1 | //===- GlobalISelCombinerMatchTableEmitter.cpp - --------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file Generate a combiner implementation for GlobalISel from a declarative |
10 | /// syntax using GlobalISelMatchTable. |
11 | /// |
12 | /// Usually, TableGen backends use "assert is an error" as a means to report |
13 | /// invalid input. They try to diagnose common case but don't try very hard and |
14 | /// crashes can be common. This backend aims to behave closer to how a language |
15 | /// compiler frontend would behave: we try extra hard to diagnose invalid inputs |
16 | /// early, and any crash should be considered a bug (= a feature or diagnostic |
17 | /// is missing). |
18 | /// |
19 | /// While this can make the backend a bit more complex than it needs to be, it |
20 | /// pays off because MIR patterns can get complicated. Giving useful error |
21 | /// messages to combine writers can help boost their productivity. |
22 | /// |
23 | /// As with anything, a good balance has to be found. We also don't want to |
24 | /// write hundreds of lines of code to detect edge cases. In practice, crashing |
25 | /// very occasionally, or giving poor errors in some rare instances, is fine. |
26 | /// |
27 | //===----------------------------------------------------------------------===// |
28 | |
29 | #include "Basic/CodeGenIntrinsics.h" |
30 | #include "Common/CodeGenInstruction.h" |
31 | #include "Common/CodeGenTarget.h" |
32 | #include "Common/GlobalISel/CXXPredicates.h" |
33 | #include "Common/GlobalISel/CodeExpander.h" |
34 | #include "Common/GlobalISel/CodeExpansions.h" |
35 | #include "Common/GlobalISel/CombinerUtils.h" |
36 | #include "Common/GlobalISel/GlobalISelMatchTable.h" |
37 | #include "Common/GlobalISel/GlobalISelMatchTableExecutorEmitter.h" |
38 | #include "Common/GlobalISel/PatternParser.h" |
39 | #include "Common/GlobalISel/Patterns.h" |
40 | #include "Common/SubtargetFeatureInfo.h" |
41 | #include "llvm/ADT/APInt.h" |
42 | #include "llvm/ADT/EquivalenceClasses.h" |
43 | #include "llvm/ADT/MapVector.h" |
44 | #include "llvm/ADT/Statistic.h" |
45 | #include "llvm/ADT/StringExtras.h" |
46 | #include "llvm/ADT/StringSet.h" |
47 | #include "llvm/Support/CommandLine.h" |
48 | #include "llvm/Support/Debug.h" |
49 | #include "llvm/Support/PrettyStackTrace.h" |
50 | #include "llvm/Support/ScopedPrinter.h" |
51 | #include "llvm/TableGen/Error.h" |
52 | #include "llvm/TableGen/Record.h" |
53 | #include "llvm/TableGen/StringMatcher.h" |
54 | #include "llvm/TableGen/TGTimer.h" |
55 | #include "llvm/TableGen/TableGenBackend.h" |
56 | #include <cstdint> |
57 | |
58 | using namespace llvm; |
59 | using namespace llvm::gi; |
60 | |
61 | #define DEBUG_TYPE "gicombiner-emitter" |
62 | |
63 | namespace { |
64 | cl::OptionCategory |
65 | GICombinerEmitterCat("Options for -gen-global-isel-combiner" ); |
66 | cl::opt<bool> StopAfterParse( |
67 | "gicombiner-stop-after-parse" , |
68 | cl::desc("Stop processing after parsing rules and dump state" ), |
69 | cl::cat(GICombinerEmitterCat)); |
70 | cl::list<std::string> |
71 | SelectedCombiners("combiners" , cl::desc("Emit the specified combiners" ), |
72 | cl::cat(GICombinerEmitterCat), cl::CommaSeparated); |
73 | cl::opt<bool> DebugCXXPreds( |
74 | "gicombiner-debug-cxxpreds" , |
75 | cl::desc("Add Contextual/Debug comments to all C++ predicates" ), |
76 | cl::cat(GICombinerEmitterCat)); |
77 | cl::opt<bool> DebugTypeInfer("gicombiner-debug-typeinfer" , |
78 | cl::desc("Print type inference debug logs" ), |
79 | cl::cat(GICombinerEmitterCat)); |
80 | |
81 | constexpr StringLiteral CXXCustomActionPrefix = "GICXXCustomAction_" ; |
82 | constexpr StringLiteral CXXPredPrefix = "GICXXPred_MI_Predicate_" ; |
83 | constexpr StringLiteral MatchDataClassName = "GIDefMatchData" ; |
84 | |
85 | //===- CodeExpansions Helpers --------------------------------------------===// |
86 | |
87 | void declareInstExpansion(CodeExpansions &CE, const InstructionMatcher &IM, |
88 | StringRef Name) { |
89 | CE.declare(Name, Expansion: "State.MIs[" + to_string(Value: IM.getInsnVarID()) + "]" ); |
90 | } |
91 | |
92 | void declareInstExpansion(CodeExpansions &CE, const BuildMIAction &A, |
93 | StringRef Name) { |
94 | // Note: we use redeclare here because this may overwrite a matcher inst |
95 | // expansion. |
96 | CE.redeclare(Name, Expansion: "OutMIs[" + to_string(Value: A.getInsnID()) + "]" ); |
97 | } |
98 | |
99 | void declareOperandExpansion(CodeExpansions &CE, const OperandMatcher &OM, |
100 | StringRef Name) { |
101 | if (OM.isVariadic()) { |
102 | CE.declare(Name, Expansion: "getRemainingOperands(*State.MIs[" + |
103 | to_string(Value: OM.getInsnVarID()) + "], " + |
104 | to_string(Value: OM.getOpIdx()) + ")" ); |
105 | } else { |
106 | CE.declare(Name, Expansion: "State.MIs[" + to_string(Value: OM.getInsnVarID()) + |
107 | "]->getOperand(" + to_string(Value: OM.getOpIdx()) + ")" ); |
108 | } |
109 | } |
110 | |
111 | void declareTempRegExpansion(CodeExpansions &CE, unsigned TempRegID, |
112 | StringRef Name) { |
113 | CE.declare(Name, Expansion: "State.TempRegisters[" + to_string(Value: TempRegID) + "]" ); |
114 | } |
115 | |
116 | //===- Misc. Helpers -----------------------------------------------------===// |
117 | |
118 | template <typename Container> auto keys(Container &&C) { |
119 | return map_range(C, [](auto &Entry) -> auto & { return Entry.first; }); |
120 | } |
121 | |
122 | template <typename Container> auto values(Container &&C) { |
123 | return map_range(C, [](auto &Entry) -> auto & { return Entry.second; }); |
124 | } |
125 | |
126 | std::string getIsEnabledPredicateEnumName(unsigned CombinerRuleID) { |
127 | return "GICXXPred_Simple_IsRule" + to_string(Value: CombinerRuleID) + "Enabled" ; |
128 | } |
129 | |
130 | //===- MatchTable Helpers ------------------------------------------------===// |
131 | |
132 | LLTCodeGen getLLTCodeGen(const PatternType &PT) { |
133 | return *MVTToLLT(SVT: getValueType(Rec: PT.getLLTRecord())); |
134 | } |
135 | |
136 | //===- PrettyStackTrace Helpers ------------------------------------------===// |
137 | |
138 | class PrettyStackTraceParse : public PrettyStackTraceEntry { |
139 | const Record &Def; |
140 | |
141 | public: |
142 | PrettyStackTraceParse(const Record &Def) : Def(Def) {} |
143 | |
144 | void print(raw_ostream &OS) const override { |
145 | if (Def.isSubClassOf(Name: "GICombineRule" )) |
146 | OS << "Parsing GICombineRule '" << Def.getName() << "'" ; |
147 | else if (Def.isSubClassOf(Name: PatFrag::ClassName)) |
148 | OS << "Parsing " << PatFrag::ClassName << " '" << Def.getName() << "'" ; |
149 | else |
150 | OS << "Parsing '" << Def.getName() << "'" ; |
151 | OS << '\n'; |
152 | } |
153 | }; |
154 | |
155 | class PrettyStackTraceEmit : public PrettyStackTraceEntry { |
156 | const Record &Def; |
157 | const Pattern *Pat = nullptr; |
158 | |
159 | public: |
160 | PrettyStackTraceEmit(const Record &Def, const Pattern *Pat = nullptr) |
161 | : Def(Def), Pat(Pat) {} |
162 | |
163 | void print(raw_ostream &OS) const override { |
164 | if (Def.isSubClassOf(Name: "GICombineRule" )) |
165 | OS << "Emitting GICombineRule '" << Def.getName() << "'" ; |
166 | else if (Def.isSubClassOf(Name: PatFrag::ClassName)) |
167 | OS << "Emitting " << PatFrag::ClassName << " '" << Def.getName() << "'" ; |
168 | else |
169 | OS << "Emitting '" << Def.getName() << "'" ; |
170 | |
171 | if (Pat) |
172 | OS << " [" << Pat->getKindName() << " '" << Pat->getName() << "']" ; |
173 | OS << '\n'; |
174 | } |
175 | }; |
176 | |
177 | //===- CombineRuleOperandTypeChecker --------------------------------------===// |
178 | |
179 | /// This is a wrapper around OperandTypeChecker specialized for Combiner Rules. |
180 | /// On top of doing the same things as OperandTypeChecker, this also attempts to |
181 | /// infer as many types as possible for temporary register defs & immediates in |
182 | /// apply patterns. |
183 | /// |
184 | /// The inference is trivial and leverages the MCOI OperandTypes encoded in |
185 | /// CodeGenInstructions to infer types across patterns in a CombineRule. It's |
186 | /// thus very limited and only supports CodeGenInstructions (but that's the main |
187 | /// use case so it's fine). |
188 | /// |
189 | /// We only try to infer untyped operands in apply patterns when they're temp |
190 | /// reg defs, or immediates. Inference always outputs a `TypeOf<$x>` where $x is |
191 | /// a named operand from a match pattern. |
192 | class CombineRuleOperandTypeChecker : private OperandTypeChecker { |
193 | public: |
194 | CombineRuleOperandTypeChecker(const Record &RuleDef, |
195 | const OperandTable &MatchOpTable) |
196 | : OperandTypeChecker(RuleDef.getLoc()), RuleDef(RuleDef), |
197 | MatchOpTable(MatchOpTable) {} |
198 | |
199 | /// Records and checks a 'match' pattern. |
200 | bool processMatchPattern(InstructionPattern &P); |
201 | |
202 | /// Records and checks an 'apply' pattern. |
203 | bool processApplyPattern(InstructionPattern &P); |
204 | |
205 | /// Propagates types, then perform type inference and do a second round of |
206 | /// propagation in the apply patterns only if any types were inferred. |
207 | void propagateAndInferTypes(); |
208 | |
209 | private: |
210 | /// TypeEquivalenceClasses are groups of operands of an instruction that share |
211 | /// a common type. |
212 | /// |
213 | /// e.g. [[a, b], [c, d]] means a and b have the same type, and c and |
214 | /// d have the same type too. b/c and a/d don't have to have the same type, |
215 | /// though. |
216 | using TypeEquivalenceClasses = EquivalenceClasses<StringRef>; |
217 | |
218 | /// \returns true for `OPERAND_GENERIC_` 0 through 5. |
219 | /// These are the MCOI types that can be registers. The other MCOI types are |
220 | /// either immediates, or fancier operands used only post-ISel, so we don't |
221 | /// care about them for combiners. |
222 | static bool canMCOIOperandTypeBeARegister(StringRef MCOIType) { |
223 | // Assume OPERAND_GENERIC_0 through 5 can be registers. The other MCOI |
224 | // OperandTypes are either never used in gMIR, or not relevant (e.g. |
225 | // OPERAND_GENERIC_IMM, which is definitely never a register). |
226 | return MCOIType.drop_back(N: 1).ends_with(Suffix: "OPERAND_GENERIC_" ); |
227 | } |
228 | |
229 | /// Finds the "MCOI::"" operand types for each operand of \p CGP. |
230 | /// |
231 | /// This is a bit trickier than it looks because we need to handle variadic |
232 | /// in/outs. |
233 | /// |
234 | /// e.g. for |
235 | /// (G_BUILD_VECTOR $vec, $x, $y) -> |
236 | /// [MCOI::OPERAND_GENERIC_0, MCOI::OPERAND_GENERIC_1, |
237 | /// MCOI::OPERAND_GENERIC_1] |
238 | /// |
239 | /// For unknown types (which can happen in variadics where varargs types are |
240 | /// inconsistent), a unique name is given, e.g. "unknown_type_0". |
241 | static std::vector<std::string> |
242 | getMCOIOperandTypes(const CodeGenInstructionPattern &CGP); |
243 | |
244 | /// Adds the TypeEquivalenceClasses for \p P in \p OutTECs. |
245 | void getInstEqClasses(const InstructionPattern &P, |
246 | TypeEquivalenceClasses &OutTECs) const; |
247 | |
248 | /// Calls `getInstEqClasses` on all patterns of the rule to produce the whole |
249 | /// rule's TypeEquivalenceClasses. |
250 | TypeEquivalenceClasses getRuleEqClasses() const; |
251 | |
252 | /// Tries to infer the type of the \p ImmOpIdx -th operand of \p IP using \p |
253 | /// TECs. |
254 | /// |
255 | /// This is achieved by trying to find a named operand in \p IP that shares |
256 | /// the same type as \p ImmOpIdx, and using \ref inferNamedOperandType on that |
257 | /// operand instead. |
258 | /// |
259 | /// \returns the inferred type or an empty PatternType if inference didn't |
260 | /// succeed. |
261 | PatternType inferImmediateType(const InstructionPattern &IP, |
262 | unsigned ImmOpIdx, |
263 | const TypeEquivalenceClasses &TECs) const; |
264 | |
265 | /// Looks inside \p TECs to infer \p OpName's type. |
266 | /// |
267 | /// \returns the inferred type or an empty PatternType if inference didn't |
268 | /// succeed. |
269 | PatternType inferNamedOperandType(const InstructionPattern &IP, |
270 | StringRef OpName, |
271 | const TypeEquivalenceClasses &TECs, |
272 | bool AllowSelf = false) const; |
273 | |
274 | const Record &RuleDef; |
275 | SmallVector<InstructionPattern *, 8> MatchPats; |
276 | SmallVector<InstructionPattern *, 8> ApplyPats; |
277 | |
278 | const OperandTable &MatchOpTable; |
279 | }; |
280 | |
281 | bool CombineRuleOperandTypeChecker::processMatchPattern(InstructionPattern &P) { |
282 | MatchPats.push_back(Elt: &P); |
283 | return check(P, /*CheckTypeOf*/ VerifyTypeOfOperand: [](const auto &) { |
284 | // GITypeOf in 'match' is currently always rejected by the |
285 | // CombineRuleBuilder after inference is done. |
286 | return true; |
287 | }); |
288 | } |
289 | |
290 | bool CombineRuleOperandTypeChecker::processApplyPattern(InstructionPattern &P) { |
291 | ApplyPats.push_back(Elt: &P); |
292 | return check(P, /*CheckTypeOf*/ VerifyTypeOfOperand: [&](const PatternType &Ty) { |
293 | // GITypeOf<"$x"> can only be used if "$x" is a matched operand. |
294 | const auto OpName = Ty.getTypeOfOpName(); |
295 | if (MatchOpTable.lookup(OpName).Found) |
296 | return true; |
297 | |
298 | PrintError(ErrorLoc: RuleDef.getLoc(), Msg: "'" + OpName + "' ('" + Ty.str() + |
299 | "') does not refer to a matched operand!" ); |
300 | return false; |
301 | }); |
302 | } |
303 | |
304 | void CombineRuleOperandTypeChecker::propagateAndInferTypes() { |
305 | /// First step here is to propagate types using the OperandTypeChecker. That |
306 | /// way we ensure all uses of a given register have consistent types. |
307 | propagateTypes(); |
308 | |
309 | /// Build the TypeEquivalenceClasses for the whole rule. |
310 | const TypeEquivalenceClasses TECs = getRuleEqClasses(); |
311 | |
312 | /// Look at the apply patterns and find operands that need to be |
313 | /// inferred. We then try to find an equivalence class that they're a part of |
314 | /// and select the best operand to use for the `GITypeOf` type. We prioritize |
315 | /// defs of matched instructions because those are guaranteed to be registers. |
316 | bool InferredAny = false; |
317 | for (auto *Pat : ApplyPats) { |
318 | for (unsigned K = 0; K < Pat->operands_size(); ++K) { |
319 | auto &Op = Pat->getOperand(K); |
320 | |
321 | // We only want to take a look at untyped defs or immediates. |
