SCIdx); |
875 | if (SC.ProcIndices[0] != 0) |
876 | PrintFatalError(ErrorLoc: Inst->TheDef->getLoc(), |
877 | Msg: "Instruction's sched class " |
878 | "must not be subtarget specific." ); |
879 | |
880 | IdxVec ProcIndices; |
881 | if (SC.ItinClassDef->getName() != "NoItinerary" ) { |
882 | ProcIndices.push_back(x: 0); |
883 | dbgs() << "Itinerary for " << InstName << ": " |
884 | << SC.ItinClassDef->getName() << '\n'; |
885 | } |
886 | if (!SC.Writes.empty()) { |
887 | ProcIndices.push_back(x: 0); |
888 | LLVM_DEBUG({ |
889 | dbgs() << "SchedRW machine model for " << InstName; |
890 | for (unsigned int Write : SC.Writes) |
891 | dbgs() << " " << SchedWrites[Write].Name; |
892 | for (unsigned int Read : SC.Reads) |
893 | dbgs() << " " << SchedReads[Read].Name; |
894 | dbgs() << '\n'; |
895 | }); |
896 | } |
897 | for (const Record *RWDef : SchedClasses[SCIdx].InstRWs) { |
898 | const CodeGenProcModel &ProcModel = |
899 | getProcModel(ModelDef: RWDef->getValueAsDef(FieldName: "SchedModel" )); |
900 | ProcIndices.push_back(x: ProcModel.Index); |
901 | LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " |
902 | << InstName); |
903 | IdxVec Writes; |
904 | IdxVec Reads; |
905 | findRWs(RWDefs: RWDef->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
906 | LLVM_DEBUG({ |
907 | for (unsigned WIdx : Writes) |
908 | dbgs() << " " << SchedWrites[WIdx].Name; |
909 | for (unsigned RIdx : Reads) |
910 | dbgs() << " " << SchedReads[RIdx].Name; |
911 | dbgs() << '\n'; |
912 | }); |
913 | } |
914 | // If ProcIndices contains zero, the class applies to all processors. |
915 | LLVM_DEBUG({ |
916 | if (!llvm::is_contained(ProcIndices, 0)) { |
917 | for (const CodeGenProcModel &PM : ProcModels) { |
918 | if (!llvm::is_contained(ProcIndices, PM.Index)) |
919 | dbgs() << "No machine model for " << Inst->TheDef->getName() |
920 | << " on processor " << PM.ModelName << '\n'; |
921 | } |
922 | } |
923 | }); |
924 | } |
925 | } |
926 | |
927 | // Get the SchedClass index for an instruction. |
928 | unsigned |
929 | CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { |
930 | return InstrClassMap.lookup(Val: Inst.TheDef); |
931 | } |
932 | |
933 | std::string |
934 | CodeGenSchedModels::createSchedClassName(const Record *ItinClassDef, |
935 | ArrayRef<unsigned> OperWrites, |
936 | ArrayRef<unsigned> OperReads) { |
937 | std::string Name; |
938 | if (ItinClassDef && ItinClassDef->getName() != "NoItinerary" ) |
939 | Name = ItinClassDef->getName().str(); |
940 | for (unsigned Idx : OperWrites) { |
941 | if (!Name.empty()) |
942 | Name += '_'; |
943 | Name += SchedWrites[Idx].Name; |
944 | } |
945 | for (unsigned Idx : OperReads) { |
946 | Name += '_'; |
947 | Name += SchedReads[Idx].Name; |
948 | } |
949 | return Name; |
950 | } |
951 | |
952 | std::string |
953 | CodeGenSchedModels::createSchedClassName(const ConstRecVec &InstDefs) { |
954 | std::string Name; |
955 | ListSeparator LS("_" ); |
956 | for (const Record *InstDef : InstDefs) { |
957 | Name += LS; |
958 | Name += InstDef->getName(); |
959 | } |
960 | return Name; |
961 | } |
962 | |
963 | /// Add an inferred sched class from an itinerary class and per-operand list of |
964 | /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of |
965 | /// processors that may utilize this class. |
966 | unsigned CodeGenSchedModels::addSchedClass(const Record *ItinClassDef, |
967 | ArrayRef<unsigned> OperWrites, |
968 | ArrayRef<unsigned> OperReads, |
969 | ArrayRef<unsigned> ProcIndices) { |
970 | assert(!ProcIndices.empty() && "expect at least one ProcIdx" ); |
971 | |
972 | auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { |
973 | return SC.isKeyEqual(IC: ItinClassDef, W: OperWrites, R: OperReads); |
974 | }; |
975 | |
976 | auto I = find_if(Range&: SchedClasses, P: IsKeyEqual); |
977 | unsigned Idx = |
978 | I == SchedClasses.end() ? 0 : std::distance(first: SchedClasses.begin(), last: I); |
979 | if (Idx || SchedClasses[0].isKeyEqual(IC: ItinClassDef, W: OperWrites, R: OperReads)) { |
980 | IdxVec PI; |
981 | std::set_union(first1: SchedClasses[Idx].ProcIndices.begin(), |
982 | last1: SchedClasses[Idx].ProcIndices.end(), first2: ProcIndices.begin(), |
983 | last2: ProcIndices.end(), result: std::back_inserter(x&: PI)); |
984 | SchedClasses[Idx].ProcIndices = std::move(PI); |
985 | return Idx; |
986 | } |
987 | Idx = SchedClasses.size(); |
988 | SchedClasses.emplace_back( |
989 | args&: Idx, args: createSchedClassName(ItinClassDef, OperWrites, OperReads), |
990 | args&: ItinClassDef); |
991 | CodeGenSchedClass &SC = SchedClasses.back(); |
992 | SC.Writes = OperWrites; |
993 | SC.Reads = OperReads; |
994 | SC.ProcIndices = ProcIndices; |
995 | |
996 | return Idx; |
997 | } |
998 | |
999 | // Create classes for each set of opcodes that are in the same InstReadWrite |
1000 | // definition across all processors. |
1001 | void CodeGenSchedModels::createInstRWClass(const Record *InstRWDef) { |
1002 | // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that |
1003 | // intersects with an existing class via a previous InstRWDef. Instrs that do |
1004 | // not intersect with an existing class refer back to their former class as |
1005 | // determined from ItinDef or SchedRW. |
1006 | SmallMapVector<unsigned, SmallVector<const Record *, 8>, 4> ClassInstrs; |
1007 | // Sort Instrs into sets. |
1008 | const ConstRecVec *InstDefs = Sets.expand(Set: InstRWDef); |
1009 | if (InstDefs->empty()) |
1010 | PrintFatalError(ErrorLoc: InstRWDef->getLoc(), Msg: "No matching instruction opcodes" ); |
1011 | |
1012 | for (const Record *InstDef : *InstDefs) { |
1013 | InstClassMapTy::const_iterator Pos = InstrClassMap.find(Val: InstDef); |
1014 | if (Pos == InstrClassMap.end()) |
1015 | PrintFatalError(ErrorLoc: InstDef->getLoc(), Msg: "No sched class for instruction." ); |
1016 | unsigned SCIdx = Pos->second; |
1017 | ClassInstrs[SCIdx].push_back(Elt: InstDef); |
1018 | } |
1019 | // For each set of Instrs, create a new class if necessary, and map or remap |
1020 | // the Instrs to it. |
1021 | for (auto &Entry : ClassInstrs) { |
1022 | unsigned OldSCIdx = Entry.first; |
1023 | ArrayRef<const Record *> InstDefs = Entry.second; |
1024 | // If the all instrs in the current class are accounted for, then leave |
1025 | // them mapped to their old class. |
1026 | if (OldSCIdx) { |
1027 | const ConstRecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; |
1028 | if (!RWDefs.empty()) { |
1029 | const ConstRecVec *OrigInstDefs = Sets.expand(Set: RWDefs[0]); |
1030 | unsigned OrigNumInstrs = |
1031 | count_if(Range: *OrigInstDefs, P: [&](const Record *OIDef) { |
1032 | return InstrClassMap[OIDef] == OldSCIdx; |
1033 | }); |
1034 | if (OrigNumInstrs == InstDefs.size()) { |
1035 | assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && |
1036 | "expected a generic SchedClass" ); |
1037 | const Record *RWModelDef = InstRWDef->getValueAsDef(FieldName: "SchedModel" ); |
1038 | // Make sure we didn't already have a InstRW containing this |
1039 | // instruction on this model. |
1040 | for (const Record *RWD : RWDefs) { |
1041 | if (RWD->getValueAsDef(FieldName: "SchedModel" ) == RWModelDef && |
1042 | RWModelDef->getValueAsBit(FieldName: "FullInstRWOverlapCheck" )) { |
1043 | assert(!InstDefs.empty()); // Checked at function start. |
1044 | PrintError( |
1045 | ErrorLoc: InstRWDef->getLoc(), |
1046 | Msg: "Overlapping InstRW definition for \"" + |
1047 | InstDefs.front()->getName() + |
1048 | "\" also matches previous \"" + |
1049 | RWD->getValue(Name: "Instrs" )->getValue()->getAsString() + |
1050 | "\"." ); |
1051 | PrintFatalNote(ErrorLoc: RWD->getLoc(), Msg: "Previous match was here." ); |
1052 | } |
1053 | } |
1054 | LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" |
