| 1 | //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // It contains the tablegen backend that emits the decoder functions for |
| 10 | // targets with fixed/variable length instruction set. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "Common/CodeGenHwModes.h" |
| 15 | #include "Common/CodeGenInstruction.h" |
| 16 | #include "Common/CodeGenTarget.h" |
| 17 | #include "Common/InfoByHwMode.h" |
| 18 | #include "Common/VarLenCodeEmitterGen.h" |
| 19 | #include "TableGenBackends.h" |
| 20 | #include "llvm/ADT/APInt.h" |
| 21 | #include "llvm/ADT/ArrayRef.h" |
| 22 | #include "llvm/ADT/CachedHashString.h" |
| 23 | #include "llvm/ADT/STLExtras.h" |
| 24 | #include "llvm/ADT/SetVector.h" |
| 25 | #include "llvm/ADT/SmallBitVector.h" |
| 26 | #include "llvm/ADT/SmallString.h" |
| 27 | #include "llvm/ADT/Statistic.h" |
| 28 | #include "llvm/ADT/StringExtras.h" |
| 29 | #include "llvm/ADT/StringRef.h" |
| 30 | #include "llvm/MC/MCDecoderOps.h" |
| 31 | #include "llvm/Support/Casting.h" |
| 32 | #include "llvm/Support/CommandLine.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include "llvm/Support/ErrorHandling.h" |
| 35 | #include "llvm/Support/FormatVariadic.h" |
| 36 | #include "llvm/Support/FormattedStream.h" |
| 37 | #include "llvm/Support/LEB128.h" |
| 38 | #include "llvm/Support/MathExtras.h" |
| 39 | #include "llvm/Support/raw_ostream.h" |
| 40 | #include "llvm/TableGen/Error.h" |
| 41 | #include "llvm/TableGen/Record.h" |
| 42 | #include <algorithm> |
| 43 | #include <cassert> |
| 44 | #include <cstddef> |
| 45 | #include <cstdint> |
| 46 | #include <map> |
| 47 | #include <memory> |
| 48 | #include <set> |
| 49 | #include <string> |
| 50 | #include <utility> |
| 51 | #include <vector> |
| 52 | |
| 53 | using namespace llvm; |
| 54 | |
| 55 | #define DEBUG_TYPE "decoder-emitter" |
| 56 | |
| 57 | extern cl::OptionCategory DisassemblerEmitterCat; |
| 58 | |
| 59 | enum SuppressLevel { |
| 60 | SUPPRESSION_DISABLE, |
| 61 | SUPPRESSION_LEVEL1, |
| 62 | SUPPRESSION_LEVEL2 |
| 63 | }; |
| 64 | |
| 65 | static cl::opt<SuppressLevel> DecoderEmitterSuppressDuplicates( |
| 66 | "suppress-per-hwmode-duplicates" , |
| 67 | cl::desc("Suppress duplication of instrs into per-HwMode decoder tables" ), |
| 68 | cl::values( |
| 69 | clEnumValN( |
| 70 | SUPPRESSION_DISABLE, "O0" , |
| 71 | "Do not prevent DecoderTable duplications caused by HwModes" ), |
| 72 | clEnumValN( |
| 73 | SUPPRESSION_LEVEL1, "O1" , |
| 74 | "Remove duplicate DecoderTable entries generated due to HwModes" ), |
| 75 | clEnumValN( |
| 76 | SUPPRESSION_LEVEL2, "O2" , |
| 77 | "Extract HwModes-specific instructions into new DecoderTables, " |
| 78 | "significantly reducing Table Duplications" )), |
| 79 | cl::init(Val: SUPPRESSION_DISABLE), cl::cat(DisassemblerEmitterCat)); |
| 80 | |
| 81 | static cl::opt<bool> LargeTable( |
| 82 | "large-decoder-table" , |
| 83 | cl::desc("Use large decoder table format. This uses 24 bits for offset\n" |
| 84 | "in the table instead of the default 16 bits." ), |
| 85 | cl::init(Val: false), cl::cat(DisassemblerEmitterCat)); |
| 86 | |
| 87 | static cl::opt<bool> UseFnTableInDecodeToMCInst( |
| 88 | "use-fn-table-in-decode-to-mcinst" , |
| 89 | cl::desc( |
| 90 | "Use a table of function pointers instead of a switch case in the\n" |
| 91 | "generated `decodeToMCInst` function. Helps improve compile time\n" |
| 92 | "of the generated code." ), |
| 93 | cl::init(Val: false), cl::cat(DisassemblerEmitterCat)); |
| 94 | |
| 95 | STATISTIC(NumEncodings, "Number of encodings considered" ); |
| 96 | STATISTIC(NumEncodingsLackingDisasm, |
| 97 | "Number of encodings without disassembler info" ); |
| 98 | STATISTIC(NumInstructions, "Number of instructions considered" ); |
| 99 | STATISTIC(NumEncodingsSupported, "Number of encodings supported" ); |
| 100 | STATISTIC(NumEncodingsOmitted, "Number of encodings omitted" ); |
| 101 | |
| 102 | static unsigned getNumToSkipInBytes() { return LargeTable ? 3 : 2; } |
| 103 | |
| 104 | namespace { |
| 105 | |
| 106 | struct EncodingField { |
| 107 | unsigned Base, Width, Offset; |
| 108 | EncodingField(unsigned B, unsigned W, unsigned O) |
| 109 | : Base(B), Width(W), Offset(O) {} |
| 110 | }; |
| 111 | |
| 112 | struct OperandInfo { |
| 113 | std::vector<EncodingField> Fields; |
| 114 | std::string Decoder; |
| 115 | bool HasCompleteDecoder; |
| 116 | uint64_t InitValue = 0; |
| 117 | |
| 118 | OperandInfo(std::string D, bool HCD) : Decoder(D), HasCompleteDecoder(HCD) {} |
| 119 | |
| 120 | void addField(unsigned Base, unsigned Width, unsigned Offset) { |
| 121 | Fields.push_back(x: EncodingField(Base, Width, Offset)); |
| 122 | } |
| 123 | |
| 124 | unsigned numFields() const { return Fields.size(); } |
| 125 | |
| 126 | typedef std::vector<EncodingField>::const_iterator const_iterator; |
| 127 | |
| 128 | const_iterator begin() const { return Fields.begin(); } |
| 129 | const_iterator end() const { return Fields.end(); } |
| 130 | }; |
| 131 | |
| 132 | typedef std::vector<uint32_t> FixupList; |
| 133 | typedef std::vector<FixupList> FixupScopeList; |
| 134 | typedef SmallSetVector<CachedHashString, 16> PredicateSet; |
| 135 | typedef SmallSetVector<CachedHashString, 16> DecoderSet; |
| 136 | |
| 137 | class DecoderTable { |
| 138 | public: |
| 139 | DecoderTable() { Data.reserve(n: 16384); } |
| 140 | |
| 141 | void clear() { Data.clear(); } |
| 142 | void push_back(uint8_t Item) { Data.push_back(x: Item); } |
| 143 | size_t size() const { return Data.size(); } |
| 144 | const uint8_t *data() const { return Data.data(); } |
| 145 | |
| 146 | using const_iterator = std::vector<uint8_t>::const_iterator; |
| 147 | const_iterator begin() const { return Data.begin(); } |
| 148 | const_iterator end() const { return Data.end(); } |
| 149 | |
| 150 | // Insert a ULEB128 encoded value into the table. |
| 151 | void insertULEB128(uint64_t Value) { |
| 152 | // Encode and emit the value to filter against. |
| 153 | uint8_t Buffer[16]; |
| 154 | unsigned Len = encodeULEB128(Value, p: Buffer); |
| 155 | Data.insert(position: Data.end(), first: Buffer, last: Buffer + Len); |
| 156 | } |
| 157 | |
| 158 | // Insert space for `NumToSkip` and return the position |
| 159 | // in the table for patching. |
| 160 | size_t insertNumToSkip() { |
| 161 | size_t Size = Data.size(); |
| 162 | Data.insert(position: Data.end(), n: getNumToSkipInBytes(), x: 0); |
| 163 | return Size; |
| 164 | } |
| 165 | |
| 166 | void patchNumToSkip(size_t FixupIdx, uint32_t DestIdx) { |
| 167 | // Calculate the distance from the byte following the fixup entry byte |
| 168 | // to the destination. The Target is calculated from after the |
| 169 | // `getNumToSkipInBytes()`-byte NumToSkip entry itself, so subtract |
| 170 | // `getNumToSkipInBytes()` from the displacement here to account for that. |
| 171 | assert(DestIdx >= FixupIdx + getNumToSkipInBytes() && |
| 172 | "Expecting a forward jump in the decoding table" ); |
| 173 | uint32_t Delta = DestIdx - FixupIdx - getNumToSkipInBytes(); |
| 174 | if (!isUIntN(N: 8 * getNumToSkipInBytes(), x: Delta)) |
| 175 | PrintFatalError( |
| 176 | Msg: "disassembler decoding table too large, try --large-decoder-table" ); |
| 177 | |
| 178 | Data[FixupIdx] = static_cast<uint8_t>(Delta); |
| 179 | Data[FixupIdx + 1] = static_cast<uint8_t>(Delta >> 8); |
| 180 | if (getNumToSkipInBytes() == 3) |
| 181 | Data[FixupIdx + 2] = static_cast<uint8_t>(Delta >> 16); |
| 182 | } |
| 183 | |
| 184 | private: |
| 185 | std::vector<uint8_t> Data; |
| 186 | }; |
| 187 | |
| 188 | struct DecoderTableInfo { |
| 189 | DecoderTable Table; |
| 190 | FixupScopeList FixupStack; |
| 191 | PredicateSet Predicates; |
| 192 | DecoderSet Decoders; |
| 193 | |
| 194 | bool isOutermostScope() const { return FixupStack.size() == 1; } |
| 195 | }; |
| 196 | |
| 197 | struct EncodingAndInst { |
| 198 | const Record *EncodingDef; |
| 199 | const CodeGenInstruction *Inst; |
| 200 | StringRef HwModeName; |
| 201 | |
| 202 | EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst, |
| 203 | StringRef HwModeName = "" ) |
| 204 | : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {} |
| 205 | }; |
| 206 | |
| 207 | struct EncodingIDAndOpcode { |
| 208 | unsigned EncodingID; |
| 209 | unsigned Opcode; |
| 210 | |
| 211 | EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {} |
| 212 | EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode) |
| 213 | : EncodingID(EncodingID), Opcode(Opcode) {} |
| 214 | }; |
| 215 | |
| 216 | using EncodingIDsVec = std::vector<EncodingIDAndOpcode>; |
| 217 | using NamespacesHwModesMap = std::map<std::string, std::set<StringRef>>; |
| 218 | |
| 219 | class DecoderEmitter { |
| 220 | const RecordKeeper &RK; |
| 221 | std::vector<EncodingAndInst> NumberedEncodings; |
| 222 | |
| 223 | public: |
| 224 | DecoderEmitter(const RecordKeeper &R, StringRef PredicateNamespace) |
| 225 | : RK(R), Target(R), PredicateNamespace(PredicateNamespace) {} |
| 226 | |
| 227 | // Emit the decoder state machine table. Returns a mask of MCD decoder ops |
| 228 | // that were emitted. |
| 229 | unsigned emitTable(formatted_raw_ostream &OS, DecoderTable &Table, |
| 230 | indent Indent, unsigned BitWidth, StringRef Namespace, |
| 231 | const EncodingIDsVec &EncodingIDs) const; |
| 232 | void emitInstrLenTable(formatted_raw_ostream &OS, |
| 233 | ArrayRef<unsigned> InstrLen) const; |
| 234 | void emitPredicateFunction(formatted_raw_ostream &OS, |
| 235 | PredicateSet &Predicates, indent Indent) const; |
| 236 | void emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, |
| 237 | indent Indent) const; |
| 238 | |
| 239 | // run - Output the code emitter |
| 240 | void run(raw_ostream &o); |
| 241 | |
| 242 | private: |
| 243 | CodeGenTarget Target; |
| 244 | |
| 245 | public: |
| 246 | StringRef PredicateNamespace; |
| 247 | }; |
| 248 | |
| 249 | // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system |
| 250 | // for a bit value. |
| 251 | // |
| 252 | // BIT_UNFILTERED is used as the init value for a filter position. It is used |
| 253 | // only for filter processings. |
| 254 | struct BitValue { |
| 255 | enum bit_value_t : uint8_t { |
| 256 | BIT_FALSE, // '0' |
| 257 | BIT_TRUE, // '1' |
| 258 | BIT_UNSET, // '?', printed as '_' |
| 259 | BIT_UNFILTERED // unfiltered, printed as '.' |
| 260 | }; |
| 261 | |
| 262 | BitValue(bit_value_t V) : V(V) {} |
| 263 | explicit BitValue(const Init *Init) { |
| 264 | if (const auto *Bit = dyn_cast<BitInit>(Val: Init)) |
| 265 | V = Bit->getValue() ? BIT_TRUE : BIT_FALSE; |
| 266 | else |
| 267 | V = BIT_UNSET; |
| 268 | } |
| 269 | BitValue(const BitsInit &Bits, unsigned Idx) : BitValue(Bits.getBit(Bit: Idx)) {} |
| 270 | |
| 271 | bool isSet() const { return V == BIT_TRUE || V == BIT_FALSE; } |
| 272 | bool isUnset() const { return V == BIT_UNSET; } |
| 273 | std::optional<uint64_t> getValue() const { |
| 274 | if (isSet()) |
| 275 | return static_cast<uint64_t>(V); |
| 276 | return std::nullopt; |
| 277 | } |
| 278 | |
| 279 | // For printing a bit value. |
| 280 | operator StringRef() const { |
| 281 | switch (V) { |
| 282 | case BIT_FALSE: |
| 283 | return "0" ; |
| 284 | case BIT_TRUE: |
| 285 | return "1" ; |
| 286 | case BIT_UNSET: |
| 287 | return "_" ; |
| 288 | case BIT_UNFILTERED: |
| 289 | return "." ; |
| 290 | } |
| 291 | llvm_unreachable("Unknow bit value" ); |
| 292 | } |
| 293 | |
| 294 | bool operator==(bit_value_t Other) const { return Other == V; } |
| 295 | bool operator!=(bit_value_t Other) const { return Other != V; } |
| 296 | |
| 297 | private: |
| 298 | bit_value_t V; |
| 299 | }; |
| 300 | |
| 301 | } // end anonymous namespace |
| 302 | |
| 303 | static raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) { |
| 304 | if (Value.EncodingDef != Value.Inst->TheDef) |
| 305 | OS << Value.EncodingDef->getName() << ":" ; |
| 306 | OS << Value.Inst->TheDef->getName(); |
| 307 | return OS; |
| 308 | } |
| 309 | |
| 310 | // Prints the bit value for each position. |
| 311 | static void dumpBits(raw_ostream &OS, const BitsInit &Bits) { |
| 312 | for (const Init *Bit : reverse(C: Bits.getBits())) |
| 313 | OS << BitValue(Bit); |
| 314 | } |
| 315 | |
| 316 | static const BitsInit &getBitsField(const Record &Def, StringRef FieldName) { |
| 317 | const RecordVal *RV = Def.getValue(Name: FieldName); |
| 318 | if (const BitsInit *Bits = dyn_cast<BitsInit>(Val: RV->getValue())) |
| 319 | return *Bits; |
| 320 | |
| 321 | // Handle variable length instructions. |
| 322 | VarLenInst VLI(cast<DagInit>(Val: RV->getValue()), RV); |
| 323 | SmallVector<const Init *, 16> Bits; |
| 324 | |
| 325 | for (const auto &SI : VLI) { |
| 326 | if (const BitsInit *BI = dyn_cast<BitsInit>(Val: SI.Value)) |
| 327 | llvm::append_range(C&: Bits, R: BI->getBits()); |
| 328 | else if (const BitInit *BI = dyn_cast<BitInit>(Val: SI.Value)) |
| 329 | Bits.push_back(Elt: BI); |
| 330 | else |
| 331 | Bits.append(NumInputs: SI.BitWidth, Elt: UnsetInit::get(RK&: Def.getRecords())); |
| 332 | } |
| 333 | |
| 334 | return *BitsInit::get(RK&: Def.getRecords(), Range: Bits); |
| 335 | } |
| 336 | |
| 337 | // Representation of the instruction to work on. |
| 338 | typedef std::vector<BitValue> insn_t; |
| 339 | |
| 340 | namespace { |
| 341 | |
| 342 | static constexpr uint64_t NO_FIXED_SEGMENTS_SENTINEL = |
| 343 | std::numeric_limits<uint64_t>::max(); |
| 344 | |
| 345 | class FilterChooser; |
| 346 | |
| 347 | /// Filter - Filter works with FilterChooser to produce the decoding tree for |
| 348 | /// the ISA. |
| 349 | /// |
| 350 | /// It is useful to think of a Filter as governing the switch stmts of the |
| 351 | /// decoding tree in a certain level. Each case stmt delegates to an inferior |
| 352 | /// FilterChooser to decide what further decoding logic to employ, or in another |
| 353 | /// words, what other remaining bits to look at. The FilterChooser eventually |
| 354 | /// chooses a best Filter to do its job. |
| 355 | /// |
| 356 | /// This recursive scheme ends when the number of Opcodes assigned to the |
| 357 | /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when |
| 358 | /// the Filter/FilterChooser combo does not know how to distinguish among the |
| 359 | /// Opcodes assigned. |
| 360 | /// |
| 361 | /// An example of a conflict is |
| 362 | /// |
| 363 | /// Conflict: |
| 364 | /// 111101000.00........00010000.... |
| 365 | /// 111101000.00........0001........ |
| 366 | /// 1111010...00........0001........ |
| 367 | /// 1111010...00.................... |