322 | if ((!Op.isDef() && !Op.hasImmValue()) || Op.getType()) |
323 | continue; |
324 | |
325 | // Infer defs & named immediates. |
326 | if (Op.isDef() || Op.isNamedImmediate()) { |
327 | // Check it's not a redefinition of a matched operand. |
328 | // In such cases, inference is not necessary because we just copy |
329 | // operands and don't create temporary registers. |
330 | if (MatchOpTable.lookup(OpName: Op.getOperandName()).Found) |
331 | continue; |
332 | |
333 | // Inference is needed here, so try to do it. |
334 | if (PatternType Ty = |
335 | inferNamedOperandType(IP: *Pat, OpName: Op.getOperandName(), TECs)) { |
336 | if (DebugTypeInfer) |
337 | errs() << "INFER: " << Op.describe() << " -> " << Ty.str() << '\n'; |
338 | Op.setType(Ty); |
339 | InferredAny = true; |
340 | } |
341 | |
342 | continue; |
343 | } |
344 | |
345 | // Infer immediates |
346 | if (Op.hasImmValue()) { |
347 | if (PatternType Ty = inferImmediateType(IP: *Pat, ImmOpIdx: K, TECs)) { |
348 | if (DebugTypeInfer) |
349 | errs() << "INFER: " << Op.describe() << " -> " << Ty.str() << '\n'; |
350 | Op.setType(Ty); |
351 | InferredAny = true; |
352 | } |
353 | continue; |
354 | } |
355 | } |
356 | } |
357 | |
358 | // If we've inferred any types, we want to propagate them across the apply |
359 | // patterns. Type inference only adds GITypeOf types that point to Matched |
360 | // operands, so we definitely don't want to propagate types into the match |
361 | // patterns as well, otherwise bad things happen. |
362 | if (InferredAny) { |
363 | OperandTypeChecker OTC(RuleDef.getLoc()); |
364 | for (auto *Pat : ApplyPats) { |
365 | if (!OTC.check(P&: *Pat, VerifyTypeOfOperand: [&](const auto &) { return true; })) |
366 | PrintFatalError(ErrorLoc: RuleDef.getLoc(), |
367 | Msg: "OperandTypeChecker unexpectedly failed on '" + |
368 | Pat->getName() + "' during Type Inference" ); |
369 | } |
370 | OTC.propagateTypes(); |
371 | |
372 | if (DebugTypeInfer) { |
373 | errs() << "Apply patterns for rule " << RuleDef.getName() |
374 | << " after inference:\n" ; |
375 | for (auto *Pat : ApplyPats) { |
376 | errs() << " " ; |
377 | Pat->print(OS&: errs(), /*PrintName*/ true); |
378 | errs() << '\n'; |
379 | } |
380 | errs() << '\n'; |
381 | } |
382 | } |
383 | } |
384 | |
385 | PatternType CombineRuleOperandTypeChecker::inferImmediateType( |
386 | const InstructionPattern &IP, unsigned ImmOpIdx, |
387 | const TypeEquivalenceClasses &TECs) const { |
388 | // We can only infer CGPs (except intrinsics). |
389 | const auto *CGP = dyn_cast<CodeGenInstructionPattern>(Val: &IP); |
390 | if (!CGP || CGP->isIntrinsic()) |
391 | return {}; |
392 | |
393 | // For CGPs, we try to infer immediates by trying to infer another named |
394 | // operand that shares its type. |
395 | // |
396 | // e.g. |
397 | // Pattern: G_BUILD_VECTOR $x, $y, 0 |
398 | // MCOIs: [MCOI::OPERAND_GENERIC_0, MCOI::OPERAND_GENERIC_1, |
399 | // MCOI::OPERAND_GENERIC_1] |
400 | // $y has the same type as 0, so we can infer $y and get the type 0 should |
401 | // have. |
402 | |
403 | // We infer immediates by looking for a named operand that shares the same |
404 | // MCOI type. |
405 | const auto MCOITypes = getMCOIOperandTypes(CGP: *CGP); |
406 | StringRef ImmOpTy = MCOITypes[ImmOpIdx]; |
407 | |
408 | for (const auto &[Idx, Ty] : enumerate(First: MCOITypes)) { |
409 | if (Idx != ImmOpIdx && Ty == ImmOpTy) { |
410 | const auto &Op = IP.getOperand(K: Idx); |
411 | if (!Op.isNamedOperand()) |
412 | continue; |
413 | |
414 | // Named operand with the same name, try to infer that. |
415 | if (PatternType InferTy = inferNamedOperandType(IP, OpName: Op.getOperandName(), |
416 | TECs, /*AllowSelf=*/true)) |
417 | return InferTy; |
418 | } |
419 | } |
420 | |
421 | return {}; |
422 | } |
423 | |
424 | PatternType CombineRuleOperandTypeChecker::inferNamedOperandType( |
425 | const InstructionPattern &IP, StringRef OpName, |
426 | const TypeEquivalenceClasses &TECs, bool AllowSelf) const { |
427 | // This is the simplest possible case, we just need to find a TEC that |
428 | // contains OpName. Look at all operands in equivalence class and try to |
429 | // find a suitable one. If `AllowSelf` is true, the operand itself is also |
430 | // considered suitable. |
431 | |
432 | // Check for a def of a matched pattern. This is guaranteed to always |
433 | // be a register so we can blindly use that. |
434 | StringRef GoodOpName; |
435 | for (auto It = TECs.findLeader(V: OpName); It != TECs.member_end(); ++It) { |
436 | if (!AllowSelf && *It == OpName) |
437 | continue; |
438 | |
439 | const auto LookupRes = MatchOpTable.lookup(OpName: *It); |
440 | if (LookupRes.Def) // Favor defs |
441 | return PatternType::getTypeOf(OpName: *It); |
442 | |
443 | // Otherwise just save this in case we don't find any def. |
444 | if (GoodOpName.empty() && LookupRes.Found) |
445 | GoodOpName = *It; |
446 | } |
447 | |
448 | if (!GoodOpName.empty()) |
449 | return PatternType::getTypeOf(OpName: GoodOpName); |
450 | |
451 | // No good operand found, give up. |
452 | return {}; |
453 | } |
454 | |
455 | std::vector<std::string> CombineRuleOperandTypeChecker::getMCOIOperandTypes( |
456 | const CodeGenInstructionPattern &CGP) { |
457 | // FIXME?: Should we cache this? We call it twice when inferring immediates. |
458 | |
459 | static unsigned UnknownTypeIdx = 0; |
460 | |
461 | std::vector<std::string> OpTypes; |
462 | auto &CGI = CGP.getInst(); |
463 | const Record *VarArgsTy = |
464 | CGI.TheDef->isSubClassOf(Name: "GenericInstruction" ) |
465 | ? CGI.TheDef->getValueAsOptionalDef(FieldName: "variadicOpsType" ) |
466 | : nullptr; |
467 | std::string VarArgsTyName = |
468 | VarArgsTy ? ("MCOI::" + VarArgsTy->getValueAsString(FieldName: "OperandType" )).str() |
469 | : ("unknown_type_" + Twine(UnknownTypeIdx++)).str(); |
470 | |
471 | // First, handle defs. |
472 | for (unsigned K = 0; K < CGI.Operands.NumDefs; ++K) |
473 | OpTypes.push_back(x: CGI.Operands[K].OperandType); |
474 | |
475 | // Then, handle variadic defs if there are any. |
476 | if (CGP.hasVariadicDefs()) { |
477 | for (unsigned K = CGI.Operands.NumDefs; K < CGP.getNumInstDefs(); ++K) |
478 | OpTypes.push_back(x: VarArgsTyName); |
479 | } |
480 | |
481 | // If we had variadic defs, the op idx in the pattern won't match the op idx |
482 | // in the CGI anymore. |
483 | int CGIOpOffset = int(CGI.Operands.NumDefs) - CGP.getNumInstDefs(); |
484 | assert(CGP.hasVariadicDefs() ? (CGIOpOffset <= 0) : (CGIOpOffset == 0)); |
485 | |
486 | // Handle all remaining use operands, including variadic ones. |
487 | for (unsigned K = CGP.getNumInstDefs(); K < CGP.getNumInstOperands(); ++K) { |
488 | unsigned CGIOpIdx = K + CGIOpOffset; |
489 | if (CGIOpIdx >= CGI.Operands.size()) { |
490 | assert(CGP.isVariadic()); |
491 | OpTypes.push_back(x: VarArgsTyName); |
492 | } else { |
493 | OpTypes.push_back(x: CGI.Operands[CGIOpIdx].OperandType); |
494 | } |
495 | } |
496 | |
497 | assert(OpTypes.size() == CGP.operands_size()); |
498 | return OpTypes; |
499 | } |
500 | |
501 | void CombineRuleOperandTypeChecker::getInstEqClasses( |
502 | const InstructionPattern &P, TypeEquivalenceClasses &OutTECs) const { |
503 | // Determine the TypeEquivalenceClasses by: |
504 | // - Getting the MCOI Operand Types. |
505 | // - Creating a Map of MCOI Type -> [Operand Indexes] |
506 | // - Iterating over the map, filtering types we don't like, and just adding |
507 | // the array of Operand Indexes to \p OutTECs. |
508 | |
509 | // We can only do this on CodeGenInstructions that aren't intrinsics. Other |
510 | // InstructionPatterns have no type inference information associated with |
511 | // them. |
512 | // TODO: We could try to extract some info from CodeGenIntrinsic to |
513 | // guide inference. |
514 | |
515 | // TODO: Could we add some inference information to builtins at least? e.g. |
516 | // ReplaceReg should always replace with a reg of the same type, for instance. |
517 | // Though, those patterns are often used alone so it might not be worth the |
518 | // trouble to infer their types. |
519 | auto *CGP = dyn_cast<CodeGenInstructionPattern>(Val: &P); |
520 | if (!CGP || CGP->isIntrinsic()) |
521 | return; |
522 | |
523 | const auto MCOITypes = getMCOIOperandTypes(CGP: *CGP); |
524 | assert(MCOITypes.size() == P.operands_size()); |
525 | |
526 | MapVector<StringRef, SmallVector<unsigned, 0>> TyToOpIdx; |
527 | for (const auto &[Idx, Ty] : enumerate(First: MCOITypes)) |
528 | TyToOpIdx[Ty].push_back(Elt: Idx); |
529 | |
530 | if (DebugTypeInfer) |
531 | errs() << "\tGroups for " << P.getName() << ":\t" ; |
532 | |
533 | for (const auto &[Ty, Idxs] : TyToOpIdx) { |
534 | if (!canMCOIOperandTypeBeARegister(MCOIType: Ty)) |
535 | continue; |
536 | |
537 | if (DebugTypeInfer) |
538 | errs() << '['; |
539 | StringRef Sep = "" ; |
540 | |
541 | // We only collect named operands. |
542 | StringRef Leader; |
543 | for (unsigned Idx : Idxs) { |
544 | const auto &Op = P.getOperand(K: Idx); |
545 | if (!Op.isNamedOperand()) |
546 | continue; |
547 | |
548 | const auto OpName = Op.getOperandName(); |
549 | if (DebugTypeInfer) { |
550 | errs() << Sep << OpName; |
551 | Sep = ", " ; |
552 | } |
553 | |
554 | if (Leader.empty()) |
555 | OutTECs.insert(Data: (Leader = OpName)); |
556 | else |
557 | OutTECs.unionSets(V1: Leader, V2: OpName); |
558 | } |
559 | |
560 | if (DebugTypeInfer) |
561 | errs() << "] " ; |
562 | } |
563 | |
564 | if (DebugTypeInfer) |
565 | errs() << '\n'; |
566 | } |
567 | |
568 | CombineRuleOperandTypeChecker::TypeEquivalenceClasses |
569 | CombineRuleOperandTypeChecker::getRuleEqClasses() const { |
570 | TypeEquivalenceClasses TECs; |
571 | |
572 | if (DebugTypeInfer) |
573 | errs() << "Rule Operand Type Equivalence Classes for " << RuleDef.getName() |
574 | << ":\n" ; |
575 | |
576 | for (const auto *Pat : MatchPats) |
577 | getInstEqClasses(P: *Pat, OutTECs&: TECs); |
578 | for (const auto *Pat : ApplyPats) |
579 | getInstEqClasses(P: *Pat, OutTECs&: TECs); |
580 | |
581 | if (DebugTypeInfer) { |
582 | errs() << "Final Type Equivalence Classes: " ; |
583 | for (const auto &Class : TECs) { |
584 | // only print non-empty classes. |
585 | if (auto MembIt = TECs.member_begin(ECV: *Class); |
586 | MembIt != TECs.member_end()) { |
587 | errs() << '['; |
588 | StringRef Sep = "" ; |
589 | for (; MembIt != TECs.member_end(); ++MembIt) { |
590 | errs() << Sep << *MembIt; |
591 | Sep = ", " ; |
592 | } |
593 | errs() << "] " ; |
594 | } |
595 | } |
596 | errs() << '\n'; |
597 | } |
598 | |
599 | return TECs; |
600 | } |
601 | |
602 | //===- MatchData Handling -------------------------------------------------===// |
603 | struct MatchDataDef { |
604 | MatchDataDef(StringRef Symbol, StringRef Type) : Symbol(Symbol), Type(Type) {} |
605 | |
606 | StringRef Symbol; |
607 | StringRef Type; |
608 | |
609 | /// \returns the desired variable name for this MatchData. |
610 | std::string getVarName() const { |
611 | // Add a prefix in case the symbol name is very generic and conflicts with |
612 | // something else. |
613 | return "GIMatchData_" + Symbol.str(); |
614 | } |
615 | }; |
616 | |
617 | //===- CombineRuleBuilder -------------------------------------------------===// |
618 | |
619 | /// Parses combine rule and builds a small intermediate representation to tie |
620 | /// patterns together and emit RuleMatchers to match them. This may emit more |
621 | /// than one RuleMatcher, e.g. for `wip_match_opcode`. |
622 | /// |
623 | /// Memory management for `Pattern` objects is done through `std::unique_ptr`. |
624 | /// In most cases, there are two stages to a pattern's lifetime: |
625 | /// - Creation in a `parse` function |
626 | /// - The unique_ptr is stored in a variable, and may be destroyed if the |
627 | /// pattern is found to be semantically invalid. |
628 | /// - Ownership transfer into a `PatternMap` |
629 | /// - Once a pattern is moved into either the map of Match or Apply |
630 | /// patterns, it is known to be valid and it never moves back. |
631 | class CombineRuleBuilder { |
632 | public: |
633 | using PatternMap = MapVector<StringRef, std::unique_ptr<Pattern>>; |
634 | using PatternAlternatives = DenseMap<const Pattern *, unsigned>; |
635 | |
636 | CombineRuleBuilder(const CodeGenTarget &CGT, |
637 | SubtargetFeatureInfoMap &SubtargetFeatures, |
638 | const Record &RuleDef, unsigned ID, |
639 | std::vector<RuleMatcher> &OutRMs) |
640 | : Parser(CGT, RuleDef.getLoc()), CGT(CGT), |
641 | SubtargetFeatures(SubtargetFeatures), RuleDef(RuleDef), RuleID(ID), |
642 | OutRMs(OutRMs) {} |
643 | |
644 | /// Parses all fields in the RuleDef record. |
645 | bool parseAll(); |
646 | |
647 | /// Emits all RuleMatchers into the vector of RuleMatchers passed in the |
648 | /// constructor. |
649 | bool emitRuleMatchers(); |
650 | |
651 | void print(raw_ostream &OS) const; |
652 | void dump() const { print(OS&: dbgs()); } |
653 | |
654 | /// Debug-only verification of invariants. |
655 | #ifndef NDEBUG |
656 | void verify() const; |
657 | #endif |
658 | |
659 | private: |
660 | const CodeGenInstruction &getGConstant() const { |
661 | return CGT.getInstruction(InstRec: RuleDef.getRecords().getDef(Name: "G_CONSTANT" )); |
662 | } |
663 | |
664 | std::optional<LLTCodeGenOrTempType> |
665 | getLLTCodeGenOrTempType(const PatternType &PT, RuleMatcher &RM); |
666 | |
667 | void PrintError(Twine Msg) const { ::PrintError(Rec: &RuleDef, Msg); } |
668 | void PrintWarning(Twine Msg) const { ::PrintWarning(WarningLoc: RuleDef.getLoc(), Msg); } |
669 | void PrintNote(Twine Msg) const { ::PrintNote(NoteLoc: RuleDef.getLoc(), Msg); } |
670 | |
671 | void print(raw_ostream &OS, const PatternAlternatives &Alts) const; |
672 | |
673 | bool addApplyPattern(std::unique_ptr<Pattern> Pat); |
674 | bool addMatchPattern(std::unique_ptr<Pattern> Pat); |
675 | |
676 | /// Adds the expansions from \see MatchDatas to \p CE. |
677 | void declareAllMatchDatasExpansions(CodeExpansions &CE) const; |
678 | |
679 | /// Adds a matcher \p P to \p IM, expanding its code using \p CE. |
680 | /// Note that the predicate is added on the last InstructionMatcher. |
681 | /// |
682 | /// \p Alts is only used if DebugCXXPreds is enabled. |
683 | void addCXXPredicate(RuleMatcher &M, const CodeExpansions &CE, |
684 | const CXXPattern &P, const PatternAlternatives &Alts); |
685 | |
686 | bool hasOnlyCXXApplyPatterns() const; |
687 | bool hasEraseRoot() const; |
688 | |
689 | // Infer machine operand types and check their consistency. |