1055 | << SchedClasses[OldSCIdx].Name << " on " |
1056 | << RWModelDef->getName() << "\n" ); |
1057 | SchedClasses[OldSCIdx].InstRWs.push_back(x: InstRWDef); |
1058 | continue; |
1059 | } |
1060 | } |
1061 | } |
1062 | unsigned SCIdx = SchedClasses.size(); |
1063 | SchedClasses.emplace_back(args&: SCIdx, args: createSchedClassName(InstDefs), args: nullptr); |
1064 | CodeGenSchedClass &SC = SchedClasses.back(); |
1065 | LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " |
1066 | << InstRWDef->getValueAsDef("SchedModel" )->getName() |
1067 | << "\n" ); |
1068 | |
1069 | // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. |
1070 | SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; |
1071 | SC.Writes = SchedClasses[OldSCIdx].Writes; |
1072 | SC.Reads = SchedClasses[OldSCIdx].Reads; |
1073 | SC.ProcIndices.push_back(x: 0); |
1074 | // If we had an old class, copy it's InstRWs to this new class. |
1075 | if (OldSCIdx) { |
1076 | const Record *RWModelDef = InstRWDef->getValueAsDef(FieldName: "SchedModel" ); |
1077 | for (const Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { |
1078 | if (OldRWDef->getValueAsDef(FieldName: "SchedModel" ) == RWModelDef) { |
1079 | assert(!InstDefs.empty()); // Checked at function start. |
1080 | PrintError( |
1081 | ErrorLoc: InstRWDef->getLoc(), |
1082 | Msg: "Overlapping InstRW definition for \"" + |
1083 | InstDefs.front()->getName() + "\" also matches previous \"" + |
1084 | OldRWDef->getValue(Name: "Instrs" )->getValue()->getAsString() + |
1085 | "\"." ); |
1086 | PrintFatalNote(ErrorLoc: OldRWDef->getLoc(), Msg: "Previous match was here." ); |
1087 | } |
1088 | assert(OldRWDef != InstRWDef && "SchedClass has duplicate InstRW def" ); |
1089 | SC.InstRWs.push_back(x: OldRWDef); |
1090 | } |
1091 | } |
1092 | // Map each Instr to this new class. |
1093 | for (const Record *InstDef : InstDefs) |
1094 | InstrClassMap[InstDef] = SCIdx; |
1095 | SC.InstRWs.push_back(x: InstRWDef); |
1096 | } |
1097 | } |
1098 | |
1099 | // True if collectProcItins found anything. |
1100 | bool CodeGenSchedModels::hasItineraries() const { |
1101 | for (const CodeGenProcModel &PM : procModels()) |
1102 | if (PM.hasItineraries()) |
1103 | return true; |
1104 | return false; |
1105 | } |
1106 | |
1107 | // Gather the processor itineraries. |
1108 | void CodeGenSchedModels::collectProcItins() { |
1109 | LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n" ); |
1110 | for (CodeGenProcModel &ProcModel : ProcModels) { |
1111 | if (!ProcModel.hasItineraries()) |
1112 | continue; |
1113 | |
1114 | ConstRecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs(FieldName: "IID" ); |
1115 | assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect" ); |
1116 | |
1117 | // Populate ItinDefList with Itinerary records. |
1118 | ProcModel.ItinDefList.resize(new_size: NumInstrSchedClasses); |
1119 | |
1120 | // Insert each itinerary data record in the correct position within |
1121 | // the processor model's ItinDefList. |
1122 | for (const Record *ItinData : ItinRecords) { |
1123 | const Record *ItinDef = ItinData->getValueAsDef(FieldName: "TheClass" ); |
1124 | bool FoundClass = false; |
1125 | |
1126 | for (const CodeGenSchedClass &SC : schedClasses()) { |
1127 | // Multiple SchedClasses may share an itinerary. Update all of them. |
1128 | if (SC.ItinClassDef == ItinDef) { |
1129 | ProcModel.ItinDefList[SC.Index] = ItinData; |
1130 | FoundClass = true; |
1131 | } |
1132 | } |
1133 | if (!FoundClass) { |
1134 | LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() |
1135 | << " missing class for itinerary " |
1136 | << ItinDef->getName() << '\n'); |
1137 | } |
1138 | } |
1139 | // Check for missing itinerary entries. |
1140 | assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec" ); |
1141 | LLVM_DEBUG( |
1142 | for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { |
1143 | if (!ProcModel.ItinDefList[i]) |
1144 | dbgs() << ProcModel.ItinsDef->getName() |
1145 | << " missing itinerary for class " << SchedClasses[i].Name |
1146 | << '\n'; |
1147 | }); |
1148 | } |
1149 | } |
1150 | |
1151 | // Gather the read/write types for each itinerary class. |
1152 | void CodeGenSchedModels::collectProcItinRW() { |
1153 | for (const Record *RWDef : Records.getAllDerivedDefinitions(ClassName: "ItinRW" )) { |
1154 | if (!RWDef->getValueInit(FieldName: "SchedModel" )->isComplete()) |
1155 | PrintFatalError(ErrorLoc: RWDef->getLoc(), Msg: "SchedModel is undefined" ); |
1156 | const Record *ModelDef = RWDef->getValueAsDef(FieldName: "SchedModel" ); |
1157 | ProcModelMapTy::const_iterator I = ProcModelMap.find(Val: ModelDef); |
1158 | if (I == ProcModelMap.end()) { |
1159 | PrintFatalError(ErrorLoc: RWDef->getLoc(), |
1160 | Msg: "Undefined SchedMachineModel " + ModelDef->getName()); |
1161 | } |
1162 | ProcModels[I->second].ItinRWDefs.push_back(x: RWDef); |
1163 | } |
1164 | } |
1165 | |
1166 | // Gather the unsupported features for processor models. |
1167 | void CodeGenSchedModels::collectProcUnsupportedFeatures() { |
1168 | for (CodeGenProcModel &ProcModel : ProcModels) |
1169 | append_range( |
1170 | C&: ProcModel.UnsupportedFeaturesDefs, |
1171 | R: ProcModel.ModelDef->getValueAsListOfDefs(FieldName: "UnsupportedFeatures" )); |
1172 | } |
1173 | |
1174 | /// Infer new classes from existing classes. In the process, this may create new |
1175 | /// SchedWrites from sequences of existing SchedWrites. |
1176 | void CodeGenSchedModels::inferSchedClasses() { |
1177 | LLVM_DEBUG( |
1178 | dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n" ); |
1179 | LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n" ); |
1180 | |
1181 | // Visit all existing classes and newly created classes. |
1182 | for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { |
1183 | assert(SchedClasses[Idx].Index == Idx && "bad SCIdx" ); |
1184 | |
1185 | if (SchedClasses[Idx].ItinClassDef) |
1186 | inferFromItinClass(ItinClassDef: SchedClasses[Idx].ItinClassDef, FromClassIdx: Idx); |
1187 | if (!SchedClasses[Idx].InstRWs.empty()) |
1188 | inferFromInstRWs(SCIdx: Idx); |
1189 | if (!SchedClasses[Idx].Writes.empty()) { |
1190 | inferFromRW(OperWrites: SchedClasses[Idx].Writes, OperReads: SchedClasses[Idx].Reads, FromClassIdx: Idx, |
1191 | ProcIndices: SchedClasses[Idx].ProcIndices); |
1192 | } |
1193 | assert(SchedClasses.size() < (NumInstrSchedClasses * 6) && |
1194 | "too many SchedVariants" ); |
1195 | } |
1196 | } |
1197 | |
1198 | /// Infer classes from per-processor itinerary resources. |
1199 | void CodeGenSchedModels::inferFromItinClass(const Record *ItinClassDef, |
1200 | unsigned FromClassIdx) { |
1201 | for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { |
1202 | const CodeGenProcModel &PM = ProcModels[PIdx]; |
1203 | // For all ItinRW entries. |
1204 | bool HasMatch = false; |
1205 | for (const Record *Rec : PM.ItinRWDefs) { |
1206 | ConstRecVec Matched = Rec->getValueAsListOfDefs(FieldName: "MatchedItinClasses" ); |
1207 | if (!llvm::is_contained(Range&: Matched, Element: ItinClassDef)) |
1208 | continue; |
1209 | if (HasMatch) |
1210 | PrintFatalError(ErrorLoc: Rec->getLoc(), |
1211 | Msg: "Duplicate itinerary class " + ItinClassDef->getName() + |
1212 | " in ItinResources for " + PM.ModelName); |
1213 | HasMatch = true; |
1214 | IdxVec Writes, Reads; |
1215 | findRWs(RWDefs: Rec->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1216 | inferFromRW(OperWrites: Writes, OperReads: Reads, FromClassIdx, ProcIndices: PIdx); |
1217 | } |
1218 | } |
1219 | } |
1220 | |
1221 | /// Infer classes from per-processor InstReadWrite definitions. |
1222 | void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { |
1223 | for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { |
1224 | assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!" ); |
1225 | const Record *Rec = SchedClasses[SCIdx].InstRWs[I]; |
1226 | const std::vector<const Record *> *InstDefs = Sets.expand(Set: Rec); |
1227 | ConstRecIter II = InstDefs->begin(), IE = InstDefs->end(); |
1228 | for (; II != IE; ++II) { |
1229 | if (InstrClassMap[*II] == SCIdx) |
1230 | break; |
1231 | } |
1232 | // If this class no longer has any instructions mapped to it, it has become |
1233 | // irrelevant. |
1234 | if (II == IE) |
1235 | continue; |
1236 | IdxVec Writes, Reads; |
1237 | findRWs(RWDefs: Rec->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1238 | unsigned PIdx = getProcModel(ModelDef: Rec->getValueAsDef(FieldName: "SchedModel" )).Index; |
1239 | inferFromRW(OperWrites: Writes, OperReads: Reads, FromClassIdx: SCIdx, ProcIndices: PIdx); // May mutate SchedClasses. |
1240 | SchedClasses[SCIdx].InstRWProcIndices.insert(V: PIdx); |
1241 | } |
1242 | } |
1243 | |
1244 | namespace { |
1245 | |
1246 | // Helper for substituteVariantOperand. |
1247 | struct TransVariant { |
1248 | const Record *VarOrSeqDef; // Variant or sequence. |
1249 | unsigned RWIdx; // Index of this variant or sequence's matched type. |
1250 | unsigned ProcIdx; // Processor model index or zero for any. |
1251 | unsigned TransVecIdx; // Index into PredTransitions::TransVec. |
1252 | |
1253 | TransVariant(const Record *def, unsigned rwi, unsigned pi, unsigned ti) |
1254 | : VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} |
1255 | }; |
1256 | |
1257 | // Associate a predicate with the SchedReadWrite that it guards. |
1258 | // RWIdx is the index of the read/write variant. |
1259 | struct PredCheck { |
1260 | bool IsRead; |
1261 | unsigned RWIdx; |
1262 | const Record *Predicate; |
1263 | |
1264 | PredCheck(bool r, unsigned w, const Record *p) |
1265 | : IsRead(r), RWIdx(w), Predicate(p) {} |
1266 | }; |
1267 | |
1268 | // A Predicate transition is a list of RW sequences guarded by a PredTerm. |
1269 | struct PredTransition { |
1270 | // A predicate term is a conjunction of PredChecks. |
1271 | SmallVector<PredCheck, 4> PredTerm; |
1272 | SmallVector<SmallVector<unsigned, 4>, 16> WriteSequences; |
1273 | SmallVector<SmallVector<unsigned, 4>, 16> ReadSequences; |
1274 | unsigned ProcIndex = 0; |
1275 | |
1276 | PredTransition() = default; |
1277 | PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) { |
1278 | PredTerm.assign(in_start: PT.begin(), in_end: PT.end()); |
1279 | ProcIndex = ProcId; |
1280 | } |
1281 | }; |
1282 | |
1283 | // Encapsulate a set of partially constructed transitions. |
1284 | // The results are built by repeated calls to substituteVariants. |
1285 | class PredTransitions { |
1286 | CodeGenSchedModels &SchedModels; |
1287 | |
1288 | public: |
1289 | std::vector<PredTransition> TransVec; |
1290 | |
1291 | PredTransitions(CodeGenSchedModels &sm) : SchedModels(sm) {} |
1292 | |
1293 | bool substituteVariantOperand(ArrayRef<unsigned> RWSeq, bool IsRead, |
1294 | unsigned StartIdx); |
1295 | |
1296 | bool substituteVariants(const PredTransition &Trans); |
1297 | |
1298 | #ifndef NDEBUG |
1299 | void dump() const; |
1300 | #endif |
1301 | |
1302 | private: |
1303 | bool mutuallyExclusive(const Record *PredDef, ArrayRef<const Record *> Preds, |
1304 | ArrayRef<PredCheck> Term); |
1305 | void getIntersectingVariants(const CodeGenSchedRW &SchedRW, unsigned TransIdx, |
1306 | std::vector<TransVariant> &IntersectingVariants); |
1307 | void pushVariant(const TransVariant &VInfo, bool IsRead); |
1308 | }; |
1309 | |
1310 | } // end anonymous namespace |
1311 | |
1312 | // Return true if this predicate is mutually exclusive with a PredTerm. This |
1313 | // degenerates into checking if the predicate is mutually exclusive with any |
1314 | // predicate in the Term's conjunction. |
1315 | // |
1316 | // All predicates associated with a given SchedRW are considered mutually |
1317 | // exclusive. This should work even if the conditions expressed by the |
1318 | // predicates are not exclusive because the predicates for a given SchedWrite |
1319 | // are always checked in the order they are defined in the .td file. Later |
1320 | // conditions implicitly negate any prior condition. |
1321 | bool PredTransitions::mutuallyExclusive(const Record *PredDef, |
1322 | ArrayRef<const Record *> Preds, |
1323 | ArrayRef<PredCheck> Term) { |
1324 | for (const PredCheck &PC : Term) { |
1325 | if (PC.Predicate == PredDef) |
1326 | return false; |
1327 | |
1328 | const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(Idx: PC.RWIdx, IsRead: PC.IsRead); |
1329 | assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant" ); |
1330 | ConstRecVec Variants = SchedRW.TheDef->getValueAsListOfDefs(FieldName: "Variants" ); |
1331 | if (any_of(Range&: Variants, P: [PredDef](const Record *R) { |
1332 | return R->getValueAsDef(FieldName: "Predicate" ) == PredDef; |
1333 | })) { |
1334 | // To check if PredDef is mutually exclusive with PC we also need to |
1335 | // check that PC.Predicate is exclusive with all predicates from variant |
1336 | // we're expanding. Consider following RW sequence with two variants |
1337 | // (1 & 2), where A, B and C are predicates from corresponding SchedVars: |
1338 | // |
1339 | // 1:A/B - 2:C/B |
1340 | // |
1341 | // Here C is not mutually exclusive with variant (1), because A doesn't |
1342 | // exist in variant (2). This means we have possible transitions from A |
1343 | // to C and from A to B, and fully expanded sequence would look like: |
1344 | // |
1345 | // if (A & C) return ...; |
1346 | // if (A & B) return ...; |
1347 | // if (B) return ...; |
1348 | // |
1349 | // Now let's consider another sequence: |
1350 | // |
1351 | // 1:A/B - 2:A/B |
1352 | // |
1353 | // Here A in variant (2) is mutually exclusive with variant (1), because |
1354 | // A also exists in (2). This means A->B transition is impossible and |
1355 | // expanded sequence would look like: |
1356 | // |
1357 | // if (A) return ...; |
1358 | // if (B) return ...; |
1359 | if (!llvm::is_contained(Range&: Preds, Element: PC.Predicate)) |
1360 | continue; |
1361 | return true; |
1362 | } |
1363 | } |
1364 | return false; |
1365 | } |
1366 | |
1367 | static std::vector<const Record *> |
1368 | getAllPredicates(ArrayRef<TransVariant> Variants, unsigned ProcId) { |
1369 | std::vector<const Record *> Preds; |
1370 | for (auto &Variant : Variants) { |
1371 | if (!Variant.VarOrSeqDef->isSubClassOf(Name: "SchedVar" )) |
1372 | continue; |
1373 | Preds.push_back(x: Variant.VarOrSeqDef->getValueAsDef(FieldName: "Predicate" )); |
1374 | } |
1375 | return Preds; |
1376 | } |
1377 | |
1378 | // Populate IntersectingVariants with any variants or aliased sequences of the |
1379 | // given SchedRW whose processor indices and predicates are not mutually |
1380 | // exclusive with the given transition. |
1381 | void PredTransitions::getIntersectingVariants( |
1382 | const CodeGenSchedRW &SchedRW, unsigned TransIdx, |
1383 | std::vector<TransVariant> &IntersectingVariants) { |
1384 | |
1385 | bool GenericRW = false; |
1386 | |
1387 | std::vector<TransVariant> Variants; |
1388 | if (SchedRW.HasVariants) { |
1389 | unsigned VarProcIdx = 0; |
1390 | if (SchedRW.TheDef->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
1391 | const Record *ModelDef = SchedRW.TheDef->getValueAsDef(FieldName: "SchedModel" ); |
1392 | VarProcIdx = SchedModels.getProcModel(ModelDef).Index; |
1393 | } |
1394 | if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) { |
1395 | // Push each variant. Assign TransVecIdx later. |
1396 | for (const Record *VarDef : |
1397 | SchedRW.TheDef->getValueAsListOfDefs(FieldName: "Variants" )) |
1398 | Variants.emplace_back(args&: VarDef, args: SchedRW.Index, args&: VarProcIdx, args: 0); |