| 368 | /// 1111010......................... |
| 369 | /// 1111............................ |
| 370 | /// ................................ |
| 371 | /// VST4q8a 111101000_00________00010000____ |
| 372 | /// VST4q8b 111101000_00________00010000____ |
| 373 | /// |
| 374 | /// The Debug output shows the path that the decoding tree follows to reach the |
| 375 | /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced |
| 376 | /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. |
| 377 | /// |
| 378 | /// The encoding info in the .td files does not specify this meta information, |
| 379 | /// which could have been used by the decoder to resolve the conflict. The |
| 380 | /// decoder could try to decode the even/odd register numbering and assign to |
| 381 | /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" |
| 382 | /// version and return the Opcode since the two have the same Asm format string. |
| 383 | class Filter { |
| 384 | protected: |
| 385 | const FilterChooser &Owner; // FilterChooser who owns this filter |
| 386 | unsigned StartBit; // the starting bit position |
| 387 | unsigned NumBits; // number of bits to filter |
| 388 | bool Mixed; // a mixed region contains both set and unset bits |
| 389 | |
| 390 | // Map of well-known segment value to the set of uid's with that value. |
| 391 | std::map<uint64_t, std::vector<EncodingIDAndOpcode>> FilteredInstructions; |
| 392 | |
| 393 | // Set of uid's with non-constant segment values. |
| 394 | std::vector<EncodingIDAndOpcode> VariableInstructions; |
| 395 | |
| 396 | // Map of well-known segment value to its delegate. |
| 397 | std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap; |
| 398 | |
| 399 | // Number of instructions which fall under FilteredInstructions category. |
| 400 | unsigned NumFiltered; |
| 401 | |
| 402 | // Keeps track of the last opcode in the filtered bucket. |
| 403 | EncodingIDAndOpcode LastOpcFiltered; |
| 404 | |
| 405 | public: |
| 406 | Filter(Filter &&f); |
| 407 | Filter(const FilterChooser &owner, unsigned startBit, unsigned numBits, |
| 408 | bool mixed); |
| 409 | |
| 410 | ~Filter() = default; |
| 411 | |
| 412 | unsigned getNumFiltered() const { return NumFiltered; } |
| 413 | |
| 414 | EncodingIDAndOpcode getSingletonOpc() const { |
| 415 | assert(NumFiltered == 1); |
| 416 | return LastOpcFiltered; |
| 417 | } |
| 418 | |
| 419 | // Return the filter chooser for the group of instructions without constant |
| 420 | // segment values. |
| 421 | const FilterChooser &getVariableFC() const { |
| 422 | assert(NumFiltered == 1 && FilterChooserMap.size() == 1); |
| 423 | return *(FilterChooserMap.find(x: NO_FIXED_SEGMENTS_SENTINEL)->second); |
| 424 | } |
| 425 | |
| 426 | // Divides the decoding task into sub tasks and delegates them to the |
| 427 | // inferior FilterChooser's. |
| 428 | // |
| 429 | // A special case arises when there's only one entry in the filtered |
| 430 | // instructions. In order to unambiguously decode the singleton, we need to |
| 431 | // match the remaining undecoded encoding bits against the singleton. |
| 432 | void recurse(); |
| 433 | |
| 434 | // Emit table entries to decode instructions given a segment or segments of |
| 435 | // bits. |
| 436 | void emitTableEntry(DecoderTableInfo &TableInfo) const; |
| 437 | |
| 438 | // Returns the number of fanout produced by the filter. More fanout implies |
| 439 | // the filter distinguishes more categories of instructions. |
| 440 | unsigned usefulness() const; |
| 441 | }; // end class Filter |
| 442 | |
| 443 | // These are states of our finite state machines used in FilterChooser's |
| 444 | // filterProcessor() which produces the filter candidates to use. |
| 445 | enum bitAttr_t { |
| 446 | ATTR_NONE, |
| 447 | ATTR_FILTERED, |
| 448 | ATTR_ALL_SET, |
| 449 | ATTR_ALL_UNSET, |
| 450 | ATTR_MIXED |
| 451 | }; |
| 452 | |
| 453 | /// FilterChooser - FilterChooser chooses the best filter among a set of Filters |
| 454 | /// in order to perform the decoding of instructions at the current level. |
| 455 | /// |
| 456 | /// Decoding proceeds from the top down. Based on the well-known encoding bits |
| 457 | /// of instructions available, FilterChooser builds up the possible Filters that |
| 458 | /// can further the task of decoding by distinguishing among the remaining |
| 459 | /// candidate instructions. |
| 460 | /// |
| 461 | /// Once a filter has been chosen, it is called upon to divide the decoding task |
| 462 | /// into sub-tasks and delegates them to its inferior FilterChoosers for further |
| 463 | /// processings. |
| 464 | /// |
| 465 | /// It is useful to think of a Filter as governing the switch stmts of the |
| 466 | /// decoding tree. And each case is delegated to an inferior FilterChooser to |
| 467 | /// decide what further remaining bits to look at. |
| 468 | |
| 469 | class FilterChooser { |
| 470 | protected: |
| 471 | friend class Filter; |
| 472 | |
| 473 | // Vector of codegen instructions to choose our filter. |
| 474 | ArrayRef<EncodingAndInst> AllInstructions; |
| 475 | |
| 476 | // Vector of uid's for this filter chooser to work on. |
| 477 | // The first member of the pair is the opcode id being decoded, the second is |
| 478 | // the opcode id that should be emitted. |
| 479 | ArrayRef<EncodingIDAndOpcode> Opcodes; |
| 480 | |
| 481 | // Lookup table for the operand decoding of instructions. |
| 482 | const std::map<unsigned, std::vector<OperandInfo>> &Operands; |
| 483 | |
| 484 | // Vector of candidate filters. |
| 485 | std::vector<Filter> Filters; |
| 486 | |
| 487 | // Array of bit values passed down from our parent. |
| 488 | // Set to all BIT_UNFILTERED's for Parent == NULL. |
| 489 | std::vector<BitValue> FilterBitValues; |
| 490 | |
| 491 | // Links to the FilterChooser above us in the decoding tree. |
| 492 | const FilterChooser *Parent; |
| 493 | |
| 494 | // Index of the best filter from Filters. |
| 495 | int BestIndex; |
| 496 | |
| 497 | // Width of instructions |
| 498 | unsigned BitWidth; |
| 499 | |
| 500 | // Parent emitter |
| 501 | const DecoderEmitter *Emitter; |
| 502 | |
| 503 | struct Island { |
| 504 | unsigned StartBit; |
| 505 | unsigned NumBits; |
| 506 | uint64_t FieldVal; |
| 507 | }; |
| 508 | |
| 509 | public: |
| 510 | FilterChooser(ArrayRef<EncodingAndInst> Insts, |
| 511 | ArrayRef<EncodingIDAndOpcode> IDs, |
| 512 | const std::map<unsigned, std::vector<OperandInfo>> &Ops, |
| 513 | unsigned BW, const DecoderEmitter *E) |
| 514 | : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), |
| 515 | FilterBitValues(BW, BitValue::BIT_UNFILTERED), Parent(nullptr), |
| 516 | BestIndex(-1), BitWidth(BW), Emitter(E) { |
| 517 | doFilter(); |
| 518 | } |
| 519 | |
| 520 | FilterChooser(ArrayRef<EncodingAndInst> Insts, |
| 521 | ArrayRef<EncodingIDAndOpcode> IDs, |
| 522 | const std::map<unsigned, std::vector<OperandInfo>> &Ops, |
| 523 | const std::vector<BitValue> &ParentFilterBitValues, |
| 524 | const FilterChooser &parent) |
| 525 | : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), |
| 526 | FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), |
| 527 | BitWidth(parent.BitWidth), Emitter(parent.Emitter) { |
| 528 | doFilter(); |
| 529 | } |
| 530 | |
| 531 | FilterChooser(const FilterChooser &) = delete; |
| 532 | void operator=(const FilterChooser &) = delete; |
| 533 | |
| 534 | unsigned getBitWidth() const { return BitWidth; } |
| 535 | |
| 536 | protected: |
| 537 | // Populates the insn given the uid. |
| 538 | void insnWithID(insn_t &Insn, unsigned Opcode) const { |
| 539 | const Record *EncodingDef = AllInstructions[Opcode].EncodingDef; |
| 540 | const BitsInit &Bits = getBitsField(Def: *EncodingDef, FieldName: "Inst" ); |
| 541 | Insn.resize(new_size: std::max(a: BitWidth, b: Bits.getNumBits()), x: BitValue::BIT_UNSET); |
| 542 | // We may have a SoftFail bitmask, which specifies a mask where an encoding |
| 543 | // may differ from the value in "Inst" and yet still be valid, but the |
| 544 | // disassembler should return SoftFail instead of Success. |
| 545 | // |
| 546 | // This is used for marking UNPREDICTABLE instructions in the ARM world. |
| 547 | const RecordVal *RV = EncodingDef->getValue(Name: "SoftFail" ); |
| 548 | const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(Val: RV->getValue()) : nullptr; |
| 549 | for (unsigned i = 0; i < Bits.getNumBits(); ++i) { |
| 550 | if (SFBits && BitValue(*SFBits, i) == BitValue::BIT_TRUE) |
| 551 | Insn[i] = BitValue::BIT_UNSET; |
| 552 | else |
| 553 | Insn[i] = BitValue(Bits, i); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | // Populates the field of the insn given the start position and the number of |
| 558 | // consecutive bits to scan for. |
| 559 | // |
| 560 | // Returns a pair of values (indicator, field), where the indicator is false |
| 561 | // if there exists any uninitialized bit value in the range and true if all |
| 562 | // bits are well-known. The second value is the potentially populated field. |
| 563 | std::pair<bool, uint64_t> fieldFromInsn(const insn_t &Insn, unsigned StartBit, |
| 564 | unsigned NumBits) const; |
| 565 | |
| 566 | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| 567 | /// filter array as a series of chars. |
| 568 | void dumpFilterArray(raw_ostream &OS, ArrayRef<BitValue> Filter) const; |
| 569 | |
| 570 | /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| 571 | /// dumpFilterArray on each filter chooser up to the top level one. |
| 572 | void dumpStack(raw_ostream &OS, const char *prefix) const; |
| 573 | |
| 574 | Filter &bestFilter() { |
| 575 | assert(BestIndex != -1 && "BestIndex not set" ); |
| 576 | return Filters[BestIndex]; |
| 577 | } |
| 578 | |
| 579 | bool PositionFiltered(unsigned Idx) const { |
| 580 | return FilterBitValues[Idx].isSet(); |
| 581 | } |
| 582 | |
| 583 | // Calculates the island(s) needed to decode the instruction. |
| 584 | // This returns a list of undecoded bits of an instructions, for example, |
| 585 | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| 586 | // decoded bits in order to verify that the instruction matches the Opcode. |
| 587 | unsigned getIslands(std::vector<Island> &Islands, const insn_t &Insn) const; |
| 588 | |
| 589 | // Emits code to check the Predicates member of an instruction are true. |
| 590 | // Returns true if predicate matches were emitted, false otherwise. |
| 591 | bool emitPredicateMatch(raw_ostream &OS, unsigned Opc) const; |
| 592 | bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, |
| 593 | raw_ostream &OS) const; |
| 594 | |
| 595 | bool doesOpcodeNeedPredicate(unsigned Opc) const; |
| 596 | unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; |
| 597 | void emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; |
| 598 | |
| 599 | void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; |
| 600 | |
| 601 | // Emits table entries to decode the singleton. |
| 602 | void emitSingletonTableEntry(DecoderTableInfo &TableInfo, |
| 603 | EncodingIDAndOpcode Opc) const; |
| 604 | |
| 605 | // Emits code to decode the singleton, and then to decode the rest. |
| 606 | void emitSingletonTableEntry(DecoderTableInfo &TableInfo, |
| 607 | const Filter &Best) const; |
| 608 | |
| 609 | bool emitBinaryParser(raw_ostream &OS, indent Indent, |
| 610 | const OperandInfo &OpInfo) const; |
| 611 | |
| 612 | bool emitDecoder(raw_ostream &OS, indent Indent, unsigned Opc) const; |
| 613 | std::pair<unsigned, bool> getDecoderIndex(DecoderSet &Decoders, |
| 614 | unsigned Opc) const; |
| 615 | |
| 616 | // Assign a single filter and run with it. |
| 617 | void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); |
| 618 | |
| 619 | // reportRegion is a helper function for filterProcessor to mark a region as |
| 620 | // eligible for use as a filter region. |
| 621 | void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, |
| 622 | bool AllowMixed); |
| 623 | |
| 624 | // FilterProcessor scans the well-known encoding bits of the instructions and |
| 625 | // builds up a list of candidate filters. It chooses the best filter and |
| 626 | // recursively descends down the decoding tree. |
| 627 | bool filterProcessor(bool AllowMixed, bool Greedy = true); |
| 628 | |
| 629 | // Decides on the best configuration of filter(s) to use in order to decode |
| 630 | // the instructions. A conflict of instructions may occur, in which case we |
| 631 | // dump the conflict set to the standard error. |
| 632 | void doFilter(); |
| 633 | |
| 634 | public: |
| 635 | // emitTableEntries - Emit state machine entries to decode our share of |
| 636 | // instructions. |
| 637 | void emitTableEntries(DecoderTableInfo &TableInfo) const; |
| 638 | }; |
| 639 | |
| 640 | } // end anonymous namespace |
| 641 | |
| 642 | /////////////////////////// |
| 643 | // // |
| 644 | // Filter Implementation // |
| 645 | // // |
| 646 | /////////////////////////// |
| 647 | |
| 648 | Filter::Filter(Filter &&f) |
| 649 | : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), |
| 650 | FilteredInstructions(std::move(f.FilteredInstructions)), |
| 651 | VariableInstructions(std::move(f.VariableInstructions)), |
| 652 | FilterChooserMap(std::move(f.FilterChooserMap)), |
| 653 | NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered) {} |
| 654 | |
| 655 | Filter::Filter(const FilterChooser &owner, unsigned startBit, unsigned numBits, |
| 656 | bool mixed) |
| 657 | : Owner(owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { |
| 658 | assert(StartBit + NumBits - 1 < Owner.BitWidth); |
| 659 | |
| 660 | NumFiltered = 0; |
| 661 | LastOpcFiltered = {0, 0}; |
| 662 | |
| 663 | for (const auto &OpcPair : Owner.Opcodes) { |
| 664 | insn_t Insn; |
| 665 | |
| 666 | // Populates the insn given the uid. |
| 667 | Owner.insnWithID(Insn, Opcode: OpcPair.EncodingID); |
| 668 | |
| 669 | // Scans the segment for possibly well-specified encoding bits. |
| 670 | auto [Ok, Field] = Owner.fieldFromInsn(Insn, StartBit, NumBits); |
| 671 | |
| 672 | if (Ok) { |
| 673 | // The encoding bits are well-known. Lets add the uid of the |
| 674 | // instruction into the bucket keyed off the constant field value. |
| 675 | LastOpcFiltered = OpcPair; |
| 676 | FilteredInstructions[Field].push_back(x: LastOpcFiltered); |
| 677 | ++NumFiltered; |
| 678 | } else { |
| 679 | // Some of the encoding bit(s) are unspecified. This contributes to |
| 680 | // one additional member of "Variable" instructions. |
| 681 | VariableInstructions.push_back(x: OpcPair); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && |
| 686 | "Filter returns no instruction categories" ); |
| 687 | } |
| 688 | |
| 689 | // Divides the decoding task into sub tasks and delegates them to the |
| 690 | // inferior FilterChooser's. |
| 691 | // |
| 692 | // A special case arises when there's only one entry in the filtered |
| 693 | // instructions. In order to unambiguously decode the singleton, we need to |
| 694 | // match the remaining undecoded encoding bits against the singleton. |
| 695 | void Filter::recurse() { |
| 696 | // Starts by inheriting our parent filter chooser's filter bit values. |
| 697 | std::vector<BitValue> BitValueArray(Owner.FilterBitValues); |
| 698 | |
| 699 | if (!VariableInstructions.empty()) { |
| 700 | // Conservatively marks each segment position as BIT_UNSET. |
| 701 | for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) |
| 702 | BitValueArray[StartBit + bitIndex] = BitValue::BIT_UNSET; |
| 703 | |
| 704 | // Delegates to an inferior filter chooser for further processing on this |
| 705 | // group of instructions whose segment values are variable. |
| 706 | FilterChooserMap.try_emplace( |
| 707 | k: NO_FIXED_SEGMENTS_SENTINEL, |
| 708 | args: std::make_unique<FilterChooser>(args: Owner.AllInstructions, |
| 709 | args&: VariableInstructions, args: Owner.Operands, |
| 710 | args&: BitValueArray, args: Owner)); |
| 711 | } |
| 712 | |
| 713 | // No need to recurse for a singleton filtered instruction. |
| 714 | // See also Filter::emit*(). |
| 715 | if (getNumFiltered() == 1) { |
| 716 | assert(FilterChooserMap.size() == 1); |
| 717 | return; |
| 718 | } |
| 719 | |
| 720 | // Otherwise, create sub choosers. |
| 721 | for (const auto &Inst : FilteredInstructions) { |
| 722 | // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. |
| 723 | for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) |
| 724 | BitValueArray[StartBit + bitIndex] = Inst.first & (1ULL << bitIndex) |
| 725 | ? BitValue::BIT_TRUE |
| 726 | : BitValue::BIT_FALSE; |
| 727 | |
| 728 | // Delegates to an inferior filter chooser for further processing on this |
| 729 | // category of instructions. |
| 730 | FilterChooserMap.try_emplace( |
| 731 | k: Inst.first, |
| 732 | args: std::make_unique<FilterChooser>(args: Owner.AllInstructions, args: Inst.second, |
| 733 | args: Owner.Operands, args&: BitValueArray, args: Owner)); |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, |
| 738 | uint32_t DestIdx) { |
| 739 | // Any NumToSkip fixups in the current scope can resolve to the |
| 740 | // current location. |
| 741 | for (uint32_t FixupIdx : Fixups) |
| 742 | Table.patchNumToSkip(FixupIdx, DestIdx); |
| 743 | } |
| 744 | |
| 745 | // Emit table entries to decode instructions given a segment or segments |
| 746 | // of bits. |
| 747 | void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { |
| 748 | assert(isUInt<8>(NumBits) && "NumBits overflowed uint8 table entry!" ); |
| 749 | TableInfo.Table.push_back(Item: MCD::OPC_ExtractField); |
| 750 | |
| 751 | TableInfo.Table.insertULEB128(Value: StartBit); |
| 752 | TableInfo.Table.push_back(Item: NumBits); |
| 753 | |
| 754 | // If the NO_FIXED_SEGMENTS_SENTINEL is present, we need to add a new scope |
| 755 | // for this filter. Otherwise, we can skip adding a new scope and any |
| 756 | // patching added will automatically be added to the enclosing scope. |
| 757 | |
| 758 | // If NO_FIXED_SEGMENTS_SENTINEL is present, it will be last entry in |
| 759 | // FilterChooserMap. |
| 760 | |
| 761 | const uint64_t LastFilter = FilterChooserMap.rbegin()->first; |
| 762 | bool HasFallthrough = LastFilter == NO_FIXED_SEGMENTS_SENTINEL; |
| 763 | if (HasFallthrough) |
| 764 | TableInfo.FixupStack.emplace_back(); |
| 765 | |
| 766 | DecoderTable &Table = TableInfo.Table; |
| 767 | |
| 768 | size_t PrevFilter = 0; |
| 769 | for (const auto &[FilterVal, Delegate] : FilterChooserMap) { |
| 770 | // Field value NO_FIXED_SEGMENTS_SENTINEL implies a non-empty set of |
| 771 | // variable instructions. See also recurse(). |
| 772 | if (FilterVal == NO_FIXED_SEGMENTS_SENTINEL) { |
| 773 | // Each scope should always have at least one filter value to check |
| 774 | // for. |
| 775 | assert(PrevFilter != 0 && "empty filter set!" ); |
| 776 | FixupList &CurScope = TableInfo.FixupStack.back(); |
| 777 | // Resolve any NumToSkip fixups in the current scope. |
| 778 | resolveTableFixups(Table, Fixups: CurScope, DestIdx: Table.size()); |
| 779 | |
| 780 | // Delete the scope we have added here. |
| 781 | TableInfo.FixupStack.pop_back(); |
| 782 | |
| 783 | PrevFilter = 0; // Don't re-process the filter's fallthrough. |
| 784 | } else { |
| 785 | // The last filtervalue emitted can be OPC_FilterValue if we are at |
| 786 | // outermost scope. |
| 787 | const uint8_t DecoderOp = |
| 788 | FilterVal == LastFilter && TableInfo.isOutermostScope() |
| 789 | ? MCD::OPC_FilterValueOrFail |
| 790 | : MCD::OPC_FilterValue; |
| 791 | Table.push_back(Item: DecoderOp); |
| 792 | Table.insertULEB128(Value: FilterVal); |
| 793 | if (DecoderOp == MCD::OPC_FilterValue) { |
| 794 | // Reserve space for the NumToSkip entry. We'll backpatch the value |
| 795 | // later. |
| 796 | PrevFilter = Table.insertNumToSkip(); |
| 797 | } else { |
| 798 | PrevFilter = 0; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | // We arrive at a category of instructions with the same segment value. |
| 803 | // Now delegate to the sub filter chooser for further decodings. |
| 804 | // The case may fallthrough, which happens if the remaining well-known |
| 805 | // encoding bits do not match exactly. |
| 806 | Delegate->emitTableEntries(TableInfo); |
| 807 | |
| 808 | // Now that we've emitted the body of the handler, update the NumToSkip |
| 809 | // of the filter itself to be able to skip forward when false. |
| 810 | if (PrevFilter) |
| 811 | Table.patchNumToSkip(FixupIdx: PrevFilter, DestIdx: Table.size()); |
| 812 | } |
| 813 | |
| 814 | // If there is no fallthrough and the final filter was not in the outermost |
| 815 | // scope, then it must be fixed up according to the enclosing scope rather |
| 816 | // than the current position. |
| 817 | if (PrevFilter) |
| 818 | TableInfo.FixupStack.back().push_back(x: PrevFilter); |
| 819 | } |
| 820 | |
| 821 | // Returns the number of fanout produced by the filter. More fanout implies |
| 822 | // the filter distinguishes more categories of instructions. |
| 823 | unsigned Filter::usefulness() const { |
| 824 | return FilteredInstructions.size() + VariableInstructions.empty(); |
| 825 | } |
| 826 | |
| 827 | ////////////////////////////////// |
| 828 | // // |
| 829 | // Filterchooser Implementation // |
| 830 | // // |
| 831 | ////////////////////////////////// |
| 832 | |
| 833 | // Emit the decoder state machine table. Returns a mask of MCD decoder ops |
| 834 | // that were emitted. |
| 835 | unsigned DecoderEmitter::emitTable(formatted_raw_ostream &OS, |
| 836 | DecoderTable &Table, indent Indent, |
| 837 | unsigned BitWidth, StringRef Namespace, |
| 838 | const EncodingIDsVec &EncodingIDs) const { |
| 839 | // We'll need to be able to map from a decoded opcode into the corresponding |
| 840 | // EncodingID for this specific combination of BitWidth and Namespace. This |
| 841 | // is used below to index into NumberedEncodings. |
| 842 | DenseMap<unsigned, unsigned> OpcodeToEncodingID; |
| 843 | OpcodeToEncodingID.reserve(NumEntries: EncodingIDs.size()); |
| 844 | for (const auto &EI : EncodingIDs) |
| 845 | OpcodeToEncodingID[EI.Opcode] = EI.EncodingID; |
| 846 | |
| 847 | OS << Indent << "static const uint8_t DecoderTable" << Namespace << BitWidth |
| 848 | << "[] = {\n" ; |
| 849 | |
| 850 | Indent += 2; |
| 851 | |
| 852 | // Emit ULEB128 encoded value to OS, returning the number of bytes emitted. |
| 853 | auto emitULEB128 = [](DecoderTable::const_iterator &I, |
| 854 | formatted_raw_ostream &OS) { |
| 855 | while (*I >= 128) |
| 856 | OS << (unsigned)*I++ << ", " ; |
| 857 | OS << (unsigned)*I++ << ", " ; |
| 858 | }; |
| 859 | |
| 860 | // Emit `getNumToSkipInBytes()`-byte numtoskip value to OS, returning the |
| 861 | // NumToSkip value. |
| 862 | auto emitNumToSkip = [](DecoderTable::const_iterator &I, |
| 863 | formatted_raw_ostream &OS) { |
| 864 | uint8_t Byte = *I++; |
| 865 | uint32_t NumToSkip = Byte; |
| 866 | OS << (unsigned)Byte << ", " ; |
| 867 | Byte = *I++; |
| 868 | OS << (unsigned)Byte << ", " ; |
| 869 | NumToSkip |= Byte << 8; |
| 870 | if (getNumToSkipInBytes() == 3) { |
| 871 | Byte = *I++; |
| 872 | OS << (unsigned)(Byte) << ", " ; |
| 873 | NumToSkip |= Byte << 16; |
| 874 | } |
| 875 | return NumToSkip; |
| 876 | }; |
| 877 | |
| 878 | // FIXME: We may be able to use the NumToSkip values to recover |
| 879 | // appropriate indentation levels. |
| 880 | DecoderTable::const_iterator I = Table.begin(); |
| 881 | DecoderTable::const_iterator E = Table.end(); |
| 882 | const uint8_t *const EndPtr = Table.data() + Table.size(); |
| 883 | |
| 884 | auto = [&](uint32_t NumToSkip, bool = false) { |
| 885 | uint32_t Index = ((I - Table.begin()) + NumToSkip); |
| 886 | OS << (InComment ? ", " : "// " ); |
| 887 | OS << "Skip to: " << Index; |
| 888 | if (*(I + NumToSkip) == MCD::OPC_Fail) |
| 889 | OS << " (Fail)" ; |
| 890 | }; |
| 891 | |
| 892 | unsigned OpcodeMask = 0; |
| 893 | |
| 894 | while (I != E) { |
| 895 | assert(I < E && "incomplete decode table entry!" ); |
| 896 | |
| 897 | uint64_t Pos = I - Table.begin(); |
| 898 | OS << "/* " << Pos << " */" ; |
| 899 | OS.PadToColumn(NewCol: 12); |
| 900 | |
| 901 | const uint8_t DecoderOp = *I++; |
| 902 | OpcodeMask |= (1 << DecoderOp); |
| 903 | switch (DecoderOp) { |
| 904 | default: |
| 905 | PrintFatalError(Msg: "Invalid decode table opcode: " + Twine((int)DecoderOp) + |
| 906 | " at index " + Twine(Pos)); |
| 907 | case MCD::OPC_ExtractField: { |
| 908 | OS << Indent << "MCD::OPC_ExtractField, " ; |
| 909 | |
| 910 | // ULEB128 encoded start value. |
| 911 | const char *ErrMsg = nullptr; |
| 912 | unsigned Start = decodeULEB128(p: &*I, n: nullptr, end: EndPtr, error: &ErrMsg); |
| 913 | assert(ErrMsg == nullptr && "ULEB128 value too large!" ); |
| 914 | emitULEB128(I, OS); |
| 915 | |
| 916 | unsigned Len = *I++; |
| 917 | OS << Len << ", // Inst{" ; |
| 918 | if (Len > 1) |
| 919 | OS << (Start + Len - 1) << "-" ; |
| 920 | OS << Start << "} ...\n" ; |
| 921 | break; |
| 922 | } |
| 923 | case MCD::OPC_FilterValue: |
| 924 | case MCD::OPC_FilterValueOrFail: { |
| 925 | bool IsFail = DecoderOp == MCD::OPC_FilterValueOrFail; |
| 926 | OS << Indent << "MCD::OPC_FilterValue" << (IsFail ? "OrFail, " : ", " ); |
| 927 | // The filter value is ULEB128 encoded. |
| 928 | emitULEB128(I, OS); |
| 929 | |
| 930 | if (!IsFail) { |
| 931 | uint32_t NumToSkip = emitNumToSkip(I, OS); |
| 932 | emitNumToSkipComment(NumToSkip); |
| 933 | } |
| 934 | OS << '\n'; |
| 935 | break; |
| 936 | } |
| 937 | case MCD::OPC_CheckField: |
| 938 | case MCD::OPC_CheckFieldOrFail: { |
| 939 | bool IsFail = DecoderOp == MCD::OPC_CheckFieldOrFail; |
| 940 | OS << Indent << "MCD::OPC_CheckField" << (IsFail ? "OrFail, " : ", " ); |
| 941 | // ULEB128 encoded start value. |
| 942 | emitULEB128(I, OS); |
| 943 | // 8-bit length. |
| 944 | unsigned Len = *I++; |
| 945 | OS << Len << ", " ; |
| 946 | // ULEB128 encoded field value. |
| 947 | emitULEB128(I, OS); |
| 948 | |
| 949 | if (!IsFail) { |
| 950 | uint32_t NumToSkip = emitNumToSkip(I, OS); |
| 951 | emitNumToSkipComment(NumToSkip); |
| 952 | } |
| 953 | OS << '\n'; |
| 954 | break; |
| 955 | } |
| 956 | case MCD::OPC_CheckPredicate: |
| 957 | case MCD::OPC_CheckPredicateOrFail: { |
| 958 | bool IsFail = DecoderOp == MCD::OPC_CheckPredicateOrFail; |
| 959 | |
| 960 | OS << Indent << "MCD::OPC_CheckPredicate" << (IsFail ? "OrFail, " : ", " ); |
| 961 | emitULEB128(I, OS); |
| 962 | |
| 963 | if (!IsFail) { |
| 964 | uint32_t NumToSkip = emitNumToSkip(I, OS); |
| 965 | emitNumToSkipComment(NumToSkip); |
| 966 | } |
| 967 | OS << '\n'; |
| 968 | break; |
| 969 | } |
| 970 | case MCD::OPC_Decode: |
| 971 | case MCD::OPC_TryDecode: |
| 972 | case MCD::OPC_TryDecodeOrFail: { |
| 973 | bool IsFail = DecoderOp == MCD::OPC_TryDecodeOrFail; |
| 974 | bool IsTry = DecoderOp == MCD::OPC_TryDecode || IsFail; |
| 975 | // Decode the Opcode value. |
| 976 | const char *ErrMsg = nullptr; |
| 977 | unsigned Opc = decodeULEB128(p: &*I, n: nullptr, end: EndPtr, error: &ErrMsg); |
| 978 | assert(ErrMsg == nullptr && "ULEB128 value too large!" ); |
| 979 | |
| 980 | OS << Indent << "MCD::OPC_" << (IsTry ? "Try" : "" ) << "Decode" |
| 981 | << (IsFail ? "OrFail, " : ", " ); |
| 982 | emitULEB128(I, OS); |
| 983 | |
| 984 | // Decoder index. |
| 985 | unsigned DecodeIdx = decodeULEB128(p: &*I, n: nullptr, end: EndPtr, error: &ErrMsg); |
| 986 | assert(ErrMsg == nullptr && "ULEB128 value too large!" ); |
| 987 | emitULEB128(I, OS); |
| 988 | |
| 989 | auto EncI = OpcodeToEncodingID.find(Val: Opc); |
| 990 | assert(EncI != OpcodeToEncodingID.end() && "no encoding entry" ); |
| 991 | auto EncodingID = EncI->second; |
| 992 | |
| 993 | if (!IsTry) { |
| 994 | OS << "// Opcode: " << NumberedEncodings[EncodingID] |
| 995 | << ", DecodeIdx: " << DecodeIdx << '\n'; |
| 996 | break; |
| 997 | } |
| 998 | |
| 999 | // Fallthrough for OPC_TryDecode. |
| 1000 | if (!IsFail) { |
| 1001 | uint32_t NumToSkip = emitNumToSkip(I, OS); |
| 1002 | OS << "// Opcode: " << NumberedEncodings[EncodingID] |
| 1003 | << ", DecodeIdx: " << DecodeIdx; |
| 1004 | emitNumToSkipComment(NumToSkip, /*InComment=*/true); |
| 1005 | } |
| 1006 | OS << '\n'; |
| 1007 | break; |
| 1008 | } |
| 1009 | case MCD::OPC_SoftFail: { |
| 1010 | OS << Indent << "MCD::OPC_SoftFail, " ; |
| 1011 | // Decode the positive mask. |
| 1012 | const char *ErrMsg = nullptr; |
| 1013 | uint64_t PositiveMask = decodeULEB128(p: &*I, n: nullptr, end: EndPtr, error: &ErrMsg); |
| 1014 | assert(ErrMsg == nullptr && "ULEB128 value too large!" ); |
| 1015 | emitULEB128(I, OS); |
| 1016 | |
| 1017 | // Decode the negative mask. |
| 1018 | uint64_t NegativeMask = decodeULEB128(p: &*I, n: nullptr, end: EndPtr, error: &ErrMsg); |
| 1019 | assert(ErrMsg == nullptr && "ULEB128 value too large!" ); |
| 1020 | emitULEB128(I, OS); |
| 1021 | OS << "// +ve mask: 0x" ; |
| 1022 | OS.write_hex(N: PositiveMask); |
| 1023 | OS << ", -ve mask: 0x" ; |
| 1024 | OS.write_hex(N: NegativeMask); |
| 1025 | OS << '\n'; |
| 1026 | break; |
| 1027 | } |
| 1028 | case MCD::OPC_Fail: |
| 1029 | OS << Indent << "MCD::OPC_Fail,\n" ; |