690 | bool typecheckPatterns(); |
691 | |
692 | /// For all PatFragPatterns, add a new entry in PatternAlternatives for each |
693 | /// PatternList it contains. This is multiplicative, so if we have 2 |
694 | /// PatFrags with 3 alternatives each, we get 2*3 permutations added to |
695 | /// PermutationsToEmit. The "MaxPermutations" field controls how many |
696 | /// permutations are allowed before an error is emitted and this function |
697 | /// returns false. This is a simple safeguard to prevent combination of |
698 | /// PatFrags from generating enormous amounts of rules. |
699 | bool buildPermutationsToEmit(); |
700 | |
701 | /// Checks additional semantics of the Patterns. |
702 | bool checkSemantics(); |
703 | |
704 | /// Creates a new RuleMatcher with some boilerplate |
705 | /// settings/actions/predicates, and and adds it to \p OutRMs. |
706 | /// \see addFeaturePredicates too. |
707 | /// |
708 | /// \param Alts Current set of alternatives, for debug comment. |
709 | /// \param AdditionalComment Comment string to be added to the |
710 | /// `DebugCommentAction`. |
711 | RuleMatcher &addRuleMatcher(const PatternAlternatives &Alts, |
712 | Twine = "" ); |
713 | bool addFeaturePredicates(RuleMatcher &M); |
714 | |
715 | bool findRoots(); |
716 | bool buildRuleOperandsTable(); |
717 | |
718 | bool parseDefs(const DagInit &Def); |
719 | |
720 | bool emitMatchPattern(CodeExpansions &CE, const PatternAlternatives &Alts, |
721 | const InstructionPattern &IP); |
722 | bool emitMatchPattern(CodeExpansions &CE, const PatternAlternatives &Alts, |
723 | const AnyOpcodePattern &AOP); |
724 | |
725 | bool emitPatFragMatchPattern(CodeExpansions &CE, |
726 | const PatternAlternatives &Alts, RuleMatcher &RM, |
727 | InstructionMatcher *IM, |
728 | const PatFragPattern &PFP, |
729 | DenseSet<const Pattern *> &SeenPats); |
730 | |
731 | bool emitApplyPatterns(CodeExpansions &CE, RuleMatcher &M); |
732 | bool emitCXXMatchApply(CodeExpansions &CE, RuleMatcher &M, |
733 | ArrayRef<CXXPattern *> Matchers); |
734 | |
735 | // Recursively visits InstructionPatterns from P to build up the |
736 | // RuleMatcher actions. |
737 | bool emitInstructionApplyPattern(CodeExpansions &CE, RuleMatcher &M, |
738 | const InstructionPattern &P, |
739 | DenseSet<const Pattern *> &SeenPats, |
740 | StringMap<unsigned> &OperandToTempRegID); |
741 | |
742 | bool emitCodeGenInstructionApplyImmOperand(RuleMatcher &M, |
743 | BuildMIAction &DstMI, |
744 | const CodeGenInstructionPattern &P, |
745 | const InstructionOperand &O); |
746 | |
747 | bool emitBuiltinApplyPattern(CodeExpansions &CE, RuleMatcher &M, |
748 | const BuiltinPattern &P, |
749 | StringMap<unsigned> &OperandToTempRegID); |
750 | |
751 | // Recursively visits CodeGenInstructionPattern from P to build up the |
752 | // RuleMatcher/InstructionMatcher. May create new InstructionMatchers as |
753 | // needed. |
754 | using OperandMapperFnRef = |
755 | function_ref<InstructionOperand(const InstructionOperand &)>; |
756 | using OperandDefLookupFn = |
757 | function_ref<const InstructionPattern *(StringRef)>; |
758 | bool emitCodeGenInstructionMatchPattern( |
759 | CodeExpansions &CE, const PatternAlternatives &Alts, RuleMatcher &M, |
760 | InstructionMatcher &IM, const CodeGenInstructionPattern &P, |
761 | DenseSet<const Pattern *> &SeenPats, OperandDefLookupFn LookupOperandDef, |
762 | OperandMapperFnRef OperandMapper = [](const auto &O) { return O; }); |
763 | |
764 | PatternParser Parser; |
765 | const CodeGenTarget &CGT; |
766 | SubtargetFeatureInfoMap &SubtargetFeatures; |
767 | const Record &RuleDef; |
768 | const unsigned RuleID; |
769 | std::vector<RuleMatcher> &OutRMs; |
770 | |
771 | // For InstructionMatcher::addOperand |
772 | unsigned AllocatedTemporariesBaseID = 0; |
773 | |
774 | /// The root of the pattern. |
775 | StringRef RootName; |
776 | |
777 | /// These maps have ownership of the actual Pattern objects. |
778 | /// They both map a Pattern's name to the Pattern instance. |
779 | PatternMap MatchPats; |
780 | PatternMap ApplyPats; |
781 | |
782 | /// Operand tables to tie match/apply patterns together. |
783 | OperandTable MatchOpTable; |
784 | OperandTable ApplyOpTable; |
785 | |
786 | /// Set by findRoots. |
787 | Pattern *MatchRoot = nullptr; |
788 | SmallDenseSet<InstructionPattern *, 2> ApplyRoots; |
789 | |
790 | SmallVector<MatchDataDef, 2> MatchDatas; |
791 | SmallVector<PatternAlternatives, 1> PermutationsToEmit; |
792 | }; |
793 | |
794 | bool CombineRuleBuilder::parseAll() { |
795 | auto StackTrace = PrettyStackTraceParse(RuleDef); |
796 | |
797 | if (!parseDefs(Def: *RuleDef.getValueAsDag(FieldName: "Defs" ))) |
798 | return false; |
799 | |
800 | const DagInit &Act0 = *RuleDef.getValueAsDag(FieldName: "Action0" ); |
801 | const DagInit &Act1 = *RuleDef.getValueAsDag(FieldName: "Action1" ); |
802 | |
803 | StringRef Act0Op = Act0.getOperatorAsDef(Loc: RuleDef.getLoc())->getName(); |
804 | StringRef Act1Op = Act1.getOperatorAsDef(Loc: RuleDef.getLoc())->getName(); |
805 | |
806 | if (Act0Op == "match" && Act1Op == "apply" ) { |
807 | if (!Parser.parsePatternList( |
808 | List: Act0, ParseAction: [this](auto Pat) { return addMatchPattern(Pat: std::move(Pat)); }, |
809 | Operator: "match" , AnonPatNamePrefix: (RuleDef.getName() + "_match" ).str())) |
810 | return false; |
811 | |
812 | if (!Parser.parsePatternList( |
813 | List: Act1, ParseAction: [this](auto Pat) { return addApplyPattern(Pat: std::move(Pat)); }, |
814 | Operator: "apply" , AnonPatNamePrefix: (RuleDef.getName() + "_apply" ).str())) |
815 | return false; |
816 | |
817 | } else if (Act0Op == "combine" && Act1Op == "empty_action" ) { |
818 | // combine: everything is a "match" except C++ code which is an apply. |
819 | const auto AddCombinePat = [this](std::unique_ptr<Pattern> Pat) { |
820 | if (isa<CXXPattern>(Val: Pat.get())) |
821 | return addApplyPattern(Pat: std::move(Pat)); |
822 | return addMatchPattern(Pat: std::move(Pat)); |
823 | }; |
824 | |
825 | if (!Parser.parsePatternList(List: Act0, ParseAction: AddCombinePat, Operator: "combine" , |
826 | AnonPatNamePrefix: (RuleDef.getName() + "_combine" ).str())) |
827 | return false; |
828 | |
829 | if (MatchPats.empty() || ApplyPats.empty()) { |
830 | PrintError(Msg: "'combine' action needs at least one pattern to match, and " |
831 | "C++ code to apply" ); |
832 | return false; |
833 | } |
834 | } else { |
835 | PrintError(Msg: "expected both a 'match' and 'apply' action in combine rule, " |
836 | "or a single 'combine' action" ); |
837 | return false; |
838 | } |
839 | |
840 | if (!buildRuleOperandsTable() || !typecheckPatterns() || !findRoots() || |
841 | !checkSemantics() || !buildPermutationsToEmit()) |
842 | return false; |
843 | LLVM_DEBUG(verify()); |
844 | return true; |
845 | } |
846 | |
847 | bool CombineRuleBuilder::emitRuleMatchers() { |
848 | auto StackTrace = PrettyStackTraceEmit(RuleDef); |
849 | |
850 | assert(MatchRoot); |
851 | CodeExpansions CE; |
852 | |
853 | assert(!PermutationsToEmit.empty()); |
854 | for (const auto &Alts : PermutationsToEmit) { |
855 | switch (MatchRoot->getKind()) { |
856 | case Pattern::K_AnyOpcode: { |
857 | if (!emitMatchPattern(CE, Alts, AOP: *cast<AnyOpcodePattern>(Val: MatchRoot))) |
858 | return false; |
859 | break; |
860 | } |
861 | case Pattern::K_PatFrag: |
862 | case Pattern::K_Builtin: |
863 | case Pattern::K_CodeGenInstruction: |
864 | if (!emitMatchPattern(CE, Alts, IP: *cast<InstructionPattern>(Val: MatchRoot))) |
865 | return false; |
866 | break; |
867 | case Pattern::K_CXX: |
868 | PrintError(Msg: "C++ code cannot be the root of a rule!" ); |
869 | return false; |
870 | default: |
871 | llvm_unreachable("unknown pattern kind!" ); |
872 | } |
873 | } |
874 | |
875 | return true; |
876 | } |
877 | |
878 | void CombineRuleBuilder::print(raw_ostream &OS) const { |
879 | OS << "(CombineRule name:" << RuleDef.getName() << " id:" << RuleID |
880 | << " root:" << RootName << '\n'; |
881 | |
882 | if (!MatchDatas.empty()) { |
883 | OS << " (MatchDatas\n" ; |
884 | for (const auto &MD : MatchDatas) { |
885 | OS << " (MatchDataDef symbol:" << MD.Symbol << " type:" << MD.Type |
886 | << ")\n" ; |
887 | } |
888 | OS << " )\n" ; |
889 | } |
890 | |
891 | const auto &SeenPFs = Parser.getSeenPatFrags(); |
892 | if (!SeenPFs.empty()) { |
893 | OS << " (PatFrags\n" ; |
894 | for (const auto *PF : Parser.getSeenPatFrags()) { |
895 | PF->print(OS, /*Indent=*/" " ); |
896 | OS << '\n'; |
897 | } |
898 | OS << " )\n" ; |
899 | } |
900 | |
901 | const auto DumpPats = [&](StringRef Name, const PatternMap &Pats) { |
902 | OS << " (" << Name << " " ; |
903 | if (Pats.empty()) { |
904 | OS << "<empty>)\n" ; |
905 | return; |
906 | } |
907 | |
908 | OS << '\n'; |
909 | for (const auto &[Name, Pat] : Pats) { |
910 | OS << " " ; |
911 | if (Pat.get() == MatchRoot) |
912 | OS << "<match_root>" ; |
913 | if (isa<InstructionPattern>(Val: Pat.get()) && |
914 | ApplyRoots.contains(V: cast<InstructionPattern>(Val: Pat.get()))) |
915 | OS << "<apply_root>" ; |
916 | OS << Name << ":" ; |
917 | Pat->print(OS, /*PrintName=*/false); |
918 | OS << '\n'; |
919 | } |
920 | OS << " )\n" ; |
921 | }; |
922 | |
923 | DumpPats("MatchPats" , MatchPats); |
924 | DumpPats("ApplyPats" , ApplyPats); |
925 | |
926 | MatchOpTable.print(OS, Name: "MatchPats" , /*Indent*/ " " ); |
927 | ApplyOpTable.print(OS, Name: "ApplyPats" , /*Indent*/ " " ); |
928 | |
929 | if (PermutationsToEmit.size() > 1) { |
930 | OS << " (PermutationsToEmit\n" ; |
931 | for (const auto &Perm : PermutationsToEmit) { |
932 | OS << " " ; |
933 | print(OS, Alts: Perm); |
934 | OS << ",\n" ; |
935 | } |
936 | OS << " )\n" ; |
937 | } |
938 | |
939 | OS << ")\n" ; |
940 | } |
941 | |
942 | #ifndef NDEBUG |
943 | void CombineRuleBuilder::verify() const { |
944 | const auto VerifyPats = [&](const PatternMap &Pats) { |
945 | for (const auto &[Name, Pat] : Pats) { |
946 | if (!Pat) |
947 | PrintFatalError("null pattern in pattern map!" ); |
948 | |
949 | if (Name != Pat->getName()) { |
950 | Pat->dump(); |
951 | PrintFatalError("Pattern name mismatch! Map name: " + Name + |
952 | ", Pat name: " + Pat->getName()); |
953 | } |
954 | |
955 | // Sanity check: the map should point to the same data as the Pattern. |
956 | // Both strings are allocated in the pool using insertStrRef. |
957 | if (Name.data() != Pat->getName().data()) { |
958 | dbgs() << "Map StringRef: '" << Name << "' @ " |
959 | << (const void *)Name.data() << '\n'; |
960 | dbgs() << "Pat String: '" << Pat->getName() << "' @ " |
961 | << (const void *)Pat->getName().data() << '\n'; |
962 | PrintFatalError("StringRef stored in the PatternMap is not referencing " |
963 | "the same string as its Pattern!" ); |
964 | } |
965 | } |
966 | }; |
967 | |
968 | VerifyPats(MatchPats); |
969 | VerifyPats(ApplyPats); |
970 | |
971 | // Check there are no wip_match_opcode patterns in the "apply" patterns. |
972 | if (any_of(ApplyPats, |
973 | [&](auto &E) { return isa<AnyOpcodePattern>(E.second.get()); })) { |
974 | dump(); |
975 | PrintFatalError( |
976 | "illegal wip_match_opcode pattern in the 'apply' patterns!" ); |
977 | } |
978 | |
979 | // Check there are no nullptrs in ApplyRoots. |
980 | if (ApplyRoots.contains(nullptr)) { |
981 | PrintFatalError( |
982 | "CombineRuleBuilder's ApplyRoots set contains a null pointer!" ); |
983 | } |
984 | } |
985 | #endif |
986 | |
987 | std::optional<LLTCodeGenOrTempType> |
988 | CombineRuleBuilder::getLLTCodeGenOrTempType(const PatternType &PT, |
989 | RuleMatcher &RM) { |
990 | assert(!PT.isNone()); |
991 | |
992 | if (PT.isLLT()) |
993 | return getLLTCodeGen(PT); |
994 | |
995 | assert(PT.isTypeOf()); |
996 | auto &OM = RM.getOperandMatcher(Name: PT.getTypeOfOpName()); |
997 | if (OM.isVariadic()) { |
998 | PrintError(Msg: "type '" + PT.str() + "' is ill-formed: '" + |
999 | OM.getSymbolicName() + "' is a variadic pack operand" ); |
1000 | return std::nullopt; |
1001 | } |
1002 | return OM.getTempTypeIdx(Rule&: RM); |
1003 | } |
1004 | |
1005 | void CombineRuleBuilder::print(raw_ostream &OS, |
1006 | const PatternAlternatives &Alts) const { |
1007 | SmallVector<std::string, 1> Strings( |
1008 | map_range(C: Alts, F: [](const auto &PatAndPerm) { |
1009 | return PatAndPerm.first->getName().str() + "[" + |
1010 | to_string(PatAndPerm.second) + "]" ; |
1011 | })); |
1012 | // Sort so output is deterministic for tests. Otherwise it's sorted by pointer |
1013 | // values. |
1014 | sort(C&: Strings); |
1015 | OS << "[" << join(R&: Strings, Separator: ", " ) << "]" ; |
1016 | } |
1017 | |
1018 | bool CombineRuleBuilder::addApplyPattern(std::unique_ptr<Pattern> Pat) { |
1019 | StringRef Name = Pat->getName(); |
1020 | if (ApplyPats.contains(Key: Name)) { |
1021 | PrintError(Msg: "'" + Name + "' apply pattern defined more than once!" ); |
1022 | return false; |
1023 | } |
1024 | |
1025 | if (isa<AnyOpcodePattern>(Val: Pat.get())) { |
1026 | PrintError(Msg: "'" + Name + |
1027 | "': wip_match_opcode is not supported in apply patterns" ); |
1028 | return false; |
1029 | } |
1030 | |
1031 | if (isa<PatFragPattern>(Val: Pat.get())) { |
1032 | PrintError(Msg: "'" + Name + "': using " + PatFrag::ClassName + |
1033 | " is not supported in apply patterns" ); |
1034 | return false; |
1035 | } |
1036 | |
1037 | if (auto *CXXPat = dyn_cast<CXXPattern>(Val: Pat.get())) |
1038 | CXXPat->setIsApply(); |
1039 | |
1040 | ApplyPats[Name] = std::move(Pat); |
1041 | return true; |
1042 | } |
1043 | |
1044 | bool CombineRuleBuilder::addMatchPattern(std::unique_ptr<Pattern> Pat) { |
1045 | StringRef Name = Pat->getName(); |
1046 | if (MatchPats.contains(Key: Name)) { |
1047 | PrintError(Msg: "'" + Name + "' match pattern defined more than once!" ); |
1048 | return false; |
1049 | } |
1050 | |
1051 | // For now, none of the builtins can appear in 'match'. |
1052 | if (const auto *BP = dyn_cast<BuiltinPattern>(Val: Pat.get())) { |
1053 | PrintError(Msg: "'" + BP->getInstName() + |
1054 | "' cannot be used in a 'match' pattern" ); |
1055 | return false; |
1056 | } |
1057 | |
1058 | MatchPats[Name] = std::move(Pat); |
1059 | return true; |
1060 | } |
1061 | |
1062 | void CombineRuleBuilder::declareAllMatchDatasExpansions( |
1063 | CodeExpansions &CE) const { |
1064 | for (const auto &MD : MatchDatas) |
1065 | CE.declare(Name: MD.Symbol, Expansion: MD.getVarName()); |
1066 | } |
1067 | |
1068 | void CombineRuleBuilder::addCXXPredicate(RuleMatcher &M, |
1069 | const CodeExpansions &CE, |
1070 | const CXXPattern &P, |