1399 | if (VarProcIdx == 0) |
1400 | GenericRW = true; |
1401 | } |
1402 | } |
1403 | for (ConstRecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); |
1404 | AI != AE; ++AI) { |
1405 | // If either the SchedAlias itself or the SchedReadWrite that it aliases |
1406 | // to is defined within a processor model, constrain all variants to |
1407 | // that processor. |
1408 | unsigned AliasProcIdx = 0; |
1409 | if ((*AI)->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
1410 | const Record *ModelDef = (*AI)->getValueAsDef(FieldName: "SchedModel" ); |
1411 | AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; |
1412 | } |
1413 | if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex) |
1414 | continue; |
1415 | if (!Variants.empty()) { |
1416 | const CodeGenProcModel &PM = SchedModels.procModels()[AliasProcIdx]; |
1417 | PrintFatalError(ErrorLoc: (*AI)->getLoc(), |
1418 | Msg: "Multiple variants defined for processor " + |
1419 | PM.ModelName + |
1420 | " Ensure only one SchedAlias exists per RW." ); |
1421 | } |
1422 | |
1423 | const CodeGenSchedRW &AliasRW = |
1424 | SchedModels.getSchedRW(Def: (*AI)->getValueAsDef(FieldName: "AliasRW" )); |
1425 | |
1426 | if (AliasRW.HasVariants) { |
1427 | for (const Record *VD : AliasRW.TheDef->getValueAsListOfDefs(FieldName: "Variants" )) |
1428 | Variants.emplace_back(args&: VD, args: AliasRW.Index, args&: AliasProcIdx, args: 0); |
1429 | } |
1430 | if (AliasRW.IsSequence) |
1431 | Variants.emplace_back(args: AliasRW.TheDef, args: SchedRW.Index, args&: AliasProcIdx, args: 0); |
1432 | if (AliasProcIdx == 0) |
1433 | GenericRW = true; |
1434 | } |
1435 | std::vector<const Record *> AllPreds = |
1436 | getAllPredicates(Variants, ProcId: TransVec[TransIdx].ProcIndex); |
1437 | for (TransVariant &Variant : Variants) { |
1438 | // Don't expand variants if the processor models don't intersect. |
1439 | // A zero processor index means any processor. |
1440 | if (Variant.VarOrSeqDef->isSubClassOf(Name: "SchedVar" )) { |
1441 | const Record *PredDef = Variant.VarOrSeqDef->getValueAsDef(FieldName: "Predicate" ); |
1442 | if (mutuallyExclusive(PredDef, Preds: AllPreds, Term: TransVec[TransIdx].PredTerm)) |
1443 | continue; |
1444 | } |
1445 | |
1446 | if (IntersectingVariants.empty()) { |
1447 | // The first variant builds on the existing transition. |
1448 | Variant.TransVecIdx = TransIdx; |
1449 | IntersectingVariants.push_back(x: Variant); |
1450 | } else { |
1451 | // Push another copy of the current transition for more variants. |
1452 | Variant.TransVecIdx = TransVec.size(); |
1453 | IntersectingVariants.push_back(x: Variant); |
1454 | TransVec.push_back(x: TransVec[TransIdx]); |
1455 | } |
1456 | } |
1457 | if (GenericRW && IntersectingVariants.empty()) { |
1458 | PrintFatalError(ErrorLoc: SchedRW.TheDef->getLoc(), |
1459 | Msg: "No variant of this type has " |
1460 | "a matching predicate on any processor" ); |
1461 | } |
1462 | } |
1463 | |
1464 | // Push the Reads/Writes selected by this variant onto the PredTransition |
1465 | // specified by VInfo. |
1466 | void PredTransitions::pushVariant(const TransVariant &VInfo, bool IsRead) { |
1467 | PredTransition &Trans = TransVec[VInfo.TransVecIdx]; |
1468 | |
1469 | // If this operand transition is reached through a processor-specific alias, |
1470 | // then the whole transition is specific to this processor. |
1471 | IdxVec SelectedRWs; |
1472 | if (VInfo.VarOrSeqDef->isSubClassOf(Name: "SchedVar" )) { |
1473 | const Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef(FieldName: "Predicate" ); |
1474 | Trans.PredTerm.emplace_back(Args&: IsRead, Args: VInfo.RWIdx, Args&: PredDef); |
1475 | ConstRecVec SelectedDefs = |
1476 | VInfo.VarOrSeqDef->getValueAsListOfDefs(FieldName: "Selected" ); |
1477 | SchedModels.findRWs(RWDefs: SelectedDefs, RWs&: SelectedRWs, IsRead); |
1478 | } else { |
1479 | assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence" ) && |
1480 | "variant must be a SchedVariant or aliased WriteSequence" ); |
1481 | SelectedRWs.push_back(x: SchedModels.getSchedRWIdx(Def: VInfo.VarOrSeqDef, IsRead)); |
1482 | } |
1483 | |
1484 | const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(Idx: VInfo.RWIdx, IsRead); |
1485 | |
1486 | SmallVectorImpl<SmallVector<unsigned, 4>> &RWSequences = |
1487 | IsRead ? Trans.ReadSequences : Trans.WriteSequences; |
1488 | if (SchedRW.IsVariadic) { |
1489 | unsigned OperIdx = RWSequences.size() - 1; |
1490 | // Make N-1 copies of this transition's last sequence. |
1491 | RWSequences.reserve(N: RWSequences.size() + SelectedRWs.size() - 1); |
1492 | RWSequences.insert(I: RWSequences.end(), NumToInsert: SelectedRWs.size() - 1, |
1493 | Elt: RWSequences[OperIdx]); |
1494 | // Push each of the N elements of the SelectedRWs onto a copy of the last |
1495 | // sequence (split the current operand into N operands). |
1496 | // Note that write sequences should be expanded within this loop--the entire |
1497 | // sequence belongs to a single operand. |
1498 | for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; |
1499 | ++RWI, ++OperIdx) { |
1500 | IdxVec ExpandedRWs; |
1501 | if (IsRead) |
1502 | ExpandedRWs.push_back(x: *RWI); |
1503 | else |
1504 | SchedModels.expandRWSequence(RWIdx: *RWI, RWSeq&: ExpandedRWs, IsRead); |
1505 | llvm::append_range(C&: RWSequences[OperIdx], R&: ExpandedRWs); |
1506 | } |
1507 | assert(OperIdx == RWSequences.size() && "missed a sequence" ); |
1508 | } else { |
1509 | // Push this transition's expanded sequence onto this transition's last |
1510 | // sequence (add to the current operand's sequence). |
1511 | SmallVectorImpl<unsigned> &Seq = RWSequences.back(); |
1512 | IdxVec ExpandedRWs; |
1513 | for (unsigned int SelectedRW : SelectedRWs) { |
1514 | if (IsRead) |
1515 | ExpandedRWs.push_back(x: SelectedRW); |
1516 | else |
1517 | SchedModels.expandRWSequence(RWIdx: SelectedRW, RWSeq&: ExpandedRWs, IsRead); |
1518 | } |
1519 | llvm::append_range(C&: Seq, R&: ExpandedRWs); |
1520 | } |
1521 | } |
1522 | |
1523 | // RWSeq is a sequence of all Reads or all Writes for the next read or write |
1524 | // operand. StartIdx is an index into TransVec where partial results |
1525 | // starts. RWSeq must be applied to all transitions between StartIdx and the end |
1526 | // of TransVec. |
1527 | bool PredTransitions::substituteVariantOperand(ArrayRef<unsigned> RWSeq, |
1528 | bool IsRead, unsigned StartIdx) { |
1529 | bool Subst = false; |
1530 | // Visit each original RW within the current sequence. |
1531 | for (unsigned int RWI : RWSeq) { |
1532 | const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(Idx: RWI, IsRead); |
1533 | // Push this RW on all partial PredTransitions or distribute variants. |
1534 | // New PredTransitions may be pushed within this loop which should not be |
1535 | // revisited (TransEnd must be loop invariant). |
1536 | for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); |
1537 | TransIdx != TransEnd; ++TransIdx) { |
1538 | // Distribute this partial PredTransition across intersecting variants. |
1539 | // This will push a copies of TransVec[TransIdx] on the back of TransVec. |
1540 | std::vector<TransVariant> IntersectingVariants; |
1541 | getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); |
1542 | // Now expand each variant on top of its copy of the transition. |
1543 | for (const TransVariant &IV : IntersectingVariants) |
1544 | pushVariant(VInfo: IV, IsRead); |
1545 | if (IntersectingVariants.empty()) { |
1546 | if (IsRead) |
1547 | TransVec[TransIdx].ReadSequences.back().push_back(Elt: RWI); |
1548 | else |
1549 | TransVec[TransIdx].WriteSequences.back().push_back(Elt: RWI); |
1550 | continue; |
1551 | } else { |
1552 | Subst = true; |
1553 | } |
1554 | } |
1555 | } |