| 1030 | break; |
| 1031 | } |
| 1032 | } |
| 1033 | OS << Indent << "0\n" ; |
| 1034 | |
| 1035 | Indent -= 2; |
| 1036 | |
| 1037 | OS << Indent << "};\n\n" ; |
| 1038 | |
| 1039 | return OpcodeMask; |
| 1040 | } |
| 1041 | |
| 1042 | void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, |
| 1043 | ArrayRef<unsigned> InstrLen) const { |
| 1044 | OS << "static const uint8_t InstrLenTable[] = {\n" ; |
| 1045 | for (unsigned Len : InstrLen) |
| 1046 | OS << Len << ",\n" ; |
| 1047 | OS << "};\n\n" ; |
| 1048 | } |
| 1049 | |
| 1050 | void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, |
| 1051 | PredicateSet &Predicates, |
| 1052 | indent Indent) const { |
| 1053 | // The predicate function is just a big switch statement based on the |
| 1054 | // input predicate index. |
| 1055 | OS << Indent << "static bool checkDecoderPredicate(unsigned Idx, " |
| 1056 | << "const FeatureBitset &Bits) {\n" ; |
| 1057 | Indent += 2; |
| 1058 | OS << Indent << "switch (Idx) {\n" ; |
| 1059 | OS << Indent << "default: llvm_unreachable(\"Invalid index!\");\n" ; |
| 1060 | for (const auto &[Index, Predicate] : enumerate(First&: Predicates)) { |
| 1061 | OS << Indent << "case " << Index << ":\n" ; |
| 1062 | OS << Indent + 2 << "return (" << Predicate << ");\n" ; |
| 1063 | } |
| 1064 | OS << Indent << "}\n" ; |
| 1065 | Indent -= 2; |
| 1066 | OS << Indent << "}\n\n" ; |
| 1067 | } |
| 1068 | |
| 1069 | void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, |
| 1070 | DecoderSet &Decoders, |
| 1071 | indent Indent) const { |
| 1072 | // The decoder function is just a big switch statement or a table of function |
| 1073 | // pointers based on the input decoder index. |
| 1074 | |
| 1075 | // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits |
| 1076 | // It would be better for emitBinaryParser to use a 64-bit tmp whenever |
| 1077 | // possible but fall back to an InsnType-sized tmp for truly large fields. |
| 1078 | StringRef TmpTypeDecl = |
| 1079 | "using TmpType = std::conditional_t<std::is_integral<InsnType>::value, " |
| 1080 | "InsnType, uint64_t>;\n" ; |
| 1081 | StringRef DecodeParams = |
| 1082 | "DecodeStatus S, InsnType insn, MCInst &MI, uint64_t Address, const " |
| 1083 | "MCDisassembler *Decoder, bool &DecodeComplete" ; |
| 1084 | |
| 1085 | if (UseFnTableInDecodeToMCInst) { |
| 1086 | // Emit a function for each case first. |
| 1087 | for (const auto &[Index, Decoder] : enumerate(First&: Decoders)) { |
| 1088 | OS << Indent << "template <typename InsnType>\n" ; |
| 1089 | OS << Indent << "DecodeStatus decodeFn" << Index << "(" << DecodeParams |
| 1090 | << ") {\n" ; |
| 1091 | Indent += 2; |
| 1092 | OS << Indent << TmpTypeDecl; |
| 1093 | OS << Indent << "[[maybe_unused]] TmpType tmp;\n" ; |
| 1094 | OS << Decoder; |
| 1095 | OS << Indent << "return S;\n" ; |
| 1096 | Indent -= 2; |
| 1097 | OS << Indent << "}\n\n" ; |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | OS << Indent << "// Handling " << Decoders.size() << " cases.\n" ; |
| 1102 | OS << Indent << "template <typename InsnType>\n" ; |
| 1103 | OS << Indent << "static DecodeStatus decodeToMCInst(unsigned Idx, " |
| 1104 | << DecodeParams << ") {\n" ; |
| 1105 | Indent += 2; |
| 1106 | OS << Indent << "DecodeComplete = true;\n" ; |
| 1107 | |
| 1108 | if (UseFnTableInDecodeToMCInst) { |
| 1109 | // Build a table of function pointers. |
| 1110 | OS << Indent << "using DecodeFnTy = DecodeStatus (*)(" << DecodeParams |
| 1111 | << ");\n" ; |
| 1112 | OS << Indent << "static constexpr DecodeFnTy decodeFnTable[] = {\n" ; |
| 1113 | for (size_t Index : llvm::seq(Size: Decoders.size())) |
| 1114 | OS << Indent + 2 << "decodeFn" << Index << ",\n" ; |
| 1115 | OS << Indent << "};\n" ; |
| 1116 | OS << Indent << "if (Idx >= " << Decoders.size() << ")\n" ; |
| 1117 | OS << Indent + 2 << "llvm_unreachable(\"Invalid index!\");\n" ; |
| 1118 | OS << Indent |
| 1119 | << "return decodeFnTable[Idx](S, insn, MI, Address, Decoder, " |
| 1120 | "DecodeComplete);\n" ; |
| 1121 | } else { |
| 1122 | OS << Indent << TmpTypeDecl; |
| 1123 | OS << Indent << "TmpType tmp;\n" ; |
| 1124 | OS << Indent << "switch (Idx) {\n" ; |
| 1125 | OS << Indent << "default: llvm_unreachable(\"Invalid index!\");\n" ; |
| 1126 | for (const auto &[Index, Decoder] : enumerate(First&: Decoders)) { |
| 1127 | OS << Indent << "case " << Index << ":\n" ; |
| 1128 | OS << Decoder; |
| 1129 | OS << Indent + 2 << "return S;\n" ; |
| 1130 | } |
| 1131 | OS << Indent << "}\n" ; |
| 1132 | } |
| 1133 | Indent -= 2; |
| 1134 | OS << Indent << "}\n" ; |
| 1135 | } |
| 1136 | |
| 1137 | // Populates the field of the insn given the start position and the number of |
| 1138 | // consecutive bits to scan for. |
| 1139 | // |
| 1140 | // Returns a pair of values (indicator, field), where the indicator is false |
| 1141 | // if there exists any uninitialized bit value in the range and true if all |
| 1142 | // bits are well-known. The second value is the potentially populated field. |
| 1143 | std::pair<bool, uint64_t> FilterChooser::fieldFromInsn(const insn_t &Insn, |
| 1144 | unsigned StartBit, |
| 1145 | unsigned NumBits) const { |
| 1146 | uint64_t Field = 0; |
| 1147 | |
| 1148 | for (unsigned i = 0; i < NumBits; ++i) { |
| 1149 | if (Insn[StartBit + i] == BitValue::BIT_UNSET) |
| 1150 | return {false, Field}; |
| 1151 | |
| 1152 | if (Insn[StartBit + i] == BitValue::BIT_TRUE) |
| 1153 | Field = Field | (1ULL << i); |
| 1154 | } |
| 1155 | |
| 1156 | return {true, Field}; |
| 1157 | } |
| 1158 | |
| 1159 | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| 1160 | /// filter array as a series of chars. |
| 1161 | void FilterChooser::dumpFilterArray(raw_ostream &OS, |
| 1162 | ArrayRef<BitValue> Filter) const { |
| 1163 | for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) |
| 1164 | OS << Filter[bitIndex - 1]; |
| 1165 | } |
| 1166 | |
| 1167 | /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| 1168 | /// dumpFilterArray on each filter chooser up to the top level one. |
| 1169 | void FilterChooser::dumpStack(raw_ostream &OS, const char *prefix) const { |
| 1170 | const FilterChooser *current = this; |
| 1171 | |
| 1172 | while (current) { |
| 1173 | OS << prefix; |
| 1174 | dumpFilterArray(OS, Filter: current->FilterBitValues); |
| 1175 | OS << '\n'; |
| 1176 | current = current->Parent; |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | // Calculates the island(s) needed to decode the instruction. |
| 1181 | // This returns a list of undecoded bits of an instructions, for example, |
| 1182 | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| 1183 | // decoded bits in order to verify that the instruction matches the Opcode. |
| 1184 | unsigned FilterChooser::getIslands(std::vector<Island> &Islands, |
| 1185 | const insn_t &Insn) const { |
| 1186 | uint64_t FieldVal; |
| 1187 | unsigned StartBit; |
| 1188 | |
| 1189 | // 0: Init |
| 1190 | // 1: Water (the bit value does not affect decoding) |
| 1191 | // 2: Island (well-known bit value needed for decoding) |
| 1192 | unsigned State = 0; |
| 1193 | |
| 1194 | for (unsigned i = 0; i < BitWidth; ++i) { |
| 1195 | std::optional<uint64_t> Val = Insn[i].getValue(); |
| 1196 | bool Filtered = PositionFiltered(Idx: i); |
| 1197 | switch (State) { |
| 1198 | default: |
| 1199 | llvm_unreachable("Unreachable code!" ); |
| 1200 | case 0: |
| 1201 | case 1: |
| 1202 | if (Filtered || !Val) { |
| 1203 | State = 1; // Still in Water |
| 1204 | } else { |
| 1205 | State = 2; // Into the Island |
| 1206 | StartBit = i; |
| 1207 | FieldVal = *Val; |
| 1208 | } |
| 1209 | break; |
| 1210 | case 2: |
| 1211 | if (Filtered || !Val) { |
| 1212 | State = 1; // Into the Water |
| 1213 | Islands.push_back(x: {.StartBit: StartBit, .NumBits: i - StartBit, .FieldVal: FieldVal}); |
| 1214 | } else { |
| 1215 | State = 2; // Still in Island |
| 1216 | FieldVal |= *Val << (i - StartBit); |
| 1217 | } |
| 1218 | break; |
| 1219 | } |
| 1220 | } |
| 1221 | // If we are still in Island after the loop, do some housekeeping. |
| 1222 | if (State == 2) |
| 1223 | Islands.push_back(x: {.StartBit: StartBit, .NumBits: BitWidth - StartBit, .FieldVal: FieldVal}); |
| 1224 | |
| 1225 | return Islands.size(); |
| 1226 | } |
| 1227 | |
| 1228 | bool FilterChooser::emitBinaryParser(raw_ostream &OS, indent Indent, |
| 1229 | const OperandInfo &OpInfo) const { |
| 1230 | const std::string &Decoder = OpInfo.Decoder; |
| 1231 | |
| 1232 | bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0; |
| 1233 | |
| 1234 | if (UseInsertBits) { |
| 1235 | OS << Indent << "tmp = 0x" ; |
| 1236 | OS.write_hex(N: OpInfo.InitValue); |
| 1237 | OS << ";\n" ; |
| 1238 | } |
| 1239 | |
| 1240 | for (const EncodingField &EF : OpInfo) { |
| 1241 | OS << Indent; |
| 1242 | if (UseInsertBits) |
| 1243 | OS << "insertBits(tmp, " ; |
| 1244 | else |
| 1245 | OS << "tmp = " ; |
| 1246 | OS << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')'; |
| 1247 | if (UseInsertBits) |
| 1248 | OS << ", " << EF.Offset << ", " << EF.Width << ')'; |
| 1249 | else if (EF.Offset != 0) |
| 1250 | OS << " << " << EF.Offset; |
| 1251 | OS << ";\n" ; |
| 1252 | } |
| 1253 | |
| 1254 | bool OpHasCompleteDecoder; |
| 1255 | if (!Decoder.empty()) { |
| 1256 | OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; |
| 1257 | OS << Indent << "if (!Check(S, " << Decoder |
| 1258 | << "(MI, tmp, Address, Decoder))) { " |
| 1259 | << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; " ) |
| 1260 | << "return MCDisassembler::Fail; }\n" ; |
| 1261 | } else { |
| 1262 | OpHasCompleteDecoder = true; |
| 1263 | OS << Indent << "MI.addOperand(MCOperand::createImm(tmp));\n" ; |
| 1264 | } |
| 1265 | return OpHasCompleteDecoder; |
| 1266 | } |
| 1267 | |
| 1268 | bool FilterChooser::emitDecoder(raw_ostream &OS, indent Indent, |
| 1269 | unsigned Opc) const { |
| 1270 | bool HasCompleteDecoder = true; |
| 1271 | |
| 1272 | for (const auto &Op : Operands.find(x: Opc)->second) { |
| 1273 | // If a custom instruction decoder was specified, use that. |
| 1274 | if (Op.numFields() == 0 && !Op.Decoder.empty()) { |
| 1275 | HasCompleteDecoder = Op.HasCompleteDecoder; |
| 1276 | OS << Indent << "if (!Check(S, " << Op.Decoder |
| 1277 | << "(MI, insn, Address, Decoder))) { " |
| 1278 | << (HasCompleteDecoder ? "" : "DecodeComplete = false; " ) |
| 1279 | << "return MCDisassembler::Fail; }\n" ; |
| 1280 | break; |
| 1281 | } |
| 1282 | |
| 1283 | HasCompleteDecoder &= emitBinaryParser(OS, Indent, OpInfo: Op); |
| 1284 | } |
| 1285 | return HasCompleteDecoder; |
| 1286 | } |
| 1287 | |
| 1288 | std::pair<unsigned, bool> FilterChooser::getDecoderIndex(DecoderSet &Decoders, |
| 1289 | unsigned Opc) const { |
| 1290 | // Build up the predicate string. |
| 1291 | SmallString<256> Decoder; |
| 1292 | // FIXME: emitDecoder() function can take a buffer directly rather than |
| 1293 | // a stream. |
| 1294 | raw_svector_ostream S(Decoder); |
| 1295 | indent Indent(UseFnTableInDecodeToMCInst ? 2 : 4); |
| 1296 | bool HasCompleteDecoder = emitDecoder(OS&: S, Indent, Opc); |
| 1297 | |
| 1298 | // Using the full decoder string as the key value here is a bit |
| 1299 | // heavyweight, but is effective. If the string comparisons become a |
| 1300 | // performance concern, we can implement a mangling of the predicate |
| 1301 | // data easily enough with a map back to the actual string. That's |
| 1302 | // overkill for now, though. |
| 1303 | |
| 1304 | // Make sure the predicate is in the table. |
| 1305 | Decoders.insert(X: CachedHashString(Decoder)); |
| 1306 | // Now figure out the index for when we write out the table. |
| 1307 | DecoderSet::const_iterator P = find(Range&: Decoders, Val: Decoder.str()); |
| 1308 | return {(unsigned)(P - Decoders.begin()), HasCompleteDecoder}; |
| 1309 | } |
| 1310 | |
| 1311 | // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||. |
| 1312 | bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, |
| 1313 | raw_ostream &OS) const { |
| 1314 | if (const auto *D = dyn_cast<DefInit>(Val: &Val)) { |
| 1315 | if (!D->getDef()->isSubClassOf(Name: "SubtargetFeature" )) |
| 1316 | return true; |
| 1317 | OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString() |
| 1318 | << "]" ; |
| 1319 | return false; |
| 1320 | } |
| 1321 | if (const auto *D = dyn_cast<DagInit>(Val: &Val)) { |
| 1322 | std::string Op = D->getOperator()->getAsString(); |
| 1323 | if (Op == "not" && D->getNumArgs() == 1) { |
| 1324 | OS << '!'; |
| 1325 | return emitPredicateMatchAux(Val: *D->getArg(Num: 0), ParenIfBinOp: true, OS); |
| 1326 | } |
| 1327 | if ((Op == "any_of" || Op == "all_of" ) && D->getNumArgs() > 0) { |
| 1328 | bool Paren = D->getNumArgs() > 1 && std::exchange(obj&: ParenIfBinOp, new_val: true); |
| 1329 | if (Paren) |
| 1330 | OS << '('; |
| 1331 | ListSeparator LS(Op == "any_of" ? " || " : " && " ); |
| 1332 | for (auto *Arg : D->getArgs()) { |
| 1333 | OS << LS; |
| 1334 | if (emitPredicateMatchAux(Val: *Arg, ParenIfBinOp, OS)) |
| 1335 | return true; |
| 1336 | } |
| 1337 | if (Paren) |
| 1338 | OS << ')'; |
| 1339 | return false; |
| 1340 | } |
| 1341 | } |
| 1342 | return true; |
| 1343 | } |
| 1344 | |
| 1345 | bool FilterChooser::emitPredicateMatch(raw_ostream &OS, unsigned Opc) const { |
| 1346 | const ListInit *Predicates = |
| 1347 | AllInstructions[Opc].EncodingDef->getValueAsListInit(FieldName: "Predicates" ); |
| 1348 | bool IsFirstEmission = true; |
| 1349 | for (unsigned i = 0; i < Predicates->size(); ++i) { |
| 1350 | const Record *Pred = Predicates->getElementAsRecord(Idx: i); |
| 1351 | if (!Pred->getValue(Name: "AssemblerMatcherPredicate" )) |
| 1352 | continue; |
| 1353 | |
| 1354 | if (!isa<DagInit>(Val: Pred->getValue(Name: "AssemblerCondDag" )->getValue())) |
| 1355 | continue; |
| 1356 | |
| 1357 | if (!IsFirstEmission) |
| 1358 | OS << " && " ; |
| 1359 | if (emitPredicateMatchAux(Val: *Pred->getValueAsDag(FieldName: "AssemblerCondDag" ), |
| 1360 | ParenIfBinOp: Predicates->size() > 1, OS)) |
| 1361 | PrintFatalError(ErrorLoc: Pred->getLoc(), Msg: "Invalid AssemblerCondDag!" ); |
| 1362 | IsFirstEmission = false; |
| 1363 | } |
| 1364 | return !Predicates->empty(); |
| 1365 | } |
| 1366 | |
| 1367 | bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { |
| 1368 | const ListInit *Predicates = |
| 1369 | AllInstructions[Opc].EncodingDef->getValueAsListInit(FieldName: "Predicates" ); |
| 1370 | for (unsigned i = 0; i < Predicates->size(); ++i) { |
| 1371 | const Record *Pred = Predicates->getElementAsRecord(Idx: i); |