1071 | const PatternAlternatives &Alts) { |
1072 | // FIXME: Hack so C++ code is executed last. May not work for more complex |
1073 | // patterns. |
1074 | auto &IM = *std::prev(x: M.insnmatchers().end()); |
1075 | auto Loc = RuleDef.getLoc(); |
1076 | const auto = [&](raw_ostream &OS) { |
1077 | OS << "// Pattern Alternatives: " ; |
1078 | print(OS, Alts); |
1079 | OS << '\n'; |
1080 | }; |
1081 | const auto &ExpandedCode = |
1082 | DebugCXXPreds ? P.expandCode(CE, Locs: Loc, AddComment) : P.expandCode(CE, Locs: Loc); |
1083 | IM->addPredicate<GenericInstructionPredicateMatcher>( |
1084 | args: ExpandedCode.getEnumNameWithPrefix(Prefix: CXXPredPrefix)); |
1085 | } |
1086 | |
1087 | bool CombineRuleBuilder::hasOnlyCXXApplyPatterns() const { |
1088 | return all_of(Range: ApplyPats, P: [&](auto &Entry) { |
1089 | return isa<CXXPattern>(Entry.second.get()); |
1090 | }); |
1091 | } |
1092 | |
1093 | bool CombineRuleBuilder::hasEraseRoot() const { |
1094 | return any_of(Range: ApplyPats, P: [&](auto &Entry) { |
1095 | if (const auto *BP = dyn_cast<BuiltinPattern>(Entry.second.get())) |
1096 | return BP->getBuiltinKind() == BI_EraseRoot; |
1097 | return false; |
1098 | }); |
1099 | } |
1100 | |
1101 | bool CombineRuleBuilder::typecheckPatterns() { |
1102 | CombineRuleOperandTypeChecker OTC(RuleDef, MatchOpTable); |
1103 | |
1104 | for (auto &Pat : values(C&: MatchPats)) { |
1105 | if (auto *IP = dyn_cast<InstructionPattern>(Val: Pat.get())) { |
1106 | if (!OTC.processMatchPattern(P&: *IP)) |
1107 | return false; |
1108 | } |
1109 | } |
1110 | |
1111 | for (auto &Pat : values(C&: ApplyPats)) { |
1112 | if (auto *IP = dyn_cast<InstructionPattern>(Val: Pat.get())) { |
1113 | if (!OTC.processApplyPattern(P&: *IP)) |
1114 | return false; |
1115 | } |
1116 | } |
1117 | |
1118 | OTC.propagateAndInferTypes(); |
1119 | |
1120 | // Always check this after in case inference adds some special types to the |
1121 | // match patterns. |
1122 | for (auto &Pat : values(C&: MatchPats)) { |
1123 | if (auto *IP = dyn_cast<InstructionPattern>(Val: Pat.get())) { |
1124 | bool HasDiag = false; |
1125 | for (const auto &[Idx, Op] : enumerate(First&: IP->operands())) { |
1126 | if (Op.getType().isTypeOf()) { |
1127 | PrintError(Msg: PatternType::TypeOfClassName + |
1128 | " is not supported in 'match' patterns" ); |
1129 | PrintNote(Msg: "operand " + Twine(Idx) + " of '" + IP->getName() + |
1130 | "' has type '" + Op.getType().str() + "'" ); |
1131 | HasDiag = true; |
1132 | } |
1133 | } |
1134 | if (HasDiag) |
1135 | return false; |
1136 | } |
1137 | } |
1138 | return true; |
1139 | } |
1140 | |
1141 | bool CombineRuleBuilder::buildPermutationsToEmit() { |
1142 | PermutationsToEmit.clear(); |
1143 | |
1144 | // Start with one empty set of alternatives. |
1145 | PermutationsToEmit.emplace_back(); |
1146 | for (const auto &Pat : values(C&: MatchPats)) { |
1147 | unsigned NumAlts = 0; |
1148 | // Note: technically, AnyOpcodePattern also needs permutations, but: |
1149 | // - We only allow a single one of them in the root. |
1150 | // - They cannot be mixed with any other pattern other than C++ code. |
1151 | // So we don't really need to take them into account here. We could, but |
1152 | // that pattern is a hack anyway and the less it's involved, the better. |
1153 | if (const auto *PFP = dyn_cast<PatFragPattern>(Val: Pat.get())) |
1154 | NumAlts = PFP->getPatFrag().num_alternatives(); |
1155 | else |
1156 | continue; |
1157 | |
1158 | // For each pattern that needs permutations, multiply the current set of |
1159 | // alternatives. |
1160 | auto CurPerms = PermutationsToEmit; |
1161 | PermutationsToEmit.clear(); |
1162 | |
1163 | for (const auto &Perm : CurPerms) { |
1164 | assert(!Perm.contains(Pat.get()) && "Pattern already emitted?" ); |
1165 | for (unsigned K = 0; K < NumAlts; ++K) { |
1166 | PatternAlternatives NewPerm = Perm; |
1167 | NewPerm[Pat.get()] = K; |
1168 | PermutationsToEmit.emplace_back(Args: std::move(NewPerm)); |
1169 | } |
1170 | } |
1171 | } |
1172 | |
1173 | if (int64_t MaxPerms = RuleDef.getValueAsInt(FieldName: "MaxPermutations" ); |
1174 | MaxPerms > 0) { |
1175 | if ((int64_t)PermutationsToEmit.size() > MaxPerms) { |
1176 | PrintError(Msg: "cannot emit rule '" + RuleDef.getName() + "'; " + |
1177 | Twine(PermutationsToEmit.size()) + |
1178 | " permutations would be emitted, but the max is " + |
1179 | Twine(MaxPerms)); |
1180 | return false; |
1181 | } |
1182 | } |
1183 | |
1184 | // Ensure we always have a single empty entry, it simplifies the emission |
1185 | // logic so it doesn't need to handle the case where there are no perms. |
1186 | if (PermutationsToEmit.empty()) { |
1187 | PermutationsToEmit.emplace_back(); |
1188 | return true; |
1189 | } |
1190 | |
1191 | return true; |
1192 | } |
1193 | |
1194 | bool CombineRuleBuilder::checkSemantics() { |
1195 | assert(MatchRoot && "Cannot call this before findRoots()" ); |
1196 | |
1197 | const auto CheckVariadicOperands = [&](const InstructionPattern &IP, |
1198 | bool IsMatch) { |
1199 | bool HasVariadic = false; |
1200 | for (auto &Op : IP.operands()) { |
1201 | if (!Op.getType().isVariadicPack()) |
1202 | continue; |
1203 | |
1204 | HasVariadic = true; |
1205 | |
1206 | if (IsMatch && &Op != &IP.operands_back()) { |
1207 | PrintError(Msg: "'" + IP.getInstName() + |
1208 | "': " + PatternType::VariadicClassName + |
1209 | " can only be used on the last operand" ); |
1210 | return false; |
1211 | } |
1212 | |
1213 | if (Op.isDef()) { |
1214 | PrintError(Msg: "'" + IP.getInstName() + "': " + |
1215 | PatternType::VariadicClassName + " cannot be used on defs" ); |
1216 | return false; |
1217 | } |
1218 | } |
1219 | |
1220 | if (HasVariadic && !IP.isVariadic()) { |
1221 | PrintError(Msg: "cannot use a " + PatternType::VariadicClassName + |
1222 | " operand on non-variadic instruction '" + IP.getInstName() + |
1223 | "'" ); |
1224 | return false; |
1225 | } |
1226 | |
1227 | return true; |
1228 | }; |
1229 | |
1230 | bool UsesWipMatchOpcode = false; |
1231 | for (const auto &Match : MatchPats) { |
1232 | const auto *Pat = Match.second.get(); |
1233 | |
1234 | if (const auto *CXXPat = dyn_cast<CXXPattern>(Val: Pat)) { |
1235 | if (!CXXPat->getRawCode().contains(Other: "return " )) |
1236 | PrintWarning(Msg: "'match' C++ code does not seem to return!" ); |
1237 | continue; |
1238 | } |
1239 | |
1240 | if (const auto IP = dyn_cast<InstructionPattern>(Val: Pat)) { |
1241 | if (!CheckVariadicOperands(*IP, /*IsMatch=*/true)) |
1242 | return false; |
1243 | |
1244 | // MIFlags in match cannot use the following syntax: (MIFlags $mi) |
1245 | if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(Val: Pat)) { |
1246 | if (auto *FI = CGP->getMIFlagsInfo()) { |
1247 | if (!FI->copy_flags().empty()) { |
1248 | PrintError(Msg: "'match' patterns cannot refer to flags from other " |
1249 | "instructions" ); |
1250 | PrintNote(Msg: "MIFlags in '" + CGP->getName() + |
1251 | "' refer to: " + join(R: FI->copy_flags(), Separator: ", " )); |
1252 | return false; |
1253 | } |
1254 | } |
1255 | } |
1256 | continue; |
1257 | } |
1258 | |
1259 | const auto *AOP = dyn_cast<AnyOpcodePattern>(Val: Pat); |
1260 | if (!AOP) |
1261 | continue; |
1262 | |
1263 | if (UsesWipMatchOpcode) { |
1264 | PrintError(Msg: "wip_opcode_match can only be present once" ); |
1265 | return false; |
1266 | } |
1267 | |
1268 | UsesWipMatchOpcode = true; |
1269 | } |
1270 | |
1271 | std::optional<bool> IsUsingCXXPatterns; |
1272 | for (const auto &Apply : ApplyPats) { |
1273 | Pattern *Pat = Apply.second.get(); |
1274 | if (IsUsingCXXPatterns) { |
1275 | if (*IsUsingCXXPatterns != isa<CXXPattern>(Val: Pat)) { |
1276 | PrintError(Msg: "'apply' patterns cannot mix C++ code with other types of " |
1277 | "patterns" ); |
1278 | return false; |
1279 | } |
1280 | } else { |
1281 | IsUsingCXXPatterns = isa<CXXPattern>(Val: Pat); |
1282 | } |
1283 | |
1284 | assert(Pat); |
1285 | const auto *IP = dyn_cast<InstructionPattern>(Val: Pat); |
1286 | if (!IP) |
1287 | continue; |
1288 | |
1289 | if (!CheckVariadicOperands(*IP, /*IsMatch=*/false)) |
1290 | return false; |
1291 | |
1292 | if (UsesWipMatchOpcode) { |
1293 | PrintError(Msg: "cannot use wip_match_opcode in combination with apply " |
1294 | "instruction patterns!" ); |
1295 | return false; |
1296 | } |
1297 | |
1298 | // Check that the insts mentioned in copy_flags exist. |
1299 | if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(Val: IP)) { |
1300 | if (auto *FI = CGP->getMIFlagsInfo()) { |
1301 | for (auto InstName : FI->copy_flags()) { |
1302 | auto It = MatchPats.find(Key: InstName); |
1303 | if (It == MatchPats.end()) { |
1304 | PrintError(Msg: "unknown instruction '$" + InstName + |
1305 | "' referenced in MIFlags of '" + CGP->getName() + "'" ); |
1306 | return false; |
1307 | } |
1308 | |
1309 | if (!isa<CodeGenInstructionPattern>(Val: It->second.get())) { |
1310 | PrintError( |
1311 | Msg: "'$" + InstName + |
1312 | "' does not refer to a CodeGenInstruction in MIFlags of '" + |
1313 | CGP->getName() + "'" ); |
1314 | return false; |
1315 | } |
1316 | } |
1317 | } |
1318 | } |
1319 | |
1320 | const auto *BIP = dyn_cast<BuiltinPattern>(Val: IP); |
1321 | if (!BIP) |
1322 | continue; |
1323 | StringRef Name = BIP->getInstName(); |
1324 | |
1325 | // (GIEraseInst) has to be the only apply pattern, or it can not be used at |
1326 | // all. The root cannot have any defs either. |
1327 | switch (BIP->getBuiltinKind()) { |
1328 | case BI_EraseRoot: { |
1329 | if (ApplyPats.size() > 1) { |
1330 | PrintError(Msg: Name + " must be the only 'apply' pattern" ); |
1331 | return false; |
1332 | } |
1333 | |
1334 | const auto *IRoot = dyn_cast<CodeGenInstructionPattern>(Val: MatchRoot); |
1335 | if (!IRoot) { |
1336 | PrintError(Msg: Name + " can only be used if the root is a " |
1337 | "CodeGenInstruction or Intrinsic" ); |
1338 | return false; |
1339 | } |
1340 | |
1341 | if (IRoot->getNumInstDefs() != 0) { |
1342 | PrintError(Msg: Name + " can only be used if on roots that do " |
1343 | "not have any output operand" ); |
1344 | PrintNote(Msg: "'" + IRoot->getInstName() + "' has " + |
1345 | Twine(IRoot->getNumInstDefs()) + " output operands" ); |
1346 | return false; |
1347 | } |
1348 | break; |
1349 | } |
1350 | case BI_ReplaceReg: { |
1351 | // (GIReplaceReg can only be used on the root instruction) |
1352 | // TODO: When we allow rewriting non-root instructions, also allow this. |
1353 | StringRef OldRegName = BIP->getOperand(K: 0).getOperandName(); |
1354 | auto *Def = MatchOpTable.getDef(OpName: OldRegName); |
1355 | if (!Def) { |
1356 | PrintError(Msg: Name + " cannot find a matched pattern that defines '" + |
1357 | OldRegName + "'" ); |
1358 | return false; |
1359 | } |
1360 | if (MatchOpTable.getDef(OpName: OldRegName) != MatchRoot) { |
1361 | PrintError(Msg: Name + " cannot replace '" + OldRegName + |
1362 | "': this builtin can only replace a register defined by the " |
1363 | "match root" ); |
1364 | return false; |
1365 | } |
1366 | break; |
1367 | } |
1368 | } |
1369 | } |
1370 | |
1371 | // TODO: Diagnose uses of MatchDatas if the Rule doesn't have C++ on both the |
1372 | // match and apply. It's useless in such cases. |
1373 | if (!hasOnlyCXXApplyPatterns() && !MatchDatas.empty()) { |
1374 | PrintError(Msg: MatchDataClassName + |
1375 | " can only be used if 'apply' in entirely written in C++" ); |
1376 | return false; |
1377 | } |
1378 | |
1379 | return true; |
1380 | } |
1381 | |
1382 | RuleMatcher &CombineRuleBuilder::addRuleMatcher(const PatternAlternatives &Alts, |
1383 | Twine ) { |
1384 | auto &RM = OutRMs.emplace_back(args: RuleDef.getLoc()); |
1385 | addFeaturePredicates(M&: RM); |
1386 | RM.setPermanentGISelFlags(GISF_IgnoreCopies); |
1387 | RM.addRequiredSimplePredicate(PredName: getIsEnabledPredicateEnumName(CombinerRuleID: RuleID)); |
1388 | |
1389 | std::string ; |
1390 | raw_string_ostream (Comment); |
1391 | CommentOS << "Combiner Rule #" << RuleID << ": " << RuleDef.getName(); |
1392 | if (!Alts.empty()) { |
1393 | CommentOS << " @ " ; |
1394 | print(OS&: CommentOS, Alts); |
1395 | } |
1396 | if (!AdditionalComment.isTriviallyEmpty()) |
1397 | CommentOS << "; " << AdditionalComment; |
1398 | RM.addAction<DebugCommentAction>(args&: Comment); |
1399 | return RM; |
1400 | } |
1401 | |
1402 | bool CombineRuleBuilder::addFeaturePredicates(RuleMatcher &M) { |
1403 | if (!RuleDef.getValue(Name: "Predicates" )) |
1404 | return true; |
1405 | |
1406 | const ListInit *Preds = RuleDef.getValueAsListInit(FieldName: "Predicates" ); |
1407 | for (const Init *PI : Preds->getElements()) { |
1408 | const DefInit *Pred = dyn_cast<DefInit>(Val: PI); |
1409 | if (!Pred) |
1410 | continue; |
1411 | |
1412 | const Record *Def = Pred->getDef(); |
1413 | if (!Def->isSubClassOf(Name: "Predicate" )) { |
1414 | ::PrintError(Rec: Def, Msg: "Unknown 'Predicate' Type" ); |
1415 | return false; |
1416 | } |
1417 | |
1418 | if (Def->getValueAsString(FieldName: "CondString" ).empty()) |
1419 | continue; |
1420 | |
1421 | if (SubtargetFeatures.count(x: Def) == 0) { |
1422 | SubtargetFeatures.emplace( |
1423 | args&: Def, args: SubtargetFeatureInfo(Def, SubtargetFeatures.size())); |
1424 | } |
1425 | |
1426 | M.addRequiredFeature(Feature: Def); |
1427 | } |
1428 | |
1429 | return true; |
1430 | } |
1431 | |
1432 | bool CombineRuleBuilder::findRoots() { |
1433 | const auto Finish = [&]() { |
1434 | assert(MatchRoot); |
1435 | |
1436 | if (hasOnlyCXXApplyPatterns() || hasEraseRoot()) |
1437 | return true; |
1438 | |
1439 | auto *IPRoot = dyn_cast<InstructionPattern>(Val: MatchRoot); |
1440 | if (!IPRoot) |
1441 | return true; |
1442 | |
1443 | if (IPRoot->getNumInstDefs() == 0) { |
1444 | // No defs to work with -> find the root using the pattern name. |
1445 | auto It = ApplyPats.find(Key: RootName); |
1446 | if (It == ApplyPats.end()) { |
1447 | PrintError(Msg: "Cannot find root '" + RootName + "' in apply patterns!" ); |
1448 | return false; |
1449 | } |
1450 | |
1451 | auto *ApplyRoot = dyn_cast<InstructionPattern>(Val: It->second.get()); |
1452 | if (!ApplyRoot) { |
1453 | PrintError(Msg: "apply pattern root '" + RootName + |
1454 | "' must be an instruction pattern" ); |
1455 | return false; |
1456 | } |
1457 | |
1458 | ApplyRoots.insert(V: ApplyRoot); |
1459 | return true; |
1460 | } |
1461 | |
1462 | // Collect all redefinitions of the MatchRoot's defs and put them in |
1463 | // ApplyRoots. |
1464 | const auto DefsNeeded = IPRoot->getApplyDefsNeeded(); |