1556 | return Subst; |
1557 | } |
1558 | |
1559 | // For each variant of a Read/Write in Trans, substitute the sequence of |
1560 | // Read/Writes guarded by the variant. This is exponential in the number of |
1561 | // variant Read/Writes, but in practice detection of mutually exclusive |
1562 | // predicates should result in linear growth in the total number variants. |
1563 | // |
1564 | // This is one step in a breadth-first search of nested variants. |
1565 | bool PredTransitions::substituteVariants(const PredTransition &Trans) { |
1566 | // Build up a set of partial results starting at the back of |
1567 | // PredTransitions. Remember the first new transition. |
1568 | unsigned StartIdx = TransVec.size(); |
1569 | bool Subst = false; |
1570 | assert(Trans.ProcIndex != 0); |
1571 | TransVec.emplace_back(args: Trans.PredTerm, args: Trans.ProcIndex); |
1572 | |
1573 | // Visit each original write sequence. |
1574 | for (const auto &WriteSequence : Trans.WriteSequences) { |
1575 | // Push a new (empty) write sequence onto all partial Transitions. |
1576 | for (auto &PT : drop_begin(RangeOrContainer&: TransVec, N: StartIdx)) |
1577 | PT.WriteSequences.emplace_back(); |
1578 | Subst |= |
1579 | substituteVariantOperand(RWSeq: WriteSequence, /*IsRead=*/false, StartIdx); |
1580 | } |
1581 | // Visit each original read sequence. |
1582 | for (const auto &ReadSequence : Trans.ReadSequences) { |
1583 | // Push a new (empty) read sequence onto all partial Transitions. |
1584 | for (auto &PT : drop_begin(RangeOrContainer&: TransVec, N: StartIdx)) |
1585 | PT.ReadSequences.emplace_back(); |
1586 | Subst |= substituteVariantOperand(RWSeq: ReadSequence, /*IsRead=*/true, StartIdx); |
1587 | } |
1588 | return Subst; |
1589 | } |
1590 | |
1591 | static void addSequences(CodeGenSchedModels &SchedModels, |
1592 | ArrayRef<SmallVector<unsigned, 4>> Seqs, |
1593 | IdxVec &Result, bool IsRead) { |
1594 | for (const auto &S : Seqs) |
1595 | if (!S.empty()) |
1596 | Result.push_back(x: SchedModels.findOrInsertRW(Seq: S, IsRead)); |
1597 | } |
1598 | |
1599 | #ifndef NDEBUG |
1600 | static void dumpRecVec(const ConstRecVec &RV) { |
1601 | for (const Record *R : RV) |
1602 | dbgs() << R->getName() << ", " ; |
1603 | } |
1604 | #endif |
1605 | |
1606 | static void dumpTransition(const CodeGenSchedModels &SchedModels, |
1607 | const CodeGenSchedClass &FromSC, |
1608 | const CodeGenSchedTransition &SCTrans, |
1609 | const ConstRecVec &Preds) { |
1610 | LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "(" |
1611 | << FromSC.Index << ") to " |
1612 | << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "(" |
1613 | << SCTrans.ToClassIdx << ") on pred term: (" ; |
1614 | dumpRecVec(Preds); |
1615 | dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n" ); |
1616 | } |
1617 | // Create a new SchedClass for each variant found by inferFromRW. Pass |
1618 | static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, |
1619 | unsigned FromClassIdx, |
1620 | CodeGenSchedModels &SchedModels) { |
1621 | // For each PredTransition, create a new CodeGenSchedTransition, which usually |
1622 | // requires creating a new SchedClass. |
1623 | for (const auto &LastTransition : LastTransitions) { |
1624 | // Variant expansion (substituteVariants) may create unconditional |
1625 | // transitions. We don't need to build sched classes for them. |
1626 | if (LastTransition.PredTerm.empty()) |
1627 | continue; |
1628 | IdxVec OperWritesVariant, OperReadsVariant; |
1629 | addSequences(SchedModels, Seqs: LastTransition.WriteSequences, Result&: OperWritesVariant, |
1630 | IsRead: false); |
1631 | addSequences(SchedModels, Seqs: LastTransition.ReadSequences, Result&: OperReadsVariant, |
1632 | IsRead: true); |
1633 | CodeGenSchedTransition SCTrans; |
1634 | |
1635 | // Transition should not contain processor indices already assigned to |
1636 | // InstRWs in this scheduling class. |
1637 | const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(Idx: FromClassIdx); |
1638 | if (FromSC.InstRWProcIndices.contains(V: LastTransition.ProcIndex)) |
1639 | continue; |
1640 | SCTrans.ProcIndex = LastTransition.ProcIndex; |
1641 | SCTrans.ToClassIdx = |
1642 | SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWrites: OperWritesVariant, |
1643 | OperReads: OperReadsVariant, ProcIndices: LastTransition.ProcIndex); |
1644 | |
1645 | // The final PredTerm is unique set of predicates guarding the transition. |
1646 | ConstRecVec Preds; |
1647 | transform(Range: LastTransition.PredTerm, d_first: std::back_inserter(x&: Preds), |
1648 | F: [](const PredCheck &P) { return P.Predicate; }); |
1649 | Preds.erase(first: llvm::unique(R&: Preds), last: Preds.end()); |
1650 | dumpTransition(SchedModels, FromSC, SCTrans, Preds); |
1651 | SCTrans.PredTerm = std::move(Preds); |
1652 | SchedModels.getSchedClass(Idx: FromClassIdx) |
1653 | .Transitions.push_back(x: std::move(SCTrans)); |
1654 | } |
1655 | } |
1656 | |
1657 | std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const { |
1658 | std::vector<unsigned> ProcIdVec; |
1659 | for (const auto &PM : ProcModelMap) |
1660 | if (PM.second != 0) |
1661 | ProcIdVec.push_back(x: PM.second); |
1662 | // The order of the keys (Record pointers) of ProcModelMap are not stable. |
1663 | // Sort to stabalize the values. |
1664 | llvm::sort(C&: ProcIdVec); |
1665 | return ProcIdVec; |
1666 | } |
1667 | |
1668 | static std::vector<PredTransition> |
1669 | makePerProcessorTransitions(const PredTransition &Trans, |
1670 | ArrayRef<unsigned> ProcIndices) { |
1671 | std::vector<PredTransition> PerCpuTransVec; |
1672 | for (unsigned ProcId : ProcIndices) { |
1673 | assert(ProcId != 0); |
1674 | PerCpuTransVec.push_back(x: Trans); |
1675 | PerCpuTransVec.back().ProcIndex = ProcId; |
1676 | } |
1677 | return PerCpuTransVec; |
1678 | } |
1679 | |
1680 | // Create new SchedClasses for the given ReadWrite list. If any of the |
1681 | // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant |
1682 | // of the ReadWrite list, following Aliases if necessary. |
1683 | void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, |
1684 | ArrayRef<unsigned> OperReads, |
1685 | unsigned FromClassIdx, |
1686 | ArrayRef<unsigned> ProcIndices) { |
1687 | LLVM_DEBUG(dbgs() << "INFER RW proc(" ; dumpIdxVec(ProcIndices); |
1688 | dbgs() << ") " ); |
1689 | // Create a seed transition with an empty PredTerm and the expanded sequences |
1690 | // of SchedWrites for the current SchedClass. |
1691 | std::vector<PredTransition> LastTransitions(1); |
1692 | |
1693 | for (unsigned WriteIdx : OperWrites) { |
1694 | IdxVec WriteSeq; |
1695 | expandRWSequence(RWIdx: WriteIdx, RWSeq&: WriteSeq, /*IsRead=*/false); |
1696 | [[maybe_unused]] SmallVectorImpl<unsigned> &Seq = |
1697 | LastTransitions[0].WriteSequences.emplace_back(Args: WriteSeq.begin(), |
1698 | Args: WriteSeq.end()); |
1699 | LLVM_DEBUG(dbgs() << "(" ; dumpIdxVec(Seq); dbgs() << ") " ); |
1700 | } |
1701 | LLVM_DEBUG(dbgs() << " Reads: " ); |
1702 | for (unsigned ReadIdx : OperReads) { |
1703 | IdxVec ReadSeq; |
1704 | expandRWSequence(RWIdx: ReadIdx, RWSeq&: ReadSeq, /*IsRead=*/true); |
1705 | [[maybe_unused]] SmallVectorImpl<unsigned> &Seq = |
1706 | LastTransitions[0].ReadSequences.emplace_back(Args: ReadSeq.begin(), |
1707 | Args: ReadSeq.end()); |
1708 | LLVM_DEBUG(dbgs() << "(" ; dumpIdxVec(Seq); dbgs() << ") " ); |
1709 | } |
1710 | LLVM_DEBUG(dbgs() << '\n'); |
1711 | |
1712 | LastTransitions = makePerProcessorTransitions( |
1713 | Trans: LastTransitions[0], ProcIndices: llvm::is_contained(Range&: ProcIndices, Element: 0) |
1714 | ? ArrayRef<unsigned>(getAllProcIndices()) |
1715 | : ProcIndices); |
1716 | // Collect all PredTransitions for individual operands. |