| 1372 | if (!Pred->getValue(Name: "AssemblerMatcherPredicate" )) |
| 1373 | continue; |
| 1374 | |
| 1375 | if (isa<DagInit>(Val: Pred->getValue(Name: "AssemblerCondDag" )->getValue())) |
| 1376 | return true; |
| 1377 | } |
| 1378 | return false; |
| 1379 | } |
| 1380 | |
| 1381 | unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, |
| 1382 | StringRef Predicate) const { |
| 1383 | // Using the full predicate string as the key value here is a bit |
| 1384 | // heavyweight, but is effective. If the string comparisons become a |
| 1385 | // performance concern, we can implement a mangling of the predicate |
| 1386 | // data easily enough with a map back to the actual string. That's |
| 1387 | // overkill for now, though. |
| 1388 | |
| 1389 | // Make sure the predicate is in the table. |
| 1390 | TableInfo.Predicates.insert(X: CachedHashString(Predicate)); |
| 1391 | // Now figure out the index for when we write out the table. |
| 1392 | PredicateSet::const_iterator P = find(Range&: TableInfo.Predicates, Val: Predicate); |
| 1393 | return (unsigned)(P - TableInfo.Predicates.begin()); |
| 1394 | } |
| 1395 | |
| 1396 | void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, |
| 1397 | unsigned Opc) const { |
| 1398 | if (!doesOpcodeNeedPredicate(Opc)) |
| 1399 | return; |
| 1400 | |
| 1401 | // Build up the predicate string. |
| 1402 | SmallString<256> Predicate; |
| 1403 | // FIXME: emitPredicateMatch() functions can take a buffer directly rather |
| 1404 | // than a stream. |
| 1405 | raw_svector_ostream PS(Predicate); |
| 1406 | emitPredicateMatch(OS&: PS, Opc); |
| 1407 | |
| 1408 | // Figure out the index into the predicate table for the predicate just |
| 1409 | // computed. |
| 1410 | unsigned PIdx = getPredicateIndex(TableInfo, Predicate: PS.str()); |
| 1411 | |
| 1412 | const uint8_t DecoderOp = TableInfo.isOutermostScope() |
| 1413 | ? MCD::OPC_CheckPredicateOrFail |
| 1414 | : MCD::OPC_CheckPredicate; |
| 1415 | TableInfo.Table.push_back(Item: DecoderOp); |
| 1416 | TableInfo.Table.insertULEB128(Value: PIdx); |
| 1417 | |
| 1418 | if (DecoderOp == MCD::OPC_CheckPredicate) { |
| 1419 | // Push location for NumToSkip backpatching. |
| 1420 | TableInfo.FixupStack.back().push_back(x: TableInfo.Table.insertNumToSkip()); |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, |
| 1425 | unsigned Opc) const { |
| 1426 | const Record *EncodingDef = AllInstructions[Opc].EncodingDef; |
| 1427 | const RecordVal *RV = EncodingDef->getValue(Name: "SoftFail" ); |
| 1428 | const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(Val: RV->getValue()) : nullptr; |
| 1429 | |
| 1430 | if (!SFBits) |
| 1431 | return; |
| 1432 | const BitsInit *InstBits = EncodingDef->getValueAsBitsInit(FieldName: "Inst" ); |
| 1433 | |
| 1434 | APInt PositiveMask(BitWidth, 0ULL); |
| 1435 | APInt NegativeMask(BitWidth, 0ULL); |
| 1436 | for (unsigned i = 0; i < BitWidth; ++i) { |
| 1437 | BitValue B(*SFBits, i); |
| 1438 | BitValue IB(*InstBits, i); |
| 1439 | |
| 1440 | if (B != BitValue::BIT_TRUE) |
| 1441 | continue; |
| 1442 | |
| 1443 | if (IB == BitValue::BIT_FALSE) { |
| 1444 | // The bit is meant to be false, so emit a check to see if it is true. |
| 1445 | PositiveMask.setBit(i); |
| 1446 | } else if (IB == BitValue::BIT_TRUE) { |
| 1447 | // The bit is meant to be true, so emit a check to see if it is false. |
| 1448 | NegativeMask.setBit(i); |
| 1449 | } else { |
| 1450 | // The bit is not set; this must be an error! |
| 1451 | errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " |
| 1452 | << AllInstructions[Opc] << " is set but Inst{" << i |
| 1453 | << "} is unset!\n" |
| 1454 | << " - You can only mark a bit as SoftFail if it is fully defined" |
| 1455 | << " (1/0 - not '?') in Inst\n" ; |
| 1456 | return; |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | bool NeedPositiveMask = PositiveMask.getBoolValue(); |
| 1461 | bool NeedNegativeMask = NegativeMask.getBoolValue(); |
| 1462 | |
| 1463 | if (!NeedPositiveMask && !NeedNegativeMask) |
| 1464 | return; |
| 1465 | |
| 1466 | TableInfo.Table.push_back(Item: MCD::OPC_SoftFail); |
| 1467 | TableInfo.Table.insertULEB128(Value: PositiveMask.getZExtValue()); |
| 1468 | TableInfo.Table.insertULEB128(Value: NegativeMask.getZExtValue()); |
| 1469 | } |
| 1470 | |
| 1471 | // Emits table entries to decode the singleton. |
| 1472 | void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, |
| 1473 | EncodingIDAndOpcode Opc) const { |
| 1474 | std::vector<Island> Islands; |
| 1475 | insn_t Insn; |
| 1476 | insnWithID(Insn, Opcode: Opc.EncodingID); |
| 1477 | |
| 1478 | // Look for islands of undecoded bits of the singleton. |
| 1479 | getIslands(Islands, Insn); |
| 1480 | |
| 1481 | // Emit the predicate table entry if one is needed. |
| 1482 | emitPredicateTableEntry(TableInfo, Opc: Opc.EncodingID); |
| 1483 | |
| 1484 | // Check any additional encoding fields needed. |
| 1485 | for (const Island &Ilnd : reverse(C&: Islands)) { |
| 1486 | unsigned NumBits = Ilnd.NumBits; |
| 1487 | assert(isUInt<8>(NumBits) && "NumBits overflowed uint8 table entry!" ); |
| 1488 | const uint8_t DecoderOp = TableInfo.isOutermostScope() |
| 1489 | ? MCD::OPC_CheckFieldOrFail |
| 1490 | : MCD::OPC_CheckField; |
| 1491 | TableInfo.Table.push_back(Item: DecoderOp); |
| 1492 | |
| 1493 | TableInfo.Table.insertULEB128(Value: Ilnd.StartBit); |
| 1494 | TableInfo.Table.push_back(Item: NumBits); |
| 1495 | TableInfo.Table.insertULEB128(Value: Ilnd.FieldVal); |
| 1496 | |
| 1497 | if (DecoderOp == MCD::OPC_CheckField) { |
| 1498 | // Allocate space in the table for fixup so all our relative position |
| 1499 | // calculations work OK even before we fully resolve the real value here. |
| 1500 | |
| 1501 | // Push location for NumToSkip backpatching. |
| 1502 | TableInfo.FixupStack.back().push_back(x: TableInfo.Table.insertNumToSkip()); |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | // Check for soft failure of the match. |
| 1507 | emitSoftFailTableEntry(TableInfo, Opc: Opc.EncodingID); |
| 1508 | |
| 1509 | auto [DIdx, HasCompleteDecoder] = |
| 1510 | getDecoderIndex(Decoders&: TableInfo.Decoders, Opc: Opc.EncodingID); |
| 1511 | |
| 1512 | // Produce OPC_Decode or OPC_TryDecode opcode based on the information |
| 1513 | // whether the instruction decoder is complete or not. If it is complete |
| 1514 | // then it handles all possible values of remaining variable/unfiltered bits |
| 1515 | // and for any value can determine if the bitpattern is a valid instruction |
| 1516 | // or not. This means OPC_Decode will be the final step in the decoding |
| 1517 | // process. If it is not complete, then the Fail return code from the |
| 1518 | // decoder method indicates that additional processing should be done to see |
| 1519 | // if there is any other instruction that also matches the bitpattern and |
| 1520 | // can decode it. |
| 1521 | const uint8_t DecoderOp = HasCompleteDecoder ? MCD::OPC_Decode |
| 1522 | : (TableInfo.isOutermostScope() |
| 1523 | ? MCD::OPC_TryDecodeOrFail |
| 1524 | : MCD::OPC_TryDecode); |
| 1525 | TableInfo.Table.push_back(Item: DecoderOp); |
| 1526 | NumEncodingsSupported++; |
| 1527 | TableInfo.Table.insertULEB128(Value: Opc.Opcode); |
| 1528 | TableInfo.Table.insertULEB128(Value: DIdx); |
| 1529 | |
| 1530 | if (DecoderOp == MCD::OPC_TryDecode) { |
| 1531 | // Push location for NumToSkip backpatching. |
| 1532 | TableInfo.FixupStack.back().push_back(x: TableInfo.Table.insertNumToSkip()); |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | // Emits table entries to decode the singleton, and then to decode the rest. |
| 1537 | void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, |
| 1538 | const Filter &Best) const { |
| 1539 | EncodingIDAndOpcode Opc = Best.getSingletonOpc(); |
| 1540 | |
| 1541 | // complex singletons need predicate checks from the first singleton |
| 1542 | // to refer forward to the variable filterchooser that follows. |
| 1543 | TableInfo.FixupStack.emplace_back(); |
| 1544 | |
| 1545 | emitSingletonTableEntry(TableInfo, Opc); |
| 1546 | |
| 1547 | resolveTableFixups(Table&: TableInfo.Table, Fixups: TableInfo.FixupStack.back(), |
| 1548 | DestIdx: TableInfo.Table.size()); |
| 1549 | TableInfo.FixupStack.pop_back(); |
| 1550 | |
| 1551 | Best.getVariableFC().emitTableEntries(TableInfo); |
| 1552 | } |
| 1553 | |
| 1554 | // Assign a single filter and run with it. Top level API client can initialize |
| 1555 | // with a single filter to start the filtering process. |
| 1556 | void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, |
| 1557 | bool mixed) { |
| 1558 | Filters.clear(); |
| 1559 | Filters.emplace_back(args&: *this, args&: startBit, args&: numBit, args: true); |
| 1560 | BestIndex = 0; // Sole Filter instance to choose from. |
| 1561 | bestFilter().recurse(); |
| 1562 | } |
| 1563 | |
| 1564 | // reportRegion is a helper function for filterProcessor to mark a region as |
| 1565 | // eligible for use as a filter region. |
| 1566 | void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, |
| 1567 | unsigned BitIndex, bool AllowMixed) { |
| 1568 | if (RA == ATTR_MIXED && AllowMixed) |
| 1569 | Filters.emplace_back(args&: *this, args&: StartBit, args: BitIndex - StartBit, args: true); |
| 1570 | else if (RA == ATTR_ALL_SET && !AllowMixed) |
| 1571 | Filters.emplace_back(args&: *this, args&: StartBit, args: BitIndex - StartBit, args: false); |
| 1572 | } |
| 1573 | |
| 1574 | // FilterProcessor scans the well-known encoding bits of the instructions and |
| 1575 | // builds up a list of candidate filters. It chooses the best filter and |
| 1576 | // recursively descends down the decoding tree. |
| 1577 | bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { |
| 1578 | Filters.clear(); |
| 1579 | BestIndex = -1; |
| 1580 | unsigned numInstructions = Opcodes.size(); |
| 1581 | |
| 1582 | assert(numInstructions && "Filter created with no instructions" ); |
| 1583 | |
| 1584 | // No further filtering is necessary. |
| 1585 | if (numInstructions == 1) |
| 1586 | return true; |
| 1587 | |
| 1588 | // Heuristics. See also doFilter()'s "Heuristics" comment when num of |
| 1589 | // instructions is 3. |
| 1590 | if (AllowMixed && !Greedy) { |
| 1591 | assert(numInstructions == 3); |
| 1592 | |
| 1593 | for (const auto &Opcode : Opcodes) { |
| 1594 | std::vector<Island> Islands; |
| 1595 | insn_t Insn; |
| 1596 | |
| 1597 | insnWithID(Insn, Opcode: Opcode.EncodingID); |
| 1598 | |
| 1599 | // Look for islands of undecoded bits of any instruction. |
| 1600 | if (getIslands(Islands, Insn) > 0) { |
| 1601 | // Found an instruction with island(s). Now just assign a filter. |
| 1602 | runSingleFilter(startBit: Islands[0].StartBit, numBit: Islands[0].NumBits, mixed: true); |
| 1603 | return true; |
| 1604 | } |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | unsigned BitIndex; |
| 1609 | |
| 1610 | // We maintain BIT_WIDTH copies of the bitAttrs automaton. |
| 1611 | // The automaton consumes the corresponding bit from each |
| 1612 | // instruction. |
| 1613 | // |
| 1614 | // Input symbols: 0, 1, and _ (unset). |
| 1615 | // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. |
| 1616 | // Initial state: NONE. |
| 1617 | // |
| 1618 | // (NONE) ------- [01] -> (ALL_SET) |
| 1619 | // (NONE) ------- _ ----> (ALL_UNSET) |
| 1620 | // (ALL_SET) ---- [01] -> (ALL_SET) |
| 1621 | // (ALL_SET) ---- _ ----> (MIXED) |
| 1622 | // (ALL_UNSET) -- [01] -> (MIXED) |
| 1623 | // (ALL_UNSET) -- _ ----> (ALL_UNSET) |
| 1624 | // (MIXED) ------ . ----> (MIXED) |
| 1625 | // (FILTERED)---- . ----> (FILTERED) |
| 1626 | |
| 1627 | std::vector<bitAttr_t> bitAttrs(BitWidth, ATTR_NONE); |
| 1628 | |
| 1629 | // FILTERED bit positions provide no entropy and are not worthy of pursuing. |
| 1630 | // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. |
| 1631 | for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) |
| 1632 | if (FilterBitValues[BitIndex].isSet()) |
| 1633 | bitAttrs[BitIndex] = ATTR_FILTERED; |
| 1634 | |
| 1635 | for (const auto &OpcPair : Opcodes) { |
| 1636 | insn_t insn; |
| 1637 | |
| 1638 | insnWithID(Insn&: insn, Opcode: OpcPair.EncodingID); |
| 1639 | |
| 1640 | for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { |
| 1641 | switch (bitAttrs[BitIndex]) { |
| 1642 | case ATTR_NONE: |
| 1643 | if (insn[BitIndex] == BitValue::BIT_UNSET) |
| 1644 | bitAttrs[BitIndex] = ATTR_ALL_UNSET; |
| 1645 | else |
| 1646 | bitAttrs[BitIndex] = ATTR_ALL_SET; |
| 1647 | break; |
| 1648 | case ATTR_ALL_SET: |
| 1649 | if (insn[BitIndex] == BitValue::BIT_UNSET) |
| 1650 | bitAttrs[BitIndex] = ATTR_MIXED; |
| 1651 | break; |
| 1652 | case ATTR_ALL_UNSET: |
| 1653 | if (insn[BitIndex] != BitValue::BIT_UNSET) |
| 1654 | bitAttrs[BitIndex] = ATTR_MIXED; |
| 1655 | break; |
| 1656 | case ATTR_MIXED: |
| 1657 | case ATTR_FILTERED: |
| 1658 | break; |
| 1659 | } |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | // The regionAttr automaton consumes the bitAttrs automatons' state, |
| 1664 | // lowest-to-highest. |
| 1665 | // |
| 1666 | // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) |
| 1667 | // States: NONE, ALL_SET, MIXED |
| 1668 | // Initial state: NONE |
| 1669 | // |
| 1670 | // (NONE) ----- F --> (NONE) |
| 1671 | // (NONE) ----- S --> (ALL_SET) ; and set region start |
| 1672 | // (NONE) ----- U --> (NONE) |
| 1673 | // (NONE) ----- M --> (MIXED) ; and set region start |
| 1674 | // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region |
| 1675 | // (ALL_SET) -- S --> (ALL_SET) |
| 1676 | // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region |
| 1677 | // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region |
| 1678 | // (MIXED) ---- F --> (NONE) ; and report a MIXED region |
| 1679 | // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region |
| 1680 | // (MIXED) ---- U --> (NONE) ; and report a MIXED region |
| 1681 | // (MIXED) ---- M --> (MIXED) |
| 1682 | |
| 1683 | bitAttr_t RA = ATTR_NONE; |
| 1684 | unsigned StartBit = 0; |
| 1685 | |
| 1686 | for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { |
| 1687 | bitAttr_t bitAttr = bitAttrs[BitIndex]; |
| 1688 | |
| 1689 | assert(bitAttr != ATTR_NONE && "Bit without attributes" ); |
| 1690 | |
| 1691 | switch (RA) { |
| 1692 | case ATTR_NONE: |
| 1693 | switch (bitAttr) { |
| 1694 | case ATTR_FILTERED: |
| 1695 | break; |
| 1696 | case ATTR_ALL_SET: |
| 1697 | StartBit = BitIndex; |
| 1698 | RA = ATTR_ALL_SET; |
| 1699 | break; |
| 1700 | case ATTR_ALL_UNSET: |