1465 | for (auto &Op : DefsNeeded) { |
1466 | assert(Op.isDef() && Op.isNamedOperand()); |
1467 | StringRef Name = Op.getOperandName(); |
1468 | |
1469 | auto *ApplyRedef = ApplyOpTable.getDef(OpName: Name); |
1470 | if (!ApplyRedef) { |
1471 | PrintError(Msg: "'" + Name + "' must be redefined in the 'apply' pattern" ); |
1472 | return false; |
1473 | } |
1474 | |
1475 | ApplyRoots.insert(V: (InstructionPattern *)ApplyRedef); |
1476 | } |
1477 | |
1478 | if (auto It = ApplyPats.find(Key: RootName); It != ApplyPats.end()) { |
1479 | if (find(Range&: ApplyRoots, Val: It->second.get()) == ApplyRoots.end()) { |
1480 | PrintError(Msg: "apply pattern '" + RootName + |
1481 | "' is supposed to be a root but it does not redefine any of " |
1482 | "the defs of the match root" ); |
1483 | return false; |
1484 | } |
1485 | } |
1486 | |
1487 | return true; |
1488 | }; |
1489 | |
1490 | // Look by pattern name, e.g. |
1491 | // (G_FNEG $x, $y):$root |
1492 | if (auto MatchPatIt = MatchPats.find(Key: RootName); |
1493 | MatchPatIt != MatchPats.end()) { |
1494 | MatchRoot = MatchPatIt->second.get(); |
1495 | return Finish(); |
1496 | } |
1497 | |
1498 | // Look by def: |
1499 | // (G_FNEG $root, $y) |
1500 | auto LookupRes = MatchOpTable.lookup(OpName: RootName); |
1501 | if (!LookupRes.Found) { |
1502 | PrintError(Msg: "Cannot find root '" + RootName + "' in match patterns!" ); |
1503 | return false; |
1504 | } |
1505 | |
1506 | MatchRoot = LookupRes.Def; |
1507 | if (!MatchRoot) { |
1508 | PrintError(Msg: "Cannot use live-in operand '" + RootName + |
1509 | "' as match pattern root!" ); |
1510 | return false; |
1511 | } |
1512 | |
1513 | return Finish(); |
1514 | } |
1515 | |
1516 | bool CombineRuleBuilder::buildRuleOperandsTable() { |
1517 | const auto DiagnoseRedefMatch = [&](StringRef OpName) { |
1518 | PrintError(Msg: "Operand '" + OpName + |
1519 | "' is defined multiple times in the 'match' patterns" ); |
1520 | }; |
1521 | |
1522 | const auto DiagnoseRedefApply = [&](StringRef OpName) { |
1523 | PrintError(Msg: "Operand '" + OpName + |
1524 | "' is defined multiple times in the 'apply' patterns" ); |
1525 | }; |
1526 | |
1527 | for (auto &Pat : values(C&: MatchPats)) { |
1528 | auto *IP = dyn_cast<InstructionPattern>(Val: Pat.get()); |
1529 | if (IP && !MatchOpTable.addPattern(P: IP, DiagnoseRedef: DiagnoseRedefMatch)) |
1530 | return false; |
1531 | } |
1532 | |
1533 | for (auto &Pat : values(C&: ApplyPats)) { |
1534 | auto *IP = dyn_cast<InstructionPattern>(Val: Pat.get()); |
1535 | if (IP && !ApplyOpTable.addPattern(P: IP, DiagnoseRedef: DiagnoseRedefApply)) |
1536 | return false; |
1537 | } |
1538 | |
1539 | return true; |
1540 | } |
1541 | |
1542 | bool CombineRuleBuilder::parseDefs(const DagInit &Def) { |
1543 | if (Def.getOperatorAsDef(Loc: RuleDef.getLoc())->getName() != "defs" ) { |
1544 | PrintError(Msg: "Expected defs operator" ); |
1545 | return false; |
1546 | } |
1547 | |
1548 | SmallVector<StringRef> Roots; |
1549 | for (unsigned I = 0, E = Def.getNumArgs(); I < E; ++I) { |
1550 | if (isSpecificDef(N: *Def.getArg(Num: I), Def: "root" )) { |
1551 | Roots.emplace_back(Args: Def.getArgNameStr(Num: I)); |
1552 | continue; |
1553 | } |
1554 | |
1555 | // Subclasses of GIDefMatchData should declare that this rule needs to pass |
1556 | // data from the match stage to the apply stage, and ensure that the |
1557 | // generated matcher has a suitable variable for it to do so. |
1558 | if (const Record *MatchDataRec = |
1559 | getDefOfSubClass(N: *Def.getArg(Num: I), Cls: MatchDataClassName)) { |
1560 | MatchDatas.emplace_back(Args: Def.getArgNameStr(Num: I), |
1561 | Args: MatchDataRec->getValueAsString(FieldName: "Type" )); |
1562 | continue; |
1563 | } |
1564 | |
1565 | // Otherwise emit an appropriate error message. |
1566 | if (getDefOfSubClass(N: *Def.getArg(Num: I), Cls: "GIDefKind" )) |
1567 | PrintError(Msg: "This GIDefKind not implemented in tablegen" ); |
1568 | else if (getDefOfSubClass(N: *Def.getArg(Num: I), Cls: "GIDefKindWithArgs" )) |
1569 | PrintError(Msg: "This GIDefKindWithArgs not implemented in tablegen" ); |
1570 | else |
1571 | PrintError(Msg: "Expected a subclass of GIDefKind or a sub-dag whose " |
1572 | "operator is of type GIDefKindWithArgs" ); |
1573 | return false; |
1574 | } |
1575 | |
1576 | if (Roots.size() != 1) { |
1577 | PrintError(Msg: "Combine rules must have exactly one root" ); |
1578 | return false; |
1579 | } |
1580 | |
1581 | RootName = Roots.front(); |
1582 | return true; |
1583 | } |
1584 | |
1585 | bool CombineRuleBuilder::emitMatchPattern(CodeExpansions &CE, |
1586 | const PatternAlternatives &Alts, |
1587 | const InstructionPattern &IP) { |
1588 | auto StackTrace = PrettyStackTraceEmit(RuleDef, &IP); |
1589 | |
1590 | auto &M = addRuleMatcher(Alts); |
1591 | InstructionMatcher &IM = M.addInstructionMatcher(SymbolicName: IP.getName()); |
1592 | declareInstExpansion(CE, IM, Name: IP.getName()); |
1593 | |
1594 | DenseSet<const Pattern *> SeenPats; |
1595 | |
1596 | const auto FindOperandDef = [&](StringRef Op) -> InstructionPattern * { |
1597 | return MatchOpTable.getDef(OpName: Op); |
1598 | }; |
1599 | |
1600 | if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(Val: &IP)) { |
1601 | if (!emitCodeGenInstructionMatchPattern(CE, Alts, M, IM, P: *CGP, SeenPats, |
1602 | LookupOperandDef: FindOperandDef)) |
1603 | return false; |
1604 | } else if (const auto *PFP = dyn_cast<PatFragPattern>(Val: &IP)) { |
1605 | if (!PFP->getPatFrag().canBeMatchRoot()) { |
1606 | PrintError(Msg: "cannot use '" + PFP->getInstName() + " as match root" ); |
1607 | return false; |
1608 | } |
1609 | |
1610 | if (!emitPatFragMatchPattern(CE, Alts, RM&: M, IM: &IM, PFP: *PFP, SeenPats)) |
1611 | return false; |
1612 | } else if (isa<BuiltinPattern>(Val: &IP)) { |
1613 | llvm_unreachable("No match builtins known!" ); |
1614 | } else { |
1615 | llvm_unreachable("Unknown kind of InstructionPattern!" ); |
1616 | } |
1617 | |
1618 | // Emit remaining patterns |
1619 | const bool IsUsingCustomCXXAction = hasOnlyCXXApplyPatterns(); |
1620 | SmallVector<CXXPattern *, 2> CXXMatchers; |
1621 | for (auto &Pat : values(C&: MatchPats)) { |
1622 | if (SeenPats.contains(V: Pat.get())) |
1623 | continue; |
1624 | |
1625 | switch (Pat->getKind()) { |
1626 | case Pattern::K_AnyOpcode: |
1627 | PrintError(Msg: "wip_match_opcode can not be used with instruction patterns!" ); |
1628 | return false; |
1629 | case Pattern::K_PatFrag: { |
1630 | if (!emitPatFragMatchPattern(CE, Alts, RM&: M, /*IM*/ nullptr, |
1631 | PFP: *cast<PatFragPattern>(Val: Pat.get()), SeenPats)) |
1632 | return false; |
1633 | continue; |
1634 | } |
1635 | case Pattern::K_Builtin: |
1636 | PrintError(Msg: "No known match builtins" ); |
1637 | return false; |
1638 | case Pattern::K_CodeGenInstruction: |
1639 | cast<InstructionPattern>(Val: Pat.get())->reportUnreachable(Locs: RuleDef.getLoc()); |
1640 | return false; |
1641 | case Pattern::K_CXX: { |
1642 | // Delay emission for top-level C++ matchers (which can use MatchDatas). |
1643 | if (IsUsingCustomCXXAction) |
1644 | CXXMatchers.push_back(Elt: cast<CXXPattern>(Val: Pat.get())); |
1645 | else |
1646 | addCXXPredicate(M, CE, P: *cast<CXXPattern>(Val: Pat.get()), Alts); |
1647 | continue; |
1648 | } |
1649 | default: |
1650 | llvm_unreachable("unknown pattern kind!" ); |
1651 | } |
1652 | } |
1653 | |
1654 | return IsUsingCustomCXXAction ? emitCXXMatchApply(CE, M, Matchers: CXXMatchers) |
1655 | : emitApplyPatterns(CE, M); |
1656 | } |
1657 | |
1658 | bool CombineRuleBuilder::emitMatchPattern(CodeExpansions &CE, |
1659 | const PatternAlternatives &Alts, |
1660 | const AnyOpcodePattern &AOP) { |
1661 | auto StackTrace = PrettyStackTraceEmit(RuleDef, &AOP); |
1662 | |
1663 | const bool IsUsingCustomCXXAction = hasOnlyCXXApplyPatterns(); |
1664 | for (const CodeGenInstruction *CGI : AOP.insts()) { |
1665 | auto &M = addRuleMatcher(Alts, AdditionalComment: "wip_match_opcode '" + |
1666 | CGI->TheDef->getName() + "'" ); |
1667 | |
1668 | InstructionMatcher &IM = M.addInstructionMatcher(SymbolicName: AOP.getName()); |
1669 | declareInstExpansion(CE, IM, Name: AOP.getName()); |
1670 | // declareInstExpansion needs to be identical, otherwise we need to create a |
1671 | // CodeExpansions object here instead. |
1672 | assert(IM.getInsnVarID() == 0); |
1673 | |
1674 | IM.addPredicate<InstructionOpcodeMatcher>(args&: CGI); |
1675 | |
1676 | // Emit remaining patterns. |
1677 | SmallVector<CXXPattern *, 2> CXXMatchers; |
1678 | for (auto &Pat : values(C&: MatchPats)) { |
1679 | if (Pat.get() == &AOP) |
1680 | continue; |
1681 | |
1682 | switch (Pat->getKind()) { |
1683 | case Pattern::K_AnyOpcode: |
1684 | PrintError(Msg: "wip_match_opcode can only be present once!" ); |
1685 | return false; |
1686 | case Pattern::K_PatFrag: { |
1687 | DenseSet<const Pattern *> SeenPats; |
1688 | if (!emitPatFragMatchPattern(CE, Alts, RM&: M, /*IM*/ nullptr, |
1689 | PFP: *cast<PatFragPattern>(Val: Pat.get()), |
1690 | SeenPats)) |
1691 | return false; |
1692 | continue; |
1693 | } |
1694 | case Pattern::K_Builtin: |
1695 | PrintError(Msg: "No known match builtins" ); |
1696 | return false; |
1697 | case Pattern::K_CodeGenInstruction: |
1698 | cast<InstructionPattern>(Val: Pat.get())->reportUnreachable( |
1699 | Locs: RuleDef.getLoc()); |
1700 | return false; |
1701 | case Pattern::K_CXX: { |
1702 | // Delay emission for top-level C++ matchers (which can use MatchDatas). |
1703 | if (IsUsingCustomCXXAction) |
1704 | CXXMatchers.push_back(Elt: cast<CXXPattern>(Val: Pat.get())); |
1705 | else |
1706 | addCXXPredicate(M, CE, P: *cast<CXXPattern>(Val: Pat.get()), Alts); |
1707 | break; |
1708 | } |
1709 | default: |
1710 | llvm_unreachable("unknown pattern kind!" ); |
1711 | } |
1712 | } |
1713 | |
1714 | const bool Res = IsUsingCustomCXXAction |
1715 | ? emitCXXMatchApply(CE, M, Matchers: CXXMatchers) |
1716 | : emitApplyPatterns(CE, M); |
1717 | if (!Res) |
1718 | return false; |
1719 | } |
1720 | |
1721 | return true; |
1722 | } |
1723 | |
1724 | bool CombineRuleBuilder::emitPatFragMatchPattern( |
1725 | CodeExpansions &CE, const PatternAlternatives &Alts, RuleMatcher &RM, |
1726 | InstructionMatcher *IM, const PatFragPattern &PFP, |
1727 | DenseSet<const Pattern *> &SeenPats) { |
1728 | auto StackTrace = PrettyStackTraceEmit(RuleDef, &PFP); |
1729 | |
1730 | if (!SeenPats.insert(V: &PFP).second) |
1731 | return true; |
1732 | |
1733 | const auto &PF = PFP.getPatFrag(); |
1734 | |
1735 | if (!IM) { |
1736 | // When we don't have an IM, this means this PatFrag isn't reachable from |
1737 | // the root. This is only acceptable if it doesn't define anything (e.g. a |
1738 | // pure C++ PatFrag). |
1739 | if (PF.num_out_params() != 0) { |
1740 | PFP.reportUnreachable(Locs: RuleDef.getLoc()); |
1741 | return false; |
1742 | } |
1743 | } else { |
1744 | // When an IM is provided, this is reachable from the root, and we're |
1745 | // expecting to have output operands. |
1746 | // TODO: If we want to allow for multiple roots we'll need a map of IMs |
1747 | // then, and emission becomes a bit more complicated. |
1748 | assert(PF.num_roots() == 1); |
1749 | } |
1750 | |
1751 | CodeExpansions PatFragCEs; |
1752 | if (!PFP.mapInputCodeExpansions(ParentCEs: CE, PatFragCEs, DiagLoc: RuleDef.getLoc())) |
1753 | return false; |
1754 | |
1755 | // List of {ParamName, ArgName}. |
1756 | // When all patterns have been emitted, find expansions in PatFragCEs named |
1757 | // ArgName and add their expansion to CE using ParamName as the key. |
1758 | SmallVector<std::pair<std::string, std::string>, 4> CEsToImport; |
1759 | |
1760 | // Map parameter names to the actual argument. |
1761 | const auto OperandMapper = |
1762 | [&](const InstructionOperand &O) -> InstructionOperand { |
1763 | if (!O.isNamedOperand()) |
1764 | return O; |
1765 | |
1766 | StringRef ParamName = O.getOperandName(); |
1767 | |
1768 | // Not sure what to do with those tbh. They should probably never be here. |
1769 | assert(!O.isNamedImmediate() && "TODO: handle named imms" ); |
1770 | unsigned PIdx = PF.getParamIdx(Name: ParamName); |
1771 | |
1772 | // Map parameters to the argument values. |
1773 | if (PIdx == (unsigned)-1) { |
1774 | // This is a temp of the PatFragPattern, prefix the name to avoid |
1775 | // conflicts. |
1776 | return O.withNewName( |
1777 | NewName: insertStrRef(S: (PFP.getName() + "." + ParamName).str())); |
1778 | } |
1779 | |
1780 | // The operand will be added to PatFragCEs's code expansions using the |
1781 | // parameter's name. If it's bound to some operand during emission of the |
1782 | // patterns, we'll want to add it to CE. |
1783 | auto ArgOp = PFP.getOperand(K: PIdx); |
1784 | if (ArgOp.isNamedOperand()) |
1785 | CEsToImport.emplace_back(Args: ArgOp.getOperandName().str(), Args&: ParamName); |
1786 | |
1787 | if (ArgOp.getType() && O.getType() && ArgOp.getType() != O.getType()) { |
1788 | StringRef PFName = PF.getName(); |
1789 | PrintWarning(Msg: "impossible type constraints: operand " + Twine(PIdx) + |
1790 | " of '" + PFP.getName() + "' has type '" + |
1791 | ArgOp.getType().str() + "', but '" + PFName + |
1792 | "' constrains it to '" + O.getType().str() + "'" ); |
1793 | if (ArgOp.isNamedOperand()) |
1794 | PrintNote(Msg: "operand " + Twine(PIdx) + " of '" + PFP.getName() + |
1795 | "' is '" + ArgOp.getOperandName() + "'" ); |
1796 | if (O.isNamedOperand()) |
1797 | PrintNote(Msg: "argument " + Twine(PIdx) + " of '" + PFName + "' is '" + |
1798 | ParamName + "'" ); |
1799 | } |
1800 | |
1801 | return ArgOp; |
1802 | }; |
1803 | |
1804 | // PatFragPatterns are only made of InstructionPatterns or CXXPatterns. |
1805 | // Emit instructions from the root. |
1806 | const auto &FragAlt = PF.getAlternative(K: Alts.lookup(Val: &PFP)); |
1807 | const auto &FragAltOT = FragAlt.OpTable; |
1808 | const auto LookupOperandDef = |
1809 | [&](StringRef Op) -> const InstructionPattern * { |
1810 | return FragAltOT.getDef(OpName: Op); |
1811 | }; |
1812 | |
1813 | DenseSet<const Pattern *> PatFragSeenPats; |
1814 | for (const auto &[Idx, InOp] : enumerate(First: PF.out_params())) { |
1815 | if (InOp.Kind != PatFrag::PK_Root) |
1816 | continue; |
1817 | |
1818 | StringRef ParamName = InOp.Name; |
1819 | const auto *Def = FragAltOT.getDef(OpName: ParamName); |
1820 | assert(Def && "PatFrag::checkSemantics should have emitted an error if " |
1821 | "an out operand isn't defined!" ); |
1822 | assert(isa<CodeGenInstructionPattern>(Def) && |