1717 | // Iterate until no variant writes remain. |
1718 | bool SubstitutedAny; |
1719 | do { |
1720 | SubstitutedAny = false; |
1721 | PredTransitions Transitions(*this); |
1722 | for (const PredTransition &Trans : LastTransitions) |
1723 | SubstitutedAny |= Transitions.substituteVariants(Trans); |
1724 | LLVM_DEBUG(Transitions.dump()); |
1725 | LastTransitions = std::move(Transitions.TransVec); |
1726 | } while (SubstitutedAny); |
1727 | |
1728 | // WARNING: We are about to mutate the SchedClasses vector. Do not refer to |
1729 | // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. |
1730 | inferFromTransitions(LastTransitions, FromClassIdx, SchedModels&: *this); |
1731 | } |
1732 | |
1733 | // Check if any processor resource group contains all resource records in |
1734 | // SubUnits. |
1735 | bool CodeGenSchedModels::hasSuperGroup(const ConstRecVec &SubUnits, |
1736 | const CodeGenProcModel &PM) { |
1737 | for (const Record *ProcResourceDef : PM.ProcResourceDefs) { |
1738 | if (!ProcResourceDef->isSubClassOf(Name: "ProcResGroup" )) |
1739 | continue; |
1740 | ConstRecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs(FieldName: "Resources" ); |
1741 | auto RI = SubUnits.begin(), RE = SubUnits.end(); |
1742 | for (; RI != RE; ++RI) { |
1743 | if (!is_contained(Range&: SuperUnits, Element: *RI)) { |
1744 | break; |
1745 | } |
1746 | } |
1747 | if (RI == RE) |
1748 | return true; |
1749 | } |
1750 | return false; |
1751 | } |
1752 | |
1753 | // Verify that overlapping groups have a common supergroup. |
1754 | void CodeGenSchedModels::verifyProcResourceGroups(const CodeGenProcModel &PM) { |
1755 | for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { |
1756 | if (!PM.ProcResourceDefs[i]->isSubClassOf(Name: "ProcResGroup" )) |
1757 | continue; |
1758 | ConstRecVec CheckUnits = |
1759 | PM.ProcResourceDefs[i]->getValueAsListOfDefs(FieldName: "Resources" ); |
1760 | for (unsigned j = i + 1; j < e; ++j) { |
1761 | if (!PM.ProcResourceDefs[j]->isSubClassOf(Name: "ProcResGroup" )) |
1762 | continue; |
1763 | ConstRecVec OtherUnits = |
1764 | PM.ProcResourceDefs[j]->getValueAsListOfDefs(FieldName: "Resources" ); |
1765 | if (std::find_first_of(first1: CheckUnits.begin(), last1: CheckUnits.end(), |
1766 | first2: OtherUnits.begin(), |
1767 | last2: OtherUnits.end()) != CheckUnits.end()) { |
1768 | // CheckUnits and OtherUnits overlap |
1769 | llvm::append_range(C&: OtherUnits, R&: CheckUnits); |
1770 | if (!hasSuperGroup(SubUnits: OtherUnits, PM)) { |
1771 | PrintFatalError(ErrorLoc: (PM.ProcResourceDefs[i])->getLoc(), |
1772 | Msg: "proc resource group overlaps with " + |
1773 | PM.ProcResourceDefs[j]->getName() + |
1774 | " but no supergroup contains both." ); |
1775 | } |
1776 | } |
1777 | } |
1778 | } |
1779 | } |
1780 | |
1781 | // Collect all the RegisterFile definitions available in this target. |
1782 | void CodeGenSchedModels::collectRegisterFiles() { |
1783 | // RegisterFiles is the vector of CodeGenRegisterFile. |
1784 | for (const Record *RF : Records.getAllDerivedDefinitions(ClassName: "RegisterFile" )) { |
1785 | // For each register file definition, construct a CodeGenRegisterFile object |
1786 | // and add it to the appropriate scheduling model. |
1787 | CodeGenProcModel &PM = getProcModel(ModelDef: RF->getValueAsDef(FieldName: "SchedModel" )); |
1788 | PM.RegisterFiles.emplace_back(args: CodeGenRegisterFile(RF->getName(), RF)); |
1789 | CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); |
1790 | CGRF.MaxMovesEliminatedPerCycle = |
1791 | RF->getValueAsInt(FieldName: "MaxMovesEliminatedPerCycle" ); |
1792 | CGRF.AllowZeroMoveEliminationOnly = |
1793 | RF->getValueAsBit(FieldName: "AllowZeroMoveEliminationOnly" ); |
1794 | |
1795 | // Now set the number of physical registers as well as the cost of registers |
1796 | // in each register class. |
1797 | CGRF.NumPhysRegs = RF->getValueAsInt(FieldName: "NumPhysRegs" ); |
1798 | if (!CGRF.NumPhysRegs) { |
1799 | PrintFatalError(ErrorLoc: RF->getLoc(), |
1800 | Msg: "Invalid RegisterFile with zero physical registers" ); |
1801 | } |
1802 | |
1803 | ConstRecVec RegisterClasses = RF->getValueAsListOfDefs(FieldName: "RegClasses" ); |
1804 | std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts(FieldName: "RegCosts" ); |
1805 | const ListInit *MoveElimInfo = |
1806 | RF->getValueAsListInit(FieldName: "AllowMoveElimination" ); |
1807 | for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { |
1808 | int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; |
1809 | |
1810 | bool AllowMoveElim = false; |
1811 | if (MoveElimInfo->size() > I) { |
1812 | const BitInit *Val = cast<BitInit>(Val: MoveElimInfo->getElement(Idx: I)); |
1813 | AllowMoveElim = Val->getValue(); |
1814 | } |
1815 | |
1816 | CGRF.Costs.emplace_back(args&: RegisterClasses[I], args&: Cost, args&: AllowMoveElim); |
1817 | } |
1818 | } |
1819 | } |
1820 | |
1821 | // Collect and sort WriteRes, ReadAdvance, and ProcResources. |
1822 | void CodeGenSchedModels::collectProcResources() { |
1823 | ProcResourceDefs = Records.getAllDerivedDefinitions(ClassName: "ProcResourceUnits" ); |
1824 | ProcResGroups = Records.getAllDerivedDefinitions(ClassName: "ProcResGroup" ); |
1825 | |
1826 | // Add any subtarget-specific SchedReadWrites that are directly associated |
1827 | // with processor resources. Refer to the parent SchedClass's ProcIndices to |
1828 | // determine which processors they apply to. |
1829 | for (const CodeGenSchedClass &SC : schedClasses()) { |
1830 | if (SC.ItinClassDef) { |
1831 | collectItinProcResources(ItinClassDef: SC.ItinClassDef); |
1832 | continue; |
1833 | } |
1834 | |
1835 | // This class may have a default ReadWrite list which can be overriden by |
1836 | // InstRW definitions. |
1837 | for (const Record *RW : SC.InstRWs) { |
1838 | const Record *RWModelDef = RW->getValueAsDef(FieldName: "SchedModel" ); |
1839 | unsigned PIdx = getProcModel(ModelDef: RWModelDef).Index; |
1840 | IdxVec Writes, Reads; |
1841 | findRWs(RWDefs: RW->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1842 | collectRWResources(Writes, Reads, ProcIndices: PIdx); |
1843 | } |
1844 | |
1845 | collectRWResources(Writes: SC.Writes, Reads: SC.Reads, ProcIndices: SC.ProcIndices); |
1846 | } |
1847 | // Add resources separately defined by each subtarget. |
1848 | for (const Record *WR : Records.getAllDerivedDefinitions(ClassName: "WriteRes" )) { |
1849 | const Record *ModelDef = WR->getValueAsDef(FieldName: "SchedModel" ); |
1850 | addWriteRes(ProcWriteResDef: WR, PM&: getProcModel(ModelDef)); |
1851 | } |
1852 | for (const Record *SWR : Records.getAllDerivedDefinitions(ClassName: "SchedWriteRes" )) { |
1853 | const Record *ModelDef = SWR->getValueAsDef(FieldName: "SchedModel" ); |
1854 | addWriteRes(ProcWriteResDef: SWR, PM&: getProcModel(ModelDef)); |
1855 | } |
1856 | for (const Record *RA : Records.getAllDerivedDefinitions(ClassName: "ReadAdvance" )) { |
1857 | const Record *ModelDef = RA->getValueAsDef(FieldName: "SchedModel" ); |
1858 | addReadAdvance(ProcReadAdvanceDef: RA, PM&: getProcModel(ModelDef)); |
1859 | } |
1860 | for (const Record *SRA : |
1861 | Records.getAllDerivedDefinitions(ClassName: "SchedReadAdvance" )) { |
1862 | if (SRA->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
1863 | const Record *ModelDef = SRA->getValueAsDef(FieldName: "SchedModel" ); |
1864 | addReadAdvance(ProcReadAdvanceDef: SRA, PM&: getProcModel(ModelDef)); |
1865 | } |
1866 | } |
1867 | // Add ProcResGroups that are defined within this processor model, which may |
1868 | // not be directly referenced but may directly specify a buffer size. |
1869 | for (const Record *PRG : Records.getAllDerivedDefinitions(ClassName: "ProcResGroup" )) { |
1870 | if (!PRG->getValueInit(FieldName: "SchedModel" )->isComplete()) |