| 1701 | break; |
| 1702 | case ATTR_MIXED: |
| 1703 | StartBit = BitIndex; |
| 1704 | RA = ATTR_MIXED; |
| 1705 | break; |
| 1706 | default: |
| 1707 | llvm_unreachable("Unexpected bitAttr!" ); |
| 1708 | } |
| 1709 | break; |
| 1710 | case ATTR_ALL_SET: |
| 1711 | switch (bitAttr) { |
| 1712 | case ATTR_FILTERED: |
| 1713 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1714 | RA = ATTR_NONE; |
| 1715 | break; |
| 1716 | case ATTR_ALL_SET: |
| 1717 | break; |
| 1718 | case ATTR_ALL_UNSET: |
| 1719 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1720 | RA = ATTR_NONE; |
| 1721 | break; |
| 1722 | case ATTR_MIXED: |
| 1723 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1724 | StartBit = BitIndex; |
| 1725 | RA = ATTR_MIXED; |
| 1726 | break; |
| 1727 | default: |
| 1728 | llvm_unreachable("Unexpected bitAttr!" ); |
| 1729 | } |
| 1730 | break; |
| 1731 | case ATTR_MIXED: |
| 1732 | switch (bitAttr) { |
| 1733 | case ATTR_FILTERED: |
| 1734 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1735 | StartBit = BitIndex; |
| 1736 | RA = ATTR_NONE; |
| 1737 | break; |
| 1738 | case ATTR_ALL_SET: |
| 1739 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1740 | StartBit = BitIndex; |
| 1741 | RA = ATTR_ALL_SET; |
| 1742 | break; |
| 1743 | case ATTR_ALL_UNSET: |
| 1744 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1745 | RA = ATTR_NONE; |
| 1746 | break; |
| 1747 | case ATTR_MIXED: |
| 1748 | break; |
| 1749 | default: |
| 1750 | llvm_unreachable("Unexpected bitAttr!" ); |
| 1751 | } |
| 1752 | break; |
| 1753 | case ATTR_ALL_UNSET: |
| 1754 | llvm_unreachable("regionAttr state machine has no ATTR_UNSET state" ); |
| 1755 | case ATTR_FILTERED: |
| 1756 | llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state" ); |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | // At the end, if we're still in ALL_SET or MIXED states, report a region |
| 1761 | switch (RA) { |
| 1762 | case ATTR_NONE: |
| 1763 | break; |
| 1764 | case ATTR_FILTERED: |
| 1765 | break; |
| 1766 | case ATTR_ALL_SET: |
| 1767 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1768 | break; |
| 1769 | case ATTR_ALL_UNSET: |
| 1770 | break; |
| 1771 | case ATTR_MIXED: |
| 1772 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1773 | break; |
| 1774 | } |
| 1775 | |
| 1776 | // We have finished with the filter processings. Now it's time to choose |
| 1777 | // the best performing filter. |
| 1778 | BestIndex = 0; |
| 1779 | bool AllUseless = true; |
| 1780 | unsigned BestScore = 0; |
| 1781 | |
| 1782 | for (const auto &[Idx, Filter] : enumerate(First&: Filters)) { |
| 1783 | unsigned Usefulness = Filter.usefulness(); |
| 1784 | |
| 1785 | if (Usefulness) |
| 1786 | AllUseless = false; |
| 1787 | |
| 1788 | if (Usefulness > BestScore) { |
| 1789 | BestIndex = Idx; |
| 1790 | BestScore = Usefulness; |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | if (!AllUseless) |
| 1795 | bestFilter().recurse(); |
| 1796 | |
| 1797 | return !AllUseless; |
| 1798 | } // end of FilterChooser::filterProcessor(bool) |
| 1799 | |
| 1800 | // Decides on the best configuration of filter(s) to use in order to decode |
| 1801 | // the instructions. A conflict of instructions may occur, in which case we |
| 1802 | // dump the conflict set to the standard error. |
| 1803 | void FilterChooser::doFilter() { |
| 1804 | unsigned Num = Opcodes.size(); |
| 1805 | assert(Num && "FilterChooser created with no instructions" ); |
| 1806 | |
| 1807 | // Try regions of consecutive known bit values first. |
| 1808 | if (filterProcessor(AllowMixed: false)) |
| 1809 | return; |
| 1810 | |
| 1811 | // Then regions of mixed bits (both known and unitialized bit values allowed). |
| 1812 | if (filterProcessor(AllowMixed: true)) |
| 1813 | return; |
| 1814 | |
| 1815 | // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where |
| 1816 | // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a |
| 1817 | // well-known encoding pattern. In such case, we backtrack and scan for the |
| 1818 | // the very first consecutive ATTR_ALL_SET region and assign a filter to it. |
| 1819 | if (Num == 3 && filterProcessor(AllowMixed: true, Greedy: false)) |
| 1820 | return; |
| 1821 | |
| 1822 | // If we come to here, the instruction decoding has failed. |
| 1823 | // Set the BestIndex to -1 to indicate so. |
| 1824 | BestIndex = -1; |
| 1825 | } |
| 1826 | |
| 1827 | // emitTableEntries - Emit state machine entries to decode our share of |
| 1828 | // instructions. |
| 1829 | void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { |
| 1830 | if (Opcodes.size() == 1) { |
| 1831 | // There is only one instruction in the set, which is great! |
| 1832 | // Call emitSingletonDecoder() to see whether there are any remaining |
| 1833 | // encodings bits. |
| 1834 | emitSingletonTableEntry(TableInfo, Opc: Opcodes[0]); |
| 1835 | return; |
| 1836 | } |
| 1837 | |
| 1838 | // Choose the best filter to do the decodings! |
| 1839 | if (BestIndex != -1) { |
| 1840 | const Filter &Best = Filters[BestIndex]; |
| 1841 | if (Best.getNumFiltered() == 1) |
| 1842 | emitSingletonTableEntry(TableInfo, Best); |
| 1843 | else |
| 1844 | Best.emitTableEntry(TableInfo); |
| 1845 | return; |
| 1846 | } |
| 1847 | |
| 1848 | // We don't know how to decode these instructions! Dump the |
| 1849 | // conflict set and bail. |
| 1850 | |
| 1851 | // Print out useful conflict information for postmortem analysis. |
| 1852 | errs() << "Decoding Conflict:\n" ; |
| 1853 | |
| 1854 | dumpStack(OS&: errs(), prefix: "\t\t" ); |
| 1855 | |
| 1856 | for (auto Opcode : Opcodes) { |
| 1857 | const EncodingAndInst &Enc = AllInstructions[Opcode.EncodingID]; |
| 1858 | errs() << '\t' << Enc << ' '; |
| 1859 | dumpBits(OS&: errs(), Bits: getBitsField(Def: *Enc.EncodingDef, FieldName: "Inst" )); |
| 1860 | errs() << '\n'; |
| 1861 | } |
| 1862 | PrintFatalError(Msg: "Decoding conflict encountered" ); |
| 1863 | } |
| 1864 | |
| 1865 | static std::string findOperandDecoderMethod(const Record *Record) { |
| 1866 | std::string Decoder; |
| 1867 | |
| 1868 | const RecordVal *DecoderString = Record->getValue(Name: "DecoderMethod" ); |
| 1869 | const StringInit *String = |
| 1870 | DecoderString ? dyn_cast<StringInit>(Val: DecoderString->getValue()) : nullptr; |
| 1871 | if (String) { |
| 1872 | Decoder = String->getValue().str(); |
| 1873 | if (!Decoder.empty()) |
| 1874 | return Decoder; |
| 1875 | } |
| 1876 | |
| 1877 | if (Record->isSubClassOf(Name: "RegisterOperand" )) |
| 1878 | // Allows use of a DecoderMethod in referenced RegisterClass if set. |
| 1879 | return findOperandDecoderMethod(Record: Record->getValueAsDef(FieldName: "RegClass" )); |
| 1880 | |
| 1881 | if (Record->isSubClassOf(Name: "RegisterClass" )) { |
| 1882 | Decoder = "Decode" + Record->getName().str() + "RegisterClass" ; |
| 1883 | } else if (Record->isSubClassOf(Name: "PointerLikeRegClass" )) { |
| 1884 | Decoder = "DecodePointerLikeRegClass" + |
| 1885 | utostr(X: Record->getValueAsInt(FieldName: "RegClassKind" )); |
| 1886 | } |
| 1887 | |
| 1888 | return Decoder; |
| 1889 | } |
| 1890 | |
| 1891 | OperandInfo getOpInfo(const Record *TypeRecord) { |
| 1892 | const RecordVal *HasCompleteDecoderVal = |
| 1893 | TypeRecord->getValue(Name: "hasCompleteDecoder" ); |
| 1894 | const BitInit *HasCompleteDecoderBit = |
| 1895 | HasCompleteDecoderVal |
| 1896 | ? dyn_cast<BitInit>(Val: HasCompleteDecoderVal->getValue()) |
| 1897 | : nullptr; |
| 1898 | bool HasCompleteDecoder = |
| 1899 | HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true; |
| 1900 | |
| 1901 | return OperandInfo(findOperandDecoderMethod(Record: TypeRecord), HasCompleteDecoder); |
| 1902 | } |
| 1903 | |
| 1904 | static void parseVarLenInstOperand(const Record &Def, |
| 1905 | std::vector<OperandInfo> &Operands, |
| 1906 | const CodeGenInstruction &CGI) { |
| 1907 | |
| 1908 | const RecordVal *RV = Def.getValue(Name: "Inst" ); |
| 1909 | VarLenInst VLI(cast<DagInit>(Val: RV->getValue()), RV); |
| 1910 | SmallVector<int> TiedTo; |
| 1911 | |
| 1912 | for (const auto &[Idx, Op] : enumerate(First: CGI.Operands)) { |
| 1913 | if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0) |
| 1914 | for (auto *Arg : Op.MIOperandInfo->getArgs()) |
| 1915 | Operands.push_back(x: getOpInfo(TypeRecord: cast<DefInit>(Val: Arg)->getDef())); |
| 1916 | else |
| 1917 | Operands.push_back(x: getOpInfo(TypeRecord: Op.Rec)); |
| 1918 | |
| 1919 | int TiedReg = Op.getTiedRegister(); |
| 1920 | TiedTo.push_back(Elt: -1); |
| 1921 | if (TiedReg != -1) { |
| 1922 | TiedTo[Idx] = TiedReg; |
| 1923 | TiedTo[TiedReg] = Idx; |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | unsigned CurrBitPos = 0; |
| 1928 | for (const auto &EncodingSegment : VLI) { |
| 1929 | unsigned Offset = 0; |
| 1930 | StringRef OpName; |
| 1931 | |
| 1932 | if (const StringInit *SI = dyn_cast<StringInit>(Val: EncodingSegment.Value)) { |
| 1933 | OpName = SI->getValue(); |
| 1934 | } else if (const DagInit *DI = dyn_cast<DagInit>(Val: EncodingSegment.Value)) { |
| 1935 | OpName = cast<StringInit>(Val: DI->getArg(Num: 0))->getValue(); |
| 1936 | Offset = cast<IntInit>(Val: DI->getArg(Num: 2))->getValue(); |
| 1937 | } |
| 1938 | |
| 1939 | if (!OpName.empty()) { |
| 1940 | auto OpSubOpPair = |
| 1941 | const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName( |
| 1942 | Op: OpName); |
| 1943 | unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(Op: OpSubOpPair); |
| 1944 | Operands[OpIdx].addField(Base: CurrBitPos, Width: EncodingSegment.BitWidth, Offset); |
| 1945 | if (!EncodingSegment.CustomDecoder.empty()) |
| 1946 | Operands[OpIdx].Decoder = EncodingSegment.CustomDecoder.str(); |
| 1947 | |
| 1948 | int TiedReg = TiedTo[OpSubOpPair.first]; |
| 1949 | if (TiedReg != -1) { |
| 1950 | unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber( |
| 1951 | Op: {TiedReg, OpSubOpPair.second}); |
| 1952 | Operands[OpIdx].addField(Base: CurrBitPos, Width: EncodingSegment.BitWidth, Offset); |
| 1953 | } |
| 1954 | } |
| 1955 | |
| 1956 | CurrBitPos += EncodingSegment.BitWidth; |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | static void debugDumpRecord(const Record &Rec) { |
| 1961 | // Dump the record, so we can see what's going on. |
| 1962 | PrintNote(PrintMsg: [&Rec](raw_ostream &OS) { |
| 1963 | OS << "Dumping record for previous error:\n" ; |
| 1964 | OS << Rec; |
| 1965 | }); |
| 1966 | } |
| 1967 | |
| 1968 | /// For an operand field named OpName: populate OpInfo.InitValue with the |
| 1969 | /// constant-valued bit values, and OpInfo.Fields with the ranges of bits to |
| 1970 | /// insert from the decoded instruction. |
| 1971 | static void addOneOperandFields(const Record &EncodingDef, const BitsInit &Bits, |
| 1972 | std::map<StringRef, StringRef> &TiedNames, |
| 1973 | StringRef OpName, OperandInfo &OpInfo) { |
| 1974 | // Some bits of the operand may be required to be 1 depending on the |
| 1975 | // instruction's encoding. Collect those bits. |
| 1976 | if (const RecordVal *EncodedValue = EncodingDef.getValue(Name: OpName)) |
| 1977 | if (const BitsInit *OpBits = dyn_cast<BitsInit>(Val: EncodedValue->getValue())) |
| 1978 | for (unsigned I = 0; I < OpBits->getNumBits(); ++I) |
| 1979 | if (const BitInit *OpBit = dyn_cast<BitInit>(Val: OpBits->getBit(Bit: I))) |
| 1980 | if (OpBit->getValue()) |
| 1981 | OpInfo.InitValue |= 1ULL << I; |
| 1982 | |
| 1983 | for (unsigned I = 0, J = 0; I != Bits.getNumBits(); I = J) { |
| 1984 | const VarInit *Var; |
| 1985 | unsigned Offset = 0; |
| 1986 | for (; J != Bits.getNumBits(); ++J) { |
| 1987 | const VarBitInit *BJ = dyn_cast<VarBitInit>(Val: Bits.getBit(Bit: J)); |
| 1988 | if (BJ) { |
| 1989 | Var = dyn_cast<VarInit>(Val: BJ->getBitVar()); |
| 1990 | if (I == J) |
| 1991 | Offset = BJ->getBitNum(); |
| 1992 | else if (BJ->getBitNum() != Offset + J - I) |
| 1993 | break; |
| 1994 | } else { |
| 1995 | Var = dyn_cast<VarInit>(Val: Bits.getBit(Bit: J)); |
| 1996 | } |
| 1997 | if (!Var || |
| 1998 | (Var->getName() != OpName && Var->getName() != TiedNames[OpName])) |
| 1999 | break; |
| 2000 | } |
| 2001 | if (I == J) |
| 2002 | ++J; |
| 2003 | else |
| 2004 | OpInfo.addField(Base: I, Width: J - I, Offset); |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | static unsigned |
| 2009 | populateInstruction(const CodeGenTarget &Target, const Record &EncodingDef, |
| 2010 | const CodeGenInstruction &CGI, unsigned Opc, |
| 2011 | std::map<unsigned, std::vector<OperandInfo>> &Operands, |
| 2012 | bool IsVarLenInst) { |
| 2013 | const Record &Def = *CGI.TheDef; |
| 2014 | // If all the bit positions are not specified; do not decode this instruction. |
| 2015 | // We are bound to fail! For proper disassembly, the well-known encoding bits |
| 2016 | // of the instruction must be fully specified. |
| 2017 | |
| 2018 | const BitsInit &Bits = getBitsField(Def: EncodingDef, FieldName: "Inst" ); |
| 2019 | if (Bits.allInComplete()) |
| 2020 | return 0; |
| 2021 | |
| 2022 | std::vector<OperandInfo> InsnOperands; |
| 2023 | |
| 2024 | // If the instruction has specified a custom decoding hook, use that instead |
| 2025 | // of trying to auto-generate the decoder. |
| 2026 | StringRef InstDecoder = EncodingDef.getValueAsString(FieldName: "DecoderMethod" ); |
| 2027 | if (!InstDecoder.empty()) { |
| 2028 | bool HasCompleteInstDecoder = |
| 2029 | EncodingDef.getValueAsBit(FieldName: "hasCompleteDecoder" ); |
| 2030 | InsnOperands.push_back( |
| 2031 | x: OperandInfo(InstDecoder.str(), HasCompleteInstDecoder)); |
| 2032 | Operands[Opc] = std::move(InsnOperands); |
| 2033 | return Bits.getNumBits(); |
| 2034 | } |
| 2035 | |
| 2036 | // Generate a description of the operand of the instruction that we know |
| 2037 | // how to decode automatically. |
| 2038 | // FIXME: We'll need to have a way to manually override this as needed. |
| 2039 | |
| 2040 | // Gather the outputs/inputs of the instruction, so we can find their |
| 2041 | // positions in the encoding. This assumes for now that they appear in the |
| 2042 | // MCInst in the order that they're listed. |
| 2043 | std::vector<std::pair<const Init *, StringRef>> InOutOperands; |
| 2044 | const DagInit *Out = Def.getValueAsDag(FieldName: "OutOperandList" ); |
| 2045 | const DagInit *In = Def.getValueAsDag(FieldName: "InOperandList" ); |
| 2046 | for (const auto &[Idx, Arg] : enumerate(First: Out->getArgs())) |
| 2047 | InOutOperands.emplace_back(args: Arg, args: Out->getArgNameStr(Num: Idx)); |
| 2048 | for (const auto &[Idx, Arg] : enumerate(First: In->getArgs())) |