1823 | "Nested PatFrags not supported yet" ); |
1824 | |
1825 | if (!emitCodeGenInstructionMatchPattern( |
1826 | CE&: PatFragCEs, Alts, M&: RM, IM&: *IM, P: *cast<CodeGenInstructionPattern>(Val: Def), |
1827 | SeenPats&: PatFragSeenPats, LookupOperandDef, OperandMapper)) |
1828 | return false; |
1829 | } |
1830 | |
1831 | // Emit leftovers. |
1832 | for (const auto &Pat : FragAlt.Pats) { |
1833 | if (PatFragSeenPats.contains(V: Pat.get())) |
1834 | continue; |
1835 | |
1836 | if (const auto *CXXPat = dyn_cast<CXXPattern>(Val: Pat.get())) { |
1837 | addCXXPredicate(M&: RM, CE: PatFragCEs, P: *CXXPat, Alts); |
1838 | continue; |
1839 | } |
1840 | |
1841 | if (const auto *IP = dyn_cast<InstructionPattern>(Val: Pat.get())) { |
1842 | IP->reportUnreachable(Locs: PF.getLoc()); |
1843 | return false; |
1844 | } |
1845 | |
1846 | llvm_unreachable("Unexpected pattern kind in PatFrag" ); |
1847 | } |
1848 | |
1849 | for (const auto &[ParamName, ArgName] : CEsToImport) { |
1850 | // Note: we're find if ParamName already exists. It just means it's been |
1851 | // bound before, so we prefer to keep the first binding. |
1852 | CE.declare(Name: ParamName, Expansion: PatFragCEs.lookup(Variable: ArgName)); |
1853 | } |
1854 | |
1855 | return true; |
1856 | } |
1857 | |
1858 | bool CombineRuleBuilder::emitApplyPatterns(CodeExpansions &CE, RuleMatcher &M) { |
1859 | assert(MatchDatas.empty()); |
1860 | |
1861 | DenseSet<const Pattern *> SeenPats; |
1862 | StringMap<unsigned> OperandToTempRegID; |
1863 | |
1864 | for (auto *ApplyRoot : ApplyRoots) { |
1865 | assert(isa<InstructionPattern>(ApplyRoot) && |
1866 | "Root can only be a InstructionPattern!" ); |
1867 | if (!emitInstructionApplyPattern(CE, M, |
1868 | P: cast<InstructionPattern>(Val&: *ApplyRoot), |
1869 | SeenPats, OperandToTempRegID)) |
1870 | return false; |
1871 | } |
1872 | |
1873 | for (auto &Pat : values(C&: ApplyPats)) { |
1874 | if (SeenPats.contains(V: Pat.get())) |
1875 | continue; |
1876 | |
1877 | switch (Pat->getKind()) { |
1878 | case Pattern::K_AnyOpcode: |
1879 | llvm_unreachable("Unexpected pattern in apply!" ); |
1880 | case Pattern::K_PatFrag: |
1881 | // TODO: We could support pure C++ PatFrags as a temporary thing. |
1882 | llvm_unreachable("Unexpected pattern in apply!" ); |
1883 | case Pattern::K_Builtin: |
1884 | if (!emitInstructionApplyPattern(CE, M, P: cast<BuiltinPattern>(Val&: *Pat), |
1885 | SeenPats, OperandToTempRegID)) |
1886 | return false; |
1887 | break; |
1888 | case Pattern::K_CodeGenInstruction: |
1889 | cast<CodeGenInstructionPattern>(Val&: *Pat).reportUnreachable(Locs: RuleDef.getLoc()); |
1890 | return false; |
1891 | case Pattern::K_CXX: { |
1892 | llvm_unreachable( |
1893 | "CXX Pattern Emission should have been handled earlier!" ); |
1894 | } |
1895 | default: |
1896 | llvm_unreachable("unknown pattern kind!" ); |
1897 | } |
1898 | } |
1899 | |
1900 | // Erase the root. |
1901 | unsigned RootInsnID = |
1902 | M.getInsnVarID(InsnMatcher&: M.getInstructionMatcher(SymbolicName: MatchRoot->getName())); |
1903 | M.addAction<EraseInstAction>(args&: RootInsnID); |
1904 | |
1905 | return true; |
1906 | } |
1907 | |
1908 | bool CombineRuleBuilder::emitCXXMatchApply(CodeExpansions &CE, RuleMatcher &M, |
1909 | ArrayRef<CXXPattern *> Matchers) { |
1910 | assert(hasOnlyCXXApplyPatterns()); |
1911 | declareAllMatchDatasExpansions(CE); |
1912 | |
1913 | std::string CodeStr; |
1914 | raw_string_ostream OS(CodeStr); |
1915 | |
1916 | for (auto &MD : MatchDatas) |
1917 | OS << MD.Type << " " << MD.getVarName() << ";\n" ; |
1918 | |
1919 | if (!Matchers.empty()) { |
1920 | OS << "// Match Patterns\n" ; |
1921 | for (auto *M : Matchers) { |
1922 | OS << "if(![&](){" ; |
1923 | CodeExpander Expander(M->getRawCode(), CE, RuleDef.getLoc(), |
1924 | /*ShowExpansions=*/false); |
1925 | Expander.emit(OS); |
1926 | OS << "}()) {\n" |
1927 | << " return false;\n}\n" ; |
1928 | } |
1929 | } |
1930 | |
1931 | OS << "// Apply Patterns\n" ; |
1932 | ListSeparator LS("\n" ); |
1933 | for (auto &Pat : ApplyPats) { |
1934 | auto *CXXPat = cast<CXXPattern>(Val: Pat.second.get()); |
1935 | CodeExpander Expander(CXXPat->getRawCode(), CE, RuleDef.getLoc(), |
1936 | /*ShowExpansions=*/false); |
1937 | OS << LS; |
1938 | Expander.emit(OS); |
1939 | } |
1940 | |
1941 | const auto &Code = CXXPredicateCode::getCustomActionCode(Code: CodeStr); |
1942 | M.setCustomCXXAction(Code.getEnumNameWithPrefix(Prefix: CXXCustomActionPrefix)); |
1943 | return true; |
1944 | } |
1945 | |
1946 | bool CombineRuleBuilder::emitInstructionApplyPattern( |
1947 | CodeExpansions &CE, RuleMatcher &M, const InstructionPattern &P, |
1948 | DenseSet<const Pattern *> &SeenPats, |
1949 | StringMap<unsigned> &OperandToTempRegID) { |
1950 | auto StackTrace = PrettyStackTraceEmit(RuleDef, &P); |
1951 | |
1952 | if (!SeenPats.insert(V: &P).second) |
1953 | return true; |
1954 | |
1955 | // First, render the uses. |
1956 | for (auto &Op : P.named_operands()) { |
1957 | if (Op.isDef()) |
1958 | continue; |
1959 | |
1960 | StringRef OpName = Op.getOperandName(); |
1961 | if (const auto *DefPat = ApplyOpTable.getDef(OpName)) { |
1962 | if (!emitInstructionApplyPattern(CE, M, P: *DefPat, SeenPats, |
1963 | OperandToTempRegID)) |
1964 | return false; |
1965 | } else { |
1966 | // If we have no def, check this exists in the MatchRoot. |
1967 | if (!Op.isNamedImmediate() && !MatchOpTable.lookup(OpName).Found) { |
1968 | PrintError(Msg: "invalid output operand '" + OpName + |
1969 | "': operand is not a live-in of the match pattern, and it " |
1970 | "has no definition" ); |
1971 | return false; |
1972 | } |
1973 | } |
1974 | } |
1975 | |
1976 | if (const auto *BP = dyn_cast<BuiltinPattern>(Val: &P)) |
1977 | return emitBuiltinApplyPattern(CE, M, P: *BP, OperandToTempRegID); |
1978 | |
1979 | if (isa<PatFragPattern>(Val: &P)) |
1980 | llvm_unreachable("PatFragPatterns is not supported in 'apply'!" ); |
1981 | |
1982 | auto &CGIP = cast<CodeGenInstructionPattern>(Val: P); |
1983 | |
1984 | // Now render this inst. |
1985 | auto &DstMI = |
1986 | M.addAction<BuildMIAction>(args: M.allocateOutputInsnID(), args: &CGIP.getInst()); |
1987 | |
1988 | bool HasEmittedIntrinsicID = false; |
1989 | const auto EmitIntrinsicID = [&]() { |
1990 | assert(CGIP.isIntrinsic()); |
1991 | DstMI.addRenderer<IntrinsicIDRenderer>(args: CGIP.getIntrinsic()); |
1992 | HasEmittedIntrinsicID = true; |
1993 | }; |
1994 | |
1995 | for (auto &Op : P.operands()) { |
1996 | // Emit the intrinsic ID after the last def. |
1997 | if (CGIP.isIntrinsic() && !Op.isDef() && !HasEmittedIntrinsicID) |
1998 | EmitIntrinsicID(); |
1999 | |
2000 | if (Op.isNamedImmediate()) { |
2001 | PrintError(Msg: "invalid output operand '" + Op.getOperandName() + |
2002 | "': output immediates cannot be named" ); |
2003 | PrintNote(Msg: "while emitting pattern '" + P.getName() + "' (" + |
2004 | P.getInstName() + ")" ); |
2005 | return false; |
2006 | } |
2007 | |
2008 | if (Op.hasImmValue()) { |
2009 | if (!emitCodeGenInstructionApplyImmOperand(M, DstMI, P: CGIP, O: Op)) |
2010 | return false; |
2011 | continue; |
2012 | } |
2013 | |
2014 | StringRef OpName = Op.getOperandName(); |
2015 | |
2016 | // Uses of operand. |
2017 | if (!Op.isDef()) { |
2018 | if (auto It = OperandToTempRegID.find(Key: OpName); |
2019 | It != OperandToTempRegID.end()) { |
2020 | assert(!MatchOpTable.lookup(OpName).Found && |
2021 | "Temp reg is also from match pattern?" ); |
2022 | DstMI.addRenderer<TempRegRenderer>(args&: It->second); |
2023 | } else { |
2024 | // This should be a match live in or a redef of a matched instr. |
2025 | // If it's a use of a temporary register, then we messed up somewhere - |
2026 | // the previous condition should have passed. |
2027 | assert(MatchOpTable.lookup(OpName).Found && |
2028 | !ApplyOpTable.getDef(OpName) && "Temp reg not emitted yet!" ); |
2029 | DstMI.addRenderer<CopyRenderer>(args&: OpName); |
2030 | } |
2031 | continue; |
2032 | } |
2033 | |
2034 | // Determine what we're dealing with. Are we replacing a matched |
2035 | // instruction? Creating a new one? |
2036 | auto OpLookupRes = MatchOpTable.lookup(OpName); |
2037 | if (OpLookupRes.Found) { |
2038 | if (OpLookupRes.isLiveIn()) { |
2039 | // live-in of the match pattern. |
2040 | PrintError(Msg: "Cannot define live-in operand '" + OpName + |
2041 | "' in the 'apply' pattern" ); |
2042 | return false; |
2043 | } |
2044 | assert(OpLookupRes.Def); |
2045 | |
2046 | // TODO: Handle this. We need to mutate the instr, or delete the old |
2047 | // one. |
2048 | // Likewise, we also need to ensure we redef everything, if the |
2049 | // instr has more than one def, we need to redef all or nothing. |
2050 | if (OpLookupRes.Def != MatchRoot) { |
2051 | PrintError(Msg: "redefining an instruction other than the root is not " |
2052 | "supported (operand '" + |
2053 | OpName + "')" ); |
2054 | return false; |
2055 | } |
2056 | // redef of a match |
2057 | DstMI.addRenderer<CopyRenderer>(args&: OpName); |
2058 | continue; |
2059 | } |
2060 | |
2061 | // Define a new register unique to the apply patterns (AKA a "temp" |
2062 | // register). |
2063 | unsigned TempRegID; |
2064 | if (auto It = OperandToTempRegID.find(Key: OpName); |
2065 | It != OperandToTempRegID.end()) { |
2066 | TempRegID = It->second; |
2067 | } else { |
2068 | // This is a brand new register. |
2069 | TempRegID = M.allocateTempRegID(); |
2070 | OperandToTempRegID[OpName] = TempRegID; |
2071 | const auto Ty = Op.getType(); |
2072 | if (!Ty) { |
2073 | PrintError(Msg: "def of a new register '" + OpName + |
2074 | "' in the apply patterns must have a type" ); |
2075 | return false; |
2076 | } |
2077 | |
2078 | declareTempRegExpansion(CE, TempRegID, Name: OpName); |
2079 | // Always insert the action at the beginning, otherwise we may end up |
2080 | // using the temp reg before it's available. |
2081 | auto Result = getLLTCodeGenOrTempType(PT: Ty, RM&: M); |
2082 | if (!Result) |
2083 | return false; |
2084 | M.insertAction<MakeTempRegisterAction>(InsertPt: M.actions_begin(), args&: *Result, |
2085 | args&: TempRegID); |
2086 | } |
2087 | |
2088 | DstMI.addRenderer<TempRegRenderer>(args&: TempRegID, /*IsDef=*/args: true); |
2089 | } |
2090 | |
2091 | // Some intrinsics have no in operands, ensure the ID is still emitted in such |
2092 | // cases. |
2093 | if (CGIP.isIntrinsic() && !HasEmittedIntrinsicID) |
2094 | EmitIntrinsicID(); |
2095 | |
2096 | // Render MIFlags |
2097 | if (const auto *FI = CGIP.getMIFlagsInfo()) { |
2098 | for (StringRef InstName : FI->copy_flags()) |
2099 | DstMI.addCopiedMIFlags(IM: M.getInstructionMatcher(SymbolicName: InstName)); |
2100 | for (StringRef F : FI->set_flags()) |
2101 | DstMI.addSetMIFlags(Flag: F); |
2102 | for (StringRef F : FI->unset_flags()) |
2103 | DstMI.addUnsetMIFlags(Flag: F); |
2104 | } |
2105 | |
2106 | // Don't allow mutating opcodes for GISel combiners. We want a more precise |
2107 | // handling of MIFlags so we require them to be explicitly preserved. |
2108 | // |
2109 | // TODO: We don't mutate very often, if at all in combiners, but it'd be nice |
2110 | // to re-enable this. We'd then need to always clear MIFlags when mutating |
2111 | // opcodes, and never mutate an inst that we copy flags from. |
2112 | // DstMI.chooseInsnToMutate(M); |
2113 | declareInstExpansion(CE, A: DstMI, Name: P.getName()); |
2114 | |
2115 | return true; |
2116 | } |
2117 | |
2118 | bool CombineRuleBuilder::emitCodeGenInstructionApplyImmOperand( |
2119 | RuleMatcher &M, BuildMIAction &DstMI, const CodeGenInstructionPattern &P, |
2120 | const InstructionOperand &O) { |
2121 | // If we have a type, we implicitly emit a G_CONSTANT, except for G_CONSTANT |
2122 | // itself where we emit a CImm. |
2123 | // |
2124 | // No type means we emit a simple imm. |
2125 | // G_CONSTANT is a special case and needs a CImm though so this is likely a |
2126 | // mistake. |
2127 | const bool isGConstant = P.is(OpcodeName: "G_CONSTANT" ); |
2128 | const auto Ty = O.getType(); |
2129 | if (!Ty) { |
2130 | if (isGConstant) { |
2131 | PrintError(Msg: "'G_CONSTANT' immediate must be typed!" ); |
2132 | PrintNote(Msg: "while emitting pattern '" + P.getName() + "' (" + |
2133 | P.getInstName() + ")" ); |
2134 | return false; |
2135 | } |
2136 | |
2137 | DstMI.addRenderer<ImmRenderer>(args: O.getImmValue()); |
2138 | return true; |
2139 | } |
2140 | |
2141 | auto ImmTy = getLLTCodeGenOrTempType(PT: Ty, RM&: M); |
2142 | if (!ImmTy) |
2143 | return false; |
2144 | |
2145 | if (isGConstant) { |
2146 | DstMI.addRenderer<ImmRenderer>(args: O.getImmValue(), args&: *ImmTy); |
2147 | return true; |
2148 | } |
2149 | |
2150 | unsigned TempRegID = M.allocateTempRegID(); |
2151 | // Ensure MakeTempReg & the BuildConstantAction occur at the beginning. |
2152 | auto InsertIt = M.insertAction<MakeTempRegisterAction>(InsertPt: M.actions_begin(), |
2153 | args&: *ImmTy, args&: TempRegID); |
2154 | M.insertAction<BuildConstantAction>(InsertPt: ++InsertIt, args&: TempRegID, args: O.getImmValue()); |
2155 | DstMI.addRenderer<TempRegRenderer>(args&: TempRegID); |
2156 | return true; |
2157 | } |
2158 | |
2159 | bool CombineRuleBuilder::emitBuiltinApplyPattern( |
2160 | CodeExpansions &CE, RuleMatcher &M, const BuiltinPattern &P, |
2161 | StringMap<unsigned> &OperandToTempRegID) { |
2162 | const auto Error = [&](Twine Reason) { |
2163 | PrintError(Msg: "cannot emit '" + P.getInstName() + "' builtin: " + Reason); |
2164 | return false; |
2165 | }; |
2166 | |
2167 | switch (P.getBuiltinKind()) { |
2168 | case BI_EraseRoot: { |
2169 | // Root is always inst 0. |
2170 | M.addAction<EraseInstAction>(/*InsnID*/ args: 0); |
2171 | return true; |
2172 | } |
2173 | case BI_ReplaceReg: { |
2174 | StringRef Old = P.getOperand(K: 0).getOperandName(); |
2175 | StringRef New = P.getOperand(K: 1).getOperandName(); |
2176 | |
2177 | if (!ApplyOpTable.lookup(OpName: New).Found && !MatchOpTable.lookup(OpName: New).Found) |
2178 | return Error("unknown operand '" + Old + "'" ); |
2179 | |
2180 | auto &OldOM = M.getOperandMatcher(Name: Old); |
2181 | if (auto It = OperandToTempRegID.find(Key: New); |
2182 | It != OperandToTempRegID.end()) { |
2183 | // Replace with temp reg. |
2184 | M.addAction<ReplaceRegAction>(args: OldOM.getInsnVarID(), args: OldOM.getOpIdx(), |
2185 | args&: It->second); |
2186 | } else { |
2187 | // Replace with matched reg. |
2188 | auto &NewOM = M.getOperandMatcher(Name: New); |
2189 | M.addAction<ReplaceRegAction>(args: OldOM.getInsnVarID(), args: OldOM.getOpIdx(), |