1871 | continue; |
1872 | CodeGenProcModel &PM = getProcModel(ModelDef: PRG->getValueAsDef(FieldName: "SchedModel" )); |
1873 | if (!is_contained(Range&: PM.ProcResourceDefs, Element: PRG)) |
1874 | PM.ProcResourceDefs.push_back(x: PRG); |
1875 | } |
1876 | // Add ProcResourceUnits unconditionally. |
1877 | for (const Record *PRU : |
1878 | Records.getAllDerivedDefinitions(ClassName: "ProcResourceUnits" )) { |
1879 | if (!PRU->getValueInit(FieldName: "SchedModel" )->isComplete()) |
1880 | continue; |
1881 | CodeGenProcModel &PM = getProcModel(ModelDef: PRU->getValueAsDef(FieldName: "SchedModel" )); |
1882 | if (!is_contained(Range&: PM.ProcResourceDefs, Element: PRU)) |
1883 | PM.ProcResourceDefs.push_back(x: PRU); |
1884 | } |
1885 | // Finalize each ProcModel by sorting the record arrays. |
1886 | for (CodeGenProcModel &PM : ProcModels) { |
1887 | llvm::sort(C&: PM.WriteResDefs, Comp: LessRecord()); |
1888 | llvm::sort(C&: PM.ReadAdvanceDefs, Comp: LessRecord()); |
1889 | llvm::sort(C&: PM.ProcResourceDefs, Comp: LessRecord()); |
1890 | LLVM_DEBUG( |
1891 | PM.dump(); dbgs() << "WriteResDefs: " ; for (auto WriteResDef |
1892 | : PM.WriteResDefs) { |
1893 | if (WriteResDef->isSubClassOf("WriteRes" )) |
1894 | dbgs() << WriteResDef->getValueAsDef("WriteType" )->getName() << " " ; |
1895 | else |
1896 | dbgs() << WriteResDef->getName() << " " ; |
1897 | } dbgs() << "\nReadAdvanceDefs: " ; |
1898 | for (const Record *ReadAdvanceDef |
1899 | : PM.ReadAdvanceDefs) { |
1900 | if (ReadAdvanceDef->isSubClassOf("ReadAdvance" )) |
1901 | dbgs() << ReadAdvanceDef->getValueAsDef("ReadType" )->getName() |
1902 | << " " ; |
1903 | else |
1904 | dbgs() << ReadAdvanceDef->getName() << " " ; |
1905 | } dbgs() |
1906 | << "\nProcResourceDefs: " ; |
1907 | for (const Record *ProcResourceDef |
1908 | : PM.ProcResourceDefs) { |
1909 | dbgs() << ProcResourceDef->getName() << " " ; |
1910 | } dbgs() |
1911 | << '\n'); |
1912 | verifyProcResourceGroups(PM); |
1913 | } |
1914 | |
1915 | ProcResourceDefs.clear(); |
1916 | ProcResGroups.clear(); |
1917 | } |
1918 | |
1919 | void CodeGenSchedModels::checkCompleteness() { |
1920 | bool Complete = true; |
1921 | for (const CodeGenProcModel &ProcModel : procModels()) { |
1922 | const bool HasItineraries = ProcModel.hasItineraries(); |
1923 | if (!ProcModel.ModelDef->getValueAsBit(FieldName: "CompleteModel" )) |
1924 | continue; |
1925 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
1926 | if (Inst->hasNoSchedulingInfo) |
1927 | continue; |
1928 | if (ProcModel.isUnsupported(Inst: *Inst)) |
1929 | continue; |
1930 | unsigned SCIdx = getSchedClassIdx(Inst: *Inst); |
1931 | if (!SCIdx) { |
1932 | if (Inst->TheDef->isValueUnset(FieldName: "SchedRW" )) { |
1933 | PrintError(ErrorLoc: Inst->TheDef->getLoc(), |
1934 | Msg: "No schedule information for instruction '" + |
1935 | Inst->TheDef->getName() + "' in SchedMachineModel '" + |
1936 | ProcModel.ModelDef->getName() + "'" ); |
1937 | Complete = false; |
1938 | } |
1939 | continue; |
1940 | } |
1941 | |
1942 | const CodeGenSchedClass &SC = getSchedClass(Idx: SCIdx); |
1943 | if (!SC.Writes.empty()) |
1944 | continue; |
1945 | if (HasItineraries && SC.ItinClassDef != nullptr && |
1946 | SC.ItinClassDef->getName() != "NoItinerary" ) |
1947 | continue; |
1948 | |
1949 | const ConstRecVec &InstRWs = SC.InstRWs; |
1950 | auto I = find_if(Range: InstRWs, P: [&ProcModel](const Record *R) { |
1951 | return R->getValueAsDef(FieldName: "SchedModel" ) == ProcModel.ModelDef; |
1952 | }); |
1953 | if (I == InstRWs.end()) { |
1954 | PrintError(ErrorLoc: Inst->TheDef->getLoc(), Msg: "'" + ProcModel.ModelName + |
1955 | "' lacks information for '" + |
1956 | Inst->TheDef->getName() + "'" ); |
1957 | Complete = false; |
1958 | } |
1959 | } |
1960 | } |
1961 | if (!Complete) { |
1962 | errs() |
1963 | << "\n\nIncomplete schedule models found.\n" |
1964 | << "- Consider setting 'CompleteModel = 0' while developing new " |
1965 | "models.\n" |
1966 | << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = " |
1967 | "1'.\n" |
1968 | << "- Instructions should usually have Sched<[...]> as a superclass, " |
1969 | "you may temporarily use an empty list.\n" |
1970 | << "- Instructions related to unsupported features can be excluded " |
1971 | "with " |
1972 | "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " |
1973 | "processor model.\n\n" ; |
1974 | PrintFatalError(Msg: "Incomplete schedule model" ); |
1975 | } |
1976 | } |
1977 | |
1978 | // Collect itinerary class resources for each processor. |
1979 | void CodeGenSchedModels::collectItinProcResources(const Record *ItinClassDef) { |
1980 | for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { |
1981 | const CodeGenProcModel &PM = ProcModels[PIdx]; |
1982 | // For all ItinRW entries. |
1983 | bool HasMatch = false; |
1984 | for (const Record *R : PM.ItinRWDefs) { |
1985 | ConstRecVec Matched = R->getValueAsListOfDefs(FieldName: "MatchedItinClasses" ); |
1986 | if (!llvm::is_contained(Range&: Matched, Element: ItinClassDef)) |
1987 | continue; |
1988 | if (HasMatch) |
1989 | PrintFatalError(ErrorLoc: R->getLoc(), |
1990 | Msg: "Duplicate itinerary class " + ItinClassDef->getName() + |
1991 | " in ItinResources for " + PM.ModelName); |
1992 | HasMatch = true; |
1993 | IdxVec Writes, Reads; |
1994 | findRWs(RWDefs: R->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1995 | collectRWResources(Writes, Reads, ProcIndices: PIdx); |
1996 | } |
1997 | } |
1998 | } |
1999 | |
2000 | void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, |
2001 | ArrayRef<unsigned> ProcIndices) { |
2002 | const CodeGenSchedRW &SchedRW = getSchedRW(Idx: RWIdx, IsRead); |
2003 | if (SchedRW.TheDef) { |
2004 | if (!IsRead && SchedRW.TheDef->isSubClassOf(Name: "SchedWriteRes" )) { |
2005 | for (unsigned Idx : ProcIndices) |
2006 | addWriteRes(ProcWriteResDef: SchedRW.TheDef, PM&: ProcModels[Idx]); |
2007 | } else if (IsRead && SchedRW.TheDef->isSubClassOf(Name: "SchedReadAdvance" )) { |
2008 | for (unsigned Idx : ProcIndices) |
2009 | addReadAdvance(ProcReadAdvanceDef: SchedRW.TheDef, PM&: ProcModels[Idx]); |
2010 | } |
2011 | } |
2012 | for (auto *Alias : SchedRW.Aliases) { |
2013 | IdxVec AliasProcIndices; |
2014 | if (Alias->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
2015 | AliasProcIndices.push_back( |
2016 | x: getProcModel(ModelDef: Alias->getValueAsDef(FieldName: "SchedModel" )).Index); |
2017 | } else { |
2018 | AliasProcIndices = ProcIndices; |
2019 | } |
2020 | const CodeGenSchedRW &AliasRW = getSchedRW(Def: Alias->getValueAsDef(FieldName: "AliasRW" )); |
2021 | assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes" ); |
2022 | |
2023 | IdxVec ExpandedRWs; |
2024 | expandRWSequence(RWIdx: AliasRW.Index, RWSeq&: ExpandedRWs, IsRead); |
2025 | for (unsigned int ExpandedRW : ExpandedRWs) { |
2026 | collectRWResources(RWIdx: ExpandedRW, IsRead, ProcIndices: AliasProcIndices); |
2027 | } |
2028 | } |
2029 | } |
2030 | |
2031 | // Collect resources for a set of read/write types and processor indices. |
2032 | void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, |
2033 | ArrayRef<unsigned> Reads, |
2034 | ArrayRef<unsigned> ProcIndices) { |
2035 | for (unsigned Idx : Writes) |
2036 | collectRWResources(RWIdx: Idx, /*IsRead=*/false, ProcIndices); |
2037 | |
2038 | for (unsigned Idx : Reads) |
2039 | collectRWResources(RWIdx: Idx, /*IsRead=*/true, ProcIndices); |
2040 | } |
2041 | |
2042 | // Find the processor's resource units for this kind of resource. |
2043 | const Record *CodeGenSchedModels::findProcResUnits(const Record *ProcResKind, |
2044 | const CodeGenProcModel &PM, |
2045 | ArrayRef<SMLoc> Loc) const { |
2046 | if (ProcResKind->isSubClassOf(Name: "ProcResourceUnits" )) |