| 2049 | InOutOperands.emplace_back(args: Arg, args: In->getArgNameStr(Num: Idx)); |
| 2050 | |
| 2051 | // Search for tied operands, so that we can correctly instantiate |
| 2052 | // operands that are not explicitly represented in the encoding. |
| 2053 | std::map<StringRef, StringRef> TiedNames; |
| 2054 | for (const auto &Op : CGI.Operands) { |
| 2055 | for (const auto &[J, CI] : enumerate(First: Op.Constraints)) { |
| 2056 | if (!CI.isTied()) |
| 2057 | continue; |
| 2058 | std::pair<unsigned, unsigned> SO = |
| 2059 | CGI.Operands.getSubOperandNumber(Op: CI.getTiedOperand()); |
| 2060 | StringRef TiedName = CGI.Operands[SO.first].SubOpNames[SO.second]; |
| 2061 | if (TiedName.empty()) |
| 2062 | TiedName = CGI.Operands[SO.first].Name; |
| 2063 | StringRef MyName = Op.SubOpNames[J]; |
| 2064 | if (MyName.empty()) |
| 2065 | MyName = Op.Name; |
| 2066 | |
| 2067 | TiedNames[MyName] = TiedName; |
| 2068 | TiedNames[TiedName] = MyName; |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | if (IsVarLenInst) { |
| 2073 | parseVarLenInstOperand(Def: EncodingDef, Operands&: InsnOperands, CGI); |
| 2074 | } else { |
| 2075 | // For each operand, see if we can figure out where it is encoded. |
| 2076 | for (const auto &Op : InOutOperands) { |
| 2077 | const Init *OpInit = Op.first; |
| 2078 | StringRef OpName = Op.second; |
| 2079 | |
| 2080 | // We're ready to find the instruction encoding locations for this |
| 2081 | // operand. |
| 2082 | |
| 2083 | // First, find the operand type ("OpInit"), and sub-op names |
| 2084 | // ("SubArgDag") if present. |
| 2085 | const DagInit *SubArgDag = dyn_cast<DagInit>(Val: OpInit); |
| 2086 | if (SubArgDag) |
| 2087 | OpInit = SubArgDag->getOperator(); |
| 2088 | const Record *OpTypeRec = cast<DefInit>(Val: OpInit)->getDef(); |
| 2089 | // Lookup the sub-operands from the operand type record (note that only |
| 2090 | // Operand subclasses have MIOperandInfo, see CodeGenInstruction.cpp). |
| 2091 | const DagInit *SubOps = OpTypeRec->isSubClassOf(Name: "Operand" ) |
| 2092 | ? OpTypeRec->getValueAsDag(FieldName: "MIOperandInfo" ) |
| 2093 | : nullptr; |
| 2094 | |
| 2095 | // Lookup the decoder method and construct a new OperandInfo to hold our |
| 2096 | // result. |
| 2097 | OperandInfo OpInfo = getOpInfo(TypeRecord: OpTypeRec); |
| 2098 | |
| 2099 | // If we have named sub-operands... |
| 2100 | if (SubArgDag) { |
| 2101 | // Then there should not be a custom decoder specified on the top-level |
| 2102 | // type. |
| 2103 | if (!OpInfo.Decoder.empty()) { |
| 2104 | PrintError(ErrorLoc: EncodingDef.getLoc(), |
| 2105 | Msg: "DecoderEmitter: operand \"" + OpName + "\" has type \"" + |
| 2106 | OpInit->getAsString() + |
| 2107 | "\" with a custom DecoderMethod, but also named " |
| 2108 | "sub-operands." ); |
| 2109 | continue; |
| 2110 | } |
| 2111 | |
| 2112 | // Decode each of the sub-ops separately. |
| 2113 | assert(SubOps && SubArgDag->getNumArgs() == SubOps->getNumArgs()); |
| 2114 | for (const auto &[I, Arg] : enumerate(First: SubOps->getArgs())) { |
| 2115 | StringRef SubOpName = SubArgDag->getArgNameStr(Num: I); |
| 2116 | OperandInfo SubOpInfo = getOpInfo(TypeRecord: cast<DefInit>(Val: Arg)->getDef()); |
| 2117 | |
| 2118 | addOneOperandFields(EncodingDef, Bits, TiedNames, OpName: SubOpName, |
| 2119 | OpInfo&: SubOpInfo); |
| 2120 | InsnOperands.push_back(x: std::move(SubOpInfo)); |
| 2121 | } |
| 2122 | continue; |
| 2123 | } |
| 2124 | |
| 2125 | // Otherwise, if we have an operand with sub-operands, but they aren't |
| 2126 | // named... |
| 2127 | if (SubOps && OpInfo.Decoder.empty()) { |
| 2128 | // If it's a single sub-operand, and no custom decoder, use the decoder |
| 2129 | // from the one sub-operand. |
| 2130 | if (SubOps->getNumArgs() == 1) |
| 2131 | OpInfo = getOpInfo(TypeRecord: cast<DefInit>(Val: SubOps->getArg(Num: 0))->getDef()); |
| 2132 | |
| 2133 | // If we have multiple sub-ops, there'd better have a custom |
| 2134 | // decoder. (Otherwise we don't know how to populate them properly...) |
| 2135 | if (SubOps->getNumArgs() > 1) { |
| 2136 | PrintError(ErrorLoc: EncodingDef.getLoc(), |
| 2137 | Msg: "DecoderEmitter: operand \"" + OpName + |
| 2138 | "\" uses MIOperandInfo with multiple ops, but doesn't " |
| 2139 | "have a custom decoder!" ); |
| 2140 | debugDumpRecord(Rec: EncodingDef); |
| 2141 | continue; |
| 2142 | } |
| 2143 | } |
| 2144 | |
| 2145 | addOneOperandFields(EncodingDef, Bits, TiedNames, OpName, OpInfo); |
| 2146 | // FIXME: it should be an error not to find a definition for a given |
| 2147 | // operand, rather than just failing to add it to the resulting |
| 2148 | // instruction! (This is a longstanding bug, which will be addressed in an |
| 2149 | // upcoming change.) |
| 2150 | if (OpInfo.numFields() > 0) |
| 2151 | InsnOperands.push_back(x: std::move(OpInfo)); |
| 2152 | } |
| 2153 | } |
| 2154 | Operands[Opc] = std::move(InsnOperands); |
| 2155 | |
| 2156 | #if 0 |
| 2157 | LLVM_DEBUG({ |
| 2158 | // Dumps the instruction encoding bits. |
| 2159 | dumpBits(errs(), Bits); |
| 2160 | |
| 2161 | errs() << '\n'; |
| 2162 | |
| 2163 | // Dumps the list of operand info. |
| 2164 | for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { |
| 2165 | const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; |
| 2166 | const std::string &OperandName = Info.Name; |
| 2167 | const Record &OperandDef = *Info.Rec; |
| 2168 | |
| 2169 | errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n" ; |
| 2170 | } |
| 2171 | }); |
| 2172 | #endif |
| 2173 | |
| 2174 | return Bits.getNumBits(); |
| 2175 | } |
| 2176 | |
| 2177 | // emitFieldFromInstruction - Emit the templated helper function |
| 2178 | // fieldFromInstruction(). |
| 2179 | // On Windows we make sure that this function is not inlined when |
| 2180 | // using the VS compiler. It has a bug which causes the function |
| 2181 | // to be optimized out in some circumstances. See llvm.org/pr38292 |
| 2182 | static void emitFieldFromInstruction(formatted_raw_ostream &OS) { |
| 2183 | OS << R"( |
| 2184 | // Helper functions for extracting fields from encoded instructions. |
| 2185 | // InsnType must either be integral or an APInt-like object that must: |
| 2186 | // * be default-constructible and copy-constructible |
| 2187 | // * be constructible from an APInt (this can be private) |
| 2188 | // * Support insertBits(bits, startBit, numBits) |
| 2189 | // * Support extractBitsAsZExtValue(numBits, startBit) |
| 2190 | // * Support the ~, &, ==, and != operators with other objects of the same type |
| 2191 | // * Support the != and bitwise & with uint64_t |
| 2192 | // * Support put (<<) to raw_ostream& |
| 2193 | template <typename InsnType> |
| 2194 | #if defined(_MSC_VER) && !defined(__clang__) |
| 2195 | __declspec(noinline) |
| 2196 | #endif |
| 2197 | static std::enable_if_t<std::is_integral<InsnType>::value, InsnType> |
| 2198 | fieldFromInstruction(const InsnType &insn, unsigned startBit, |
| 2199 | unsigned numBits) { |
| 2200 | assert(startBit + numBits <= 64 && "Cannot support >64-bit extractions!"); |
| 2201 | assert(startBit + numBits <= (sizeof(InsnType) * 8) && |
| 2202 | "Instruction field out of bounds!"); |
| 2203 | InsnType fieldMask; |
| 2204 | if (numBits == sizeof(InsnType) * 8) |
| 2205 | fieldMask = (InsnType)(-1LL); |
| 2206 | else |
| 2207 | fieldMask = (((InsnType)1 << numBits) - 1) << startBit; |
| 2208 | return (insn & fieldMask) >> startBit; |
| 2209 | } |
| 2210 | |
| 2211 | template <typename InsnType> |
| 2212 | static std::enable_if_t<!std::is_integral<InsnType>::value, uint64_t> |
| 2213 | fieldFromInstruction(const InsnType &insn, unsigned startBit, |
| 2214 | unsigned numBits) { |
| 2215 | return insn.extractBitsAsZExtValue(numBits, startBit); |
| 2216 | } |
| 2217 | )" ; |
| 2218 | } |
| 2219 | |
| 2220 | // emitInsertBits - Emit the templated helper function insertBits(). |
| 2221 | static void emitInsertBits(formatted_raw_ostream &OS) { |
| 2222 | OS << R"( |
| 2223 | // Helper function for inserting bits extracted from an encoded instruction into |
| 2224 | // a field. |
| 2225 | template <typename InsnType> |
| 2226 | static void insertBits(InsnType &field, InsnType bits, unsigned startBit, |
| 2227 | unsigned numBits) { |
| 2228 | if constexpr (std::is_integral<InsnType>::value) { |
| 2229 | assert(startBit + numBits <= sizeof field * 8); |
| 2230 | (void)numBits; |
| 2231 | field |= (InsnType)bits << startBit; |
| 2232 | } else { |
| 2233 | field.insertBits(bits, startBit, numBits); |
| 2234 | } |
| 2235 | } |
| 2236 | )" ; |
| 2237 | } |
| 2238 | |
| 2239 | // emitDecodeInstruction - Emit the templated helper function |
| 2240 | // decodeInstruction(). |
| 2241 | static void emitDecodeInstruction(formatted_raw_ostream &OS, bool IsVarLenInst, |
| 2242 | unsigned OpcodeMask) { |
| 2243 | const bool HasTryDecode = OpcodeMask & ((1 << MCD::OPC_TryDecode) | |
| 2244 | (1 << MCD::OPC_TryDecodeOrFail)); |
| 2245 | const bool HasCheckPredicate = |
| 2246 | OpcodeMask & |
| 2247 | ((1 << MCD::OPC_CheckPredicate) | (1 << MCD::OPC_CheckPredicateOrFail)); |
| 2248 | const bool HasSoftFail = OpcodeMask & (1 << MCD::OPC_SoftFail); |
| 2249 | |
| 2250 | OS << R"( |
| 2251 | static unsigned decodeNumToSkip(const uint8_t *&Ptr) { |
| 2252 | unsigned NumToSkip = *Ptr++; |
| 2253 | NumToSkip |= (*Ptr++) << 8; |
| 2254 | )" ; |
| 2255 | if (getNumToSkipInBytes() == 3) |
| 2256 | OS << " NumToSkip |= (*Ptr++) << 16;\n" ; |
| 2257 | OS << R"( return NumToSkip; |
| 2258 | } |
| 2259 | |
| 2260 | template <typename InsnType> |
| 2261 | static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI, |
| 2262 | InsnType insn, uint64_t Address, |
| 2263 | const MCDisassembler *DisAsm, |
| 2264 | const MCSubtargetInfo &STI)" ; |
| 2265 | if (IsVarLenInst) { |
| 2266 | OS << ",\n " |
| 2267 | "llvm::function_ref<void(APInt &, uint64_t)> makeUp" ; |
| 2268 | } |
| 2269 | OS << ") {\n" ; |
| 2270 | if (HasCheckPredicate) |
| 2271 | OS << " const FeatureBitset &Bits = STI.getFeatureBits();\n" ; |
| 2272 | |
| 2273 | OS << R"( |
| 2274 | const uint8_t *Ptr = DecodeTable; |
| 2275 | uint64_t CurFieldValue = 0; |
| 2276 | DecodeStatus S = MCDisassembler::Success; |
| 2277 | while (true) { |
| 2278 | ptrdiff_t Loc = Ptr - DecodeTable; |
| 2279 | const uint8_t DecoderOp = *Ptr++; |
| 2280 | switch (DecoderOp) { |
| 2281 | default: |
| 2282 | errs() << Loc << ": Unexpected decode table opcode: " |
| 2283 | << (int)DecoderOp << '\n'; |
| 2284 | return MCDisassembler::Fail; |
| 2285 | case MCD::OPC_ExtractField: { |
| 2286 | // Decode the start value. |
| 2287 | unsigned Start = decodeULEB128AndIncUnsafe(Ptr); |
| 2288 | unsigned Len = *Ptr++;)" ; |
| 2289 | if (IsVarLenInst) |
| 2290 | OS << "\n makeUp(insn, Start + Len);" ; |
| 2291 | OS << R"( |
| 2292 | CurFieldValue = fieldFromInstruction(insn, Start, Len); |
| 2293 | LLVM_DEBUG(dbgs() << Loc << ": OPC_ExtractField(" << Start << ", " |
| 2294 | << Len << "): " << CurFieldValue << "\n"); |
| 2295 | break; |
| 2296 | } |
| 2297 | case MCD::OPC_FilterValue: |
| 2298 | case MCD::OPC_FilterValueOrFail: { |
| 2299 | bool IsFail = DecoderOp == MCD::OPC_FilterValueOrFail; |
| 2300 | // Decode the field value. |
| 2301 | uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); |
| 2302 | bool Failed = Val != CurFieldValue; |
| 2303 | unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); |
| 2304 | |
| 2305 | // Note: Print NumToSkip even for OPC_FilterValueOrFail to simplify debug |
| 2306 | // prints. |
| 2307 | LLVM_DEBUG({ |
| 2308 | StringRef OpName = IsFail ? "OPC_FilterValueOrFail" : "OPC_FilterValue"; |
| 2309 | dbgs() << Loc << ": " << OpName << '(' << Val << ", " << NumToSkip |
| 2310 | << ") " << (Failed ? "FAIL:" : "PASS:") |
| 2311 | << " continuing at " << (Ptr - DecodeTable) << '\n'; |
| 2312 | }); |
| 2313 | |
| 2314 | // Perform the filter operation. |
| 2315 | if (Failed) { |
| 2316 | if (IsFail) |
| 2317 | return MCDisassembler::Fail; |
| 2318 | Ptr += NumToSkip; |
| 2319 | } |
| 2320 | break; |
| 2321 | } |
| 2322 | case MCD::OPC_CheckField: |
| 2323 | case MCD::OPC_CheckFieldOrFail: { |
| 2324 | bool IsFail = DecoderOp == MCD::OPC_CheckFieldOrFail; |
| 2325 | // Decode the start value. |
| 2326 | unsigned Start = decodeULEB128AndIncUnsafe(Ptr); |
| 2327 | unsigned Len = *Ptr;)" ; |
| 2328 | if (IsVarLenInst) |
| 2329 | OS << "\n makeUp(insn, Start + Len);" ; |
| 2330 | OS << R"( |
| 2331 | uint64_t FieldValue = fieldFromInstruction(insn, Start, Len); |
| 2332 | // Decode the field value. |
| 2333 | unsigned PtrLen = 0; |
| 2334 | uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen); |
| 2335 | Ptr += PtrLen; |
| 2336 | bool Failed = ExpectedValue != FieldValue; |
| 2337 | unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); |
| 2338 | |
| 2339 | LLVM_DEBUG({ |
| 2340 | StringRef OpName = IsFail ? "OPC_CheckFieldOrFail" : "OPC_CheckField"; |
| 2341 | dbgs() << Loc << ": " << OpName << '(' << Start << ", " << Len << ", " |
| 2342 | << ExpectedValue << ", " << NumToSkip << "): FieldValue = " |
| 2343 | << FieldValue << ", ExpectedValue = " << ExpectedValue << ": " |
| 2344 | << (Failed ? "FAIL\n" : "PASS\n"); |
| 2345 | }); |
| 2346 | |
| 2347 | // If the actual and expected values don't match, skip or fail. |
| 2348 | if (Failed) { |
| 2349 | if (IsFail) |
| 2350 | return MCDisassembler::Fail; |
| 2351 | Ptr += NumToSkip; |
| 2352 | } |
| 2353 | break; |
| 2354 | })" ; |
| 2355 | if (HasCheckPredicate) { |
| 2356 | OS << R"( |
| 2357 | case MCD::OPC_CheckPredicate: |
| 2358 | case MCD::OPC_CheckPredicateOrFail: { |
| 2359 | bool IsFail = DecoderOp == MCD::OPC_CheckPredicateOrFail; |
| 2360 | // Decode the Predicate Index value. |
| 2361 | unsigned PIdx = decodeULEB128AndIncUnsafe(Ptr); |
| 2362 | unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); |
| 2363 | // Check the predicate. |
| 2364 | bool Failed = !checkDecoderPredicate(PIdx, Bits); |
| 2365 | |
| 2366 | LLVM_DEBUG({ |
| 2367 | StringRef OpName = IsFail ? "OPC_CheckPredicateOrFail" : "OPC_CheckPredicate"; |
| 2368 | dbgs() << Loc << ": " << OpName << '(' << PIdx << ", " << NumToSkip |
| 2369 | << "): " << (Failed ? "FAIL\n" : "PASS\n"); |
| 2370 | }); |
| 2371 | |
| 2372 | if (Failed) { |
| 2373 | if (IsFail) |
| 2374 | return MCDisassembler::Fail; |
| 2375 | Ptr += NumToSkip; |
| 2376 | } |
| 2377 | break; |
| 2378 | })" ; |
| 2379 | } |
| 2380 | OS << R"( |
| 2381 | case MCD::OPC_Decode: { |
| 2382 | // Decode the Opcode value. |