2190 | args: NewOM.getInsnVarID(), args: NewOM.getOpIdx()); |
2191 | } |
2192 | // checkSemantics should have ensured that we can only rewrite the root. |
2193 | // Ensure we're deleting it. |
2194 | assert(MatchOpTable.getDef(Old) == MatchRoot); |
2195 | return true; |
2196 | } |
2197 | } |
2198 | |
2199 | llvm_unreachable("Unknown BuiltinKind!" ); |
2200 | } |
2201 | |
2202 | bool isLiteralImm(const InstructionPattern &P, unsigned OpIdx) { |
2203 | if (const auto *CGP = dyn_cast<CodeGenInstructionPattern>(Val: &P)) { |
2204 | StringRef InstName = CGP->getInst().TheDef->getName(); |
2205 | return (InstName == "G_CONSTANT" || InstName == "G_FCONSTANT" ) && |
2206 | OpIdx == 1; |
2207 | } |
2208 | |
2209 | llvm_unreachable("TODO" ); |
2210 | } |
2211 | |
2212 | bool CombineRuleBuilder::emitCodeGenInstructionMatchPattern( |
2213 | CodeExpansions &CE, const PatternAlternatives &Alts, RuleMatcher &M, |
2214 | InstructionMatcher &IM, const CodeGenInstructionPattern &P, |
2215 | DenseSet<const Pattern *> &SeenPats, OperandDefLookupFn LookupOperandDef, |
2216 | OperandMapperFnRef OperandMapper) { |
2217 | auto StackTrace = PrettyStackTraceEmit(RuleDef, &P); |
2218 | |
2219 | if (!SeenPats.insert(V: &P).second) |
2220 | return true; |
2221 | |
2222 | IM.addPredicate<InstructionOpcodeMatcher>(args: &P.getInst()); |
2223 | declareInstExpansion(CE, IM, Name: P.getName()); |
2224 | |
2225 | // If this is an intrinsic, check the intrinsic ID. |
2226 | if (P.isIntrinsic()) { |
2227 | // The IntrinsicID's operand is the first operand after the defs. |
2228 | OperandMatcher &OM = IM.addOperand(OpIdx: P.getNumInstDefs(), SymbolicName: "$intrinsic_id" , |
2229 | AllocatedTemporariesBaseID: AllocatedTemporariesBaseID++); |
2230 | OM.addPredicate<IntrinsicIDOperandMatcher>(args: P.getIntrinsic()); |
2231 | } |
2232 | |
2233 | // Check flags if needed. |
2234 | if (const auto *FI = P.getMIFlagsInfo()) { |
2235 | assert(FI->copy_flags().empty()); |
2236 | |
2237 | if (const auto &SetF = FI->set_flags(); !SetF.empty()) |
2238 | IM.addPredicate<MIFlagsInstructionPredicateMatcher>(args: SetF.getArrayRef()); |
2239 | if (const auto &UnsetF = FI->unset_flags(); !UnsetF.empty()) |
2240 | IM.addPredicate<MIFlagsInstructionPredicateMatcher>(args: UnsetF.getArrayRef(), |
2241 | /*CheckNot=*/args: true); |
2242 | } |
2243 | |
2244 | for (auto [Idx, OriginalO] : enumerate(First: P.operands())) { |
2245 | // Remap the operand. This is used when emitting InstructionPatterns inside |
2246 | // PatFrags, so it can remap them to the arguments passed to the pattern. |
2247 | // |
2248 | // We use the remapped operand to emit immediates, and for the symbolic |
2249 | // operand names (in IM.addOperand). CodeExpansions and OperandTable lookups |
2250 | // still use the original name. |
2251 | // |
2252 | // The "def" flag on the remapped operand is always ignored. |
2253 | auto RemappedO = OperandMapper(OriginalO); |
2254 | assert(RemappedO.isNamedOperand() == OriginalO.isNamedOperand() && |
2255 | "Cannot remap an unnamed operand to a named one!" ); |
2256 | |
2257 | const auto Ty = RemappedO.getType(); |
2258 | |
2259 | const auto OpName = |
2260 | RemappedO.isNamedOperand() ? RemappedO.getOperandName().str() : "" ; |
2261 | |
2262 | // For intrinsics, the first use operand is the intrinsic id, so the true |
2263 | // operand index is shifted by 1. |
2264 | // |
2265 | // From now on: |
2266 | // Idx = index in the pattern operand list. |
2267 | // RealIdx = expected index in the MachineInstr. |
2268 | const unsigned RealIdx = |
2269 | (P.isIntrinsic() && !OriginalO.isDef()) ? (Idx + 1) : Idx; |
2270 | |
2271 | if (Ty.isVariadicPack() && M.hasOperand(SymbolicName: OpName)) { |
2272 | // TODO: We could add some CheckIsSameOperand opcode variant that checks |
2273 | // all operands. We could also just emit a C++ code snippet lazily to do |
2274 | // the check since it's probably fairly rare that we need to do it. |
2275 | // |
2276 | // I'm just not sure it's worth the effort at this stage. |
2277 | PrintError(Msg: "each instance of a " + PatternType::VariadicClassName + |
2278 | " operand must have a unique name within the match patterns" ); |
2279 | PrintNote(Msg: "'" + OpName + "' is used multiple times" ); |
2280 | return false; |
2281 | } |
2282 | |
2283 | OperandMatcher &OM = |
2284 | IM.addOperand(OpIdx: RealIdx, SymbolicName: OpName, AllocatedTemporariesBaseID: AllocatedTemporariesBaseID++, |
2285 | /*IsVariadic=*/Ty.isVariadicPack()); |
2286 | if (!OpName.empty()) |
2287 | declareOperandExpansion(CE, OM, Name: OriginalO.getOperandName()); |
2288 | |
2289 | if (Ty.isVariadicPack()) { |
2290 | // In the presence of variadics, the InstructionMatcher won't insert a |
2291 | // InstructionNumOperandsMatcher implicitly, so we have to emit our own. |
2292 | assert((Idx + 1) == P.operands_size() && |
2293 | "VariadicPack isn't last operand!" ); |
2294 | auto VPTI = Ty.getVariadicPackTypeInfo(); |
2295 | assert(VPTI.Min > 0 && (VPTI.Max == 0 || VPTI.Max > VPTI.Min)); |
2296 | IM.addPredicate<InstructionNumOperandsMatcher>( |
2297 | args: RealIdx + VPTI.Min, args: InstructionNumOperandsMatcher::CheckKind::GE); |
2298 | if (VPTI.Max) { |
2299 | IM.addPredicate<InstructionNumOperandsMatcher>( |
2300 | args: RealIdx + VPTI.Max, args: InstructionNumOperandsMatcher::CheckKind::LE); |
2301 | } |
2302 | break; |
2303 | } |
2304 | |
2305 | // Handle immediates. |
2306 | if (RemappedO.hasImmValue()) { |
2307 | if (isLiteralImm(P, OpIdx: Idx)) |
2308 | OM.addPredicate<LiteralIntOperandMatcher>(args: RemappedO.getImmValue()); |
2309 | else |
2310 | OM.addPredicate<ConstantIntOperandMatcher>(args: RemappedO.getImmValue()); |
2311 | } |
2312 | |
2313 | // Handle typed operands, but only bother to check if it hasn't been done |
2314 | // before. |
2315 | // |
2316 | // getOperandMatcher will always return the first OM to have been created |
2317 | // for that Operand. "OM" here is always a new OperandMatcher. |
2318 | // |
2319 | // Always emit a check for unnamed operands. |
2320 | if (Ty && (OpName.empty() || |
2321 | !M.getOperandMatcher(Name: OpName).contains<LLTOperandMatcher>())) { |
2322 | // TODO: We could support GITypeOf here on the condition that the |
2323 | // OperandMatcher exists already. Though it's clunky to make this work |
2324 | // and isn't all that useful so it's just rejected in typecheckPatterns |
2325 | // at this time. |
2326 | assert(Ty.isLLT()); |
2327 | OM.addPredicate<LLTOperandMatcher>(args: getLLTCodeGen(PT: Ty)); |
2328 | } |
2329 | |
2330 | // Stop here if the operand is a def, or if it had no name. |
2331 | if (OriginalO.isDef() || !OriginalO.isNamedOperand()) |
2332 | continue; |
2333 | |
2334 | const auto *DefPat = LookupOperandDef(OriginalO.getOperandName()); |
2335 | if (!DefPat) |
2336 | continue; |
2337 | |
2338 | if (OriginalO.hasImmValue()) { |
2339 | assert(!OpName.empty()); |
2340 | // This is a named immediate that also has a def, that's not okay. |
2341 | // e.g. |
2342 | // (G_SEXT $y, (i32 0)) |
2343 | // (COPY $x, 42:$y) |
2344 | PrintError(Msg: "'" + OpName + |
2345 | "' is a named immediate, it cannot be defined by another " |
2346 | "instruction" ); |
2347 | PrintNote(Msg: "'" + OpName + "' is defined by '" + DefPat->getName() + "'" ); |
2348 | return false; |
2349 | } |
2350 | |
2351 | // From here we know that the operand defines an instruction, and we need to |
2352 | // emit it. |
2353 | auto InstOpM = |
2354 | OM.addPredicate<InstructionOperandMatcher>(args&: M, args: DefPat->getName()); |
2355 | if (!InstOpM) { |
2356 | // TODO: copy-pasted from GlobalISelEmitter.cpp. Is it still relevant |
2357 | // here? |
2358 | PrintError(Msg: "Nested instruction '" + DefPat->getName() + |
2359 | "' cannot be the same as another operand '" + |
2360 | OriginalO.getOperandName() + "'" ); |
2361 | return false; |
2362 | } |
2363 | |
2364 | auto &IM = (*InstOpM)->getInsnMatcher(); |
2365 | if (const auto *CGIDef = dyn_cast<CodeGenInstructionPattern>(Val: DefPat)) { |
2366 | if (!emitCodeGenInstructionMatchPattern(CE, Alts, M, IM, P: *CGIDef, |
2367 | SeenPats, LookupOperandDef, |
2368 | OperandMapper)) |
2369 | return false; |
2370 | continue; |
2371 | } |
2372 | |
2373 | if (const auto *PFPDef = dyn_cast<PatFragPattern>(Val: DefPat)) { |
2374 | if (!emitPatFragMatchPattern(CE, Alts, RM&: M, IM: &IM, PFP: *PFPDef, SeenPats)) |
2375 | return false; |
2376 | continue; |
2377 | } |
2378 | |
2379 | llvm_unreachable("unknown type of InstructionPattern" ); |
2380 | } |
2381 | |
2382 | return true; |
2383 | } |
2384 | |
2385 | //===- GICombinerEmitter --------------------------------------------------===// |
2386 | |
2387 | /// Main implementation class. This emits the tablegenerated output. |
2388 | /// |
2389 | /// It collects rules, uses `CombineRuleBuilder` to parse them and accumulate |
2390 | /// RuleMatchers, then takes all the necessary state/data from the various |
2391 | /// static storage pools and wires them together to emit the match table & |
2392 | /// associated function/data structures. |
2393 | class GICombinerEmitter final : public GlobalISelMatchTableExecutorEmitter { |
2394 | const RecordKeeper &Records; |
2395 | StringRef Name; |
2396 | const CodeGenTarget &Target; |
2397 | const Record *Combiner; |
2398 | unsigned NextRuleID = 0; |
2399 | |
2400 | // List all combine rules (ID, name) imported. |
2401 | // Note that the combiner rule ID is different from the RuleMatcher ID. The |
2402 | // latter is internal to the MatchTable, the former is the canonical ID of the |
2403 | // combine rule used to disable/enable it. |
2404 | std::vector<std::pair<unsigned, std::string>> AllCombineRules; |
2405 | |
2406 | // Keep track of all rules we've seen so far to ensure we don't process |
2407 | // the same rule twice. |
2408 | StringSet<> RulesSeen; |
2409 | |
2410 | MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules); |
2411 | |
2412 | void emitRuleConfigImpl(raw_ostream &OS); |
2413 | |
2414 | void emitAdditionalImpl(raw_ostream &OS) override; |
2415 | |
2416 | void emitMIPredicateFns(raw_ostream &OS) override; |
2417 | void emitLeafPredicateFns(raw_ostream &OS) override; |
2418 | void emitI64ImmPredicateFns(raw_ostream &OS) override; |
2419 | void emitAPFloatImmPredicateFns(raw_ostream &OS) override; |
2420 | void emitAPIntImmPredicateFns(raw_ostream &OS) override; |
2421 | void emitTestSimplePredicate(raw_ostream &OS) override; |
2422 | void emitRunCustomAction(raw_ostream &OS) override; |
2423 | |
2424 | const CodeGenTarget &getTarget() const override { return Target; } |
2425 | StringRef getClassName() const override { |
2426 | return Combiner->getValueAsString(FieldName: "Classname" ); |
2427 | } |
2428 | |
2429 | StringRef getCombineAllMethodName() const { |
2430 | return Combiner->getValueAsString(FieldName: "CombineAllMethodName" ); |
2431 | } |
2432 | |
2433 | std::string getRuleConfigClassName() const { |
2434 | return getClassName().str() + "RuleConfig" ; |
2435 | } |
2436 | |
2437 | void gatherRules(std::vector<RuleMatcher> &Rules, |
2438 | ArrayRef<const Record *> RulesAndGroups); |
2439 | |
2440 | public: |
2441 | explicit GICombinerEmitter(const RecordKeeper &RK, |
2442 | const CodeGenTarget &Target, StringRef Name, |
2443 | const Record *Combiner); |
2444 | ~GICombinerEmitter() {} |
2445 | |
2446 | void run(raw_ostream &OS); |
2447 | }; |
2448 | |
2449 | void GICombinerEmitter::emitRuleConfigImpl(raw_ostream &OS) { |
2450 | OS << "struct " << getRuleConfigClassName() << " {\n" |
2451 | << " SparseBitVector<> DisabledRules;\n\n" |
2452 | << " bool isRuleEnabled(unsigned RuleID) const;\n" |
2453 | << " bool parseCommandLineOption();\n" |
2454 | << " bool setRuleEnabled(StringRef RuleIdentifier);\n" |
2455 | << " bool setRuleDisabled(StringRef RuleIdentifier);\n" |
2456 | << "};\n\n" ; |
2457 | |
2458 | std::vector<std::pair<std::string, std::string>> Cases; |
2459 | Cases.reserve(n: AllCombineRules.size()); |
2460 | |
2461 | for (const auto &[ID, Name] : AllCombineRules) |
2462 | Cases.emplace_back(args: Name, args: "return " + to_string(Value: ID) + ";\n" ); |
2463 | |
2464 | OS << "static std::optional<uint64_t> getRuleIdxForIdentifier(StringRef " |
2465 | "RuleIdentifier) {\n" |
2466 | << " uint64_t I;\n" |
2467 | << " // getAtInteger(...) returns false on success\n" |
2468 | << " bool Parsed = !RuleIdentifier.getAsInteger(0, I);\n" |
2469 | << " if (Parsed)\n" |
2470 | << " return I;\n\n" |
2471 | << "#ifndef NDEBUG\n" ; |
2472 | StringMatcher Matcher("RuleIdentifier" , Cases, OS); |
2473 | Matcher.Emit(); |
2474 | OS << "#endif // ifndef NDEBUG\n\n" |
2475 | << " return std::nullopt;\n" |
2476 | << "}\n" ; |
2477 | |
2478 | OS << "static std::optional<std::pair<uint64_t, uint64_t>> " |
2479 | "getRuleRangeForIdentifier(StringRef RuleIdentifier) {\n" |
2480 | << " std::pair<StringRef, StringRef> RangePair = " |
2481 | "RuleIdentifier.split('-');\n" |
2482 | << " if (!RangePair.second.empty()) {\n" |
2483 | << " const auto First = " |
2484 | "getRuleIdxForIdentifier(RangePair.first);\n" |
2485 | << " const auto Last = " |
2486 | "getRuleIdxForIdentifier(RangePair.second);\n" |
2487 | << " if (!First || !Last)\n" |
2488 | << " return std::nullopt;\n" |
2489 | << " if (First >= Last)\n" |
2490 | << " report_fatal_error(\"Beginning of range should be before " |
2491 | "end of range\");\n" |
2492 | << " return {{*First, *Last + 1}};\n" |
2493 | << " }\n" |
2494 | << " if (RangePair.first == \"*\") {\n" |
2495 | << " return {{0, " << AllCombineRules.size() << "}};\n" |
2496 | << " }\n" |
2497 | << " const auto I = getRuleIdxForIdentifier(RangePair.first);\n" |
2498 | << " if (!I)\n" |
2499 | << " return std::nullopt;\n" |
2500 | << " return {{*I, *I + 1}};\n" |
2501 | << "}\n\n" ; |
2502 | |
2503 | for (bool Enabled : {true, false}) { |
2504 | OS << "bool " << getRuleConfigClassName() << "::setRule" |
2505 | << (Enabled ? "Enabled" : "Disabled" ) << "(StringRef RuleIdentifier) {\n" |
2506 | << " auto MaybeRange = getRuleRangeForIdentifier(RuleIdentifier);\n" |
2507 | << " if (!MaybeRange)\n" |
2508 | << " return false;\n" |
2509 | << " for (auto I = MaybeRange->first; I < MaybeRange->second; ++I)\n" |
2510 | << " DisabledRules." << (Enabled ? "reset" : "set" ) << "(I);\n" |
2511 | << " return true;\n" |
2512 | << "}\n\n" ; |
2513 | } |
2514 | |
2515 | OS << "static std::vector<std::string> " << Name << "Option;\n" |
2516 | << "static cl::list<std::string> " << Name << "DisableOption(\n" |