2047 | return ProcResKind; |
2048 | |
2049 | const Record *ProcUnitDef = nullptr; |
2050 | assert(!ProcResourceDefs.empty()); |
2051 | assert(!ProcResGroups.empty()); |
2052 | |
2053 | for (const Record *ProcResDef : ProcResourceDefs) { |
2054 | if (ProcResDef->getValueAsDef(FieldName: "Kind" ) == ProcResKind && |
2055 | ProcResDef->getValueAsDef(FieldName: "SchedModel" ) == PM.ModelDef) { |
2056 | if (ProcUnitDef) { |
2057 | PrintFatalError(ErrorLoc: Loc, |
2058 | Msg: "Multiple ProcessorResourceUnits associated with " + |
2059 | ProcResKind->getName()); |
2060 | } |
2061 | ProcUnitDef = ProcResDef; |
2062 | } |
2063 | } |
2064 | for (const Record *ProcResGroup : ProcResGroups) { |
2065 | if (ProcResGroup == ProcResKind && |
2066 | ProcResGroup->getValueAsDef(FieldName: "SchedModel" ) == PM.ModelDef) { |
2067 | if (ProcUnitDef) { |
2068 | PrintFatalError(ErrorLoc: Loc, |
2069 | Msg: "Multiple ProcessorResourceUnits associated with " + |
2070 | ProcResKind->getName()); |
2071 | } |
2072 | ProcUnitDef = ProcResGroup; |
2073 | } |
2074 | } |
2075 | if (!ProcUnitDef) { |
2076 | PrintFatalError(ErrorLoc: Loc, Msg: "No ProcessorResources associated with " + |
2077 | ProcResKind->getName()); |
2078 | } |
2079 | return ProcUnitDef; |
2080 | } |
2081 | |
2082 | // Iteratively add a resource and its super resources. |
2083 | void CodeGenSchedModels::addProcResource(const Record *ProcResKind, |
2084 | CodeGenProcModel &PM, |
2085 | ArrayRef<SMLoc> Loc) { |
2086 | while (true) { |
2087 | const Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); |
2088 | |
2089 | // See if this ProcResource is already associated with this processor. |
2090 | if (is_contained(Range&: PM.ProcResourceDefs, Element: ProcResUnits)) |
2091 | return; |
2092 | |
2093 | PM.ProcResourceDefs.push_back(x: ProcResUnits); |
2094 | if (ProcResUnits->isSubClassOf(Name: "ProcResGroup" )) |
2095 | return; |
2096 | |
2097 | if (!ProcResUnits->getValueInit(FieldName: "Super" )->isComplete()) |
2098 | return; |
2099 | |
2100 | ProcResKind = ProcResUnits->getValueAsDef(FieldName: "Super" ); |
2101 | } |
2102 | } |
2103 | |
2104 | // Add resources for a SchedWrite to this processor if they don't exist. |
2105 | void CodeGenSchedModels::addWriteRes(const Record *ProcWriteResDef, |
2106 | CodeGenProcModel &PM) { |
2107 | ConstRecVec &WRDefs = PM.WriteResDefs; |
2108 | if (is_contained(Range&: WRDefs, Element: ProcWriteResDef)) |
2109 | return; |
2110 | WRDefs.push_back(x: ProcWriteResDef); |
2111 | |
2112 | if (ProcWriteResDef->isSubClassOf(Name: "WriteRes" )) { |
2113 | auto &WRMap = PM.WriteResMap; |
2114 | const Record *WRDef = ProcWriteResDef->getValueAsDef(FieldName: "WriteType" ); |
2115 | if (!WRMap.try_emplace(Key: WRDef, Args&: ProcWriteResDef).second) |
2116 | PrintFatalError(ErrorLoc: ProcWriteResDef->getLoc(), |
2117 | Msg: "WriteType already used in another WriteRes" ); |
2118 | } |
2119 | |
2120 | // Visit ProcResourceKinds referenced by the newly discovered WriteRes. |
2121 | for (const Record *ProcResDef : |
2122 | ProcWriteResDef->getValueAsListOfDefs(FieldName: "ProcResources" )) { |
2123 | addProcResource(ProcResKind: ProcResDef, PM, Loc: ProcWriteResDef->getLoc()); |
2124 | } |
2125 | } |
2126 | |
2127 | // Add resources for a ReadAdvance to this processor if they don't exist. |
2128 | void CodeGenSchedModels::addReadAdvance(const Record *ProcReadAdvanceDef, |
2129 | CodeGenProcModel &PM) { |
2130 | for (const Record *ValidWrite : |
2131 | ProcReadAdvanceDef->getValueAsListOfDefs(FieldName: "ValidWrites" )) { |
2132 | if (getSchedRWIdx(Def: ValidWrite, /*IsRead=*/false) == 0) |
2133 | PrintFatalError( |
2134 | ErrorLoc: ProcReadAdvanceDef->getLoc(), |
2135 | Msg: "ReadAdvance referencing a ValidWrite that is not used by " |
2136 | "any instruction (" + |
2137 | ValidWrite->getName() + ")" ); |
2138 | PM.ReadOfWriteSet.insert(Ptr: ValidWrite); |
2139 | } |
2140 | |
2141 | ConstRecVec &RADefs = PM.ReadAdvanceDefs; |
2142 | if (is_contained(Range&: RADefs, Element: ProcReadAdvanceDef)) |
2143 | return; |
2144 | RADefs.push_back(x: ProcReadAdvanceDef); |
2145 | |
2146 | if (ProcReadAdvanceDef->isSubClassOf(Name: "ReadAdvance" )) { |
2147 | auto &RAMap = PM.ReadAdvanceMap; |
2148 | const Record *RADef = ProcReadAdvanceDef->getValueAsDef(FieldName: "ReadType" ); |
2149 | if (!RAMap.try_emplace(Key: RADef, Args&: ProcReadAdvanceDef).second) |
2150 | PrintFatalError(ErrorLoc: ProcReadAdvanceDef->getLoc(), |
2151 | Msg: "ReadType already used in another ReadAdvance" ); |
2152 | } |
2153 | } |
2154 | |
2155 | unsigned CodeGenProcModel::getProcResourceIdx(const Record *PRDef) const { |
2156 | ConstRecIter PRPos = find(Range: ProcResourceDefs, Val: PRDef); |
2157 | if (PRPos == ProcResourceDefs.end()) |
2158 | PrintFatalError(ErrorLoc: PRDef->getLoc(), Msg: "ProcResource def is not included in " |
2159 | "the ProcResources list for " + |
2160 | ModelName); |
2161 | // Idx=0 is reserved for invalid. |
2162 | return 1 + (PRPos - ProcResourceDefs.begin()); |
2163 | } |
2164 | |
2165 | bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { |
2166 | for (const Record *TheDef : UnsupportedFeaturesDefs) { |
2167 | for (const Record *PredDef : |
2168 | Inst.TheDef->getValueAsListOfDefs(FieldName: "Predicates" )) { |
2169 | if (TheDef->getName() == PredDef->getName()) |
2170 | return true; |
2171 | } |
2172 | } |
2173 | return false; |
2174 | } |
2175 | |
2176 | bool CodeGenProcModel::hasReadOfWrite(const Record *WriteDef) const { |
2177 | return ReadOfWriteSet.contains(Ptr: WriteDef); |
2178 | } |
2179 | |
2180 | #ifndef NDEBUG |
2181 | void CodeGenProcModel::dump() const { |
2182 | dbgs() << Index << ": " << ModelName << " " |
2183 | << (ModelDef ? ModelDef->getName() : "inferred" ) << " " |
2184 | << (ItinsDef ? ItinsDef->getName() : "no itinerary" ) << '\n'; |
2185 | } |
2186 | |
2187 | void CodeGenSchedRW::dump() const { |
2188 | dbgs() << Name << (IsVariadic ? " (V) " : " " ); |
2189 | if (IsSequence) { |
2190 | dbgs() << "(" ; |
2191 | dumpIdxVec(Sequence); |
2192 | dbgs() << ")" ; |
2193 | } |
2194 | } |
2195 | |
2196 | void CodeGenSchedClass::dump(const CodeGenSchedModels *SchedModels) const { |
2197 | dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << " Writes: " ; |
2198 | for (unsigned i = 0, N = Writes.size(); i < N; ++i) { |
2199 | SchedModels->getSchedWrite(Writes[i]).dump(); |
2200 | if (i < N - 1) { |
2201 | dbgs() << '\n'; |
2202 | dbgs().indent(10); |
2203 | } |
2204 | } |
2205 | dbgs() << "\n Reads: " ; |
2206 | for (unsigned i = 0, N = Reads.size(); i < N; ++i) { |
2207 | SchedModels->getSchedRead(Reads[i]).dump(); |
2208 | if (i < N - 1) { |
2209 | dbgs() << '\n'; |
2210 | dbgs().indent(10); |
2211 | } |
2212 | } |
2213 | dbgs() << "\n ProcIdx: " ; |
2214 | dumpIdxVec(ProcIndices); |
2215 | if (!Transitions.empty()) { |
2216 | dbgs() << "\n Transitions for Proc " ; |
2217 | for (const CodeGenSchedTransition &Transition : Transitions) { |
2218 | dbgs() << Transition.ProcIndex << ", " ; |
2219 | } |
2220 | } |
2221 | dbgs() << '\n'; |
2222 | } |
2223 | |
2224 | void PredTransitions::dump() const { |
2225 | dbgs() << "Expanded Variants:\n" ; |
2226 | for (const auto &TI : TransVec) { |
2227 | dbgs() << "{" ; |
2228 | ListSeparator LS; |
2229 | for (const PredCheck &PC : TI.PredTerm) |
2230 | dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":" |
2231 | << PC.Predicate->getName(); |
2232 | dbgs() << "},\n => {" ; |
2233 | for (const auto &WS : TI.WriteSequences) { |
2234 | dbgs() << "(" ; |
2235 | ListSeparator LS; |
2236 | for (unsigned N : WS) |
2237 | dbgs() << LS << SchedModels.getSchedWrite(N).Name; |
2238 | dbgs() << ")," ; |
2239 | } |
2240 | dbgs() << "}\n" ; |
2241 | } |
2242 | } |
2243 | #endif // NDEBUG |
2244 | |