| 2383 | unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); |
| 2384 | unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); |
| 2385 | |
| 2386 | MI.clear(); |
| 2387 | MI.setOpcode(Opc); |
| 2388 | bool DecodeComplete;)" ; |
| 2389 | if (IsVarLenInst) { |
| 2390 | OS << "\n unsigned Len = InstrLenTable[Opc];\n" |
| 2391 | << " makeUp(insn, Len);" ; |
| 2392 | } |
| 2393 | OS << R"( |
| 2394 | S = decodeToMCInst(DecodeIdx, S, insn, MI, Address, DisAsm, DecodeComplete); |
| 2395 | assert(DecodeComplete); |
| 2396 | |
| 2397 | LLVM_DEBUG(dbgs() << Loc << ": OPC_Decode: opcode " << Opc |
| 2398 | << ", using decoder " << DecodeIdx << ": " |
| 2399 | << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); |
| 2400 | return S; |
| 2401 | })" ; |
| 2402 | if (HasTryDecode) { |
| 2403 | OS << R"( |
| 2404 | case MCD::OPC_TryDecode: |
| 2405 | case MCD::OPC_TryDecodeOrFail: { |
| 2406 | bool IsFail = DecoderOp == MCD::OPC_TryDecodeOrFail; |
| 2407 | // Decode the Opcode value. |
| 2408 | unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); |
| 2409 | unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); |
| 2410 | unsigned NumToSkip = IsFail ? 0 : decodeNumToSkip(Ptr); |
| 2411 | |
| 2412 | // Perform the decode operation. |
| 2413 | MCInst TmpMI; |
| 2414 | TmpMI.setOpcode(Opc); |
| 2415 | bool DecodeComplete; |
| 2416 | S = decodeToMCInst(DecodeIdx, S, insn, TmpMI, Address, DisAsm, DecodeComplete); |
| 2417 | LLVM_DEBUG(dbgs() << Loc << ": OPC_TryDecode: opcode " << Opc |
| 2418 | << ", using decoder " << DecodeIdx << ": "); |
| 2419 | |
| 2420 | if (DecodeComplete) { |
| 2421 | // Decoding complete. |
| 2422 | LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); |
| 2423 | MI = TmpMI; |
| 2424 | return S; |
| 2425 | } |
| 2426 | assert(S == MCDisassembler::Fail); |
| 2427 | if (IsFail) { |
| 2428 | LLVM_DEBUG(dbgs() << "FAIL: returning FAIL\n"); |
| 2429 | return MCDisassembler::Fail; |
| 2430 | } |
| 2431 | // If the decoding was incomplete, skip. |
| 2432 | Ptr += NumToSkip; |
| 2433 | LLVM_DEBUG(dbgs() << "FAIL: continuing at " << (Ptr - DecodeTable) << "\n"); |
| 2434 | // Reset decode status. This also drops a SoftFail status that could be |
| 2435 | // set before the decode attempt. |
| 2436 | S = MCDisassembler::Success; |
| 2437 | break; |
| 2438 | })" ; |
| 2439 | } |
| 2440 | if (HasSoftFail) { |
| 2441 | OS << R"( |
| 2442 | case MCD::OPC_SoftFail: { |
| 2443 | // Decode the mask values. |
| 2444 | uint64_t PositiveMask = decodeULEB128AndIncUnsafe(Ptr); |
| 2445 | uint64_t NegativeMask = decodeULEB128AndIncUnsafe(Ptr); |
| 2446 | bool Failed = (insn & PositiveMask) != 0 || (~insn & NegativeMask) != 0; |
| 2447 | if (Failed) |
| 2448 | S = MCDisassembler::SoftFail; |
| 2449 | LLVM_DEBUG(dbgs() << Loc << ": OPC_SoftFail: " << (Failed ? "FAIL\n" : "PASS\n")); |
| 2450 | break; |
| 2451 | })" ; |
| 2452 | } |
| 2453 | OS << R"( |
| 2454 | case MCD::OPC_Fail: { |
| 2455 | LLVM_DEBUG(dbgs() << Loc << ": OPC_Fail\n"); |
| 2456 | return MCDisassembler::Fail; |
| 2457 | } |
| 2458 | } |
| 2459 | } |
| 2460 | llvm_unreachable("bogosity detected in disassembler state machine!"); |
| 2461 | } |
| 2462 | |
| 2463 | )" ; |
| 2464 | } |
| 2465 | |
| 2466 | // Helper to propagate SoftFail status. Returns false if the status is Fail; |
| 2467 | // callers are expected to early-exit in that condition. (Note, the '&' operator |
| 2468 | // is correct to propagate the values of this enum; see comment on 'enum |
| 2469 | // DecodeStatus'.) |
| 2470 | static void emitCheck(formatted_raw_ostream &OS) { |
| 2471 | OS << R"( |
| 2472 | static bool Check(DecodeStatus &Out, DecodeStatus In) { |
| 2473 | Out = static_cast<DecodeStatus>(Out & In); |
| 2474 | return Out != MCDisassembler::Fail; |
| 2475 | } |
| 2476 | |
| 2477 | )" ; |
| 2478 | } |
| 2479 | |
| 2480 | // Collect all HwModes referenced by the target for encoding purposes, |
| 2481 | // returning a vector of corresponding names. |
| 2482 | static void collectHwModesReferencedForEncodings( |
| 2483 | const CodeGenHwModes &HWM, std::vector<StringRef> &Names, |
| 2484 | NamespacesHwModesMap &NamespacesWithHwModes) { |
| 2485 | SmallBitVector BV(HWM.getNumModeIds()); |
| 2486 | for (const auto &MS : HWM.getHwModeSelects()) { |
| 2487 | for (const HwModeSelect::PairType &P : MS.second.Items) { |
| 2488 | if (P.second->isSubClassOf(Name: "InstructionEncoding" )) { |
| 2489 | std::string DecoderNamespace = |
| 2490 | P.second->getValueAsString(FieldName: "DecoderNamespace" ).str(); |
| 2491 | if (P.first == DefaultMode) { |
| 2492 | NamespacesWithHwModes[DecoderNamespace].insert(x: "" ); |
| 2493 | } else { |
| 2494 | NamespacesWithHwModes[DecoderNamespace].insert( |
| 2495 | x: HWM.getMode(Id: P.first).Name); |
| 2496 | } |
| 2497 | BV.set(P.first); |
| 2498 | } |
| 2499 | } |
| 2500 | } |
| 2501 | transform(Range: BV.set_bits(), d_first: std::back_inserter(x&: Names), F: [&HWM](const int &M) { |
| 2502 | if (M == DefaultMode) |
| 2503 | return StringRef("" ); |
| 2504 | return HWM.getModeName(Id: M, /*IncludeDefault=*/true); |
| 2505 | }); |
| 2506 | } |
| 2507 | |
| 2508 | static void |
| 2509 | handleHwModesUnrelatedEncodings(const CodeGenInstruction *Instr, |
| 2510 | ArrayRef<StringRef> HwModeNames, |
| 2511 | NamespacesHwModesMap &NamespacesWithHwModes, |
| 2512 | std::vector<EncodingAndInst> &GlobalEncodings) { |
| 2513 | const Record *InstDef = Instr->TheDef; |
| 2514 | |
| 2515 | switch (DecoderEmitterSuppressDuplicates) { |
| 2516 | case SUPPRESSION_DISABLE: { |
| 2517 | for (StringRef HwModeName : HwModeNames) |
| 2518 | GlobalEncodings.emplace_back(args&: InstDef, args&: Instr, args&: HwModeName); |
| 2519 | break; |
| 2520 | } |
| 2521 | case SUPPRESSION_LEVEL1: { |
| 2522 | std::string DecoderNamespace = |
| 2523 | InstDef->getValueAsString(FieldName: "DecoderNamespace" ).str(); |
| 2524 | auto It = NamespacesWithHwModes.find(x: DecoderNamespace); |
| 2525 | if (It != NamespacesWithHwModes.end()) { |
| 2526 | for (StringRef HwModeName : It->second) |
| 2527 | GlobalEncodings.emplace_back(args&: InstDef, args&: Instr, args&: HwModeName); |
| 2528 | } else { |
| 2529 | // Only emit the encoding once, as it's DecoderNamespace doesn't |
| 2530 | // contain any HwModes. |
| 2531 | GlobalEncodings.emplace_back(args&: InstDef, args&: Instr, args: "" ); |
| 2532 | } |
| 2533 | break; |
| 2534 | } |
| 2535 | case SUPPRESSION_LEVEL2: |
| 2536 | GlobalEncodings.emplace_back(args&: InstDef, args&: Instr, args: "" ); |
| 2537 | break; |
| 2538 | } |
| 2539 | } |
| 2540 | |
| 2541 | // Emits disassembler code for instruction decoding. |
| 2542 | void DecoderEmitter::run(raw_ostream &o) { |
| 2543 | formatted_raw_ostream OS(o); |
| 2544 | OS << R"( |
| 2545 | #include "llvm/MC/MCInst.h" |
| 2546 | #include "llvm/MC/MCSubtargetInfo.h" |
| 2547 | #include "llvm/Support/DataTypes.h" |
| 2548 | #include "llvm/Support/Debug.h" |
| 2549 | #include "llvm/Support/LEB128.h" |
| 2550 | #include "llvm/Support/raw_ostream.h" |
| 2551 | #include "llvm/TargetParser/SubtargetFeature.h" |
| 2552 | #include <assert.h> |
| 2553 | |
| 2554 | namespace { |
| 2555 | )" ; |
| 2556 | |
| 2557 | emitFieldFromInstruction(OS); |
| 2558 | emitInsertBits(OS); |
| 2559 | emitCheck(OS); |
| 2560 | |
| 2561 | Target.reverseBitsForLittleEndianEncoding(); |
| 2562 | |
| 2563 | // Parameterize the decoders based on namespace and instruction width. |
| 2564 | |
| 2565 | // First, collect all encoding-related HwModes referenced by the target. |
| 2566 | // And establish a mapping table between DecoderNamespace and HwMode. |
| 2567 | // If HwModeNames is empty, add the empty string so we always have one HwMode. |
| 2568 | const CodeGenHwModes &HWM = Target.getHwModes(); |
| 2569 | std::vector<StringRef> HwModeNames; |
| 2570 | NamespacesHwModesMap NamespacesWithHwModes; |
| 2571 | collectHwModesReferencedForEncodings(HWM, Names&: HwModeNames, NamespacesWithHwModes); |
| 2572 | if (HwModeNames.empty()) |
| 2573 | HwModeNames.push_back(x: "" ); |
| 2574 | |
| 2575 | const auto &NumberedInstructions = Target.getInstructionsByEnumValue(); |
| 2576 | NumberedEncodings.reserve(n: NumberedInstructions.size()); |
| 2577 | for (const auto &NumberedInstruction : NumberedInstructions) { |
| 2578 | const Record *InstDef = NumberedInstruction->TheDef; |
| 2579 | if (const RecordVal *RV = InstDef->getValue(Name: "EncodingInfos" )) { |
| 2580 | if (const DefInit *DI = dyn_cast_or_null<DefInit>(Val: RV->getValue())) { |
| 2581 | EncodingInfoByHwMode EBM(DI->getDef(), HWM); |
| 2582 | for (auto &[ModeId, Encoding] : EBM) { |
| 2583 | // DecoderTables with DefaultMode should not have any suffix. |
| 2584 | if (ModeId == DefaultMode) { |
| 2585 | NumberedEncodings.emplace_back(args&: Encoding, args: NumberedInstruction, args: "" ); |
| 2586 | } else { |
| 2587 | NumberedEncodings.emplace_back(args&: Encoding, args: NumberedInstruction, |
| 2588 | args: HWM.getMode(Id: ModeId).Name); |
| 2589 | } |
| 2590 | } |
| 2591 | continue; |
| 2592 | } |
| 2593 | } |
| 2594 | // This instruction is encoded the same on all HwModes. |
| 2595 | // According to user needs, provide varying degrees of suppression. |
| 2596 | handleHwModesUnrelatedEncodings(Instr: NumberedInstruction, HwModeNames, |
| 2597 | NamespacesWithHwModes, GlobalEncodings&: NumberedEncodings); |
| 2598 | } |
| 2599 | for (const Record *NumberedAlias : |
| 2600 | RK.getAllDerivedDefinitions(ClassName: "AdditionalEncoding" )) |
| 2601 | NumberedEncodings.emplace_back( |
| 2602 | args&: NumberedAlias, |
| 2603 | args: &Target.getInstruction(InstRec: NumberedAlias->getValueAsDef(FieldName: "AliasOf" ))); |
| 2604 | |
| 2605 | std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>> |
| 2606 | OpcMap; |
| 2607 | std::map<unsigned, std::vector<OperandInfo>> Operands; |
| 2608 | std::vector<unsigned> InstrLen; |
| 2609 | bool IsVarLenInst = Target.hasVariableLengthEncodings(); |
| 2610 | unsigned MaxInstLen = 0; |
| 2611 | |
| 2612 | for (const auto &[NEI, NumberedEncoding] : enumerate(First&: NumberedEncodings)) { |
| 2613 | const Record *EncodingDef = NumberedEncoding.EncodingDef; |
| 2614 | const CodeGenInstruction *Inst = NumberedEncoding.Inst; |
| 2615 | const Record *Def = Inst->TheDef; |
| 2616 | unsigned Size = EncodingDef->getValueAsInt(FieldName: "Size" ); |
| 2617 | if (Def->getValueAsString(FieldName: "Namespace" ) == "TargetOpcode" || |
| 2618 | Def->getValueAsBit(FieldName: "isPseudo" ) || |
| 2619 | Def->getValueAsBit(FieldName: "isAsmParserOnly" ) || |
| 2620 | Def->getValueAsBit(FieldName: "isCodeGenOnly" )) { |
| 2621 | NumEncodingsLackingDisasm++; |
| 2622 | continue; |
| 2623 | } |
| 2624 | |
| 2625 | if (NEI < NumberedInstructions.size()) |
| 2626 | NumInstructions++; |
| 2627 | NumEncodings++; |
| 2628 | |
| 2629 | if (!Size && !IsVarLenInst) |
| 2630 | continue; |
| 2631 | |
| 2632 | if (IsVarLenInst) |
| 2633 | InstrLen.resize(new_size: NumberedInstructions.size(), x: 0); |
| 2634 | |
| 2635 | if (unsigned Len = populateInstruction(Target, EncodingDef: *EncodingDef, CGI: *Inst, Opc: NEI, |
| 2636 | Operands, IsVarLenInst)) { |
| 2637 | if (IsVarLenInst) { |
| 2638 | MaxInstLen = std::max(a: MaxInstLen, b: Len); |
| 2639 | InstrLen[NEI] = Len; |
| 2640 | } |
| 2641 | std::string DecoderNamespace = |
| 2642 | EncodingDef->getValueAsString(FieldName: "DecoderNamespace" ).str(); |
| 2643 | if (!NumberedEncoding.HwModeName.empty()) |
| 2644 | DecoderNamespace += "_" + NumberedEncoding.HwModeName.str(); |
| 2645 | OpcMap[{DecoderNamespace, Size}].emplace_back( |
| 2646 | args&: NEI, args: Target.getInstrIntValue(R: Def)); |
| 2647 | } else { |
| 2648 | NumEncodingsOmitted++; |
| 2649 | } |
| 2650 | } |
| 2651 | |
| 2652 | DecoderTableInfo TableInfo; |
| 2653 | unsigned OpcodeMask = 0; |
| 2654 | for (const auto &[NSAndByteSize, EncodingIDs] : OpcMap) { |
| 2655 | const std::string &DecoderNamespace = NSAndByteSize.first; |
| 2656 | const unsigned BitWidth = 8 * NSAndByteSize.second; |
| 2657 | // Emit the decoder for this namespace+width combination. |
| 2658 | FilterChooser FC(NumberedEncodings, EncodingIDs, Operands, |
| 2659 | IsVarLenInst ? MaxInstLen : BitWidth, this); |
| 2660 | |
| 2661 | // The decode table is cleared for each top level decoder function. The |
| 2662 | // predicates and decoders themselves, however, are shared across all |
| 2663 | // decoders to give more opportunities for uniqueing. |
| 2664 | TableInfo.Table.clear(); |
| 2665 | TableInfo.FixupStack.clear(); |
| 2666 | TableInfo.FixupStack.emplace_back(); |
| 2667 | FC.emitTableEntries(TableInfo); |
| 2668 | // Any NumToSkip fixups in the top level scope can resolve to the |
| 2669 | // OPC_Fail at the end of the table. |
| 2670 | assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!" ); |
| 2671 | // Resolve any NumToSkip fixups in the current scope. |
| 2672 | resolveTableFixups(Table&: TableInfo.Table, Fixups: TableInfo.FixupStack.back(), |
| 2673 | DestIdx: TableInfo.Table.size()); |
| 2674 | TableInfo.FixupStack.clear(); |
| 2675 | |
| 2676 | TableInfo.Table.push_back(Item: MCD::OPC_Fail); |
| 2677 | |
| 2678 | // Print the table to the output stream. |
| 2679 | OpcodeMask |= emitTable(OS, Table&: TableInfo.Table, Indent: indent(0), BitWidth: FC.getBitWidth(), |
| 2680 | Namespace: DecoderNamespace, EncodingIDs); |
| 2681 | } |
| 2682 | |
| 2683 | // For variable instruction, we emit a instruction length table |
| 2684 | // to let the decoder know how long the instructions are. |
| 2685 | // You can see example usage in M68k's disassembler. |
| 2686 | if (IsVarLenInst) |
| 2687 | emitInstrLenTable(OS, InstrLen); |
| 2688 | |
| 2689 | const bool HasCheckPredicate = |
| 2690 | OpcodeMask & |
| 2691 | ((1 << MCD::OPC_CheckPredicate) | (1 << MCD::OPC_CheckPredicateOrFail)); |
| 2692 | |
| 2693 | // Emit the predicate function. |
| 2694 | if (HasCheckPredicate) |
| 2695 | emitPredicateFunction(OS, Predicates&: TableInfo.Predicates, Indent: indent(0)); |
| 2696 | |
| 2697 | // Emit the decoder function. |
| 2698 | emitDecoderFunction(OS, Decoders&: TableInfo.Decoders, Indent: indent(0)); |
| 2699 | |
| 2700 | // Emit the main entry point for the decoder, decodeInstruction(). |
| 2701 | emitDecodeInstruction(OS, IsVarLenInst, OpcodeMask); |
| 2702 | |
| 2703 | OS << "\n} // namespace\n" ; |
| 2704 | } |
| 2705 | |
| 2706 | void llvm::EmitDecoder(const RecordKeeper &RK, raw_ostream &OS, |
| 2707 | StringRef PredicateNamespace) { |
| 2708 | DecoderEmitter(RK, PredicateNamespace).run(o&: OS); |
| 2709 | } |
| 2710 | |