2517 | << " \"" << Name.lower() << "-disable-rule\",\n" |
2518 | << " cl::desc(\"Disable one or more combiner rules temporarily in " |
2519 | << "the " << Name << " pass\"),\n" |
2520 | << " cl::CommaSeparated,\n" |
2521 | << " cl::Hidden,\n" |
2522 | << " cl::cat(GICombinerOptionCategory),\n" |
2523 | << " cl::callback([](const std::string &Str) {\n" |
2524 | << " " << Name << "Option.push_back(Str);\n" |
2525 | << " }));\n" |
2526 | << "static cl::list<std::string> " << Name << "OnlyEnableOption(\n" |
2527 | << " \"" << Name.lower() << "-only-enable-rule\",\n" |
2528 | << " cl::desc(\"Disable all rules in the " << Name |
2529 | << " pass then re-enable the specified ones\"),\n" |
2530 | << " cl::Hidden,\n" |
2531 | << " cl::cat(GICombinerOptionCategory),\n" |
2532 | << " cl::callback([](const std::string &CommaSeparatedArg) {\n" |
2533 | << " StringRef Str = CommaSeparatedArg;\n" |
2534 | << " " << Name << "Option.push_back(\"*\");\n" |
2535 | << " do {\n" |
2536 | << " auto X = Str.split(\",\");\n" |
2537 | << " " << Name << "Option.push_back((\"!\" + X.first).str());\n" |
2538 | << " Str = X.second;\n" |
2539 | << " } while (!Str.empty());\n" |
2540 | << " }));\n" |
2541 | << "\n\n" |
2542 | << "bool " << getRuleConfigClassName() |
2543 | << "::isRuleEnabled(unsigned RuleID) const {\n" |
2544 | << " return !DisabledRules.test(RuleID);\n" |
2545 | << "}\n" |
2546 | << "bool " << getRuleConfigClassName() << "::parseCommandLineOption() {\n" |
2547 | << " for (StringRef Identifier : " << Name << "Option) {\n" |
2548 | << " bool Enabled = Identifier.consume_front(\"!\");\n" |
2549 | << " if (Enabled && !setRuleEnabled(Identifier))\n" |
2550 | << " return false;\n" |
2551 | << " if (!Enabled && !setRuleDisabled(Identifier))\n" |
2552 | << " return false;\n" |
2553 | << " }\n" |
2554 | << " return true;\n" |
2555 | << "}\n\n" ; |
2556 | } |
2557 | |
2558 | void GICombinerEmitter::emitAdditionalImpl(raw_ostream &OS) { |
2559 | OS << "bool " << getClassName() << "::" << getCombineAllMethodName() |
2560 | << "(MachineInstr &I) const {\n" |
2561 | << " const TargetSubtargetInfo &ST = MF.getSubtarget();\n" |
2562 | << " const PredicateBitset AvailableFeatures = " |
2563 | "getAvailableFeatures();\n" |
2564 | << " B.setInstrAndDebugLoc(I);\n" |
2565 | << " State.MIs.clear();\n" |
2566 | << " State.MIs.push_back(&I);\n" |
2567 | << " if (executeMatchTable(*this, State, ExecInfo, B" |
2568 | << ", getMatchTable(), *ST.getInstrInfo(), MRI, " |
2569 | "*MRI.getTargetRegisterInfo(), *ST.getRegBankInfo(), AvailableFeatures" |
2570 | << ", /*CoverageInfo*/ nullptr)) {\n" |
2571 | << " return true;\n" |
2572 | << " }\n\n" |
2573 | << " return false;\n" |
2574 | << "}\n\n" ; |
2575 | } |
2576 | |
2577 | void GICombinerEmitter::emitMIPredicateFns(raw_ostream &OS) { |
2578 | auto MatchCode = CXXPredicateCode::getAllMatchCode(); |
2579 | emitMIPredicateFnsImpl<const CXXPredicateCode *>( |
2580 | OS, AdditionalDecls: "" , Predicates: ArrayRef<const CXXPredicateCode *>(MatchCode), |
2581 | GetPredEnumName: [](const CXXPredicateCode *C) -> StringRef { return C->BaseEnumName; }, |
2582 | GetPredCode: [](const CXXPredicateCode *C) -> StringRef { return C->Code; }); |
2583 | } |
2584 | |
2585 | void GICombinerEmitter::emitLeafPredicateFns(raw_ostream &OS) { |
2586 | // Unused, but still needs to be called. |
2587 | emitLeafPredicateFnsImpl<unsigned>( |
2588 | OS, AdditionalDecls: "" , Predicates: {}, GetPredEnumName: [](unsigned) { return "" ; }, GetPredCode: [](unsigned) { return "" ; }); |
2589 | } |
2590 | |
2591 | void GICombinerEmitter::emitI64ImmPredicateFns(raw_ostream &OS) { |
2592 | // Unused, but still needs to be called. |
2593 | emitImmPredicateFnsImpl<unsigned>( |
2594 | OS, TypeIdentifier: "I64" , ArgType: "int64_t" , Predicates: {}, GetPredEnumName: [](unsigned) { return "" ; }, |
2595 | GetPredCode: [](unsigned) { return "" ; }); |
2596 | } |
2597 | |
2598 | void GICombinerEmitter::emitAPFloatImmPredicateFns(raw_ostream &OS) { |
2599 | // Unused, but still needs to be called. |
2600 | emitImmPredicateFnsImpl<unsigned>( |
2601 | OS, TypeIdentifier: "APFloat" , ArgType: "const APFloat &" , Predicates: {}, GetPredEnumName: [](unsigned) { return "" ; }, |
2602 | GetPredCode: [](unsigned) { return "" ; }); |
2603 | } |
2604 | |
2605 | void GICombinerEmitter::emitAPIntImmPredicateFns(raw_ostream &OS) { |
2606 | // Unused, but still needs to be called. |
2607 | emitImmPredicateFnsImpl<unsigned>( |
2608 | OS, TypeIdentifier: "APInt" , ArgType: "const APInt &" , Predicates: {}, GetPredEnumName: [](unsigned) { return "" ; }, |
2609 | GetPredCode: [](unsigned) { return "" ; }); |
2610 | } |
2611 | |
2612 | void GICombinerEmitter::emitTestSimplePredicate(raw_ostream &OS) { |
2613 | if (!AllCombineRules.empty()) { |
2614 | OS << "enum {\n" ; |
2615 | std::string EnumeratorSeparator = " = GICXXPred_Invalid + 1,\n" ; |
2616 | // To avoid emitting a switch, we expect that all those rules are in order. |
2617 | // That way we can just get the RuleID from the enum by subtracting |
2618 | // (GICXXPred_Invalid + 1). |
2619 | [[maybe_unused]] unsigned ExpectedID = 0; |
2620 | for (const auto &ID : keys(C&: AllCombineRules)) { |
2621 | assert(ExpectedID == ID && "combine rules are not ordered!" ); |
2622 | ++ExpectedID; |
2623 | OS << " " << getIsEnabledPredicateEnumName(CombinerRuleID: ID) << EnumeratorSeparator; |
2624 | EnumeratorSeparator = ",\n" ; |
2625 | } |
2626 | OS << "};\n\n" ; |
2627 | } |
2628 | |
2629 | OS << "bool " << getClassName() |
2630 | << "::testSimplePredicate(unsigned Predicate) const {\n" |
2631 | << " return RuleConfig.isRuleEnabled(Predicate - " |
2632 | "GICXXPred_Invalid - " |
2633 | "1);\n" |
2634 | << "}\n" ; |
2635 | } |
2636 | |
2637 | void GICombinerEmitter::emitRunCustomAction(raw_ostream &OS) { |
2638 | const auto CustomActionsCode = CXXPredicateCode::getAllCustomActionsCode(); |
2639 | |
2640 | if (!CustomActionsCode.empty()) { |
2641 | OS << "enum {\n" ; |
2642 | std::string EnumeratorSeparator = " = GICXXCustomAction_Invalid + 1,\n" ; |
2643 | for (const auto &CA : CustomActionsCode) { |
2644 | OS << " " << CA->getEnumNameWithPrefix(Prefix: CXXCustomActionPrefix) |
2645 | << EnumeratorSeparator; |
2646 | EnumeratorSeparator = ",\n" ; |
2647 | } |
2648 | OS << "};\n" ; |
2649 | } |
2650 | |
2651 | OS << "bool " << getClassName() |
2652 | << "::runCustomAction(unsigned ApplyID, const MatcherState &State, " |
2653 | "NewMIVector &OutMIs) const " |
2654 | "{\n Helper.getBuilder().setInstrAndDebugLoc(*State.MIs[0]);\n" ; |
2655 | if (!CustomActionsCode.empty()) { |
2656 | OS << " switch(ApplyID) {\n" ; |
2657 | for (const auto &CA : CustomActionsCode) { |
2658 | OS << " case " << CA->getEnumNameWithPrefix(Prefix: CXXCustomActionPrefix) |
2659 | << ":{\n" |
2660 | << " " << join(R: split(Str: CA->Code, Separator: '\n'), Separator: "\n " ) << '\n' |
2661 | << " return true;\n" ; |
2662 | OS << " }\n" ; |
2663 | } |
2664 | OS << " }\n" ; |
2665 | } |
2666 | OS << " llvm_unreachable(\"Unknown Apply Action\");\n" |
2667 | << "}\n" ; |
2668 | } |
2669 | |
2670 | GICombinerEmitter::GICombinerEmitter(const RecordKeeper &RK, |
2671 | const CodeGenTarget &Target, |
2672 | StringRef Name, const Record *Combiner) |
2673 | : Records(RK), Name(Name), Target(Target), Combiner(Combiner) {} |
2674 | |
2675 | MatchTable |
2676 | GICombinerEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules) { |
2677 | std::vector<Matcher *> InputRules; |
2678 | for (Matcher &Rule : Rules) |
2679 | InputRules.push_back(x: &Rule); |
2680 | |
2681 | unsigned CurrentOrdering = 0; |
2682 | StringMap<unsigned> OpcodeOrder; |
2683 | for (RuleMatcher &Rule : Rules) { |
2684 | const StringRef Opcode = Rule.getOpcode(); |
2685 | assert(!Opcode.empty() && "Didn't expect an undefined opcode" ); |
2686 | if (OpcodeOrder.try_emplace(Key: Opcode, Args&: CurrentOrdering).second) |
2687 | ++CurrentOrdering; |
2688 | } |
2689 | |
2690 | llvm::stable_sort(Range&: InputRules, C: [&OpcodeOrder](const Matcher *A, |
2691 | const Matcher *B) { |
2692 | auto *L = static_cast<const RuleMatcher *>(A); |
2693 | auto *R = static_cast<const RuleMatcher *>(B); |
2694 | return std::tuple(OpcodeOrder[L->getOpcode()], |
2695 | L->insnmatchers_front().getNumOperandMatchers()) < |
2696 | std::tuple(OpcodeOrder[R->getOpcode()], |
2697 | R->insnmatchers_front().getNumOperandMatchers()); |
2698 | }); |
2699 | |
2700 | for (Matcher *Rule : InputRules) |
2701 | Rule->optimize(); |
2702 | |
2703 | std::vector<std::unique_ptr<Matcher>> MatcherStorage; |
2704 | std::vector<Matcher *> OptRules = |
2705 | optimizeRules<GroupMatcher>(Rules: InputRules, MatcherStorage); |
2706 | |
2707 | for (Matcher *Rule : OptRules) |
2708 | Rule->optimize(); |
2709 | |
2710 | OptRules = optimizeRules<SwitchMatcher>(Rules: OptRules, MatcherStorage); |
2711 | |
2712 | return MatchTable::buildTable(Rules: OptRules, /*WithCoverage*/ false, |
2713 | /*IsCombiner*/ true); |
2714 | } |
2715 | |
2716 | /// Recurse into GICombineGroup's and flatten the ruleset into a simple list. |
2717 | void GICombinerEmitter::gatherRules(std::vector<RuleMatcher> &ActiveRules, |
2718 | ArrayRef<const Record *> RulesAndGroups) { |
2719 | for (const Record *Rec : RulesAndGroups) { |
2720 | if (!Rec->isValueUnset(FieldName: "Rules" )) { |
2721 | gatherRules(ActiveRules, RulesAndGroups: Rec->getValueAsListOfDefs(FieldName: "Rules" )); |
2722 | continue; |
2723 | } |
2724 | |
2725 | StringRef RuleName = Rec->getName(); |
2726 | if (!RulesSeen.insert(key: RuleName).second) { |
2727 | PrintWarning(WarningLoc: Rec->getLoc(), |
2728 | Msg: "skipping rule '" + Rec->getName() + |
2729 | "' because it has already been processed" ); |
2730 | continue; |
2731 | } |
2732 | |
2733 | AllCombineRules.emplace_back(args&: NextRuleID, args: Rec->getName().str()); |
2734 | CombineRuleBuilder CRB(Target, SubtargetFeatures, *Rec, NextRuleID++, |
2735 | ActiveRules); |
2736 | |
2737 | if (!CRB.parseAll()) { |
2738 | assert(ErrorsPrinted && "Parsing failed without errors!" ); |
2739 | continue; |
2740 | } |
2741 | |
2742 | if (StopAfterParse) { |
2743 | CRB.print(OS&: outs()); |
2744 | continue; |
2745 | } |
2746 | |
2747 | if (!CRB.emitRuleMatchers()) { |
2748 | assert(ErrorsPrinted && "Emission failed without errors!" ); |
2749 | continue; |
2750 | } |
2751 | } |
2752 | } |
2753 | |
2754 | void GICombinerEmitter::run(raw_ostream &OS) { |
2755 | InstructionOpcodeMatcher::initOpcodeValuesMap(Target); |
2756 | LLTOperandMatcher::initTypeIDValuesMap(); |
2757 | |
2758 | TGTimer &Timer = Records.getTimer(); |
2759 | Timer.startTimer(Name: "Gather rules" ); |
2760 | std::vector<RuleMatcher> Rules; |
2761 | gatherRules(ActiveRules&: Rules, RulesAndGroups: Combiner->getValueAsListOfDefs(FieldName: "Rules" )); |
2762 | if (ErrorsPrinted) |
2763 | PrintFatalError(ErrorLoc: Combiner->getLoc(), Msg: "Failed to parse one or more rules" ); |
2764 | |
2765 | if (StopAfterParse) |
2766 | return; |
2767 | |
2768 | Timer.startTimer(Name: "Creating Match Table" ); |
2769 | unsigned MaxTemporaries = 0; |
2770 | for (const auto &Rule : Rules) |
2771 | MaxTemporaries = std::max(a: MaxTemporaries, b: Rule.countRendererFns()); |
2772 | |
2773 | llvm::stable_sort(Range&: Rules, C: [&](const RuleMatcher &A, const RuleMatcher &B) { |
2774 | if (A.isHigherPriorityThan(B)) { |
2775 | assert(!B.isHigherPriorityThan(A) && "Cannot be more important " |
2776 | "and less important at " |
2777 | "the same time" ); |
2778 | return true; |
2779 | } |
2780 | return false; |
2781 | }); |
2782 | |
2783 | const MatchTable Table = buildMatchTable(Rules); |
2784 | |
2785 | Timer.startTimer(Name: "Emit combiner" ); |
2786 | |
2787 | emitSourceFileHeader(Desc: getClassName().str() + " Combiner Match Table" , OS); |
2788 | |
2789 | SmallVector<LLTCodeGen, 16> TypeObjects; |
2790 | append_range(C&: TypeObjects, R&: KnownTypes); |
2791 | llvm::sort(C&: TypeObjects); |
2792 | |
2793 | // Hack: Avoid empty declarator. |
2794 | if (TypeObjects.empty()) |
2795 | TypeObjects.push_back(Elt: LLT::scalar(SizeInBits: 1)); |
2796 | |
2797 | // GET_GICOMBINER_DEPS, which pulls in extra dependencies. |
2798 | OS << "#ifdef GET_GICOMBINER_DEPS\n" |
2799 | << "#include \"llvm/ADT/SparseBitVector.h\"\n" |
2800 | << "namespace llvm {\n" |
2801 | << "extern cl::OptionCategory GICombinerOptionCategory;\n" |
2802 | << "} // end namespace llvm\n" |
2803 | << "#endif // ifdef GET_GICOMBINER_DEPS\n\n" ; |
2804 | |
2805 | // GET_GICOMBINER_TYPES, which needs to be included before the declaration of |
2806 | // the class. |
2807 | OS << "#ifdef GET_GICOMBINER_TYPES\n" ; |
2808 | emitRuleConfigImpl(OS); |
2809 | OS << "#endif // ifdef GET_GICOMBINER_TYPES\n\n" ; |
2810 | emitPredicateBitset(OS, IfDefName: "GET_GICOMBINER_TYPES" ); |
2811 | |
2812 | // GET_GICOMBINER_CLASS_MEMBERS, which need to be included inside the class. |
2813 | emitPredicatesDecl(OS, IfDefName: "GET_GICOMBINER_CLASS_MEMBERS" ); |
2814 | emitTemporariesDecl(OS, IfDefName: "GET_GICOMBINER_CLASS_MEMBERS" ); |
2815 | |
2816 | // GET_GICOMBINER_IMPL, which needs to be included outside the class. |
2817 | emitExecutorImpl(OS, Table, TypeObjects, Rules, ComplexOperandMatchers: {}, CustomOperandRenderers: {}, |
2818 | IfDefName: "GET_GICOMBINER_IMPL" ); |
2819 | |
2820 | // GET_GICOMBINER_CONSTRUCTOR_INITS, which are in the constructor's |
2821 | // initializer list. |
2822 | emitPredicatesInit(OS, IfDefName: "GET_GICOMBINER_CONSTRUCTOR_INITS" ); |
2823 | emitTemporariesInit(OS, MaxTemporaries, IfDefName: "GET_GICOMBINER_CONSTRUCTOR_INITS" ); |
2824 | } |
2825 | |
2826 | } // end anonymous namespace |
2827 | |
2828 | //===----------------------------------------------------------------------===// |
2829 | |
2830 | static void EmitGICombiner(const RecordKeeper &RK, raw_ostream &OS) { |
2831 | EnablePrettyStackTrace(); |
2832 | const CodeGenTarget Target(RK); |
2833 | |
2834 | if (SelectedCombiners.empty()) |
2835 | PrintFatalError(Msg: "No combiners selected with -combiners" ); |
2836 | for (const auto &Combiner : SelectedCombiners) { |
2837 | const Record *CombinerDef = RK.getDef(Name: Combiner); |
2838 | if (!CombinerDef) |
2839 | PrintFatalError(Msg: "Could not find " + Combiner); |
2840 | GICombinerEmitter(RK, Target, Combiner, CombinerDef).run(OS); |
2841 | } |
2842 | } |
2843 | |
2844 | static TableGen::Emitter::Opt X("gen-global-isel-combiner" , EmitGICombiner, |
2845 | "Generate GlobalISel Combiner" ); |
2846 | |